Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25#include <linux/if_ether.h>
  26#include <linux/delay.h>
  27
  28#include "e1000_mac.h"
  29#include "e1000_phy.h"
  30
  31static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  32static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  33					     u16 *phy_ctrl);
  34static s32  igb_wait_autoneg(struct e1000_hw *hw);
  35static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
  36
  37/* Cable length tables */
  38static const u16 e1000_m88_cable_length_table[] = {
  39	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  40
  41static const u16 e1000_igp_2_cable_length_table[] = {
  42	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  43	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  44	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  45	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  46	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  47	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  48	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  49	104, 109, 114, 118, 121, 124};
  50
  51/**
  52 *  igb_check_reset_block - Check if PHY reset is blocked
  53 *  @hw: pointer to the HW structure
  54 *
  55 *  Read the PHY management control register and check whether a PHY reset
  56 *  is blocked.  If a reset is not blocked return 0, otherwise
  57 *  return E1000_BLK_PHY_RESET (12).
  58 **/
  59s32 igb_check_reset_block(struct e1000_hw *hw)
  60{
  61	u32 manc;
  62
  63	manc = rd32(E1000_MANC);
  64
  65	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  66}
  67
  68/**
  69 *  igb_get_phy_id - Retrieve the PHY ID and revision
  70 *  @hw: pointer to the HW structure
  71 *
  72 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  73 *  revision in the hardware structure.
  74 **/
  75s32 igb_get_phy_id(struct e1000_hw *hw)
  76{
  77	struct e1000_phy_info *phy = &hw->phy;
  78	s32 ret_val = 0;
  79	u16 phy_id;
  80
  81	/* ensure PHY page selection to fix misconfigured i210 */
  82	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
  83		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
  84
  85	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  86	if (ret_val)
  87		goto out;
  88
  89	phy->id = (u32)(phy_id << 16);
  90	udelay(20);
  91	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  92	if (ret_val)
  93		goto out;
  94
  95	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  96	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  97
  98out:
  99	return ret_val;
 100}
 101
 102/**
 103 *  igb_phy_reset_dsp - Reset PHY DSP
 104 *  @hw: pointer to the HW structure
 105 *
 106 *  Reset the digital signal processor.
 107 **/
 108static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
 109{
 110	s32 ret_val = 0;
 111
 112	if (!(hw->phy.ops.write_reg))
 113		goto out;
 114
 115	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 116	if (ret_val)
 117		goto out;
 118
 119	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
 120
 121out:
 122	return ret_val;
 123}
 124
 125/**
 126 *  igb_read_phy_reg_mdic - Read MDI control register
 127 *  @hw: pointer to the HW structure
 128 *  @offset: register offset to be read
 129 *  @data: pointer to the read data
 130 *
 131 *  Reads the MDI control register in the PHY at offset and stores the
 132 *  information read to data.
 133 **/
 134s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 135{
 136	struct e1000_phy_info *phy = &hw->phy;
 137	u32 i, mdic = 0;
 138	s32 ret_val = 0;
 139
 140	if (offset > MAX_PHY_REG_ADDRESS) {
 141		hw_dbg("PHY Address %d is out of range\n", offset);
 142		ret_val = -E1000_ERR_PARAM;
 143		goto out;
 144	}
 145
 146	/* Set up Op-code, Phy Address, and register offset in the MDI
 147	 * Control register.  The MAC will take care of interfacing with the
 148	 * PHY to retrieve the desired data.
 149	 */
 150	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 151		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 152		(E1000_MDIC_OP_READ));
 153
 154	wr32(E1000_MDIC, mdic);
 155
 156	/* Poll the ready bit to see if the MDI read completed
 157	 * Increasing the time out as testing showed failures with
 158	 * the lower time out
 159	 */
 160	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 161		udelay(50);
 162		mdic = rd32(E1000_MDIC);
 163		if (mdic & E1000_MDIC_READY)
 164			break;
 165	}
 166	if (!(mdic & E1000_MDIC_READY)) {
 167		hw_dbg("MDI Read did not complete\n");
 168		ret_val = -E1000_ERR_PHY;
 169		goto out;
 170	}
 171	if (mdic & E1000_MDIC_ERROR) {
 172		hw_dbg("MDI Error\n");
 173		ret_val = -E1000_ERR_PHY;
 174		goto out;
 175	}
 176	*data = (u16) mdic;
 177
 178out:
 179	return ret_val;
 180}
 181
 182/**
 183 *  igb_write_phy_reg_mdic - Write MDI control register
 184 *  @hw: pointer to the HW structure
 185 *  @offset: register offset to write to
 186 *  @data: data to write to register at offset
 187 *
 188 *  Writes data to MDI control register in the PHY at offset.
 189 **/
 190s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 191{
 192	struct e1000_phy_info *phy = &hw->phy;
 193	u32 i, mdic = 0;
 194	s32 ret_val = 0;
 195
 196	if (offset > MAX_PHY_REG_ADDRESS) {
 197		hw_dbg("PHY Address %d is out of range\n", offset);
 198		ret_val = -E1000_ERR_PARAM;
 199		goto out;
 200	}
 201
 202	/* Set up Op-code, Phy Address, and register offset in the MDI
 203	 * Control register.  The MAC will take care of interfacing with the
 204	 * PHY to retrieve the desired data.
 205	 */
 206	mdic = (((u32)data) |
 207		(offset << E1000_MDIC_REG_SHIFT) |
 208		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 209		(E1000_MDIC_OP_WRITE));
 210
 211	wr32(E1000_MDIC, mdic);
 212
 213	/* Poll the ready bit to see if the MDI read completed
 214	 * Increasing the time out as testing showed failures with
 215	 * the lower time out
 216	 */
 217	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 218		udelay(50);
 219		mdic = rd32(E1000_MDIC);
 220		if (mdic & E1000_MDIC_READY)
 221			break;
 222	}
 223	if (!(mdic & E1000_MDIC_READY)) {
 224		hw_dbg("MDI Write did not complete\n");
 225		ret_val = -E1000_ERR_PHY;
 226		goto out;
 227	}
 228	if (mdic & E1000_MDIC_ERROR) {
 229		hw_dbg("MDI Error\n");
 230		ret_val = -E1000_ERR_PHY;
 231		goto out;
 232	}
 233
 234out:
 235	return ret_val;
 236}
 237
 238/**
 239 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 240 *  @hw: pointer to the HW structure
 241 *  @offset: register offset to be read
 242 *  @data: pointer to the read data
 243 *
 244 *  Reads the PHY register at offset using the i2c interface and stores the
 245 *  retrieved information in data.
 246 **/
 247s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
 248{
 249	struct e1000_phy_info *phy = &hw->phy;
 250	u32 i, i2ccmd = 0;
 251
 252	/* Set up Op-code, Phy Address, and register address in the I2CCMD
 253	 * register.  The MAC will take care of interfacing with the
 254	 * PHY to retrieve the desired data.
 255	 */
 256	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 257		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 258		  (E1000_I2CCMD_OPCODE_READ));
 259
 260	wr32(E1000_I2CCMD, i2ccmd);
 261
 262	/* Poll the ready bit to see if the I2C read completed */
 263	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 264		udelay(50);
 265		i2ccmd = rd32(E1000_I2CCMD);
 266		if (i2ccmd & E1000_I2CCMD_READY)
 267			break;
 268	}
 269	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 270		hw_dbg("I2CCMD Read did not complete\n");
 271		return -E1000_ERR_PHY;
 272	}
 273	if (i2ccmd & E1000_I2CCMD_ERROR) {
 274		hw_dbg("I2CCMD Error bit set\n");
 275		return -E1000_ERR_PHY;
 276	}
 277
 278	/* Need to byte-swap the 16-bit value. */
 279	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
 280
 281	return 0;
 282}
 283
 284/**
 285 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 286 *  @hw: pointer to the HW structure
 287 *  @offset: register offset to write to
 288 *  @data: data to write at register offset
 289 *
 290 *  Writes the data to PHY register at the offset using the i2c interface.
 291 **/
 292s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
 293{
 294	struct e1000_phy_info *phy = &hw->phy;
 295	u32 i, i2ccmd = 0;
 296	u16 phy_data_swapped;
 297
 298	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
 299	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
 300		hw_dbg("PHY I2C Address %d is out of range.\n",
 301			  hw->phy.addr);
 302		return -E1000_ERR_CONFIG;
 303	}
 304
 305	/* Swap the data bytes for the I2C interface */
 306	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
 307
 308	/* Set up Op-code, Phy Address, and register address in the I2CCMD
 309	 * register.  The MAC will take care of interfacing with the
 310	 * PHY to retrieve the desired data.
 311	 */
 312	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 313		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 314		  E1000_I2CCMD_OPCODE_WRITE |
 315		  phy_data_swapped);
 316
 317	wr32(E1000_I2CCMD, i2ccmd);
 318
 319	/* Poll the ready bit to see if the I2C read completed */
 320	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 321		udelay(50);
 322		i2ccmd = rd32(E1000_I2CCMD);
 323		if (i2ccmd & E1000_I2CCMD_READY)
 324			break;
 325	}
 326	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 327		hw_dbg("I2CCMD Write did not complete\n");
 328		return -E1000_ERR_PHY;
 329	}
 330	if (i2ccmd & E1000_I2CCMD_ERROR) {
 331		hw_dbg("I2CCMD Error bit set\n");
 332		return -E1000_ERR_PHY;
 333	}
 334
 335	return 0;
 336}
 337
 338/**
 339 *  igb_read_sfp_data_byte - Reads SFP module data.
 340 *  @hw: pointer to the HW structure
 341 *  @offset: byte location offset to be read
 342 *  @data: read data buffer pointer
 343 *
 344 *  Reads one byte from SFP module data stored
 345 *  in SFP resided EEPROM memory or SFP diagnostic area.
 346 *  Function should be called with
 347 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
 348 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
 349 *  access
 350 **/
 351s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
 352{
 353	u32 i = 0;
 354	u32 i2ccmd = 0;
 355	u32 data_local = 0;
 356
 357	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
 358		hw_dbg("I2CCMD command address exceeds upper limit\n");
 359		return -E1000_ERR_PHY;
 360	}
 361
 362	/* Set up Op-code, EEPROM Address,in the I2CCMD
 363	 * register. The MAC will take care of interfacing with the
 364	 * EEPROM to retrieve the desired data.
 365	 */
 366	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 367		  E1000_I2CCMD_OPCODE_READ);
 368
 369	wr32(E1000_I2CCMD, i2ccmd);
 370
 371	/* Poll the ready bit to see if the I2C read completed */
 372	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 373		udelay(50);
 374		data_local = rd32(E1000_I2CCMD);
 375		if (data_local & E1000_I2CCMD_READY)
 376			break;
 377	}
 378	if (!(data_local & E1000_I2CCMD_READY)) {
 379		hw_dbg("I2CCMD Read did not complete\n");
 380		return -E1000_ERR_PHY;
 381	}
 382	if (data_local & E1000_I2CCMD_ERROR) {
 383		hw_dbg("I2CCMD Error bit set\n");
 384		return -E1000_ERR_PHY;
 385	}
 386	*data = (u8) data_local & 0xFF;
 387
 388	return 0;
 389}
 390
 391/**
 392 *  igb_read_phy_reg_igp - Read igp PHY register
 393 *  @hw: pointer to the HW structure
 394 *  @offset: register offset to be read
 395 *  @data: pointer to the read data
 396 *
 397 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 398 *  and storing the retrieved information in data.  Release any acquired
 399 *  semaphores before exiting.
 400 **/
 401s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 402{
 403	s32 ret_val = 0;
 404
 405	if (!(hw->phy.ops.acquire))
 406		goto out;
 407
 408	ret_val = hw->phy.ops.acquire(hw);
 409	if (ret_val)
 410		goto out;
 411
 412	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 413		ret_val = igb_write_phy_reg_mdic(hw,
 414						 IGP01E1000_PHY_PAGE_SELECT,
 415						 (u16)offset);
 416		if (ret_val) {
 417			hw->phy.ops.release(hw);
 418			goto out;
 419		}
 420	}
 421
 422	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 423					data);
 424
 425	hw->phy.ops.release(hw);
 426
 427out:
 428	return ret_val;
 429}
 430
 431/**
 432 *  igb_write_phy_reg_igp - Write igp PHY register
 433 *  @hw: pointer to the HW structure
 434 *  @offset: register offset to write to
 435 *  @data: data to write at register offset
 436 *
 437 *  Acquires semaphore, if necessary, then writes the data to PHY register
 438 *  at the offset.  Release any acquired semaphores before exiting.
 439 **/
 440s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 441{
 442	s32 ret_val = 0;
 443
 444	if (!(hw->phy.ops.acquire))
 445		goto out;
 446
 447	ret_val = hw->phy.ops.acquire(hw);
 448	if (ret_val)
 449		goto out;
 450
 451	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 452		ret_val = igb_write_phy_reg_mdic(hw,
 453						 IGP01E1000_PHY_PAGE_SELECT,
 454						 (u16)offset);
 455		if (ret_val) {
 456			hw->phy.ops.release(hw);
 457			goto out;
 458		}
 459	}
 460
 461	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 462					 data);
 463
 464	hw->phy.ops.release(hw);
 465
 466out:
 467	return ret_val;
 468}
 469
 470/**
 471 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 472 *  @hw: pointer to the HW structure
 473 *
 474 *  Sets up Carrier-sense on Transmit and downshift values.
 475 **/
 476s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
 477{
 478	struct e1000_phy_info *phy = &hw->phy;
 479	s32 ret_val;
 480	u16 phy_data;
 481
 482	if (phy->reset_disable) {
 483		ret_val = 0;
 484		goto out;
 485	}
 486
 487	if (phy->type == e1000_phy_82580) {
 488		ret_val = hw->phy.ops.reset(hw);
 489		if (ret_val) {
 490			hw_dbg("Error resetting the PHY.\n");
 491			goto out;
 492		}
 493	}
 494
 495	/* Enable CRS on TX. This must be set for half-duplex operation. */
 496	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
 497	if (ret_val)
 498		goto out;
 499
 500	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
 501
 502	/* Enable downshift */
 503	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
 504
 505	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
 506	if (ret_val)
 507		goto out;
 508
 509	/* Set MDI/MDIX mode */
 510	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
 511	if (ret_val)
 512		goto out;
 513	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
 514	/* Options:
 515	 *   0 - Auto (default)
 516	 *   1 - MDI mode
 517	 *   2 - MDI-X mode
 518	 */
 519	switch (hw->phy.mdix) {
 520	case 1:
 521		break;
 522	case 2:
 523		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
 524		break;
 525	case 0:
 526	default:
 527		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
 528		break;
 529	}
 530	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
 531
 532out:
 533	return ret_val;
 534}
 535
 536/**
 537 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 538 *  @hw: pointer to the HW structure
 539 *
 540 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 541 *  and downshift values are set also.
 542 **/
 543s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 544{
 545	struct e1000_phy_info *phy = &hw->phy;
 546	s32 ret_val;
 547	u16 phy_data;
 548
 549	if (phy->reset_disable) {
 550		ret_val = 0;
 551		goto out;
 552	}
 553
 554	/* Enable CRS on TX. This must be set for half-duplex operation. */
 555	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 556	if (ret_val)
 557		goto out;
 558
 559	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 560
 561	/* Options:
 562	 *   MDI/MDI-X = 0 (default)
 563	 *   0 - Auto for all speeds
 564	 *   1 - MDI mode
 565	 *   2 - MDI-X mode
 566	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 567	 */
 568	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 569
 570	switch (phy->mdix) {
 571	case 1:
 572		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 573		break;
 574	case 2:
 575		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 576		break;
 577	case 3:
 578		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 579		break;
 580	case 0:
 581	default:
 582		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 583		break;
 584	}
 585
 586	/* Options:
 587	 *   disable_polarity_correction = 0 (default)
 588	 *       Automatic Correction for Reversed Cable Polarity
 589	 *   0 - Disabled
 590	 *   1 - Enabled
 591	 */
 592	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 593	if (phy->disable_polarity_correction == 1)
 594		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 595
 596	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 597	if (ret_val)
 598		goto out;
 599
 600	if (phy->revision < E1000_REVISION_4) {
 601		/* Force TX_CLK in the Extended PHY Specific Control Register
 602		 * to 25MHz clock.
 603		 */
 604		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 605					    &phy_data);
 606		if (ret_val)
 607			goto out;
 608
 609		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 610
 611		if ((phy->revision == E1000_REVISION_2) &&
 612		    (phy->id == M88E1111_I_PHY_ID)) {
 613			/* 82573L PHY - set the downshift counter to 5x. */
 614			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 615			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 616		} else {
 617			/* Configure Master and Slave downshift values */
 618			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 619				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 620			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 621				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 622		}
 623		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 624					     phy_data);
 625		if (ret_val)
 626			goto out;
 627	}
 628
 629	/* Commit the changes. */
 630	ret_val = igb_phy_sw_reset(hw);
 631	if (ret_val) {
 632		hw_dbg("Error committing the PHY changes\n");
 633		goto out;
 634	}
 635
 636out:
 637	return ret_val;
 638}
 639
 640/**
 641 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 642 *  @hw: pointer to the HW structure
 643 *
 644 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 645 *  Also enables and sets the downshift parameters.
 646 **/
 647s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
 648{
 649	struct e1000_phy_info *phy = &hw->phy;
 650	s32 ret_val;
 651	u16 phy_data;
 652
 653	if (phy->reset_disable)
 654		return 0;
 655
 656	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 657	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 658	if (ret_val)
 659		return ret_val;
 660
 661	/* Options:
 662	 *   MDI/MDI-X = 0 (default)
 663	 *   0 - Auto for all speeds
 664	 *   1 - MDI mode
 665	 *   2 - MDI-X mode
 666	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 667	 */
 668	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 669
 670	switch (phy->mdix) {
 671	case 1:
 672		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 673		break;
 674	case 2:
 675		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 676		break;
 677	case 3:
 678		/* M88E1112 does not support this mode) */
 679		if (phy->id != M88E1112_E_PHY_ID) {
 680			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 681			break;
 682		}
 683	case 0:
 684	default:
 685		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 686		break;
 687	}
 688
 689	/* Options:
 690	 *   disable_polarity_correction = 0 (default)
 691	 *       Automatic Correction for Reversed Cable Polarity
 692	 *   0 - Disabled
 693	 *   1 - Enabled
 694	 */
 695	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 696	if (phy->disable_polarity_correction == 1)
 697		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 698
 699	/* Enable downshift and setting it to X6 */
 700	if (phy->id == M88E1543_E_PHY_ID) {
 701		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
 702		ret_val =
 703		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 704		if (ret_val)
 705			return ret_val;
 706
 707		ret_val = igb_phy_sw_reset(hw);
 708		if (ret_val) {
 709			hw_dbg("Error committing the PHY changes\n");
 710			return ret_val;
 711		}
 712	}
 713
 714	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
 715	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
 716	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
 717
 718	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 719	if (ret_val)
 720		return ret_val;
 721
 722	/* Commit the changes. */
 723	ret_val = igb_phy_sw_reset(hw);
 724	if (ret_val) {
 725		hw_dbg("Error committing the PHY changes\n");
 726		return ret_val;
 727	}
 728	ret_val = igb_set_master_slave_mode(hw);
 729	if (ret_val)
 730		return ret_val;
 731
 732	return 0;
 733}
 734
 735/**
 736 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 737 *  @hw: pointer to the HW structure
 738 *
 739 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 740 *  igp PHY's.
 741 **/
 742s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 743{
 744	struct e1000_phy_info *phy = &hw->phy;
 745	s32 ret_val;
 746	u16 data;
 747
 748	if (phy->reset_disable) {
 749		ret_val = 0;
 750		goto out;
 751	}
 752
 753	ret_val = phy->ops.reset(hw);
 754	if (ret_val) {
 755		hw_dbg("Error resetting the PHY.\n");
 756		goto out;
 757	}
 758
 759	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 760	 * timeout issues when LFS is enabled.
 761	 */
 762	msleep(100);
 763
 764	/* The NVM settings will configure LPLU in D3 for
 765	 * non-IGP1 PHYs.
 766	 */
 767	if (phy->type == e1000_phy_igp) {
 768		/* disable lplu d3 during driver init */
 769		if (phy->ops.set_d3_lplu_state)
 770			ret_val = phy->ops.set_d3_lplu_state(hw, false);
 771		if (ret_val) {
 772			hw_dbg("Error Disabling LPLU D3\n");
 773			goto out;
 774		}
 775	}
 776
 777	/* disable lplu d0 during driver init */
 778	ret_val = phy->ops.set_d0_lplu_state(hw, false);
 779	if (ret_val) {
 780		hw_dbg("Error Disabling LPLU D0\n");
 781		goto out;
 782	}
 783	/* Configure mdi-mdix settings */
 784	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 785	if (ret_val)
 786		goto out;
 787
 788	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 789
 790	switch (phy->mdix) {
 791	case 1:
 792		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 793		break;
 794	case 2:
 795		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 796		break;
 797	case 0:
 798	default:
 799		data |= IGP01E1000_PSCR_AUTO_MDIX;
 800		break;
 801	}
 802	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 803	if (ret_val)
 804		goto out;
 805
 806	/* set auto-master slave resolution settings */
 807	if (hw->mac.autoneg) {
 808		/* when autonegotiation advertisement is only 1000Mbps then we
 809		 * should disable SmartSpeed and enable Auto MasterSlave
 810		 * resolution as hardware default.
 811		 */
 812		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 813			/* Disable SmartSpeed */
 814			ret_val = phy->ops.read_reg(hw,
 815						    IGP01E1000_PHY_PORT_CONFIG,
 816						    &data);
 817			if (ret_val)
 818				goto out;
 819
 820			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 821			ret_val = phy->ops.write_reg(hw,
 822						     IGP01E1000_PHY_PORT_CONFIG,
 823						     data);
 824			if (ret_val)
 825				goto out;
 826
 827			/* Set auto Master/Slave resolution process */
 828			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 829			if (ret_val)
 830				goto out;
 831
 832			data &= ~CR_1000T_MS_ENABLE;
 833			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 834			if (ret_val)
 835				goto out;
 836		}
 837
 838		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 839		if (ret_val)
 840			goto out;
 841
 842		/* load defaults for future use */
 843		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 844			((data & CR_1000T_MS_VALUE) ?
 845			e1000_ms_force_master :
 846			e1000_ms_force_slave) :
 847			e1000_ms_auto;
 848
 849		switch (phy->ms_type) {
 850		case e1000_ms_force_master:
 851			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 852			break;
 853		case e1000_ms_force_slave:
 854			data |= CR_1000T_MS_ENABLE;
 855			data &= ~(CR_1000T_MS_VALUE);
 856			break;
 857		case e1000_ms_auto:
 858			data &= ~CR_1000T_MS_ENABLE;
 859		default:
 860			break;
 861		}
 862		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 863		if (ret_val)
 864			goto out;
 865	}
 866
 867out:
 868	return ret_val;
 869}
 870
 871/**
 872 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 873 *  @hw: pointer to the HW structure
 874 *
 875 *  Performs initial bounds checking on autoneg advertisement parameter, then
 876 *  configure to advertise the full capability.  Setup the PHY to autoneg
 877 *  and restart the negotiation process between the link partner.  If
 878 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 879 **/
 880static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 881{
 882	struct e1000_phy_info *phy = &hw->phy;
 883	s32 ret_val;
 884	u16 phy_ctrl;
 885
 886	/* Perform some bounds checking on the autoneg advertisement
 887	 * parameter.
 888	 */
 889	phy->autoneg_advertised &= phy->autoneg_mask;
 890
 891	/* If autoneg_advertised is zero, we assume it was not defaulted
 892	 * by the calling code so we set to advertise full capability.
 893	 */
 894	if (phy->autoneg_advertised == 0)
 895		phy->autoneg_advertised = phy->autoneg_mask;
 896
 897	hw_dbg("Reconfiguring auto-neg advertisement params\n");
 898	ret_val = igb_phy_setup_autoneg(hw);
 899	if (ret_val) {
 900		hw_dbg("Error Setting up Auto-Negotiation\n");
 901		goto out;
 902	}
 903	hw_dbg("Restarting Auto-Neg\n");
 904
 905	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 906	 * the Auto Neg Restart bit in the PHY control register.
 907	 */
 908	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 909	if (ret_val)
 910		goto out;
 911
 912	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 913	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 914	if (ret_val)
 915		goto out;
 916
 917	/* Does the user want to wait for Auto-Neg to complete here, or
 918	 * check at a later time (for example, callback routine).
 919	 */
 920	if (phy->autoneg_wait_to_complete) {
 921		ret_val = igb_wait_autoneg(hw);
 922		if (ret_val) {
 923			hw_dbg("Error while waiting for autoneg to complete\n");
 924			goto out;
 925		}
 926	}
 927
 928	hw->mac.get_link_status = true;
 929
 930out:
 931	return ret_val;
 932}
 933
 934/**
 935 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 936 *  @hw: pointer to the HW structure
 937 *
 938 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 939 *  register and if the PHY is already setup for auto-negotiation, then
 940 *  return successful.  Otherwise, setup advertisement and flow control to
 941 *  the appropriate values for the wanted auto-negotiation.
 942 **/
 943static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 944{
 945	struct e1000_phy_info *phy = &hw->phy;
 946	s32 ret_val;
 947	u16 mii_autoneg_adv_reg;
 948	u16 mii_1000t_ctrl_reg = 0;
 949
 950	phy->autoneg_advertised &= phy->autoneg_mask;
 951
 952	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 953	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 954	if (ret_val)
 955		goto out;
 956
 957	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 958		/* Read the MII 1000Base-T Control Register (Address 9). */
 959		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 960					    &mii_1000t_ctrl_reg);
 961		if (ret_val)
 962			goto out;
 963	}
 964
 965	/* Need to parse both autoneg_advertised and fc and set up
 966	 * the appropriate PHY registers.  First we will parse for
 967	 * autoneg_advertised software override.  Since we can advertise
 968	 * a plethora of combinations, we need to check each bit
 969	 * individually.
 970	 */
 971
 972	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 973	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 974	 * the  1000Base-T Control Register (Address 9).
 975	 */
 976	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 977				 NWAY_AR_100TX_HD_CAPS |
 978				 NWAY_AR_10T_FD_CAPS   |
 979				 NWAY_AR_10T_HD_CAPS);
 980	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 981
 982	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 983
 984	/* Do we want to advertise 10 Mb Half Duplex? */
 985	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 986		hw_dbg("Advertise 10mb Half duplex\n");
 987		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 988	}
 989
 990	/* Do we want to advertise 10 Mb Full Duplex? */
 991	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 992		hw_dbg("Advertise 10mb Full duplex\n");
 993		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 994	}
 995
 996	/* Do we want to advertise 100 Mb Half Duplex? */
 997	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 998		hw_dbg("Advertise 100mb Half duplex\n");
 999		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1000	}
1001
1002	/* Do we want to advertise 100 Mb Full Duplex? */
1003	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1004		hw_dbg("Advertise 100mb Full duplex\n");
1005		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1006	}
1007
1008	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1009	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1010		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1011
1012	/* Do we want to advertise 1000 Mb Full Duplex? */
1013	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1014		hw_dbg("Advertise 1000mb Full duplex\n");
1015		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1016	}
1017
1018	/* Check for a software override of the flow control settings, and
1019	 * setup the PHY advertisement registers accordingly.  If
1020	 * auto-negotiation is enabled, then software will have to set the
1021	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1022	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1023	 * negotiation.
1024	 *
1025	 * The possible values of the "fc" parameter are:
1026	 *      0:  Flow control is completely disabled
1027	 *      1:  Rx flow control is enabled (we can receive pause frames
1028	 *          but not send pause frames).
1029	 *      2:  Tx flow control is enabled (we can send pause frames
1030	 *          but we do not support receiving pause frames).
1031	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1032	 *  other:  No software override.  The flow control configuration
1033	 *          in the EEPROM is used.
1034	 */
1035	switch (hw->fc.current_mode) {
1036	case e1000_fc_none:
1037		/* Flow control (RX & TX) is completely disabled by a
1038		 * software over-ride.
1039		 */
1040		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1041		break;
1042	case e1000_fc_rx_pause:
1043		/* RX Flow control is enabled, and TX Flow control is
1044		 * disabled, by a software over-ride.
1045		 *
1046		 * Since there really isn't a way to advertise that we are
1047		 * capable of RX Pause ONLY, we will advertise that we
1048		 * support both symmetric and asymmetric RX PAUSE.  Later
1049		 * (in e1000_config_fc_after_link_up) we will disable the
1050		 * hw's ability to send PAUSE frames.
1051		 */
1052		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1053		break;
1054	case e1000_fc_tx_pause:
1055		/* TX Flow control is enabled, and RX Flow control is
1056		 * disabled, by a software over-ride.
1057		 */
1058		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1059		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1060		break;
1061	case e1000_fc_full:
1062		/* Flow control (both RX and TX) is enabled by a software
1063		 * over-ride.
1064		 */
1065		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1066		break;
1067	default:
1068		hw_dbg("Flow control param set incorrectly\n");
1069		ret_val = -E1000_ERR_CONFIG;
1070		goto out;
1071	}
1072
1073	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1074	if (ret_val)
1075		goto out;
1076
1077	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1078
1079	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1080		ret_val = phy->ops.write_reg(hw,
1081					     PHY_1000T_CTRL,
1082					     mii_1000t_ctrl_reg);
1083		if (ret_val)
1084			goto out;
1085	}
1086
1087out:
1088	return ret_val;
1089}
1090
1091/**
1092 *  igb_setup_copper_link - Configure copper link settings
1093 *  @hw: pointer to the HW structure
1094 *
1095 *  Calls the appropriate function to configure the link for auto-neg or forced
1096 *  speed and duplex.  Then we check for link, once link is established calls
1097 *  to configure collision distance and flow control are called.  If link is
1098 *  not established, we return -E1000_ERR_PHY (-2).
1099 **/
1100s32 igb_setup_copper_link(struct e1000_hw *hw)
1101{
1102	s32 ret_val;
1103	bool link;
1104
1105	if (hw->mac.autoneg) {
1106		/* Setup autoneg and flow control advertisement and perform
1107		 * autonegotiation.
1108		 */
1109		ret_val = igb_copper_link_autoneg(hw);
1110		if (ret_val)
1111			goto out;
1112	} else {
1113		/* PHY will be set to 10H, 10F, 100H or 100F
1114		 * depending on user settings.
1115		 */
1116		hw_dbg("Forcing Speed and Duplex\n");
1117		ret_val = hw->phy.ops.force_speed_duplex(hw);
1118		if (ret_val) {
1119			hw_dbg("Error Forcing Speed and Duplex\n");
1120			goto out;
1121		}
1122	}
1123
1124	/* Check link status. Wait up to 100 microseconds for link to become
1125	 * valid.
1126	 */
1127	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1128	if (ret_val)
1129		goto out;
1130
1131	if (link) {
1132		hw_dbg("Valid link established!!!\n");
1133		igb_config_collision_dist(hw);
1134		ret_val = igb_config_fc_after_link_up(hw);
1135	} else {
1136		hw_dbg("Unable to establish link!!!\n");
1137	}
1138
1139out:
1140	return ret_val;
1141}
1142
1143/**
1144 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1145 *  @hw: pointer to the HW structure
1146 *
1147 *  Calls the PHY setup function to force speed and duplex.  Clears the
1148 *  auto-crossover to force MDI manually.  Waits for link and returns
1149 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1150 **/
1151s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1152{
1153	struct e1000_phy_info *phy = &hw->phy;
1154	s32 ret_val;
1155	u16 phy_data;
1156	bool link;
1157
1158	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1159	if (ret_val)
1160		goto out;
1161
1162	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1163
1164	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1165	if (ret_val)
1166		goto out;
1167
1168	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1169	 * forced whenever speed and duplex are forced.
1170	 */
1171	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1172	if (ret_val)
1173		goto out;
1174
1175	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1176	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1177
1178	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1179	if (ret_val)
1180		goto out;
1181
1182	hw_dbg("IGP PSCR: %X\n", phy_data);
1183
1184	udelay(1);
1185
1186	if (phy->autoneg_wait_to_complete) {
1187		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1188
1189		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1190		if (ret_val)
1191			goto out;
1192
1193		if (!link)
1194			hw_dbg("Link taking longer than expected.\n");
1195
1196		/* Try once more */
1197		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1198		if (ret_val)
1199			goto out;
1200	}
1201
1202out:
1203	return ret_val;
1204}
1205
1206/**
1207 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1208 *  @hw: pointer to the HW structure
1209 *
1210 *  Calls the PHY setup function to force speed and duplex.  Clears the
1211 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1212 *  changes.  If time expires while waiting for link up, we reset the DSP.
1213 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1214 *  successful completion, else return corresponding error code.
1215 **/
1216s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1217{
1218	struct e1000_phy_info *phy = &hw->phy;
1219	s32 ret_val;
1220	u16 phy_data;
1221	bool link;
1222
1223	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1224	if (phy->type != e1000_phy_i210) {
1225		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1226		 * requires MDI forced whenever speed and duplex are forced.
1227		 */
1228		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1229					    &phy_data);
1230		if (ret_val)
1231			goto out;
1232
1233		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1234		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1235					     phy_data);
1236		if (ret_val)
1237			goto out;
1238
1239		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1240	}
1241
1242	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1243	if (ret_val)
1244		goto out;
1245
1246	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1247
1248	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1249	if (ret_val)
1250		goto out;
1251
1252	/* Reset the phy to commit changes. */
1253	ret_val = igb_phy_sw_reset(hw);
1254	if (ret_val)
1255		goto out;
1256
1257	if (phy->autoneg_wait_to_complete) {
1258		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1259
1260		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1261		if (ret_val)
1262			goto out;
1263
1264		if (!link) {
1265			bool reset_dsp = true;
1266
1267			switch (hw->phy.id) {
1268			case I347AT4_E_PHY_ID:
1269			case M88E1112_E_PHY_ID:
1270			case M88E1543_E_PHY_ID:
1271			case M88E1512_E_PHY_ID:
1272			case I210_I_PHY_ID:
1273				reset_dsp = false;
1274				break;
1275			default:
1276				if (hw->phy.type != e1000_phy_m88)
1277					reset_dsp = false;
1278				break;
1279			}
1280			if (!reset_dsp) {
1281				hw_dbg("Link taking longer than expected.\n");
1282			} else {
1283				/* We didn't get link.
1284				 * Reset the DSP and cross our fingers.
1285				 */
1286				ret_val = phy->ops.write_reg(hw,
1287						M88E1000_PHY_PAGE_SELECT,
1288						0x001d);
1289				if (ret_val)
1290					goto out;
1291				ret_val = igb_phy_reset_dsp(hw);
1292				if (ret_val)
1293					goto out;
1294			}
1295		}
1296
1297		/* Try once more */
1298		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1299					   100000, &link);
1300		if (ret_val)
1301			goto out;
1302	}
1303
1304	if (hw->phy.type != e1000_phy_m88 ||
1305	    hw->phy.id == I347AT4_E_PHY_ID ||
1306	    hw->phy.id == M88E1112_E_PHY_ID ||
1307	    hw->phy.id == M88E1543_E_PHY_ID ||
1308	    hw->phy.id == M88E1512_E_PHY_ID ||
1309	    hw->phy.id == I210_I_PHY_ID)
1310		goto out;
1311
1312	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1313	if (ret_val)
1314		goto out;
1315
1316	/* Resetting the phy means we need to re-force TX_CLK in the
1317	 * Extended PHY Specific Control Register to 25MHz clock from
1318	 * the reset value of 2.5MHz.
1319	 */
1320	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1321	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1322	if (ret_val)
1323		goto out;
1324
1325	/* In addition, we must re-enable CRS on Tx for both half and full
1326	 * duplex.
1327	 */
1328	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1329	if (ret_val)
1330		goto out;
1331
1332	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1333	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1334
1335out:
1336	return ret_val;
1337}
1338
1339/**
1340 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1341 *  @hw: pointer to the HW structure
1342 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1343 *
1344 *  Forces speed and duplex on the PHY by doing the following: disable flow
1345 *  control, force speed/duplex on the MAC, disable auto speed detection,
1346 *  disable auto-negotiation, configure duplex, configure speed, configure
1347 *  the collision distance, write configuration to CTRL register.  The
1348 *  caller must write to the PHY_CONTROL register for these settings to
1349 *  take affect.
1350 **/
1351static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1352					     u16 *phy_ctrl)
1353{
1354	struct e1000_mac_info *mac = &hw->mac;
1355	u32 ctrl;
1356
1357	/* Turn off flow control when forcing speed/duplex */
1358	hw->fc.current_mode = e1000_fc_none;
1359
1360	/* Force speed/duplex on the mac */
1361	ctrl = rd32(E1000_CTRL);
1362	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1363	ctrl &= ~E1000_CTRL_SPD_SEL;
1364
1365	/* Disable Auto Speed Detection */
1366	ctrl &= ~E1000_CTRL_ASDE;
1367
1368	/* Disable autoneg on the phy */
1369	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1370
1371	/* Forcing Full or Half Duplex? */
1372	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1373		ctrl &= ~E1000_CTRL_FD;
1374		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1375		hw_dbg("Half Duplex\n");
1376	} else {
1377		ctrl |= E1000_CTRL_FD;
1378		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1379		hw_dbg("Full Duplex\n");
1380	}
1381
1382	/* Forcing 10mb or 100mb? */
1383	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1384		ctrl |= E1000_CTRL_SPD_100;
1385		*phy_ctrl |= MII_CR_SPEED_100;
1386		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1387		hw_dbg("Forcing 100mb\n");
1388	} else {
1389		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1390		*phy_ctrl |= MII_CR_SPEED_10;
1391		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1392		hw_dbg("Forcing 10mb\n");
1393	}
1394
1395	igb_config_collision_dist(hw);
1396
1397	wr32(E1000_CTRL, ctrl);
1398}
1399
1400/**
1401 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1402 *  @hw: pointer to the HW structure
1403 *  @active: boolean used to enable/disable lplu
1404 *
1405 *  Success returns 0, Failure returns 1
1406 *
1407 *  The low power link up (lplu) state is set to the power management level D3
1408 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1409 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1410 *  is used during Dx states where the power conservation is most important.
1411 *  During driver activity, SmartSpeed should be enabled so performance is
1412 *  maintained.
1413 **/
1414s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1415{
1416	struct e1000_phy_info *phy = &hw->phy;
1417	s32 ret_val = 0;
1418	u16 data;
1419
1420	if (!(hw->phy.ops.read_reg))
1421		goto out;
1422
1423	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1424	if (ret_val)
1425		goto out;
1426
1427	if (!active) {
1428		data &= ~IGP02E1000_PM_D3_LPLU;
1429		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1430					     data);
1431		if (ret_val)
1432			goto out;
1433		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1434		 * during Dx states where the power conservation is most
1435		 * important.  During driver activity we should enable
1436		 * SmartSpeed, so performance is maintained.
1437		 */
1438		if (phy->smart_speed == e1000_smart_speed_on) {
1439			ret_val = phy->ops.read_reg(hw,
1440						    IGP01E1000_PHY_PORT_CONFIG,
1441						    &data);
1442			if (ret_val)
1443				goto out;
1444
1445			data |= IGP01E1000_PSCFR_SMART_SPEED;
1446			ret_val = phy->ops.write_reg(hw,
1447						     IGP01E1000_PHY_PORT_CONFIG,
1448						     data);
1449			if (ret_val)
1450				goto out;
1451		} else if (phy->smart_speed == e1000_smart_speed_off) {
1452			ret_val = phy->ops.read_reg(hw,
1453						     IGP01E1000_PHY_PORT_CONFIG,
1454						     &data);
1455			if (ret_val)
1456				goto out;
1457
1458			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1459			ret_val = phy->ops.write_reg(hw,
1460						     IGP01E1000_PHY_PORT_CONFIG,
1461						     data);
1462			if (ret_val)
1463				goto out;
1464		}
1465	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1466		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1467		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1468		data |= IGP02E1000_PM_D3_LPLU;
1469		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1470					      data);
1471		if (ret_val)
1472			goto out;
1473
1474		/* When LPLU is enabled, we should disable SmartSpeed */
1475		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1476					    &data);
1477		if (ret_val)
1478			goto out;
1479
1480		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1481		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1482					     data);
1483	}
1484
1485out:
1486	return ret_val;
1487}
1488
1489/**
1490 *  igb_check_downshift - Checks whether a downshift in speed occurred
1491 *  @hw: pointer to the HW structure
1492 *
1493 *  Success returns 0, Failure returns 1
1494 *
1495 *  A downshift is detected by querying the PHY link health.
1496 **/
1497s32 igb_check_downshift(struct e1000_hw *hw)
1498{
1499	struct e1000_phy_info *phy = &hw->phy;
1500	s32 ret_val;
1501	u16 phy_data, offset, mask;
1502
1503	switch (phy->type) {
1504	case e1000_phy_i210:
1505	case e1000_phy_m88:
1506	case e1000_phy_gg82563:
1507		offset	= M88E1000_PHY_SPEC_STATUS;
1508		mask	= M88E1000_PSSR_DOWNSHIFT;
1509		break;
1510	case e1000_phy_igp_2:
1511	case e1000_phy_igp:
1512	case e1000_phy_igp_3:
1513		offset	= IGP01E1000_PHY_LINK_HEALTH;
1514		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1515		break;
1516	default:
1517		/* speed downshift not supported */
1518		phy->speed_downgraded = false;
1519		ret_val = 0;
1520		goto out;
1521	}
1522
1523	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1524
1525	if (!ret_val)
1526		phy->speed_downgraded = (phy_data & mask) ? true : false;
1527
1528out:
1529	return ret_val;
1530}
1531
1532/**
1533 *  igb_check_polarity_m88 - Checks the polarity.
1534 *  @hw: pointer to the HW structure
1535 *
1536 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1537 *
1538 *  Polarity is determined based on the PHY specific status register.
1539 **/
1540s32 igb_check_polarity_m88(struct e1000_hw *hw)
1541{
1542	struct e1000_phy_info *phy = &hw->phy;
1543	s32 ret_val;
1544	u16 data;
1545
1546	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1547
1548	if (!ret_val)
1549		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1550				      ? e1000_rev_polarity_reversed
1551				      : e1000_rev_polarity_normal;
1552
1553	return ret_val;
1554}
1555
1556/**
1557 *  igb_check_polarity_igp - Checks the polarity.
1558 *  @hw: pointer to the HW structure
1559 *
1560 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1561 *
1562 *  Polarity is determined based on the PHY port status register, and the
1563 *  current speed (since there is no polarity at 100Mbps).
1564 **/
1565static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1566{
1567	struct e1000_phy_info *phy = &hw->phy;
1568	s32 ret_val;
1569	u16 data, offset, mask;
1570
1571	/* Polarity is determined based on the speed of
1572	 * our connection.
1573	 */
1574	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1575	if (ret_val)
1576		goto out;
1577
1578	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1579	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1580		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1581		mask	= IGP01E1000_PHY_POLARITY_MASK;
1582	} else {
1583		/* This really only applies to 10Mbps since
1584		 * there is no polarity for 100Mbps (always 0).
1585		 */
1586		offset	= IGP01E1000_PHY_PORT_STATUS;
1587		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1588	}
1589
1590	ret_val = phy->ops.read_reg(hw, offset, &data);
1591
1592	if (!ret_val)
1593		phy->cable_polarity = (data & mask)
1594				      ? e1000_rev_polarity_reversed
1595				      : e1000_rev_polarity_normal;
1596
1597out:
1598	return ret_val;
1599}
1600
1601/**
1602 *  igb_wait_autoneg - Wait for auto-neg completion
1603 *  @hw: pointer to the HW structure
1604 *
1605 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1606 *  limit to expire, which ever happens first.
1607 **/
1608static s32 igb_wait_autoneg(struct e1000_hw *hw)
1609{
1610	s32 ret_val = 0;
1611	u16 i, phy_status;
1612
1613	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1614	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1615		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1616		if (ret_val)
1617			break;
1618		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1619		if (ret_val)
1620			break;
1621		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1622			break;
1623		msleep(100);
1624	}
1625
1626	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1627	 * has completed.
1628	 */
1629	return ret_val;
1630}
1631
1632/**
1633 *  igb_phy_has_link - Polls PHY for link
1634 *  @hw: pointer to the HW structure
1635 *  @iterations: number of times to poll for link
1636 *  @usec_interval: delay between polling attempts
1637 *  @success: pointer to whether polling was successful or not
1638 *
1639 *  Polls the PHY status register for link, 'iterations' number of times.
1640 **/
1641s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1642		     u32 usec_interval, bool *success)
1643{
1644	s32 ret_val = 0;
1645	u16 i, phy_status;
1646
1647	for (i = 0; i < iterations; i++) {
1648		/* Some PHYs require the PHY_STATUS register to be read
1649		 * twice due to the link bit being sticky.  No harm doing
1650		 * it across the board.
1651		 */
1652		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1653		if (ret_val && usec_interval > 0) {
1654			/* If the first read fails, another entity may have
1655			 * ownership of the resources, wait and try again to
1656			 * see if they have relinquished the resources yet.
1657			 */
1658			if (usec_interval >= 1000)
1659				mdelay(usec_interval/1000);
1660			else
1661				udelay(usec_interval);
1662		}
1663		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1664		if (ret_val)
1665			break;
1666		if (phy_status & MII_SR_LINK_STATUS)
1667			break;
1668		if (usec_interval >= 1000)
1669			mdelay(usec_interval/1000);
1670		else
1671			udelay(usec_interval);
1672	}
1673
1674	*success = (i < iterations) ? true : false;
1675
1676	return ret_val;
1677}
1678
1679/**
1680 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1681 *  @hw: pointer to the HW structure
1682 *
1683 *  Reads the PHY specific status register to retrieve the cable length
1684 *  information.  The cable length is determined by averaging the minimum and
1685 *  maximum values to get the "average" cable length.  The m88 PHY has four
1686 *  possible cable length values, which are:
1687 *	Register Value		Cable Length
1688 *	0			< 50 meters
1689 *	1			50 - 80 meters
1690 *	2			80 - 110 meters
1691 *	3			110 - 140 meters
1692 *	4			> 140 meters
1693 **/
1694s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1695{
1696	struct e1000_phy_info *phy = &hw->phy;
1697	s32 ret_val;
1698	u16 phy_data, index;
1699
1700	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1701	if (ret_val)
1702		goto out;
1703
1704	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1705		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1706	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1707		ret_val = -E1000_ERR_PHY;
1708		goto out;
1709	}
1710
1711	phy->min_cable_length = e1000_m88_cable_length_table[index];
1712	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1713
1714	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1715
1716out:
1717	return ret_val;
1718}
1719
1720s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1721{
1722	struct e1000_phy_info *phy = &hw->phy;
1723	s32 ret_val;
1724	u16 phy_data, phy_data2, index, default_page, is_cm;
1725	int len_tot = 0;
1726	u16 len_min;
1727	u16 len_max;
1728
1729	switch (hw->phy.id) {
1730	case M88E1543_E_PHY_ID:
1731	case M88E1512_E_PHY_ID:
1732	case I347AT4_E_PHY_ID:
1733	case I210_I_PHY_ID:
1734		/* Remember the original page select and set it to 7 */
1735		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1736					    &default_page);
1737		if (ret_val)
1738			goto out;
1739
1740		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1741		if (ret_val)
1742			goto out;
1743
1744		/* Check if the unit of cable length is meters or cm */
1745		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1746		if (ret_val)
1747			goto out;
1748
1749		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1750
1751		/* Get cable length from Pair 0 length Regs */
1752		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1753		if (ret_val)
1754			goto out;
1755
1756		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1757		len_tot = phy->pair_length[0];
1758		len_min = phy->pair_length[0];
1759		len_max = phy->pair_length[0];
1760
1761		/* Get cable length from Pair 1 length Regs */
1762		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1763		if (ret_val)
1764			goto out;
1765
1766		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1767		len_tot += phy->pair_length[1];
1768		len_min = min(len_min, phy->pair_length[1]);
1769		len_max = max(len_max, phy->pair_length[1]);
1770
1771		/* Get cable length from Pair 2 length Regs */
1772		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1773		if (ret_val)
1774			goto out;
1775
1776		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1777		len_tot += phy->pair_length[2];
1778		len_min = min(len_min, phy->pair_length[2]);
1779		len_max = max(len_max, phy->pair_length[2]);
1780
1781		/* Get cable length from Pair 3 length Regs */
1782		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1783		if (ret_val)
1784			goto out;
1785
1786		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1787		len_tot += phy->pair_length[3];
1788		len_min = min(len_min, phy->pair_length[3]);
1789		len_max = max(len_max, phy->pair_length[3]);
1790
1791		/* Populate the phy structure with cable length in meters */
1792		phy->min_cable_length = len_min;
1793		phy->max_cable_length = len_max;
1794		phy->cable_length = len_tot / 4;
1795
1796		/* Reset the page selec to its original value */
1797		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1798					     default_page);
1799		if (ret_val)
1800			goto out;
1801		break;
1802	case M88E1112_E_PHY_ID:
1803		/* Remember the original page select and set it to 5 */
1804		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1805					    &default_page);
1806		if (ret_val)
1807			goto out;
1808
1809		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1810		if (ret_val)
1811			goto out;
1812
1813		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1814					    &phy_data);
1815		if (ret_val)
1816			goto out;
1817
1818		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1819			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1820		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1821			ret_val = -E1000_ERR_PHY;
1822			goto out;
1823		}
1824
1825		phy->min_cable_length = e1000_m88_cable_length_table[index];
1826		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1827
1828		phy->cable_length = (phy->min_cable_length +
1829				     phy->max_cable_length) / 2;
1830
1831		/* Reset the page select to its original value */
1832		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1833					     default_page);
1834		if (ret_val)
1835			goto out;
1836
1837		break;
1838	default:
1839		ret_val = -E1000_ERR_PHY;
1840		goto out;
1841	}
1842
1843out:
1844	return ret_val;
1845}
1846
1847/**
1848 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1849 *  @hw: pointer to the HW structure
1850 *
1851 *  The automatic gain control (agc) normalizes the amplitude of the
1852 *  received signal, adjusting for the attenuation produced by the
1853 *  cable.  By reading the AGC registers, which represent the
1854 *  combination of coarse and fine gain value, the value can be put
1855 *  into a lookup table to obtain the approximate cable length
1856 *  for each channel.
1857 **/
1858s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1859{
1860	struct e1000_phy_info *phy = &hw->phy;
1861	s32 ret_val = 0;
1862	u16 phy_data, i, agc_value = 0;
1863	u16 cur_agc_index, max_agc_index = 0;
1864	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1865	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1866		IGP02E1000_PHY_AGC_A,
1867		IGP02E1000_PHY_AGC_B,
1868		IGP02E1000_PHY_AGC_C,
1869		IGP02E1000_PHY_AGC_D
1870	};
1871
1872	/* Read the AGC registers for all channels */
1873	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1874		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1875		if (ret_val)
1876			goto out;
1877
1878		/* Getting bits 15:9, which represent the combination of
1879		 * coarse and fine gain values.  The result is a number
1880		 * that can be put into the lookup table to obtain the
1881		 * approximate cable length.
1882		 */
1883		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1884				IGP02E1000_AGC_LENGTH_MASK;
1885
1886		/* Array index bound check. */
1887		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1888		    (cur_agc_index == 0)) {
1889			ret_val = -E1000_ERR_PHY;
1890			goto out;
1891		}
1892
1893		/* Remove min & max AGC values from calculation. */
1894		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895		    e1000_igp_2_cable_length_table[cur_agc_index])
1896			min_agc_index = cur_agc_index;
1897		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898		    e1000_igp_2_cable_length_table[cur_agc_index])
1899			max_agc_index = cur_agc_index;
1900
1901		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902	}
1903
1904	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905		      e1000_igp_2_cable_length_table[max_agc_index]);
1906	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907
1908	/* Calculate cable length with the error range of +/- 10 meters. */
1909	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1911	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912
1913	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914
1915out:
1916	return ret_val;
1917}
1918
1919/**
1920 *  igb_get_phy_info_m88 - Retrieve PHY information
1921 *  @hw: pointer to the HW structure
1922 *
1923 *  Valid for only copper links.  Read the PHY status register (sticky read)
1924 *  to verify that link is up.  Read the PHY special control register to
1925 *  determine the polarity and 10base-T extended distance.  Read the PHY
1926 *  special status register to determine MDI/MDIx and current speed.  If
1927 *  speed is 1000, then determine cable length, local and remote receiver.
1928 **/
1929s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1930{
1931	struct e1000_phy_info *phy = &hw->phy;
1932	s32  ret_val;
1933	u16 phy_data;
1934	bool link;
1935
1936	if (phy->media_type != e1000_media_type_copper) {
1937		hw_dbg("Phy info is only valid for copper media\n");
1938		ret_val = -E1000_ERR_CONFIG;
1939		goto out;
1940	}
1941
1942	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1943	if (ret_val)
1944		goto out;
1945
1946	if (!link) {
1947		hw_dbg("Phy info is only valid if link is up\n");
1948		ret_val = -E1000_ERR_CONFIG;
1949		goto out;
1950	}
1951
1952	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1953	if (ret_val)
1954		goto out;
1955
1956	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1957				   ? true : false;
1958
1959	ret_val = igb_check_polarity_m88(hw);
1960	if (ret_val)
1961		goto out;
1962
1963	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1964	if (ret_val)
1965		goto out;
1966
1967	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1968
1969	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1970		ret_val = phy->ops.get_cable_length(hw);
1971		if (ret_val)
1972			goto out;
1973
1974		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1975		if (ret_val)
1976			goto out;
1977
1978		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1979				? e1000_1000t_rx_status_ok
1980				: e1000_1000t_rx_status_not_ok;
1981
1982		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1983				 ? e1000_1000t_rx_status_ok
1984				 : e1000_1000t_rx_status_not_ok;
1985	} else {
1986		/* Set values to "undefined" */
1987		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1988		phy->local_rx = e1000_1000t_rx_status_undefined;
1989		phy->remote_rx = e1000_1000t_rx_status_undefined;
1990	}
1991
1992out:
1993	return ret_val;
1994}
1995
1996/**
1997 *  igb_get_phy_info_igp - Retrieve igp PHY information
1998 *  @hw: pointer to the HW structure
1999 *
2000 *  Read PHY status to determine if link is up.  If link is up, then
2001 *  set/determine 10base-T extended distance and polarity correction.  Read
2002 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2003 *  determine on the cable length, local and remote receiver.
2004 **/
2005s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2006{
2007	struct e1000_phy_info *phy = &hw->phy;
2008	s32 ret_val;
2009	u16 data;
2010	bool link;
2011
2012	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2013	if (ret_val)
2014		goto out;
2015
2016	if (!link) {
2017		hw_dbg("Phy info is only valid if link is up\n");
2018		ret_val = -E1000_ERR_CONFIG;
2019		goto out;
2020	}
2021
2022	phy->polarity_correction = true;
2023
2024	ret_val = igb_check_polarity_igp(hw);
2025	if (ret_val)
2026		goto out;
2027
2028	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2029	if (ret_val)
2030		goto out;
2031
2032	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2033
2034	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2035	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2036		ret_val = phy->ops.get_cable_length(hw);
2037		if (ret_val)
2038			goto out;
2039
2040		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2041		if (ret_val)
2042			goto out;
2043
2044		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2045				? e1000_1000t_rx_status_ok
2046				: e1000_1000t_rx_status_not_ok;
2047
2048		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2049				 ? e1000_1000t_rx_status_ok
2050				 : e1000_1000t_rx_status_not_ok;
2051	} else {
2052		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2053		phy->local_rx = e1000_1000t_rx_status_undefined;
2054		phy->remote_rx = e1000_1000t_rx_status_undefined;
2055	}
2056
2057out:
2058	return ret_val;
2059}
2060
2061/**
2062 *  igb_phy_sw_reset - PHY software reset
2063 *  @hw: pointer to the HW structure
2064 *
2065 *  Does a software reset of the PHY by reading the PHY control register and
2066 *  setting/write the control register reset bit to the PHY.
2067 **/
2068s32 igb_phy_sw_reset(struct e1000_hw *hw)
2069{
2070	s32 ret_val = 0;
2071	u16 phy_ctrl;
2072
2073	if (!(hw->phy.ops.read_reg))
2074		goto out;
2075
2076	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2077	if (ret_val)
2078		goto out;
2079
2080	phy_ctrl |= MII_CR_RESET;
2081	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2082	if (ret_val)
2083		goto out;
2084
2085	udelay(1);
2086
2087out:
2088	return ret_val;
2089}
2090
2091/**
2092 *  igb_phy_hw_reset - PHY hardware reset
2093 *  @hw: pointer to the HW structure
2094 *
2095 *  Verify the reset block is not blocking us from resetting.  Acquire
2096 *  semaphore (if necessary) and read/set/write the device control reset
2097 *  bit in the PHY.  Wait the appropriate delay time for the device to
2098 *  reset and release the semaphore (if necessary).
2099 **/
2100s32 igb_phy_hw_reset(struct e1000_hw *hw)
2101{
2102	struct e1000_phy_info *phy = &hw->phy;
2103	s32  ret_val;
2104	u32 ctrl;
2105
2106	ret_val = igb_check_reset_block(hw);
2107	if (ret_val) {
2108		ret_val = 0;
2109		goto out;
2110	}
2111
2112	ret_val = phy->ops.acquire(hw);
2113	if (ret_val)
2114		goto out;
2115
2116	ctrl = rd32(E1000_CTRL);
2117	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2118	wrfl();
2119
2120	udelay(phy->reset_delay_us);
2121
2122	wr32(E1000_CTRL, ctrl);
2123	wrfl();
2124
2125	udelay(150);
2126
2127	phy->ops.release(hw);
2128
2129	ret_val = phy->ops.get_cfg_done(hw);
2130
2131out:
2132	return ret_val;
2133}
2134
2135/**
2136 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2137 *  @hw: pointer to the HW structure
2138 *
2139 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2140 **/
2141s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2142{
2143	hw_dbg("Running IGP 3 PHY init script\n");
2144
2145	/* PHY init IGP 3 */
2146	/* Enable rise/fall, 10-mode work in class-A */
2147	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2148	/* Remove all caps from Replica path filter */
2149	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2150	/* Bias trimming for ADC, AFE and Driver (Default) */
2151	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2152	/* Increase Hybrid poly bias */
2153	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2154	/* Add 4% to TX amplitude in Giga mode */
2155	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2156	/* Disable trimming (TTT) */
2157	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2158	/* Poly DC correction to 94.6% + 2% for all channels */
2159	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2160	/* ABS DC correction to 95.9% */
2161	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2162	/* BG temp curve trim */
2163	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2164	/* Increasing ADC OPAMP stage 1 currents to max */
2165	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2166	/* Force 1000 ( required for enabling PHY regs configuration) */
2167	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2168	/* Set upd_freq to 6 */
2169	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2170	/* Disable NPDFE */
2171	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2172	/* Disable adaptive fixed FFE (Default) */
2173	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2174	/* Enable FFE hysteresis */
2175	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2176	/* Fixed FFE for short cable lengths */
2177	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2178	/* Fixed FFE for medium cable lengths */
2179	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2180	/* Fixed FFE for long cable lengths */
2181	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2182	/* Enable Adaptive Clip Threshold */
2183	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2184	/* AHT reset limit to 1 */
2185	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2186	/* Set AHT master delay to 127 msec */
2187	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2188	/* Set scan bits for AHT */
2189	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2190	/* Set AHT Preset bits */
2191	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2192	/* Change integ_factor of channel A to 3 */
2193	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2194	/* Change prop_factor of channels BCD to 8 */
2195	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2196	/* Change cg_icount + enable integbp for channels BCD */
2197	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2198	/* Change cg_icount + enable integbp + change prop_factor_master
2199	 * to 8 for channel A
2200	 */
2201	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2202	/* Disable AHT in Slave mode on channel A */
2203	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2204	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2205	 * Enable SPD+B2B
2206	 */
2207	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2208	/* Enable restart AN on an1000_dis change */
2209	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2210	/* Enable wh_fifo read clock in 10/100 modes */
2211	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2212	/* Restart AN, Speed selection is 1000 */
2213	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2214
2215	return 0;
2216}
2217
2218/**
2219 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2220 *  @hw: pointer to the HW structure
2221 *
2222 *  Initialize Marvel 1512 to work correctly with Avoton.
2223 **/
2224s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2225{
2226	struct e1000_phy_info *phy = &hw->phy;
2227	s32 ret_val = 0;
2228
2229	/* Switch to PHY page 0xFF. */
2230	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2231	if (ret_val)
2232		goto out;
2233
2234	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2235	if (ret_val)
2236		goto out;
2237
2238	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2239	if (ret_val)
2240		goto out;
2241
2242	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2243	if (ret_val)
2244		goto out;
2245
2246	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2247	if (ret_val)
2248		goto out;
2249
2250	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2251	if (ret_val)
2252		goto out;
2253
2254	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2255	if (ret_val)
2256		goto out;
2257
2258	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2259	if (ret_val)
2260		goto out;
2261
2262	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2263	if (ret_val)
2264		goto out;
2265
2266	/* Switch to PHY page 0xFB. */
2267	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2268	if (ret_val)
2269		goto out;
2270
2271	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2272	if (ret_val)
2273		goto out;
2274
2275	/* Switch to PHY page 0x12. */
2276	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2277	if (ret_val)
2278		goto out;
2279
2280	/* Change mode to SGMII-to-Copper */
2281	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2282	if (ret_val)
2283		goto out;
2284
2285	/* Return the PHY to page 0. */
2286	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2287	if (ret_val)
2288		goto out;
2289
2290	ret_val = igb_phy_sw_reset(hw);
2291	if (ret_val) {
2292		hw_dbg("Error committing the PHY changes\n");
2293		return ret_val;
2294	}
2295
2296	/* msec_delay(1000); */
2297	usleep_range(1000, 2000);
2298out:
2299	return ret_val;
2300}
2301
2302/**
2303 *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2304 *  @hw: pointer to the HW structure
2305 *
2306 *  Initialize Marvell 1543 to work correctly with Avoton.
2307 **/
2308s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2309{
2310	struct e1000_phy_info *phy = &hw->phy;
2311	s32 ret_val = 0;
2312
2313	/* Switch to PHY page 0xFF. */
2314	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2315	if (ret_val)
2316		goto out;
2317
2318	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2319	if (ret_val)
2320		goto out;
2321
2322	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2323	if (ret_val)
2324		goto out;
2325
2326	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2327	if (ret_val)
2328		goto out;
2329
2330	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2331	if (ret_val)
2332		goto out;
2333
2334	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2335	if (ret_val)
2336		goto out;
2337
2338	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2339	if (ret_val)
2340		goto out;
2341
2342	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2343	if (ret_val)
2344		goto out;
2345
2346	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2347	if (ret_val)
2348		goto out;
2349
2350	/* Switch to PHY page 0xFB. */
2351	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2352	if (ret_val)
2353		goto out;
2354
2355	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2356	if (ret_val)
2357		goto out;
2358
2359	/* Switch to PHY page 0x12. */
2360	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2361	if (ret_val)
2362		goto out;
2363
2364	/* Change mode to SGMII-to-Copper */
2365	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2366	if (ret_val)
2367		goto out;
2368
2369	/* Switch to PHY page 1. */
2370	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2371	if (ret_val)
2372		goto out;
2373
2374	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2375	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2376	if (ret_val)
2377		goto out;
2378
2379	/* Return the PHY to page 0. */
2380	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2381	if (ret_val)
2382		goto out;
2383
2384	ret_val = igb_phy_sw_reset(hw);
2385	if (ret_val) {
2386		hw_dbg("Error committing the PHY changes\n");
2387		return ret_val;
2388	}
2389
2390	/* msec_delay(1000); */
2391	usleep_range(1000, 2000);
2392out:
2393	return ret_val;
2394}
2395
2396/**
2397 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2398 * @hw: pointer to the HW structure
2399 *
2400 * In the case of a PHY power down to save power, or to turn off link during a
2401 * driver unload, restore the link to previous settings.
2402 **/
2403void igb_power_up_phy_copper(struct e1000_hw *hw)
2404{
2405	u16 mii_reg = 0;
2406
2407	/* The PHY will retain its settings across a power down/up cycle */
2408	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2409	mii_reg &= ~MII_CR_POWER_DOWN;
2410	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2411}
2412
2413/**
2414 * igb_power_down_phy_copper - Power down copper PHY
2415 * @hw: pointer to the HW structure
2416 *
2417 * Power down PHY to save power when interface is down and wake on lan
2418 * is not enabled.
2419 **/
2420void igb_power_down_phy_copper(struct e1000_hw *hw)
2421{
2422	u16 mii_reg = 0;
2423
2424	/* The PHY will retain its settings across a power down/up cycle */
2425	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2426	mii_reg |= MII_CR_POWER_DOWN;
2427	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2428	usleep_range(1000, 2000);
2429}
2430
2431/**
2432 *  igb_check_polarity_82580 - Checks the polarity.
2433 *  @hw: pointer to the HW structure
2434 *
2435 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2436 *
2437 *  Polarity is determined based on the PHY specific status register.
2438 **/
2439static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2440{
2441	struct e1000_phy_info *phy = &hw->phy;
2442	s32 ret_val;
2443	u16 data;
2444
2445
2446	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2447
2448	if (!ret_val)
2449		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2450				      ? e1000_rev_polarity_reversed
2451				      : e1000_rev_polarity_normal;
2452
2453	return ret_val;
2454}
2455
2456/**
2457 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2458 *  @hw: pointer to the HW structure
2459 *
2460 *  Calls the PHY setup function to force speed and duplex.  Clears the
2461 *  auto-crossover to force MDI manually.  Waits for link and returns
2462 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2463 **/
2464s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2465{
2466	struct e1000_phy_info *phy = &hw->phy;
2467	s32 ret_val;
2468	u16 phy_data;
2469	bool link;
2470
2471	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2472	if (ret_val)
2473		goto out;
2474
2475	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2476
2477	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2478	if (ret_val)
2479		goto out;
2480
2481	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2482	 * forced whenever speed and duplex are forced.
2483	 */
2484	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2485	if (ret_val)
2486		goto out;
2487
2488	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2489
2490	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2491	if (ret_val)
2492		goto out;
2493
2494	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2495
2496	udelay(1);
2497
2498	if (phy->autoneg_wait_to_complete) {
2499		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2500
2501		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2502		if (ret_val)
2503			goto out;
2504
2505		if (!link)
2506			hw_dbg("Link taking longer than expected.\n");
2507
2508		/* Try once more */
2509		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2510		if (ret_val)
2511			goto out;
2512	}
2513
2514out:
2515	return ret_val;
2516}
2517
2518/**
2519 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2520 *  @hw: pointer to the HW structure
2521 *
2522 *  Read PHY status to determine if link is up.  If link is up, then
2523 *  set/determine 10base-T extended distance and polarity correction.  Read
2524 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2525 *  determine on the cable length, local and remote receiver.
2526 **/
2527s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2528{
2529	struct e1000_phy_info *phy = &hw->phy;
2530	s32 ret_val;
2531	u16 data;
2532	bool link;
2533
2534	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2535	if (ret_val)
2536		goto out;
2537
2538	if (!link) {
2539		hw_dbg("Phy info is only valid if link is up\n");
2540		ret_val = -E1000_ERR_CONFIG;
2541		goto out;
2542	}
2543
2544	phy->polarity_correction = true;
2545
2546	ret_val = igb_check_polarity_82580(hw);
2547	if (ret_val)
2548		goto out;
2549
2550	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2551	if (ret_val)
2552		goto out;
2553
2554	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2555
2556	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2557	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2558		ret_val = hw->phy.ops.get_cable_length(hw);
2559		if (ret_val)
2560			goto out;
2561
2562		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2563		if (ret_val)
2564			goto out;
2565
2566		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2567				? e1000_1000t_rx_status_ok
2568				: e1000_1000t_rx_status_not_ok;
2569
2570		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2571				 ? e1000_1000t_rx_status_ok
2572				 : e1000_1000t_rx_status_not_ok;
2573	} else {
2574		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2575		phy->local_rx = e1000_1000t_rx_status_undefined;
2576		phy->remote_rx = e1000_1000t_rx_status_undefined;
2577	}
2578
2579out:
2580	return ret_val;
2581}
2582
2583/**
2584 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2585 *  @hw: pointer to the HW structure
2586 *
2587 * Reads the diagnostic status register and verifies result is valid before
2588 * placing it in the phy_cable_length field.
2589 **/
2590s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2591{
2592	struct e1000_phy_info *phy = &hw->phy;
2593	s32 ret_val;
2594	u16 phy_data, length;
2595
2596	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2597	if (ret_val)
2598		goto out;
2599
2600	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2601		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2602
2603	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2604		ret_val = -E1000_ERR_PHY;
2605
2606	phy->cable_length = length;
2607
2608out:
2609	return ret_val;
2610}
2611
2612/**
2613 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2614 *  @hw: pointer to the HW structure
2615 *
2616 *  Sets up Master/slave mode
2617 **/
2618static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2619{
2620	s32 ret_val;
2621	u16 phy_data;
2622
2623	/* Resolve Master/Slave mode */
2624	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2625	if (ret_val)
2626		return ret_val;
2627
2628	/* load defaults for future use */
2629	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2630				   ((phy_data & CR_1000T_MS_VALUE) ?
2631				    e1000_ms_force_master :
2632				    e1000_ms_force_slave) : e1000_ms_auto;
2633
2634	switch (hw->phy.ms_type) {
2635	case e1000_ms_force_master:
2636		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2637		break;
2638	case e1000_ms_force_slave:
2639		phy_data |= CR_1000T_MS_ENABLE;
2640		phy_data &= ~(CR_1000T_MS_VALUE);
2641		break;
2642	case e1000_ms_auto:
2643		phy_data &= ~CR_1000T_MS_ENABLE;
2644		/* fall-through */
2645	default:
2646		break;
2647	}
2648
2649	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2650}