Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#include <linux/if_ether.h>
  25#include <linux/delay.h>
  26
  27#include "e1000_mac.h"
  28#include "e1000_phy.h"
  29
  30static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  31static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  32					     u16 *phy_ctrl);
  33static s32  igb_wait_autoneg(struct e1000_hw *hw);
  34static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
  35
  36/* Cable length tables */
  37static const u16 e1000_m88_cable_length_table[] = {
  38	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  39
  40static const u16 e1000_igp_2_cable_length_table[] = {
  41	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  42	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  43	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  44	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  45	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  46	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  47	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  48	104, 109, 114, 118, 121, 124};
  49
  50/**
  51 *  igb_check_reset_block - Check if PHY reset is blocked
  52 *  @hw: pointer to the HW structure
  53 *
  54 *  Read the PHY management control register and check whether a PHY reset
  55 *  is blocked.  If a reset is not blocked return 0, otherwise
  56 *  return E1000_BLK_PHY_RESET (12).
  57 **/
  58s32 igb_check_reset_block(struct e1000_hw *hw)
  59{
  60	u32 manc;
  61
  62	manc = rd32(E1000_MANC);
  63
  64	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  65}
  66
  67/**
  68 *  igb_get_phy_id - Retrieve the PHY ID and revision
  69 *  @hw: pointer to the HW structure
  70 *
  71 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  72 *  revision in the hardware structure.
  73 **/
  74s32 igb_get_phy_id(struct e1000_hw *hw)
  75{
  76	struct e1000_phy_info *phy = &hw->phy;
  77	s32 ret_val = 0;
  78	u16 phy_id;
  79
  80	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  81	if (ret_val)
  82		goto out;
  83
  84	phy->id = (u32)(phy_id << 16);
  85	udelay(20);
  86	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  87	if (ret_val)
  88		goto out;
  89
  90	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  91	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  92
  93out:
  94	return ret_val;
  95}
  96
  97/**
  98 *  igb_phy_reset_dsp - Reset PHY DSP
  99 *  @hw: pointer to the HW structure
 100 *
 101 *  Reset the digital signal processor.
 102 **/
 103static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
 104{
 105	s32 ret_val = 0;
 106
 107	if (!(hw->phy.ops.write_reg))
 108		goto out;
 109
 110	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 111	if (ret_val)
 112		goto out;
 113
 114	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
 115
 116out:
 117	return ret_val;
 118}
 119
 120/**
 121 *  igb_read_phy_reg_mdic - Read MDI control register
 122 *  @hw: pointer to the HW structure
 123 *  @offset: register offset to be read
 124 *  @data: pointer to the read data
 125 *
 126 *  Reads the MDI control regsiter in the PHY at offset and stores the
 127 *  information read to data.
 128 **/
 129s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 130{
 131	struct e1000_phy_info *phy = &hw->phy;
 132	u32 i, mdic = 0;
 133	s32 ret_val = 0;
 134
 135	if (offset > MAX_PHY_REG_ADDRESS) {
 136		hw_dbg("PHY Address %d is out of range\n", offset);
 137		ret_val = -E1000_ERR_PARAM;
 138		goto out;
 139	}
 140
 141	/* Set up Op-code, Phy Address, and register offset in the MDI
 142	 * Control register.  The MAC will take care of interfacing with the
 143	 * PHY to retrieve the desired data.
 144	 */
 145	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 146		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 147		(E1000_MDIC_OP_READ));
 148
 149	wr32(E1000_MDIC, mdic);
 150
 151	/* Poll the ready bit to see if the MDI read completed
 152	 * Increasing the time out as testing showed failures with
 153	 * the lower time out
 154	 */
 155	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 156		udelay(50);
 157		mdic = rd32(E1000_MDIC);
 158		if (mdic & E1000_MDIC_READY)
 159			break;
 160	}
 161	if (!(mdic & E1000_MDIC_READY)) {
 162		hw_dbg("MDI Read did not complete\n");
 163		ret_val = -E1000_ERR_PHY;
 164		goto out;
 165	}
 166	if (mdic & E1000_MDIC_ERROR) {
 167		hw_dbg("MDI Error\n");
 168		ret_val = -E1000_ERR_PHY;
 169		goto out;
 170	}
 171	*data = (u16) mdic;
 172
 173out:
 174	return ret_val;
 175}
 176
 177/**
 178 *  igb_write_phy_reg_mdic - Write MDI control register
 179 *  @hw: pointer to the HW structure
 180 *  @offset: register offset to write to
 181 *  @data: data to write to register at offset
 182 *
 183 *  Writes data to MDI control register in the PHY at offset.
 184 **/
 185s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 186{
 187	struct e1000_phy_info *phy = &hw->phy;
 188	u32 i, mdic = 0;
 189	s32 ret_val = 0;
 190
 191	if (offset > MAX_PHY_REG_ADDRESS) {
 192		hw_dbg("PHY Address %d is out of range\n", offset);
 193		ret_val = -E1000_ERR_PARAM;
 194		goto out;
 195	}
 196
 197	/* Set up Op-code, Phy Address, and register offset in the MDI
 198	 * Control register.  The MAC will take care of interfacing with the
 199	 * PHY to retrieve the desired data.
 200	 */
 201	mdic = (((u32)data) |
 202		(offset << E1000_MDIC_REG_SHIFT) |
 203		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 204		(E1000_MDIC_OP_WRITE));
 205
 206	wr32(E1000_MDIC, mdic);
 207
 208	/* Poll the ready bit to see if the MDI read completed
 209	 * Increasing the time out as testing showed failures with
 210	 * the lower time out
 211	 */
 212	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 213		udelay(50);
 214		mdic = rd32(E1000_MDIC);
 215		if (mdic & E1000_MDIC_READY)
 216			break;
 217	}
 218	if (!(mdic & E1000_MDIC_READY)) {
 219		hw_dbg("MDI Write did not complete\n");
 220		ret_val = -E1000_ERR_PHY;
 221		goto out;
 222	}
 223	if (mdic & E1000_MDIC_ERROR) {
 224		hw_dbg("MDI Error\n");
 225		ret_val = -E1000_ERR_PHY;
 226		goto out;
 227	}
 228
 229out:
 230	return ret_val;
 231}
 232
 233/**
 234 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 235 *  @hw: pointer to the HW structure
 236 *  @offset: register offset to be read
 237 *  @data: pointer to the read data
 238 *
 239 *  Reads the PHY register at offset using the i2c interface and stores the
 240 *  retrieved information in data.
 241 **/
 242s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
 243{
 244	struct e1000_phy_info *phy = &hw->phy;
 245	u32 i, i2ccmd = 0;
 246
 247	/* Set up Op-code, Phy Address, and register address in the I2CCMD
 248	 * register.  The MAC will take care of interfacing with the
 249	 * PHY to retrieve the desired data.
 250	 */
 251	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 252		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 253		  (E1000_I2CCMD_OPCODE_READ));
 254
 255	wr32(E1000_I2CCMD, i2ccmd);
 256
 257	/* Poll the ready bit to see if the I2C read completed */
 258	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 259		udelay(50);
 260		i2ccmd = rd32(E1000_I2CCMD);
 261		if (i2ccmd & E1000_I2CCMD_READY)
 262			break;
 263	}
 264	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 265		hw_dbg("I2CCMD Read did not complete\n");
 266		return -E1000_ERR_PHY;
 267	}
 268	if (i2ccmd & E1000_I2CCMD_ERROR) {
 269		hw_dbg("I2CCMD Error bit set\n");
 270		return -E1000_ERR_PHY;
 271	}
 272
 273	/* Need to byte-swap the 16-bit value. */
 274	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
 275
 276	return 0;
 277}
 278
 279/**
 280 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 281 *  @hw: pointer to the HW structure
 282 *  @offset: register offset to write to
 283 *  @data: data to write at register offset
 284 *
 285 *  Writes the data to PHY register at the offset using the i2c interface.
 286 **/
 287s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
 288{
 289	struct e1000_phy_info *phy = &hw->phy;
 290	u32 i, i2ccmd = 0;
 291	u16 phy_data_swapped;
 292
 293	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
 294	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
 295		hw_dbg("PHY I2C Address %d is out of range.\n",
 296			  hw->phy.addr);
 297		return -E1000_ERR_CONFIG;
 298	}
 299
 300	/* Swap the data bytes for the I2C interface */
 301	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
 302
 303	/* Set up Op-code, Phy Address, and register address in the I2CCMD
 304	 * register.  The MAC will take care of interfacing with the
 305	 * PHY to retrieve the desired data.
 306	 */
 307	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 308		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
 309		  E1000_I2CCMD_OPCODE_WRITE |
 310		  phy_data_swapped);
 311
 312	wr32(E1000_I2CCMD, i2ccmd);
 313
 314	/* Poll the ready bit to see if the I2C read completed */
 315	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 316		udelay(50);
 317		i2ccmd = rd32(E1000_I2CCMD);
 318		if (i2ccmd & E1000_I2CCMD_READY)
 319			break;
 320	}
 321	if (!(i2ccmd & E1000_I2CCMD_READY)) {
 322		hw_dbg("I2CCMD Write did not complete\n");
 323		return -E1000_ERR_PHY;
 324	}
 325	if (i2ccmd & E1000_I2CCMD_ERROR) {
 326		hw_dbg("I2CCMD Error bit set\n");
 327		return -E1000_ERR_PHY;
 328	}
 329
 330	return 0;
 331}
 332
 333/**
 334 *  igb_read_sfp_data_byte - Reads SFP module data.
 335 *  @hw: pointer to the HW structure
 336 *  @offset: byte location offset to be read
 337 *  @data: read data buffer pointer
 338 *
 339 *  Reads one byte from SFP module data stored
 340 *  in SFP resided EEPROM memory or SFP diagnostic area.
 341 *  Function should be called with
 342 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
 343 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
 344 *  access
 345 **/
 346s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
 347{
 348	u32 i = 0;
 349	u32 i2ccmd = 0;
 350	u32 data_local = 0;
 351
 352	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
 353		hw_dbg("I2CCMD command address exceeds upper limit\n");
 354		return -E1000_ERR_PHY;
 355	}
 356
 357	/* Set up Op-code, EEPROM Address,in the I2CCMD
 358	 * register. The MAC will take care of interfacing with the
 359	 * EEPROM to retrieve the desired data.
 360	 */
 361	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
 362		  E1000_I2CCMD_OPCODE_READ);
 363
 364	wr32(E1000_I2CCMD, i2ccmd);
 365
 366	/* Poll the ready bit to see if the I2C read completed */
 367	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
 368		udelay(50);
 369		data_local = rd32(E1000_I2CCMD);
 370		if (data_local & E1000_I2CCMD_READY)
 371			break;
 372	}
 373	if (!(data_local & E1000_I2CCMD_READY)) {
 374		hw_dbg("I2CCMD Read did not complete\n");
 375		return -E1000_ERR_PHY;
 376	}
 377	if (data_local & E1000_I2CCMD_ERROR) {
 378		hw_dbg("I2CCMD Error bit set\n");
 379		return -E1000_ERR_PHY;
 380	}
 381	*data = (u8) data_local & 0xFF;
 382
 383	return 0;
 384}
 385
 386/**
 387 *  igb_read_phy_reg_igp - Read igp PHY register
 388 *  @hw: pointer to the HW structure
 389 *  @offset: register offset to be read
 390 *  @data: pointer to the read data
 391 *
 392 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 393 *  and storing the retrieved information in data.  Release any acquired
 394 *  semaphores before exiting.
 395 **/
 396s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 397{
 398	s32 ret_val = 0;
 399
 400	if (!(hw->phy.ops.acquire))
 401		goto out;
 402
 403	ret_val = hw->phy.ops.acquire(hw);
 404	if (ret_val)
 405		goto out;
 406
 407	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 408		ret_val = igb_write_phy_reg_mdic(hw,
 409						 IGP01E1000_PHY_PAGE_SELECT,
 410						 (u16)offset);
 411		if (ret_val) {
 412			hw->phy.ops.release(hw);
 413			goto out;
 414		}
 415	}
 416
 417	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 418					data);
 419
 420	hw->phy.ops.release(hw);
 421
 422out:
 423	return ret_val;
 424}
 425
 426/**
 427 *  igb_write_phy_reg_igp - Write igp PHY register
 428 *  @hw: pointer to the HW structure
 429 *  @offset: register offset to write to
 430 *  @data: data to write at register offset
 431 *
 432 *  Acquires semaphore, if necessary, then writes the data to PHY register
 433 *  at the offset.  Release any acquired semaphores before exiting.
 434 **/
 435s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 436{
 437	s32 ret_val = 0;
 438
 439	if (!(hw->phy.ops.acquire))
 440		goto out;
 441
 442	ret_val = hw->phy.ops.acquire(hw);
 443	if (ret_val)
 444		goto out;
 445
 446	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 447		ret_val = igb_write_phy_reg_mdic(hw,
 448						 IGP01E1000_PHY_PAGE_SELECT,
 449						 (u16)offset);
 450		if (ret_val) {
 451			hw->phy.ops.release(hw);
 452			goto out;
 453		}
 454	}
 455
 456	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 457					 data);
 458
 459	hw->phy.ops.release(hw);
 460
 461out:
 462	return ret_val;
 463}
 464
 465/**
 466 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 467 *  @hw: pointer to the HW structure
 468 *
 469 *  Sets up Carrier-sense on Transmit and downshift values.
 470 **/
 471s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
 472{
 473	struct e1000_phy_info *phy = &hw->phy;
 474	s32 ret_val;
 475	u16 phy_data;
 476
 477	if (phy->reset_disable) {
 478		ret_val = 0;
 479		goto out;
 480	}
 481
 482	if (phy->type == e1000_phy_82580) {
 483		ret_val = hw->phy.ops.reset(hw);
 484		if (ret_val) {
 485			hw_dbg("Error resetting the PHY.\n");
 486			goto out;
 487		}
 488	}
 489
 490	/* Enable CRS on TX. This must be set for half-duplex operation. */
 491	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
 492	if (ret_val)
 493		goto out;
 494
 495	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
 496
 497	/* Enable downshift */
 498	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
 499
 500	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
 501	if (ret_val)
 502		goto out;
 503
 504	/* Set MDI/MDIX mode */
 505	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
 506	if (ret_val)
 507		goto out;
 508	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
 509	/* Options:
 510	 *   0 - Auto (default)
 511	 *   1 - MDI mode
 512	 *   2 - MDI-X mode
 513	 */
 514	switch (hw->phy.mdix) {
 515	case 1:
 516		break;
 517	case 2:
 518		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
 519		break;
 520	case 0:
 521	default:
 522		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
 523		break;
 524	}
 525	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
 526
 527out:
 528	return ret_val;
 529}
 530
 531/**
 532 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 533 *  @hw: pointer to the HW structure
 534 *
 535 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 536 *  and downshift values are set also.
 537 **/
 538s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 phy_data;
 543
 544	if (phy->reset_disable) {
 545		ret_val = 0;
 546		goto out;
 547	}
 548
 549	/* Enable CRS on TX. This must be set for half-duplex operation. */
 550	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 551	if (ret_val)
 552		goto out;
 553
 554	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 555
 556	/* Options:
 557	 *   MDI/MDI-X = 0 (default)
 558	 *   0 - Auto for all speeds
 559	 *   1 - MDI mode
 560	 *   2 - MDI-X mode
 561	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 562	 */
 563	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 564
 565	switch (phy->mdix) {
 566	case 1:
 567		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 568		break;
 569	case 2:
 570		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 571		break;
 572	case 3:
 573		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 574		break;
 575	case 0:
 576	default:
 577		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 578		break;
 579	}
 580
 581	/* Options:
 582	 *   disable_polarity_correction = 0 (default)
 583	 *       Automatic Correction for Reversed Cable Polarity
 584	 *   0 - Disabled
 585	 *   1 - Enabled
 586	 */
 587	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 588	if (phy->disable_polarity_correction == 1)
 589		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 590
 591	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 592	if (ret_val)
 593		goto out;
 594
 595	if (phy->revision < E1000_REVISION_4) {
 596		/* Force TX_CLK in the Extended PHY Specific Control Register
 597		 * to 25MHz clock.
 598		 */
 599		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 600					    &phy_data);
 601		if (ret_val)
 602			goto out;
 603
 604		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 605
 606		if ((phy->revision == E1000_REVISION_2) &&
 607		    (phy->id == M88E1111_I_PHY_ID)) {
 608			/* 82573L PHY - set the downshift counter to 5x. */
 609			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 610			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 611		} else {
 612			/* Configure Master and Slave downshift values */
 613			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 614				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 615			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 616				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 617		}
 618		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 619					     phy_data);
 620		if (ret_val)
 621			goto out;
 622	}
 623
 624	/* Commit the changes. */
 625	ret_val = igb_phy_sw_reset(hw);
 626	if (ret_val) {
 627		hw_dbg("Error committing the PHY changes\n");
 628		goto out;
 629	}
 630
 631out:
 632	return ret_val;
 633}
 634
 635/**
 636 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 637 *  @hw: pointer to the HW structure
 638 *
 639 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 640 *  Also enables and sets the downshift parameters.
 641 **/
 642s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
 643{
 644	struct e1000_phy_info *phy = &hw->phy;
 645	s32 ret_val;
 646	u16 phy_data;
 647
 648	if (phy->reset_disable)
 649		return 0;
 650
 651	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 652	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 653	if (ret_val)
 654		return ret_val;
 655
 656	/* Options:
 657	 *   MDI/MDI-X = 0 (default)
 658	 *   0 - Auto for all speeds
 659	 *   1 - MDI mode
 660	 *   2 - MDI-X mode
 661	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 662	 */
 663	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 664
 665	switch (phy->mdix) {
 666	case 1:
 667		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 668		break;
 669	case 2:
 670		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 671		break;
 672	case 3:
 673		/* M88E1112 does not support this mode) */
 674		if (phy->id != M88E1112_E_PHY_ID) {
 675			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 676			break;
 677		}
 678	case 0:
 679	default:
 680		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 681		break;
 682	}
 683
 684	/* Options:
 685	 *   disable_polarity_correction = 0 (default)
 686	 *       Automatic Correction for Reversed Cable Polarity
 687	 *   0 - Disabled
 688	 *   1 - Enabled
 689	 */
 690	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 691	if (phy->disable_polarity_correction == 1)
 692		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 693
 694	/* Enable downshift and setting it to X6 */
 695	if (phy->id == M88E1543_E_PHY_ID) {
 696		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
 697		ret_val =
 698		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 699		if (ret_val)
 700			return ret_val;
 701
 702		ret_val = igb_phy_sw_reset(hw);
 703		if (ret_val) {
 704			hw_dbg("Error committing the PHY changes\n");
 705			return ret_val;
 706		}
 707	}
 708
 709	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
 710	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
 711	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
 712
 713	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 714	if (ret_val)
 715		return ret_val;
 716
 717	/* Commit the changes. */
 718	ret_val = igb_phy_sw_reset(hw);
 719	if (ret_val) {
 720		hw_dbg("Error committing the PHY changes\n");
 721		return ret_val;
 722	}
 723	ret_val = igb_set_master_slave_mode(hw);
 724	if (ret_val)
 725		return ret_val;
 726
 727	return 0;
 728}
 729
 730/**
 731 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 732 *  @hw: pointer to the HW structure
 733 *
 734 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 735 *  igp PHY's.
 736 **/
 737s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 738{
 739	struct e1000_phy_info *phy = &hw->phy;
 740	s32 ret_val;
 741	u16 data;
 742
 743	if (phy->reset_disable) {
 744		ret_val = 0;
 745		goto out;
 746	}
 747
 748	ret_val = phy->ops.reset(hw);
 749	if (ret_val) {
 750		hw_dbg("Error resetting the PHY.\n");
 751		goto out;
 752	}
 753
 754	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 755	 * timeout issues when LFS is enabled.
 756	 */
 757	msleep(100);
 758
 759	/* The NVM settings will configure LPLU in D3 for
 760	 * non-IGP1 PHYs.
 761	 */
 762	if (phy->type == e1000_phy_igp) {
 763		/* disable lplu d3 during driver init */
 764		if (phy->ops.set_d3_lplu_state)
 765			ret_val = phy->ops.set_d3_lplu_state(hw, false);
 766		if (ret_val) {
 767			hw_dbg("Error Disabling LPLU D3\n");
 768			goto out;
 769		}
 770	}
 771
 772	/* disable lplu d0 during driver init */
 773	ret_val = phy->ops.set_d0_lplu_state(hw, false);
 774	if (ret_val) {
 775		hw_dbg("Error Disabling LPLU D0\n");
 776		goto out;
 777	}
 778	/* Configure mdi-mdix settings */
 779	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 780	if (ret_val)
 781		goto out;
 782
 783	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 784
 785	switch (phy->mdix) {
 786	case 1:
 787		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 788		break;
 789	case 2:
 790		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 791		break;
 792	case 0:
 793	default:
 794		data |= IGP01E1000_PSCR_AUTO_MDIX;
 795		break;
 796	}
 797	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 798	if (ret_val)
 799		goto out;
 800
 801	/* set auto-master slave resolution settings */
 802	if (hw->mac.autoneg) {
 803		/* when autonegotiation advertisement is only 1000Mbps then we
 804		 * should disable SmartSpeed and enable Auto MasterSlave
 805		 * resolution as hardware default.
 806		 */
 807		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 808			/* Disable SmartSpeed */
 809			ret_val = phy->ops.read_reg(hw,
 810						    IGP01E1000_PHY_PORT_CONFIG,
 811						    &data);
 812			if (ret_val)
 813				goto out;
 814
 815			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 816			ret_val = phy->ops.write_reg(hw,
 817						     IGP01E1000_PHY_PORT_CONFIG,
 818						     data);
 819			if (ret_val)
 820				goto out;
 821
 822			/* Set auto Master/Slave resolution process */
 823			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 824			if (ret_val)
 825				goto out;
 826
 827			data &= ~CR_1000T_MS_ENABLE;
 828			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 829			if (ret_val)
 830				goto out;
 831		}
 832
 833		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 834		if (ret_val)
 835			goto out;
 836
 837		/* load defaults for future use */
 838		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 839			((data & CR_1000T_MS_VALUE) ?
 840			e1000_ms_force_master :
 841			e1000_ms_force_slave) :
 842			e1000_ms_auto;
 843
 844		switch (phy->ms_type) {
 845		case e1000_ms_force_master:
 846			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 847			break;
 848		case e1000_ms_force_slave:
 849			data |= CR_1000T_MS_ENABLE;
 850			data &= ~(CR_1000T_MS_VALUE);
 851			break;
 852		case e1000_ms_auto:
 853			data &= ~CR_1000T_MS_ENABLE;
 854		default:
 855			break;
 856		}
 857		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 858		if (ret_val)
 859			goto out;
 860	}
 861
 862out:
 863	return ret_val;
 864}
 865
 866/**
 867 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 868 *  @hw: pointer to the HW structure
 869 *
 870 *  Performs initial bounds checking on autoneg advertisement parameter, then
 871 *  configure to advertise the full capability.  Setup the PHY to autoneg
 872 *  and restart the negotiation process between the link partner.  If
 873 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 874 **/
 875static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 876{
 877	struct e1000_phy_info *phy = &hw->phy;
 878	s32 ret_val;
 879	u16 phy_ctrl;
 880
 881	/* Perform some bounds checking on the autoneg advertisement
 882	 * parameter.
 883	 */
 884	phy->autoneg_advertised &= phy->autoneg_mask;
 885
 886	/* If autoneg_advertised is zero, we assume it was not defaulted
 887	 * by the calling code so we set to advertise full capability.
 888	 */
 889	if (phy->autoneg_advertised == 0)
 890		phy->autoneg_advertised = phy->autoneg_mask;
 891
 892	hw_dbg("Reconfiguring auto-neg advertisement params\n");
 893	ret_val = igb_phy_setup_autoneg(hw);
 894	if (ret_val) {
 895		hw_dbg("Error Setting up Auto-Negotiation\n");
 896		goto out;
 897	}
 898	hw_dbg("Restarting Auto-Neg\n");
 899
 900	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 901	 * the Auto Neg Restart bit in the PHY control register.
 902	 */
 903	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 904	if (ret_val)
 905		goto out;
 906
 907	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 908	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 909	if (ret_val)
 910		goto out;
 911
 912	/* Does the user want to wait for Auto-Neg to complete here, or
 913	 * check at a later time (for example, callback routine).
 914	 */
 915	if (phy->autoneg_wait_to_complete) {
 916		ret_val = igb_wait_autoneg(hw);
 917		if (ret_val) {
 918			hw_dbg("Error while waiting for autoneg to complete\n");
 919			goto out;
 920		}
 921	}
 922
 923	hw->mac.get_link_status = true;
 924
 925out:
 926	return ret_val;
 927}
 928
 929/**
 930 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 931 *  @hw: pointer to the HW structure
 932 *
 933 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 934 *  register and if the PHY is already setup for auto-negotiation, then
 935 *  return successful.  Otherwise, setup advertisement and flow control to
 936 *  the appropriate values for the wanted auto-negotiation.
 937 **/
 938static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 939{
 940	struct e1000_phy_info *phy = &hw->phy;
 941	s32 ret_val;
 942	u16 mii_autoneg_adv_reg;
 943	u16 mii_1000t_ctrl_reg = 0;
 944
 945	phy->autoneg_advertised &= phy->autoneg_mask;
 946
 947	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 948	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 949	if (ret_val)
 950		goto out;
 951
 952	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 953		/* Read the MII 1000Base-T Control Register (Address 9). */
 954		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 955					    &mii_1000t_ctrl_reg);
 956		if (ret_val)
 957			goto out;
 958	}
 959
 960	/* Need to parse both autoneg_advertised and fc and set up
 961	 * the appropriate PHY registers.  First we will parse for
 962	 * autoneg_advertised software override.  Since we can advertise
 963	 * a plethora of combinations, we need to check each bit
 964	 * individually.
 965	 */
 966
 967	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 968	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 969	 * the  1000Base-T Control Register (Address 9).
 970	 */
 971	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 972				 NWAY_AR_100TX_HD_CAPS |
 973				 NWAY_AR_10T_FD_CAPS   |
 974				 NWAY_AR_10T_HD_CAPS);
 975	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 976
 977	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 978
 979	/* Do we want to advertise 10 Mb Half Duplex? */
 980	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 981		hw_dbg("Advertise 10mb Half duplex\n");
 982		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 983	}
 984
 985	/* Do we want to advertise 10 Mb Full Duplex? */
 986	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 987		hw_dbg("Advertise 10mb Full duplex\n");
 988		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 989	}
 990
 991	/* Do we want to advertise 100 Mb Half Duplex? */
 992	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 993		hw_dbg("Advertise 100mb Half duplex\n");
 994		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 995	}
 996
 997	/* Do we want to advertise 100 Mb Full Duplex? */
 998	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 999		hw_dbg("Advertise 100mb Full duplex\n");
1000		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1001	}
1002
1003	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1004	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1005		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1006
1007	/* Do we want to advertise 1000 Mb Full Duplex? */
1008	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1009		hw_dbg("Advertise 1000mb Full duplex\n");
1010		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1011	}
1012
1013	/* Check for a software override of the flow control settings, and
1014	 * setup the PHY advertisement registers accordingly.  If
1015	 * auto-negotiation is enabled, then software will have to set the
1016	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1017	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1018	 * negotiation.
1019	 *
1020	 * The possible values of the "fc" parameter are:
1021	 *      0:  Flow control is completely disabled
1022	 *      1:  Rx flow control is enabled (we can receive pause frames
1023	 *          but not send pause frames).
1024	 *      2:  Tx flow control is enabled (we can send pause frames
1025	 *          but we do not support receiving pause frames).
1026	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1027	 *  other:  No software override.  The flow control configuration
1028	 *          in the EEPROM is used.
1029	 */
1030	switch (hw->fc.current_mode) {
1031	case e1000_fc_none:
1032		/* Flow control (RX & TX) is completely disabled by a
1033		 * software over-ride.
1034		 */
1035		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036		break;
1037	case e1000_fc_rx_pause:
1038		/* RX Flow control is enabled, and TX Flow control is
1039		 * disabled, by a software over-ride.
1040		 *
1041		 * Since there really isn't a way to advertise that we are
1042		 * capable of RX Pause ONLY, we will advertise that we
1043		 * support both symmetric and asymmetric RX PAUSE.  Later
1044		 * (in e1000_config_fc_after_link_up) we will disable the
1045		 * hw's ability to send PAUSE frames.
1046		 */
1047		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1048		break;
1049	case e1000_fc_tx_pause:
1050		/* TX Flow control is enabled, and RX Flow control is
1051		 * disabled, by a software over-ride.
1052		 */
1053		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1054		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1055		break;
1056	case e1000_fc_full:
1057		/* Flow control (both RX and TX) is enabled by a software
1058		 * over-ride.
1059		 */
1060		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1061		break;
1062	default:
1063		hw_dbg("Flow control param set incorrectly\n");
1064		ret_val = -E1000_ERR_CONFIG;
1065		goto out;
1066	}
1067
1068	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1069	if (ret_val)
1070		goto out;
1071
1072	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1073
1074	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1075		ret_val = phy->ops.write_reg(hw,
1076					     PHY_1000T_CTRL,
1077					     mii_1000t_ctrl_reg);
1078		if (ret_val)
1079			goto out;
1080	}
1081
1082out:
1083	return ret_val;
1084}
1085
1086/**
1087 *  igb_setup_copper_link - Configure copper link settings
1088 *  @hw: pointer to the HW structure
1089 *
1090 *  Calls the appropriate function to configure the link for auto-neg or forced
1091 *  speed and duplex.  Then we check for link, once link is established calls
1092 *  to configure collision distance and flow control are called.  If link is
1093 *  not established, we return -E1000_ERR_PHY (-2).
1094 **/
1095s32 igb_setup_copper_link(struct e1000_hw *hw)
1096{
1097	s32 ret_val;
1098	bool link;
1099
1100	if (hw->mac.autoneg) {
1101		/* Setup autoneg and flow control advertisement and perform
1102		 * autonegotiation.
1103		 */
1104		ret_val = igb_copper_link_autoneg(hw);
1105		if (ret_val)
1106			goto out;
1107	} else {
1108		/* PHY will be set to 10H, 10F, 100H or 100F
1109		 * depending on user settings.
1110		 */
1111		hw_dbg("Forcing Speed and Duplex\n");
1112		ret_val = hw->phy.ops.force_speed_duplex(hw);
1113		if (ret_val) {
1114			hw_dbg("Error Forcing Speed and Duplex\n");
1115			goto out;
1116		}
1117	}
1118
1119	/* Check link status. Wait up to 100 microseconds for link to become
1120	 * valid.
1121	 */
1122	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1123	if (ret_val)
1124		goto out;
1125
1126	if (link) {
1127		hw_dbg("Valid link established!!!\n");
1128		igb_config_collision_dist(hw);
1129		ret_val = igb_config_fc_after_link_up(hw);
1130	} else {
1131		hw_dbg("Unable to establish link!!!\n");
1132	}
1133
1134out:
1135	return ret_val;
1136}
1137
1138/**
1139 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1140 *  @hw: pointer to the HW structure
1141 *
1142 *  Calls the PHY setup function to force speed and duplex.  Clears the
1143 *  auto-crossover to force MDI manually.  Waits for link and returns
1144 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1145 **/
1146s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1147{
1148	struct e1000_phy_info *phy = &hw->phy;
1149	s32 ret_val;
1150	u16 phy_data;
1151	bool link;
1152
1153	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1154	if (ret_val)
1155		goto out;
1156
1157	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1158
1159	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1160	if (ret_val)
1161		goto out;
1162
1163	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1164	 * forced whenever speed and duplex are forced.
1165	 */
1166	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1167	if (ret_val)
1168		goto out;
1169
1170	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1171	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1172
1173	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1174	if (ret_val)
1175		goto out;
1176
1177	hw_dbg("IGP PSCR: %X\n", phy_data);
1178
1179	udelay(1);
1180
1181	if (phy->autoneg_wait_to_complete) {
1182		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1183
1184		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1185		if (ret_val)
1186			goto out;
1187
1188		if (!link)
1189			hw_dbg("Link taking longer than expected.\n");
1190
1191		/* Try once more */
1192		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1193		if (ret_val)
1194			goto out;
1195	}
1196
1197out:
1198	return ret_val;
1199}
1200
1201/**
1202 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1203 *  @hw: pointer to the HW structure
1204 *
1205 *  Calls the PHY setup function to force speed and duplex.  Clears the
1206 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1207 *  changes.  If time expires while waiting for link up, we reset the DSP.
1208 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1209 *  successful completion, else return corresponding error code.
1210 **/
1211s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1212{
1213	struct e1000_phy_info *phy = &hw->phy;
1214	s32 ret_val;
1215	u16 phy_data;
1216	bool link;
1217
1218	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1219	if (phy->type != e1000_phy_i210) {
1220		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1221		 * requires MDI forced whenever speed and duplex are forced.
1222		 */
1223		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1224					    &phy_data);
1225		if (ret_val)
1226			goto out;
1227
1228		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1229		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1230					     phy_data);
1231		if (ret_val)
1232			goto out;
1233
1234		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1235	}
1236
1237	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1238	if (ret_val)
1239		goto out;
1240
1241	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1244	if (ret_val)
1245		goto out;
1246
1247	/* Reset the phy to commit changes. */
1248	ret_val = igb_phy_sw_reset(hw);
1249	if (ret_val)
1250		goto out;
1251
1252	if (phy->autoneg_wait_to_complete) {
1253		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1254
1255		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1256		if (ret_val)
1257			goto out;
1258
1259		if (!link) {
1260			bool reset_dsp = true;
1261
1262			switch (hw->phy.id) {
1263			case I347AT4_E_PHY_ID:
1264			case M88E1112_E_PHY_ID:
1265			case M88E1543_E_PHY_ID:
1266			case M88E1512_E_PHY_ID:
1267			case I210_I_PHY_ID:
1268				reset_dsp = false;
1269				break;
1270			default:
1271				if (hw->phy.type != e1000_phy_m88)
1272					reset_dsp = false;
1273				break;
1274			}
1275			if (!reset_dsp) {
1276				hw_dbg("Link taking longer than expected.\n");
1277			} else {
1278				/* We didn't get link.
1279				 * Reset the DSP and cross our fingers.
1280				 */
1281				ret_val = phy->ops.write_reg(hw,
1282						M88E1000_PHY_PAGE_SELECT,
1283						0x001d);
1284				if (ret_val)
1285					goto out;
1286				ret_val = igb_phy_reset_dsp(hw);
1287				if (ret_val)
1288					goto out;
1289			}
1290		}
1291
1292		/* Try once more */
1293		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1294					   100000, &link);
1295		if (ret_val)
1296			goto out;
1297	}
1298
1299	if (hw->phy.type != e1000_phy_m88 ||
1300	    hw->phy.id == I347AT4_E_PHY_ID ||
1301	    hw->phy.id == M88E1112_E_PHY_ID ||
1302	    hw->phy.id == M88E1543_E_PHY_ID ||
1303	    hw->phy.id == M88E1512_E_PHY_ID ||
1304	    hw->phy.id == I210_I_PHY_ID)
1305		goto out;
1306
1307	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1308	if (ret_val)
1309		goto out;
1310
1311	/* Resetting the phy means we need to re-force TX_CLK in the
1312	 * Extended PHY Specific Control Register to 25MHz clock from
1313	 * the reset value of 2.5MHz.
1314	 */
1315	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1316	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1317	if (ret_val)
1318		goto out;
1319
1320	/* In addition, we must re-enable CRS on Tx for both half and full
1321	 * duplex.
1322	 */
1323	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1324	if (ret_val)
1325		goto out;
1326
1327	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1328	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1329
1330out:
1331	return ret_val;
1332}
1333
1334/**
1335 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1336 *  @hw: pointer to the HW structure
1337 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1338 *
1339 *  Forces speed and duplex on the PHY by doing the following: disable flow
1340 *  control, force speed/duplex on the MAC, disable auto speed detection,
1341 *  disable auto-negotiation, configure duplex, configure speed, configure
1342 *  the collision distance, write configuration to CTRL register.  The
1343 *  caller must write to the PHY_CONTROL register for these settings to
1344 *  take affect.
1345 **/
1346static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1347					     u16 *phy_ctrl)
1348{
1349	struct e1000_mac_info *mac = &hw->mac;
1350	u32 ctrl;
1351
1352	/* Turn off flow control when forcing speed/duplex */
1353	hw->fc.current_mode = e1000_fc_none;
1354
1355	/* Force speed/duplex on the mac */
1356	ctrl = rd32(E1000_CTRL);
1357	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1358	ctrl &= ~E1000_CTRL_SPD_SEL;
1359
1360	/* Disable Auto Speed Detection */
1361	ctrl &= ~E1000_CTRL_ASDE;
1362
1363	/* Disable autoneg on the phy */
1364	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1365
1366	/* Forcing Full or Half Duplex? */
1367	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1368		ctrl &= ~E1000_CTRL_FD;
1369		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1370		hw_dbg("Half Duplex\n");
1371	} else {
1372		ctrl |= E1000_CTRL_FD;
1373		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1374		hw_dbg("Full Duplex\n");
1375	}
1376
1377	/* Forcing 10mb or 100mb? */
1378	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1379		ctrl |= E1000_CTRL_SPD_100;
1380		*phy_ctrl |= MII_CR_SPEED_100;
1381		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1382		hw_dbg("Forcing 100mb\n");
1383	} else {
1384		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1385		*phy_ctrl |= MII_CR_SPEED_10;
1386		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1387		hw_dbg("Forcing 10mb\n");
1388	}
1389
1390	igb_config_collision_dist(hw);
1391
1392	wr32(E1000_CTRL, ctrl);
1393}
1394
1395/**
1396 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1397 *  @hw: pointer to the HW structure
1398 *  @active: boolean used to enable/disable lplu
1399 *
1400 *  Success returns 0, Failure returns 1
1401 *
1402 *  The low power link up (lplu) state is set to the power management level D3
1403 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1404 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1405 *  is used during Dx states where the power conservation is most important.
1406 *  During driver activity, SmartSpeed should be enabled so performance is
1407 *  maintained.
1408 **/
1409s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1410{
1411	struct e1000_phy_info *phy = &hw->phy;
1412	s32 ret_val = 0;
1413	u16 data;
1414
1415	if (!(hw->phy.ops.read_reg))
1416		goto out;
1417
1418	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1419	if (ret_val)
1420		goto out;
1421
1422	if (!active) {
1423		data &= ~IGP02E1000_PM_D3_LPLU;
1424		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1425					     data);
1426		if (ret_val)
1427			goto out;
1428		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1429		 * during Dx states where the power conservation is most
1430		 * important.  During driver activity we should enable
1431		 * SmartSpeed, so performance is maintained.
1432		 */
1433		if (phy->smart_speed == e1000_smart_speed_on) {
1434			ret_val = phy->ops.read_reg(hw,
1435						    IGP01E1000_PHY_PORT_CONFIG,
1436						    &data);
1437			if (ret_val)
1438				goto out;
1439
1440			data |= IGP01E1000_PSCFR_SMART_SPEED;
1441			ret_val = phy->ops.write_reg(hw,
1442						     IGP01E1000_PHY_PORT_CONFIG,
1443						     data);
1444			if (ret_val)
1445				goto out;
1446		} else if (phy->smart_speed == e1000_smart_speed_off) {
1447			ret_val = phy->ops.read_reg(hw,
1448						     IGP01E1000_PHY_PORT_CONFIG,
1449						     &data);
1450			if (ret_val)
1451				goto out;
1452
1453			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1454			ret_val = phy->ops.write_reg(hw,
1455						     IGP01E1000_PHY_PORT_CONFIG,
1456						     data);
1457			if (ret_val)
1458				goto out;
1459		}
1460	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1461		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1462		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1463		data |= IGP02E1000_PM_D3_LPLU;
1464		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1465					      data);
1466		if (ret_val)
1467			goto out;
1468
1469		/* When LPLU is enabled, we should disable SmartSpeed */
1470		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1471					    &data);
1472		if (ret_val)
1473			goto out;
1474
1475		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1476		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1477					     data);
1478	}
1479
1480out:
1481	return ret_val;
1482}
1483
1484/**
1485 *  igb_check_downshift - Checks whether a downshift in speed occurred
1486 *  @hw: pointer to the HW structure
1487 *
1488 *  Success returns 0, Failure returns 1
1489 *
1490 *  A downshift is detected by querying the PHY link health.
1491 **/
1492s32 igb_check_downshift(struct e1000_hw *hw)
1493{
1494	struct e1000_phy_info *phy = &hw->phy;
1495	s32 ret_val;
1496	u16 phy_data, offset, mask;
1497
1498	switch (phy->type) {
1499	case e1000_phy_i210:
1500	case e1000_phy_m88:
1501	case e1000_phy_gg82563:
1502		offset	= M88E1000_PHY_SPEC_STATUS;
1503		mask	= M88E1000_PSSR_DOWNSHIFT;
1504		break;
1505	case e1000_phy_igp_2:
1506	case e1000_phy_igp:
1507	case e1000_phy_igp_3:
1508		offset	= IGP01E1000_PHY_LINK_HEALTH;
1509		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1510		break;
1511	default:
1512		/* speed downshift not supported */
1513		phy->speed_downgraded = false;
1514		ret_val = 0;
1515		goto out;
1516	}
1517
1518	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1519
1520	if (!ret_val)
1521		phy->speed_downgraded = (phy_data & mask) ? true : false;
1522
1523out:
1524	return ret_val;
1525}
1526
1527/**
1528 *  igb_check_polarity_m88 - Checks the polarity.
1529 *  @hw: pointer to the HW structure
1530 *
1531 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1532 *
1533 *  Polarity is determined based on the PHY specific status register.
1534 **/
1535s32 igb_check_polarity_m88(struct e1000_hw *hw)
1536{
1537	struct e1000_phy_info *phy = &hw->phy;
1538	s32 ret_val;
1539	u16 data;
1540
1541	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1542
1543	if (!ret_val)
1544		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1545				      ? e1000_rev_polarity_reversed
1546				      : e1000_rev_polarity_normal;
1547
1548	return ret_val;
1549}
1550
1551/**
1552 *  igb_check_polarity_igp - Checks the polarity.
1553 *  @hw: pointer to the HW structure
1554 *
1555 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1556 *
1557 *  Polarity is determined based on the PHY port status register, and the
1558 *  current speed (since there is no polarity at 100Mbps).
1559 **/
1560static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1561{
1562	struct e1000_phy_info *phy = &hw->phy;
1563	s32 ret_val;
1564	u16 data, offset, mask;
1565
1566	/* Polarity is determined based on the speed of
1567	 * our connection.
1568	 */
1569	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1570	if (ret_val)
1571		goto out;
1572
1573	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1574	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1575		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1576		mask	= IGP01E1000_PHY_POLARITY_MASK;
1577	} else {
1578		/* This really only applies to 10Mbps since
1579		 * there is no polarity for 100Mbps (always 0).
1580		 */
1581		offset	= IGP01E1000_PHY_PORT_STATUS;
1582		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1583	}
1584
1585	ret_val = phy->ops.read_reg(hw, offset, &data);
1586
1587	if (!ret_val)
1588		phy->cable_polarity = (data & mask)
1589				      ? e1000_rev_polarity_reversed
1590				      : e1000_rev_polarity_normal;
1591
1592out:
1593	return ret_val;
1594}
1595
1596/**
1597 *  igb_wait_autoneg - Wait for auto-neg completion
1598 *  @hw: pointer to the HW structure
1599 *
1600 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1601 *  limit to expire, which ever happens first.
1602 **/
1603static s32 igb_wait_autoneg(struct e1000_hw *hw)
1604{
1605	s32 ret_val = 0;
1606	u16 i, phy_status;
1607
1608	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1609	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1610		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1611		if (ret_val)
1612			break;
1613		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614		if (ret_val)
1615			break;
1616		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1617			break;
1618		msleep(100);
1619	}
1620
1621	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1622	 * has completed.
1623	 */
1624	return ret_val;
1625}
1626
1627/**
1628 *  igb_phy_has_link - Polls PHY for link
1629 *  @hw: pointer to the HW structure
1630 *  @iterations: number of times to poll for link
1631 *  @usec_interval: delay between polling attempts
1632 *  @success: pointer to whether polling was successful or not
1633 *
1634 *  Polls the PHY status register for link, 'iterations' number of times.
1635 **/
1636s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1637		     u32 usec_interval, bool *success)
1638{
1639	s32 ret_val = 0;
1640	u16 i, phy_status;
1641
1642	for (i = 0; i < iterations; i++) {
1643		/* Some PHYs require the PHY_STATUS register to be read
1644		 * twice due to the link bit being sticky.  No harm doing
1645		 * it across the board.
1646		 */
1647		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1648		if (ret_val && usec_interval > 0) {
1649			/* If the first read fails, another entity may have
1650			 * ownership of the resources, wait and try again to
1651			 * see if they have relinquished the resources yet.
1652			 */
1653			if (usec_interval >= 1000)
1654				mdelay(usec_interval/1000);
1655			else
1656				udelay(usec_interval);
1657		}
1658		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1659		if (ret_val)
1660			break;
1661		if (phy_status & MII_SR_LINK_STATUS)
1662			break;
1663		if (usec_interval >= 1000)
1664			mdelay(usec_interval/1000);
1665		else
1666			udelay(usec_interval);
1667	}
1668
1669	*success = (i < iterations) ? true : false;
1670
1671	return ret_val;
1672}
1673
1674/**
1675 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1676 *  @hw: pointer to the HW structure
1677 *
1678 *  Reads the PHY specific status register to retrieve the cable length
1679 *  information.  The cable length is determined by averaging the minimum and
1680 *  maximum values to get the "average" cable length.  The m88 PHY has four
1681 *  possible cable length values, which are:
1682 *	Register Value		Cable Length
1683 *	0			< 50 meters
1684 *	1			50 - 80 meters
1685 *	2			80 - 110 meters
1686 *	3			110 - 140 meters
1687 *	4			> 140 meters
1688 **/
1689s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1690{
1691	struct e1000_phy_info *phy = &hw->phy;
1692	s32 ret_val;
1693	u16 phy_data, index;
1694
1695	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1696	if (ret_val)
1697		goto out;
1698
1699	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1700		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1701	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1702		ret_val = -E1000_ERR_PHY;
1703		goto out;
1704	}
1705
1706	phy->min_cable_length = e1000_m88_cable_length_table[index];
1707	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1708
1709	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1710
1711out:
1712	return ret_val;
1713}
1714
1715s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1716{
1717	struct e1000_phy_info *phy = &hw->phy;
1718	s32 ret_val;
1719	u16 phy_data, phy_data2, index, default_page, is_cm;
1720	int len_tot = 0;
1721	u16 len_min;
1722	u16 len_max;
1723
1724	switch (hw->phy.id) {
1725	case M88E1543_E_PHY_ID:
1726	case M88E1512_E_PHY_ID:
1727	case I347AT4_E_PHY_ID:
1728	case I210_I_PHY_ID:
1729		/* Remember the original page select and set it to 7 */
1730		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1731					    &default_page);
1732		if (ret_val)
1733			goto out;
1734
1735		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1736		if (ret_val)
1737			goto out;
1738
1739		/* Check if the unit of cable length is meters or cm */
1740		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1741		if (ret_val)
1742			goto out;
1743
1744		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1745
1746		/* Get cable length from Pair 0 length Regs */
1747		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1748		if (ret_val)
1749			goto out;
1750
1751		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1752		len_tot = phy->pair_length[0];
1753		len_min = phy->pair_length[0];
1754		len_max = phy->pair_length[0];
1755
1756		/* Get cable length from Pair 1 length Regs */
1757		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1758		if (ret_val)
1759			goto out;
1760
1761		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1762		len_tot += phy->pair_length[1];
1763		len_min = min(len_min, phy->pair_length[1]);
1764		len_max = max(len_max, phy->pair_length[1]);
1765
1766		/* Get cable length from Pair 2 length Regs */
1767		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1768		if (ret_val)
1769			goto out;
1770
1771		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1772		len_tot += phy->pair_length[2];
1773		len_min = min(len_min, phy->pair_length[2]);
1774		len_max = max(len_max, phy->pair_length[2]);
1775
1776		/* Get cable length from Pair 3 length Regs */
1777		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1778		if (ret_val)
1779			goto out;
1780
1781		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1782		len_tot += phy->pair_length[3];
1783		len_min = min(len_min, phy->pair_length[3]);
1784		len_max = max(len_max, phy->pair_length[3]);
1785
1786		/* Populate the phy structure with cable length in meters */
1787		phy->min_cable_length = len_min;
1788		phy->max_cable_length = len_max;
1789		phy->cable_length = len_tot / 4;
1790
1791		/* Reset the page selec to its original value */
1792		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1793					     default_page);
1794		if (ret_val)
1795			goto out;
1796		break;
1797	case M88E1112_E_PHY_ID:
1798		/* Remember the original page select and set it to 5 */
1799		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1800					    &default_page);
1801		if (ret_val)
1802			goto out;
1803
1804		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1805		if (ret_val)
1806			goto out;
1807
1808		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1809					    &phy_data);
1810		if (ret_val)
1811			goto out;
1812
1813		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1814			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1815		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1816			ret_val = -E1000_ERR_PHY;
1817			goto out;
1818		}
1819
1820		phy->min_cable_length = e1000_m88_cable_length_table[index];
1821		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1822
1823		phy->cable_length = (phy->min_cable_length +
1824				     phy->max_cable_length) / 2;
1825
1826		/* Reset the page select to its original value */
1827		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1828					     default_page);
1829		if (ret_val)
1830			goto out;
1831
1832		break;
1833	default:
1834		ret_val = -E1000_ERR_PHY;
1835		goto out;
1836	}
1837
1838out:
1839	return ret_val;
1840}
1841
1842/**
1843 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1844 *  @hw: pointer to the HW structure
1845 *
1846 *  The automatic gain control (agc) normalizes the amplitude of the
1847 *  received signal, adjusting for the attenuation produced by the
1848 *  cable.  By reading the AGC registers, which represent the
1849 *  combination of coarse and fine gain value, the value can be put
1850 *  into a lookup table to obtain the approximate cable length
1851 *  for each channel.
1852 **/
1853s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1854{
1855	struct e1000_phy_info *phy = &hw->phy;
1856	s32 ret_val = 0;
1857	u16 phy_data, i, agc_value = 0;
1858	u16 cur_agc_index, max_agc_index = 0;
1859	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1860	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1861		IGP02E1000_PHY_AGC_A,
1862		IGP02E1000_PHY_AGC_B,
1863		IGP02E1000_PHY_AGC_C,
1864		IGP02E1000_PHY_AGC_D
1865	};
1866
1867	/* Read the AGC registers for all channels */
1868	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1869		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1870		if (ret_val)
1871			goto out;
1872
1873		/* Getting bits 15:9, which represent the combination of
1874		 * coarse and fine gain values.  The result is a number
1875		 * that can be put into the lookup table to obtain the
1876		 * approximate cable length.
1877		 */
1878		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1879				IGP02E1000_AGC_LENGTH_MASK;
1880
1881		/* Array index bound check. */
1882		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1883		    (cur_agc_index == 0)) {
1884			ret_val = -E1000_ERR_PHY;
1885			goto out;
1886		}
1887
1888		/* Remove min & max AGC values from calculation. */
1889		if (e1000_igp_2_cable_length_table[min_agc_index] >
1890		    e1000_igp_2_cable_length_table[cur_agc_index])
1891			min_agc_index = cur_agc_index;
1892		if (e1000_igp_2_cable_length_table[max_agc_index] <
1893		    e1000_igp_2_cable_length_table[cur_agc_index])
1894			max_agc_index = cur_agc_index;
1895
1896		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1897	}
1898
1899	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1900		      e1000_igp_2_cable_length_table[max_agc_index]);
1901	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1902
1903	/* Calculate cable length with the error range of +/- 10 meters. */
1904	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1905				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1906	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1907
1908	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1909
1910out:
1911	return ret_val;
1912}
1913
1914/**
1915 *  igb_get_phy_info_m88 - Retrieve PHY information
1916 *  @hw: pointer to the HW structure
1917 *
1918 *  Valid for only copper links.  Read the PHY status register (sticky read)
1919 *  to verify that link is up.  Read the PHY special control register to
1920 *  determine the polarity and 10base-T extended distance.  Read the PHY
1921 *  special status register to determine MDI/MDIx and current speed.  If
1922 *  speed is 1000, then determine cable length, local and remote receiver.
1923 **/
1924s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1925{
1926	struct e1000_phy_info *phy = &hw->phy;
1927	s32  ret_val;
1928	u16 phy_data;
1929	bool link;
1930
1931	if (phy->media_type != e1000_media_type_copper) {
1932		hw_dbg("Phy info is only valid for copper media\n");
1933		ret_val = -E1000_ERR_CONFIG;
1934		goto out;
1935	}
1936
1937	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1938	if (ret_val)
1939		goto out;
1940
1941	if (!link) {
1942		hw_dbg("Phy info is only valid if link is up\n");
1943		ret_val = -E1000_ERR_CONFIG;
1944		goto out;
1945	}
1946
1947	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1948	if (ret_val)
1949		goto out;
1950
1951	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1952				   ? true : false;
1953
1954	ret_val = igb_check_polarity_m88(hw);
1955	if (ret_val)
1956		goto out;
1957
1958	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1959	if (ret_val)
1960		goto out;
1961
1962	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1963
1964	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1965		ret_val = phy->ops.get_cable_length(hw);
1966		if (ret_val)
1967			goto out;
1968
1969		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1970		if (ret_val)
1971			goto out;
1972
1973		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1974				? e1000_1000t_rx_status_ok
1975				: e1000_1000t_rx_status_not_ok;
1976
1977		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1978				 ? e1000_1000t_rx_status_ok
1979				 : e1000_1000t_rx_status_not_ok;
1980	} else {
1981		/* Set values to "undefined" */
1982		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983		phy->local_rx = e1000_1000t_rx_status_undefined;
1984		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985	}
1986
1987out:
1988	return ret_val;
1989}
1990
1991/**
1992 *  igb_get_phy_info_igp - Retrieve igp PHY information
1993 *  @hw: pointer to the HW structure
1994 *
1995 *  Read PHY status to determine if link is up.  If link is up, then
1996 *  set/determine 10base-T extended distance and polarity correction.  Read
1997 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1998 *  determine on the cable length, local and remote receiver.
1999 **/
2000s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2001{
2002	struct e1000_phy_info *phy = &hw->phy;
2003	s32 ret_val;
2004	u16 data;
2005	bool link;
2006
2007	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2008	if (ret_val)
2009		goto out;
2010
2011	if (!link) {
2012		hw_dbg("Phy info is only valid if link is up\n");
2013		ret_val = -E1000_ERR_CONFIG;
2014		goto out;
2015	}
2016
2017	phy->polarity_correction = true;
2018
2019	ret_val = igb_check_polarity_igp(hw);
2020	if (ret_val)
2021		goto out;
2022
2023	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2024	if (ret_val)
2025		goto out;
2026
2027	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2028
2029	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2030	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2031		ret_val = phy->ops.get_cable_length(hw);
2032		if (ret_val)
2033			goto out;
2034
2035		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2036		if (ret_val)
2037			goto out;
2038
2039		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2040				? e1000_1000t_rx_status_ok
2041				: e1000_1000t_rx_status_not_ok;
2042
2043		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2044				 ? e1000_1000t_rx_status_ok
2045				 : e1000_1000t_rx_status_not_ok;
2046	} else {
2047		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2048		phy->local_rx = e1000_1000t_rx_status_undefined;
2049		phy->remote_rx = e1000_1000t_rx_status_undefined;
2050	}
2051
2052out:
2053	return ret_val;
2054}
2055
2056/**
2057 *  igb_phy_sw_reset - PHY software reset
2058 *  @hw: pointer to the HW structure
2059 *
2060 *  Does a software reset of the PHY by reading the PHY control register and
2061 *  setting/write the control register reset bit to the PHY.
2062 **/
2063s32 igb_phy_sw_reset(struct e1000_hw *hw)
2064{
2065	s32 ret_val = 0;
2066	u16 phy_ctrl;
2067
2068	if (!(hw->phy.ops.read_reg))
2069		goto out;
2070
2071	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2072	if (ret_val)
2073		goto out;
2074
2075	phy_ctrl |= MII_CR_RESET;
2076	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2077	if (ret_val)
2078		goto out;
2079
2080	udelay(1);
2081
2082out:
2083	return ret_val;
2084}
2085
2086/**
2087 *  igb_phy_hw_reset - PHY hardware reset
2088 *  @hw: pointer to the HW structure
2089 *
2090 *  Verify the reset block is not blocking us from resetting.  Acquire
2091 *  semaphore (if necessary) and read/set/write the device control reset
2092 *  bit in the PHY.  Wait the appropriate delay time for the device to
2093 *  reset and release the semaphore (if necessary).
2094 **/
2095s32 igb_phy_hw_reset(struct e1000_hw *hw)
2096{
2097	struct e1000_phy_info *phy = &hw->phy;
2098	s32  ret_val;
2099	u32 ctrl;
2100
2101	ret_val = igb_check_reset_block(hw);
2102	if (ret_val) {
2103		ret_val = 0;
2104		goto out;
2105	}
2106
2107	ret_val = phy->ops.acquire(hw);
2108	if (ret_val)
2109		goto out;
2110
2111	ctrl = rd32(E1000_CTRL);
2112	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2113	wrfl();
2114
2115	udelay(phy->reset_delay_us);
2116
2117	wr32(E1000_CTRL, ctrl);
2118	wrfl();
2119
2120	udelay(150);
2121
2122	phy->ops.release(hw);
2123
2124	ret_val = phy->ops.get_cfg_done(hw);
2125
2126out:
2127	return ret_val;
2128}
2129
2130/**
2131 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2132 *  @hw: pointer to the HW structure
2133 *
2134 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2135 **/
2136s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2137{
2138	hw_dbg("Running IGP 3 PHY init script\n");
2139
2140	/* PHY init IGP 3 */
2141	/* Enable rise/fall, 10-mode work in class-A */
2142	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2143	/* Remove all caps from Replica path filter */
2144	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2145	/* Bias trimming for ADC, AFE and Driver (Default) */
2146	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2147	/* Increase Hybrid poly bias */
2148	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2149	/* Add 4% to TX amplitude in Giga mode */
2150	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2151	/* Disable trimming (TTT) */
2152	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2153	/* Poly DC correction to 94.6% + 2% for all channels */
2154	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2155	/* ABS DC correction to 95.9% */
2156	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2157	/* BG temp curve trim */
2158	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2159	/* Increasing ADC OPAMP stage 1 currents to max */
2160	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2161	/* Force 1000 ( required for enabling PHY regs configuration) */
2162	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2163	/* Set upd_freq to 6 */
2164	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2165	/* Disable NPDFE */
2166	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2167	/* Disable adaptive fixed FFE (Default) */
2168	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2169	/* Enable FFE hysteresis */
2170	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2171	/* Fixed FFE for short cable lengths */
2172	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2173	/* Fixed FFE for medium cable lengths */
2174	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2175	/* Fixed FFE for long cable lengths */
2176	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2177	/* Enable Adaptive Clip Threshold */
2178	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2179	/* AHT reset limit to 1 */
2180	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2181	/* Set AHT master delay to 127 msec */
2182	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2183	/* Set scan bits for AHT */
2184	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2185	/* Set AHT Preset bits */
2186	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2187	/* Change integ_factor of channel A to 3 */
2188	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2189	/* Change prop_factor of channels BCD to 8 */
2190	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2191	/* Change cg_icount + enable integbp for channels BCD */
2192	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2193	/* Change cg_icount + enable integbp + change prop_factor_master
2194	 * to 8 for channel A
2195	 */
2196	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2197	/* Disable AHT in Slave mode on channel A */
2198	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2199	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2200	 * Enable SPD+B2B
2201	 */
2202	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2203	/* Enable restart AN on an1000_dis change */
2204	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2205	/* Enable wh_fifo read clock in 10/100 modes */
2206	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2207	/* Restart AN, Speed selection is 1000 */
2208	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2209
2210	return 0;
2211}
2212
2213/**
2214 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2215 *  @hw: pointer to the HW structure
2216 *
2217 *  Initialize Marvel 1512 to work correctly with Avoton.
2218 **/
2219s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2220{
2221	struct e1000_phy_info *phy = &hw->phy;
2222	s32 ret_val = 0;
2223
2224	/* Switch to PHY page 0xFF. */
2225	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2226	if (ret_val)
2227		goto out;
2228
2229	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2230	if (ret_val)
2231		goto out;
2232
2233	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2234	if (ret_val)
2235		goto out;
2236
2237	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2238	if (ret_val)
2239		goto out;
2240
2241	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2242	if (ret_val)
2243		goto out;
2244
2245	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2246	if (ret_val)
2247		goto out;
2248
2249	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2250	if (ret_val)
2251		goto out;
2252
2253	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2254	if (ret_val)
2255		goto out;
2256
2257	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2258	if (ret_val)
2259		goto out;
2260
2261	/* Switch to PHY page 0xFB. */
2262	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2263	if (ret_val)
2264		goto out;
2265
2266	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2267	if (ret_val)
2268		goto out;
2269
2270	/* Switch to PHY page 0x12. */
2271	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2272	if (ret_val)
2273		goto out;
2274
2275	/* Change mode to SGMII-to-Copper */
2276	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2277	if (ret_val)
2278		goto out;
2279
2280	/* Return the PHY to page 0. */
2281	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2282	if (ret_val)
2283		goto out;
2284
2285	ret_val = igb_phy_sw_reset(hw);
2286	if (ret_val) {
2287		hw_dbg("Error committing the PHY changes\n");
2288		return ret_val;
2289	}
2290
2291	/* msec_delay(1000); */
2292	usleep_range(1000, 2000);
2293out:
2294	return ret_val;
2295}
2296
2297/**
2298 *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2299 *  @hw: pointer to the HW structure
2300 *
2301 *  Initialize Marvell 1543 to work correctly with Avoton.
2302 **/
2303s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2304{
2305	struct e1000_phy_info *phy = &hw->phy;
2306	s32 ret_val = 0;
2307
2308	/* Switch to PHY page 0xFF. */
2309	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2310	if (ret_val)
2311		goto out;
2312
2313	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2314	if (ret_val)
2315		goto out;
2316
2317	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2318	if (ret_val)
2319		goto out;
2320
2321	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2322	if (ret_val)
2323		goto out;
2324
2325	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2326	if (ret_val)
2327		goto out;
2328
2329	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2330	if (ret_val)
2331		goto out;
2332
2333	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2334	if (ret_val)
2335		goto out;
2336
2337	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2338	if (ret_val)
2339		goto out;
2340
2341	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2342	if (ret_val)
2343		goto out;
2344
2345	/* Switch to PHY page 0xFB. */
2346	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2347	if (ret_val)
2348		goto out;
2349
2350	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2351	if (ret_val)
2352		goto out;
2353
2354	/* Switch to PHY page 0x12. */
2355	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2356	if (ret_val)
2357		goto out;
2358
2359	/* Change mode to SGMII-to-Copper */
2360	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2361	if (ret_val)
2362		goto out;
2363
2364	/* Switch to PHY page 1. */
2365	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2366	if (ret_val)
2367		goto out;
2368
2369	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2370	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2371	if (ret_val)
2372		goto out;
2373
2374	/* Return the PHY to page 0. */
2375	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2376	if (ret_val)
2377		goto out;
2378
2379	ret_val = igb_phy_sw_reset(hw);
2380	if (ret_val) {
2381		hw_dbg("Error committing the PHY changes\n");
2382		return ret_val;
2383	}
2384
2385	/* msec_delay(1000); */
2386	usleep_range(1000, 2000);
2387out:
2388	return ret_val;
2389}
2390
2391/**
2392 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2393 * @hw: pointer to the HW structure
2394 *
2395 * In the case of a PHY power down to save power, or to turn off link during a
2396 * driver unload, restore the link to previous settings.
2397 **/
2398void igb_power_up_phy_copper(struct e1000_hw *hw)
2399{
2400	u16 mii_reg = 0;
2401
2402	/* The PHY will retain its settings across a power down/up cycle */
2403	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2404	mii_reg &= ~MII_CR_POWER_DOWN;
2405	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2406}
2407
2408/**
2409 * igb_power_down_phy_copper - Power down copper PHY
2410 * @hw: pointer to the HW structure
2411 *
2412 * Power down PHY to save power when interface is down and wake on lan
2413 * is not enabled.
2414 **/
2415void igb_power_down_phy_copper(struct e1000_hw *hw)
2416{
2417	u16 mii_reg = 0;
2418
2419	/* The PHY will retain its settings across a power down/up cycle */
2420	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2421	mii_reg |= MII_CR_POWER_DOWN;
2422	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2423	usleep_range(1000, 2000);
2424}
2425
2426/**
2427 *  igb_check_polarity_82580 - Checks the polarity.
2428 *  @hw: pointer to the HW structure
2429 *
2430 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2431 *
2432 *  Polarity is determined based on the PHY specific status register.
2433 **/
2434static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2435{
2436	struct e1000_phy_info *phy = &hw->phy;
2437	s32 ret_val;
2438	u16 data;
2439
2440
2441	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2442
2443	if (!ret_val)
2444		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2445				      ? e1000_rev_polarity_reversed
2446				      : e1000_rev_polarity_normal;
2447
2448	return ret_val;
2449}
2450
2451/**
2452 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2453 *  @hw: pointer to the HW structure
2454 *
2455 *  Calls the PHY setup function to force speed and duplex.  Clears the
2456 *  auto-crossover to force MDI manually.  Waits for link and returns
2457 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2458 **/
2459s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2460{
2461	struct e1000_phy_info *phy = &hw->phy;
2462	s32 ret_val;
2463	u16 phy_data;
2464	bool link;
2465
2466	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2467	if (ret_val)
2468		goto out;
2469
2470	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2471
2472	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2473	if (ret_val)
2474		goto out;
2475
2476	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2477	 * forced whenever speed and duplex are forced.
2478	 */
2479	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2480	if (ret_val)
2481		goto out;
2482
2483	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2484
2485	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2486	if (ret_val)
2487		goto out;
2488
2489	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2490
2491	udelay(1);
2492
2493	if (phy->autoneg_wait_to_complete) {
2494		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2495
2496		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2497		if (ret_val)
2498			goto out;
2499
2500		if (!link)
2501			hw_dbg("Link taking longer than expected.\n");
2502
2503		/* Try once more */
2504		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2505		if (ret_val)
2506			goto out;
2507	}
2508
2509out:
2510	return ret_val;
2511}
2512
2513/**
2514 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2515 *  @hw: pointer to the HW structure
2516 *
2517 *  Read PHY status to determine if link is up.  If link is up, then
2518 *  set/determine 10base-T extended distance and polarity correction.  Read
2519 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2520 *  determine on the cable length, local and remote receiver.
2521 **/
2522s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2523{
2524	struct e1000_phy_info *phy = &hw->phy;
2525	s32 ret_val;
2526	u16 data;
2527	bool link;
2528
2529	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2530	if (ret_val)
2531		goto out;
2532
2533	if (!link) {
2534		hw_dbg("Phy info is only valid if link is up\n");
2535		ret_val = -E1000_ERR_CONFIG;
2536		goto out;
2537	}
2538
2539	phy->polarity_correction = true;
2540
2541	ret_val = igb_check_polarity_82580(hw);
2542	if (ret_val)
2543		goto out;
2544
2545	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2546	if (ret_val)
2547		goto out;
2548
2549	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2550
2551	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2552	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2553		ret_val = hw->phy.ops.get_cable_length(hw);
2554		if (ret_val)
2555			goto out;
2556
2557		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2558		if (ret_val)
2559			goto out;
2560
2561		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2562				? e1000_1000t_rx_status_ok
2563				: e1000_1000t_rx_status_not_ok;
2564
2565		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2566				 ? e1000_1000t_rx_status_ok
2567				 : e1000_1000t_rx_status_not_ok;
2568	} else {
2569		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2570		phy->local_rx = e1000_1000t_rx_status_undefined;
2571		phy->remote_rx = e1000_1000t_rx_status_undefined;
2572	}
2573
2574out:
2575	return ret_val;
2576}
2577
2578/**
2579 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2580 *  @hw: pointer to the HW structure
2581 *
2582 * Reads the diagnostic status register and verifies result is valid before
2583 * placing it in the phy_cable_length field.
2584 **/
2585s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2586{
2587	struct e1000_phy_info *phy = &hw->phy;
2588	s32 ret_val;
2589	u16 phy_data, length;
2590
2591	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2592	if (ret_val)
2593		goto out;
2594
2595	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2596		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2597
2598	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2599		ret_val = -E1000_ERR_PHY;
2600
2601	phy->cable_length = length;
2602
2603out:
2604	return ret_val;
2605}
2606
2607/**
2608 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2609 *  @hw: pointer to the HW structure
2610 *
2611 *  Sets up Master/slave mode
2612 **/
2613static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2614{
2615	s32 ret_val;
2616	u16 phy_data;
2617
2618	/* Resolve Master/Slave mode */
2619	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2620	if (ret_val)
2621		return ret_val;
2622
2623	/* load defaults for future use */
2624	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2625				   ((phy_data & CR_1000T_MS_VALUE) ?
2626				    e1000_ms_force_master :
2627				    e1000_ms_force_slave) : e1000_ms_auto;
2628
2629	switch (hw->phy.ms_type) {
2630	case e1000_ms_force_master:
2631		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2632		break;
2633	case e1000_ms_force_slave:
2634		phy_data |= CR_1000T_MS_ENABLE;
2635		phy_data &= ~(CR_1000T_MS_VALUE);
2636		break;
2637	case e1000_ms_auto:
2638		phy_data &= ~CR_1000T_MS_ENABLE;
2639		/* fall-through */
2640	default:
2641		break;
2642	}
2643
2644	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2645}