Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel 10 Gigabit PCI Express Linux driver
5 Copyright(c) 1999 - 2016 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28*******************************************************************************/
29
30#include <linux/pci.h>
31#include <linux/delay.h>
32#include <linux/sched.h>
33#include <linux/netdevice.h>
34
35#include "ixgbe.h"
36#include "ixgbe_common.h"
37#include "ixgbe_phy.h"
38
39static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
41static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
44static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 u16 count);
46static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
47static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50
51static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
53static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 u16 words, u16 *data);
55static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
56 u16 words, u16 *data);
57static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
58 u16 offset);
59static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
60
61/* Base table for registers values that change by MAC */
62const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
63 IXGBE_MVALS_INIT(8259X)
64};
65
66/**
67 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
68 * control
69 * @hw: pointer to hardware structure
70 *
71 * There are several phys that do not support autoneg flow control. This
72 * function check the device id to see if the associated phy supports
73 * autoneg flow control.
74 **/
75bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
76{
77 bool supported = false;
78 ixgbe_link_speed speed;
79 bool link_up;
80
81 switch (hw->phy.media_type) {
82 case ixgbe_media_type_fiber:
83 /* flow control autoneg black list */
84 switch (hw->device_id) {
85 case IXGBE_DEV_ID_X550EM_A_SFP:
86 case IXGBE_DEV_ID_X550EM_A_SFP_N:
87 supported = false;
88 break;
89 default:
90 hw->mac.ops.check_link(hw, &speed, &link_up, false);
91 /* if link is down, assume supported */
92 if (link_up)
93 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
94 true : false;
95 else
96 supported = true;
97 }
98
99 break;
100 case ixgbe_media_type_backplane:
101 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
102 supported = false;
103 else
104 supported = true;
105 break;
106 case ixgbe_media_type_copper:
107 /* only some copper devices support flow control autoneg */
108 switch (hw->device_id) {
109 case IXGBE_DEV_ID_82599_T3_LOM:
110 case IXGBE_DEV_ID_X540T:
111 case IXGBE_DEV_ID_X540T1:
112 case IXGBE_DEV_ID_X550T:
113 case IXGBE_DEV_ID_X550T1:
114 case IXGBE_DEV_ID_X550EM_X_10G_T:
115 case IXGBE_DEV_ID_X550EM_A_10G_T:
116 case IXGBE_DEV_ID_X550EM_A_1G_T:
117 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
118 supported = true;
119 break;
120 default:
121 break;
122 }
123 default:
124 break;
125 }
126
127 if (!supported)
128 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
129 hw->device_id);
130
131 return supported;
132}
133
134/**
135 * ixgbe_setup_fc_generic - Set up flow control
136 * @hw: pointer to hardware structure
137 *
138 * Called at init time to set up flow control.
139 **/
140s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
141{
142 s32 ret_val = 0;
143 u32 reg = 0, reg_bp = 0;
144 u16 reg_cu = 0;
145 bool locked = false;
146
147 /*
148 * Validate the requested mode. Strict IEEE mode does not allow
149 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
150 */
151 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
152 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
153 return IXGBE_ERR_INVALID_LINK_SETTINGS;
154 }
155
156 /*
157 * 10gig parts do not have a word in the EEPROM to determine the
158 * default flow control setting, so we explicitly set it to full.
159 */
160 if (hw->fc.requested_mode == ixgbe_fc_default)
161 hw->fc.requested_mode = ixgbe_fc_full;
162
163 /*
164 * Set up the 1G and 10G flow control advertisement registers so the
165 * HW will be able to do fc autoneg once the cable is plugged in. If
166 * we link at 10G, the 1G advertisement is harmless and vice versa.
167 */
168 switch (hw->phy.media_type) {
169 case ixgbe_media_type_backplane:
170 /* some MAC's need RMW protection on AUTOC */
171 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
172 if (ret_val)
173 return ret_val;
174
175 /* fall through - only backplane uses autoc */
176 case ixgbe_media_type_fiber:
177 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
178
179 break;
180 case ixgbe_media_type_copper:
181 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
182 MDIO_MMD_AN, ®_cu);
183 break;
184 default:
185 break;
186 }
187
188 /*
189 * The possible values of fc.requested_mode are:
190 * 0: Flow control is completely disabled
191 * 1: Rx flow control is enabled (we can receive pause frames,
192 * but not send pause frames).
193 * 2: Tx flow control is enabled (we can send pause frames but
194 * we do not support receiving pause frames).
195 * 3: Both Rx and Tx flow control (symmetric) are enabled.
196 * other: Invalid.
197 */
198 switch (hw->fc.requested_mode) {
199 case ixgbe_fc_none:
200 /* Flow control completely disabled by software override. */
201 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
202 if (hw->phy.media_type == ixgbe_media_type_backplane)
203 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
204 IXGBE_AUTOC_ASM_PAUSE);
205 else if (hw->phy.media_type == ixgbe_media_type_copper)
206 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
207 break;
208 case ixgbe_fc_tx_pause:
209 /*
210 * Tx Flow control is enabled, and Rx Flow control is
211 * disabled by software override.
212 */
213 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
214 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
215 if (hw->phy.media_type == ixgbe_media_type_backplane) {
216 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
217 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
218 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
219 reg_cu |= IXGBE_TAF_ASM_PAUSE;
220 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
221 }
222 break;
223 case ixgbe_fc_rx_pause:
224 /*
225 * Rx Flow control is enabled and Tx Flow control is
226 * disabled by software override. Since there really
227 * isn't a way to advertise that we are capable of RX
228 * Pause ONLY, we will advertise that we support both
229 * symmetric and asymmetric Rx PAUSE, as such we fall
230 * through to the fc_full statement. Later, we will
231 * disable the adapter's ability to send PAUSE frames.
232 */
233 case ixgbe_fc_full:
234 /* Flow control (both Rx and Tx) is enabled by SW override. */
235 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
236 if (hw->phy.media_type == ixgbe_media_type_backplane)
237 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
238 IXGBE_AUTOC_ASM_PAUSE;
239 else if (hw->phy.media_type == ixgbe_media_type_copper)
240 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
241 break;
242 default:
243 hw_dbg(hw, "Flow control param set incorrectly\n");
244 return IXGBE_ERR_CONFIG;
245 }
246
247 if (hw->mac.type != ixgbe_mac_X540) {
248 /*
249 * Enable auto-negotiation between the MAC & PHY;
250 * the MAC will advertise clause 37 flow control.
251 */
252 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
253 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
254
255 /* Disable AN timeout */
256 if (hw->fc.strict_ieee)
257 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
258
259 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
260 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
261 }
262
263 /*
264 * AUTOC restart handles negotiation of 1G and 10G on backplane
265 * and copper. There is no need to set the PCS1GCTL register.
266 *
267 */
268 if (hw->phy.media_type == ixgbe_media_type_backplane) {
269 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
270 * LESM is on, likewise reset_pipeline requries the lock as
271 * it also writes AUTOC.
272 */
273 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
274 if (ret_val)
275 return ret_val;
276
277 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
278 ixgbe_device_supports_autoneg_fc(hw)) {
279 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
280 MDIO_MMD_AN, reg_cu);
281 }
282
283 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
284 return ret_val;
285}
286
287/**
288 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
289 * @hw: pointer to hardware structure
290 *
291 * Starts the hardware by filling the bus info structure and media type, clears
292 * all on chip counters, initializes receive address registers, multicast
293 * table, VLAN filter table, calls routine to set up link and flow control
294 * settings, and leaves transmit and receive units disabled and uninitialized
295 **/
296s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
297{
298 s32 ret_val;
299 u32 ctrl_ext;
300 u16 device_caps;
301
302 /* Set the media type */
303 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
304
305 /* Identify the PHY */
306 hw->phy.ops.identify(hw);
307
308 /* Clear the VLAN filter table */
309 hw->mac.ops.clear_vfta(hw);
310
311 /* Clear statistics registers */
312 hw->mac.ops.clear_hw_cntrs(hw);
313
314 /* Set No Snoop Disable */
315 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
316 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
317 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
318 IXGBE_WRITE_FLUSH(hw);
319
320 /* Setup flow control if method for doing so */
321 if (hw->mac.ops.setup_fc) {
322 ret_val = hw->mac.ops.setup_fc(hw);
323 if (ret_val)
324 return ret_val;
325 }
326
327 /* Cashe bit indicating need for crosstalk fix */
328 switch (hw->mac.type) {
329 case ixgbe_mac_82599EB:
330 case ixgbe_mac_X550EM_x:
331 case ixgbe_mac_x550em_a:
332 hw->mac.ops.get_device_caps(hw, &device_caps);
333 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
334 hw->need_crosstalk_fix = false;
335 else
336 hw->need_crosstalk_fix = true;
337 break;
338 default:
339 hw->need_crosstalk_fix = false;
340 break;
341 }
342
343 /* Clear adapter stopped flag */
344 hw->adapter_stopped = false;
345
346 return 0;
347}
348
349/**
350 * ixgbe_start_hw_gen2 - Init sequence for common device family
351 * @hw: pointer to hw structure
352 *
353 * Performs the init sequence common to the second generation
354 * of 10 GbE devices.
355 * Devices in the second generation:
356 * 82599
357 * X540
358 **/
359s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
360{
361 u32 i;
362
363 /* Clear the rate limiters */
364 for (i = 0; i < hw->mac.max_tx_queues; i++) {
365 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
366 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
367 }
368 IXGBE_WRITE_FLUSH(hw);
369
370 return 0;
371}
372
373/**
374 * ixgbe_init_hw_generic - Generic hardware initialization
375 * @hw: pointer to hardware structure
376 *
377 * Initialize the hardware by resetting the hardware, filling the bus info
378 * structure and media type, clears all on chip counters, initializes receive
379 * address registers, multicast table, VLAN filter table, calls routine to set
380 * up link and flow control settings, and leaves transmit and receive units
381 * disabled and uninitialized
382 **/
383s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
384{
385 s32 status;
386
387 /* Reset the hardware */
388 status = hw->mac.ops.reset_hw(hw);
389
390 if (status == 0) {
391 /* Start the HW */
392 status = hw->mac.ops.start_hw(hw);
393 }
394
395 /* Initialize the LED link active for LED blink support */
396 if (hw->mac.ops.init_led_link_act)
397 hw->mac.ops.init_led_link_act(hw);
398
399 return status;
400}
401
402/**
403 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
404 * @hw: pointer to hardware structure
405 *
406 * Clears all hardware statistics counters by reading them from the hardware
407 * Statistics counters are clear on read.
408 **/
409s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
410{
411 u16 i = 0;
412
413 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
414 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
415 IXGBE_READ_REG(hw, IXGBE_ERRBC);
416 IXGBE_READ_REG(hw, IXGBE_MSPDC);
417 for (i = 0; i < 8; i++)
418 IXGBE_READ_REG(hw, IXGBE_MPC(i));
419
420 IXGBE_READ_REG(hw, IXGBE_MLFC);
421 IXGBE_READ_REG(hw, IXGBE_MRFC);
422 IXGBE_READ_REG(hw, IXGBE_RLEC);
423 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
424 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
425 if (hw->mac.type >= ixgbe_mac_82599EB) {
426 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
427 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
428 } else {
429 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
430 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
431 }
432
433 for (i = 0; i < 8; i++) {
434 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
435 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
436 if (hw->mac.type >= ixgbe_mac_82599EB) {
437 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
438 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
439 } else {
440 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
441 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
442 }
443 }
444 if (hw->mac.type >= ixgbe_mac_82599EB)
445 for (i = 0; i < 8; i++)
446 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
447 IXGBE_READ_REG(hw, IXGBE_PRC64);
448 IXGBE_READ_REG(hw, IXGBE_PRC127);
449 IXGBE_READ_REG(hw, IXGBE_PRC255);
450 IXGBE_READ_REG(hw, IXGBE_PRC511);
451 IXGBE_READ_REG(hw, IXGBE_PRC1023);
452 IXGBE_READ_REG(hw, IXGBE_PRC1522);
453 IXGBE_READ_REG(hw, IXGBE_GPRC);
454 IXGBE_READ_REG(hw, IXGBE_BPRC);
455 IXGBE_READ_REG(hw, IXGBE_MPRC);
456 IXGBE_READ_REG(hw, IXGBE_GPTC);
457 IXGBE_READ_REG(hw, IXGBE_GORCL);
458 IXGBE_READ_REG(hw, IXGBE_GORCH);
459 IXGBE_READ_REG(hw, IXGBE_GOTCL);
460 IXGBE_READ_REG(hw, IXGBE_GOTCH);
461 if (hw->mac.type == ixgbe_mac_82598EB)
462 for (i = 0; i < 8; i++)
463 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
464 IXGBE_READ_REG(hw, IXGBE_RUC);
465 IXGBE_READ_REG(hw, IXGBE_RFC);
466 IXGBE_READ_REG(hw, IXGBE_ROC);
467 IXGBE_READ_REG(hw, IXGBE_RJC);
468 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
469 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
470 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
471 IXGBE_READ_REG(hw, IXGBE_TORL);
472 IXGBE_READ_REG(hw, IXGBE_TORH);
473 IXGBE_READ_REG(hw, IXGBE_TPR);
474 IXGBE_READ_REG(hw, IXGBE_TPT);
475 IXGBE_READ_REG(hw, IXGBE_PTC64);
476 IXGBE_READ_REG(hw, IXGBE_PTC127);
477 IXGBE_READ_REG(hw, IXGBE_PTC255);
478 IXGBE_READ_REG(hw, IXGBE_PTC511);
479 IXGBE_READ_REG(hw, IXGBE_PTC1023);
480 IXGBE_READ_REG(hw, IXGBE_PTC1522);
481 IXGBE_READ_REG(hw, IXGBE_MPTC);
482 IXGBE_READ_REG(hw, IXGBE_BPTC);
483 for (i = 0; i < 16; i++) {
484 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
485 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
486 if (hw->mac.type >= ixgbe_mac_82599EB) {
487 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
488 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
489 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
490 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
491 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
492 } else {
493 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
494 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
495 }
496 }
497
498 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
499 if (hw->phy.id == 0)
500 hw->phy.ops.identify(hw);
501 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
502 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
503 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
504 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
505 }
506
507 return 0;
508}
509
510/**
511 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
512 * @hw: pointer to hardware structure
513 * @pba_num: stores the part number string from the EEPROM
514 * @pba_num_size: part number string buffer length
515 *
516 * Reads the part number string from the EEPROM.
517 **/
518s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
519 u32 pba_num_size)
520{
521 s32 ret_val;
522 u16 data;
523 u16 pba_ptr;
524 u16 offset;
525 u16 length;
526
527 if (pba_num == NULL) {
528 hw_dbg(hw, "PBA string buffer was null\n");
529 return IXGBE_ERR_INVALID_ARGUMENT;
530 }
531
532 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
533 if (ret_val) {
534 hw_dbg(hw, "NVM Read Error\n");
535 return ret_val;
536 }
537
538 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
539 if (ret_val) {
540 hw_dbg(hw, "NVM Read Error\n");
541 return ret_val;
542 }
543
544 /*
545 * if data is not ptr guard the PBA must be in legacy format which
546 * means pba_ptr is actually our second data word for the PBA number
547 * and we can decode it into an ascii string
548 */
549 if (data != IXGBE_PBANUM_PTR_GUARD) {
550 hw_dbg(hw, "NVM PBA number is not stored as string\n");
551
552 /* we will need 11 characters to store the PBA */
553 if (pba_num_size < 11) {
554 hw_dbg(hw, "PBA string buffer too small\n");
555 return IXGBE_ERR_NO_SPACE;
556 }
557
558 /* extract hex string from data and pba_ptr */
559 pba_num[0] = (data >> 12) & 0xF;
560 pba_num[1] = (data >> 8) & 0xF;
561 pba_num[2] = (data >> 4) & 0xF;
562 pba_num[3] = data & 0xF;
563 pba_num[4] = (pba_ptr >> 12) & 0xF;
564 pba_num[5] = (pba_ptr >> 8) & 0xF;
565 pba_num[6] = '-';
566 pba_num[7] = 0;
567 pba_num[8] = (pba_ptr >> 4) & 0xF;
568 pba_num[9] = pba_ptr & 0xF;
569
570 /* put a null character on the end of our string */
571 pba_num[10] = '\0';
572
573 /* switch all the data but the '-' to hex char */
574 for (offset = 0; offset < 10; offset++) {
575 if (pba_num[offset] < 0xA)
576 pba_num[offset] += '0';
577 else if (pba_num[offset] < 0x10)
578 pba_num[offset] += 'A' - 0xA;
579 }
580
581 return 0;
582 }
583
584 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
585 if (ret_val) {
586 hw_dbg(hw, "NVM Read Error\n");
587 return ret_val;
588 }
589
590 if (length == 0xFFFF || length == 0) {
591 hw_dbg(hw, "NVM PBA number section invalid length\n");
592 return IXGBE_ERR_PBA_SECTION;
593 }
594
595 /* check if pba_num buffer is big enough */
596 if (pba_num_size < (((u32)length * 2) - 1)) {
597 hw_dbg(hw, "PBA string buffer too small\n");
598 return IXGBE_ERR_NO_SPACE;
599 }
600
601 /* trim pba length from start of string */
602 pba_ptr++;
603 length--;
604
605 for (offset = 0; offset < length; offset++) {
606 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
607 if (ret_val) {
608 hw_dbg(hw, "NVM Read Error\n");
609 return ret_val;
610 }
611 pba_num[offset * 2] = (u8)(data >> 8);
612 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
613 }
614 pba_num[offset * 2] = '\0';
615
616 return 0;
617}
618
619/**
620 * ixgbe_get_mac_addr_generic - Generic get MAC address
621 * @hw: pointer to hardware structure
622 * @mac_addr: Adapter MAC address
623 *
624 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
625 * A reset of the adapter must be performed prior to calling this function
626 * in order for the MAC address to have been loaded from the EEPROM into RAR0
627 **/
628s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
629{
630 u32 rar_high;
631 u32 rar_low;
632 u16 i;
633
634 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
635 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
636
637 for (i = 0; i < 4; i++)
638 mac_addr[i] = (u8)(rar_low >> (i*8));
639
640 for (i = 0; i < 2; i++)
641 mac_addr[i+4] = (u8)(rar_high >> (i*8));
642
643 return 0;
644}
645
646enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
647{
648 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
649 case IXGBE_PCI_LINK_WIDTH_1:
650 return ixgbe_bus_width_pcie_x1;
651 case IXGBE_PCI_LINK_WIDTH_2:
652 return ixgbe_bus_width_pcie_x2;
653 case IXGBE_PCI_LINK_WIDTH_4:
654 return ixgbe_bus_width_pcie_x4;
655 case IXGBE_PCI_LINK_WIDTH_8:
656 return ixgbe_bus_width_pcie_x8;
657 default:
658 return ixgbe_bus_width_unknown;
659 }
660}
661
662enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
663{
664 switch (link_status & IXGBE_PCI_LINK_SPEED) {
665 case IXGBE_PCI_LINK_SPEED_2500:
666 return ixgbe_bus_speed_2500;
667 case IXGBE_PCI_LINK_SPEED_5000:
668 return ixgbe_bus_speed_5000;
669 case IXGBE_PCI_LINK_SPEED_8000:
670 return ixgbe_bus_speed_8000;
671 default:
672 return ixgbe_bus_speed_unknown;
673 }
674}
675
676/**
677 * ixgbe_get_bus_info_generic - Generic set PCI bus info
678 * @hw: pointer to hardware structure
679 *
680 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
681 **/
682s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
683{
684 u16 link_status;
685
686 hw->bus.type = ixgbe_bus_type_pci_express;
687
688 /* Get the negotiated link width and speed from PCI config space */
689 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
690
691 hw->bus.width = ixgbe_convert_bus_width(link_status);
692 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
693
694 hw->mac.ops.set_lan_id(hw);
695
696 return 0;
697}
698
699/**
700 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
701 * @hw: pointer to the HW structure
702 *
703 * Determines the LAN function id by reading memory-mapped registers
704 * and swaps the port value if requested.
705 **/
706void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
707{
708 struct ixgbe_bus_info *bus = &hw->bus;
709 u16 ee_ctrl_4;
710 u32 reg;
711
712 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
713 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
714 bus->lan_id = bus->func;
715
716 /* check for a port swap */
717 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
718 if (reg & IXGBE_FACTPS_LFS)
719 bus->func ^= 0x1;
720
721 /* Get MAC instance from EEPROM for configuring CS4227 */
722 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
723 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
724 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
725 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
726 }
727}
728
729/**
730 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
731 * @hw: pointer to hardware structure
732 *
733 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
734 * disables transmit and receive units. The adapter_stopped flag is used by
735 * the shared code and drivers to determine if the adapter is in a stopped
736 * state and should not touch the hardware.
737 **/
738s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
739{
740 u32 reg_val;
741 u16 i;
742
743 /*
744 * Set the adapter_stopped flag so other driver functions stop touching
745 * the hardware
746 */
747 hw->adapter_stopped = true;
748
749 /* Disable the receive unit */
750 hw->mac.ops.disable_rx(hw);
751
752 /* Clear interrupt mask to stop interrupts from being generated */
753 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
754
755 /* Clear any pending interrupts, flush previous writes */
756 IXGBE_READ_REG(hw, IXGBE_EICR);
757
758 /* Disable the transmit unit. Each queue must be disabled. */
759 for (i = 0; i < hw->mac.max_tx_queues; i++)
760 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
761
762 /* Disable the receive unit by stopping each queue */
763 for (i = 0; i < hw->mac.max_rx_queues; i++) {
764 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
765 reg_val &= ~IXGBE_RXDCTL_ENABLE;
766 reg_val |= IXGBE_RXDCTL_SWFLSH;
767 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
768 }
769
770 /* flush all queues disables */
771 IXGBE_WRITE_FLUSH(hw);
772 usleep_range(1000, 2000);
773
774 /*
775 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
776 * access and verify no pending requests
777 */
778 return ixgbe_disable_pcie_master(hw);
779}
780
781/**
782 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
783 * @hw: pointer to hardware structure
784 *
785 * Store the index for the link active LED. This will be used to support
786 * blinking the LED.
787 **/
788s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
789{
790 struct ixgbe_mac_info *mac = &hw->mac;
791 u32 led_reg, led_mode;
792 u16 i;
793
794 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
795
796 /* Get LED link active from the LEDCTL register */
797 for (i = 0; i < 4; i++) {
798 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
799
800 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
801 IXGBE_LED_LINK_ACTIVE) {
802 mac->led_link_act = i;
803 return 0;
804 }
805 }
806
807 /* If LEDCTL register does not have the LED link active set, then use
808 * known MAC defaults.
809 */
810 switch (hw->mac.type) {
811 case ixgbe_mac_x550em_a:
812 mac->led_link_act = 0;
813 break;
814 case ixgbe_mac_X550EM_x:
815 mac->led_link_act = 1;
816 break;
817 default:
818 mac->led_link_act = 2;
819 }
820
821 return 0;
822}
823
824/**
825 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
826 * @hw: pointer to hardware structure
827 * @index: led number to turn on
828 **/
829s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
830{
831 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
832
833 if (index > 3)
834 return IXGBE_ERR_PARAM;
835
836 /* To turn on the LED, set mode to ON. */
837 led_reg &= ~IXGBE_LED_MODE_MASK(index);
838 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
839 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
840 IXGBE_WRITE_FLUSH(hw);
841
842 return 0;
843}
844
845/**
846 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
847 * @hw: pointer to hardware structure
848 * @index: led number to turn off
849 **/
850s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
851{
852 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
853
854 if (index > 3)
855 return IXGBE_ERR_PARAM;
856
857 /* To turn off the LED, set mode to OFF. */
858 led_reg &= ~IXGBE_LED_MODE_MASK(index);
859 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
860 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
861 IXGBE_WRITE_FLUSH(hw);
862
863 return 0;
864}
865
866/**
867 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
868 * @hw: pointer to hardware structure
869 *
870 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
871 * ixgbe_hw struct in order to set up EEPROM access.
872 **/
873s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
874{
875 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
876 u32 eec;
877 u16 eeprom_size;
878
879 if (eeprom->type == ixgbe_eeprom_uninitialized) {
880 eeprom->type = ixgbe_eeprom_none;
881 /* Set default semaphore delay to 10ms which is a well
882 * tested value */
883 eeprom->semaphore_delay = 10;
884 /* Clear EEPROM page size, it will be initialized as needed */
885 eeprom->word_page_size = 0;
886
887 /*
888 * Check for EEPROM present first.
889 * If not present leave as none
890 */
891 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
892 if (eec & IXGBE_EEC_PRES) {
893 eeprom->type = ixgbe_eeprom_spi;
894
895 /*
896 * SPI EEPROM is assumed here. This code would need to
897 * change if a future EEPROM is not SPI.
898 */
899 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
900 IXGBE_EEC_SIZE_SHIFT);
901 eeprom->word_size = BIT(eeprom_size +
902 IXGBE_EEPROM_WORD_SIZE_SHIFT);
903 }
904
905 if (eec & IXGBE_EEC_ADDR_SIZE)
906 eeprom->address_bits = 16;
907 else
908 eeprom->address_bits = 8;
909 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
910 eeprom->type, eeprom->word_size, eeprom->address_bits);
911 }
912
913 return 0;
914}
915
916/**
917 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
918 * @hw: pointer to hardware structure
919 * @offset: offset within the EEPROM to write
920 * @words: number of words
921 * @data: 16 bit word(s) to write to EEPROM
922 *
923 * Reads 16 bit word(s) from EEPROM through bit-bang method
924 **/
925s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
926 u16 words, u16 *data)
927{
928 s32 status;
929 u16 i, count;
930
931 hw->eeprom.ops.init_params(hw);
932
933 if (words == 0)
934 return IXGBE_ERR_INVALID_ARGUMENT;
935
936 if (offset + words > hw->eeprom.word_size)
937 return IXGBE_ERR_EEPROM;
938
939 /*
940 * The EEPROM page size cannot be queried from the chip. We do lazy
941 * initialization. It is worth to do that when we write large buffer.
942 */
943 if ((hw->eeprom.word_page_size == 0) &&
944 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
945 ixgbe_detect_eeprom_page_size_generic(hw, offset);
946
947 /*
948 * We cannot hold synchronization semaphores for too long
949 * to avoid other entity starvation. However it is more efficient
950 * to read in bursts than synchronizing access for each word.
951 */
952 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
953 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
954 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
955 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
956 count, &data[i]);
957
958 if (status != 0)
959 break;
960 }
961
962 return status;
963}
964
965/**
966 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
967 * @hw: pointer to hardware structure
968 * @offset: offset within the EEPROM to be written to
969 * @words: number of word(s)
970 * @data: 16 bit word(s) to be written to the EEPROM
971 *
972 * If ixgbe_eeprom_update_checksum is not called after this function, the
973 * EEPROM will most likely contain an invalid checksum.
974 **/
975static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
976 u16 words, u16 *data)
977{
978 s32 status;
979 u16 word;
980 u16 page_size;
981 u16 i;
982 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
983
984 /* Prepare the EEPROM for writing */
985 status = ixgbe_acquire_eeprom(hw);
986 if (status)
987 return status;
988
989 if (ixgbe_ready_eeprom(hw) != 0) {
990 ixgbe_release_eeprom(hw);
991 return IXGBE_ERR_EEPROM;
992 }
993
994 for (i = 0; i < words; i++) {
995 ixgbe_standby_eeprom(hw);
996
997 /* Send the WRITE ENABLE command (8 bit opcode) */
998 ixgbe_shift_out_eeprom_bits(hw,
999 IXGBE_EEPROM_WREN_OPCODE_SPI,
1000 IXGBE_EEPROM_OPCODE_BITS);
1001
1002 ixgbe_standby_eeprom(hw);
1003
1004 /* Some SPI eeproms use the 8th address bit embedded
1005 * in the opcode
1006 */
1007 if ((hw->eeprom.address_bits == 8) &&
1008 ((offset + i) >= 128))
1009 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1010
1011 /* Send the Write command (8-bit opcode + addr) */
1012 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1013 IXGBE_EEPROM_OPCODE_BITS);
1014 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1015 hw->eeprom.address_bits);
1016
1017 page_size = hw->eeprom.word_page_size;
1018
1019 /* Send the data in burst via SPI */
1020 do {
1021 word = data[i];
1022 word = (word >> 8) | (word << 8);
1023 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1024
1025 if (page_size == 0)
1026 break;
1027
1028 /* do not wrap around page */
1029 if (((offset + i) & (page_size - 1)) ==
1030 (page_size - 1))
1031 break;
1032 } while (++i < words);
1033
1034 ixgbe_standby_eeprom(hw);
1035 usleep_range(10000, 20000);
1036 }
1037 /* Done with writing - release the EEPROM */
1038 ixgbe_release_eeprom(hw);
1039
1040 return 0;
1041}
1042
1043/**
1044 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1045 * @hw: pointer to hardware structure
1046 * @offset: offset within the EEPROM to be written to
1047 * @data: 16 bit word to be written to the EEPROM
1048 *
1049 * If ixgbe_eeprom_update_checksum is not called after this function, the
1050 * EEPROM will most likely contain an invalid checksum.
1051 **/
1052s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1053{
1054 hw->eeprom.ops.init_params(hw);
1055
1056 if (offset >= hw->eeprom.word_size)
1057 return IXGBE_ERR_EEPROM;
1058
1059 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1060}
1061
1062/**
1063 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1064 * @hw: pointer to hardware structure
1065 * @offset: offset within the EEPROM to be read
1066 * @words: number of word(s)
1067 * @data: read 16 bit words(s) from EEPROM
1068 *
1069 * Reads 16 bit word(s) from EEPROM through bit-bang method
1070 **/
1071s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1072 u16 words, u16 *data)
1073{
1074 s32 status;
1075 u16 i, count;
1076
1077 hw->eeprom.ops.init_params(hw);
1078
1079 if (words == 0)
1080 return IXGBE_ERR_INVALID_ARGUMENT;
1081
1082 if (offset + words > hw->eeprom.word_size)
1083 return IXGBE_ERR_EEPROM;
1084
1085 /*
1086 * We cannot hold synchronization semaphores for too long
1087 * to avoid other entity starvation. However it is more efficient
1088 * to read in bursts than synchronizing access for each word.
1089 */
1090 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1091 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1092 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1093
1094 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1095 count, &data[i]);
1096
1097 if (status)
1098 return status;
1099 }
1100
1101 return 0;
1102}
1103
1104/**
1105 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1106 * @hw: pointer to hardware structure
1107 * @offset: offset within the EEPROM to be read
1108 * @words: number of word(s)
1109 * @data: read 16 bit word(s) from EEPROM
1110 *
1111 * Reads 16 bit word(s) from EEPROM through bit-bang method
1112 **/
1113static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1114 u16 words, u16 *data)
1115{
1116 s32 status;
1117 u16 word_in;
1118 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1119 u16 i;
1120
1121 /* Prepare the EEPROM for reading */
1122 status = ixgbe_acquire_eeprom(hw);
1123 if (status)
1124 return status;
1125
1126 if (ixgbe_ready_eeprom(hw) != 0) {
1127 ixgbe_release_eeprom(hw);
1128 return IXGBE_ERR_EEPROM;
1129 }
1130
1131 for (i = 0; i < words; i++) {
1132 ixgbe_standby_eeprom(hw);
1133 /* Some SPI eeproms use the 8th address bit embedded
1134 * in the opcode
1135 */
1136 if ((hw->eeprom.address_bits == 8) &&
1137 ((offset + i) >= 128))
1138 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1139
1140 /* Send the READ command (opcode + addr) */
1141 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1142 IXGBE_EEPROM_OPCODE_BITS);
1143 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1144 hw->eeprom.address_bits);
1145
1146 /* Read the data. */
1147 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1148 data[i] = (word_in >> 8) | (word_in << 8);
1149 }
1150
1151 /* End this read operation */
1152 ixgbe_release_eeprom(hw);
1153
1154 return 0;
1155}
1156
1157/**
1158 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1159 * @hw: pointer to hardware structure
1160 * @offset: offset within the EEPROM to be read
1161 * @data: read 16 bit value from EEPROM
1162 *
1163 * Reads 16 bit value from EEPROM through bit-bang method
1164 **/
1165s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1166 u16 *data)
1167{
1168 hw->eeprom.ops.init_params(hw);
1169
1170 if (offset >= hw->eeprom.word_size)
1171 return IXGBE_ERR_EEPROM;
1172
1173 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1174}
1175
1176/**
1177 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1178 * @hw: pointer to hardware structure
1179 * @offset: offset of word in the EEPROM to read
1180 * @words: number of word(s)
1181 * @data: 16 bit word(s) from the EEPROM
1182 *
1183 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1184 **/
1185s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1186 u16 words, u16 *data)
1187{
1188 u32 eerd;
1189 s32 status;
1190 u32 i;
1191
1192 hw->eeprom.ops.init_params(hw);
1193
1194 if (words == 0)
1195 return IXGBE_ERR_INVALID_ARGUMENT;
1196
1197 if (offset >= hw->eeprom.word_size)
1198 return IXGBE_ERR_EEPROM;
1199
1200 for (i = 0; i < words; i++) {
1201 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1202 IXGBE_EEPROM_RW_REG_START;
1203
1204 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1205 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1206
1207 if (status == 0) {
1208 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1209 IXGBE_EEPROM_RW_REG_DATA);
1210 } else {
1211 hw_dbg(hw, "Eeprom read timed out\n");
1212 return status;
1213 }
1214 }
1215
1216 return 0;
1217}
1218
1219/**
1220 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1221 * @hw: pointer to hardware structure
1222 * @offset: offset within the EEPROM to be used as a scratch pad
1223 *
1224 * Discover EEPROM page size by writing marching data at given offset.
1225 * This function is called only when we are writing a new large buffer
1226 * at given offset so the data would be overwritten anyway.
1227 **/
1228static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1229 u16 offset)
1230{
1231 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1232 s32 status;
1233 u16 i;
1234
1235 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1236 data[i] = i;
1237
1238 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1239 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1240 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1241 hw->eeprom.word_page_size = 0;
1242 if (status)
1243 return status;
1244
1245 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1246 if (status)
1247 return status;
1248
1249 /*
1250 * When writing in burst more than the actual page size
1251 * EEPROM address wraps around current page.
1252 */
1253 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1254
1255 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1256 hw->eeprom.word_page_size);
1257 return 0;
1258}
1259
1260/**
1261 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1262 * @hw: pointer to hardware structure
1263 * @offset: offset of word in the EEPROM to read
1264 * @data: word read from the EEPROM
1265 *
1266 * Reads a 16 bit word from the EEPROM using the EERD register.
1267 **/
1268s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1269{
1270 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1271}
1272
1273/**
1274 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1275 * @hw: pointer to hardware structure
1276 * @offset: offset of word in the EEPROM to write
1277 * @words: number of words
1278 * @data: word(s) write to the EEPROM
1279 *
1280 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1281 **/
1282s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1283 u16 words, u16 *data)
1284{
1285 u32 eewr;
1286 s32 status;
1287 u16 i;
1288
1289 hw->eeprom.ops.init_params(hw);
1290
1291 if (words == 0)
1292 return IXGBE_ERR_INVALID_ARGUMENT;
1293
1294 if (offset >= hw->eeprom.word_size)
1295 return IXGBE_ERR_EEPROM;
1296
1297 for (i = 0; i < words; i++) {
1298 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1299 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1300 IXGBE_EEPROM_RW_REG_START;
1301
1302 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1303 if (status) {
1304 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1305 return status;
1306 }
1307
1308 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1309
1310 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1311 if (status) {
1312 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1313 return status;
1314 }
1315 }
1316
1317 return 0;
1318}
1319
1320/**
1321 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1322 * @hw: pointer to hardware structure
1323 * @offset: offset of word in the EEPROM to write
1324 * @data: word write to the EEPROM
1325 *
1326 * Write a 16 bit word to the EEPROM using the EEWR register.
1327 **/
1328s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1329{
1330 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1331}
1332
1333/**
1334 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1335 * @hw: pointer to hardware structure
1336 * @ee_reg: EEPROM flag for polling
1337 *
1338 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1339 * read or write is done respectively.
1340 **/
1341static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1342{
1343 u32 i;
1344 u32 reg;
1345
1346 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1347 if (ee_reg == IXGBE_NVM_POLL_READ)
1348 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1349 else
1350 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1351
1352 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1353 return 0;
1354 }
1355 udelay(5);
1356 }
1357 return IXGBE_ERR_EEPROM;
1358}
1359
1360/**
1361 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1362 * @hw: pointer to hardware structure
1363 *
1364 * Prepares EEPROM for access using bit-bang method. This function should
1365 * be called before issuing a command to the EEPROM.
1366 **/
1367static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1368{
1369 u32 eec;
1370 u32 i;
1371
1372 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1373 return IXGBE_ERR_SWFW_SYNC;
1374
1375 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1376
1377 /* Request EEPROM Access */
1378 eec |= IXGBE_EEC_REQ;
1379 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1380
1381 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1382 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1383 if (eec & IXGBE_EEC_GNT)
1384 break;
1385 udelay(5);
1386 }
1387
1388 /* Release if grant not acquired */
1389 if (!(eec & IXGBE_EEC_GNT)) {
1390 eec &= ~IXGBE_EEC_REQ;
1391 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1392 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1393
1394 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1395 return IXGBE_ERR_EEPROM;
1396 }
1397
1398 /* Setup EEPROM for Read/Write */
1399 /* Clear CS and SK */
1400 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1401 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1402 IXGBE_WRITE_FLUSH(hw);
1403 udelay(1);
1404 return 0;
1405}
1406
1407/**
1408 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1409 * @hw: pointer to hardware structure
1410 *
1411 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1412 **/
1413static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1414{
1415 u32 timeout = 2000;
1416 u32 i;
1417 u32 swsm;
1418
1419 /* Get SMBI software semaphore between device drivers first */
1420 for (i = 0; i < timeout; i++) {
1421 /*
1422 * If the SMBI bit is 0 when we read it, then the bit will be
1423 * set and we have the semaphore
1424 */
1425 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1426 if (!(swsm & IXGBE_SWSM_SMBI))
1427 break;
1428 usleep_range(50, 100);
1429 }
1430
1431 if (i == timeout) {
1432 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1433 /* this release is particularly important because our attempts
1434 * above to get the semaphore may have succeeded, and if there
1435 * was a timeout, we should unconditionally clear the semaphore
1436 * bits to free the driver to make progress
1437 */
1438 ixgbe_release_eeprom_semaphore(hw);
1439
1440 usleep_range(50, 100);
1441 /* one last try
1442 * If the SMBI bit is 0 when we read it, then the bit will be
1443 * set and we have the semaphore
1444 */
1445 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1446 if (swsm & IXGBE_SWSM_SMBI) {
1447 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1448 return IXGBE_ERR_EEPROM;
1449 }
1450 }
1451
1452 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1453 for (i = 0; i < timeout; i++) {
1454 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1455
1456 /* Set the SW EEPROM semaphore bit to request access */
1457 swsm |= IXGBE_SWSM_SWESMBI;
1458 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1459
1460 /* If we set the bit successfully then we got the
1461 * semaphore.
1462 */
1463 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1464 if (swsm & IXGBE_SWSM_SWESMBI)
1465 break;
1466
1467 usleep_range(50, 100);
1468 }
1469
1470 /* Release semaphores and return error if SW EEPROM semaphore
1471 * was not granted because we don't have access to the EEPROM
1472 */
1473 if (i >= timeout) {
1474 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1475 ixgbe_release_eeprom_semaphore(hw);
1476 return IXGBE_ERR_EEPROM;
1477 }
1478
1479 return 0;
1480}
1481
1482/**
1483 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1484 * @hw: pointer to hardware structure
1485 *
1486 * This function clears hardware semaphore bits.
1487 **/
1488static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1489{
1490 u32 swsm;
1491
1492 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1493
1494 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1495 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1496 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1497 IXGBE_WRITE_FLUSH(hw);
1498}
1499
1500/**
1501 * ixgbe_ready_eeprom - Polls for EEPROM ready
1502 * @hw: pointer to hardware structure
1503 **/
1504static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1505{
1506 u16 i;
1507 u8 spi_stat_reg;
1508
1509 /*
1510 * Read "Status Register" repeatedly until the LSB is cleared. The
1511 * EEPROM will signal that the command has been completed by clearing
1512 * bit 0 of the internal status register. If it's not cleared within
1513 * 5 milliseconds, then error out.
1514 */
1515 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1516 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1517 IXGBE_EEPROM_OPCODE_BITS);
1518 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1519 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1520 break;
1521
1522 udelay(5);
1523 ixgbe_standby_eeprom(hw);
1524 }
1525
1526 /*
1527 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1528 * devices (and only 0-5mSec on 5V devices)
1529 */
1530 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1531 hw_dbg(hw, "SPI EEPROM Status error\n");
1532 return IXGBE_ERR_EEPROM;
1533 }
1534
1535 return 0;
1536}
1537
1538/**
1539 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1540 * @hw: pointer to hardware structure
1541 **/
1542static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1543{
1544 u32 eec;
1545
1546 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547
1548 /* Toggle CS to flush commands */
1549 eec |= IXGBE_EEC_CS;
1550 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1551 IXGBE_WRITE_FLUSH(hw);
1552 udelay(1);
1553 eec &= ~IXGBE_EEC_CS;
1554 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555 IXGBE_WRITE_FLUSH(hw);
1556 udelay(1);
1557}
1558
1559/**
1560 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1561 * @hw: pointer to hardware structure
1562 * @data: data to send to the EEPROM
1563 * @count: number of bits to shift out
1564 **/
1565static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1566 u16 count)
1567{
1568 u32 eec;
1569 u32 mask;
1570 u32 i;
1571
1572 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1573
1574 /*
1575 * Mask is used to shift "count" bits of "data" out to the EEPROM
1576 * one bit at a time. Determine the starting bit based on count
1577 */
1578 mask = BIT(count - 1);
1579
1580 for (i = 0; i < count; i++) {
1581 /*
1582 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1583 * "1", and then raising and then lowering the clock (the SK
1584 * bit controls the clock input to the EEPROM). A "0" is
1585 * shifted out to the EEPROM by setting "DI" to "0" and then
1586 * raising and then lowering the clock.
1587 */
1588 if (data & mask)
1589 eec |= IXGBE_EEC_DI;
1590 else
1591 eec &= ~IXGBE_EEC_DI;
1592
1593 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1594 IXGBE_WRITE_FLUSH(hw);
1595
1596 udelay(1);
1597
1598 ixgbe_raise_eeprom_clk(hw, &eec);
1599 ixgbe_lower_eeprom_clk(hw, &eec);
1600
1601 /*
1602 * Shift mask to signify next bit of data to shift in to the
1603 * EEPROM
1604 */
1605 mask = mask >> 1;
1606 }
1607
1608 /* We leave the "DI" bit set to "0" when we leave this routine. */
1609 eec &= ~IXGBE_EEC_DI;
1610 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1611 IXGBE_WRITE_FLUSH(hw);
1612}
1613
1614/**
1615 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1616 * @hw: pointer to hardware structure
1617 * @count: number of bits to shift
1618 **/
1619static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1620{
1621 u32 eec;
1622 u32 i;
1623 u16 data = 0;
1624
1625 /*
1626 * In order to read a register from the EEPROM, we need to shift
1627 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628 * the clock input to the EEPROM (setting the SK bit), and then reading
1629 * the value of the "DO" bit. During this "shifting in" process the
1630 * "DI" bit should always be clear.
1631 */
1632 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1633
1634 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1635
1636 for (i = 0; i < count; i++) {
1637 data = data << 1;
1638 ixgbe_raise_eeprom_clk(hw, &eec);
1639
1640 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1641
1642 eec &= ~(IXGBE_EEC_DI);
1643 if (eec & IXGBE_EEC_DO)
1644 data |= 1;
1645
1646 ixgbe_lower_eeprom_clk(hw, &eec);
1647 }
1648
1649 return data;
1650}
1651
1652/**
1653 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654 * @hw: pointer to hardware structure
1655 * @eec: EEC register's current value
1656 **/
1657static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1658{
1659 /*
1660 * Raise the clock input to the EEPROM
1661 * (setting the SK bit), then delay
1662 */
1663 *eec = *eec | IXGBE_EEC_SK;
1664 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1665 IXGBE_WRITE_FLUSH(hw);
1666 udelay(1);
1667}
1668
1669/**
1670 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671 * @hw: pointer to hardware structure
1672 * @eec: EEC's current value
1673 **/
1674static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1675{
1676 /*
1677 * Lower the clock input to the EEPROM (clearing the SK bit), then
1678 * delay
1679 */
1680 *eec = *eec & ~IXGBE_EEC_SK;
1681 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682 IXGBE_WRITE_FLUSH(hw);
1683 udelay(1);
1684}
1685
1686/**
1687 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1688 * @hw: pointer to hardware structure
1689 **/
1690static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1691{
1692 u32 eec;
1693
1694 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1695
1696 eec |= IXGBE_EEC_CS; /* Pull CS high */
1697 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1698
1699 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1700 IXGBE_WRITE_FLUSH(hw);
1701
1702 udelay(1);
1703
1704 /* Stop requesting EEPROM access */
1705 eec &= ~IXGBE_EEC_REQ;
1706 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1707
1708 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1709
1710 /*
1711 * Delay before attempt to obtain semaphore again to allow FW
1712 * access. semaphore_delay is in ms we need us for usleep_range
1713 */
1714 usleep_range(hw->eeprom.semaphore_delay * 1000,
1715 hw->eeprom.semaphore_delay * 2000);
1716}
1717
1718/**
1719 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720 * @hw: pointer to hardware structure
1721 **/
1722s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1723{
1724 u16 i;
1725 u16 j;
1726 u16 checksum = 0;
1727 u16 length = 0;
1728 u16 pointer = 0;
1729 u16 word = 0;
1730
1731 /* Include 0x0-0x3F in the checksum */
1732 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1733 if (hw->eeprom.ops.read(hw, i, &word)) {
1734 hw_dbg(hw, "EEPROM read failed\n");
1735 break;
1736 }
1737 checksum += word;
1738 }
1739
1740 /* Include all data from pointers except for the fw pointer */
1741 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1742 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1743 hw_dbg(hw, "EEPROM read failed\n");
1744 return IXGBE_ERR_EEPROM;
1745 }
1746
1747 /* If the pointer seems invalid */
1748 if (pointer == 0xFFFF || pointer == 0)
1749 continue;
1750
1751 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1752 hw_dbg(hw, "EEPROM read failed\n");
1753 return IXGBE_ERR_EEPROM;
1754 }
1755
1756 if (length == 0xFFFF || length == 0)
1757 continue;
1758
1759 for (j = pointer + 1; j <= pointer + length; j++) {
1760 if (hw->eeprom.ops.read(hw, j, &word)) {
1761 hw_dbg(hw, "EEPROM read failed\n");
1762 return IXGBE_ERR_EEPROM;
1763 }
1764 checksum += word;
1765 }
1766 }
1767
1768 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1769
1770 return (s32)checksum;
1771}
1772
1773/**
1774 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775 * @hw: pointer to hardware structure
1776 * @checksum_val: calculated checksum
1777 *
1778 * Performs checksum calculation and validates the EEPROM checksum. If the
1779 * caller does not need checksum_val, the value can be NULL.
1780 **/
1781s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1782 u16 *checksum_val)
1783{
1784 s32 status;
1785 u16 checksum;
1786 u16 read_checksum = 0;
1787
1788 /*
1789 * Read the first word from the EEPROM. If this times out or fails, do
1790 * not continue or we could be in for a very long wait while every
1791 * EEPROM read fails
1792 */
1793 status = hw->eeprom.ops.read(hw, 0, &checksum);
1794 if (status) {
1795 hw_dbg(hw, "EEPROM read failed\n");
1796 return status;
1797 }
1798
1799 status = hw->eeprom.ops.calc_checksum(hw);
1800 if (status < 0)
1801 return status;
1802
1803 checksum = (u16)(status & 0xffff);
1804
1805 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1806 if (status) {
1807 hw_dbg(hw, "EEPROM read failed\n");
1808 return status;
1809 }
1810
1811 /* Verify read checksum from EEPROM is the same as
1812 * calculated checksum
1813 */
1814 if (read_checksum != checksum)
1815 status = IXGBE_ERR_EEPROM_CHECKSUM;
1816
1817 /* If the user cares, return the calculated checksum */
1818 if (checksum_val)
1819 *checksum_val = checksum;
1820
1821 return status;
1822}
1823
1824/**
1825 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826 * @hw: pointer to hardware structure
1827 **/
1828s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1829{
1830 s32 status;
1831 u16 checksum;
1832
1833 /*
1834 * Read the first word from the EEPROM. If this times out or fails, do
1835 * not continue or we could be in for a very long wait while every
1836 * EEPROM read fails
1837 */
1838 status = hw->eeprom.ops.read(hw, 0, &checksum);
1839 if (status) {
1840 hw_dbg(hw, "EEPROM read failed\n");
1841 return status;
1842 }
1843
1844 status = hw->eeprom.ops.calc_checksum(hw);
1845 if (status < 0)
1846 return status;
1847
1848 checksum = (u16)(status & 0xffff);
1849
1850 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1851
1852 return status;
1853}
1854
1855/**
1856 * ixgbe_set_rar_generic - Set Rx address register
1857 * @hw: pointer to hardware structure
1858 * @index: Receive address register to write
1859 * @addr: Address to put into receive address register
1860 * @vmdq: VMDq "set" or "pool" index
1861 * @enable_addr: set flag that address is active
1862 *
1863 * Puts an ethernet address into a receive address register.
1864 **/
1865s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1866 u32 enable_addr)
1867{
1868 u32 rar_low, rar_high;
1869 u32 rar_entries = hw->mac.num_rar_entries;
1870
1871 /* Make sure we are using a valid rar index range */
1872 if (index >= rar_entries) {
1873 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1874 return IXGBE_ERR_INVALID_ARGUMENT;
1875 }
1876
1877 /* setup VMDq pool selection before this RAR gets enabled */
1878 hw->mac.ops.set_vmdq(hw, index, vmdq);
1879
1880 /*
1881 * HW expects these in little endian so we reverse the byte
1882 * order from network order (big endian) to little endian
1883 */
1884 rar_low = ((u32)addr[0] |
1885 ((u32)addr[1] << 8) |
1886 ((u32)addr[2] << 16) |
1887 ((u32)addr[3] << 24));
1888 /*
1889 * Some parts put the VMDq setting in the extra RAH bits,
1890 * so save everything except the lower 16 bits that hold part
1891 * of the address and the address valid bit.
1892 */
1893 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1894 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1895 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1896
1897 if (enable_addr != 0)
1898 rar_high |= IXGBE_RAH_AV;
1899
1900 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1901 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1902
1903 return 0;
1904}
1905
1906/**
1907 * ixgbe_clear_rar_generic - Remove Rx address register
1908 * @hw: pointer to hardware structure
1909 * @index: Receive address register to write
1910 *
1911 * Clears an ethernet address from a receive address register.
1912 **/
1913s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1914{
1915 u32 rar_high;
1916 u32 rar_entries = hw->mac.num_rar_entries;
1917
1918 /* Make sure we are using a valid rar index range */
1919 if (index >= rar_entries) {
1920 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1921 return IXGBE_ERR_INVALID_ARGUMENT;
1922 }
1923
1924 /*
1925 * Some parts put the VMDq setting in the extra RAH bits,
1926 * so save everything except the lower 16 bits that hold part
1927 * of the address and the address valid bit.
1928 */
1929 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1930 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1931
1932 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1933 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1934
1935 /* clear VMDq pool/queue selection for this RAR */
1936 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1937
1938 return 0;
1939}
1940
1941/**
1942 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943 * @hw: pointer to hardware structure
1944 *
1945 * Places the MAC address in receive address register 0 and clears the rest
1946 * of the receive address registers. Clears the multicast table. Assumes
1947 * the receiver is in reset when the routine is called.
1948 **/
1949s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1950{
1951 u32 i;
1952 u32 rar_entries = hw->mac.num_rar_entries;
1953
1954 /*
1955 * If the current mac address is valid, assume it is a software override
1956 * to the permanent address.
1957 * Otherwise, use the permanent address from the eeprom.
1958 */
1959 if (!is_valid_ether_addr(hw->mac.addr)) {
1960 /* Get the MAC address from the RAR0 for later reference */
1961 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1962
1963 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1964 } else {
1965 /* Setup the receive address. */
1966 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1967 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1968
1969 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1970 }
1971
1972 /* clear VMDq pool/queue selection for RAR 0 */
1973 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1974
1975 hw->addr_ctrl.overflow_promisc = 0;
1976
1977 hw->addr_ctrl.rar_used_count = 1;
1978
1979 /* Zero out the other receive addresses. */
1980 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1981 for (i = 1; i < rar_entries; i++) {
1982 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1983 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1984 }
1985
1986 /* Clear the MTA */
1987 hw->addr_ctrl.mta_in_use = 0;
1988 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1989
1990 hw_dbg(hw, " Clearing MTA\n");
1991 for (i = 0; i < hw->mac.mcft_size; i++)
1992 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1993
1994 if (hw->mac.ops.init_uta_tables)
1995 hw->mac.ops.init_uta_tables(hw);
1996
1997 return 0;
1998}
1999
2000/**
2001 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002 * @hw: pointer to hardware structure
2003 * @mc_addr: the multicast address
2004 *
2005 * Extracts the 12 bits, from a multicast address, to determine which
2006 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007 * incoming rx multicast addresses, to determine the bit-vector to check in
2008 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2010 * to mc_filter_type.
2011 **/
2012static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2013{
2014 u32 vector = 0;
2015
2016 switch (hw->mac.mc_filter_type) {
2017 case 0: /* use bits [47:36] of the address */
2018 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2019 break;
2020 case 1: /* use bits [46:35] of the address */
2021 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2022 break;
2023 case 2: /* use bits [45:34] of the address */
2024 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2025 break;
2026 case 3: /* use bits [43:32] of the address */
2027 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2028 break;
2029 default: /* Invalid mc_filter_type */
2030 hw_dbg(hw, "MC filter type param set incorrectly\n");
2031 break;
2032 }
2033
2034 /* vector can only be 12-bits or boundary will be exceeded */
2035 vector &= 0xFFF;
2036 return vector;
2037}
2038
2039/**
2040 * ixgbe_set_mta - Set bit-vector in multicast table
2041 * @hw: pointer to hardware structure
2042 * @mc_addr: Multicast address
2043 *
2044 * Sets the bit-vector in the multicast table.
2045 **/
2046static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2047{
2048 u32 vector;
2049 u32 vector_bit;
2050 u32 vector_reg;
2051
2052 hw->addr_ctrl.mta_in_use++;
2053
2054 vector = ixgbe_mta_vector(hw, mc_addr);
2055 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2056
2057 /*
2058 * The MTA is a register array of 128 32-bit registers. It is treated
2059 * like an array of 4096 bits. We want to set bit
2060 * BitArray[vector_value]. So we figure out what register the bit is
2061 * in, read it, OR in the new bit, then write back the new value. The
2062 * register is determined by the upper 7 bits of the vector value and
2063 * the bit within that register are determined by the lower 5 bits of
2064 * the value.
2065 */
2066 vector_reg = (vector >> 5) & 0x7F;
2067 vector_bit = vector & 0x1F;
2068 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2069}
2070
2071/**
2072 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073 * @hw: pointer to hardware structure
2074 * @netdev: pointer to net device structure
2075 *
2076 * The given list replaces any existing list. Clears the MC addrs from receive
2077 * address registers and the multicast table. Uses unused receive address
2078 * registers for the first multicast addresses, and hashes the rest into the
2079 * multicast table.
2080 **/
2081s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2082 struct net_device *netdev)
2083{
2084 struct netdev_hw_addr *ha;
2085 u32 i;
2086
2087 /*
2088 * Set the new number of MC addresses that we are being requested to
2089 * use.
2090 */
2091 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2092 hw->addr_ctrl.mta_in_use = 0;
2093
2094 /* Clear mta_shadow */
2095 hw_dbg(hw, " Clearing MTA\n");
2096 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2097
2098 /* Update mta shadow */
2099 netdev_for_each_mc_addr(ha, netdev) {
2100 hw_dbg(hw, " Adding the multicast addresses:\n");
2101 ixgbe_set_mta(hw, ha->addr);
2102 }
2103
2104 /* Enable mta */
2105 for (i = 0; i < hw->mac.mcft_size; i++)
2106 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2107 hw->mac.mta_shadow[i]);
2108
2109 if (hw->addr_ctrl.mta_in_use > 0)
2110 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2111 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2112
2113 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2114 return 0;
2115}
2116
2117/**
2118 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2119 * @hw: pointer to hardware structure
2120 *
2121 * Enables multicast address in RAR and the use of the multicast hash table.
2122 **/
2123s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2124{
2125 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126
2127 if (a->mta_in_use > 0)
2128 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2129 hw->mac.mc_filter_type);
2130
2131 return 0;
2132}
2133
2134/**
2135 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2136 * @hw: pointer to hardware structure
2137 *
2138 * Disables multicast address in RAR and the use of the multicast hash table.
2139 **/
2140s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2141{
2142 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2143
2144 if (a->mta_in_use > 0)
2145 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2146
2147 return 0;
2148}
2149
2150/**
2151 * ixgbe_fc_enable_generic - Enable flow control
2152 * @hw: pointer to hardware structure
2153 *
2154 * Enable flow control according to the current settings.
2155 **/
2156s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2157{
2158 u32 mflcn_reg, fccfg_reg;
2159 u32 reg;
2160 u32 fcrtl, fcrth;
2161 int i;
2162
2163 /* Validate the water mark configuration. */
2164 if (!hw->fc.pause_time)
2165 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2166
2167 /* Low water mark of zero causes XOFF floods */
2168 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2169 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2170 hw->fc.high_water[i]) {
2171 if (!hw->fc.low_water[i] ||
2172 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2173 hw_dbg(hw, "Invalid water mark configuration\n");
2174 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2175 }
2176 }
2177 }
2178
2179 /* Negotiate the fc mode to use */
2180 hw->mac.ops.fc_autoneg(hw);
2181
2182 /* Disable any previous flow control settings */
2183 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2184 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2185
2186 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2187 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2188
2189 /*
2190 * The possible values of fc.current_mode are:
2191 * 0: Flow control is completely disabled
2192 * 1: Rx flow control is enabled (we can receive pause frames,
2193 * but not send pause frames).
2194 * 2: Tx flow control is enabled (we can send pause frames but
2195 * we do not support receiving pause frames).
2196 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2197 * other: Invalid.
2198 */
2199 switch (hw->fc.current_mode) {
2200 case ixgbe_fc_none:
2201 /*
2202 * Flow control is disabled by software override or autoneg.
2203 * The code below will actually disable it in the HW.
2204 */
2205 break;
2206 case ixgbe_fc_rx_pause:
2207 /*
2208 * Rx Flow control is enabled and Tx Flow control is
2209 * disabled by software override. Since there really
2210 * isn't a way to advertise that we are capable of RX
2211 * Pause ONLY, we will advertise that we support both
2212 * symmetric and asymmetric Rx PAUSE. Later, we will
2213 * disable the adapter's ability to send PAUSE frames.
2214 */
2215 mflcn_reg |= IXGBE_MFLCN_RFCE;
2216 break;
2217 case ixgbe_fc_tx_pause:
2218 /*
2219 * Tx Flow control is enabled, and Rx Flow control is
2220 * disabled by software override.
2221 */
2222 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2223 break;
2224 case ixgbe_fc_full:
2225 /* Flow control (both Rx and Tx) is enabled by SW override. */
2226 mflcn_reg |= IXGBE_MFLCN_RFCE;
2227 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2228 break;
2229 default:
2230 hw_dbg(hw, "Flow control param set incorrectly\n");
2231 return IXGBE_ERR_CONFIG;
2232 }
2233
2234 /* Set 802.3x based flow control settings. */
2235 mflcn_reg |= IXGBE_MFLCN_DPF;
2236 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2237 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2238
2239 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2241 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2242 hw->fc.high_water[i]) {
2243 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2244 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2245 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2246 } else {
2247 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2248 /*
2249 * In order to prevent Tx hangs when the internal Tx
2250 * switch is enabled we must set the high water mark
2251 * to the Rx packet buffer size - 24KB. This allows
2252 * the Tx switch to function even under heavy Rx
2253 * workloads.
2254 */
2255 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2256 }
2257
2258 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2259 }
2260
2261 /* Configure pause time (2 TCs per register) */
2262 reg = hw->fc.pause_time * 0x00010001;
2263 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2264 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2265
2266 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2267
2268 return 0;
2269}
2270
2271/**
2272 * ixgbe_negotiate_fc - Negotiate flow control
2273 * @hw: pointer to hardware structure
2274 * @adv_reg: flow control advertised settings
2275 * @lp_reg: link partner's flow control settings
2276 * @adv_sym: symmetric pause bit in advertisement
2277 * @adv_asm: asymmetric pause bit in advertisement
2278 * @lp_sym: symmetric pause bit in link partner advertisement
2279 * @lp_asm: asymmetric pause bit in link partner advertisement
2280 *
2281 * Find the intersection between advertised settings and link partner's
2282 * advertised settings
2283 **/
2284s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2285 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2286{
2287 if ((!(adv_reg)) || (!(lp_reg)))
2288 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2289
2290 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2291 /*
2292 * Now we need to check if the user selected Rx ONLY
2293 * of pause frames. In this case, we had to advertise
2294 * FULL flow control because we could not advertise RX
2295 * ONLY. Hence, we must now check to see if we need to
2296 * turn OFF the TRANSMISSION of PAUSE frames.
2297 */
2298 if (hw->fc.requested_mode == ixgbe_fc_full) {
2299 hw->fc.current_mode = ixgbe_fc_full;
2300 hw_dbg(hw, "Flow Control = FULL.\n");
2301 } else {
2302 hw->fc.current_mode = ixgbe_fc_rx_pause;
2303 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2304 }
2305 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2306 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2307 hw->fc.current_mode = ixgbe_fc_tx_pause;
2308 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2309 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2310 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2311 hw->fc.current_mode = ixgbe_fc_rx_pause;
2312 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2313 } else {
2314 hw->fc.current_mode = ixgbe_fc_none;
2315 hw_dbg(hw, "Flow Control = NONE.\n");
2316 }
2317 return 0;
2318}
2319
2320/**
2321 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322 * @hw: pointer to hardware structure
2323 *
2324 * Enable flow control according on 1 gig fiber.
2325 **/
2326static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2327{
2328 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2329 s32 ret_val;
2330
2331 /*
2332 * On multispeed fiber at 1g, bail out if
2333 * - link is up but AN did not complete, or if
2334 * - link is up and AN completed but timed out
2335 */
2336
2337 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2338 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2339 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2340 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2341
2342 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2343 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2344
2345 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2346 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2347 IXGBE_PCS1GANA_ASM_PAUSE,
2348 IXGBE_PCS1GANA_SYM_PAUSE,
2349 IXGBE_PCS1GANA_ASM_PAUSE);
2350
2351 return ret_val;
2352}
2353
2354/**
2355 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356 * @hw: pointer to hardware structure
2357 *
2358 * Enable flow control according to IEEE clause 37.
2359 **/
2360static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2361{
2362 u32 links2, anlp1_reg, autoc_reg, links;
2363 s32 ret_val;
2364
2365 /*
2366 * On backplane, bail out if
2367 * - backplane autoneg was not completed, or if
2368 * - we are 82599 and link partner is not AN enabled
2369 */
2370 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2371 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2372 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2373
2374 if (hw->mac.type == ixgbe_mac_82599EB) {
2375 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2376 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2377 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2378 }
2379 /*
2380 * Read the 10g AN autoc and LP ability registers and resolve
2381 * local flow control settings accordingly
2382 */
2383 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2384 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2385
2386 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2387 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2388 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2389
2390 return ret_val;
2391}
2392
2393/**
2394 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395 * @hw: pointer to hardware structure
2396 *
2397 * Enable flow control according to IEEE clause 37.
2398 **/
2399static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2400{
2401 u16 technology_ability_reg = 0;
2402 u16 lp_technology_ability_reg = 0;
2403
2404 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2405 MDIO_MMD_AN,
2406 &technology_ability_reg);
2407 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2408 MDIO_MMD_AN,
2409 &lp_technology_ability_reg);
2410
2411 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2412 (u32)lp_technology_ability_reg,
2413 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2414 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2415}
2416
2417/**
2418 * ixgbe_fc_autoneg - Configure flow control
2419 * @hw: pointer to hardware structure
2420 *
2421 * Compares our advertised flow control capabilities to those advertised by
2422 * our link partner, and determines the proper flow control mode to use.
2423 **/
2424void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2425{
2426 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2427 ixgbe_link_speed speed;
2428 bool link_up;
2429
2430 /*
2431 * AN should have completed when the cable was plugged in.
2432 * Look for reasons to bail out. Bail out if:
2433 * - FC autoneg is disabled, or if
2434 * - link is not up.
2435 *
2436 * Since we're being called from an LSC, link is already known to be up.
2437 * So use link_up_wait_to_complete=false.
2438 */
2439 if (hw->fc.disable_fc_autoneg)
2440 goto out;
2441
2442 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2443 if (!link_up)
2444 goto out;
2445
2446 switch (hw->phy.media_type) {
2447 /* Autoneg flow control on fiber adapters */
2448 case ixgbe_media_type_fiber:
2449 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2450 ret_val = ixgbe_fc_autoneg_fiber(hw);
2451 break;
2452
2453 /* Autoneg flow control on backplane adapters */
2454 case ixgbe_media_type_backplane:
2455 ret_val = ixgbe_fc_autoneg_backplane(hw);
2456 break;
2457
2458 /* Autoneg flow control on copper adapters */
2459 case ixgbe_media_type_copper:
2460 if (ixgbe_device_supports_autoneg_fc(hw))
2461 ret_val = ixgbe_fc_autoneg_copper(hw);
2462 break;
2463
2464 default:
2465 break;
2466 }
2467
2468out:
2469 if (ret_val == 0) {
2470 hw->fc.fc_was_autonegged = true;
2471 } else {
2472 hw->fc.fc_was_autonegged = false;
2473 hw->fc.current_mode = hw->fc.requested_mode;
2474 }
2475}
2476
2477/**
2478 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479 * @hw: pointer to hardware structure
2480 *
2481 * System-wide timeout range is encoded in PCIe Device Control2 register.
2482 *
2483 * Add 10% to specified maximum and return the number of times to poll for
2484 * completion timeout, in units of 100 microsec. Never return less than
2485 * 800 = 80 millisec.
2486 **/
2487static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2488{
2489 s16 devctl2;
2490 u32 pollcnt;
2491
2492 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2493 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2494
2495 switch (devctl2) {
2496 case IXGBE_PCIDEVCTRL2_65_130ms:
2497 pollcnt = 1300; /* 130 millisec */
2498 break;
2499 case IXGBE_PCIDEVCTRL2_260_520ms:
2500 pollcnt = 5200; /* 520 millisec */
2501 break;
2502 case IXGBE_PCIDEVCTRL2_1_2s:
2503 pollcnt = 20000; /* 2 sec */
2504 break;
2505 case IXGBE_PCIDEVCTRL2_4_8s:
2506 pollcnt = 80000; /* 8 sec */
2507 break;
2508 case IXGBE_PCIDEVCTRL2_17_34s:
2509 pollcnt = 34000; /* 34 sec */
2510 break;
2511 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2512 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2513 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2514 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2515 default:
2516 pollcnt = 800; /* 80 millisec minimum */
2517 break;
2518 }
2519
2520 /* add 10% to spec maximum */
2521 return (pollcnt * 11) / 10;
2522}
2523
2524/**
2525 * ixgbe_disable_pcie_master - Disable PCI-express master access
2526 * @hw: pointer to hardware structure
2527 *
2528 * Disables PCI-Express master access and verifies there are no pending
2529 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530 * bit hasn't caused the master requests to be disabled, else 0
2531 * is returned signifying master requests disabled.
2532 **/
2533static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2534{
2535 u32 i, poll;
2536 u16 value;
2537
2538 /* Always set this bit to ensure any future transactions are blocked */
2539 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2540
2541 /* Poll for bit to read as set */
2542 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2544 break;
2545 usleep_range(100, 120);
2546 }
2547 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2548 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2549 goto gio_disable_fail;
2550 }
2551
2552 /* Exit if master requests are blocked */
2553 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2554 ixgbe_removed(hw->hw_addr))
2555 return 0;
2556
2557 /* Poll for master request bit to clear */
2558 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2559 udelay(100);
2560 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2561 return 0;
2562 }
2563
2564 /*
2565 * Two consecutive resets are required via CTRL.RST per datasheet
2566 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2567 * of this need. The first reset prevents new master requests from
2568 * being issued by our device. We then must wait 1usec or more for any
2569 * remaining completions from the PCIe bus to trickle in, and then reset
2570 * again to clear out any effects they may have had on our device.
2571 */
2572 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2573gio_disable_fail:
2574 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2575
2576 if (hw->mac.type >= ixgbe_mac_X550)
2577 return 0;
2578
2579 /*
2580 * Before proceeding, make sure that the PCIe block does not have
2581 * transactions pending.
2582 */
2583 poll = ixgbe_pcie_timeout_poll(hw);
2584 for (i = 0; i < poll; i++) {
2585 udelay(100);
2586 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2587 if (ixgbe_removed(hw->hw_addr))
2588 return 0;
2589 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2590 return 0;
2591 }
2592
2593 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2594 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2595}
2596
2597/**
2598 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599 * @hw: pointer to hardware structure
2600 * @mask: Mask to specify which semaphore to acquire
2601 *
2602 * Acquires the SWFW semaphore through the GSSR register for the specified
2603 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2604 **/
2605s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2606{
2607 u32 gssr = 0;
2608 u32 swmask = mask;
2609 u32 fwmask = mask << 5;
2610 u32 timeout = 200;
2611 u32 i;
2612
2613 for (i = 0; i < timeout; i++) {
2614 /*
2615 * SW NVM semaphore bit is used for access to all
2616 * SW_FW_SYNC bits (not just NVM)
2617 */
2618 if (ixgbe_get_eeprom_semaphore(hw))
2619 return IXGBE_ERR_SWFW_SYNC;
2620
2621 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2622 if (!(gssr & (fwmask | swmask))) {
2623 gssr |= swmask;
2624 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2625 ixgbe_release_eeprom_semaphore(hw);
2626 return 0;
2627 } else {
2628 /* Resource is currently in use by FW or SW */
2629 ixgbe_release_eeprom_semaphore(hw);
2630 usleep_range(5000, 10000);
2631 }
2632 }
2633
2634 /* If time expired clear the bits holding the lock and retry */
2635 if (gssr & (fwmask | swmask))
2636 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2637
2638 usleep_range(5000, 10000);
2639 return IXGBE_ERR_SWFW_SYNC;
2640}
2641
2642/**
2643 * ixgbe_release_swfw_sync - Release SWFW semaphore
2644 * @hw: pointer to hardware structure
2645 * @mask: Mask to specify which semaphore to release
2646 *
2647 * Releases the SWFW semaphore through the GSSR register for the specified
2648 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2649 **/
2650void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2651{
2652 u32 gssr;
2653 u32 swmask = mask;
2654
2655 ixgbe_get_eeprom_semaphore(hw);
2656
2657 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2658 gssr &= ~swmask;
2659 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2660
2661 ixgbe_release_eeprom_semaphore(hw);
2662}
2663
2664/**
2665 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666 * @hw: pointer to hardware structure
2667 * @reg_val: Value we read from AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2669 * true in this the generic case.
2670 *
2671 * The default case requires no protection so just to the register read.
2672 **/
2673s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2674{
2675 *locked = false;
2676 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2677 return 0;
2678}
2679
2680/**
2681 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682 * @hw: pointer to hardware structure
2683 * @reg_val: value to write to AUTOC
2684 * @locked: bool to indicate whether the SW/FW lock was already taken by
2685 * previous read.
2686 **/
2687s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2688{
2689 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2690 return 0;
2691}
2692
2693/**
2694 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2695 * @hw: pointer to hardware structure
2696 *
2697 * Stops the receive data path and waits for the HW to internally
2698 * empty the Rx security block.
2699 **/
2700s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2701{
2702#define IXGBE_MAX_SECRX_POLL 40
2703 int i;
2704 int secrxreg;
2705
2706 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2707 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2708 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2709 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2710 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2711 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2712 break;
2713 else
2714 /* Use interrupt-safe sleep just in case */
2715 udelay(1000);
2716 }
2717
2718 /* For informational purposes only */
2719 if (i >= IXGBE_MAX_SECRX_POLL)
2720 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2721
2722 return 0;
2723
2724}
2725
2726/**
2727 * ixgbe_enable_rx_buff - Enables the receive data path
2728 * @hw: pointer to hardware structure
2729 *
2730 * Enables the receive data path
2731 **/
2732s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2733{
2734 u32 secrxreg;
2735
2736 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2737 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2738 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2739 IXGBE_WRITE_FLUSH(hw);
2740
2741 return 0;
2742}
2743
2744/**
2745 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746 * @hw: pointer to hardware structure
2747 * @regval: register value to write to RXCTRL
2748 *
2749 * Enables the Rx DMA unit
2750 **/
2751s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2752{
2753 if (regval & IXGBE_RXCTRL_RXEN)
2754 hw->mac.ops.enable_rx(hw);
2755 else
2756 hw->mac.ops.disable_rx(hw);
2757
2758 return 0;
2759}
2760
2761/**
2762 * ixgbe_blink_led_start_generic - Blink LED based on index.
2763 * @hw: pointer to hardware structure
2764 * @index: led number to blink
2765 **/
2766s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2767{
2768 ixgbe_link_speed speed = 0;
2769 bool link_up = false;
2770 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2771 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2772 bool locked = false;
2773 s32 ret_val;
2774
2775 if (index > 3)
2776 return IXGBE_ERR_PARAM;
2777
2778 /*
2779 * Link must be up to auto-blink the LEDs;
2780 * Force it if link is down.
2781 */
2782 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2783
2784 if (!link_up) {
2785 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2786 if (ret_val)
2787 return ret_val;
2788
2789 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2790 autoc_reg |= IXGBE_AUTOC_FLU;
2791
2792 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2793 if (ret_val)
2794 return ret_val;
2795
2796 IXGBE_WRITE_FLUSH(hw);
2797
2798 usleep_range(10000, 20000);
2799 }
2800
2801 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2802 led_reg |= IXGBE_LED_BLINK(index);
2803 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2804 IXGBE_WRITE_FLUSH(hw);
2805
2806 return 0;
2807}
2808
2809/**
2810 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811 * @hw: pointer to hardware structure
2812 * @index: led number to stop blinking
2813 **/
2814s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2815{
2816 u32 autoc_reg = 0;
2817 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2818 bool locked = false;
2819 s32 ret_val;
2820
2821 if (index > 3)
2822 return IXGBE_ERR_PARAM;
2823
2824 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2825 if (ret_val)
2826 return ret_val;
2827
2828 autoc_reg &= ~IXGBE_AUTOC_FLU;
2829 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2830
2831 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2832 if (ret_val)
2833 return ret_val;
2834
2835 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2836 led_reg &= ~IXGBE_LED_BLINK(index);
2837 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2838 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2839 IXGBE_WRITE_FLUSH(hw);
2840
2841 return 0;
2842}
2843
2844/**
2845 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846 * @hw: pointer to hardware structure
2847 * @san_mac_offset: SAN MAC address offset
2848 *
2849 * This function will read the EEPROM location for the SAN MAC address
2850 * pointer, and returns the value at that location. This is used in both
2851 * get and set mac_addr routines.
2852 **/
2853static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2854 u16 *san_mac_offset)
2855{
2856 s32 ret_val;
2857
2858 /*
2859 * First read the EEPROM pointer to see if the MAC addresses are
2860 * available.
2861 */
2862 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2863 san_mac_offset);
2864 if (ret_val)
2865 hw_err(hw, "eeprom read at offset %d failed\n",
2866 IXGBE_SAN_MAC_ADDR_PTR);
2867
2868 return ret_val;
2869}
2870
2871/**
2872 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873 * @hw: pointer to hardware structure
2874 * @san_mac_addr: SAN MAC address
2875 *
2876 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2877 * per-port, so set_lan_id() must be called before reading the addresses.
2878 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2879 * upon for non-SFP connections, so we must call it here.
2880 **/
2881s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2882{
2883 u16 san_mac_data, san_mac_offset;
2884 u8 i;
2885 s32 ret_val;
2886
2887 /*
2888 * First read the EEPROM pointer to see if the MAC addresses are
2889 * available. If they're not, no point in calling set_lan_id() here.
2890 */
2891 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2892 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2893
2894 goto san_mac_addr_clr;
2895
2896 /* make sure we know which port we need to program */
2897 hw->mac.ops.set_lan_id(hw);
2898 /* apply the port offset to the address offset */
2899 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2900 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2901 for (i = 0; i < 3; i++) {
2902 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2903 &san_mac_data);
2904 if (ret_val) {
2905 hw_err(hw, "eeprom read at offset %d failed\n",
2906 san_mac_offset);
2907 goto san_mac_addr_clr;
2908 }
2909 san_mac_addr[i * 2] = (u8)(san_mac_data);
2910 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2911 san_mac_offset++;
2912 }
2913 return 0;
2914
2915san_mac_addr_clr:
2916 /* No addresses available in this EEPROM. It's not necessarily an
2917 * error though, so just wipe the local address and return.
2918 */
2919 for (i = 0; i < 6; i++)
2920 san_mac_addr[i] = 0xFF;
2921 return ret_val;
2922}
2923
2924/**
2925 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926 * @hw: pointer to hardware structure
2927 *
2928 * Read PCIe configuration space, and get the MSI-X vector count from
2929 * the capabilities table.
2930 **/
2931u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2932{
2933 u16 msix_count;
2934 u16 max_msix_count;
2935 u16 pcie_offset;
2936
2937 switch (hw->mac.type) {
2938 case ixgbe_mac_82598EB:
2939 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2940 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2941 break;
2942 case ixgbe_mac_82599EB:
2943 case ixgbe_mac_X540:
2944 case ixgbe_mac_X550:
2945 case ixgbe_mac_X550EM_x:
2946 case ixgbe_mac_x550em_a:
2947 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2948 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2949 break;
2950 default:
2951 return 1;
2952 }
2953
2954 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2955 if (ixgbe_removed(hw->hw_addr))
2956 msix_count = 0;
2957 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2958
2959 /* MSI-X count is zero-based in HW */
2960 msix_count++;
2961
2962 if (msix_count > max_msix_count)
2963 msix_count = max_msix_count;
2964
2965 return msix_count;
2966}
2967
2968/**
2969 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970 * @hw: pointer to hardware struct
2971 * @rar: receive address register index to disassociate
2972 * @vmdq: VMDq pool index to remove from the rar
2973 **/
2974s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2975{
2976 u32 mpsar_lo, mpsar_hi;
2977 u32 rar_entries = hw->mac.num_rar_entries;
2978
2979 /* Make sure we are using a valid rar index range */
2980 if (rar >= rar_entries) {
2981 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982 return IXGBE_ERR_INVALID_ARGUMENT;
2983 }
2984
2985 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2986 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2987
2988 if (ixgbe_removed(hw->hw_addr))
2989 return 0;
2990
2991 if (!mpsar_lo && !mpsar_hi)
2992 return 0;
2993
2994 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2995 if (mpsar_lo) {
2996 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2997 mpsar_lo = 0;
2998 }
2999 if (mpsar_hi) {
3000 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3001 mpsar_hi = 0;
3002 }
3003 } else if (vmdq < 32) {
3004 mpsar_lo &= ~BIT(vmdq);
3005 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3006 } else {
3007 mpsar_hi &= ~BIT(vmdq - 32);
3008 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3009 }
3010
3011 /* was that the last pool using this rar? */
3012 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3013 rar != 0 && rar != hw->mac.san_mac_rar_index)
3014 hw->mac.ops.clear_rar(hw, rar);
3015
3016 return 0;
3017}
3018
3019/**
3020 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021 * @hw: pointer to hardware struct
3022 * @rar: receive address register index to associate with a VMDq index
3023 * @vmdq: VMDq pool index
3024 **/
3025s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3026{
3027 u32 mpsar;
3028 u32 rar_entries = hw->mac.num_rar_entries;
3029
3030 /* Make sure we are using a valid rar index range */
3031 if (rar >= rar_entries) {
3032 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3033 return IXGBE_ERR_INVALID_ARGUMENT;
3034 }
3035
3036 if (vmdq < 32) {
3037 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3038 mpsar |= BIT(vmdq);
3039 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3040 } else {
3041 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3042 mpsar |= BIT(vmdq - 32);
3043 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3044 }
3045 return 0;
3046}
3047
3048/**
3049 * This function should only be involved in the IOV mode.
3050 * In IOV mode, Default pool is next pool after the number of
3051 * VFs advertized and not 0.
3052 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3053 *
3054 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3055 * @hw: pointer to hardware struct
3056 * @vmdq: VMDq pool index
3057 **/
3058s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3059{
3060 u32 rar = hw->mac.san_mac_rar_index;
3061
3062 if (vmdq < 32) {
3063 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3064 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3065 } else {
3066 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3067 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3068 }
3069
3070 return 0;
3071}
3072
3073/**
3074 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3075 * @hw: pointer to hardware structure
3076 **/
3077s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3078{
3079 int i;
3080
3081 for (i = 0; i < 128; i++)
3082 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3083
3084 return 0;
3085}
3086
3087/**
3088 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3089 * @hw: pointer to hardware structure
3090 * @vlan: VLAN id to write to VLAN filter
3091 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3092 * vlanid not found
3093 *
3094 * return the VLVF index where this VLAN id should be placed
3095 *
3096 **/
3097static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3098{
3099 s32 regindex, first_empty_slot;
3100 u32 bits;
3101
3102 /* short cut the special case */
3103 if (vlan == 0)
3104 return 0;
3105
3106 /* if vlvf_bypass is set we don't want to use an empty slot, we
3107 * will simply bypass the VLVF if there are no entries present in the
3108 * VLVF that contain our VLAN
3109 */
3110 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3111
3112 /* add VLAN enable bit for comparison */
3113 vlan |= IXGBE_VLVF_VIEN;
3114
3115 /* Search for the vlan id in the VLVF entries. Save off the first empty
3116 * slot found along the way.
3117 *
3118 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3119 */
3120 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3121 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3122 if (bits == vlan)
3123 return regindex;
3124 if (!first_empty_slot && !bits)
3125 first_empty_slot = regindex;
3126 }
3127
3128 /* If we are here then we didn't find the VLAN. Return first empty
3129 * slot we found during our search, else error.
3130 */
3131 if (!first_empty_slot)
3132 hw_dbg(hw, "No space in VLVF.\n");
3133
3134 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3135}
3136
3137/**
3138 * ixgbe_set_vfta_generic - Set VLAN filter table
3139 * @hw: pointer to hardware structure
3140 * @vlan: VLAN id to write to VLAN filter
3141 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3142 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3143 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3144 *
3145 * Turn on/off specified VLAN in the VLAN filter table.
3146 **/
3147s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3148 bool vlan_on, bool vlvf_bypass)
3149{
3150 u32 regidx, vfta_delta, vfta, bits;
3151 s32 vlvf_index;
3152
3153 if ((vlan > 4095) || (vind > 63))
3154 return IXGBE_ERR_PARAM;
3155
3156 /*
3157 * this is a 2 part operation - first the VFTA, then the
3158 * VLVF and VLVFB if VT Mode is set
3159 * We don't write the VFTA until we know the VLVF part succeeded.
3160 */
3161
3162 /* Part 1
3163 * The VFTA is a bitstring made up of 128 32-bit registers
3164 * that enable the particular VLAN id, much like the MTA:
3165 * bits[11-5]: which register
3166 * bits[4-0]: which bit in the register
3167 */
3168 regidx = vlan / 32;
3169 vfta_delta = BIT(vlan % 32);
3170 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3171
3172 /* vfta_delta represents the difference between the current value
3173 * of vfta and the value we want in the register. Since the diff
3174 * is an XOR mask we can just update vfta using an XOR.
3175 */
3176 vfta_delta &= vlan_on ? ~vfta : vfta;
3177 vfta ^= vfta_delta;
3178
3179 /* Part 2
3180 * If VT Mode is set
3181 * Either vlan_on
3182 * make sure the vlan is in VLVF
3183 * set the vind bit in the matching VLVFB
3184 * Or !vlan_on
3185 * clear the pool bit and possibly the vind
3186 */
3187 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3188 goto vfta_update;
3189
3190 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3191 if (vlvf_index < 0) {
3192 if (vlvf_bypass)
3193 goto vfta_update;
3194 return vlvf_index;
3195 }
3196
3197 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3198
3199 /* set the pool bit */
3200 bits |= BIT(vind % 32);
3201 if (vlan_on)
3202 goto vlvf_update;
3203
3204 /* clear the pool bit */
3205 bits ^= BIT(vind % 32);
3206
3207 if (!bits &&
3208 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3209 /* Clear VFTA first, then disable VLVF. Otherwise
3210 * we run the risk of stray packets leaking into
3211 * the PF via the default pool
3212 */
3213 if (vfta_delta)
3214 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3215
3216 /* disable VLVF and clear remaining bit from pool */
3217 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3218 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3219
3220 return 0;
3221 }
3222
3223 /* If there are still bits set in the VLVFB registers
3224 * for the VLAN ID indicated we need to see if the
3225 * caller is requesting that we clear the VFTA entry bit.
3226 * If the caller has requested that we clear the VFTA
3227 * entry bit but there are still pools/VFs using this VLAN
3228 * ID entry then ignore the request. We're not worried
3229 * about the case where we're turning the VFTA VLAN ID
3230 * entry bit on, only when requested to turn it off as
3231 * there may be multiple pools and/or VFs using the
3232 * VLAN ID entry. In that case we cannot clear the
3233 * VFTA bit until all pools/VFs using that VLAN ID have also
3234 * been cleared. This will be indicated by "bits" being
3235 * zero.
3236 */
3237 vfta_delta = 0;
3238
3239vlvf_update:
3240 /* record pool change and enable VLAN ID if not already enabled */
3241 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3242 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3243
3244vfta_update:
3245 /* Update VFTA now that we are ready for traffic */
3246 if (vfta_delta)
3247 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3248
3249 return 0;
3250}
3251
3252/**
3253 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3254 * @hw: pointer to hardware structure
3255 *
3256 * Clears the VLAN filer table, and the VMDq index associated with the filter
3257 **/
3258s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3259{
3260 u32 offset;
3261
3262 for (offset = 0; offset < hw->mac.vft_size; offset++)
3263 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3264
3265 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3266 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3267 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3268 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3269 }
3270
3271 return 0;
3272}
3273
3274/**
3275 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3276 * @hw: pointer to hardware structure
3277 *
3278 * Contains the logic to identify if we need to verify link for the
3279 * crosstalk fix
3280 **/
3281static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3282{
3283 /* Does FW say we need the fix */
3284 if (!hw->need_crosstalk_fix)
3285 return false;
3286
3287 /* Only consider SFP+ PHYs i.e. media type fiber */
3288 switch (hw->mac.ops.get_media_type(hw)) {
3289 case ixgbe_media_type_fiber:
3290 case ixgbe_media_type_fiber_qsfp:
3291 break;
3292 default:
3293 return false;
3294 }
3295
3296 return true;
3297}
3298
3299/**
3300 * ixgbe_check_mac_link_generic - Determine link and speed status
3301 * @hw: pointer to hardware structure
3302 * @speed: pointer to link speed
3303 * @link_up: true when link is up
3304 * @link_up_wait_to_complete: bool used to wait for link up or not
3305 *
3306 * Reads the links register to determine if link is up and the current speed
3307 **/
3308s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3309 bool *link_up, bool link_up_wait_to_complete)
3310{
3311 u32 links_reg, links_orig;
3312 u32 i;
3313
3314 /* If Crosstalk fix enabled do the sanity check of making sure
3315 * the SFP+ cage is full.
3316 */
3317 if (ixgbe_need_crosstalk_fix(hw)) {
3318 u32 sfp_cage_full;
3319
3320 switch (hw->mac.type) {
3321 case ixgbe_mac_82599EB:
3322 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3323 IXGBE_ESDP_SDP2;
3324 break;
3325 case ixgbe_mac_X550EM_x:
3326 case ixgbe_mac_x550em_a:
3327 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3328 IXGBE_ESDP_SDP0;
3329 break;
3330 default:
3331 /* sanity check - No SFP+ devices here */
3332 sfp_cage_full = false;
3333 break;
3334 }
3335
3336 if (!sfp_cage_full) {
3337 *link_up = false;
3338 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3339 return 0;
3340 }
3341 }
3342
3343 /* clear the old state */
3344 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345
3346 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347
3348 if (links_orig != links_reg) {
3349 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3350 links_orig, links_reg);
3351 }
3352
3353 if (link_up_wait_to_complete) {
3354 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3355 if (links_reg & IXGBE_LINKS_UP) {
3356 *link_up = true;
3357 break;
3358 } else {
3359 *link_up = false;
3360 }
3361 msleep(100);
3362 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3363 }
3364 } else {
3365 if (links_reg & IXGBE_LINKS_UP)
3366 *link_up = true;
3367 else
3368 *link_up = false;
3369 }
3370
3371 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3372 case IXGBE_LINKS_SPEED_10G_82599:
3373 if ((hw->mac.type >= ixgbe_mac_X550) &&
3374 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3375 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3376 else
3377 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3378 break;
3379 case IXGBE_LINKS_SPEED_1G_82599:
3380 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3381 break;
3382 case IXGBE_LINKS_SPEED_100_82599:
3383 if ((hw->mac.type >= ixgbe_mac_X550) &&
3384 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3385 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3386 else
3387 *speed = IXGBE_LINK_SPEED_100_FULL;
3388 break;
3389 case IXGBE_LINKS_SPEED_10_X550EM_A:
3390 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3391 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3392 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3393 *speed = IXGBE_LINK_SPEED_10_FULL;
3394 }
3395 break;
3396 default:
3397 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3398 }
3399
3400 return 0;
3401}
3402
3403/**
3404 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3405 * the EEPROM
3406 * @hw: pointer to hardware structure
3407 * @wwnn_prefix: the alternative WWNN prefix
3408 * @wwpn_prefix: the alternative WWPN prefix
3409 *
3410 * This function will read the EEPROM from the alternative SAN MAC address
3411 * block to check the support for the alternative WWNN/WWPN prefix support.
3412 **/
3413s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3414 u16 *wwpn_prefix)
3415{
3416 u16 offset, caps;
3417 u16 alt_san_mac_blk_offset;
3418
3419 /* clear output first */
3420 *wwnn_prefix = 0xFFFF;
3421 *wwpn_prefix = 0xFFFF;
3422
3423 /* check if alternative SAN MAC is supported */
3424 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3425 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3426 goto wwn_prefix_err;
3427
3428 if ((alt_san_mac_blk_offset == 0) ||
3429 (alt_san_mac_blk_offset == 0xFFFF))
3430 return 0;
3431
3432 /* check capability in alternative san mac address block */
3433 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3434 if (hw->eeprom.ops.read(hw, offset, &caps))
3435 goto wwn_prefix_err;
3436 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3437 return 0;
3438
3439 /* get the corresponding prefix for WWNN/WWPN */
3440 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3441 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3442 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3443
3444 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3445 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3446 goto wwn_prefix_err;
3447
3448 return 0;
3449
3450wwn_prefix_err:
3451 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3452 return 0;
3453}
3454
3455/**
3456 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3457 * @hw: pointer to hardware structure
3458 * @enable: enable or disable switch for MAC anti-spoofing
3459 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3460 *
3461 **/
3462void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3463{
3464 int vf_target_reg = vf >> 3;
3465 int vf_target_shift = vf % 8;
3466 u32 pfvfspoof;
3467
3468 if (hw->mac.type == ixgbe_mac_82598EB)
3469 return;
3470
3471 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3472 if (enable)
3473 pfvfspoof |= BIT(vf_target_shift);
3474 else
3475 pfvfspoof &= ~BIT(vf_target_shift);
3476 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3477}
3478
3479/**
3480 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3481 * @hw: pointer to hardware structure
3482 * @enable: enable or disable switch for VLAN anti-spoofing
3483 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3484 *
3485 **/
3486void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3487{
3488 int vf_target_reg = vf >> 3;
3489 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3490 u32 pfvfspoof;
3491
3492 if (hw->mac.type == ixgbe_mac_82598EB)
3493 return;
3494
3495 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3496 if (enable)
3497 pfvfspoof |= BIT(vf_target_shift);
3498 else
3499 pfvfspoof &= ~BIT(vf_target_shift);
3500 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3501}
3502
3503/**
3504 * ixgbe_get_device_caps_generic - Get additional device capabilities
3505 * @hw: pointer to hardware structure
3506 * @device_caps: the EEPROM word with the extra device capabilities
3507 *
3508 * This function will read the EEPROM location for the device capabilities,
3509 * and return the word through device_caps.
3510 **/
3511s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3512{
3513 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3514
3515 return 0;
3516}
3517
3518/**
3519 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3520 * @hw: pointer to hardware structure
3521 * @num_pb: number of packet buffers to allocate
3522 * @headroom: reserve n KB of headroom
3523 * @strategy: packet buffer allocation strategy
3524 **/
3525void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3526 int num_pb,
3527 u32 headroom,
3528 int strategy)
3529{
3530 u32 pbsize = hw->mac.rx_pb_size;
3531 int i = 0;
3532 u32 rxpktsize, txpktsize, txpbthresh;
3533
3534 /* Reserve headroom */
3535 pbsize -= headroom;
3536
3537 if (!num_pb)
3538 num_pb = 1;
3539
3540 /* Divide remaining packet buffer space amongst the number
3541 * of packet buffers requested using supplied strategy.
3542 */
3543 switch (strategy) {
3544 case (PBA_STRATEGY_WEIGHTED):
3545 /* pba_80_48 strategy weight first half of packet buffer with
3546 * 5/8 of the packet buffer space.
3547 */
3548 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3549 pbsize -= rxpktsize * (num_pb / 2);
3550 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3551 for (; i < (num_pb / 2); i++)
3552 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3553 /* fall through - configure remaining packet buffers */
3554 case (PBA_STRATEGY_EQUAL):
3555 /* Divide the remaining Rx packet buffer evenly among the TCs */
3556 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3557 for (; i < num_pb; i++)
3558 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3559 break;
3560 default:
3561 break;
3562 }
3563
3564 /*
3565 * Setup Tx packet buffer and threshold equally for all TCs
3566 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3567 * 10 since the largest packet we support is just over 9K.
3568 */
3569 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3570 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3571 for (i = 0; i < num_pb; i++) {
3572 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3573 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3574 }
3575
3576 /* Clear unused TCs, if any, to zero buffer size*/
3577 for (; i < IXGBE_MAX_PB; i++) {
3578 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3579 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3580 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3581 }
3582}
3583
3584/**
3585 * ixgbe_calculate_checksum - Calculate checksum for buffer
3586 * @buffer: pointer to EEPROM
3587 * @length: size of EEPROM to calculate a checksum for
3588 *
3589 * Calculates the checksum for some buffer on a specified length. The
3590 * checksum calculated is returned.
3591 **/
3592u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3593{
3594 u32 i;
3595 u8 sum = 0;
3596
3597 if (!buffer)
3598 return 0;
3599
3600 for (i = 0; i < length; i++)
3601 sum += buffer[i];
3602
3603 return (u8) (0 - sum);
3604}
3605
3606/**
3607 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3608 * @hw: pointer to the HW structure
3609 * @buffer: command to write and where the return status will be placed
3610 * @length: length of buffer, must be multiple of 4 bytes
3611 * @timeout: time in ms to wait for command completion
3612 *
3613 * Communicates with the manageability block. On success return 0
3614 * else returns semaphore error when encountering an error acquiring
3615 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3616 *
3617 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3618 * by the caller.
3619 **/
3620s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3621 u32 timeout)
3622{
3623 u32 hicr, i, fwsts;
3624 u16 dword_len;
3625
3626 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3627 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3628 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3629 }
3630
3631 /* Set bit 9 of FWSTS clearing FW reset indication */
3632 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3633 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3634
3635 /* Check that the host interface is enabled. */
3636 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3637 if (!(hicr & IXGBE_HICR_EN)) {
3638 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3639 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3640 }
3641
3642 /* Calculate length in DWORDs. We must be DWORD aligned */
3643 if (length % sizeof(u32)) {
3644 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3645 return IXGBE_ERR_INVALID_ARGUMENT;
3646 }
3647
3648 dword_len = length >> 2;
3649
3650 /* The device driver writes the relevant command block
3651 * into the ram area.
3652 */
3653 for (i = 0; i < dword_len; i++)
3654 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3655 i, cpu_to_le32(buffer[i]));
3656
3657 /* Setting this bit tells the ARC that a new command is pending. */
3658 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3659
3660 for (i = 0; i < timeout; i++) {
3661 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3662 if (!(hicr & IXGBE_HICR_C))
3663 break;
3664 usleep_range(1000, 2000);
3665 }
3666
3667 /* Check command successful completion. */
3668 if ((timeout && i == timeout) ||
3669 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3670 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3671
3672 return 0;
3673}
3674
3675/**
3676 * ixgbe_host_interface_command - Issue command to manageability block
3677 * @hw: pointer to the HW structure
3678 * @buffer: contains the command to write and where the return status will
3679 * be placed
3680 * @length: length of buffer, must be multiple of 4 bytes
3681 * @timeout: time in ms to wait for command completion
3682 * @return_data: read and return data from the buffer (true) or not (false)
3683 * Needed because FW structures are big endian and decoding of
3684 * these fields can be 8 bit or 16 bit based on command. Decoding
3685 * is not easily understood without making a table of commands.
3686 * So we will leave this up to the caller to read back the data
3687 * in these cases.
3688 *
3689 * Communicates with the manageability block. On success return 0
3690 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3691 **/
3692s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3693 u32 length, u32 timeout,
3694 bool return_data)
3695{
3696 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3697 union {
3698 struct ixgbe_hic_hdr hdr;
3699 u32 u32arr[1];
3700 } *bp = buffer;
3701 u16 buf_len, dword_len;
3702 s32 status;
3703 u32 bi;
3704
3705 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3706 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3707 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3708 }
3709 /* Take management host interface semaphore */
3710 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3711 if (status)
3712 return status;
3713
3714 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3715 if (status)
3716 goto rel_out;
3717
3718 if (!return_data)
3719 goto rel_out;
3720
3721 /* Calculate length in DWORDs */
3722 dword_len = hdr_size >> 2;
3723
3724 /* first pull in the header so we know the buffer length */
3725 for (bi = 0; bi < dword_len; bi++) {
3726 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3727 le32_to_cpus(&bp->u32arr[bi]);
3728 }
3729
3730 /* If there is any thing in data position pull it in */
3731 buf_len = bp->hdr.buf_len;
3732 if (!buf_len)
3733 goto rel_out;
3734
3735 if (length < round_up(buf_len, 4) + hdr_size) {
3736 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3737 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3738 goto rel_out;
3739 }
3740
3741 /* Calculate length in DWORDs, add 3 for odd lengths */
3742 dword_len = (buf_len + 3) >> 2;
3743
3744 /* Pull in the rest of the buffer (bi is where we left off) */
3745 for (; bi <= dword_len; bi++) {
3746 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3747 le32_to_cpus(&bp->u32arr[bi]);
3748 }
3749
3750rel_out:
3751 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3752
3753 return status;
3754}
3755
3756/**
3757 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3758 * @hw: pointer to the HW structure
3759 * @maj: driver version major number
3760 * @min: driver version minor number
3761 * @build: driver version build number
3762 * @sub: driver version sub build number
3763 * @len: length of driver_ver string
3764 * @driver_ver: driver string
3765 *
3766 * Sends driver version number to firmware through the manageability
3767 * block. On success return 0
3768 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3769 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3770 **/
3771s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3772 u8 build, u8 sub, __always_unused u16 len,
3773 __always_unused const char *driver_ver)
3774{
3775 struct ixgbe_hic_drv_info fw_cmd;
3776 int i;
3777 s32 ret_val;
3778
3779 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3780 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3781 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3782 fw_cmd.port_num = hw->bus.func;
3783 fw_cmd.ver_maj = maj;
3784 fw_cmd.ver_min = min;
3785 fw_cmd.ver_build = build;
3786 fw_cmd.ver_sub = sub;
3787 fw_cmd.hdr.checksum = 0;
3788 fw_cmd.pad = 0;
3789 fw_cmd.pad2 = 0;
3790 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3791 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3792
3793 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3794 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3795 sizeof(fw_cmd),
3796 IXGBE_HI_COMMAND_TIMEOUT,
3797 true);
3798 if (ret_val != 0)
3799 continue;
3800
3801 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3802 FW_CEM_RESP_STATUS_SUCCESS)
3803 ret_val = 0;
3804 else
3805 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3806
3807 break;
3808 }
3809
3810 return ret_val;
3811}
3812
3813/**
3814 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3815 * @hw: pointer to the hardware structure
3816 *
3817 * The 82599 and x540 MACs can experience issues if TX work is still pending
3818 * when a reset occurs. This function prevents this by flushing the PCIe
3819 * buffers on the system.
3820 **/
3821void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3822{
3823 u32 gcr_ext, hlreg0, i, poll;
3824 u16 value;
3825
3826 /*
3827 * If double reset is not requested then all transactions should
3828 * already be clear and as such there is no work to do
3829 */
3830 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3831 return;
3832
3833 /*
3834 * Set loopback enable to prevent any transmits from being sent
3835 * should the link come up. This assumes that the RXCTRL.RXEN bit
3836 * has already been cleared.
3837 */
3838 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3839 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3840
3841 /* wait for a last completion before clearing buffers */
3842 IXGBE_WRITE_FLUSH(hw);
3843 usleep_range(3000, 6000);
3844
3845 /* Before proceeding, make sure that the PCIe block does not have
3846 * transactions pending.
3847 */
3848 poll = ixgbe_pcie_timeout_poll(hw);
3849 for (i = 0; i < poll; i++) {
3850 usleep_range(100, 200);
3851 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3852 if (ixgbe_removed(hw->hw_addr))
3853 break;
3854 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3855 break;
3856 }
3857
3858 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3859 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3860 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3861 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3862
3863 /* Flush all writes and allow 20usec for all transactions to clear */
3864 IXGBE_WRITE_FLUSH(hw);
3865 udelay(20);
3866
3867 /* restore previous register values */
3868 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3869 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3870}
3871
3872static const u8 ixgbe_emc_temp_data[4] = {
3873 IXGBE_EMC_INTERNAL_DATA,
3874 IXGBE_EMC_DIODE1_DATA,
3875 IXGBE_EMC_DIODE2_DATA,
3876 IXGBE_EMC_DIODE3_DATA
3877};
3878static const u8 ixgbe_emc_therm_limit[4] = {
3879 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3880 IXGBE_EMC_DIODE1_THERM_LIMIT,
3881 IXGBE_EMC_DIODE2_THERM_LIMIT,
3882 IXGBE_EMC_DIODE3_THERM_LIMIT
3883};
3884
3885/**
3886 * ixgbe_get_ets_data - Extracts the ETS bit data
3887 * @hw: pointer to hardware structure
3888 * @ets_cfg: extected ETS data
3889 * @ets_offset: offset of ETS data
3890 *
3891 * Returns error code.
3892 **/
3893static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3894 u16 *ets_offset)
3895{
3896 s32 status;
3897
3898 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3899 if (status)
3900 return status;
3901
3902 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3903 return IXGBE_NOT_IMPLEMENTED;
3904
3905 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3906 if (status)
3907 return status;
3908
3909 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3910 return IXGBE_NOT_IMPLEMENTED;
3911
3912 return 0;
3913}
3914
3915/**
3916 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3917 * @hw: pointer to hardware structure
3918 *
3919 * Returns the thermal sensor data structure
3920 **/
3921s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3922{
3923 s32 status;
3924 u16 ets_offset;
3925 u16 ets_cfg;
3926 u16 ets_sensor;
3927 u8 num_sensors;
3928 u8 i;
3929 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3930
3931 /* Only support thermal sensors attached to physical port 0 */
3932 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3933 return IXGBE_NOT_IMPLEMENTED;
3934
3935 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3936 if (status)
3937 return status;
3938
3939 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3940 if (num_sensors > IXGBE_MAX_SENSORS)
3941 num_sensors = IXGBE_MAX_SENSORS;
3942
3943 for (i = 0; i < num_sensors; i++) {
3944 u8 sensor_index;
3945 u8 sensor_location;
3946
3947 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3948 &ets_sensor);
3949 if (status)
3950 return status;
3951
3952 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3953 IXGBE_ETS_DATA_INDEX_SHIFT);
3954 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3955 IXGBE_ETS_DATA_LOC_SHIFT);
3956
3957 if (sensor_location != 0) {
3958 status = hw->phy.ops.read_i2c_byte(hw,
3959 ixgbe_emc_temp_data[sensor_index],
3960 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3961 &data->sensor[i].temp);
3962 if (status)
3963 return status;
3964 }
3965 }
3966
3967 return 0;
3968}
3969
3970/**
3971 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3972 * @hw: pointer to hardware structure
3973 *
3974 * Inits the thermal sensor thresholds according to the NVM map
3975 * and save off the threshold and location values into mac.thermal_sensor_data
3976 **/
3977s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3978{
3979 s32 status;
3980 u16 ets_offset;
3981 u16 ets_cfg;
3982 u16 ets_sensor;
3983 u8 low_thresh_delta;
3984 u8 num_sensors;
3985 u8 therm_limit;
3986 u8 i;
3987 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3988
3989 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3990
3991 /* Only support thermal sensors attached to physical port 0 */
3992 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3993 return IXGBE_NOT_IMPLEMENTED;
3994
3995 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3996 if (status)
3997 return status;
3998
3999 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
4000 IXGBE_ETS_LTHRES_DELTA_SHIFT);
4001 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4002 if (num_sensors > IXGBE_MAX_SENSORS)
4003 num_sensors = IXGBE_MAX_SENSORS;
4004
4005 for (i = 0; i < num_sensors; i++) {
4006 u8 sensor_index;
4007 u8 sensor_location;
4008
4009 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4010 hw_err(hw, "eeprom read at offset %d failed\n",
4011 ets_offset + 1 + i);
4012 continue;
4013 }
4014 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4015 IXGBE_ETS_DATA_INDEX_SHIFT);
4016 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4017 IXGBE_ETS_DATA_LOC_SHIFT);
4018 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4019
4020 hw->phy.ops.write_i2c_byte(hw,
4021 ixgbe_emc_therm_limit[sensor_index],
4022 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4023
4024 if (sensor_location == 0)
4025 continue;
4026
4027 data->sensor[i].location = sensor_location;
4028 data->sensor[i].caution_thresh = therm_limit;
4029 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4030 }
4031
4032 return 0;
4033}
4034
4035/**
4036 * ixgbe_get_orom_version - Return option ROM from EEPROM
4037 *
4038 * @hw: pointer to hardware structure
4039 * @nvm_ver: pointer to output structure
4040 *
4041 * if valid option ROM version, nvm_ver->or_valid set to true
4042 * else nvm_ver->or_valid is false.
4043 **/
4044void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4045 struct ixgbe_nvm_version *nvm_ver)
4046{
4047 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4048
4049 nvm_ver->or_valid = false;
4050 /* Option Rom may or may not be present. Start with pointer */
4051 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4052
4053 /* make sure offset is valid */
4054 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4055 return;
4056
4057 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4058 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4059
4060 /* option rom exists and is valid */
4061 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4062 eeprom_cfg_blkl == NVM_VER_INVALID ||
4063 eeprom_cfg_blkh == NVM_VER_INVALID)
4064 return;
4065
4066 nvm_ver->or_valid = true;
4067 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4068 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4069 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4070 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4071}
4072
4073/**
4074 * ixgbe_get_oem_prod_version Etrack ID from EEPROM
4075 *
4076 * @hw: pointer to hardware structure
4077 * @nvm_ver: pointer to output structure
4078 *
4079 * if valid OEM product version, nvm_ver->oem_valid set to true
4080 * else nvm_ver->oem_valid is false.
4081 **/
4082void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4083 struct ixgbe_nvm_version *nvm_ver)
4084{
4085 u16 rel_num, prod_ver, mod_len, cap, offset;
4086
4087 nvm_ver->oem_valid = false;
4088 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4089
4090 /* Return is offset to OEM Product Version block is invalid */
4091 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4092 return;
4093
4094 /* Read product version block */
4095 hw->eeprom.ops.read(hw, offset, &mod_len);
4096 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4097
4098 /* Return if OEM product version block is invalid */
4099 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4100 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4101 return;
4102
4103 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4104 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4105
4106 /* Return if version is invalid */
4107 if ((rel_num | prod_ver) == 0x0 ||
4108 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4109 return;
4110
4111 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4112 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4113 nvm_ver->oem_release = rel_num;
4114 nvm_ver->oem_valid = true;
4115}
4116
4117/**
4118 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4119 *
4120 * @hw: pointer to hardware structure
4121 * @nvm_ver: pointer to output structure
4122 *
4123 * word read errors will return 0xFFFF
4124 **/
4125void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4126 struct ixgbe_nvm_version *nvm_ver)
4127{
4128 u16 etk_id_l, etk_id_h;
4129
4130 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4131 etk_id_l = NVM_VER_INVALID;
4132 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4133 etk_id_h = NVM_VER_INVALID;
4134
4135 /* The word order for the version format is determined by high order
4136 * word bit 15.
4137 */
4138 if ((etk_id_h & NVM_ETK_VALID) == 0) {
4139 nvm_ver->etk_id = etk_id_h;
4140 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4141 } else {
4142 nvm_ver->etk_id = etk_id_l;
4143 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4144 }
4145}
4146
4147void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4148{
4149 u32 rxctrl;
4150
4151 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4152 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4153 if (hw->mac.type != ixgbe_mac_82598EB) {
4154 u32 pfdtxgswc;
4155
4156 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4157 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4158 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4159 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4160 hw->mac.set_lben = true;
4161 } else {
4162 hw->mac.set_lben = false;
4163 }
4164 }
4165 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4166 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4167 }
4168}
4169
4170void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4171{
4172 u32 rxctrl;
4173
4174 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4175 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4176
4177 if (hw->mac.type != ixgbe_mac_82598EB) {
4178 if (hw->mac.set_lben) {
4179 u32 pfdtxgswc;
4180
4181 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4182 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4183 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4184 hw->mac.set_lben = false;
4185 }
4186 }
4187}
4188
4189/** ixgbe_mng_present - returns true when management capability is present
4190 * @hw: pointer to hardware structure
4191 **/
4192bool ixgbe_mng_present(struct ixgbe_hw *hw)
4193{
4194 u32 fwsm;
4195
4196 if (hw->mac.type < ixgbe_mac_82599EB)
4197 return false;
4198
4199 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4200
4201 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4202}
4203
4204/**
4205 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4206 * @hw: pointer to hardware structure
4207 * @speed: new link speed
4208 * @autoneg_wait_to_complete: true when waiting for completion is needed
4209 *
4210 * Set the link speed in the MAC and/or PHY register and restarts link.
4211 */
4212s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4213 ixgbe_link_speed speed,
4214 bool autoneg_wait_to_complete)
4215{
4216 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4217 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4218 s32 status = 0;
4219 u32 speedcnt = 0;
4220 u32 i = 0;
4221 bool autoneg, link_up = false;
4222
4223 /* Mask off requested but non-supported speeds */
4224 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4225 if (status)
4226 return status;
4227
4228 speed &= link_speed;
4229
4230 /* Try each speed one by one, highest priority first. We do this in
4231 * software because 10Gb fiber doesn't support speed autonegotiation.
4232 */
4233 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4234 speedcnt++;
4235 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4236
4237 /* Set the module link speed */
4238 switch (hw->phy.media_type) {
4239 case ixgbe_media_type_fiber:
4240 hw->mac.ops.set_rate_select_speed(hw,
4241 IXGBE_LINK_SPEED_10GB_FULL);
4242 break;
4243 case ixgbe_media_type_fiber_qsfp:
4244 /* QSFP module automatically detects MAC link speed */
4245 break;
4246 default:
4247 hw_dbg(hw, "Unexpected media type\n");
4248 break;
4249 }
4250
4251 /* Allow module to change analog characteristics (1G->10G) */
4252 msleep(40);
4253
4254 status = hw->mac.ops.setup_mac_link(hw,
4255 IXGBE_LINK_SPEED_10GB_FULL,
4256 autoneg_wait_to_complete);
4257 if (status)
4258 return status;
4259
4260 /* Flap the Tx laser if it has not already been done */
4261 if (hw->mac.ops.flap_tx_laser)
4262 hw->mac.ops.flap_tx_laser(hw);
4263
4264 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4265 * Section 73.10.2, we may have to wait up to 500ms if KR is
4266 * attempted. 82599 uses the same timing for 10g SFI.
4267 */
4268 for (i = 0; i < 5; i++) {
4269 /* Wait for the link partner to also set speed */
4270 msleep(100);
4271
4272 /* If we have link, just jump out */
4273 status = hw->mac.ops.check_link(hw, &link_speed,
4274 &link_up, false);
4275 if (status)
4276 return status;
4277
4278 if (link_up)
4279 goto out;
4280 }
4281 }
4282
4283 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4284 speedcnt++;
4285 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4286 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4287
4288 /* Set the module link speed */
4289 switch (hw->phy.media_type) {
4290 case ixgbe_media_type_fiber:
4291 hw->mac.ops.set_rate_select_speed(hw,
4292 IXGBE_LINK_SPEED_1GB_FULL);
4293 break;
4294 case ixgbe_media_type_fiber_qsfp:
4295 /* QSFP module automatically detects link speed */
4296 break;
4297 default:
4298 hw_dbg(hw, "Unexpected media type\n");
4299 break;
4300 }
4301
4302 /* Allow module to change analog characteristics (10G->1G) */
4303 msleep(40);
4304
4305 status = hw->mac.ops.setup_mac_link(hw,
4306 IXGBE_LINK_SPEED_1GB_FULL,
4307 autoneg_wait_to_complete);
4308 if (status)
4309 return status;
4310
4311 /* Flap the Tx laser if it has not already been done */
4312 if (hw->mac.ops.flap_tx_laser)
4313 hw->mac.ops.flap_tx_laser(hw);
4314
4315 /* Wait for the link partner to also set speed */
4316 msleep(100);
4317
4318 /* If we have link, just jump out */
4319 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4320 false);
4321 if (status)
4322 return status;
4323
4324 if (link_up)
4325 goto out;
4326 }
4327
4328 /* We didn't get link. Configure back to the highest speed we tried,
4329 * (if there was more than one). We call ourselves back with just the
4330 * single highest speed that the user requested.
4331 */
4332 if (speedcnt > 1)
4333 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4334 highest_link_speed,
4335 autoneg_wait_to_complete);
4336
4337out:
4338 /* Set autoneg_advertised value based on input link speed */
4339 hw->phy.autoneg_advertised = 0;
4340
4341 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4342 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4343
4344 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4345 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4346
4347 return status;
4348}
4349
4350/**
4351 * ixgbe_set_soft_rate_select_speed - Set module link speed
4352 * @hw: pointer to hardware structure
4353 * @speed: link speed to set
4354 *
4355 * Set module link speed via the soft rate select.
4356 */
4357void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4358 ixgbe_link_speed speed)
4359{
4360 s32 status;
4361 u8 rs, eeprom_data;
4362
4363 switch (speed) {
4364 case IXGBE_LINK_SPEED_10GB_FULL:
4365 /* one bit mask same as setting on */
4366 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4367 break;
4368 case IXGBE_LINK_SPEED_1GB_FULL:
4369 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4370 break;
4371 default:
4372 hw_dbg(hw, "Invalid fixed module speed\n");
4373 return;
4374 }
4375
4376 /* Set RS0 */
4377 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4378 IXGBE_I2C_EEPROM_DEV_ADDR2,
4379 &eeprom_data);
4380 if (status) {
4381 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4382 return;
4383 }
4384
4385 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386
4387 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4388 IXGBE_I2C_EEPROM_DEV_ADDR2,
4389 eeprom_data);
4390 if (status) {
4391 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4392 return;
4393 }
4394
4395 /* Set RS1 */
4396 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4397 IXGBE_I2C_EEPROM_DEV_ADDR2,
4398 &eeprom_data);
4399 if (status) {
4400 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4401 return;
4402 }
4403
4404 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4405
4406 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4407 IXGBE_I2C_EEPROM_DEV_ADDR2,
4408 eeprom_data);
4409 if (status) {
4410 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4411 return;
4412 }
4413}