Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include "drmP.h"
  31#include "drm.h"
 
 
 
  32#include "i915_drv.h"
  33#include "i915_drm.h"
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37static inline int ring_space(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38{
  39	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  40	if (space < 0)
  41		space += ring->size;
 
 
  42	return space;
  43}
  44
  45static u32 i915_gem_get_seqno(struct drm_device *dev)
 
  46{
  47	drm_i915_private_t *dev_priv = dev->dev_private;
  48	u32 seqno;
 
  49
  50	seqno = dev_priv->next_seqno;
 
  51
  52	/* reserve 0 for non-seqno */
  53	if (++dev_priv->next_seqno == 0)
  54		dev_priv->next_seqno = 1;
  55
  56	return seqno;
 
 
 
 
  57}
  58
  59static int
  60render_ring_flush(struct intel_ring_buffer *ring,
  61		  u32	invalidate_domains,
  62		  u32	flush_domains)
  63{
  64	struct drm_device *dev = ring->dev;
  65	u32 cmd;
  66	int ret;
  67
  68	/*
  69	 * read/write caches:
  70	 *
  71	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  72	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  73	 * also flushed at 2d versus 3d pipeline switches.
  74	 *
  75	 * read-only caches:
  76	 *
  77	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  78	 * MI_READ_FLUSH is set, and is always flushed on 965.
  79	 *
  80	 * I915_GEM_DOMAIN_COMMAND may not exist?
  81	 *
  82	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  83	 * invalidated when MI_EXE_FLUSH is set.
  84	 *
  85	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  86	 * invalidated with every MI_FLUSH.
  87	 *
  88	 * TLBs:
  89	 *
  90	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  91	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  92	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  93	 * are flushed at any MI_FLUSH.
  94	 */
  95
  96	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  97	if ((invalidate_domains|flush_domains) &
  98	    I915_GEM_DOMAIN_RENDER)
  99		cmd &= ~MI_NO_WRITE_FLUSH;
 100	if (INTEL_INFO(dev)->gen < 4) {
 101		/*
 102		 * On the 965, the sampler cache always gets flushed
 103		 * and this bit is reserved.
 104		 */
 105		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
 106			cmd |= MI_READ_FLUSH;
 107	}
 108	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
 109		cmd |= MI_EXE_FLUSH;
 
 
 
 110
 111	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
 112	    (IS_G4X(dev) || IS_GEN5(dev)))
 113		cmd |= MI_INVALIDATE_ISP;
 114
 115	ret = intel_ring_begin(ring, 2);
 116	if (ret)
 117		return ret;
 118
 119	intel_ring_emit(ring, cmd);
 120	intel_ring_emit(ring, MI_NOOP);
 121	intel_ring_advance(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123	return 0;
 124}
 125
 126static void ring_write_tail(struct intel_ring_buffer *ring,
 127			    u32 value)
 128{
 129	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 130	I915_WRITE_TAIL(ring, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
 
 134{
 135	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 136	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
 137			RING_ACTHD(ring->mmio_base) : ACTHD;
 
 
 
 
 
 
 
 
 138
 139	return I915_READ(acthd_reg);
 140}
 141
 142static int init_ring_common(struct intel_ring_buffer *ring)
 
 143{
 144	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 145	struct drm_i915_gem_object *obj = ring->obj;
 146	u32 head;
 
 
 
 
 
 
 
 
 
 
 147
 148	/* Stop the ring if it's running. */
 149	I915_WRITE_CTL(ring, 0);
 150	I915_WRITE_HEAD(ring, 0);
 151	ring->write_tail(ring, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	/* Initialize the ring. */
 154	I915_WRITE_START(ring, obj->gtt_offset);
 155	head = I915_READ_HEAD(ring) & HEAD_ADDR;
 156
 157	/* G45 ring initialization fails to reset head to zero */
 158	if (head != 0) {
 159		DRM_DEBUG_KMS("%s head not reset to zero "
 160			      "ctl %08x head %08x tail %08x start %08x\n",
 161			      ring->name,
 162			      I915_READ_CTL(ring),
 163			      I915_READ_HEAD(ring),
 164			      I915_READ_TAIL(ring),
 165			      I915_READ_START(ring));
 
 
 
 
 
 
 166
 167		I915_WRITE_HEAD(ring, 0);
 
 168
 169		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
 170			DRM_ERROR("failed to set %s head to zero "
 171				  "ctl %08x head %08x tail %08x start %08x\n",
 172				  ring->name,
 173				  I915_READ_CTL(ring),
 174				  I915_READ_HEAD(ring),
 175				  I915_READ_TAIL(ring),
 176				  I915_READ_START(ring));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177		}
 
 
 
 
 178	}
 179
 180	I915_WRITE_CTL(ring,
 181			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
 182			| RING_REPORT_64K | RING_VALID);
 183
 184	/* If the head is still not zero, the ring is dead */
 185	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
 186	    I915_READ_START(ring) != obj->gtt_offset ||
 187	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
 188		DRM_ERROR("%s initialization failed "
 189				"ctl %08x head %08x tail %08x start %08x\n",
 190				ring->name,
 191				I915_READ_CTL(ring),
 192				I915_READ_HEAD(ring),
 193				I915_READ_TAIL(ring),
 194				I915_READ_START(ring));
 195		return -EIO;
 
 
 
 
 
 
 196	}
 
 197
 198	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
 199		i915_kernel_lost_context(ring->dev);
 200	else {
 201		ring->head = I915_READ_HEAD(ring);
 202		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
 203		ring->space = ring_space(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 211 * over cache flushing.
 212 */
 213struct pipe_control {
 214	struct drm_i915_gem_object *obj;
 215	volatile u32 *cpu_page;
 216	u32 gtt_offset;
 217};
 218
 219static int
 220init_pipe_control(struct intel_ring_buffer *ring)
 
 
 
 
 
 221{
 222	struct pipe_control *pc;
 223	struct drm_i915_gem_object *obj;
 224	int ret;
 225
 226	if (ring->private)
 227		return 0;
 228
 229	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
 230	if (!pc)
 231		return -ENOMEM;
 232
 233	obj = i915_gem_alloc_object(ring->dev, 4096);
 234	if (obj == NULL) {
 235		DRM_ERROR("Failed to allocate seqno page\n");
 236		ret = -ENOMEM;
 237		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 238	}
 239
 240	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
 
 
 
 241
 242	ret = i915_gem_object_pin(obj, 4096, true);
 243	if (ret)
 244		goto err_unref;
 245
 246	pc->gtt_offset = obj->gtt_offset;
 247	pc->cpu_page =  kmap(obj->pages[0]);
 248	if (pc->cpu_page == NULL)
 249		goto err_unpin;
 250
 251	pc->obj = obj;
 252	ring->private = pc;
 253	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255err_unpin:
 256	i915_gem_object_unpin(obj);
 257err_unref:
 258	drm_gem_object_unreference(&obj->base);
 259err:
 260	kfree(pc);
 261	return ret;
 262}
 263
 264static void
 265cleanup_pipe_control(struct intel_ring_buffer *ring)
 266{
 267	struct pipe_control *pc = ring->private;
 268	struct drm_i915_gem_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 269
 270	if (!ring->private)
 271		return;
 272
 273	obj = pc->obj;
 274	kunmap(obj->pages[0]);
 275	i915_gem_object_unpin(obj);
 276	drm_gem_object_unreference(&obj->base);
 277
 278	kfree(pc);
 279	ring->private = NULL;
 280}
 281
 282static int init_render_ring(struct intel_ring_buffer *ring)
 283{
 284	struct drm_device *dev = ring->dev;
 285	struct drm_i915_private *dev_priv = dev->dev_private;
 286	int ret = init_ring_common(ring);
 287
 288	if (INTEL_INFO(dev)->gen > 3) {
 289		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
 290		if (IS_GEN6(dev) || IS_GEN7(dev))
 291			mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
 292		I915_WRITE(MI_MODE, mode);
 293		if (IS_GEN7(dev))
 294			I915_WRITE(GFX_MODE_GEN7,
 295				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
 296				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
 297	}
 298
 299	if (INTEL_INFO(dev)->gen >= 6) {
 300	} else if (IS_GEN5(dev)) {
 301		ret = init_pipe_control(ring);
 302		if (ret)
 303			return ret;
 304	}
 305
 306	return ret;
 307}
 308
 309static void render_ring_cleanup(struct intel_ring_buffer *ring)
 
 310{
 311	if (!ring->private)
 312		return;
 
 
 
 
 
 313
 314	cleanup_pipe_control(ring);
 315}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316
 317static void
 318update_semaphore(struct intel_ring_buffer *ring, int i, u32 seqno)
 319{
 320	struct drm_device *dev = ring->dev;
 321	struct drm_i915_private *dev_priv = dev->dev_private;
 322	int id;
 
 
 
 
 
 
 
 323
 324	/*
 325	 * cs -> 1 = vcs, 0 = bcs
 326	 * vcs -> 1 = bcs, 0 = cs,
 327	 * bcs -> 1 = cs, 0 = vcs.
 328	 */
 329	id = ring - dev_priv->ring;
 330	id += 2 - i;
 331	id %= 3;
 332
 333	intel_ring_emit(ring,
 334			MI_SEMAPHORE_MBOX |
 335			MI_SEMAPHORE_REGISTER |
 336			MI_SEMAPHORE_UPDATE);
 337	intel_ring_emit(ring, seqno);
 338	intel_ring_emit(ring,
 339			RING_SYNC_0(dev_priv->ring[id].mmio_base) + 4*i);
 340}
 341
 342static int
 343gen6_add_request(struct intel_ring_buffer *ring,
 344		 u32 *result)
 345{
 346	u32 seqno;
 347	int ret;
 348
 349	ret = intel_ring_begin(ring, 10);
 350	if (ret)
 351		return ret;
 352
 353	seqno = i915_gem_get_seqno(ring->dev);
 354	update_semaphore(ring, 0, seqno);
 355	update_semaphore(ring, 1, seqno);
 356
 357	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 358	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 359	intel_ring_emit(ring, seqno);
 360	intel_ring_emit(ring, MI_USER_INTERRUPT);
 361	intel_ring_advance(ring);
 362
 363	*result = seqno;
 364	return 0;
 365}
 366
 367int
 368intel_ring_sync(struct intel_ring_buffer *ring,
 369		struct intel_ring_buffer *to,
 370		u32 seqno)
 371{
 372	int ret;
 373
 374	ret = intel_ring_begin(ring, 4);
 375	if (ret)
 376		return ret;
 377
 378	intel_ring_emit(ring,
 379			MI_SEMAPHORE_MBOX |
 380			MI_SEMAPHORE_REGISTER |
 381			intel_ring_sync_index(ring, to) << 17 |
 382			MI_SEMAPHORE_COMPARE);
 383	intel_ring_emit(ring, seqno);
 384	intel_ring_emit(ring, 0);
 385	intel_ring_emit(ring, MI_NOOP);
 386	intel_ring_advance(ring);
 
 
 
 387
 388	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389}
 390
 391#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
 392do {									\
 393	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |		\
 394		 PIPE_CONTROL_DEPTH_STALL | 2);				\
 395	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
 396	intel_ring_emit(ring__, 0);							\
 397	intel_ring_emit(ring__, 0);							\
 398} while (0)
 
 399
 400static int
 401pc_render_add_request(struct intel_ring_buffer *ring,
 402		      u32 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403{
 404	struct drm_device *dev = ring->dev;
 405	u32 seqno = i915_gem_get_seqno(dev);
 406	struct pipe_control *pc = ring->private;
 407	u32 scratch_addr = pc->gtt_offset + 128;
 408	int ret;
 409
 410	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
 411	 * incoherent with writes to memory, i.e. completely fubar,
 412	 * so we need to use PIPE_NOTIFY instead.
 413	 *
 414	 * However, we also need to workaround the qword write
 415	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
 416	 * memory before requesting an interrupt.
 417	 */
 418	ret = intel_ring_begin(ring, 32);
 419	if (ret)
 420		return ret;
 421
 422	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
 423			PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH);
 424	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 425	intel_ring_emit(ring, seqno);
 426	intel_ring_emit(ring, 0);
 427	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 428	scratch_addr += 128; /* write to separate cachelines */
 429	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 430	scratch_addr += 128;
 431	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 432	scratch_addr += 128;
 433	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 434	scratch_addr += 128;
 435	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 436	scratch_addr += 128;
 437	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 438	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
 439			PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH |
 440			PIPE_CONTROL_NOTIFY);
 441	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 442	intel_ring_emit(ring, seqno);
 443	intel_ring_emit(ring, 0);
 444	intel_ring_advance(ring);
 445
 446	*result = seqno;
 447	return 0;
 448}
 449
 450static int
 451render_ring_add_request(struct intel_ring_buffer *ring,
 452			u32 *result)
 453{
 454	struct drm_device *dev = ring->dev;
 455	u32 seqno = i915_gem_get_seqno(dev);
 456	int ret;
 457
 458	ret = intel_ring_begin(ring, 4);
 459	if (ret)
 460		return ret;
 461
 462	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 463	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 464	intel_ring_emit(ring, seqno);
 465	intel_ring_emit(ring, MI_USER_INTERRUPT);
 466	intel_ring_advance(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468	*result = seqno;
 469	return 0;
 470}
 471
 472static u32
 473ring_get_seqno(struct intel_ring_buffer *ring)
 474{
 475	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 
 
 
 
 
 
 
 
 
 
 
 
 476}
 477
 478static u32
 479pc_render_get_seqno(struct intel_ring_buffer *ring)
 480{
 481	struct pipe_control *pc = ring->private;
 482	return pc->cpu_page[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483}
 484
 485static void
 486ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
 487{
 488	dev_priv->gt_irq_mask &= ~mask;
 489	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 490	POSTING_READ(GTIMR);
 491}
 492
 493static void
 494ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
 495{
 496	dev_priv->gt_irq_mask |= mask;
 497	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 498	POSTING_READ(GTIMR);
 499}
 500
 501static void
 502i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
 503{
 504	dev_priv->irq_mask &= ~mask;
 
 
 505	I915_WRITE(IMR, dev_priv->irq_mask);
 506	POSTING_READ(IMR);
 507}
 508
 509static void
 510i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
 511{
 512	dev_priv->irq_mask |= mask;
 
 
 513	I915_WRITE(IMR, dev_priv->irq_mask);
 514	POSTING_READ(IMR);
 515}
 516
 517static bool
 518render_ring_get_irq(struct intel_ring_buffer *ring)
 519{
 520	struct drm_device *dev = ring->dev;
 521	drm_i915_private_t *dev_priv = dev->dev_private;
 522
 523	if (!dev->irq_enabled)
 524		return false;
 
 
 525
 526	spin_lock(&ring->irq_lock);
 527	if (ring->irq_refcount++ == 0) {
 528		if (HAS_PCH_SPLIT(dev))
 529			ironlake_enable_irq(dev_priv,
 530					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
 531		else
 532			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
 533	}
 534	spin_unlock(&ring->irq_lock);
 535
 536	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537}
 538
 539static void
 540render_ring_put_irq(struct intel_ring_buffer *ring)
 541{
 542	struct drm_device *dev = ring->dev;
 543	drm_i915_private_t *dev_priv = dev->dev_private;
 544
 545	spin_lock(&ring->irq_lock);
 546	if (--ring->irq_refcount == 0) {
 547		if (HAS_PCH_SPLIT(dev))
 548			ironlake_disable_irq(dev_priv,
 549					     GT_USER_INTERRUPT |
 550					     GT_PIPE_NOTIFY);
 551		else
 552			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
 553	}
 554	spin_unlock(&ring->irq_lock);
 555}
 556
 557void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
 
 558{
 559	struct drm_device *dev = ring->dev;
 560	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 561	u32 mmio = 0;
 562
 563	/* The ring status page addresses are no longer next to the rest of
 564	 * the ring registers as of gen7.
 565	 */
 566	if (IS_GEN7(dev)) {
 567		switch (ring->id) {
 568		case RING_RENDER:
 569			mmio = RENDER_HWS_PGA_GEN7;
 570			break;
 571		case RING_BLT:
 572			mmio = BLT_HWS_PGA_GEN7;
 573			break;
 574		case RING_BSD:
 575			mmio = BSD_HWS_PGA_GEN7;
 576			break;
 577		}
 578	} else if (IS_GEN6(ring->dev)) {
 579		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
 580	} else {
 581		mmio = RING_HWS_PGA(ring->mmio_base);
 582	}
 583
 584	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
 585	POSTING_READ(mmio);
 
 
 
 
 
 586}
 587
 588static int
 589bsd_ring_flush(struct intel_ring_buffer *ring,
 590	       u32     invalidate_domains,
 591	       u32     flush_domains)
 592{
 593	int ret;
 594
 595	ret = intel_ring_begin(ring, 2);
 596	if (ret)
 597		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598
 599	intel_ring_emit(ring, MI_FLUSH);
 600	intel_ring_emit(ring, MI_NOOP);
 601	intel_ring_advance(ring);
 602	return 0;
 603}
 604
 
 
 
 
 605static int
 606ring_add_request(struct intel_ring_buffer *ring,
 607		 u32 *result)
 608{
 609	u32 seqno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	int ret;
 611
 612	ret = intel_ring_begin(ring, 4);
 613	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614		return ret;
 615
 616	seqno = i915_gem_get_seqno(ring->dev);
 
 
 
 
 
 617
 618	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 619	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 620	intel_ring_emit(ring, seqno);
 621	intel_ring_emit(ring, MI_USER_INTERRUPT);
 622	intel_ring_advance(ring);
 623
 624	*result = seqno;
 625	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 626}
 627
 628static bool
 629gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
 630{
 631	struct drm_device *dev = ring->dev;
 632	drm_i915_private_t *dev_priv = dev->dev_private;
 633
 634	if (!dev->irq_enabled)
 635	       return false;
 636
 637	spin_lock(&ring->irq_lock);
 638	if (ring->irq_refcount++ == 0) {
 639		ring->irq_mask &= ~rflag;
 640		I915_WRITE_IMR(ring, ring->irq_mask);
 641		ironlake_enable_irq(dev_priv, gflag);
 642	}
 643	spin_unlock(&ring->irq_lock);
 644
 645	return true;
 
 646}
 647
 648static void
 649gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
 650{
 651	struct drm_device *dev = ring->dev;
 652	drm_i915_private_t *dev_priv = dev->dev_private;
 653
 654	spin_lock(&ring->irq_lock);
 655	if (--ring->irq_refcount == 0) {
 656		ring->irq_mask |= rflag;
 657		I915_WRITE_IMR(ring, ring->irq_mask);
 658		ironlake_disable_irq(dev_priv, gflag);
 659	}
 660	spin_unlock(&ring->irq_lock);
 661}
 662
 663static bool
 664bsd_ring_get_irq(struct intel_ring_buffer *ring)
 665{
 666	struct drm_device *dev = ring->dev;
 667	drm_i915_private_t *dev_priv = dev->dev_private;
 668
 669	if (!dev->irq_enabled)
 670		return false;
 
 671
 672	spin_lock(&ring->irq_lock);
 673	if (ring->irq_refcount++ == 0) {
 674		if (IS_G4X(dev))
 675			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
 676		else
 677			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
 678	}
 679	spin_unlock(&ring->irq_lock);
 680
 681	return true;
 
 
 682}
 683static void
 684bsd_ring_put_irq(struct intel_ring_buffer *ring)
 
 685{
 686	struct drm_device *dev = ring->dev;
 687	drm_i915_private_t *dev_priv = dev->dev_private;
 688
 689	spin_lock(&ring->irq_lock);
 690	if (--ring->irq_refcount == 0) {
 691		if (IS_G4X(dev))
 692			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
 693		else
 694			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695	}
 696	spin_unlock(&ring->irq_lock);
 
 
 697}
 698
 699static int
 700ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
 701{
 702	int ret;
 703
 704	ret = intel_ring_begin(ring, 2);
 705	if (ret)
 706		return ret;
 707
 708	intel_ring_emit(ring,
 709			MI_BATCH_BUFFER_START | (2 << 6) |
 710			MI_BATCH_NON_SECURE_I965);
 711	intel_ring_emit(ring, offset);
 712	intel_ring_advance(ring);
 713
 714	return 0;
 715}
 716
 717static int
 718render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
 719				u32 offset, u32 len)
 720{
 721	struct drm_device *dev = ring->dev;
 722	int ret;
 723
 724	if (IS_I830(dev) || IS_845G(dev)) {
 725		ret = intel_ring_begin(ring, 4);
 726		if (ret)
 727			return ret;
 728
 729		intel_ring_emit(ring, MI_BATCH_BUFFER);
 730		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
 731		intel_ring_emit(ring, offset + len - 8);
 732		intel_ring_emit(ring, 0);
 733	} else {
 734		ret = intel_ring_begin(ring, 2);
 735		if (ret)
 736			return ret;
 737
 738		if (INTEL_INFO(dev)->gen >= 4) {
 739			intel_ring_emit(ring,
 740					MI_BATCH_BUFFER_START | (2 << 6) |
 741					MI_BATCH_NON_SECURE_I965);
 742			intel_ring_emit(ring, offset);
 743		} else {
 744			intel_ring_emit(ring,
 745					MI_BATCH_BUFFER_START | (2 << 6));
 746			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
 747		}
 748	}
 749	intel_ring_advance(ring);
 750
 751	return 0;
 
 752}
 753
 754static void cleanup_status_page(struct intel_ring_buffer *ring)
 
 755{
 756	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 757	struct drm_i915_gem_object *obj;
 
 
 758
 759	obj = ring->status_page.obj;
 760	if (obj == NULL)
 761		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763	kunmap(obj->pages[0]);
 764	i915_gem_object_unpin(obj);
 765	drm_gem_object_unreference(&obj->base);
 766	ring->status_page.obj = NULL;
 
 
 
 767
 768	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
 
 
 
 
 769}
 770
 771static int init_status_page(struct intel_ring_buffer *ring)
 
 
 772{
 773	struct drm_device *dev = ring->dev;
 774	drm_i915_private_t *dev_priv = dev->dev_private;
 775	struct drm_i915_gem_object *obj;
 776	int ret;
 777
 778	obj = i915_gem_alloc_object(dev, 4096);
 779	if (obj == NULL) {
 780		DRM_ERROR("Failed to allocate status page\n");
 781		ret = -ENOMEM;
 782		goto err;
 783	}
 784
 785	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
 
 
 
 
 
 
 
 
 
 
 
 786
 787	ret = i915_gem_object_pin(obj, 4096, true);
 788	if (ret != 0) {
 789		goto err_unref;
 790	}
 791
 792	ring->status_page.gfx_addr = obj->gtt_offset;
 793	ring->status_page.page_addr = kmap(obj->pages[0]);
 794	if (ring->status_page.page_addr == NULL) {
 795		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
 796		goto err_unpin;
 
 797	}
 798	ring->status_page.obj = obj;
 799	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
 800
 801	intel_ring_setup_status_page(ring);
 802	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
 803			ring->name, ring->status_page.gfx_addr);
 804
 805	return 0;
 
 
 806
 807err_unpin:
 808	i915_gem_object_unpin(obj);
 809err_unref:
 810	drm_gem_object_unreference(&obj->base);
 811err:
 812	return ret;
 
 813}
 814
 815int intel_init_ring_buffer(struct drm_device *dev,
 816			   struct intel_ring_buffer *ring)
 817{
 818	struct drm_i915_gem_object *obj;
 819	int ret;
 820
 821	ring->dev = dev;
 822	INIT_LIST_HEAD(&ring->active_list);
 823	INIT_LIST_HEAD(&ring->request_list);
 824	INIT_LIST_HEAD(&ring->gpu_write_list);
 825
 826	init_waitqueue_head(&ring->irq_queue);
 827	spin_lock_init(&ring->irq_lock);
 828	ring->irq_mask = ~0;
 829
 830	if (I915_NEED_GFX_HWS(dev)) {
 831		ret = init_status_page(ring);
 832		if (ret)
 833			return ret;
 834	}
 835
 836	obj = i915_gem_alloc_object(dev, ring->size);
 837	if (obj == NULL) {
 838		DRM_ERROR("Failed to allocate ringbuffer\n");
 839		ret = -ENOMEM;
 840		goto err_hws;
 841	}
 842
 843	ring->obj = obj;
 
 
 
 844
 845	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
 846	if (ret)
 847		goto err_unref;
 
 
 848
 849	ring->map.size = ring->size;
 850	ring->map.offset = dev->agp->base + obj->gtt_offset;
 851	ring->map.type = 0;
 852	ring->map.flags = 0;
 853	ring->map.mtrr = 0;
 854
 855	drm_core_ioremap_wc(&ring->map, dev);
 856	if (ring->map.handle == NULL) {
 857		DRM_ERROR("Failed to map ringbuffer.\n");
 858		ret = -EINVAL;
 859		goto err_unpin;
 860	}
 861
 862	ring->virtual_start = ring->map.handle;
 863	ret = ring->init(ring);
 864	if (ret)
 865		goto err_unmap;
 866
 867	/* Workaround an erratum on the i830 which causes a hang if
 868	 * the TAIL pointer points to within the last 2 cachelines
 869	 * of the buffer.
 870	 */
 871	ring->effective_size = ring->size;
 872	if (IS_I830(ring->dev))
 873		ring->effective_size -= 128;
 874
 875	return 0;
 876
 877err_unmap:
 878	drm_core_ioremapfree(&ring->map, dev);
 879err_unpin:
 880	i915_gem_object_unpin(obj);
 881err_unref:
 882	drm_gem_object_unreference(&obj->base);
 883	ring->obj = NULL;
 884err_hws:
 885	cleanup_status_page(ring);
 886	return ret;
 887}
 888
 889void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
 890{
 891	struct drm_i915_private *dev_priv;
 892	int ret;
 893
 894	if (ring->obj == NULL)
 895		return;
 896
 897	/* Disable the ring buffer. The ring must be idle at this point */
 898	dev_priv = ring->dev->dev_private;
 899	ret = intel_wait_ring_idle(ring);
 900	if (ret)
 901		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
 902			  ring->name, ret);
 903
 904	I915_WRITE_CTL(ring, 0);
 
 905
 906	drm_core_ioremapfree(&ring->map, ring->dev);
 907
 908	i915_gem_object_unpin(ring->obj);
 909	drm_gem_object_unreference(&ring->obj->base);
 910	ring->obj = NULL;
 911
 912	if (ring->cleanup)
 913		ring->cleanup(ring);
 
 
 914
 915	cleanup_status_page(ring);
 
 
 916}
 917
 918static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
 919{
 920	unsigned int *virt;
 921	int rem = ring->size - ring->tail;
 
 
 
 
 
 
 
 
 922
 923	if (ring->space < rem) {
 924		int ret = intel_wait_ring_buffer(ring, rem);
 925		if (ret)
 926			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927	}
 928
 929	virt = (unsigned int *)(ring->virtual_start + ring->tail);
 930	rem /= 8;
 931	while (rem--) {
 932		*virt++ = MI_NOOP;
 933		*virt++ = MI_NOOP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	}
 935
 936	ring->tail = 0;
 937	ring->space = ring_space(ring);
 938
 939	return 0;
 940}
 941
 942int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
 943{
 944	struct drm_device *dev = ring->dev;
 945	struct drm_i915_private *dev_priv = dev->dev_private;
 946	unsigned long end;
 947	u32 head;
 
 
 
 
 
 948
 949	/* If the reported head position has wrapped or hasn't advanced,
 950	 * fallback to the slow and accurate path.
 
 
 951	 */
 952	head = intel_read_status_page(ring, 4);
 953	if (head > ring->head) {
 954		ring->head = head;
 955		ring->space = ring_space(ring);
 956		if (ring->space >= n)
 957			return 0;
 958	}
 
 
 959
 960	trace_i915_ring_wait_begin(ring);
 961	end = jiffies + 3 * HZ;
 962	do {
 963		ring->head = I915_READ_HEAD(ring);
 964		ring->space = ring_space(ring);
 965		if (ring->space >= n) {
 966			trace_i915_ring_wait_end(ring);
 967			return 0;
 968		}
 969
 970		if (dev->primary->master) {
 971			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
 972			if (master_priv->sarea_priv)
 973				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974		}
 975
 976		msleep(1);
 977		if (atomic_read(&dev_priv->mm.wedged))
 978			return -EAGAIN;
 979	} while (!time_after(jiffies, end));
 980	trace_i915_ring_wait_end(ring);
 981	return -EBUSY;
 
 
 
 
 
 982}
 983
 984int intel_ring_begin(struct intel_ring_buffer *ring,
 985		     int num_dwords)
 986{
 987	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 988	int n = 4*num_dwords;
 989	int ret;
 990
 991	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
 992		return -EIO;
 993
 994	if (unlikely(ring->tail + n > ring->effective_size)) {
 995		ret = intel_wrap_ring_buffer(ring);
 996		if (unlikely(ret))
 997			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998	}
 999
1000	if (unlikely(ring->space < n)) {
1001		ret = intel_wait_ring_buffer(ring, n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002		if (unlikely(ret))
1003			return ret;
1004	}
1005
1006	ring->space -= n;
1007	return 0;
1008}
1009
1010void intel_ring_advance(struct intel_ring_buffer *ring)
1011{
1012	ring->tail &= ring->size - 1;
1013	ring->write_tail(ring, ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014}
1015
1016static const struct intel_ring_buffer render_ring = {
1017	.name			= "render ring",
1018	.id			= RING_RENDER,
1019	.mmio_base		= RENDER_RING_BASE,
1020	.size			= 32 * PAGE_SIZE,
1021	.init			= init_render_ring,
1022	.write_tail		= ring_write_tail,
1023	.flush			= render_ring_flush,
1024	.add_request		= render_ring_add_request,
1025	.get_seqno		= ring_get_seqno,
1026	.irq_get		= render_ring_get_irq,
1027	.irq_put		= render_ring_put_irq,
1028	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1029       .cleanup			= render_ring_cleanup,
1030};
1031
1032/* ring buffer for bit-stream decoder */
1033
1034static const struct intel_ring_buffer bsd_ring = {
1035	.name                   = "bsd ring",
1036	.id			= RING_BSD,
1037	.mmio_base		= BSD_RING_BASE,
1038	.size			= 32 * PAGE_SIZE,
1039	.init			= init_ring_common,
1040	.write_tail		= ring_write_tail,
1041	.flush			= bsd_ring_flush,
1042	.add_request		= ring_add_request,
1043	.get_seqno		= ring_get_seqno,
1044	.irq_get		= bsd_ring_get_irq,
1045	.irq_put		= bsd_ring_put_irq,
1046	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1047};
1048
 
 
1049
1050static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1051				     u32 value)
1052{
1053       drm_i915_private_t *dev_priv = ring->dev->dev_private;
 
 
1054
1055       /* Every tail move must follow the sequence below */
1056       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1057	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1058	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1059       I915_WRITE(GEN6_BSD_RNCID, 0x0);
1060
1061       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1062                               GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
1063                       50))
1064               DRM_ERROR("timed out waiting for IDLE Indicator\n");
1065
1066       I915_WRITE_TAIL(ring, value);
1067       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1068	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1069	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072static int gen6_ring_flush(struct intel_ring_buffer *ring,
1073			   u32 invalidate, u32 flush)
1074{
1075	uint32_t cmd;
1076	int ret;
1077
1078	ret = intel_ring_begin(ring, 4);
1079	if (ret)
1080		return ret;
1081
1082	cmd = MI_FLUSH_DW;
1083	if (invalidate & I915_GEM_GPU_DOMAINS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1085	intel_ring_emit(ring, cmd);
1086	intel_ring_emit(ring, 0);
1087	intel_ring_emit(ring, 0);
1088	intel_ring_emit(ring, MI_NOOP);
1089	intel_ring_advance(ring);
 
1090	return 0;
1091}
1092
1093static int
1094gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1095			      u32 offset, u32 len)
1096{
1097       int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1098
1099       ret = intel_ring_begin(ring, 2);
1100       if (ret)
1101	       return ret;
1102
1103       intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1104       /* bit0-7 is the length on GEN6+ */
1105       intel_ring_emit(ring, offset);
1106       intel_ring_advance(ring);
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108       return 0;
1109}
1110
1111static bool
1112gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
 
1113{
1114	return gen6_ring_get_irq(ring,
1115				 GT_USER_INTERRUPT,
1116				 GEN6_RENDER_USER_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117}
1118
1119static void
1120gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1121{
1122	return gen6_ring_put_irq(ring,
1123				 GT_USER_INTERRUPT,
1124				 GEN6_RENDER_USER_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125}
1126
1127static bool
1128gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1129{
1130	return gen6_ring_get_irq(ring,
1131				 GT_GEN6_BSD_USER_INTERRUPT,
1132				 GEN6_BSD_USER_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133}
1134
1135static void
1136gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1137{
1138	return gen6_ring_put_irq(ring,
1139				 GT_GEN6_BSD_USER_INTERRUPT,
1140				 GEN6_BSD_USER_INTERRUPT);
1141}
1142
1143/* ring buffer for Video Codec for Gen6+ */
1144static const struct intel_ring_buffer gen6_bsd_ring = {
1145	.name			= "gen6 bsd ring",
1146	.id			= RING_BSD,
1147	.mmio_base		= GEN6_BSD_RING_BASE,
1148	.size			= 32 * PAGE_SIZE,
1149	.init			= init_ring_common,
1150	.write_tail		= gen6_bsd_ring_write_tail,
1151	.flush			= gen6_ring_flush,
1152	.add_request		= gen6_add_request,
1153	.get_seqno		= ring_get_seqno,
1154	.irq_get		= gen6_bsd_ring_get_irq,
1155	.irq_put		= gen6_bsd_ring_put_irq,
1156	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1157};
1158
1159/* Blitter support (SandyBridge+) */
 
 
1160
1161static bool
1162blt_ring_get_irq(struct intel_ring_buffer *ring)
1163{
1164	return gen6_ring_get_irq(ring,
1165				 GT_BLT_USER_INTERRUPT,
1166				 GEN6_BLITTER_USER_INTERRUPT);
1167}
1168
1169static void
1170blt_ring_put_irq(struct intel_ring_buffer *ring)
1171{
1172	gen6_ring_put_irq(ring,
1173			  GT_BLT_USER_INTERRUPT,
1174			  GEN6_BLITTER_USER_INTERRUPT);
1175}
1176
 
 
1177
1178/* Workaround for some stepping of SNB,
1179 * each time when BLT engine ring tail moved,
1180 * the first command in the ring to be parsed
1181 * should be MI_BATCH_BUFFER_START
1182 */
1183#define NEED_BLT_WORKAROUND(dev) \
1184	(IS_GEN6(dev) && (dev->pdev->revision < 8))
1185
1186static inline struct drm_i915_gem_object *
1187to_blt_workaround(struct intel_ring_buffer *ring)
1188{
1189	return ring->private;
1190}
1191
1192static int blt_ring_init(struct intel_ring_buffer *ring)
1193{
1194	if (NEED_BLT_WORKAROUND(ring->dev)) {
1195		struct drm_i915_gem_object *obj;
1196		u32 *ptr;
1197		int ret;
1198
1199		obj = i915_gem_alloc_object(ring->dev, 4096);
1200		if (obj == NULL)
1201			return -ENOMEM;
1202
1203		ret = i915_gem_object_pin(obj, 4096, true);
1204		if (ret) {
1205			drm_gem_object_unreference(&obj->base);
1206			return ret;
1207		}
1208
1209		ptr = kmap(obj->pages[0]);
1210		*ptr++ = MI_BATCH_BUFFER_END;
1211		*ptr++ = MI_NOOP;
1212		kunmap(obj->pages[0]);
1213
1214		ret = i915_gem_object_set_to_gtt_domain(obj, false);
1215		if (ret) {
1216			i915_gem_object_unpin(obj);
1217			drm_gem_object_unreference(&obj->base);
1218			return ret;
1219		}
1220
1221		ring->private = obj;
 
 
 
1222	}
1223
1224	return init_ring_common(ring);
 
 
 
 
 
 
 
 
 
1225}
1226
1227static int blt_ring_begin(struct intel_ring_buffer *ring,
1228			  int num_dwords)
1229{
1230	if (ring->private) {
1231		int ret = intel_ring_begin(ring, num_dwords+2);
1232		if (ret)
1233			return ret;
1234
1235		intel_ring_emit(ring, MI_BATCH_BUFFER_START);
1236		intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);
1237
1238		return 0;
1239	} else
1240		return intel_ring_begin(ring, 4);
1241}
1242
1243static int blt_ring_flush(struct intel_ring_buffer *ring,
1244			  u32 invalidate, u32 flush)
1245{
1246	uint32_t cmd;
1247	int ret;
 
 
 
 
 
 
 
 
 
1248
1249	ret = blt_ring_begin(ring, 4);
 
 
 
 
 
1250	if (ret)
1251		return ret;
1252
1253	cmd = MI_FLUSH_DW;
1254	if (invalidate & I915_GEM_DOMAIN_RENDER)
1255		cmd |= MI_INVALIDATE_TLB;
1256	intel_ring_emit(ring, cmd);
1257	intel_ring_emit(ring, 0);
1258	intel_ring_emit(ring, 0);
1259	intel_ring_emit(ring, MI_NOOP);
1260	intel_ring_advance(ring);
 
 
1261	return 0;
1262}
1263
1264static void blt_ring_cleanup(struct intel_ring_buffer *ring)
1265{
1266	if (!ring->private)
1267		return;
1268
1269	i915_gem_object_unpin(ring->private);
1270	drm_gem_object_unreference(ring->private);
1271	ring->private = NULL;
1272}
1273
1274static const struct intel_ring_buffer gen6_blt_ring = {
1275       .name			= "blt ring",
1276       .id			= RING_BLT,
1277       .mmio_base		= BLT_RING_BASE,
1278       .size			= 32 * PAGE_SIZE,
1279       .init			= blt_ring_init,
1280       .write_tail		= ring_write_tail,
1281       .flush			= blt_ring_flush,
1282       .add_request		= gen6_add_request,
1283       .get_seqno		= ring_get_seqno,
1284       .irq_get			= blt_ring_get_irq,
1285       .irq_put			= blt_ring_put_irq,
1286       .dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1287       .cleanup			= blt_ring_cleanup,
1288};
1289
1290int intel_init_render_ring_buffer(struct drm_device *dev)
1291{
1292	drm_i915_private_t *dev_priv = dev->dev_private;
1293	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1294
1295	*ring = render_ring;
1296	if (INTEL_INFO(dev)->gen >= 6) {
1297		ring->add_request = gen6_add_request;
1298		ring->irq_get = gen6_render_ring_get_irq;
1299		ring->irq_put = gen6_render_ring_put_irq;
1300	} else if (IS_GEN5(dev)) {
1301		ring->add_request = pc_render_add_request;
1302		ring->get_seqno = pc_render_get_seqno;
1303	}
1304
1305	if (!I915_NEED_GFX_HWS(dev)) {
1306		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1307		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1308	}
1309
1310	return intel_init_ring_buffer(dev, ring);
1311}
1312
1313int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1314{
1315	drm_i915_private_t *dev_priv = dev->dev_private;
1316	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1317
1318	*ring = render_ring;
1319	if (INTEL_INFO(dev)->gen >= 6) {
1320		ring->add_request = gen6_add_request;
1321		ring->irq_get = gen6_render_ring_get_irq;
1322		ring->irq_put = gen6_render_ring_put_irq;
1323	} else if (IS_GEN5(dev)) {
1324		ring->add_request = pc_render_add_request;
1325		ring->get_seqno = pc_render_get_seqno;
1326	}
1327
1328	if (!I915_NEED_GFX_HWS(dev))
1329		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1330
1331	ring->dev = dev;
1332	INIT_LIST_HEAD(&ring->active_list);
1333	INIT_LIST_HEAD(&ring->request_list);
1334	INIT_LIST_HEAD(&ring->gpu_write_list);
1335
1336	ring->size = size;
1337	ring->effective_size = ring->size;
1338	if (IS_I830(ring->dev))
1339		ring->effective_size -= 128;
1340
1341	ring->map.offset = start;
1342	ring->map.size = size;
1343	ring->map.type = 0;
1344	ring->map.flags = 0;
1345	ring->map.mtrr = 0;
1346
1347	drm_core_ioremap_wc(&ring->map, dev);
1348	if (ring->map.handle == NULL) {
1349		DRM_ERROR("can not ioremap virtual address for"
1350			  " ring buffer\n");
1351		return -ENOMEM;
 
 
 
 
 
 
 
 
1352	}
1353
1354	ring->virtual_start = (void __force __iomem *)ring->map.handle;
1355	return 0;
1356}
1357
1358int intel_init_bsd_ring_buffer(struct drm_device *dev)
1359{
1360	drm_i915_private_t *dev_priv = dev->dev_private;
1361	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1362
1363	if (IS_GEN6(dev) || IS_GEN7(dev))
1364		*ring = gen6_bsd_ring;
1365	else
1366		*ring = bsd_ring;
1367
1368	return intel_init_ring_buffer(dev, ring);
 
 
 
1369}
1370
1371int intel_init_blt_ring_buffer(struct drm_device *dev)
1372{
1373	drm_i915_private_t *dev_priv = dev->dev_private;
1374	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
 
1375
1376	*ring = gen6_blt_ring;
 
 
 
1377
1378	return intel_init_ring_buffer(dev, ring);
1379}
v4.17
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31
  32#include <drm/drmP.h>
  33#include <drm/i915_drm.h>
  34
  35#include "i915_drv.h"
  36#include "i915_gem_render_state.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/* Rough estimate of the typical request size, performing a flush,
  41 * set-context and then emitting the batch.
  42 */
  43#define LEGACY_REQUEST_SIZE 200
  44
  45static unsigned int __intel_ring_space(unsigned int head,
  46				       unsigned int tail,
  47				       unsigned int size)
  48{
  49	/*
  50	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
  51	 * same cacheline, the Head Pointer must not be greater than the Tail
  52	 * Pointer."
  53	 */
  54	GEM_BUG_ON(!is_power_of_2(size));
  55	return (head - tail - CACHELINE_BYTES) & (size - 1);
  56}
  57
  58unsigned int intel_ring_update_space(struct intel_ring *ring)
  59{
  60	unsigned int space;
  61
  62	space = __intel_ring_space(ring->head, ring->emit, ring->size);
  63
  64	ring->space = space;
  65	return space;
  66}
  67
  68static int
  69gen2_render_ring_flush(struct i915_request *rq, u32 mode)
  70{
  71	u32 cmd, *cs;
  72
  73	cmd = MI_FLUSH;
  74
  75	if (mode & EMIT_INVALIDATE)
  76		cmd |= MI_READ_FLUSH;
  77
  78	cs = intel_ring_begin(rq, 2);
  79	if (IS_ERR(cs))
  80		return PTR_ERR(cs);
  81
  82	*cs++ = cmd;
  83	*cs++ = MI_NOOP;
  84	intel_ring_advance(rq, cs);
  85
  86	return 0;
  87}
  88
  89static int
  90gen4_render_ring_flush(struct i915_request *rq, u32 mode)
 
 
  91{
  92	u32 cmd, *cs;
 
 
  93
  94	/*
  95	 * read/write caches:
  96	 *
  97	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  98	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  99	 * also flushed at 2d versus 3d pipeline switches.
 100	 *
 101	 * read-only caches:
 102	 *
 103	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 104	 * MI_READ_FLUSH is set, and is always flushed on 965.
 105	 *
 106	 * I915_GEM_DOMAIN_COMMAND may not exist?
 107	 *
 108	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 109	 * invalidated when MI_EXE_FLUSH is set.
 110	 *
 111	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 112	 * invalidated with every MI_FLUSH.
 113	 *
 114	 * TLBs:
 115	 *
 116	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 117	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 118	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 119	 * are flushed at any MI_FLUSH.
 120	 */
 121
 122	cmd = MI_FLUSH;
 123	if (mode & EMIT_INVALIDATE) {
 
 
 
 
 
 
 
 
 
 
 
 124		cmd |= MI_EXE_FLUSH;
 125		if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
 126			cmd |= MI_INVALIDATE_ISP;
 127	}
 128
 129	cs = intel_ring_begin(rq, 2);
 130	if (IS_ERR(cs))
 131		return PTR_ERR(cs);
 132
 133	*cs++ = cmd;
 134	*cs++ = MI_NOOP;
 135	intel_ring_advance(rq, cs);
 136
 137	return 0;
 138}
 139
 140/*
 141 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 142 * implementing two workarounds on gen6.  From section 1.4.7.1
 143 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 144 *
 145 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 146 * produced by non-pipelined state commands), software needs to first
 147 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 148 * 0.
 149 *
 150 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 151 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 152 *
 153 * And the workaround for these two requires this workaround first:
 154 *
 155 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 156 * BEFORE the pipe-control with a post-sync op and no write-cache
 157 * flushes.
 158 *
 159 * And this last workaround is tricky because of the requirements on
 160 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 161 * volume 2 part 1:
 162 *
 163 *     "1 of the following must also be set:
 164 *      - Render Target Cache Flush Enable ([12] of DW1)
 165 *      - Depth Cache Flush Enable ([0] of DW1)
 166 *      - Stall at Pixel Scoreboard ([1] of DW1)
 167 *      - Depth Stall ([13] of DW1)
 168 *      - Post-Sync Operation ([13] of DW1)
 169 *      - Notify Enable ([8] of DW1)"
 170 *
 171 * The cache flushes require the workaround flush that triggered this
 172 * one, so we can't use it.  Depth stall would trigger the same.
 173 * Post-sync nonzero is what triggered this second workaround, so we
 174 * can't use that one either.  Notify enable is IRQs, which aren't
 175 * really our business.  That leaves only stall at scoreboard.
 176 */
 177static int
 178intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
 179{
 180	u32 scratch_addr =
 181		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
 182	u32 *cs;
 183
 184	cs = intel_ring_begin(rq, 6);
 185	if (IS_ERR(cs))
 186		return PTR_ERR(cs);
 187
 188	*cs++ = GFX_OP_PIPE_CONTROL(5);
 189	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 190	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 191	*cs++ = 0; /* low dword */
 192	*cs++ = 0; /* high dword */
 193	*cs++ = MI_NOOP;
 194	intel_ring_advance(rq, cs);
 195
 196	cs = intel_ring_begin(rq, 6);
 197	if (IS_ERR(cs))
 198		return PTR_ERR(cs);
 199
 200	*cs++ = GFX_OP_PIPE_CONTROL(5);
 201	*cs++ = PIPE_CONTROL_QW_WRITE;
 202	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 203	*cs++ = 0;
 204	*cs++ = 0;
 205	*cs++ = MI_NOOP;
 206	intel_ring_advance(rq, cs);
 207
 208	return 0;
 209}
 210
 211static int
 212gen6_render_ring_flush(struct i915_request *rq, u32 mode)
 213{
 214	u32 scratch_addr =
 215		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
 216	u32 *cs, flags = 0;
 217	int ret;
 218
 219	/* Force SNB workarounds for PIPE_CONTROL flushes */
 220	ret = intel_emit_post_sync_nonzero_flush(rq);
 221	if (ret)
 222		return ret;
 223
 224	/* Just flush everything.  Experiments have shown that reducing the
 225	 * number of bits based on the write domains has little performance
 226	 * impact.
 227	 */
 228	if (mode & EMIT_FLUSH) {
 229		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 230		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 231		/*
 232		 * Ensure that any following seqno writes only happen
 233		 * when the render cache is indeed flushed.
 234		 */
 235		flags |= PIPE_CONTROL_CS_STALL;
 236	}
 237	if (mode & EMIT_INVALIDATE) {
 238		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 239		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 240		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 241		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 242		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 243		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 244		/*
 245		 * TLB invalidate requires a post-sync write.
 246		 */
 247		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 248	}
 249
 250	cs = intel_ring_begin(rq, 4);
 251	if (IS_ERR(cs))
 252		return PTR_ERR(cs);
 253
 254	*cs++ = GFX_OP_PIPE_CONTROL(4);
 255	*cs++ = flags;
 256	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 257	*cs++ = 0;
 258	intel_ring_advance(rq, cs);
 259
 260	return 0;
 261}
 262
 263static int
 264gen7_render_ring_cs_stall_wa(struct i915_request *rq)
 265{
 266	u32 *cs;
 267
 268	cs = intel_ring_begin(rq, 4);
 269	if (IS_ERR(cs))
 270		return PTR_ERR(cs);
 271
 272	*cs++ = GFX_OP_PIPE_CONTROL(4);
 273	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 274	*cs++ = 0;
 275	*cs++ = 0;
 276	intel_ring_advance(rq, cs);
 277
 278	return 0;
 279}
 280
 281static int
 282gen7_render_ring_flush(struct i915_request *rq, u32 mode)
 283{
 284	u32 scratch_addr =
 285		i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
 286	u32 *cs, flags = 0;
 287
 288	/*
 289	 * Ensure that any following seqno writes only happen when the render
 290	 * cache is indeed flushed.
 291	 *
 292	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 293	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 294	 * don't try to be clever and just set it unconditionally.
 295	 */
 296	flags |= PIPE_CONTROL_CS_STALL;
 297
 298	/* Just flush everything.  Experiments have shown that reducing the
 299	 * number of bits based on the write domains has little performance
 300	 * impact.
 301	 */
 302	if (mode & EMIT_FLUSH) {
 303		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 304		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 305		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 306		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 307	}
 308	if (mode & EMIT_INVALIDATE) {
 309		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 310		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 311		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 312		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 313		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 314		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 315		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 316		/*
 317		 * TLB invalidate requires a post-sync write.
 318		 */
 319		flags |= PIPE_CONTROL_QW_WRITE;
 320		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 321
 322		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 
 
 323
 324		/* Workaround: we must issue a pipe_control with CS-stall bit
 325		 * set before a pipe_control command that has the state cache
 326		 * invalidate bit set. */
 327		gen7_render_ring_cs_stall_wa(rq);
 328	}
 329
 330	cs = intel_ring_begin(rq, 4);
 331	if (IS_ERR(cs))
 332		return PTR_ERR(cs);
 333
 334	*cs++ = GFX_OP_PIPE_CONTROL(4);
 335	*cs++ = flags;
 336	*cs++ = scratch_addr;
 337	*cs++ = 0;
 338	intel_ring_advance(rq, cs);
 339
 340	return 0;
 341}
 342
 343static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
 344{
 345	struct drm_i915_private *dev_priv = engine->i915;
 346	u32 addr;
 347
 348	addr = dev_priv->status_page_dmah->busaddr;
 349	if (INTEL_GEN(dev_priv) >= 4)
 350		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 351	I915_WRITE(HWS_PGA, addr);
 352}
 353
 354static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
 355{
 356	struct drm_i915_private *dev_priv = engine->i915;
 357	i915_reg_t mmio;
 358
 359	/* The ring status page addresses are no longer next to the rest of
 360	 * the ring registers as of gen7.
 361	 */
 362	if (IS_GEN7(dev_priv)) {
 363		switch (engine->id) {
 364		/*
 365		 * No more rings exist on Gen7. Default case is only to shut up
 366		 * gcc switch check warning.
 367		 */
 368		default:
 369			GEM_BUG_ON(engine->id);
 370		case RCS:
 371			mmio = RENDER_HWS_PGA_GEN7;
 372			break;
 373		case BCS:
 374			mmio = BLT_HWS_PGA_GEN7;
 375			break;
 376		case VCS:
 377			mmio = BSD_HWS_PGA_GEN7;
 378			break;
 379		case VECS:
 380			mmio = VEBOX_HWS_PGA_GEN7;
 381			break;
 382		}
 383	} else if (IS_GEN6(dev_priv)) {
 384		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
 385	} else {
 386		mmio = RING_HWS_PGA(engine->mmio_base);
 387	}
 388
 389	if (INTEL_GEN(dev_priv) >= 6)
 390		I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
 
 391
 392	I915_WRITE(mmio, engine->status_page.ggtt_offset);
 393	POSTING_READ(mmio);
 394
 395	/* Flush the TLB for this page */
 396	if (IS_GEN(dev_priv, 6, 7)) {
 397		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
 398
 399		/* ring should be idle before issuing a sync flush*/
 400		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
 401
 402		I915_WRITE(reg,
 403			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 404					      INSTPM_SYNC_FLUSH));
 405		if (intel_wait_for_register(dev_priv,
 406					    reg, INSTPM_SYNC_FLUSH, 0,
 407					    1000))
 408			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 409				  engine->name);
 410	}
 411}
 412
 413static bool stop_ring(struct intel_engine_cs *engine)
 414{
 415	struct drm_i915_private *dev_priv = engine->i915;
 416
 417	if (INTEL_GEN(dev_priv) > 2) {
 418		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
 419		if (intel_wait_for_register(dev_priv,
 420					    RING_MI_MODE(engine->mmio_base),
 421					    MODE_IDLE,
 422					    MODE_IDLE,
 423					    1000)) {
 424			DRM_ERROR("%s : timed out trying to stop ring\n",
 425				  engine->name);
 426			/* Sometimes we observe that the idle flag is not
 427			 * set even though the ring is empty. So double
 428			 * check before giving up.
 429			 */
 430			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
 431				return false;
 432		}
 433	}
 434
 435	I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
 
 436
 437	I915_WRITE_HEAD(engine, 0);
 438	I915_WRITE_TAIL(engine, 0);
 
 
 
 
 
 
 
 439
 440	/* The ring must be empty before it is disabled */
 441	I915_WRITE_CTL(engine, 0);
 442
 443	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
 444}
 445
 446static int init_ring_common(struct intel_engine_cs *engine)
 447{
 448	struct drm_i915_private *dev_priv = engine->i915;
 449	struct intel_ring *ring = engine->buffer;
 450	int ret = 0;
 451
 452	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 
 453
 454	if (!stop_ring(engine)) {
 455		/* G45 ring initialization often fails to reset head to zero */
 456		DRM_DEBUG_DRIVER("%s head not reset to zero "
 457				"ctl %08x head %08x tail %08x start %08x\n",
 458				engine->name,
 459				I915_READ_CTL(engine),
 460				I915_READ_HEAD(engine),
 461				I915_READ_TAIL(engine),
 462				I915_READ_START(engine));
 463
 464		if (!stop_ring(engine)) {
 465			DRM_ERROR("failed to set %s head to zero "
 466				  "ctl %08x head %08x tail %08x start %08x\n",
 467				  engine->name,
 468				  I915_READ_CTL(engine),
 469				  I915_READ_HEAD(engine),
 470				  I915_READ_TAIL(engine),
 471				  I915_READ_START(engine));
 472			ret = -EIO;
 473			goto out;
 474		}
 475	}
 476
 477	if (HWS_NEEDS_PHYSICAL(dev_priv))
 478		ring_setup_phys_status_page(engine);
 479	else
 480		intel_ring_setup_status_page(engine);
 481
 482	intel_engine_reset_breadcrumbs(engine);
 
 
 483
 484	/* Enforce ordering by reading HEAD register back */
 485	I915_READ_HEAD(engine);
 
 
 486
 487	/* Initialize the ring. This must happen _after_ we've cleared the ring
 488	 * registers with the above sequence (the readback of the HEAD registers
 489	 * also enforces ordering), otherwise the hw might lose the new ring
 490	 * register values. */
 491	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
 492
 493	/* WaClearRingBufHeadRegAtInit:ctg,elk */
 494	if (I915_READ_HEAD(engine))
 495		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
 496				 engine->name, I915_READ_HEAD(engine));
 497
 498	intel_ring_update_space(ring);
 499	I915_WRITE_HEAD(engine, ring->head);
 500	I915_WRITE_TAIL(engine, ring->tail);
 501	(void)I915_READ_TAIL(engine);
 502
 503	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
 
 
 
 
 
 
 
 504
 505	/* If the head is still not zero, the ring is dead */
 506	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
 507				    RING_VALID, RING_VALID,
 508				    50)) {
 509		DRM_ERROR("%s initialization failed "
 510			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
 511			  engine->name,
 512			  I915_READ_CTL(engine),
 513			  I915_READ_CTL(engine) & RING_VALID,
 514			  I915_READ_HEAD(engine), ring->head,
 515			  I915_READ_TAIL(engine), ring->tail,
 516			  I915_READ_START(engine),
 517			  i915_ggtt_offset(ring->vma));
 518		ret = -EIO;
 519		goto out;
 520	}
 521
 522	intel_engine_init_hangcheck(engine);
 
 523
 524	if (INTEL_GEN(dev_priv) > 2)
 525		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
 526
 527out:
 528	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530	return ret;
 531}
 532
 533static void reset_ring_common(struct intel_engine_cs *engine,
 534			      struct i915_request *request)
 535{
 536	/*
 537	 * RC6 must be prevented until the reset is complete and the engine
 538	 * reinitialised. If it occurs in the middle of this sequence, the
 539	 * state written to/loaded from the power context is ill-defined (e.g.
 540	 * the PP_BASE_DIR may be lost).
 541	 */
 542	assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
 543
 544	/*
 545	 * Try to restore the logical GPU state to match the continuation
 546	 * of the request queue. If we skip the context/PD restore, then
 547	 * the next request may try to execute assuming that its context
 548	 * is valid and loaded on the GPU and so may try to access invalid
 549	 * memory, prompting repeated GPU hangs.
 550	 *
 551	 * If the request was guilty, we still restore the logical state
 552	 * in case the next request requires it (e.g. the aliasing ppgtt),
 553	 * but skip over the hung batch.
 554	 *
 555	 * If the request was innocent, we try to replay the request with
 556	 * the restored context.
 557	 */
 558	if (request) {
 559		struct drm_i915_private *dev_priv = request->i915;
 560		struct intel_context *ce = &request->ctx->engine[engine->id];
 561		struct i915_hw_ppgtt *ppgtt;
 562
 563		if (ce->state) {
 564			I915_WRITE(CCID,
 565				   i915_ggtt_offset(ce->state) |
 566				   BIT(8) /* must be set! */ |
 567				   CCID_EXTENDED_STATE_SAVE |
 568				   CCID_EXTENDED_STATE_RESTORE |
 569				   CCID_EN);
 570		}
 571
 572		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
 573		if (ppgtt) {
 574			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
 575
 576			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
 577			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
 578
 579			/* Wait for the PD reload to complete */
 580			if (intel_wait_for_register(dev_priv,
 581						    RING_PP_DIR_BASE(engine),
 582						    BIT(0), 0,
 583						    10))
 584				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
 585
 586			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
 587		}
 588
 589		/* If the rq hung, jump to its breadcrumb and skip the batch */
 590		if (request->fence.error == -EIO)
 591			request->ring->head = request->postfix;
 592	} else {
 593		engine->legacy_active_context = NULL;
 594		engine->legacy_active_ppgtt = NULL;
 595	}
 
 
 
 
 
 
 596}
 597
 598static int intel_rcs_ctx_init(struct i915_request *rq)
 
 
 599{
 
 600	int ret;
 601
 602	ret = intel_ring_workarounds_emit(rq);
 603	if (ret != 0)
 604		return ret;
 605
 606	ret = i915_gem_render_state_emit(rq);
 607	if (ret)
 608		return ret;
 
 
 
 
 
 
 609
 
 610	return 0;
 611}
 612
 613static int init_render_ring(struct intel_engine_cs *engine)
 
 
 
 614{
 615	struct drm_i915_private *dev_priv = engine->i915;
 616	int ret = init_ring_common(engine);
 
 617	if (ret)
 618		return ret;
 619
 620	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
 621	if (IS_GEN(dev_priv, 4, 6))
 622		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
 623
 624	/* We need to disable the AsyncFlip performance optimisations in order
 625	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
 626	 * programmed to '1' on all products.
 627	 *
 628	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
 629	 */
 630	if (IS_GEN(dev_priv, 6, 7))
 631		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
 632
 633	/* Required for the hardware to program scanline values for waiting */
 634	/* WaEnableFlushTlbInvalidationMode:snb */
 635	if (IS_GEN6(dev_priv))
 636		I915_WRITE(GFX_MODE,
 637			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
 638
 639	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
 640	if (IS_GEN7(dev_priv))
 641		I915_WRITE(GFX_MODE_GEN7,
 642			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
 643			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
 644
 645	if (IS_GEN6(dev_priv)) {
 646		/* From the Sandybridge PRM, volume 1 part 3, page 24:
 647		 * "If this bit is set, STCunit will have LRA as replacement
 648		 *  policy. [...] This bit must be reset.  LRA replacement
 649		 *  policy is not supported."
 650		 */
 651		I915_WRITE(CACHE_MODE_0,
 652			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
 653	}
 654
 655	if (IS_GEN(dev_priv, 6, 7))
 656		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
 657
 658	if (INTEL_GEN(dev_priv) >= 6)
 659		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
 660
 661	return init_workarounds_ring(engine);
 662}
 663
 664static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
 665{
 666	struct drm_i915_private *dev_priv = rq->i915;
 667	struct intel_engine_cs *engine;
 668	enum intel_engine_id id;
 669	int num_rings = 0;
 670
 671	for_each_engine(engine, dev_priv, id) {
 672		i915_reg_t mbox_reg;
 673
 674		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
 675			continue;
 676
 677		mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
 678		if (i915_mmio_reg_valid(mbox_reg)) {
 679			*cs++ = MI_LOAD_REGISTER_IMM(1);
 680			*cs++ = i915_mmio_reg_offset(mbox_reg);
 681			*cs++ = rq->global_seqno;
 682			num_rings++;
 683		}
 684	}
 685	if (num_rings & 1)
 686		*cs++ = MI_NOOP;
 687
 688	return cs;
 689}
 690
 691static void cancel_requests(struct intel_engine_cs *engine)
 692{
 693	struct i915_request *request;
 694	unsigned long flags;
 
 
 
 695
 696	spin_lock_irqsave(&engine->timeline->lock, flags);
 
 
 
 
 
 
 
 
 
 
 697
 698	/* Mark all submitted requests as skipped. */
 699	list_for_each_entry(request, &engine->timeline->requests, link) {
 700		GEM_BUG_ON(!request->global_seqno);
 701		if (!i915_request_completed(request))
 702			dma_fence_set_error(&request->fence, -EIO);
 703	}
 704	/* Remaining _unready_ requests will be nop'ed when submitted */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705
 706	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 
 707}
 708
 709static void i9xx_submit_request(struct i915_request *request)
 
 
 710{
 711	struct drm_i915_private *dev_priv = request->i915;
 
 
 712
 713	i915_request_submit(request);
 
 
 714
 715	I915_WRITE_TAIL(request->engine,
 716			intel_ring_set_tail(request->ring, request->tail));
 717}
 718
 719static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 720{
 721	*cs++ = MI_STORE_DWORD_INDEX;
 722	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
 723	*cs++ = rq->global_seqno;
 724	*cs++ = MI_USER_INTERRUPT;
 725
 726	rq->tail = intel_ring_offset(rq, cs);
 727	assert_ring_tail_valid(rq->ring, rq->tail);
 728}
 729
 730static const int i9xx_emit_breadcrumb_sz = 4;
 731
 732static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 733{
 734	return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
 735}
 736
 737static int
 738gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
 739{
 740	u32 dw1 = MI_SEMAPHORE_MBOX |
 741		  MI_SEMAPHORE_COMPARE |
 742		  MI_SEMAPHORE_REGISTER;
 743	u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
 744	u32 *cs;
 745
 746	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
 747
 748	cs = intel_ring_begin(rq, 4);
 749	if (IS_ERR(cs))
 750		return PTR_ERR(cs);
 751
 752	*cs++ = dw1 | wait_mbox;
 753	/* Throughout all of the GEM code, seqno passed implies our current
 754	 * seqno is >= the last seqno executed. However for hardware the
 755	 * comparison is strictly greater than.
 756	 */
 757	*cs++ = signal->global_seqno - 1;
 758	*cs++ = 0;
 759	*cs++ = MI_NOOP;
 760	intel_ring_advance(rq, cs);
 761
 
 762	return 0;
 763}
 764
 765static void
 766gen5_seqno_barrier(struct intel_engine_cs *engine)
 767{
 768	/* MI_STORE are internally buffered by the GPU and not flushed
 769	 * either by MI_FLUSH or SyncFlush or any other combination of
 770	 * MI commands.
 771	 *
 772	 * "Only the submission of the store operation is guaranteed.
 773	 * The write result will be complete (coherent) some time later
 774	 * (this is practically a finite period but there is no guaranteed
 775	 * latency)."
 776	 *
 777	 * Empirically, we observe that we need a delay of at least 75us to
 778	 * be sure that the seqno write is visible by the CPU.
 779	 */
 780	usleep_range(125, 250);
 781}
 782
 783static void
 784gen6_seqno_barrier(struct intel_engine_cs *engine)
 785{
 786	struct drm_i915_private *dev_priv = engine->i915;
 787
 788	/* Workaround to force correct ordering between irq and seqno writes on
 789	 * ivb (and maybe also on snb) by reading from a CS register (like
 790	 * ACTHD) before reading the status page.
 791	 *
 792	 * Note that this effectively stalls the read by the time it takes to
 793	 * do a memory transaction, which more or less ensures that the write
 794	 * from the GPU has sufficient time to invalidate the CPU cacheline.
 795	 * Alternatively we could delay the interrupt from the CS ring to give
 796	 * the write time to land, but that would incur a delay after every
 797	 * batch i.e. much more frequent than a delay when waiting for the
 798	 * interrupt (with the same net latency).
 799	 *
 800	 * Also note that to prevent whole machine hangs on gen7, we have to
 801	 * take the spinlock to guard against concurrent cacheline access.
 802	 */
 803	spin_lock_irq(&dev_priv->uncore.lock);
 804	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
 805	spin_unlock_irq(&dev_priv->uncore.lock);
 806}
 807
 808static void
 809gen5_irq_enable(struct intel_engine_cs *engine)
 810{
 811	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
 
 
 812}
 813
 814static void
 815gen5_irq_disable(struct intel_engine_cs *engine)
 816{
 817	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
 
 
 818}
 819
 820static void
 821i9xx_irq_enable(struct intel_engine_cs *engine)
 822{
 823	struct drm_i915_private *dev_priv = engine->i915;
 824
 825	dev_priv->irq_mask &= ~engine->irq_enable_mask;
 826	I915_WRITE(IMR, dev_priv->irq_mask);
 827	POSTING_READ_FW(RING_IMR(engine->mmio_base));
 828}
 829
 830static void
 831i9xx_irq_disable(struct intel_engine_cs *engine)
 832{
 833	struct drm_i915_private *dev_priv = engine->i915;
 834
 835	dev_priv->irq_mask |= engine->irq_enable_mask;
 836	I915_WRITE(IMR, dev_priv->irq_mask);
 
 837}
 838
 839static void
 840i8xx_irq_enable(struct intel_engine_cs *engine)
 841{
 842	struct drm_i915_private *dev_priv = engine->i915;
 
 843
 844	dev_priv->irq_mask &= ~engine->irq_enable_mask;
 845	I915_WRITE16(IMR, dev_priv->irq_mask);
 846	POSTING_READ16(RING_IMR(engine->mmio_base));
 847}
 848
 849static void
 850i8xx_irq_disable(struct intel_engine_cs *engine)
 851{
 852	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
 853
 854	dev_priv->irq_mask |= engine->irq_enable_mask;
 855	I915_WRITE16(IMR, dev_priv->irq_mask);
 856}
 857
 858static int
 859bsd_ring_flush(struct i915_request *rq, u32 mode)
 860{
 861	u32 *cs;
 862
 863	cs = intel_ring_begin(rq, 2);
 864	if (IS_ERR(cs))
 865		return PTR_ERR(cs);
 866
 867	*cs++ = MI_FLUSH;
 868	*cs++ = MI_NOOP;
 869	intel_ring_advance(rq, cs);
 870	return 0;
 871}
 872
 873static void
 874gen6_irq_enable(struct intel_engine_cs *engine)
 875{
 876	struct drm_i915_private *dev_priv = engine->i915;
 
 877
 878	I915_WRITE_IMR(engine,
 879		       ~(engine->irq_enable_mask |
 880			 engine->irq_keep_mask));
 881	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
 
 
 
 
 
 
 882}
 883
 884static void
 885gen6_irq_disable(struct intel_engine_cs *engine)
 886{
 887	struct drm_i915_private *dev_priv = engine->i915;
 
 
 888
 889	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
 890	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
 891}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892
 893static void
 894hsw_vebox_irq_enable(struct intel_engine_cs *engine)
 895{
 896	struct drm_i915_private *dev_priv = engine->i915;
 897
 898	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
 899	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
 900}
 901
 902static void
 903hsw_vebox_irq_disable(struct intel_engine_cs *engine)
 
 
 904{
 905	struct drm_i915_private *dev_priv = engine->i915;
 906
 907	I915_WRITE_IMR(engine, ~0);
 908	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
 909}
 910
 911static int
 912i965_emit_bb_start(struct i915_request *rq,
 913		   u64 offset, u32 length,
 914		   unsigned int dispatch_flags)
 915{
 916	u32 *cs;
 917
 918	cs = intel_ring_begin(rq, 2);
 919	if (IS_ERR(cs))
 920		return PTR_ERR(cs);
 921
 922	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
 923		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
 924	*cs++ = offset;
 925	intel_ring_advance(rq, cs);
 926
 
 
 
 927	return 0;
 928}
 929
 930/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
 931#define I830_BATCH_LIMIT (256*1024)
 932#define I830_TLB_ENTRIES (2)
 933#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
 934static int
 935i830_emit_bb_start(struct i915_request *rq,
 936		   u64 offset, u32 len,
 937		   unsigned int dispatch_flags)
 938{
 939	u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
 940
 941	cs = intel_ring_begin(rq, 6);
 942	if (IS_ERR(cs))
 943		return PTR_ERR(cs);
 944
 945	/* Evict the invalid PTE TLBs */
 946	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
 947	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
 948	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
 949	*cs++ = cs_offset;
 950	*cs++ = 0xdeadbeef;
 951	*cs++ = MI_NOOP;
 952	intel_ring_advance(rq, cs);
 953
 954	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
 955		if (len > I830_BATCH_LIMIT)
 956			return -ENOSPC;
 957
 958		cs = intel_ring_begin(rq, 6 + 2);
 959		if (IS_ERR(cs))
 960			return PTR_ERR(cs);
 961
 962		/* Blit the batch (which has now all relocs applied) to the
 963		 * stable batch scratch bo area (so that the CS never
 964		 * stumbles over its tlb invalidation bug) ...
 965		 */
 966		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
 967		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
 968		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
 969		*cs++ = cs_offset;
 970		*cs++ = 4096;
 971		*cs++ = offset;
 972
 973		*cs++ = MI_FLUSH;
 974		*cs++ = MI_NOOP;
 975		intel_ring_advance(rq, cs);
 976
 977		/* ... and execute it. */
 978		offset = cs_offset;
 979	}
 980
 981	cs = intel_ring_begin(rq, 2);
 982	if (IS_ERR(cs))
 983		return PTR_ERR(cs);
 984
 985	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
 986	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
 987		MI_BATCH_NON_SECURE);
 988	intel_ring_advance(rq, cs);
 989
 990	return 0;
 991}
 992
 993static int
 994i915_emit_bb_start(struct i915_request *rq,
 995		   u64 offset, u32 len,
 996		   unsigned int dispatch_flags)
 997{
 998	u32 *cs;
 999
1000	cs = intel_ring_begin(rq, 2);
1001	if (IS_ERR(cs))
1002		return PTR_ERR(cs);
1003
1004	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1005	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1006		MI_BATCH_NON_SECURE);
1007	intel_ring_advance(rq, cs);
1008
1009	return 0;
1010}
1011
1012
1013
1014int intel_ring_pin(struct intel_ring *ring,
1015		   struct drm_i915_private *i915,
1016		   unsigned int offset_bias)
1017{
1018	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1019	struct i915_vma *vma = ring->vma;
1020	unsigned int flags;
1021	void *addr;
1022	int ret;
1023
1024	GEM_BUG_ON(ring->vaddr);
1025
1026
1027	flags = PIN_GLOBAL;
1028	if (offset_bias)
1029		flags |= PIN_OFFSET_BIAS | offset_bias;
1030	if (vma->obj->stolen)
1031		flags |= PIN_MAPPABLE;
1032
1033	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1034		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1035			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1036		else
1037			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1038		if (unlikely(ret))
1039			return ret;
1040	}
1041
1042	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1043	if (unlikely(ret))
1044		return ret;
1045
1046	if (i915_vma_is_map_and_fenceable(vma))
1047		addr = (void __force *)i915_vma_pin_iomap(vma);
1048	else
1049		addr = i915_gem_object_pin_map(vma->obj, map);
1050	if (IS_ERR(addr))
1051		goto err;
1052
1053	vma->obj->pin_global++;
 
 
 
 
1054
1055	ring->vaddr = addr;
1056	return 0;
1057
1058err:
1059	i915_vma_unpin(vma);
1060	return PTR_ERR(addr);
1061}
1062
1063void intel_ring_reset(struct intel_ring *ring, u32 tail)
1064{
1065	GEM_BUG_ON(!list_empty(&ring->request_list));
1066	ring->tail = tail;
1067	ring->head = tail;
1068	ring->emit = tail;
1069	intel_ring_update_space(ring);
1070}
1071
1072void intel_ring_unpin(struct intel_ring *ring)
 
1073{
1074	GEM_BUG_ON(!ring->vma);
1075	GEM_BUG_ON(!ring->vaddr);
1076
1077	/* Discard any unused bytes beyond that submitted to hw. */
1078	intel_ring_reset(ring, ring->tail);
1079
1080	if (i915_vma_is_map_and_fenceable(ring->vma))
1081		i915_vma_unpin_iomap(ring->vma);
1082	else
1083		i915_gem_object_unpin_map(ring->vma->obj);
1084	ring->vaddr = NULL;
 
 
1085
1086	ring->vma->obj->pin_global--;
1087	i915_vma_unpin(ring->vma);
1088}
1089
1090static struct i915_vma *
1091intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1092{
1093	struct drm_i915_gem_object *obj;
1094	struct i915_vma *vma;
1095
1096	obj = i915_gem_object_create_stolen(dev_priv, size);
1097	if (!obj)
1098		obj = i915_gem_object_create_internal(dev_priv, size);
1099	if (IS_ERR(obj))
1100		return ERR_CAST(obj);
 
 
 
1101
1102	/* mark ring buffers as read-only from GPU side by default */
1103	obj->gt_ro = 1;
 
 
 
1104
1105	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1106	if (IS_ERR(vma))
1107		goto err;
1108
1109	return vma;
 
 
 
 
 
 
 
1110
1111err:
1112	i915_gem_object_put(obj);
1113	return vma;
1114}
1115
1116struct intel_ring *
1117intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1118{
1119	struct intel_ring *ring;
1120	struct i915_vma *vma;
1121
1122	GEM_BUG_ON(!is_power_of_2(size));
1123	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1124
1125	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1126	if (!ring)
1127		return ERR_PTR(-ENOMEM);
1128
1129	INIT_LIST_HEAD(&ring->request_list);
1130
1131	ring->size = size;
1132	/* Workaround an erratum on the i830 which causes a hang if
1133	 * the TAIL pointer points to within the last 2 cachelines
1134	 * of the buffer.
1135	 */
1136	ring->effective_size = size;
1137	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1138		ring->effective_size -= 2 * CACHELINE_BYTES;
1139
1140	intel_ring_update_space(ring);
1141
1142	vma = intel_ring_create_vma(engine->i915, size);
1143	if (IS_ERR(vma)) {
1144		kfree(ring);
1145		return ERR_CAST(vma);
1146	}
1147	ring->vma = vma;
1148
1149	return ring;
1150}
1151
1152void
1153intel_ring_free(struct intel_ring *ring)
1154{
1155	struct drm_i915_gem_object *obj = ring->vma->obj;
1156
1157	i915_vma_close(ring->vma);
1158	__i915_gem_object_release_unless_active(obj);
 
1159
1160	kfree(ring);
 
 
 
 
 
 
1161}
1162
1163static int context_pin(struct i915_gem_context *ctx)
 
 
1164{
1165	struct i915_vma *vma = ctx->engine[RCS].state;
1166	int ret;
1167
1168	/*
1169	 * Clear this page out of any CPU caches for coherent swap-in/out.
1170	 * We only want to do this on the first bind so that we do not stall
1171	 * on an active context (which by nature is already on the GPU).
1172	 */
1173	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1174		ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
 
 
 
 
1175		if (ret)
1176			return ret;
 
 
 
 
 
 
 
 
 
 
 
1177	}
 
1178
1179	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1180			    PIN_GLOBAL | PIN_HIGH);
1181}
1182
1183static struct i915_vma *
1184alloc_context_vma(struct intel_engine_cs *engine)
1185{
1186	struct drm_i915_private *i915 = engine->i915;
1187	struct drm_i915_gem_object *obj;
1188	struct i915_vma *vma;
1189	int err;
1190
1191	obj = i915_gem_object_create(i915, engine->context_size);
1192	if (IS_ERR(obj))
1193		return ERR_CAST(obj);
1194
1195	if (engine->default_state) {
1196		void *defaults, *vaddr;
1197
1198		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1199		if (IS_ERR(vaddr)) {
1200			err = PTR_ERR(vaddr);
1201			goto err_obj;
1202		}
1203
1204		defaults = i915_gem_object_pin_map(engine->default_state,
1205						   I915_MAP_WB);
1206		if (IS_ERR(defaults)) {
1207			err = PTR_ERR(defaults);
1208			goto err_map;
1209		}
1210
1211		memcpy(vaddr, defaults, engine->context_size);
1212
1213		i915_gem_object_unpin_map(engine->default_state);
1214		i915_gem_object_unpin_map(obj);
1215	}
1216
1217	/*
1218	 * Try to make the context utilize L3 as well as LLC.
1219	 *
1220	 * On VLV we don't have L3 controls in the PTEs so we
1221	 * shouldn't touch the cache level, especially as that
1222	 * would make the object snooped which might have a
1223	 * negative performance impact.
1224	 *
1225	 * Snooping is required on non-llc platforms in execlist
1226	 * mode, but since all GGTT accesses use PAT entry 0 we
1227	 * get snooping anyway regardless of cache_level.
1228	 *
1229	 * This is only applicable for Ivy Bridge devices since
1230	 * later platforms don't have L3 control bits in the PTE.
1231	 */
1232	if (IS_IVYBRIDGE(i915)) {
1233		/* Ignore any error, regard it as a simple optimisation */
1234		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1235	}
1236
1237	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1238	if (IS_ERR(vma)) {
1239		err = PTR_ERR(vma);
1240		goto err_obj;
1241	}
1242
1243	return vma;
1244
1245err_map:
1246	i915_gem_object_unpin_map(obj);
1247err_obj:
1248	i915_gem_object_put(obj);
1249	return ERR_PTR(err);
1250}
1251
1252static struct intel_ring *
1253intel_ring_context_pin(struct intel_engine_cs *engine,
1254		       struct i915_gem_context *ctx)
1255{
1256	struct intel_context *ce = &ctx->engine[engine->id];
 
 
1257	int ret;
1258
1259	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 
 
 
 
 
1260
1261	if (likely(ce->pin_count++))
1262		goto out;
1263	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1264
1265	if (!ce->state && engine->context_size) {
1266		struct i915_vma *vma;
1267
1268		vma = alloc_context_vma(engine);
1269		if (IS_ERR(vma)) {
1270			ret = PTR_ERR(vma);
1271			goto err;
1272		}
1273
1274		ce->state = vma;
 
 
1275	}
1276
1277	if (ce->state) {
1278		ret = context_pin(ctx);
1279		if (ret)
1280			goto err;
1281
1282		ce->state->obj->pin_global++;
1283	}
 
 
1284
1285	i915_gem_context_get(ctx);
 
 
1286
1287out:
1288	/* One ringbuffer to rule them all */
1289	return engine->buffer;
1290
 
 
 
 
1291err:
1292	ce->pin_count = 0;
1293	return ERR_PTR(ret);
1294}
1295
1296static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1297				     struct i915_gem_context *ctx)
1298{
1299	struct intel_context *ce = &ctx->engine[engine->id];
 
1300
1301	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1302	GEM_BUG_ON(ce->pin_count == 0);
 
 
1303
1304	if (--ce->pin_count)
1305		return;
 
1306
1307	if (ce->state) {
1308		ce->state->obj->pin_global--;
1309		i915_vma_unpin(ce->state);
 
1310	}
1311
1312	i915_gem_context_put(ctx);
1313}
 
 
 
 
1314
1315static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1316{
1317	struct intel_ring *ring;
1318	int err;
1319
1320	intel_engine_setup_common(engine);
1321
1322	err = intel_engine_init_common(engine);
1323	if (err)
1324		goto err;
1325
1326	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1327	if (IS_ERR(ring)) {
1328		err = PTR_ERR(ring);
1329		goto err;
 
 
 
 
 
 
 
1330	}
1331
1332	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1333	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1334	if (err)
1335		goto err_ring;
1336
1337	GEM_BUG_ON(engine->buffer);
1338	engine->buffer = ring;
 
 
 
 
 
1339
1340	return 0;
1341
1342err_ring:
1343	intel_ring_free(ring);
1344err:
1345	intel_engine_cleanup_common(engine);
1346	return err;
 
 
 
 
 
1347}
1348
1349void intel_engine_cleanup(struct intel_engine_cs *engine)
1350{
1351	struct drm_i915_private *dev_priv = engine->i915;
 
1352
1353	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1354		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1355
1356	intel_ring_unpin(engine->buffer);
1357	intel_ring_free(engine->buffer);
 
 
 
 
1358
1359	if (engine->cleanup)
1360		engine->cleanup(engine);
1361
1362	intel_engine_cleanup_common(engine);
1363
1364	dev_priv->engine[engine->id] = NULL;
1365	kfree(engine);
1366}
1367
1368void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1369{
1370	struct intel_engine_cs *engine;
1371	enum intel_engine_id id;
1372
1373	/* Restart from the beginning of the rings for convenience */
1374	for_each_engine(engine, dev_priv, id)
1375		intel_ring_reset(engine->buffer, 0);
1376}
1377
1378static inline int mi_set_context(struct i915_request *rq, u32 flags)
1379{
1380	struct drm_i915_private *i915 = rq->i915;
1381	struct intel_engine_cs *engine = rq->engine;
1382	enum intel_engine_id id;
1383	const int num_rings =
1384		/* Use an extended w/a on gen7 if signalling from other rings */
1385		(HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1386		INTEL_INFO(i915)->num_rings - 1 :
1387		0;
1388	int len;
1389	u32 *cs;
1390
1391	flags |= MI_MM_SPACE_GTT;
1392	if (IS_HASWELL(i915))
1393		/* These flags are for resource streamer on HSW+ */
1394		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1395	else
1396		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1397
1398	len = 4;
1399	if (IS_GEN7(i915))
1400		len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1401
1402	cs = intel_ring_begin(rq, len);
1403	if (IS_ERR(cs))
1404		return PTR_ERR(cs);
1405
1406	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1407	if (IS_GEN7(i915)) {
1408		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1409		if (num_rings) {
1410			struct intel_engine_cs *signaller;
1411
1412			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1413			for_each_engine(signaller, i915, id) {
1414				if (signaller == engine)
1415					continue;
1416
1417				*cs++ = i915_mmio_reg_offset(
1418					   RING_PSMI_CTL(signaller->mmio_base));
1419				*cs++ = _MASKED_BIT_ENABLE(
1420						GEN6_PSMI_SLEEP_MSG_DISABLE);
1421			}
1422		}
1423	}
1424
1425	*cs++ = MI_NOOP;
1426	*cs++ = MI_SET_CONTEXT;
1427	*cs++ = i915_ggtt_offset(rq->ctx->engine[RCS].state) | flags;
1428	/*
1429	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1430	 * WaMiSetContext_Hang:snb,ivb,vlv
1431	 */
1432	*cs++ = MI_NOOP;
1433
1434	if (IS_GEN7(i915)) {
1435		if (num_rings) {
1436			struct intel_engine_cs *signaller;
1437			i915_reg_t last_reg = {}; /* keep gcc quiet */
1438
1439			*cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1440			for_each_engine(signaller, i915, id) {
1441				if (signaller == engine)
1442					continue;
1443
1444				last_reg = RING_PSMI_CTL(signaller->mmio_base);
1445				*cs++ = i915_mmio_reg_offset(last_reg);
1446				*cs++ = _MASKED_BIT_DISABLE(
1447						GEN6_PSMI_SLEEP_MSG_DISABLE);
1448			}
1449
1450			/* Insert a delay before the next switch! */
1451			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1452			*cs++ = i915_mmio_reg_offset(last_reg);
1453			*cs++ = i915_ggtt_offset(engine->scratch);
1454			*cs++ = MI_NOOP;
1455		}
1456		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1457	}
1458
1459	intel_ring_advance(rq, cs);
 
1460
1461	return 0;
1462}
1463
1464static int remap_l3(struct i915_request *rq, int slice)
1465{
1466	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1467	int i;
1468
1469	if (!remap_info)
1470		return 0;
1471
1472	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1473	if (IS_ERR(cs))
1474		return PTR_ERR(cs);
1475
1476	/*
1477	 * Note: We do not worry about the concurrent register cacheline hang
1478	 * here because no other code should access these registers other than
1479	 * at initialization time.
1480	 */
1481	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1482	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1483		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1484		*cs++ = remap_info[i];
 
 
1485	}
1486	*cs++ = MI_NOOP;
1487	intel_ring_advance(rq, cs);
1488
1489	return 0;
1490}
 
 
 
 
 
 
 
1491
1492static int switch_context(struct i915_request *rq)
1493{
1494	struct intel_engine_cs *engine = rq->engine;
1495	struct i915_gem_context *to_ctx = rq->ctx;
1496	struct i915_hw_ppgtt *to_mm =
1497		to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1498	struct i915_gem_context *from_ctx = engine->legacy_active_context;
1499	struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
1500	u32 hw_flags = 0;
1501	int ret, i;
1502
1503	lockdep_assert_held(&rq->i915->drm.struct_mutex);
1504	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1505
1506	if (to_mm != from_mm ||
1507	    (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
1508		trace_switch_mm(engine, to_ctx);
1509		ret = to_mm->switch_mm(to_mm, rq);
1510		if (ret)
1511			goto err;
1512
1513		to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
1514		engine->legacy_active_ppgtt = to_mm;
1515		hw_flags = MI_FORCE_RESTORE;
1516	}
1517
1518	if (to_ctx->engine[engine->id].state &&
1519	    (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
1520		GEM_BUG_ON(engine->id != RCS);
1521
1522		/*
1523		 * The kernel context(s) is treated as pure scratch and is not
1524		 * expected to retain any state (as we sacrifice it during
1525		 * suspend and on resume it may be corrupted). This is ok,
1526		 * as nothing actually executes using the kernel context; it
1527		 * is purely used for flushing user contexts.
1528		 */
1529		if (i915_gem_context_is_kernel(to_ctx))
1530			hw_flags = MI_RESTORE_INHIBIT;
1531
1532		ret = mi_set_context(rq, hw_flags);
1533		if (ret)
1534			goto err_mm;
1535
1536		engine->legacy_active_context = to_ctx;
1537	}
1538
1539	if (to_ctx->remap_slice) {
1540		for (i = 0; i < MAX_L3_SLICES; i++) {
1541			if (!(to_ctx->remap_slice & BIT(i)))
1542				continue;
1543
1544			ret = remap_l3(rq, i);
1545			if (ret)
1546				goto err_ctx;
1547		}
1548
1549		to_ctx->remap_slice = 0;
1550	}
1551
1552	return 0;
1553
1554err_ctx:
1555	engine->legacy_active_context = from_ctx;
1556err_mm:
1557	engine->legacy_active_ppgtt = from_mm;
1558err:
1559	return ret;
1560}
1561
1562static int ring_request_alloc(struct i915_request *request)
 
1563{
 
 
1564	int ret;
1565
1566	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
 
1567
1568	/* Flush enough space to reduce the likelihood of waiting after
1569	 * we start building the request - in which case we will just
1570	 * have to repeat work.
1571	 */
1572	request->reserved_space += LEGACY_REQUEST_SIZE;
1573
1574	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1575	if (ret)
1576		return ret;
1577
1578	ret = switch_context(request);
1579	if (ret)
1580		return ret;
1581
1582	request->reserved_space -= LEGACY_REQUEST_SIZE;
1583	return 0;
1584}
1585
1586static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1587{
1588	struct i915_request *target;
1589	long timeout;
1590
1591	lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1592
1593	if (intel_ring_update_space(ring) >= bytes)
1594		return 0;
1595
1596	list_for_each_entry(target, &ring->request_list, ring_link) {
1597		/* Would completion of this request free enough space? */
1598		if (bytes <= __intel_ring_space(target->postfix,
1599						ring->emit, ring->size))
1600			break;
1601	}
1602
1603	if (WARN_ON(&target->ring_link == &ring->request_list))
1604		return -ENOSPC;
1605
1606	timeout = i915_request_wait(target,
1607				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1608				    MAX_SCHEDULE_TIMEOUT);
1609	if (timeout < 0)
1610		return timeout;
1611
1612	i915_request_retire_upto(target);
1613
1614	intel_ring_update_space(ring);
1615	GEM_BUG_ON(ring->space < bytes);
1616	return 0;
1617}
1618
1619int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1620{
1621	GEM_BUG_ON(bytes > ring->effective_size);
1622	if (unlikely(bytes > ring->effective_size - ring->emit))
1623		bytes += ring->size - ring->emit;
1624
1625	if (unlikely(bytes > ring->space)) {
1626		int ret = wait_for_space(ring, bytes);
1627		if (unlikely(ret))
1628			return ret;
1629	}
1630
1631	GEM_BUG_ON(ring->space < bytes);
1632	return 0;
1633}
1634
1635u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1636{
1637	struct intel_ring *ring = rq->ring;
1638	const unsigned int remain_usable = ring->effective_size - ring->emit;
1639	const unsigned int bytes = num_dwords * sizeof(u32);
1640	unsigned int need_wrap = 0;
1641	unsigned int total_bytes;
1642	u32 *cs;
1643
1644	/* Packets must be qword aligned. */
1645	GEM_BUG_ON(num_dwords & 1);
1646
1647	total_bytes = bytes + rq->reserved_space;
1648	GEM_BUG_ON(total_bytes > ring->effective_size);
1649
1650	if (unlikely(total_bytes > remain_usable)) {
1651		const int remain_actual = ring->size - ring->emit;
1652
1653		if (bytes > remain_usable) {
1654			/*
1655			 * Not enough space for the basic request. So need to
1656			 * flush out the remainder and then wait for
1657			 * base + reserved.
1658			 */
1659			total_bytes += remain_actual;
1660			need_wrap = remain_actual | 1;
1661		} else  {
1662			/*
1663			 * The base request will fit but the reserved space
1664			 * falls off the end. So we don't need an immediate
1665			 * wrap and only need to effectively wait for the
1666			 * reserved size from the start of ringbuffer.
1667			 */
1668			total_bytes = rq->reserved_space + remain_actual;
1669		}
1670	}
1671
1672	if (unlikely(total_bytes > ring->space)) {
1673		int ret;
1674
1675		/*
1676		 * Space is reserved in the ringbuffer for finalising the
1677		 * request, as that cannot be allowed to fail. During request
1678		 * finalisation, reserved_space is set to 0 to stop the
1679		 * overallocation and the assumption is that then we never need
1680		 * to wait (which has the risk of failing with EINTR).
1681		 *
1682		 * See also i915_request_alloc() and i915_request_add().
1683		 */
1684		GEM_BUG_ON(!rq->reserved_space);
1685
1686		ret = wait_for_space(ring, total_bytes);
1687		if (unlikely(ret))
1688			return ERR_PTR(ret);
1689	}
1690
1691	if (unlikely(need_wrap)) {
1692		need_wrap &= ~1;
1693		GEM_BUG_ON(need_wrap > ring->space);
1694		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1695
1696		/* Fill the tail with MI_NOOP */
1697		memset(ring->vaddr + ring->emit, 0, need_wrap);
1698		ring->emit = 0;
1699		ring->space -= need_wrap;
1700	}
1701
1702	GEM_BUG_ON(ring->emit > ring->size - bytes);
1703	GEM_BUG_ON(ring->space < bytes);
1704	cs = ring->vaddr + ring->emit;
1705	GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1706	ring->emit += bytes;
1707	ring->space -= bytes;
1708
1709	return cs;
1710}
1711
1712/* Align the ring tail to a cacheline boundary */
1713int intel_ring_cacheline_align(struct i915_request *rq)
1714{
1715	int num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1716	u32 *cs;
1717
1718	if (num_dwords == 0)
1719		return 0;
1720
1721	num_dwords = CACHELINE_BYTES / sizeof(u32) - num_dwords;
1722	cs = intel_ring_begin(rq, num_dwords);
1723	if (IS_ERR(cs))
1724		return PTR_ERR(cs);
1725
1726	while (num_dwords--)
1727		*cs++ = MI_NOOP;
1728
1729	intel_ring_advance(rq, cs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731	return 0;
1732}
1733
1734static void gen6_bsd_submit_request(struct i915_request *request)
 
1735{
1736	struct drm_i915_private *dev_priv = request->i915;
1737
1738	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1739
1740       /* Every tail move must follow the sequence below */
1741
1742	/* Disable notification that the ring is IDLE. The GT
1743	 * will then assume that it is busy and bring it out of rc6.
1744	 */
1745	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1746		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1747
1748	/* Clear the context id. Here be magic! */
1749	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1750
1751	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1752	if (__intel_wait_for_register_fw(dev_priv,
1753					 GEN6_BSD_SLEEP_PSMI_CONTROL,
1754					 GEN6_BSD_SLEEP_INDICATOR,
1755					 0,
1756					 1000, 0, NULL))
1757		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1758
1759	/* Now that the ring is fully powered up, update the tail */
1760	i9xx_submit_request(request);
1761
1762	/* Let the ring send IDLE messages to the GT again,
1763	 * and so let it sleep to conserve power when idle.
1764	 */
1765	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1766		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1767
1768	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1769}
1770
1771static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
 
1772{
1773	u32 cmd, *cs;
 
1774
1775	cs = intel_ring_begin(rq, 4);
1776	if (IS_ERR(cs))
1777		return PTR_ERR(cs);
1778
1779	cmd = MI_FLUSH_DW;
1780
1781	/* We always require a command barrier so that subsequent
1782	 * commands, such as breadcrumb interrupts, are strictly ordered
1783	 * wrt the contents of the write cache being flushed to memory
1784	 * (and thus being coherent from the CPU).
1785	 */
1786	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1787
1788	/*
1789	 * Bspec vol 1c.5 - video engine command streamer:
1790	 * "If ENABLED, all TLBs will be invalidated once the flush
1791	 * operation is complete. This bit is only valid when the
1792	 * Post-Sync Operation field is a value of 1h or 3h."
1793	 */
1794	if (mode & EMIT_INVALIDATE)
1795		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1796
1797	*cs++ = cmd;
1798	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1799	*cs++ = 0;
1800	*cs++ = MI_NOOP;
1801	intel_ring_advance(rq, cs);
1802	return 0;
1803}
1804
1805static int
1806hsw_emit_bb_start(struct i915_request *rq,
1807		  u64 offset, u32 len,
1808		  unsigned int dispatch_flags)
1809{
1810	u32 *cs;
1811
1812	cs = intel_ring_begin(rq, 2);
1813	if (IS_ERR(cs))
1814		return PTR_ERR(cs);
1815
1816	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1817		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1818		(dispatch_flags & I915_DISPATCH_RS ?
1819		MI_BATCH_RESOURCE_STREAMER : 0);
1820	/* bit0-7 is the length on GEN6+ */
1821	*cs++ = offset;
1822	intel_ring_advance(rq, cs);
1823
1824	return 0;
1825}
 
1826
1827static int
1828gen6_emit_bb_start(struct i915_request *rq,
1829		   u64 offset, u32 len,
1830		   unsigned int dispatch_flags)
1831{
1832	u32 *cs;
1833
1834	cs = intel_ring_begin(rq, 2);
1835	if (IS_ERR(cs))
1836		return PTR_ERR(cs);
1837
1838	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1839		0 : MI_BATCH_NON_SECURE_I965);
1840	/* bit0-7 is the length on GEN6+ */
1841	*cs++ = offset;
1842	intel_ring_advance(rq, cs);
1843
1844	return 0;
1845}
1846
1847/* Blitter support (SandyBridge+) */
1848
1849static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1850{
1851	u32 cmd, *cs;
1852
1853	cs = intel_ring_begin(rq, 4);
1854	if (IS_ERR(cs))
1855		return PTR_ERR(cs);
1856
1857	cmd = MI_FLUSH_DW;
1858
1859	/* We always require a command barrier so that subsequent
1860	 * commands, such as breadcrumb interrupts, are strictly ordered
1861	 * wrt the contents of the write cache being flushed to memory
1862	 * (and thus being coherent from the CPU).
1863	 */
1864	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1865
1866	/*
1867	 * Bspec vol 1c.3 - blitter engine command streamer:
1868	 * "If ENABLED, all TLBs will be invalidated once the flush
1869	 * operation is complete. This bit is only valid when the
1870	 * Post-Sync Operation field is a value of 1h or 3h."
1871	 */
1872	if (mode & EMIT_INVALIDATE)
1873		cmd |= MI_INVALIDATE_TLB;
1874	*cs++ = cmd;
1875	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1876	*cs++ = 0;
1877	*cs++ = MI_NOOP;
1878	intel_ring_advance(rq, cs);
1879
1880	return 0;
1881}
1882
1883static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1884				       struct intel_engine_cs *engine)
1885{
1886	int i;
1887
1888	if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1889		return;
1890
1891	GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
1892	engine->semaphore.sync_to = gen6_ring_sync_to;
1893	engine->semaphore.signal = gen6_signal;
1894
1895	/*
1896	 * The current semaphore is only applied on pre-gen8
1897	 * platform.  And there is no VCS2 ring on the pre-gen8
1898	 * platform. So the semaphore between RCS and VCS2 is
1899	 * initialized as INVALID.
1900	 */
1901	for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1902		static const struct {
1903			u32 wait_mbox;
1904			i915_reg_t mbox_reg;
1905		} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1906			[RCS_HW] = {
1907				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
1908				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
1909				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1910			},
1911			[VCS_HW] = {
1912				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
1913				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
1914				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1915			},
1916			[BCS_HW] = {
1917				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
1918				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
1919				[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1920			},
1921			[VECS_HW] = {
1922				[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1923				[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1924				[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1925			},
1926		};
1927		u32 wait_mbox;
1928		i915_reg_t mbox_reg;
1929
1930		if (i == engine->hw_id) {
1931			wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1932			mbox_reg = GEN6_NOSYNC;
1933		} else {
1934			wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1935			mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1936		}
1937
1938		engine->semaphore.mbox.wait[i] = wait_mbox;
1939		engine->semaphore.mbox.signal[i] = mbox_reg;
1940	}
1941}
1942
1943static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
1944				struct intel_engine_cs *engine)
1945{
1946	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
1947
1948	if (INTEL_GEN(dev_priv) >= 6) {
1949		engine->irq_enable = gen6_irq_enable;
1950		engine->irq_disable = gen6_irq_disable;
1951		engine->irq_seqno_barrier = gen6_seqno_barrier;
1952	} else if (INTEL_GEN(dev_priv) >= 5) {
1953		engine->irq_enable = gen5_irq_enable;
1954		engine->irq_disable = gen5_irq_disable;
1955		engine->irq_seqno_barrier = gen5_seqno_barrier;
1956	} else if (INTEL_GEN(dev_priv) >= 3) {
1957		engine->irq_enable = i9xx_irq_enable;
1958		engine->irq_disable = i9xx_irq_disable;
1959	} else {
1960		engine->irq_enable = i8xx_irq_enable;
1961		engine->irq_disable = i8xx_irq_disable;
1962	}
1963}
1964
1965static void i9xx_set_default_submission(struct intel_engine_cs *engine)
 
1966{
1967	engine->submit_request = i9xx_submit_request;
1968	engine->cancel_requests = cancel_requests;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969
1970	engine->park = NULL;
1971	engine->unpark = NULL;
1972}
1973
1974static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
 
1975{
1976	i9xx_set_default_submission(engine);
1977	engine->submit_request = gen6_bsd_submit_request;
 
1978}
1979
1980static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
1981				      struct intel_engine_cs *engine)
1982{
1983	/* gen8+ are only supported with execlists */
1984	GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
 
 
1985
1986	intel_ring_init_irq(dev_priv, engine);
1987	intel_ring_init_semaphores(dev_priv, engine);
1988
1989	engine->init_hw = init_ring_common;
1990	engine->reset_hw = reset_ring_common;
 
 
 
 
 
1991
1992	engine->context_pin = intel_ring_context_pin;
1993	engine->context_unpin = intel_ring_context_unpin;
 
 
 
1994
1995	engine->request_alloc = ring_request_alloc;
 
 
 
 
 
1996
1997	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
1998	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
1999	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2000		int num_rings;
 
 
 
 
 
2001
2002		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
 
 
 
 
 
 
 
 
 
 
2003
2004		num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2005		engine->emit_breadcrumb_sz += num_rings * 3;
2006		if (num_rings & 1)
2007			engine->emit_breadcrumb_sz++;
2008	}
2009
2010	engine->set_default_submission = i9xx_set_default_submission;
2011
2012	if (INTEL_GEN(dev_priv) >= 6)
2013		engine->emit_bb_start = gen6_emit_bb_start;
2014	else if (INTEL_GEN(dev_priv) >= 4)
2015		engine->emit_bb_start = i965_emit_bb_start;
2016	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2017		engine->emit_bb_start = i830_emit_bb_start;
2018	else
2019		engine->emit_bb_start = i915_emit_bb_start;
2020}
2021
2022int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
 
2023{
2024	struct drm_i915_private *dev_priv = engine->i915;
2025	int ret;
 
 
2026
2027	intel_ring_default_vfuncs(dev_priv, engine);
 
2028
2029	if (HAS_L3_DPF(dev_priv))
2030		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
 
 
2031
2032	if (INTEL_GEN(dev_priv) >= 6) {
2033		engine->init_context = intel_rcs_ctx_init;
2034		engine->emit_flush = gen7_render_ring_flush;
2035		if (IS_GEN6(dev_priv))
2036			engine->emit_flush = gen6_render_ring_flush;
2037	} else if (IS_GEN5(dev_priv)) {
2038		engine->emit_flush = gen4_render_ring_flush;
2039	} else {
2040		if (INTEL_GEN(dev_priv) < 4)
2041			engine->emit_flush = gen2_render_ring_flush;
2042		else
2043			engine->emit_flush = gen4_render_ring_flush;
2044		engine->irq_enable_mask = I915_USER_INTERRUPT;
2045	}
2046
2047	if (IS_HASWELL(dev_priv))
2048		engine->emit_bb_start = hsw_emit_bb_start;
2049
2050	engine->init_hw = init_render_ring;
2051
2052	ret = intel_init_ring_buffer(engine);
2053	if (ret)
2054		return ret;
2055
2056	if (INTEL_GEN(dev_priv) >= 6) {
2057		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2058		if (ret)
2059			return ret;
2060	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2061		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2062		if (ret)
2063			return ret;
2064	}
2065
2066	return 0;
2067}
2068
2069int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2070{
2071	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	intel_ring_default_vfuncs(dev_priv, engine);
 
 
 
 
 
 
 
 
 
2074
2075	if (INTEL_GEN(dev_priv) >= 6) {
2076		/* gen6 bsd needs a special wa for tail updates */
2077		if (IS_GEN6(dev_priv))
2078			engine->set_default_submission = gen6_bsd_set_default_submission;
2079		engine->emit_flush = gen6_bsd_ring_flush;
2080		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2081	} else {
2082		engine->mmio_base = BSD_RING_BASE;
2083		engine->emit_flush = bsd_ring_flush;
2084		if (IS_GEN5(dev_priv))
2085			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2086		else
2087			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2088	}
2089
2090	return intel_init_ring_buffer(engine);
 
2091}
2092
2093int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2094{
2095	struct drm_i915_private *dev_priv = engine->i915;
 
2096
2097	intel_ring_default_vfuncs(dev_priv, engine);
 
 
 
2098
2099	engine->emit_flush = gen6_ring_flush;
2100	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2101
2102	return intel_init_ring_buffer(engine);
2103}
2104
2105int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2106{
2107	struct drm_i915_private *dev_priv = engine->i915;
2108
2109	intel_ring_default_vfuncs(dev_priv, engine);
2110
2111	engine->emit_flush = gen6_ring_flush;
2112	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2113	engine->irq_enable = hsw_vebox_irq_enable;
2114	engine->irq_disable = hsw_vebox_irq_disable;
2115
2116	return intel_init_ring_buffer(engine);
2117}