Linux Audio

Check our new training course

Loading...
v3.1
 
  1#ifndef _INTEL_RINGBUFFER_H_
  2#define _INTEL_RINGBUFFER_H_
  3
  4enum {
  5    RCS = 0x0,
  6    VCS,
  7    BCS,
  8    I915_NUM_RINGS,
  9};
 10
 11struct  intel_hw_status_page {
 12	u32	__iomem	*page_addr;
 13	unsigned int	gfx_addr;
 14	struct		drm_i915_gem_object *obj;
 15};
 16
 17#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
 18#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
 19
 20#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
 21#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
 22
 23#define I915_READ_HEAD(ring)  I915_READ(RING_HEAD((ring)->mmio_base))
 24#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
 25
 26#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
 27#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
 28
 29#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
 30#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
 31
 32#define I915_READ_NOPID(ring) I915_READ(RING_NOPID((ring)->mmio_base))
 33#define I915_READ_SYNC_0(ring) I915_READ(RING_SYNC_0((ring)->mmio_base))
 34#define I915_READ_SYNC_1(ring) I915_READ(RING_SYNC_1((ring)->mmio_base))
 35
 36struct  intel_ring_buffer {
 37	const char	*name;
 38	enum intel_ring_id {
 39		RING_RENDER = 0x1,
 40		RING_BSD = 0x2,
 41		RING_BLT = 0x4,
 42	} id;
 43	u32		mmio_base;
 44	void		__iomem *virtual_start;
 45	struct		drm_device *dev;
 46	struct		drm_i915_gem_object *obj;
 47
 48	u32		head;
 49	u32		tail;
 50	int		space;
 51	int		size;
 52	int		effective_size;
 53	struct intel_hw_status_page status_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54
 55	spinlock_t	irq_lock;
 56	u32		irq_refcount;
 57	u32		irq_mask;
 58	u32		irq_seqno;		/* last seq seem at irq time */
 59	u32		trace_irq_seqno;
 60	u32		waiting_seqno;
 61	u32		sync_seqno[I915_NUM_RINGS-1];
 62	bool __must_check (*irq_get)(struct intel_ring_buffer *ring);
 63	void		(*irq_put)(struct intel_ring_buffer *ring);
 64
 65	int		(*init)(struct intel_ring_buffer *ring);
 66
 67	void		(*write_tail)(struct intel_ring_buffer *ring,
 68				      u32 value);
 69	int __must_check (*flush)(struct intel_ring_buffer *ring,
 70				  u32	invalidate_domains,
 71				  u32	flush_domains);
 72	int		(*add_request)(struct intel_ring_buffer *ring,
 73				       u32 *seqno);
 74	u32		(*get_seqno)(struct intel_ring_buffer *ring);
 75	int		(*dispatch_execbuffer)(struct intel_ring_buffer *ring,
 76					       u32 offset, u32 length);
 77	void		(*cleanup)(struct intel_ring_buffer *ring);
 78
 79	/**
 80	 * List of objects currently involved in rendering from the
 81	 * ringbuffer.
 82	 *
 83	 * Includes buffers having the contents of their GPU caches
 84	 * flushed, not necessarily primitives.  last_rendering_seqno
 85	 * represents when the rendering involved will be completed.
 86	 *
 87	 * A reference is held on the buffer while on this list.
 
 88	 */
 89	struct list_head active_list;
 
 
 
 90
 91	/**
 92	 * List of breadcrumbs associated with GPU requests currently
 93	 * outstanding.
 94	 */
 95	struct list_head request_list;
 96
 97	/**
 98	 * List of objects currently pending a GPU write flush.
 99	 *
100	 * All elements on this list will belong to either the
101	 * active_list or flushing_list, last_rendering_seqno can
102	 * be used to differentiate between the two elements.
 
 
 
 
 
 
103	 */
104	struct list_head gpu_write_list;
105
106	/**
107	 * Do we have some not yet emitted requests outstanding?
108	 */
109	u32 outstanding_lazy_request;
110
111	wait_queue_head_t irq_queue;
112	drm_local_map_t map;
 
 
 
 
 
 
 
 
 
 
 
 
113
114	void *private;
 
 
 
115};
116
117static inline u32
118intel_ring_sync_index(struct intel_ring_buffer *ring,
119		      struct intel_ring_buffer *other)
120{
121	int idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
123	/*
124	 * cs -> 0 = vcs, 1 = bcs
125	 * vcs -> 0 = bcs, 1 = cs,
126	 * bcs -> 0 = cs, 1 = vcs.
 
 
 
 
 
127	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
129	idx = (other - ring) - 1;
130	if (idx < 0)
131		idx += I915_NUM_RINGS;
 
132
133	return idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134}
135
136static inline u32
137intel_read_status_page(struct intel_ring_buffer *ring,
138		       int reg)
139{
140	return ioread32(ring->status_page.page_addr + reg);
 
141}
142
143/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144 * Reads a dword out of the status page, which is written to from the command
145 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
146 * MI_STORE_DATA_IMM.
147 *
148 * The following dwords have a reserved meaning:
149 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
150 * 0x04: ring 0 head pointer
151 * 0x05: ring 1 head pointer (915-class)
152 * 0x06: ring 2 head pointer (915-class)
153 * 0x10-0x1b: Context status DWords (GM45)
154 * 0x1f: Last written status offset. (GM45)
 
155 *
156 * The area from dword 0x20 to 0x3ff is available for driver usage.
157 */
158#define READ_HWSP(dev_priv, reg) intel_read_status_page(LP_RING(dev_priv), reg)
159#define READ_BREADCRUMB(dev_priv) READ_HWSP(dev_priv, I915_BREADCRUMB_INDEX)
160#define I915_GEM_HWS_INDEX		0x20
161#define I915_BREADCRUMB_INDEX		0x21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
163void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
165int __must_check intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n);
166static inline int intel_wait_ring_idle(struct intel_ring_buffer *ring)
167{
168	return intel_wait_ring_buffer(ring, ring->size - 8);
 
 
 
 
 
 
 
 
169}
170
171int __must_check intel_ring_begin(struct intel_ring_buffer *ring, int n);
172
173static inline void intel_ring_emit(struct intel_ring_buffer *ring,
174				   u32 data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175{
176	iowrite32(data, ring->virtual_start + ring->tail);
177	ring->tail += 4;
 
 
 
 
 
 
178}
179
180void intel_ring_advance(struct intel_ring_buffer *ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
182u32 intel_ring_get_seqno(struct intel_ring_buffer *ring);
183int intel_ring_sync(struct intel_ring_buffer *ring,
184		    struct intel_ring_buffer *to,
185		    u32 seqno);
186
187int intel_init_render_ring_buffer(struct drm_device *dev);
188int intel_init_bsd_ring_buffer(struct drm_device *dev);
189int intel_init_blt_ring_buffer(struct drm_device *dev);
190
191u32 intel_ring_get_active_head(struct intel_ring_buffer *ring);
192void intel_ring_setup_status_page(struct intel_ring_buffer *ring);
 
 
 
 
193
194static inline void i915_trace_irq_get(struct intel_ring_buffer *ring, u32 seqno)
195{
196	if (ring->trace_irq_seqno == 0 && ring->irq_get(ring))
197		ring->trace_irq_seqno = seqno;
198}
199
200/* DRI warts */
201int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
203#endif /* _INTEL_RINGBUFFER_H_ */
v4.17
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _INTEL_RINGBUFFER_H_
   3#define _INTEL_RINGBUFFER_H_
   4
   5#include <linux/hashtable.h>
   6
   7#include "i915_gem_batch_pool.h"
   8#include "i915_gem_timeline.h"
   9
  10#include "i915_pmu.h"
  11#include "i915_request.h"
  12#include "i915_selftest.h"
  13
  14struct drm_printer;
  15
  16#define I915_CMD_HASH_ORDER 9
  17
  18/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  19 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  20 * to give some inclination as to some of the magic values used in the various
  21 * workarounds!
  22 */
  23#define CACHELINE_BYTES 64
  24#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  25
  26struct intel_hw_status_page {
  27	struct i915_vma *vma;
  28	u32 *page_addr;
  29	u32 ggtt_offset;
  30};
  31
  32#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  33#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  34
  35#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  36#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  37
  38#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
  39#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  40
  41#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  42#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  43
  44#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  45#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  46
  47#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  48#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  49
  50/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  51 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  52 */
  53enum intel_engine_hangcheck_action {
  54	ENGINE_IDLE = 0,
  55	ENGINE_WAIT,
  56	ENGINE_ACTIVE_SEQNO,
  57	ENGINE_ACTIVE_HEAD,
  58	ENGINE_ACTIVE_SUBUNITS,
  59	ENGINE_WAIT_KICK,
  60	ENGINE_DEAD,
  61};
  62
  63static inline const char *
  64hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  65{
  66	switch (a) {
  67	case ENGINE_IDLE:
  68		return "idle";
  69	case ENGINE_WAIT:
  70		return "wait";
  71	case ENGINE_ACTIVE_SEQNO:
  72		return "active seqno";
  73	case ENGINE_ACTIVE_HEAD:
  74		return "active head";
  75	case ENGINE_ACTIVE_SUBUNITS:
  76		return "active subunits";
  77	case ENGINE_WAIT_KICK:
  78		return "wait kick";
  79	case ENGINE_DEAD:
  80		return "dead";
  81	}
  82
  83	return "unknown";
  84}
  85
  86#define I915_MAX_SLICES	3
  87#define I915_MAX_SUBSLICES 3
  88
  89#define instdone_slice_mask(dev_priv__) \
  90	(INTEL_GEN(dev_priv__) == 7 ? \
  91	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  92
  93#define instdone_subslice_mask(dev_priv__) \
  94	(INTEL_GEN(dev_priv__) == 7 ? \
  95	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
  96
  97#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  98	for ((slice__) = 0, (subslice__) = 0; \
  99	     (slice__) < I915_MAX_SLICES; \
 100	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
 101	       (slice__) += ((subslice__) == 0)) \
 102		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
 103			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
 104
 105struct intel_instdone {
 106	u32 instdone;
 107	/* The following exist only in the RCS engine */
 108	u32 slice_common;
 109	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 110	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 111};
 112
 113struct intel_engine_hangcheck {
 114	u64 acthd;
 115	u32 seqno;
 116	enum intel_engine_hangcheck_action action;
 117	unsigned long action_timestamp;
 118	int deadlock;
 119	struct intel_instdone instdone;
 120	struct i915_request *active_request;
 121	bool stalled;
 122};
 123
 124struct intel_ring {
 125	struct i915_vma *vma;
 126	void *vaddr;
 127
 128	struct list_head request_list;
 129
 130	u32 head;
 131	u32 tail;
 132	u32 emit;
 133
 134	u32 space;
 135	u32 size;
 136	u32 effective_size;
 137};
 138
 139struct i915_gem_context;
 140struct drm_i915_reg_table;
 141
 142/*
 143 * we use a single page to load ctx workarounds so all of these
 144 * values are referred in terms of dwords
 145 *
 146 * struct i915_wa_ctx_bb:
 147 *  offset: specifies batch starting position, also helpful in case
 148 *    if we want to have multiple batches at different offsets based on
 149 *    some criteria. It is not a requirement at the moment but provides
 150 *    an option for future use.
 151 *  size: size of the batch in DWORDS
 152 */
 153struct i915_ctx_workarounds {
 154	struct i915_wa_ctx_bb {
 155		u32 offset;
 156		u32 size;
 157	} indirect_ctx, per_ctx;
 158	struct i915_vma *vma;
 159};
 160
 161struct i915_request;
 162
 163#define I915_MAX_VCS	4
 164#define I915_MAX_VECS	2
 165
 166/*
 167 * Engine IDs definitions.
 168 * Keep instances of the same type engine together.
 169 */
 170enum intel_engine_id {
 171	RCS = 0,
 172	BCS,
 173	VCS,
 174	VCS2,
 175	VCS3,
 176	VCS4,
 177#define _VCS(n) (VCS + (n))
 178	VECS,
 179	VECS2
 180#define _VECS(n) (VECS + (n))
 181};
 182
 183struct i915_priolist {
 184	struct rb_node node;
 185	struct list_head requests;
 186	int priority;
 187};
 188
 189/**
 190 * struct intel_engine_execlists - execlist submission queue and port state
 191 *
 192 * The struct intel_engine_execlists represents the combined logical state of
 193 * driver and the hardware state for execlist mode of submission.
 194 */
 195struct intel_engine_execlists {
 196	/**
 197	 * @tasklet: softirq tasklet for bottom handler
 198	 */
 199	struct tasklet_struct tasklet;
 200
 201	/**
 202	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
 203	 */
 204	struct i915_priolist default_priolist;
 205
 206	/**
 207	 * @no_priolist: priority lists disabled
 208	 */
 209	bool no_priolist;
 210
 211	/**
 212	 * @submit_reg: gen-specific execlist submission register
 213	 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
 214	 * the ExecList Submission Queue Contents register array for Gen11+
 215	 */
 216	u32 __iomem *submit_reg;
 217
 218	/**
 219	 * @ctrl_reg: the enhanced execlists control register, used to load the
 220	 * submit queue on the HW and to request preemptions to idle
 221	 */
 222	u32 __iomem *ctrl_reg;
 223
 224	/**
 225	 * @port: execlist port states
 226	 *
 227	 * For each hardware ELSP (ExecList Submission Port) we keep
 228	 * track of the last request and the number of times we submitted
 229	 * that port to hw. We then count the number of times the hw reports
 230	 * a context completion or preemption. As only one context can
 231	 * be active on hw, we limit resubmission of context to port[0]. This
 232	 * is called Lite Restore, of the context.
 233	 */
 234	struct execlist_port {
 235		/**
 236		 * @request_count: combined request and submission count
 237		 */
 238		struct i915_request *request_count;
 239#define EXECLIST_COUNT_BITS 2
 240#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 241#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 242#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
 243#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
 244#define port_set(p, packed) ((p)->request_count = (packed))
 245#define port_isset(p) ((p)->request_count)
 246#define port_index(p, execlists) ((p) - (execlists)->port)
 247
 248		/**
 249		 * @context_id: context ID for port
 250		 */
 251		GEM_DEBUG_DECL(u32 context_id);
 252
 253#define EXECLIST_MAX_PORTS 2
 254	} port[EXECLIST_MAX_PORTS];
 255
 256	/**
 257	 * @active: is the HW active? We consider the HW as active after
 258	 * submitting any context for execution and until we have seen the
 259	 * last context completion event. After that, we do not expect any
 260	 * more events until we submit, and so can park the HW.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261	 *
 262	 * As we have a small number of different sources from which we feed
 263	 * the HW, we track the state of each inside a single bitfield.
 264	 */
 265	unsigned int active;
 266#define EXECLISTS_ACTIVE_USER 0
 267#define EXECLISTS_ACTIVE_PREEMPT 1
 268#define EXECLISTS_ACTIVE_HWACK 2
 269
 270	/**
 271	 * @port_mask: number of execlist ports - 1
 
 272	 */
 273	unsigned int port_mask;
 274
 275	/**
 276	 * @queue_priority: Highest pending priority.
 277	 *
 278	 * When we add requests into the queue, or adjust the priority of
 279	 * executing requests, we compute the maximum priority of those
 280	 * pending requests. We can then use this value to determine if
 281	 * we need to preempt the executing requests to service the queue.
 282	 */
 283	int queue_priority;
 284
 285	/**
 286	 * @queue: queue of requests, in priority lists
 287	 */
 288	struct rb_root queue;
 289
 290	/**
 291	 * @first: leftmost level in priority @queue
 292	 */
 293	struct rb_node *first;
 294
 295	/**
 296	 * @fw_domains: forcewake domains for irq tasklet
 297	 */
 298	unsigned int fw_domains;
 299
 300	/**
 301	 * @csb_head: context status buffer head
 302	 */
 303	unsigned int csb_head;
 304
 305	/**
 306	 * @csb_use_mmio: access csb through mmio, instead of hwsp
 307	 */
 308	bool csb_use_mmio;
 309
 310	/**
 311	 * @preempt_complete_status: expected CSB upon completing preemption
 312	 */
 313	u32 preempt_complete_status;
 314};
 315
 316#define INTEL_ENGINE_CS_MAX_NAME 8
 317
 318struct intel_engine_cs {
 319	struct drm_i915_private *i915;
 320	char name[INTEL_ENGINE_CS_MAX_NAME];
 321
 322	enum intel_engine_id id;
 323	unsigned int hw_id;
 324	unsigned int guc_id;
 325
 326	u8 uabi_id;
 327	u8 uabi_class;
 328
 329	u8 class;
 330	u8 instance;
 331	u32 context_size;
 332	u32 mmio_base;
 333	unsigned int irq_shift;
 334
 335	struct intel_ring *buffer;
 336	struct intel_timeline *timeline;
 337
 338	struct drm_i915_gem_object *default_state;
 339
 340	atomic_t irq_count;
 341	unsigned long irq_posted;
 342#define ENGINE_IRQ_BREADCRUMB 0
 343#define ENGINE_IRQ_EXECLIST 1
 344
 345	/* Rather than have every client wait upon all user interrupts,
 346	 * with the herd waking after every interrupt and each doing the
 347	 * heavyweight seqno dance, we delegate the task (of being the
 348	 * bottom-half of the user interrupt) to the first client. After
 349	 * every interrupt, we wake up one client, who does the heavyweight
 350	 * coherent seqno read and either goes back to sleep (if incomplete),
 351	 * or wakes up all the completed clients in parallel, before then
 352	 * transferring the bottom-half status to the next client in the queue.
 353	 *
 354	 * Compared to walking the entire list of waiters in a single dedicated
 355	 * bottom-half, we reduce the latency of the first waiter by avoiding
 356	 * a context switch, but incur additional coherent seqno reads when
 357	 * following the chain of request breadcrumbs. Since it is most likely
 358	 * that we have a single client waiting on each seqno, then reducing
 359	 * the overhead of waking that client is much preferred.
 360	 */
 361	struct intel_breadcrumbs {
 362		spinlock_t irq_lock; /* protects irq_*; irqsafe */
 363		struct intel_wait *irq_wait; /* oldest waiter by retirement */
 364
 365		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
 366		struct rb_root waiters; /* sorted by retirement, priority */
 367		struct list_head signals; /* sorted by retirement */
 368		struct task_struct *signaler; /* used for fence signalling */
 369
 370		struct timer_list fake_irq; /* used after a missed interrupt */
 371		struct timer_list hangcheck; /* detect missed interrupts */
 372
 373		unsigned int hangcheck_interrupts;
 374		unsigned int irq_enabled;
 375
 376		bool irq_armed : 1;
 377		I915_SELFTEST_DECLARE(bool mock : 1);
 378	} breadcrumbs;
 379
 380	struct {
 381		/**
 382		 * @enable: Bitmask of enable sample events on this engine.
 383		 *
 384		 * Bits correspond to sample event types, for instance
 385		 * I915_SAMPLE_QUEUED is bit 0 etc.
 386		 */
 387		u32 enable;
 388		/**
 389		 * @enable_count: Reference count for the enabled samplers.
 390		 *
 391		 * Index number corresponds to the bit number from @enable.
 392		 */
 393		unsigned int enable_count[I915_PMU_SAMPLE_BITS];
 394		/**
 395		 * @sample: Counter values for sampling events.
 396		 *
 397		 * Our internal timer stores the current counters in this field.
 398		 */
 399#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
 400		struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
 401	} pmu;
 402
 403	/*
 404	 * A pool of objects to use as shadow copies of client batch buffers
 405	 * when the command parser is enabled. Prevents the client from
 406	 * modifying the batch contents after software parsing.
 407	 */
 408	struct i915_gem_batch_pool batch_pool;
 409
 410	struct intel_hw_status_page status_page;
 411	struct i915_ctx_workarounds wa_ctx;
 412	struct i915_vma *scratch;
 413
 414	u32             irq_keep_mask; /* always keep these interrupts */
 415	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
 416	void		(*irq_enable)(struct intel_engine_cs *engine);
 417	void		(*irq_disable)(struct intel_engine_cs *engine);
 418
 419	int		(*init_hw)(struct intel_engine_cs *engine);
 420	void		(*reset_hw)(struct intel_engine_cs *engine,
 421				    struct i915_request *rq);
 422
 423	void		(*park)(struct intel_engine_cs *engine);
 424	void		(*unpark)(struct intel_engine_cs *engine);
 425
 426	void		(*set_default_submission)(struct intel_engine_cs *engine);
 427
 428	struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
 429					  struct i915_gem_context *ctx);
 430	void		(*context_unpin)(struct intel_engine_cs *engine,
 431					 struct i915_gem_context *ctx);
 432	int		(*request_alloc)(struct i915_request *rq);
 433	int		(*init_context)(struct i915_request *rq);
 434
 435	int		(*emit_flush)(struct i915_request *request, u32 mode);
 436#define EMIT_INVALIDATE	BIT(0)
 437#define EMIT_FLUSH	BIT(1)
 438#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
 439	int		(*emit_bb_start)(struct i915_request *rq,
 440					 u64 offset, u32 length,
 441					 unsigned int dispatch_flags);
 442#define I915_DISPATCH_SECURE BIT(0)
 443#define I915_DISPATCH_PINNED BIT(1)
 444#define I915_DISPATCH_RS     BIT(2)
 445	void		(*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
 446	int		emit_breadcrumb_sz;
 447
 448	/* Pass the request to the hardware queue (e.g. directly into
 449	 * the legacy ringbuffer or to the end of an execlist).
 450	 *
 451	 * This is called from an atomic context with irqs disabled; must
 452	 * be irq safe.
 453	 */
 454	void		(*submit_request)(struct i915_request *rq);
 455
 456	/* Call when the priority on a request has changed and it and its
 457	 * dependencies may need rescheduling. Note the request itself may
 458	 * not be ready to run!
 459	 *
 460	 * Called under the struct_mutex.
 461	 */
 462	void		(*schedule)(struct i915_request *request, int priority);
 463
 464	/*
 465	 * Cancel all requests on the hardware, or queued for execution.
 466	 * This should only cancel the ready requests that have been
 467	 * submitted to the engine (via the engine->submit_request callback).
 468	 * This is called when marking the device as wedged.
 469	 */
 470	void		(*cancel_requests)(struct intel_engine_cs *engine);
 471
 472	/* Some chipsets are not quite as coherent as advertised and need
 473	 * an expensive kick to force a true read of the up-to-date seqno.
 474	 * However, the up-to-date seqno is not always required and the last
 475	 * seen value is good enough. Note that the seqno will always be
 476	 * monotonic, even if not coherent.
 477	 */
 478	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
 479	void		(*cleanup)(struct intel_engine_cs *engine);
 480
 481	/* GEN8 signal/wait table - never trust comments!
 482	 *	  signal to	signal to    signal to   signal to      signal to
 483	 *	    RCS		   VCS          BCS        VECS		 VCS2
 484	 *      --------------------------------------------------------------------
 485	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
 486	 *	|-------------------------------------------------------------------
 487	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
 488	 *	|-------------------------------------------------------------------
 489	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
 490	 *	|-------------------------------------------------------------------
 491	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
 492	 *	|-------------------------------------------------------------------
 493	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
 494	 *	|-------------------------------------------------------------------
 495	 *
 496	 * Generalization:
 497	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
 498	 *  ie. transpose of g(x, y)
 499	 *
 500	 *	 sync from	sync from    sync from    sync from	sync from
 501	 *	    RCS		   VCS          BCS        VECS		 VCS2
 502	 *      --------------------------------------------------------------------
 503	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
 504	 *	|-------------------------------------------------------------------
 505	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
 506	 *	|-------------------------------------------------------------------
 507	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
 508	 *	|-------------------------------------------------------------------
 509	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
 510	 *	|-------------------------------------------------------------------
 511	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
 512	 *	|-------------------------------------------------------------------
 513	 *
 514	 * Generalization:
 515	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
 516	 *  ie. transpose of f(x, y)
 517	 */
 518	struct {
 519#define GEN6_SEMAPHORE_LAST	VECS_HW
 520#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
 521#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
 522		struct {
 523			/* our mbox written by others */
 524			u32		wait[GEN6_NUM_SEMAPHORES];
 525			/* mboxes this ring signals to */
 526			i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
 527		} mbox;
 528
 529		/* AKA wait() */
 530		int	(*sync_to)(struct i915_request *rq,
 531				   struct i915_request *signal);
 532		u32	*(*signal)(struct i915_request *rq, u32 *cs);
 533	} semaphore;
 534
 535	struct intel_engine_execlists execlists;
 536
 537	/* Contexts are pinned whilst they are active on the GPU. The last
 538	 * context executed remains active whilst the GPU is idle - the
 539	 * switch away and write to the context object only occurs on the
 540	 * next execution.  Contexts are only unpinned on retirement of the
 541	 * following request ensuring that we can always write to the object
 542	 * on the context switch even after idling. Across suspend, we switch
 543	 * to the kernel context and trash it as the save may not happen
 544	 * before the hardware is powered down.
 545	 */
 546	struct i915_gem_context *last_retired_context;
 547
 548	/* We track the current MI_SET_CONTEXT in order to eliminate
 549	 * redudant context switches. This presumes that requests are not
 550	 * reordered! Or when they are the tracking is updated along with
 551	 * the emission of individual requests into the legacy command
 552	 * stream (ring).
 553	 */
 554	struct i915_gem_context *legacy_active_context;
 555	struct i915_hw_ppgtt *legacy_active_ppgtt;
 556
 557	/* status_notifier: list of callbacks for context-switch changes */
 558	struct atomic_notifier_head context_status_notifier;
 559
 560	struct intel_engine_hangcheck hangcheck;
 561
 562#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
 563#define I915_ENGINE_SUPPORTS_STATS   BIT(1)
 564	unsigned int flags;
 565
 566	/*
 567	 * Table of commands the command parser needs to know about
 568	 * for this engine.
 569	 */
 570	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
 571
 572	/*
 573	 * Table of registers allowed in commands that read/write registers.
 574	 */
 575	const struct drm_i915_reg_table *reg_tables;
 576	int reg_table_count;
 577
 578	/*
 579	 * Returns the bitmask for the length field of the specified command.
 580	 * Return 0 for an unrecognized/invalid command.
 581	 *
 582	 * If the command parser finds an entry for a command in the engine's
 583	 * cmd_tables, it gets the command's length based on the table entry.
 584	 * If not, it calls this function to determine the per-engine length
 585	 * field encoding for the command (i.e. different opcode ranges use
 586	 * certain bits to encode the command length in the header).
 587	 */
 588	u32 (*get_cmd_length_mask)(u32 cmd_header);
 589
 590	struct {
 591		/**
 592		 * @lock: Lock protecting the below fields.
 593		 */
 594		spinlock_t lock;
 595		/**
 596		 * @enabled: Reference count indicating number of listeners.
 597		 */
 598		unsigned int enabled;
 599		/**
 600		 * @active: Number of contexts currently scheduled in.
 601		 */
 602		unsigned int active;
 603		/**
 604		 * @enabled_at: Timestamp when busy stats were enabled.
 605		 */
 606		ktime_t enabled_at;
 607		/**
 608		 * @start: Timestamp of the last idle to active transition.
 609		 *
 610		 * Idle is defined as active == 0, active is active > 0.
 611		 */
 612		ktime_t start;
 613		/**
 614		 * @total: Total time this engine was busy.
 615		 *
 616		 * Accumulated time not counting the most recent block in cases
 617		 * where engine is currently busy (active > 0).
 618		 */
 619		ktime_t total;
 620	} stats;
 621};
 622
 623static inline bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine)
 624{
 625	return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
 626}
 627
 628static inline bool intel_engine_supports_stats(struct intel_engine_cs *engine)
 629{
 630	return engine->flags & I915_ENGINE_SUPPORTS_STATS;
 631}
 632
 633static inline void
 634execlists_set_active(struct intel_engine_execlists *execlists,
 635		     unsigned int bit)
 636{
 637	__set_bit(bit, (unsigned long *)&execlists->active);
 638}
 639
 640static inline void
 641execlists_clear_active(struct intel_engine_execlists *execlists,
 642		       unsigned int bit)
 643{
 644	__clear_bit(bit, (unsigned long *)&execlists->active);
 645}
 646
 647static inline bool
 648execlists_is_active(const struct intel_engine_execlists *execlists,
 649		    unsigned int bit)
 650{
 651	return test_bit(bit, (unsigned long *)&execlists->active);
 652}
 653
 654void
 655execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
 656
 657void
 658execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
 659
 660static inline unsigned int
 661execlists_num_ports(const struct intel_engine_execlists * const execlists)
 662{
 663	return execlists->port_mask + 1;
 664}
 665
 666static inline void
 667execlists_port_complete(struct intel_engine_execlists * const execlists,
 668			struct execlist_port * const port)
 669{
 670	const unsigned int m = execlists->port_mask;
 671
 672	GEM_BUG_ON(port_index(port, execlists) != 0);
 673	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
 674
 675	memmove(port, port + 1, m * sizeof(struct execlist_port));
 676	memset(port + m, 0, sizeof(struct execlist_port));
 677}
 678
 679static inline unsigned int
 680intel_engine_flag(const struct intel_engine_cs *engine)
 681{
 682	return BIT(engine->id);
 683}
 684
 685static inline u32
 686intel_read_status_page(const struct intel_engine_cs *engine, int reg)
 
 687{
 688	/* Ensure that the compiler doesn't optimize away the load. */
 689	return READ_ONCE(engine->status_page.page_addr[reg]);
 690}
 691
 692static inline void
 693intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
 694{
 695	/* Writing into the status page should be done sparingly. Since
 696	 * we do when we are uncertain of the device state, we take a bit
 697	 * of extra paranoia to try and ensure that the HWS takes the value
 698	 * we give and that it doesn't end up trapped inside the CPU!
 699	 */
 700	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
 701		mb();
 702		clflush(&engine->status_page.page_addr[reg]);
 703		engine->status_page.page_addr[reg] = value;
 704		clflush(&engine->status_page.page_addr[reg]);
 705		mb();
 706	} else {
 707		WRITE_ONCE(engine->status_page.page_addr[reg], value);
 708	}
 709}
 710
 711/*
 712 * Reads a dword out of the status page, which is written to from the command
 713 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 714 * MI_STORE_DATA_IMM.
 715 *
 716 * The following dwords have a reserved meaning:
 717 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 718 * 0x04: ring 0 head pointer
 719 * 0x05: ring 1 head pointer (915-class)
 720 * 0x06: ring 2 head pointer (915-class)
 721 * 0x10-0x1b: Context status DWords (GM45)
 722 * 0x1f: Last written status offset. (GM45)
 723 * 0x20-0x2f: Reserved (Gen6+)
 724 *
 725 * The area from dword 0x30 to 0x3ff is available for driver usage.
 726 */
 727#define I915_GEM_HWS_INDEX		0x30
 728#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 729#define I915_GEM_HWS_PREEMPT_INDEX	0x32
 730#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 731#define I915_GEM_HWS_SCRATCH_INDEX	0x40
 732#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 733
 734#define I915_HWS_CSB_BUF0_INDEX		0x10
 735#define I915_HWS_CSB_WRITE_INDEX	0x1f
 736#define CNL_HWS_CSB_WRITE_INDEX		0x2f
 737
 738struct intel_ring *
 739intel_engine_create_ring(struct intel_engine_cs *engine, int size);
 740int intel_ring_pin(struct intel_ring *ring,
 741		   struct drm_i915_private *i915,
 742		   unsigned int offset_bias);
 743void intel_ring_reset(struct intel_ring *ring, u32 tail);
 744unsigned int intel_ring_update_space(struct intel_ring *ring);
 745void intel_ring_unpin(struct intel_ring *ring);
 746void intel_ring_free(struct intel_ring *ring);
 747
 748void intel_engine_stop(struct intel_engine_cs *engine);
 749void intel_engine_cleanup(struct intel_engine_cs *engine);
 750
 751void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
 752
 753int __must_check intel_ring_cacheline_align(struct i915_request *rq);
 754
 755int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
 756u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
 757
 758static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
 759{
 760	/* Dummy function.
 761	 *
 762	 * This serves as a placeholder in the code so that the reader
 763	 * can compare against the preceding intel_ring_begin() and
 764	 * check that the number of dwords emitted matches the space
 765	 * reserved for the command packet (i.e. the value passed to
 766	 * intel_ring_begin()).
 767	 */
 768	GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
 769}
 770
 771static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
 772{
 773	return pos & (ring->size - 1);
 774}
 775
 776static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
 777{
 778	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
 779	u32 offset = addr - rq->ring->vaddr;
 780	GEM_BUG_ON(offset > rq->ring->size);
 781	return intel_ring_wrap(rq->ring, offset);
 782}
 783
 784static inline void
 785assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
 786{
 787	/* We could combine these into a single tail operation, but keeping
 788	 * them as seperate tests will help identify the cause should one
 789	 * ever fire.
 790	 */
 791	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
 792	GEM_BUG_ON(tail >= ring->size);
 793
 794	/*
 795	 * "Ring Buffer Use"
 796	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
 797	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
 798	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
 799	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
 800	 * same cacheline, the Head Pointer must not be greater than the Tail
 801	 * Pointer."
 802	 *
 803	 * We use ring->head as the last known location of the actual RING_HEAD,
 804	 * it may have advanced but in the worst case it is equally the same
 805	 * as ring->head and so we should never program RING_TAIL to advance
 806	 * into the same cacheline as ring->head.
 807	 */
 808#define cacheline(a) round_down(a, CACHELINE_BYTES)
 809	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
 810		   tail < ring->head);
 811#undef cacheline
 812}
 813
 814static inline unsigned int
 815intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
 816{
 817	/* Whilst writes to the tail are strictly order, there is no
 818	 * serialisation between readers and the writers. The tail may be
 819	 * read by i915_request_retire() just as it is being updated
 820	 * by execlists, as although the breadcrumb is complete, the context
 821	 * switch hasn't been seen.
 822	 */
 823	assert_ring_tail_valid(ring, tail);
 824	ring->tail = tail;
 825	return tail;
 826}
 827
 828void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
 829
 830void intel_engine_setup_common(struct intel_engine_cs *engine);
 831int intel_engine_init_common(struct intel_engine_cs *engine);
 832int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
 833void intel_engine_cleanup_common(struct intel_engine_cs *engine);
 834
 835int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
 836int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
 837int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
 838int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
 839
 840u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
 841u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
 842
 843static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
 844{
 845	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
 846}
 847
 848static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
 849{
 850	/* We are only peeking at the tail of the submit queue (and not the
 851	 * queue itself) in order to gain a hint as to the current active
 852	 * state of the engine. Callers are not expected to be taking
 853	 * engine->timeline->lock, nor are they expected to be concerned
 854	 * wtih serialising this hint with anything, so document it as
 855	 * a hint and nothing more.
 856	 */
 857	return READ_ONCE(engine->timeline->seqno);
 858}
 859
 860int init_workarounds_ring(struct intel_engine_cs *engine);
 861int intel_ring_workarounds_emit(struct i915_request *rq);
 862
 863void intel_engine_get_instdone(struct intel_engine_cs *engine,
 864			       struct intel_instdone *instdone);
 865
 866/*
 867 * Arbitrary size for largest possible 'add request' sequence. The code paths
 868 * are complex and variable. Empirical measurement shows that the worst case
 869 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 870 * we need to allocate double the largest single packet within that emission
 871 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 872 */
 873#define MIN_SPACE_FOR_ADD_REQUEST 336
 874
 875static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
 876{
 877	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
 878}
 879
 880static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
 881{
 882	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
 883}
 884
 885/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
 886int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
 
 887
 888static inline void intel_wait_init(struct intel_wait *wait,
 889				   struct i915_request *rq)
 890{
 891	wait->tsk = current;
 892	wait->request = rq;
 893}
 894
 895static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
 896{
 897	wait->tsk = current;
 898	wait->seqno = seqno;
 899}
 900
 901static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
 902{
 903	return wait->seqno;
 904}
 905
 906static inline bool
 907intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
 908{
 909	wait->seqno = seqno;
 910	return intel_wait_has_seqno(wait);
 911}
 912
 913static inline bool
 914intel_wait_update_request(struct intel_wait *wait,
 915			  const struct i915_request *rq)
 916{
 917	return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
 918}
 919
 920static inline bool
 921intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
 922{
 923	return wait->seqno == seqno;
 924}
 925
 926static inline bool
 927intel_wait_check_request(const struct intel_wait *wait,
 928			 const struct i915_request *rq)
 929{
 930	return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
 931}
 932
 933static inline bool intel_wait_complete(const struct intel_wait *wait)
 934{
 935	return RB_EMPTY_NODE(&wait->node);
 936}
 937
 938bool intel_engine_add_wait(struct intel_engine_cs *engine,
 939			   struct intel_wait *wait);
 940void intel_engine_remove_wait(struct intel_engine_cs *engine,
 941			      struct intel_wait *wait);
 942void intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
 943void intel_engine_cancel_signaling(struct i915_request *request);
 944
 945static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
 946{
 947	return READ_ONCE(engine->breadcrumbs.irq_wait);
 948}
 949
 950unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
 951#define ENGINE_WAKEUP_WAITER BIT(0)
 952#define ENGINE_WAKEUP_ASLEEP BIT(1)
 953
 954void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
 955void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
 956
 957void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 958void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 959
 960void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
 961void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
 962
 963static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
 964{
 965	memset(batch, 0, 6 * sizeof(u32));
 966
 967	batch[0] = GFX_OP_PIPE_CONTROL(6);
 968	batch[1] = flags;
 969	batch[2] = offset;
 970
 971	return batch + 6;
 972}
 973
 974static inline u32 *
 975gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
 976{
 977	/* We're using qword write, offset should be aligned to 8 bytes. */
 978	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
 979
 980	/* w/a for post sync ops following a GPGPU operation we
 981	 * need a prior CS_STALL, which is emitted by the flush
 982	 * following the batch.
 983	 */
 984	*cs++ = GFX_OP_PIPE_CONTROL(6);
 985	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
 986		PIPE_CONTROL_QW_WRITE;
 987	*cs++ = gtt_offset;
 988	*cs++ = 0;
 989	*cs++ = value;
 990	/* We're thrashing one dword of HWS. */
 991	*cs++ = 0;
 992
 993	return cs;
 994}
 995
 996static inline u32 *
 997gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
 998{
 999	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1000	GEM_BUG_ON(gtt_offset & (1 << 5));
1001	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
1002	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1003
1004	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1005	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
1006	*cs++ = 0;
1007	*cs++ = value;
1008
1009	return cs;
1010}
1011
1012bool intel_engine_is_idle(struct intel_engine_cs *engine);
1013bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1014
1015bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1016
1017void intel_engines_park(struct drm_i915_private *i915);
1018void intel_engines_unpark(struct drm_i915_private *i915);
1019
1020void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1021unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1022
1023bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1024
1025__printf(3, 4)
1026void intel_engine_dump(struct intel_engine_cs *engine,
1027		       struct drm_printer *m,
1028		       const char *header, ...);
1029
1030struct intel_engine_cs *
1031intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
1032
1033static inline void intel_engine_context_in(struct intel_engine_cs *engine)
1034{
1035	unsigned long flags;
1036
1037	if (READ_ONCE(engine->stats.enabled) == 0)
1038		return;
1039
1040	spin_lock_irqsave(&engine->stats.lock, flags);
1041
1042	if (engine->stats.enabled > 0) {
1043		if (engine->stats.active++ == 0)
1044			engine->stats.start = ktime_get();
1045		GEM_BUG_ON(engine->stats.active == 0);
1046	}
1047
1048	spin_unlock_irqrestore(&engine->stats.lock, flags);
1049}
1050
1051static inline void intel_engine_context_out(struct intel_engine_cs *engine)
1052{
1053	unsigned long flags;
1054
1055	if (READ_ONCE(engine->stats.enabled) == 0)
1056		return;
1057
1058	spin_lock_irqsave(&engine->stats.lock, flags);
1059
1060	if (engine->stats.enabled > 0) {
1061		ktime_t last;
1062
1063		if (engine->stats.active && --engine->stats.active == 0) {
1064			/*
1065			 * Decrement the active context count and in case GPU
1066			 * is now idle add up to the running total.
1067			 */
1068			last = ktime_sub(ktime_get(), engine->stats.start);
1069
1070			engine->stats.total = ktime_add(engine->stats.total,
1071							last);
1072		} else if (engine->stats.active == 0) {
1073			/*
1074			 * After turning on engine stats, context out might be
1075			 * the first event in which case we account from the
1076			 * time stats gathering was turned on.
1077			 */
1078			last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1079
1080			engine->stats.total = ktime_add(engine->stats.total,
1081							last);
1082		}
1083	}
1084
1085	spin_unlock_irqrestore(&engine->stats.lock, flags);
1086}
1087
1088int intel_enable_engine_stats(struct intel_engine_cs *engine);
1089void intel_disable_engine_stats(struct intel_engine_cs *engine);
1090
1091ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
1092
1093#endif /* _INTEL_RINGBUFFER_H_ */