Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include "drmP.h"
  31#include "drm.h"
  32#include "i915_drv.h"
  33#include "i915_drm.h"
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37static inline int ring_space(struct intel_ring_buffer *ring)
 
 
 
 
 
  38{
  39	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  40	if (space < 0)
  41		space += ring->size;
  42	return space;
  43}
  44
  45static u32 i915_gem_get_seqno(struct drm_device *dev)
  46{
  47	drm_i915_private_t *dev_priv = dev->dev_private;
  48	u32 seqno;
 
 
  49
  50	seqno = dev_priv->next_seqno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52	/* reserve 0 for non-seqno */
  53	if (++dev_priv->next_seqno == 0)
  54		dev_priv->next_seqno = 1;
  55
  56	return seqno;
  57}
  58
  59static int
  60render_ring_flush(struct intel_ring_buffer *ring,
  61		  u32	invalidate_domains,
  62		  u32	flush_domains)
  63{
  64	struct drm_device *dev = ring->dev;
  65	u32 cmd;
  66	int ret;
  67
  68	/*
  69	 * read/write caches:
  70	 *
  71	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  72	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  73	 * also flushed at 2d versus 3d pipeline switches.
  74	 *
  75	 * read-only caches:
  76	 *
  77	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  78	 * MI_READ_FLUSH is set, and is always flushed on 965.
  79	 *
  80	 * I915_GEM_DOMAIN_COMMAND may not exist?
  81	 *
  82	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  83	 * invalidated when MI_EXE_FLUSH is set.
  84	 *
  85	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  86	 * invalidated with every MI_FLUSH.
  87	 *
  88	 * TLBs:
  89	 *
  90	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  91	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  92	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  93	 * are flushed at any MI_FLUSH.
  94	 */
  95
  96	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  97	if ((invalidate_domains|flush_domains) &
  98	    I915_GEM_DOMAIN_RENDER)
  99		cmd &= ~MI_NO_WRITE_FLUSH;
 100	if (INTEL_INFO(dev)->gen < 4) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101		/*
 102		 * On the 965, the sampler cache always gets flushed
 103		 * and this bit is reserved.
 104		 */
 105		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
 106			cmd |= MI_READ_FLUSH;
 107	}
 108	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
 109		cmd |= MI_EXE_FLUSH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
 112	    (IS_G4X(dev) || IS_GEN5(dev)))
 113		cmd |= MI_INVALIDATE_ISP;
 
 
 
 
 
 114
 115	ret = intel_ring_begin(ring, 2);
 116	if (ret)
 117		return ret;
 118
 119	intel_ring_emit(ring, cmd);
 120	intel_ring_emit(ring, MI_NOOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121	intel_ring_advance(ring);
 122
 123	return 0;
 124}
 125
 126static void ring_write_tail(struct intel_ring_buffer *ring,
 127			    u32 value)
 
 128{
 129	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 130	I915_WRITE_TAIL(ring, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
 
 134{
 135	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 136	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
 137			RING_ACTHD(ring->mmio_base) : ACTHD;
 
 
 
 138
 139	return I915_READ(acthd_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140}
 141
 142static int init_ring_common(struct intel_ring_buffer *ring)
 143{
 144	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 145	struct drm_i915_gem_object *obj = ring->obj;
 146	u32 head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	/* Stop the ring if it's running. */
 149	I915_WRITE_CTL(ring, 0);
 150	I915_WRITE_HEAD(ring, 0);
 151	ring->write_tail(ring, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	/* Initialize the ring. */
 154	I915_WRITE_START(ring, obj->gtt_offset);
 155	head = I915_READ_HEAD(ring) & HEAD_ADDR;
 156
 157	/* G45 ring initialization fails to reset head to zero */
 158	if (head != 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159		DRM_DEBUG_KMS("%s head not reset to zero "
 160			      "ctl %08x head %08x tail %08x start %08x\n",
 161			      ring->name,
 162			      I915_READ_CTL(ring),
 163			      I915_READ_HEAD(ring),
 164			      I915_READ_TAIL(ring),
 165			      I915_READ_START(ring));
 166
 167		I915_WRITE_HEAD(ring, 0);
 168
 169		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
 170			DRM_ERROR("failed to set %s head to zero "
 171				  "ctl %08x head %08x tail %08x start %08x\n",
 172				  ring->name,
 173				  I915_READ_CTL(ring),
 174				  I915_READ_HEAD(ring),
 175				  I915_READ_TAIL(ring),
 176				  I915_READ_START(ring));
 
 
 177		}
 178	}
 179
 180	I915_WRITE_CTL(ring,
 181			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
 182			| RING_REPORT_64K | RING_VALID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183
 184	/* If the head is still not zero, the ring is dead */
 185	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
 186	    I915_READ_START(ring) != obj->gtt_offset ||
 187	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
 188		DRM_ERROR("%s initialization failed "
 189				"ctl %08x head %08x tail %08x start %08x\n",
 190				ring->name,
 191				I915_READ_CTL(ring),
 192				I915_READ_HEAD(ring),
 193				I915_READ_TAIL(ring),
 194				I915_READ_START(ring));
 195		return -EIO;
 
 
 
 196	}
 197
 198	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
 199		i915_kernel_lost_context(ring->dev);
 200	else {
 201		ring->head = I915_READ_HEAD(ring);
 202		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
 203		ring->space = ring_space(ring);
 204	}
 205
 206	return 0;
 
 
 
 207}
 208
 209/*
 210 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 211 * over cache flushing.
 212 */
 213struct pipe_control {
 214	struct drm_i915_gem_object *obj;
 215	volatile u32 *cpu_page;
 216	u32 gtt_offset;
 217};
 218
 219static int
 220init_pipe_control(struct intel_ring_buffer *ring)
 
 
 
 221{
 222	struct pipe_control *pc;
 223	struct drm_i915_gem_object *obj;
 224	int ret;
 225
 226	if (ring->private)
 227		return 0;
 228
 229	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
 230	if (!pc)
 231		return -ENOMEM;
 232
 233	obj = i915_gem_alloc_object(ring->dev, 4096);
 234	if (obj == NULL) {
 235		DRM_ERROR("Failed to allocate seqno page\n");
 236		ret = -ENOMEM;
 237		goto err;
 
 
 
 238	}
 
 239
 240	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
 241
 242	ret = i915_gem_object_pin(obj, 4096, true);
 243	if (ret)
 244		goto err_unref;
 245
 246	pc->gtt_offset = obj->gtt_offset;
 247	pc->cpu_page =  kmap(obj->pages[0]);
 248	if (pc->cpu_page == NULL)
 249		goto err_unpin;
 250
 251	pc->obj = obj;
 252	ring->private = pc;
 253	return 0;
 
 254
 255err_unpin:
 256	i915_gem_object_unpin(obj);
 257err_unref:
 258	drm_gem_object_unreference(&obj->base);
 259err:
 260	kfree(pc);
 261	return ret;
 
 
 
 
 
 
 262}
 263
 264static void
 265cleanup_pipe_control(struct intel_ring_buffer *ring)
 
 266{
 267	struct pipe_control *pc = ring->private;
 268	struct drm_i915_gem_object *obj;
 269
 270	if (!ring->private)
 271		return;
 272
 273	obj = pc->obj;
 274	kunmap(obj->pages[0]);
 275	i915_gem_object_unpin(obj);
 276	drm_gem_object_unreference(&obj->base);
 277
 278	kfree(pc);
 279	ring->private = NULL;
 280}
 281
 282static int init_render_ring(struct intel_ring_buffer *ring)
 283{
 284	struct drm_device *dev = ring->dev;
 285	struct drm_i915_private *dev_priv = dev->dev_private;
 286	int ret = init_ring_common(ring);
 287
 288	if (INTEL_INFO(dev)->gen > 3) {
 289		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
 290		if (IS_GEN6(dev) || IS_GEN7(dev))
 291			mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
 292		I915_WRITE(MI_MODE, mode);
 293		if (IS_GEN7(dev))
 294			I915_WRITE(GFX_MODE_GEN7,
 295				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
 296				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
 297	}
 298
 299	if (INTEL_INFO(dev)->gen >= 6) {
 300	} else if (IS_GEN5(dev)) {
 301		ret = init_pipe_control(ring);
 302		if (ret)
 303			return ret;
 304	}
 305
 306	return ret;
 
 
 307}
 308
 309static void render_ring_cleanup(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310{
 311	if (!ring->private)
 312		return;
 
 
 
 
 
 
 
 
 313
 314	cleanup_pipe_control(ring);
 315}
 316
 317static void
 318update_semaphore(struct intel_ring_buffer *ring, int i, u32 seqno)
 319{
 320	struct drm_device *dev = ring->dev;
 321	struct drm_i915_private *dev_priv = dev->dev_private;
 322	int id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323
 324	/*
 325	 * cs -> 1 = vcs, 0 = bcs
 326	 * vcs -> 1 = bcs, 0 = cs,
 327	 * bcs -> 1 = cs, 0 = vcs.
 328	 */
 329	id = ring - dev_priv->ring;
 330	id += 2 - i;
 331	id %= 3;
 
 
 
 332
 333	intel_ring_emit(ring,
 334			MI_SEMAPHORE_MBOX |
 335			MI_SEMAPHORE_REGISTER |
 336			MI_SEMAPHORE_UPDATE);
 337	intel_ring_emit(ring, seqno);
 338	intel_ring_emit(ring,
 339			RING_SYNC_0(dev_priv->ring[id].mmio_base) + 4*i);
 340}
 341
 342static int
 343gen6_add_request(struct intel_ring_buffer *ring,
 344		 u32 *result)
 345{
 346	u32 seqno;
 347	int ret;
 348
 349	ret = intel_ring_begin(ring, 10);
 350	if (ret)
 351		return ret;
 352
 353	seqno = i915_gem_get_seqno(ring->dev);
 354	update_semaphore(ring, 0, seqno);
 355	update_semaphore(ring, 1, seqno);
 356
 357	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 358	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 359	intel_ring_emit(ring, seqno);
 360	intel_ring_emit(ring, MI_USER_INTERRUPT);
 361	intel_ring_advance(ring);
 
 
 
 
 
 
 
 362
 363	*result = seqno;
 364	return 0;
 365}
 366
 367int
 368intel_ring_sync(struct intel_ring_buffer *ring,
 369		struct intel_ring_buffer *to,
 370		u32 seqno)
 371{
 
 372	int ret;
 373
 374	ret = intel_ring_begin(ring, 4);
 375	if (ret)
 376		return ret;
 377
 378	intel_ring_emit(ring,
 379			MI_SEMAPHORE_MBOX |
 380			MI_SEMAPHORE_REGISTER |
 381			intel_ring_sync_index(ring, to) << 17 |
 382			MI_SEMAPHORE_COMPARE);
 383	intel_ring_emit(ring, seqno);
 384	intel_ring_emit(ring, 0);
 385	intel_ring_emit(ring, MI_NOOP);
 386	intel_ring_advance(ring);
 387
 388	return 0;
 389}
 390
 391#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
 392do {									\
 393	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |		\
 394		 PIPE_CONTROL_DEPTH_STALL | 2);				\
 395	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
 396	intel_ring_emit(ring__, 0);							\
 397	intel_ring_emit(ring__, 0);							\
 398} while (0)
 399
 400static int
 401pc_render_add_request(struct intel_ring_buffer *ring,
 402		      u32 *result)
 403{
 404	struct drm_device *dev = ring->dev;
 405	u32 seqno = i915_gem_get_seqno(dev);
 406	struct pipe_control *pc = ring->private;
 407	u32 scratch_addr = pc->gtt_offset + 128;
 408	int ret;
 409
 410	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
 411	 * incoherent with writes to memory, i.e. completely fubar,
 412	 * so we need to use PIPE_NOTIFY instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413	 *
 414	 * However, we also need to workaround the qword write
 415	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
 416	 * memory before requesting an interrupt.
 417	 */
 418	ret = intel_ring_begin(ring, 32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419	if (ret)
 420		return ret;
 421
 422	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
 423			PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH);
 424	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 425	intel_ring_emit(ring, seqno);
 426	intel_ring_emit(ring, 0);
 427	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 428	scratch_addr += 128; /* write to separate cachelines */
 429	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 430	scratch_addr += 128;
 431	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 432	scratch_addr += 128;
 433	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 434	scratch_addr += 128;
 435	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 436	scratch_addr += 128;
 437	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 438	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
 439			PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH |
 440			PIPE_CONTROL_NOTIFY);
 441	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 442	intel_ring_emit(ring, seqno);
 443	intel_ring_emit(ring, 0);
 444	intel_ring_advance(ring);
 445
 446	*result = seqno;
 447	return 0;
 448}
 449
 450static int
 451render_ring_add_request(struct intel_ring_buffer *ring,
 452			u32 *result)
 453{
 454	struct drm_device *dev = ring->dev;
 455	u32 seqno = i915_gem_get_seqno(dev);
 456	int ret;
 457
 458	ret = intel_ring_begin(ring, 4);
 459	if (ret)
 460		return ret;
 461
 462	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 463	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 464	intel_ring_emit(ring, seqno);
 465	intel_ring_emit(ring, MI_USER_INTERRUPT);
 466	intel_ring_advance(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468	*result = seqno;
 469	return 0;
 470}
 471
 472static u32
 473ring_get_seqno(struct intel_ring_buffer *ring)
 474{
 475	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476}
 477
 478static u32
 479pc_render_get_seqno(struct intel_ring_buffer *ring)
 480{
 481	struct pipe_control *pc = ring->private;
 482	return pc->cpu_page[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483}
 484
 485static void
 486ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
 487{
 488	dev_priv->gt_irq_mask &= ~mask;
 489	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 490	POSTING_READ(GTIMR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491}
 492
 493static void
 494ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
 495{
 496	dev_priv->gt_irq_mask |= mask;
 497	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 498	POSTING_READ(GTIMR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499}
 500
 501static void
 502i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
 503{
 504	dev_priv->irq_mask &= ~mask;
 505	I915_WRITE(IMR, dev_priv->irq_mask);
 506	POSTING_READ(IMR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507}
 508
 509static void
 510i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
 511{
 512	dev_priv->irq_mask |= mask;
 513	I915_WRITE(IMR, dev_priv->irq_mask);
 514	POSTING_READ(IMR);
 515}
 516
 517static bool
 518render_ring_get_irq(struct intel_ring_buffer *ring)
 519{
 520	struct drm_device *dev = ring->dev;
 521	drm_i915_private_t *dev_priv = dev->dev_private;
 
 522
 523	if (!dev->irq_enabled)
 524		return false;
 
 
 525
 526	spin_lock(&ring->irq_lock);
 527	if (ring->irq_refcount++ == 0) {
 528		if (HAS_PCH_SPLIT(dev))
 529			ironlake_enable_irq(dev_priv,
 530					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
 531		else
 532			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
 
 
 
 
 533	}
 534	spin_unlock(&ring->irq_lock);
 535
 536	return true;
 537}
 538
 539static void
 540render_ring_put_irq(struct intel_ring_buffer *ring)
 541{
 542	struct drm_device *dev = ring->dev;
 543	drm_i915_private_t *dev_priv = dev->dev_private;
 
 544
 545	spin_lock(&ring->irq_lock);
 546	if (--ring->irq_refcount == 0) {
 547		if (HAS_PCH_SPLIT(dev))
 548			ironlake_disable_irq(dev_priv,
 549					     GT_USER_INTERRUPT |
 550					     GT_PIPE_NOTIFY);
 551		else
 552			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
 
 
 
 
 553	}
 554	spin_unlock(&ring->irq_lock);
 
 555}
 556
 557void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
 558{
 559	struct drm_device *dev = ring->dev;
 560	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 561	u32 mmio = 0;
 
 562
 563	/* The ring status page addresses are no longer next to the rest of
 564	 * the ring registers as of gen7.
 565	 */
 566	if (IS_GEN7(dev)) {
 567		switch (ring->id) {
 568		case RING_RENDER:
 569			mmio = RENDER_HWS_PGA_GEN7;
 570			break;
 571		case RING_BLT:
 572			mmio = BLT_HWS_PGA_GEN7;
 573			break;
 574		case RING_BSD:
 575			mmio = BSD_HWS_PGA_GEN7;
 576			break;
 577		}
 578	} else if (IS_GEN6(ring->dev)) {
 579		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
 580	} else {
 581		mmio = RING_HWS_PGA(ring->mmio_base);
 582	}
 
 
 583
 584	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
 585	POSTING_READ(mmio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586}
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588static int
 589bsd_ring_flush(struct intel_ring_buffer *ring,
 590	       u32     invalidate_domains,
 591	       u32     flush_domains)
 592{
 
 
 
 
 593	int ret;
 594
 595	ret = intel_ring_begin(ring, 2);
 596	if (ret)
 597		return ret;
 598
 599	intel_ring_emit(ring, MI_FLUSH);
 600	intel_ring_emit(ring, MI_NOOP);
 
 
 
 
 
 601	intel_ring_advance(ring);
 
 
 
 
 
 
 
 
 
 602	return 0;
 603}
 604
 605static int
 606ring_add_request(struct intel_ring_buffer *ring,
 607		 u32 *result)
 608{
 609	u32 seqno;
 
 
 
 
 610	int ret;
 611
 612	ret = intel_ring_begin(ring, 4);
 
 
 613	if (ret)
 614		return ret;
 615
 616	seqno = i915_gem_get_seqno(ring->dev);
 617
 618	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 619	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 620	intel_ring_emit(ring, seqno);
 621	intel_ring_emit(ring, MI_USER_INTERRUPT);
 
 
 622	intel_ring_advance(ring);
 623
 624	*result = seqno;
 625	return 0;
 626}
 627
 628static bool
 629gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
 630{
 631	struct drm_device *dev = ring->dev;
 632	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634	if (!dev->irq_enabled)
 635	       return false;
 
 
 636
 637	spin_lock(&ring->irq_lock);
 638	if (ring->irq_refcount++ == 0) {
 639		ring->irq_mask &= ~rflag;
 640		I915_WRITE_IMR(ring, ring->irq_mask);
 641		ironlake_enable_irq(dev_priv, gflag);
 642	}
 643	spin_unlock(&ring->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645	return true;
 
 
 
 646}
 647
 648static void
 649gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
 650{
 651	struct drm_device *dev = ring->dev;
 652	drm_i915_private_t *dev_priv = dev->dev_private;
 653
 654	spin_lock(&ring->irq_lock);
 655	if (--ring->irq_refcount == 0) {
 656		ring->irq_mask |= rflag;
 657		I915_WRITE_IMR(ring, ring->irq_mask);
 658		ironlake_disable_irq(dev_priv, gflag);
 659	}
 660	spin_unlock(&ring->irq_lock);
 
 661}
 662
 663static bool
 664bsd_ring_get_irq(struct intel_ring_buffer *ring)
 665{
 666	struct drm_device *dev = ring->dev;
 667	drm_i915_private_t *dev_priv = dev->dev_private;
 668
 669	if (!dev->irq_enabled)
 670		return false;
 
 671
 672	spin_lock(&ring->irq_lock);
 673	if (ring->irq_refcount++ == 0) {
 674		if (IS_G4X(dev))
 675			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
 676		else
 677			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
 678	}
 679	spin_unlock(&ring->irq_lock);
 680
 681	return true;
 
 
 682}
 
 683static void
 684bsd_ring_put_irq(struct intel_ring_buffer *ring)
 685{
 686	struct drm_device *dev = ring->dev;
 687	drm_i915_private_t *dev_priv = dev->dev_private;
 688
 689	spin_lock(&ring->irq_lock);
 690	if (--ring->irq_refcount == 0) {
 691		if (IS_G4X(dev))
 692			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
 693		else
 694			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
 695	}
 696	spin_unlock(&ring->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698
 699static int
 700ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
 
 
 701{
 
 702	int ret;
 703
 704	ret = intel_ring_begin(ring, 2);
 705	if (ret)
 706		return ret;
 707
 708	intel_ring_emit(ring,
 709			MI_BATCH_BUFFER_START | (2 << 6) |
 710			MI_BATCH_NON_SECURE_I965);
 
 
 711	intel_ring_emit(ring, offset);
 712	intel_ring_advance(ring);
 713
 714	return 0;
 715}
 716
 
 
 
 
 717static int
 718render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
 719				u32 offset, u32 len)
 
 720{
 721	struct drm_device *dev = ring->dev;
 
 722	int ret;
 723
 724	if (IS_I830(dev) || IS_845G(dev)) {
 725		ret = intel_ring_begin(ring, 4);
 726		if (ret)
 727			return ret;
 728
 729		intel_ring_emit(ring, MI_BATCH_BUFFER);
 730		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
 731		intel_ring_emit(ring, offset + len - 8);
 732		intel_ring_emit(ring, 0);
 733	} else {
 734		ret = intel_ring_begin(ring, 2);
 
 
 
 
 
 
 
 
 735		if (ret)
 736			return ret;
 737
 738		if (INTEL_INFO(dev)->gen >= 4) {
 739			intel_ring_emit(ring,
 740					MI_BATCH_BUFFER_START | (2 << 6) |
 741					MI_BATCH_NON_SECURE_I965);
 742			intel_ring_emit(ring, offset);
 743		} else {
 744			intel_ring_emit(ring,
 745					MI_BATCH_BUFFER_START | (2 << 6));
 746			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
 747		}
 
 
 
 
 
 
 
 
 748	}
 
 
 
 
 
 
 
 
 749	intel_ring_advance(ring);
 750
 751	return 0;
 752}
 753
 754static void cleanup_status_page(struct intel_ring_buffer *ring)
 
 
 
 755{
 756	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757	struct drm_i915_gem_object *obj;
 758
 759	obj = ring->status_page.obj;
 760	if (obj == NULL)
 761		return;
 762
 763	kunmap(obj->pages[0]);
 764	i915_gem_object_unpin(obj);
 765	drm_gem_object_unreference(&obj->base);
 766	ring->status_page.obj = NULL;
 767
 768	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
 
 769}
 770
 771static int init_status_page(struct intel_ring_buffer *ring)
 772{
 773	struct drm_device *dev = ring->dev;
 774	drm_i915_private_t *dev_priv = dev->dev_private;
 775	struct drm_i915_gem_object *obj;
 
 
 
 776	int ret;
 777
 778	obj = i915_gem_alloc_object(dev, 4096);
 779	if (obj == NULL) {
 780		DRM_ERROR("Failed to allocate status page\n");
 781		ret = -ENOMEM;
 782		goto err;
 783	}
 784
 785	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
 
 
 786
 787	ret = i915_gem_object_pin(obj, 4096, true);
 788	if (ret != 0) {
 789		goto err_unref;
 
 790	}
 791
 792	ring->status_page.gfx_addr = obj->gtt_offset;
 793	ring->status_page.page_addr = kmap(obj->pages[0]);
 794	if (ring->status_page.page_addr == NULL) {
 795		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796		goto err_unpin;
 797	}
 798	ring->status_page.obj = obj;
 799	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
 800
 801	intel_ring_setup_status_page(ring);
 802	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
 803			ring->name, ring->status_page.gfx_addr);
 804
 
 
 805	return 0;
 806
 807err_unpin:
 808	i915_gem_object_unpin(obj);
 809err_unref:
 810	drm_gem_object_unreference(&obj->base);
 811err:
 
 812	return ret;
 813}
 814
 815int intel_init_ring_buffer(struct drm_device *dev,
 816			   struct intel_ring_buffer *ring)
 817{
 818	struct drm_i915_gem_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819	int ret;
 820
 821	ring->dev = dev;
 822	INIT_LIST_HEAD(&ring->active_list);
 823	INIT_LIST_HEAD(&ring->request_list);
 824	INIT_LIST_HEAD(&ring->gpu_write_list);
 825
 826	init_waitqueue_head(&ring->irq_queue);
 827	spin_lock_init(&ring->irq_lock);
 828	ring->irq_mask = ~0;
 829
 830	if (I915_NEED_GFX_HWS(dev)) {
 831		ret = init_status_page(ring);
 832		if (ret)
 
 
 
 
 
 
 833			return ret;
 834	}
 835
 836	obj = i915_gem_alloc_object(dev, ring->size);
 837	if (obj == NULL) {
 838		DRM_ERROR("Failed to allocate ringbuffer\n");
 839		ret = -ENOMEM;
 840		goto err_hws;
 841	}
 842
 843	ring->obj = obj;
 
 
 
 
 
 844
 845	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
 846	if (ret)
 847		goto err_unref;
 848
 849	ring->map.size = ring->size;
 850	ring->map.offset = dev->agp->base + obj->gtt_offset;
 851	ring->map.type = 0;
 852	ring->map.flags = 0;
 853	ring->map.mtrr = 0;
 854
 855	drm_core_ioremap_wc(&ring->map, dev);
 856	if (ring->map.handle == NULL) {
 857		DRM_ERROR("Failed to map ringbuffer.\n");
 858		ret = -EINVAL;
 859		goto err_unpin;
 860	}
 861
 862	ring->virtual_start = ring->map.handle;
 863	ret = ring->init(ring);
 864	if (ret)
 865		goto err_unmap;
 
 
 
 
 
 
 
 
 
 
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867	/* Workaround an erratum on the i830 which causes a hang if
 868	 * the TAIL pointer points to within the last 2 cachelines
 869	 * of the buffer.
 870	 */
 871	ring->effective_size = ring->size;
 872	if (IS_I830(ring->dev))
 873		ring->effective_size -= 128;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 
 875	return 0;
 876
 877err_unmap:
 878	drm_core_ioremapfree(&ring->map, dev);
 879err_unpin:
 880	i915_gem_object_unpin(obj);
 881err_unref:
 882	drm_gem_object_unreference(&obj->base);
 883	ring->obj = NULL;
 884err_hws:
 885	cleanup_status_page(ring);
 886	return ret;
 887}
 888
 889void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
 
 890{
 891	struct drm_i915_private *dev_priv;
 892	int ret;
 893
 894	if (ring->obj == NULL)
 
 
 895		return;
 896
 897	/* Disable the ring buffer. The ring must be idle at this point */
 898	dev_priv = ring->dev->dev_private;
 899	ret = intel_wait_ring_idle(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900	if (ret)
 901		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
 902			  ring->name, ret);
 903
 904	I915_WRITE_CTL(ring, 0);
 
 
 
 
 
 
 
 
 
 905
 906	drm_core_ioremapfree(&ring->map, ring->dev);
 
 
 
 
 907
 908	i915_gem_object_unpin(ring->obj);
 909	drm_gem_object_unreference(&ring->obj->base);
 910	ring->obj = NULL;
 
 
 
 
 
 
 
 911
 912	if (ring->cleanup)
 913		ring->cleanup(ring);
 
 
 
 
 
 
 914
 915	cleanup_status_page(ring);
 
 
 916}
 917
 918static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
 919{
 920	unsigned int *virt;
 921	int rem = ring->size - ring->tail;
 922
 923	if (ring->space < rem) {
 924		int ret = intel_wait_ring_buffer(ring, rem);
 925		if (ret)
 926			return ret;
 
 
 
 
 
 927	}
 928
 929	virt = (unsigned int *)(ring->virtual_start + ring->tail);
 930	rem /= 8;
 931	while (rem--) {
 932		*virt++ = MI_NOOP;
 933		*virt++ = MI_NOOP;
 
 
 
 934	}
 935
 936	ring->tail = 0;
 937	ring->space = ring_space(ring);
 
 938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	return 0;
 940}
 941
 942int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
 943{
 944	struct drm_device *dev = ring->dev;
 945	struct drm_i915_private *dev_priv = dev->dev_private;
 946	unsigned long end;
 947	u32 head;
 
 948
 949	/* If the reported head position has wrapped or hasn't advanced,
 950	 * fallback to the slow and accurate path.
 
 
 
 
 
 
 
 
 
 
 951	 */
 952	head = intel_read_status_page(ring, 4);
 953	if (head > ring->head) {
 954		ring->head = head;
 955		ring->space = ring_space(ring);
 956		if (ring->space >= n)
 957			return 0;
 
 
 
 
 958	}
 959
 960	trace_i915_ring_wait_begin(ring);
 961	end = jiffies + 3 * HZ;
 962	do {
 963		ring->head = I915_READ_HEAD(ring);
 964		ring->space = ring_space(ring);
 965		if (ring->space >= n) {
 966			trace_i915_ring_wait_end(ring);
 967			return 0;
 968		}
 969
 970		if (dev->primary->master) {
 971			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
 972			if (master_priv->sarea_priv)
 973				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
 974		}
 975
 976		msleep(1);
 977		if (atomic_read(&dev_priv->mm.wedged))
 978			return -EAGAIN;
 979	} while (!time_after(jiffies, end));
 980	trace_i915_ring_wait_end(ring);
 981	return -EBUSY;
 982}
 983
 984int intel_ring_begin(struct intel_ring_buffer *ring,
 985		     int num_dwords)
 986{
 987	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 988	int n = 4*num_dwords;
 989	int ret;
 
 
 
 990
 991	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
 992		return -EIO;
 993
 994	if (unlikely(ring->tail + n > ring->effective_size)) {
 995		ret = intel_wrap_ring_buffer(ring);
 996		if (unlikely(ret))
 997			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998	}
 999
1000	if (unlikely(ring->space < n)) {
1001		ret = intel_wait_ring_buffer(ring, n);
1002		if (unlikely(ret))
1003			return ret;
1004	}
1005
1006	ring->space -= n;
 
 
 
 
 
 
 
 
 
 
 
1007	return 0;
1008}
1009
1010void intel_ring_advance(struct intel_ring_buffer *ring)
 
1011{
1012	ring->tail &= ring->size - 1;
1013	ring->write_tail(ring, ring->tail);
1014}
 
 
 
 
 
 
 
 
 
1015
1016static const struct intel_ring_buffer render_ring = {
1017	.name			= "render ring",
1018	.id			= RING_RENDER,
1019	.mmio_base		= RENDER_RING_BASE,
1020	.size			= 32 * PAGE_SIZE,
1021	.init			= init_render_ring,
1022	.write_tail		= ring_write_tail,
1023	.flush			= render_ring_flush,
1024	.add_request		= render_ring_add_request,
1025	.get_seqno		= ring_get_seqno,
1026	.irq_get		= render_ring_get_irq,
1027	.irq_put		= render_ring_put_irq,
1028	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1029       .cleanup			= render_ring_cleanup,
1030};
1031
1032/* ring buffer for bit-stream decoder */
1033
1034static const struct intel_ring_buffer bsd_ring = {
1035	.name                   = "bsd ring",
1036	.id			= RING_BSD,
1037	.mmio_base		= BSD_RING_BASE,
1038	.size			= 32 * PAGE_SIZE,
1039	.init			= init_ring_common,
1040	.write_tail		= ring_write_tail,
1041	.flush			= bsd_ring_flush,
1042	.add_request		= ring_add_request,
1043	.get_seqno		= ring_get_seqno,
1044	.irq_get		= bsd_ring_get_irq,
1045	.irq_put		= bsd_ring_put_irq,
1046	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1047};
1048
 
 
 
 
1049
1050static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1051				     u32 value)
1052{
1053       drm_i915_private_t *dev_priv = ring->dev->dev_private;
 
 
1054
1055       /* Every tail move must follow the sequence below */
1056       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1057	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1058	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1059       I915_WRITE(GEN6_BSD_RNCID, 0x0);
1060
1061       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1062                               GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
1063                       50))
1064               DRM_ERROR("timed out waiting for IDLE Indicator\n");
1065
1066       I915_WRITE_TAIL(ring, value);
1067       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1068	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1069	       GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072static int gen6_ring_flush(struct intel_ring_buffer *ring,
1073			   u32 invalidate, u32 flush)
1074{
 
1075	uint32_t cmd;
1076	int ret;
1077
1078	ret = intel_ring_begin(ring, 4);
1079	if (ret)
1080		return ret;
1081
1082	cmd = MI_FLUSH_DW;
1083	if (invalidate & I915_GEM_GPU_DOMAINS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
 
1085	intel_ring_emit(ring, cmd);
1086	intel_ring_emit(ring, 0);
1087	intel_ring_emit(ring, 0);
1088	intel_ring_emit(ring, MI_NOOP);
 
 
 
 
 
1089	intel_ring_advance(ring);
1090	return 0;
1091}
1092
1093static int
1094gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1095			      u32 offset, u32 len)
1096{
1097       int ret;
 
 
 
 
1098
1099       ret = intel_ring_begin(ring, 2);
1100       if (ret)
1101	       return ret;
1102
1103       intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1104       /* bit0-7 is the length on GEN6+ */
1105       intel_ring_emit(ring, offset);
1106       intel_ring_advance(ring);
 
 
 
 
1107
1108       return 0;
1109}
1110
1111static bool
1112gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
 
 
1113{
1114	return gen6_ring_get_irq(ring,
1115				 GT_USER_INTERRUPT,
1116				 GEN6_RENDER_USER_INTERRUPT);
1117}
1118
1119static void
1120gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1121{
1122	return gen6_ring_put_irq(ring,
1123				 GT_USER_INTERRUPT,
1124				 GEN6_RENDER_USER_INTERRUPT);
1125}
1126
1127static bool
1128gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1129{
1130	return gen6_ring_get_irq(ring,
1131				 GT_GEN6_BSD_USER_INTERRUPT,
1132				 GEN6_BSD_USER_INTERRUPT);
 
 
 
 
 
1133}
1134
1135static void
1136gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
 
 
1137{
1138	return gen6_ring_put_irq(ring,
1139				 GT_GEN6_BSD_USER_INTERRUPT,
1140				 GEN6_BSD_USER_INTERRUPT);
1141}
1142
1143/* ring buffer for Video Codec for Gen6+ */
1144static const struct intel_ring_buffer gen6_bsd_ring = {
1145	.name			= "gen6 bsd ring",
1146	.id			= RING_BSD,
1147	.mmio_base		= GEN6_BSD_RING_BASE,
1148	.size			= 32 * PAGE_SIZE,
1149	.init			= init_ring_common,
1150	.write_tail		= gen6_bsd_ring_write_tail,
1151	.flush			= gen6_ring_flush,
1152	.add_request		= gen6_add_request,
1153	.get_seqno		= ring_get_seqno,
1154	.irq_get		= gen6_bsd_ring_get_irq,
1155	.irq_put		= gen6_bsd_ring_put_irq,
1156	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1157};
1158
1159/* Blitter support (SandyBridge+) */
 
 
1160
1161static bool
1162blt_ring_get_irq(struct intel_ring_buffer *ring)
1163{
1164	return gen6_ring_get_irq(ring,
1165				 GT_BLT_USER_INTERRUPT,
1166				 GEN6_BLITTER_USER_INTERRUPT);
 
 
 
1167}
1168
1169static void
1170blt_ring_put_irq(struct intel_ring_buffer *ring)
 
1171{
1172	gen6_ring_put_irq(ring,
1173			  GT_BLT_USER_INTERRUPT,
1174			  GEN6_BLITTER_USER_INTERRUPT);
1175}
1176
 
 
 
1177
1178/* Workaround for some stepping of SNB,
1179 * each time when BLT engine ring tail moved,
1180 * the first command in the ring to be parsed
1181 * should be MI_BATCH_BUFFER_START
1182 */
1183#define NEED_BLT_WORKAROUND(dev) \
1184	(IS_GEN6(dev) && (dev->pdev->revision < 8))
1185
1186static inline struct drm_i915_gem_object *
1187to_blt_workaround(struct intel_ring_buffer *ring)
1188{
1189	return ring->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190}
1191
1192static int blt_ring_init(struct intel_ring_buffer *ring)
 
1193{
1194	if (NEED_BLT_WORKAROUND(ring->dev)) {
1195		struct drm_i915_gem_object *obj;
1196		u32 *ptr;
1197		int ret;
1198
1199		obj = i915_gem_alloc_object(ring->dev, 4096);
1200		if (obj == NULL)
1201			return -ENOMEM;
1202
1203		ret = i915_gem_object_pin(obj, 4096, true);
1204		if (ret) {
1205			drm_gem_object_unreference(&obj->base);
1206			return ret;
1207		}
1208
1209		ptr = kmap(obj->pages[0]);
1210		*ptr++ = MI_BATCH_BUFFER_END;
1211		*ptr++ = MI_NOOP;
1212		kunmap(obj->pages[0]);
 
 
 
1213
1214		ret = i915_gem_object_set_to_gtt_domain(obj, false);
1215		if (ret) {
1216			i915_gem_object_unpin(obj);
1217			drm_gem_object_unreference(&obj->base);
1218			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219		}
 
 
 
1220
1221		ring->private = obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222	}
1223
1224	return init_ring_common(ring);
 
 
 
 
 
 
1225}
1226
1227static int blt_ring_begin(struct intel_ring_buffer *ring,
1228			  int num_dwords)
1229{
1230	if (ring->private) {
1231		int ret = intel_ring_begin(ring, num_dwords+2);
1232		if (ret)
1233			return ret;
1234
1235		intel_ring_emit(ring, MI_BATCH_BUFFER_START);
1236		intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238		return 0;
1239	} else
1240		return intel_ring_begin(ring, 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243static int blt_ring_flush(struct intel_ring_buffer *ring,
1244			  u32 invalidate, u32 flush)
1245{
1246	uint32_t cmd;
1247	int ret;
1248
1249	ret = blt_ring_begin(ring, 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250	if (ret)
1251		return ret;
1252
1253	cmd = MI_FLUSH_DW;
1254	if (invalidate & I915_GEM_DOMAIN_RENDER)
1255		cmd |= MI_INVALIDATE_TLB;
1256	intel_ring_emit(ring, cmd);
1257	intel_ring_emit(ring, 0);
1258	intel_ring_emit(ring, 0);
1259	intel_ring_emit(ring, MI_NOOP);
1260	intel_ring_advance(ring);
 
 
1261	return 0;
1262}
1263
1264static void blt_ring_cleanup(struct intel_ring_buffer *ring)
1265{
1266	if (!ring->private)
1267		return;
 
1268
1269	i915_gem_object_unpin(ring->private);
1270	drm_gem_object_unreference(ring->private);
1271	ring->private = NULL;
1272}
1273
1274static const struct intel_ring_buffer gen6_blt_ring = {
1275       .name			= "blt ring",
1276       .id			= RING_BLT,
1277       .mmio_base		= BLT_RING_BASE,
1278       .size			= 32 * PAGE_SIZE,
1279       .init			= blt_ring_init,
1280       .write_tail		= ring_write_tail,
1281       .flush			= blt_ring_flush,
1282       .add_request		= gen6_add_request,
1283       .get_seqno		= ring_get_seqno,
1284       .irq_get			= blt_ring_get_irq,
1285       .irq_put			= blt_ring_put_irq,
1286       .dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1287       .cleanup			= blt_ring_cleanup,
1288};
1289
1290int intel_init_render_ring_buffer(struct drm_device *dev)
1291{
1292	drm_i915_private_t *dev_priv = dev->dev_private;
1293	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1294
1295	*ring = render_ring;
1296	if (INTEL_INFO(dev)->gen >= 6) {
1297		ring->add_request = gen6_add_request;
1298		ring->irq_get = gen6_render_ring_get_irq;
1299		ring->irq_put = gen6_render_ring_put_irq;
1300	} else if (IS_GEN5(dev)) {
1301		ring->add_request = pc_render_add_request;
1302		ring->get_seqno = pc_render_get_seqno;
1303	}
1304
1305	if (!I915_NEED_GFX_HWS(dev)) {
1306		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1307		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1308	}
1309
1310	return intel_init_ring_buffer(dev, ring);
1311}
1312
1313int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1314{
1315	drm_i915_private_t *dev_priv = dev->dev_private;
1316	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1317
1318	*ring = render_ring;
1319	if (INTEL_INFO(dev)->gen >= 6) {
1320		ring->add_request = gen6_add_request;
1321		ring->irq_get = gen6_render_ring_get_irq;
1322		ring->irq_put = gen6_render_ring_put_irq;
1323	} else if (IS_GEN5(dev)) {
1324		ring->add_request = pc_render_add_request;
1325		ring->get_seqno = pc_render_get_seqno;
1326	}
1327
1328	if (!I915_NEED_GFX_HWS(dev))
1329		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1330
1331	ring->dev = dev;
1332	INIT_LIST_HEAD(&ring->active_list);
1333	INIT_LIST_HEAD(&ring->request_list);
1334	INIT_LIST_HEAD(&ring->gpu_write_list);
 
 
1335
1336	ring->size = size;
1337	ring->effective_size = ring->size;
1338	if (IS_I830(ring->dev))
1339		ring->effective_size -= 128;
1340
1341	ring->map.offset = start;
1342	ring->map.size = size;
1343	ring->map.type = 0;
1344	ring->map.flags = 0;
1345	ring->map.mtrr = 0;
1346
1347	drm_core_ioremap_wc(&ring->map, dev);
1348	if (ring->map.handle == NULL) {
1349		DRM_ERROR("can not ioremap virtual address for"
1350			  " ring buffer\n");
1351		return -ENOMEM;
1352	}
1353
1354	ring->virtual_start = (void __force __iomem *)ring->map.handle;
1355	return 0;
 
1356}
1357
1358int intel_init_bsd_ring_buffer(struct drm_device *dev)
1359{
1360	drm_i915_private_t *dev_priv = dev->dev_private;
1361	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1362
1363	if (IS_GEN6(dev) || IS_GEN7(dev))
1364		*ring = gen6_bsd_ring;
1365	else
1366		*ring = bsd_ring;
 
1367
1368	return intel_init_ring_buffer(dev, ring);
1369}
1370
1371int intel_init_blt_ring_buffer(struct drm_device *dev)
1372{
1373	drm_i915_private_t *dev_priv = dev->dev_private;
1374	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1375
1376	*ring = gen6_blt_ring;
 
 
 
 
 
 
 
 
1377
1378	return intel_init_ring_buffer(dev, ring);
1379}
v4.10.11
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31#include <drm/drmP.h>
  32#include "i915_drv.h"
  33#include <drm/i915_drm.h>
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37/* Rough estimate of the typical request size, performing a flush,
  38 * set-context and then emitting the batch.
  39 */
  40#define LEGACY_REQUEST_SIZE 200
  41
  42int __intel_ring_space(int head, int tail, int size)
  43{
  44	int space = head - tail;
  45	if (space <= 0)
  46		space += size;
  47	return space - I915_RING_FREE_SPACE;
  48}
  49
  50void intel_ring_update_space(struct intel_ring *ring)
  51{
  52	if (ring->last_retired_head != -1) {
  53		ring->head = ring->last_retired_head;
  54		ring->last_retired_head = -1;
  55	}
  56
  57	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  58					 ring->tail, ring->size);
  59}
  60
  61static int
  62gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  63{
  64	struct intel_ring *ring = req->ring;
  65	u32 cmd;
  66	int ret;
  67
  68	cmd = MI_FLUSH;
  69
  70	if (mode & EMIT_INVALIDATE)
  71		cmd |= MI_READ_FLUSH;
  72
  73	ret = intel_ring_begin(req, 2);
  74	if (ret)
  75		return ret;
  76
  77	intel_ring_emit(ring, cmd);
  78	intel_ring_emit(ring, MI_NOOP);
  79	intel_ring_advance(ring);
  80
  81	return 0;
  82}
  83
  84static int
  85gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 
  86{
  87	struct intel_ring *ring = req->ring;
  88	u32 cmd;
  89	int ret;
  90
  91	/*
  92	 * read/write caches:
  93	 *
  94	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  95	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  96	 * also flushed at 2d versus 3d pipeline switches.
  97	 *
  98	 * read-only caches:
  99	 *
 100	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 101	 * MI_READ_FLUSH is set, and is always flushed on 965.
 102	 *
 103	 * I915_GEM_DOMAIN_COMMAND may not exist?
 104	 *
 105	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 106	 * invalidated when MI_EXE_FLUSH is set.
 107	 *
 108	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 109	 * invalidated with every MI_FLUSH.
 110	 *
 111	 * TLBs:
 112	 *
 113	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 114	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 115	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 116	 * are flushed at any MI_FLUSH.
 117	 */
 118
 119	cmd = MI_FLUSH;
 120	if (mode & EMIT_INVALIDATE) {
 121		cmd |= MI_EXE_FLUSH;
 122		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
 123			cmd |= MI_INVALIDATE_ISP;
 124	}
 125
 126	ret = intel_ring_begin(req, 2);
 127	if (ret)
 128		return ret;
 129
 130	intel_ring_emit(ring, cmd);
 131	intel_ring_emit(ring, MI_NOOP);
 132	intel_ring_advance(ring);
 133
 134	return 0;
 135}
 136
 137/**
 138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 139 * implementing two workarounds on gen6.  From section 1.4.7.1
 140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 141 *
 142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 143 * produced by non-pipelined state commands), software needs to first
 144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 145 * 0.
 146 *
 147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 149 *
 150 * And the workaround for these two requires this workaround first:
 151 *
 152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 153 * BEFORE the pipe-control with a post-sync op and no write-cache
 154 * flushes.
 155 *
 156 * And this last workaround is tricky because of the requirements on
 157 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 158 * volume 2 part 1:
 159 *
 160 *     "1 of the following must also be set:
 161 *      - Render Target Cache Flush Enable ([12] of DW1)
 162 *      - Depth Cache Flush Enable ([0] of DW1)
 163 *      - Stall at Pixel Scoreboard ([1] of DW1)
 164 *      - Depth Stall ([13] of DW1)
 165 *      - Post-Sync Operation ([13] of DW1)
 166 *      - Notify Enable ([8] of DW1)"
 167 *
 168 * The cache flushes require the workaround flush that triggered this
 169 * one, so we can't use it.  Depth stall would trigger the same.
 170 * Post-sync nonzero is what triggered this second workaround, so we
 171 * can't use that one either.  Notify enable is IRQs, which aren't
 172 * really our business.  That leaves only stall at scoreboard.
 173 */
 174static int
 175intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
 176{
 177	struct intel_ring *ring = req->ring;
 178	u32 scratch_addr =
 179		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 180	int ret;
 181
 182	ret = intel_ring_begin(req, 6);
 183	if (ret)
 184		return ret;
 185
 186	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 187	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 188			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 189	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 190	intel_ring_emit(ring, 0); /* low dword */
 191	intel_ring_emit(ring, 0); /* high dword */
 192	intel_ring_emit(ring, MI_NOOP);
 193	intel_ring_advance(ring);
 194
 195	ret = intel_ring_begin(req, 6);
 196	if (ret)
 197		return ret;
 198
 199	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 200	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
 201	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 202	intel_ring_emit(ring, 0);
 203	intel_ring_emit(ring, 0);
 204	intel_ring_emit(ring, MI_NOOP);
 205	intel_ring_advance(ring);
 206
 207	return 0;
 208}
 209
 210static int
 211gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 212{
 213	struct intel_ring *ring = req->ring;
 214	u32 scratch_addr =
 215		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 216	u32 flags = 0;
 217	int ret;
 218
 219	/* Force SNB workarounds for PIPE_CONTROL flushes */
 220	ret = intel_emit_post_sync_nonzero_flush(req);
 221	if (ret)
 222		return ret;
 223
 224	/* Just flush everything.  Experiments have shown that reducing the
 225	 * number of bits based on the write domains has little performance
 226	 * impact.
 227	 */
 228	if (mode & EMIT_FLUSH) {
 229		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 230		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 231		/*
 232		 * Ensure that any following seqno writes only happen
 233		 * when the render cache is indeed flushed.
 234		 */
 235		flags |= PIPE_CONTROL_CS_STALL;
 
 236	}
 237	if (mode & EMIT_INVALIDATE) {
 238		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 239		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 240		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 241		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 242		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 243		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 244		/*
 245		 * TLB invalidate requires a post-sync write.
 246		 */
 247		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 248	}
 249
 250	ret = intel_ring_begin(req, 4);
 251	if (ret)
 252		return ret;
 253
 254	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 255	intel_ring_emit(ring, flags);
 256	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 257	intel_ring_emit(ring, 0);
 258	intel_ring_advance(ring);
 259
 260	return 0;
 261}
 262
 263static int
 264gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
 265{
 266	struct intel_ring *ring = req->ring;
 267	int ret;
 268
 269	ret = intel_ring_begin(req, 4);
 270	if (ret)
 271		return ret;
 272
 273	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 274	intel_ring_emit(ring,
 275			PIPE_CONTROL_CS_STALL |
 276			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 277	intel_ring_emit(ring, 0);
 278	intel_ring_emit(ring, 0);
 279	intel_ring_advance(ring);
 280
 281	return 0;
 282}
 283
 284static int
 285gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 286{
 287	struct intel_ring *ring = req->ring;
 288	u32 scratch_addr =
 289		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 290	u32 flags = 0;
 291	int ret;
 292
 293	/*
 294	 * Ensure that any following seqno writes only happen when the render
 295	 * cache is indeed flushed.
 296	 *
 297	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 298	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 299	 * don't try to be clever and just set it unconditionally.
 300	 */
 301	flags |= PIPE_CONTROL_CS_STALL;
 302
 303	/* Just flush everything.  Experiments have shown that reducing the
 304	 * number of bits based on the write domains has little performance
 305	 * impact.
 306	 */
 307	if (mode & EMIT_FLUSH) {
 308		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 309		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 310		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 311		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 312	}
 313	if (mode & EMIT_INVALIDATE) {
 314		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 315		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 316		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 317		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 318		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 319		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 320		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 321		/*
 322		 * TLB invalidate requires a post-sync write.
 323		 */
 324		flags |= PIPE_CONTROL_QW_WRITE;
 325		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 326
 327		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 328
 329		/* Workaround: we must issue a pipe_control with CS-stall bit
 330		 * set before a pipe_control command that has the state cache
 331		 * invalidate bit set. */
 332		gen7_render_ring_cs_stall_wa(req);
 333	}
 334
 335	ret = intel_ring_begin(req, 4);
 336	if (ret)
 337		return ret;
 338
 339	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 340	intel_ring_emit(ring, flags);
 341	intel_ring_emit(ring, scratch_addr);
 342	intel_ring_emit(ring, 0);
 343	intel_ring_advance(ring);
 344
 345	return 0;
 346}
 347
 348static int
 349gen8_emit_pipe_control(struct drm_i915_gem_request *req,
 350		       u32 flags, u32 scratch_addr)
 351{
 352	struct intel_ring *ring = req->ring;
 353	int ret;
 354
 355	ret = intel_ring_begin(req, 6);
 356	if (ret)
 357		return ret;
 358
 359	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
 360	intel_ring_emit(ring, flags);
 361	intel_ring_emit(ring, scratch_addr);
 362	intel_ring_emit(ring, 0);
 363	intel_ring_emit(ring, 0);
 364	intel_ring_emit(ring, 0);
 365	intel_ring_advance(ring);
 366
 367	return 0;
 368}
 369
 370static int
 371gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 372{
 373	u32 scratch_addr =
 374		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 375	u32 flags = 0;
 376	int ret;
 377
 378	flags |= PIPE_CONTROL_CS_STALL;
 379
 380	if (mode & EMIT_FLUSH) {
 381		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 382		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 383		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 384		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 385	}
 386	if (mode & EMIT_INVALIDATE) {
 387		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 388		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 389		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 390		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 391		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 392		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 393		flags |= PIPE_CONTROL_QW_WRITE;
 394		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 395
 396		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
 397		ret = gen8_emit_pipe_control(req,
 398					     PIPE_CONTROL_CS_STALL |
 399					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
 400					     0);
 401		if (ret)
 402			return ret;
 403	}
 404
 405	return gen8_emit_pipe_control(req, flags, scratch_addr);
 406}
 407
 408static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
 409{
 410	struct drm_i915_private *dev_priv = engine->i915;
 411	u32 addr;
 412
 413	addr = dev_priv->status_page_dmah->busaddr;
 414	if (INTEL_GEN(dev_priv) >= 4)
 415		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 416	I915_WRITE(HWS_PGA, addr);
 417}
 418
 419static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
 420{
 421	struct drm_i915_private *dev_priv = engine->i915;
 422	i915_reg_t mmio;
 423
 424	/* The ring status page addresses are no longer next to the rest of
 425	 * the ring registers as of gen7.
 426	 */
 427	if (IS_GEN7(dev_priv)) {
 428		switch (engine->id) {
 429		case RCS:
 430			mmio = RENDER_HWS_PGA_GEN7;
 431			break;
 432		case BCS:
 433			mmio = BLT_HWS_PGA_GEN7;
 434			break;
 435		/*
 436		 * VCS2 actually doesn't exist on Gen7. Only shut up
 437		 * gcc switch check warning
 438		 */
 439		case VCS2:
 440		case VCS:
 441			mmio = BSD_HWS_PGA_GEN7;
 442			break;
 443		case VECS:
 444			mmio = VEBOX_HWS_PGA_GEN7;
 445			break;
 446		}
 447	} else if (IS_GEN6(dev_priv)) {
 448		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
 449	} else {
 450		/* XXX: gen8 returns to sanity */
 451		mmio = RING_HWS_PGA(engine->mmio_base);
 452	}
 453
 454	I915_WRITE(mmio, engine->status_page.ggtt_offset);
 455	POSTING_READ(mmio);
 456
 457	/*
 458	 * Flush the TLB for this page
 459	 *
 460	 * FIXME: These two bits have disappeared on gen8, so a question
 461	 * arises: do we still need this and if so how should we go about
 462	 * invalidating the TLB?
 463	 */
 464	if (IS_GEN(dev_priv, 6, 7)) {
 465		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
 466
 467		/* ring should be idle before issuing a sync flush*/
 468		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
 469
 470		I915_WRITE(reg,
 471			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 472					      INSTPM_SYNC_FLUSH));
 473		if (intel_wait_for_register(dev_priv,
 474					    reg, INSTPM_SYNC_FLUSH, 0,
 475					    1000))
 476			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 477				  engine->name);
 478	}
 479}
 480
 481static bool stop_ring(struct intel_engine_cs *engine)
 482{
 483	struct drm_i915_private *dev_priv = engine->i915;
 484
 485	if (INTEL_GEN(dev_priv) > 2) {
 486		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
 487		if (intel_wait_for_register(dev_priv,
 488					    RING_MI_MODE(engine->mmio_base),
 489					    MODE_IDLE,
 490					    MODE_IDLE,
 491					    1000)) {
 492			DRM_ERROR("%s : timed out trying to stop ring\n",
 493				  engine->name);
 494			/* Sometimes we observe that the idle flag is not
 495			 * set even though the ring is empty. So double
 496			 * check before giving up.
 497			 */
 498			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
 499				return false;
 500		}
 501	}
 502
 503	I915_WRITE_CTL(engine, 0);
 504	I915_WRITE_HEAD(engine, 0);
 505	I915_WRITE_TAIL(engine, 0);
 506
 507	if (INTEL_GEN(dev_priv) > 2) {
 508		(void)I915_READ_CTL(engine);
 509		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
 510	}
 511
 512	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
 513}
 514
 515static int init_ring_common(struct intel_engine_cs *engine)
 516{
 517	struct drm_i915_private *dev_priv = engine->i915;
 518	struct intel_ring *ring = engine->buffer;
 519	int ret = 0;
 520
 521	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 522
 523	if (!stop_ring(engine)) {
 524		/* G45 ring initialization often fails to reset head to zero */
 525		DRM_DEBUG_KMS("%s head not reset to zero "
 526			      "ctl %08x head %08x tail %08x start %08x\n",
 527			      engine->name,
 528			      I915_READ_CTL(engine),
 529			      I915_READ_HEAD(engine),
 530			      I915_READ_TAIL(engine),
 531			      I915_READ_START(engine));
 
 
 532
 533		if (!stop_ring(engine)) {
 534			DRM_ERROR("failed to set %s head to zero "
 535				  "ctl %08x head %08x tail %08x start %08x\n",
 536				  engine->name,
 537				  I915_READ_CTL(engine),
 538				  I915_READ_HEAD(engine),
 539				  I915_READ_TAIL(engine),
 540				  I915_READ_START(engine));
 541			ret = -EIO;
 542			goto out;
 543		}
 544	}
 545
 546	if (HWS_NEEDS_PHYSICAL(dev_priv))
 547		ring_setup_phys_status_page(engine);
 548	else
 549		intel_ring_setup_status_page(engine);
 550
 551	intel_engine_reset_breadcrumbs(engine);
 552
 553	/* Enforce ordering by reading HEAD register back */
 554	I915_READ_HEAD(engine);
 555
 556	/* Initialize the ring. This must happen _after_ we've cleared the ring
 557	 * registers with the above sequence (the readback of the HEAD registers
 558	 * also enforces ordering), otherwise the hw might lose the new ring
 559	 * register values. */
 560	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
 561
 562	/* WaClearRingBufHeadRegAtInit:ctg,elk */
 563	if (I915_READ_HEAD(engine))
 564		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
 565			  engine->name, I915_READ_HEAD(engine));
 566
 567	intel_ring_update_space(ring);
 568	I915_WRITE_HEAD(engine, ring->head);
 569	I915_WRITE_TAIL(engine, ring->tail);
 570	(void)I915_READ_TAIL(engine);
 571
 572	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
 573
 574	/* If the head is still not zero, the ring is dead */
 575	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
 576				       RING_VALID, RING_VALID,
 577				       50)) {
 578		DRM_ERROR("%s initialization failed "
 579			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
 580			  engine->name,
 581			  I915_READ_CTL(engine),
 582			  I915_READ_CTL(engine) & RING_VALID,
 583			  I915_READ_HEAD(engine), ring->head,
 584			  I915_READ_TAIL(engine), ring->tail,
 585			  I915_READ_START(engine),
 586			  i915_ggtt_offset(ring->vma));
 587		ret = -EIO;
 588		goto out;
 589	}
 590
 591	intel_engine_init_hangcheck(engine);
 
 
 
 
 
 
 592
 593out:
 594	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 595
 596	return ret;
 597}
 598
 599static void reset_ring_common(struct intel_engine_cs *engine,
 600			      struct drm_i915_gem_request *request)
 601{
 602	struct intel_ring *ring = request->ring;
 
 
 
 
 
 603
 604	ring->head = request->postfix;
 605	ring->last_retired_head = -1;
 606}
 607
 608static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
 609{
 610	struct intel_ring *ring = req->ring;
 611	struct i915_workarounds *w = &req->i915->workarounds;
 612	int ret, i;
 613
 614	if (w->count == 0)
 615		return 0;
 616
 617	ret = req->engine->emit_flush(req, EMIT_BARRIER);
 618	if (ret)
 619		return ret;
 620
 621	ret = intel_ring_begin(req, (w->count * 2 + 2));
 622	if (ret)
 623		return ret;
 624
 625	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
 626	for (i = 0; i < w->count; i++) {
 627		intel_ring_emit_reg(ring, w->reg[i].addr);
 628		intel_ring_emit(ring, w->reg[i].value);
 629	}
 630	intel_ring_emit(ring, MI_NOOP);
 631
 632	intel_ring_advance(ring);
 633
 634	ret = req->engine->emit_flush(req, EMIT_BARRIER);
 635	if (ret)
 636		return ret;
 637
 638	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
 
 
 
 639
 
 
 640	return 0;
 641}
 642
 643static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
 644{
 645	int ret;
 646
 647	ret = intel_ring_workarounds_emit(req);
 648	if (ret != 0)
 649		return ret;
 650
 651	ret = i915_gem_render_state_emit(req);
 652	if (ret)
 653		return ret;
 654
 655	return 0;
 656}
 657
 658static int wa_add(struct drm_i915_private *dev_priv,
 659		  i915_reg_t addr,
 660		  const u32 mask, const u32 val)
 661{
 662	const u32 idx = dev_priv->workarounds.count;
 
 663
 664	if (WARN_ON(idx >= I915_MAX_WA_REGS))
 665		return -ENOSPC;
 666
 667	dev_priv->workarounds.reg[idx].addr = addr;
 668	dev_priv->workarounds.reg[idx].value = val;
 669	dev_priv->workarounds.reg[idx].mask = mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670
 671	dev_priv->workarounds.count++;
 672
 673	return 0;
 674}
 675
 676#define WA_REG(addr, mask, val) do { \
 677		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
 678		if (r) \
 679			return r; \
 680	} while (0)
 681
 682#define WA_SET_BIT_MASKED(addr, mask) \
 683	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
 684
 685#define WA_CLR_BIT_MASKED(addr, mask) \
 686	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
 687
 688#define WA_SET_FIELD_MASKED(addr, mask, value) \
 689	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
 690
 691#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
 692#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
 693
 694#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
 695
 696static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
 697				 i915_reg_t reg)
 698{
 699	struct drm_i915_private *dev_priv = engine->i915;
 700	struct i915_workarounds *wa = &dev_priv->workarounds;
 701	const uint32_t index = wa->hw_whitelist_count[engine->id];
 702
 703	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
 704		return -EINVAL;
 705
 706	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
 707		 i915_mmio_reg_offset(reg));
 708	wa->hw_whitelist_count[engine->id]++;
 709
 710	return 0;
 711}
 712
 713static int gen8_init_workarounds(struct intel_engine_cs *engine)
 
 714{
 715	struct drm_i915_private *dev_priv = engine->i915;
 716
 717	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
 718
 719	/* WaDisableAsyncFlipPerfMode:bdw,chv */
 720	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
 721
 722	/* WaDisablePartialInstShootdown:bdw,chv */
 723	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 724			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 725
 726	/* Use Force Non-Coherent whenever executing a 3D context. This is a
 727	 * workaround for for a possible hang in the unlikely event a TLB
 728	 * invalidation occurs during a PSD flush.
 729	 */
 730	/* WaForceEnableNonCoherent:bdw,chv */
 731	/* WaHdcDisableFetchWhenMasked:bdw,chv */
 732	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 733			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
 734			  HDC_FORCE_NON_COHERENT);
 735
 736	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
 737	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
 738	 *  polygons in the same 8x4 pixel/sample area to be processed without
 739	 *  stalling waiting for the earlier ones to write to Hierarchical Z
 740	 *  buffer."
 741	 *
 742	 * This optimization is off by default for BDW and CHV; turn it on.
 743	 */
 744	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
 745
 746	/* Wa4x4STCOptimizationDisable:bdw,chv */
 747	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
 748
 749	/*
 750	 * BSpec recommends 8x4 when MSAA is used,
 751	 * however in practice 16x4 seems fastest.
 752	 *
 753	 * Note that PS/WM thread counts depend on the WIZ hashing
 754	 * disable bit, which we don't touch here, but it's good
 755	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 756	 */
 757	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
 758			    GEN6_WIZ_HASHING_MASK,
 759			    GEN6_WIZ_HASHING_16x4);
 760
 761	return 0;
 
 
 
 
 
 
 762}
 763
 764static int bdw_init_workarounds(struct intel_engine_cs *engine)
 
 
 765{
 766	struct drm_i915_private *dev_priv = engine->i915;
 767	int ret;
 768
 769	ret = gen8_init_workarounds(engine);
 770	if (ret)
 771		return ret;
 772
 773	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
 774	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 
 775
 776	/* WaDisableDopClockGating:bdw */
 777	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
 778			  DOP_CLOCK_GATING_DISABLE);
 779
 780	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 781			  GEN8_SAMPLER_POWER_BYPASS_DIS);
 782
 783	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 784			  /* WaForceContextSaveRestoreNonCoherent:bdw */
 785			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
 786			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
 787			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
 788
 
 789	return 0;
 790}
 791
 792static int chv_init_workarounds(struct intel_engine_cs *engine)
 
 
 
 793{
 794	struct drm_i915_private *dev_priv = engine->i915;
 795	int ret;
 796
 797	ret = gen8_init_workarounds(engine);
 798	if (ret)
 799		return ret;
 800
 801	/* WaDisableThreadStallDopClockGating:chv */
 802	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 803
 804	/* Improve HiZ throughput on CHV. */
 805	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
 
 
 
 
 806
 807	return 0;
 808}
 809
 810static int gen9_init_workarounds(struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 
 
 
 
 811{
 812	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 813	int ret;
 814
 815	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
 816	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
 817
 818	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
 819	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
 820		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
 821
 822	/* WaDisableKillLogic:bxt,skl,kbl */
 823	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
 824		   ECOCHK_DIS_TLB);
 825
 826	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
 827	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
 828	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 829			  FLOW_CONTROL_ENABLE |
 830			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 831
 832	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
 833	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 834			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
 835
 836	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
 837	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
 838		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 839				  GEN9_DG_MIRROR_FIX_ENABLE);
 840
 841	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
 842	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
 843		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
 844				  GEN9_RHWO_OPTIMIZATION_DISABLE);
 845		/*
 846		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
 847		 * but we do that in per ctx batchbuffer as there is an issue
 848		 * with this register not getting restored on ctx restore
 849		 */
 850	}
 851
 852	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
 853	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
 854			  GEN9_ENABLE_GPGPU_PREEMPTION);
 855
 856	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
 857	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
 858	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
 859					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
 860
 861	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
 862	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 863			  GEN9_CCS_TLB_PREFETCH_ENABLE);
 864
 865	/* WaDisableMaskBasedCammingInRCC:bxt */
 866	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
 867		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
 868				  PIXEL_MASK_CAMMING_DISABLE);
 869
 870	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
 871	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 872			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
 873			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
 874
 875	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
 876	 * both tied to WaForceContextSaveRestoreNonCoherent
 877	 * in some hsds for skl. We keep the tie for all gen9. The
 878	 * documentation is a bit hazy and so we want to get common behaviour,
 879	 * even though there is no clear evidence we would need both on kbl/bxt.
 880	 * This area has been source of system hangs so we play it safe
 881	 * and mimic the skl regardless of what bspec says.
 882	 *
 883	 * Use Force Non-Coherent whenever executing a 3D context. This
 884	 * is a workaround for a possible hang in the unlikely event
 885	 * a TLB invalidation occurs during a PSD flush.
 886	 */
 887
 888	/* WaForceEnableNonCoherent:skl,bxt,kbl */
 889	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 890			  HDC_FORCE_NON_COHERENT);
 891
 892	/* WaDisableHDCInvalidation:skl,bxt,kbl */
 893	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
 894		   BDW_DISABLE_HDC_INVALIDATION);
 895
 896	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
 897	if (IS_SKYLAKE(dev_priv) ||
 898	    IS_KABYLAKE(dev_priv) ||
 899	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
 900		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 901				  GEN8_SAMPLER_POWER_BYPASS_DIS);
 902
 903	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
 904	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
 905
 906	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
 907	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
 908				    GEN8_LQSC_FLUSH_COHERENT_LINES));
 909
 910	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
 911	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
 912	if (ret)
 913		return ret;
 914
 915	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
 916	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
 917	if (ret)
 918		return ret;
 919
 920	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
 921	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
 922	if (ret)
 923		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 
 925	return 0;
 926}
 927
 928static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
 
 
 929{
 930	struct drm_i915_private *dev_priv = engine->i915;
 931	u8 vals[3] = { 0, 0, 0 };
 932	unsigned int i;
 933
 934	for (i = 0; i < 3; i++) {
 935		u8 ss;
 
 936
 937		/*
 938		 * Only consider slices where one, and only one, subslice has 7
 939		 * EUs
 940		 */
 941		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
 942			continue;
 943
 944		/*
 945		 * subslice_7eu[i] != 0 (because of the check above) and
 946		 * ss_max == 4 (maximum number of subslices possible per slice)
 947		 *
 948		 * ->    0 <= ss <= 3;
 949		 */
 950		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
 951		vals[i] = 3 - ss;
 952	}
 953
 954	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
 955		return 0;
 956
 957	/* Tune IZ hashing. See intel_device_info_runtime_init() */
 958	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
 959			    GEN9_IZ_HASHING_MASK(2) |
 960			    GEN9_IZ_HASHING_MASK(1) |
 961			    GEN9_IZ_HASHING_MASK(0),
 962			    GEN9_IZ_HASHING(2, vals[2]) |
 963			    GEN9_IZ_HASHING(1, vals[1]) |
 964			    GEN9_IZ_HASHING(0, vals[0]));
 965
 
 966	return 0;
 967}
 968
 969static int skl_init_workarounds(struct intel_engine_cs *engine)
 
 970{
 971	struct drm_i915_private *dev_priv = engine->i915;
 972	int ret;
 973
 974	ret = gen9_init_workarounds(engine);
 975	if (ret)
 976		return ret;
 977
 978	/*
 979	 * Actual WA is to disable percontext preemption granularity control
 980	 * until D0 which is the default case so this is equivalent to
 981	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
 982	 */
 983	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
 984		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
 985
 986	/* WaEnableGapsTsvCreditFix:skl */
 987	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
 988				   GEN9_GAPS_TSV_CREDIT_DISABLE));
 989
 990	/* WaDisableGafsUnitClkGating:skl */
 991	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
 992
 993	/* WaInPlaceDecompressionHang:skl */
 994	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
 995		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
 996			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
 997
 998	/* WaDisableLSQCROPERFforOCL:skl */
 999	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000	if (ret)
1001		return ret;
1002
1003	return skl_tune_iz_hashing(engine);
1004}
1005
1006static int bxt_init_workarounds(struct intel_engine_cs *engine)
 
1007{
1008	struct drm_i915_private *dev_priv = engine->i915;
1009	int ret;
1010
1011	ret = gen9_init_workarounds(engine);
1012	if (ret)
1013		return ret;
1014
1015	/* WaStoreMultiplePTEenable:bxt */
1016	/* This is a requirement according to Hardware specification */
1017	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1019
1020	/* WaSetClckGatingDisableMedia:bxt */
1021	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1023					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1024	}
1025
1026	/* WaDisableThreadStallDopClockGating:bxt */
1027	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1028			  STALL_DOP_GATING_DISABLE);
1029
1030	/* WaDisablePooledEuLoadBalancingFix:bxt */
1031	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1032		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1033				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1034	}
1035
1036	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038		WA_SET_BIT_MASKED(
1039			GEN7_HALF_SLICE_CHICKEN1,
1040			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1041	}
1042
1043	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1044	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1045	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046	/* WaDisableLSQCROPERFforOCL:bxt */
1047	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049		if (ret)
1050			return ret;
1051
1052		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053		if (ret)
1054			return ret;
1055	}
1056
1057	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1060					   L3_HIGH_PRIO_CREDITS(2));
1061
1062	/* WaToEnableHwFixForPushConstHWBug:bxt */
1063	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1065				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1066
1067	/* WaInPlaceDecompressionHang:bxt */
1068	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1069		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1070			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1071
1072	return 0;
1073}
1074
1075static int kbl_init_workarounds(struct intel_engine_cs *engine)
 
1076{
1077	struct drm_i915_private *dev_priv = engine->i915;
1078	int ret;
1079
1080	ret = gen9_init_workarounds(engine);
1081	if (ret)
1082		return ret;
1083
1084	/* WaEnableGapsTsvCreditFix:kbl */
1085	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1086				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1087
1088	/* WaDisableDynamicCreditSharing:kbl */
1089	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1090		WA_SET_BIT(GAMT_CHKN_BIT_REG,
1091			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1092
1093	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1094	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1095		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096				  HDC_FENCE_DEST_SLM_DISABLE);
1097
1098	/* WaToEnableHwFixForPushConstHWBug:kbl */
1099	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1100		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1101				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1102
1103	/* WaDisableGafsUnitClkGating:kbl */
1104	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1105
1106	/* WaDisableSbeCacheDispatchPortSharing:kbl */
1107	WA_SET_BIT_MASKED(
1108		GEN7_HALF_SLICE_CHICKEN1,
1109		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1110
1111	/* WaInPlaceDecompressionHang:kbl */
1112	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1113		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1114
1115	/* WaDisableLSQCROPERFforOCL:kbl */
1116	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1117	if (ret)
1118		return ret;
1119
1120	return 0;
1121}
1122
1123int init_workarounds_ring(struct intel_engine_cs *engine)
 
1124{
1125	struct drm_i915_private *dev_priv = engine->i915;
1126
1127	WARN_ON(engine->id != RCS);
1128
1129	dev_priv->workarounds.count = 0;
1130	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1131
1132	if (IS_BROADWELL(dev_priv))
1133		return bdw_init_workarounds(engine);
1134
1135	if (IS_CHERRYVIEW(dev_priv))
1136		return chv_init_workarounds(engine);
1137
1138	if (IS_SKYLAKE(dev_priv))
1139		return skl_init_workarounds(engine);
1140
1141	if (IS_BROXTON(dev_priv))
1142		return bxt_init_workarounds(engine);
1143
1144	if (IS_KABYLAKE(dev_priv))
1145		return kbl_init_workarounds(engine);
1146
1147	return 0;
1148}
1149
1150static int init_render_ring(struct intel_engine_cs *engine)
 
1151{
1152	struct drm_i915_private *dev_priv = engine->i915;
1153	int ret = init_ring_common(engine);
1154	if (ret)
1155		return ret;
1156
1157	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1158	if (IS_GEN(dev_priv, 4, 6))
1159		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1160
1161	/* We need to disable the AsyncFlip performance optimisations in order
1162	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1163	 * programmed to '1' on all products.
1164	 *
1165	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1166	 */
1167	if (IS_GEN(dev_priv, 6, 7))
1168		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1169
1170	/* Required for the hardware to program scanline values for waiting */
1171	/* WaEnableFlushTlbInvalidationMode:snb */
1172	if (IS_GEN6(dev_priv))
1173		I915_WRITE(GFX_MODE,
1174			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1175
1176	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1177	if (IS_GEN7(dev_priv))
1178		I915_WRITE(GFX_MODE_GEN7,
1179			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1180			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1181
1182	if (IS_GEN6(dev_priv)) {
1183		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1184		 * "If this bit is set, STCunit will have LRA as replacement
1185		 *  policy. [...] This bit must be reset.  LRA replacement
1186		 *  policy is not supported."
1187		 */
1188		I915_WRITE(CACHE_MODE_0,
1189			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1190	}
1191
1192	if (IS_GEN(dev_priv, 6, 7))
1193		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1194
1195	if (INTEL_INFO(dev_priv)->gen >= 6)
1196		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1197
1198	return init_workarounds_ring(engine);
1199}
1200
1201static void render_ring_cleanup(struct intel_engine_cs *engine)
 
1202{
1203	struct drm_i915_private *dev_priv = engine->i915;
1204
1205	i915_vma_unpin_and_release(&dev_priv->semaphore);
1206}
1207
1208static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
 
1209{
1210	struct drm_i915_private *dev_priv = req->i915;
1211	struct intel_engine_cs *waiter;
1212	enum intel_engine_id id;
1213
1214	for_each_engine(waiter, dev_priv, id) {
1215		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1216		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1217			continue;
1218
1219		*out++ = GFX_OP_PIPE_CONTROL(6);
1220		*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1221			  PIPE_CONTROL_QW_WRITE |
1222			  PIPE_CONTROL_CS_STALL);
1223		*out++ = lower_32_bits(gtt_offset);
1224		*out++ = upper_32_bits(gtt_offset);
1225		*out++ = req->global_seqno;
1226		*out++ = 0;
1227		*out++ = (MI_SEMAPHORE_SIGNAL |
1228			  MI_SEMAPHORE_TARGET(waiter->hw_id));
1229		*out++ = 0;
1230	}
 
1231
1232	return out;
1233}
1234
1235static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
 
1236{
1237	struct drm_i915_private *dev_priv = req->i915;
1238	struct intel_engine_cs *waiter;
1239	enum intel_engine_id id;
1240
1241	for_each_engine(waiter, dev_priv, id) {
1242		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1243		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1244			continue;
1245
1246		*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1247		*out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1248		*out++ = upper_32_bits(gtt_offset);
1249		*out++ = req->global_seqno;
1250		*out++ = (MI_SEMAPHORE_SIGNAL |
1251			  MI_SEMAPHORE_TARGET(waiter->hw_id));
1252		*out++ = 0;
1253	}
1254
1255	return out;
1256}
1257
1258static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1259{
1260	struct drm_i915_private *dev_priv = req->i915;
1261	struct intel_engine_cs *engine;
1262	enum intel_engine_id id;
1263	int num_rings = 0;
1264
1265	for_each_engine(engine, dev_priv, id) {
1266		i915_reg_t mbox_reg;
1267
1268		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1269			continue;
1270
1271		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1272		if (i915_mmio_reg_valid(mbox_reg)) {
1273			*out++ = MI_LOAD_REGISTER_IMM(1);
1274			*out++ = i915_mmio_reg_offset(mbox_reg);
1275			*out++ = req->global_seqno;
1276			num_rings++;
 
 
1277		}
 
 
 
 
1278	}
1279	if (num_rings & 1)
1280		*out++ = MI_NOOP;
1281
1282	return out;
1283}
1284
1285static void i9xx_submit_request(struct drm_i915_gem_request *request)
1286{
1287	struct drm_i915_private *dev_priv = request->i915;
1288
1289	i915_gem_request_submit(request);
1290
1291	I915_WRITE_TAIL(request->engine, request->tail);
1292}
1293
1294static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1295				 u32 *out)
1296{
1297	*out++ = MI_STORE_DWORD_INDEX;
1298	*out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1299	*out++ = req->global_seqno;
1300	*out++ = MI_USER_INTERRUPT;
1301
1302	req->tail = intel_ring_offset(req->ring, out);
1303}
1304
1305static const int i9xx_emit_breadcrumb_sz = 4;
1306
1307/**
1308 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1309 *
1310 * @request - request to write to the ring
1311 *
1312 * Update the mailbox registers in the *other* rings with the current seqno.
1313 * This acts like a signal in the canonical semaphore.
1314 */
1315static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1316				      u32 *out)
1317{
1318	return i9xx_emit_breadcrumb(req,
1319				    req->engine->semaphore.signal(req, out));
1320}
1321
1322static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1323					u32 *out)
1324{
1325	struct intel_engine_cs *engine = req->engine;
1326
1327	if (engine->semaphore.signal)
1328		out = engine->semaphore.signal(req, out);
1329
1330	*out++ = GFX_OP_PIPE_CONTROL(6);
1331	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1332			       PIPE_CONTROL_CS_STALL |
1333			       PIPE_CONTROL_QW_WRITE);
1334	*out++ = intel_hws_seqno_address(engine);
1335	*out++ = 0;
1336	*out++ = req->global_seqno;
1337	/* We're thrashing one dword of HWS. */
1338	*out++ = 0;
1339	*out++ = MI_USER_INTERRUPT;
1340	*out++ = MI_NOOP;
1341
1342	req->tail = intel_ring_offset(req->ring, out);
1343}
1344
1345static const int gen8_render_emit_breadcrumb_sz = 8;
1346
1347/**
1348 * intel_ring_sync - sync the waiter to the signaller on seqno
1349 *
1350 * @waiter - ring that is waiting
1351 * @signaller - ring which has, or will signal
1352 * @seqno - seqno which the waiter will block on
1353 */
1354
1355static int
1356gen8_ring_sync_to(struct drm_i915_gem_request *req,
1357		  struct drm_i915_gem_request *signal)
 
1358{
1359	struct intel_ring *ring = req->ring;
1360	struct drm_i915_private *dev_priv = req->i915;
1361	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1362	struct i915_hw_ppgtt *ppgtt;
1363	int ret;
1364
1365	ret = intel_ring_begin(req, 4);
1366	if (ret)
1367		return ret;
1368
1369	intel_ring_emit(ring,
1370			MI_SEMAPHORE_WAIT |
1371			MI_SEMAPHORE_GLOBAL_GTT |
1372			MI_SEMAPHORE_SAD_GTE_SDD);
1373	intel_ring_emit(ring, signal->global_seqno);
1374	intel_ring_emit(ring, lower_32_bits(offset));
1375	intel_ring_emit(ring, upper_32_bits(offset));
1376	intel_ring_advance(ring);
1377
1378	/* When the !RCS engines idle waiting upon a semaphore, they lose their
1379	 * pagetables and we must reload them before executing the batch.
1380	 * We do this on the i915_switch_context() following the wait and
1381	 * before the dispatch.
1382	 */
1383	ppgtt = req->ctx->ppgtt;
1384	if (ppgtt && req->engine->id != RCS)
1385		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1386	return 0;
1387}
1388
1389static int
1390gen6_ring_sync_to(struct drm_i915_gem_request *req,
1391		  struct drm_i915_gem_request *signal)
1392{
1393	struct intel_ring *ring = req->ring;
1394	u32 dw1 = MI_SEMAPHORE_MBOX |
1395		  MI_SEMAPHORE_COMPARE |
1396		  MI_SEMAPHORE_REGISTER;
1397	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1398	int ret;
1399
1400	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1401
1402	ret = intel_ring_begin(req, 4);
1403	if (ret)
1404		return ret;
1405
1406	intel_ring_emit(ring, dw1 | wait_mbox);
1407	/* Throughout all of the GEM code, seqno passed implies our current
1408	 * seqno is >= the last seqno executed. However for hardware the
1409	 * comparison is strictly greater than.
1410	 */
1411	intel_ring_emit(ring, signal->global_seqno - 1);
1412	intel_ring_emit(ring, 0);
1413	intel_ring_emit(ring, MI_NOOP);
1414	intel_ring_advance(ring);
1415
 
1416	return 0;
1417}
1418
1419static void
1420gen5_seqno_barrier(struct intel_engine_cs *engine)
1421{
1422	/* MI_STORE are internally buffered by the GPU and not flushed
1423	 * either by MI_FLUSH or SyncFlush or any other combination of
1424	 * MI commands.
1425	 *
1426	 * "Only the submission of the store operation is guaranteed.
1427	 * The write result will be complete (coherent) some time later
1428	 * (this is practically a finite period but there is no guaranteed
1429	 * latency)."
1430	 *
1431	 * Empirically, we observe that we need a delay of at least 75us to
1432	 * be sure that the seqno write is visible by the CPU.
1433	 */
1434	usleep_range(125, 250);
1435}
1436
1437static void
1438gen6_seqno_barrier(struct intel_engine_cs *engine)
1439{
1440	struct drm_i915_private *dev_priv = engine->i915;
1441
1442	/* Workaround to force correct ordering between irq and seqno writes on
1443	 * ivb (and maybe also on snb) by reading from a CS register (like
1444	 * ACTHD) before reading the status page.
1445	 *
1446	 * Note that this effectively stalls the read by the time it takes to
1447	 * do a memory transaction, which more or less ensures that the write
1448	 * from the GPU has sufficient time to invalidate the CPU cacheline.
1449	 * Alternatively we could delay the interrupt from the CS ring to give
1450	 * the write time to land, but that would incur a delay after every
1451	 * batch i.e. much more frequent than a delay when waiting for the
1452	 * interrupt (with the same net latency).
1453	 *
1454	 * Also note that to prevent whole machine hangs on gen7, we have to
1455	 * take the spinlock to guard against concurrent cacheline access.
1456	 */
1457	spin_lock_irq(&dev_priv->uncore.lock);
1458	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1459	spin_unlock_irq(&dev_priv->uncore.lock);
1460}
1461
1462static void
1463gen5_irq_enable(struct intel_engine_cs *engine)
1464{
1465	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1466}
1467
1468static void
1469gen5_irq_disable(struct intel_engine_cs *engine)
1470{
1471	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1472}
1473
1474static void
1475i9xx_irq_enable(struct intel_engine_cs *engine)
1476{
1477	struct drm_i915_private *dev_priv = engine->i915;
1478
1479	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1480	I915_WRITE(IMR, dev_priv->irq_mask);
1481	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1482}
1483
1484static void
1485i9xx_irq_disable(struct intel_engine_cs *engine)
1486{
1487	struct drm_i915_private *dev_priv = engine->i915;
 
1488
1489	dev_priv->irq_mask |= engine->irq_enable_mask;
1490	I915_WRITE(IMR, dev_priv->irq_mask);
1491}
1492
1493static void
1494i8xx_irq_enable(struct intel_engine_cs *engine)
1495{
1496	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
1497
1498	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1499	I915_WRITE16(IMR, dev_priv->irq_mask);
1500	POSTING_READ16(RING_IMR(engine->mmio_base));
1501}
1502
1503static void
1504i8xx_irq_disable(struct intel_engine_cs *engine)
1505{
1506	struct drm_i915_private *dev_priv = engine->i915;
 
1507
1508	dev_priv->irq_mask |= engine->irq_enable_mask;
1509	I915_WRITE16(IMR, dev_priv->irq_mask);
1510}
1511
1512static int
1513bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1514{
1515	struct intel_ring *ring = req->ring;
1516	int ret;
1517
1518	ret = intel_ring_begin(req, 2);
1519	if (ret)
1520		return ret;
1521
1522	intel_ring_emit(ring, MI_FLUSH);
1523	intel_ring_emit(ring, MI_NOOP);
1524	intel_ring_advance(ring);
1525	return 0;
1526}
1527
1528static void
1529gen6_irq_enable(struct intel_engine_cs *engine)
1530{
1531	struct drm_i915_private *dev_priv = engine->i915;
1532
1533	I915_WRITE_IMR(engine,
1534		       ~(engine->irq_enable_mask |
1535			 engine->irq_keep_mask));
1536	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1537}
1538
1539static void
1540gen6_irq_disable(struct intel_engine_cs *engine)
1541{
1542	struct drm_i915_private *dev_priv = engine->i915;
1543
1544	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1545	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1546}
1547
1548static void
1549hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1550{
1551	struct drm_i915_private *dev_priv = engine->i915;
1552
1553	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1554	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1555}
1556
1557static void
1558hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1559{
1560	struct drm_i915_private *dev_priv = engine->i915;
1561
1562	I915_WRITE_IMR(engine, ~0);
1563	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1564}
1565
1566static void
1567gen8_irq_enable(struct intel_engine_cs *engine)
1568{
1569	struct drm_i915_private *dev_priv = engine->i915;
1570
1571	I915_WRITE_IMR(engine,
1572		       ~(engine->irq_enable_mask |
1573			 engine->irq_keep_mask));
1574	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1575}
1576
1577static void
1578gen8_irq_disable(struct intel_engine_cs *engine)
1579{
1580	struct drm_i915_private *dev_priv = engine->i915;
1581
1582	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1583}
1584
1585static int
1586i965_emit_bb_start(struct drm_i915_gem_request *req,
1587		   u64 offset, u32 length,
1588		   unsigned int dispatch_flags)
1589{
1590	struct intel_ring *ring = req->ring;
1591	int ret;
1592
1593	ret = intel_ring_begin(req, 2);
1594	if (ret)
1595		return ret;
1596
1597	intel_ring_emit(ring,
1598			MI_BATCH_BUFFER_START |
1599			MI_BATCH_GTT |
1600			(dispatch_flags & I915_DISPATCH_SECURE ?
1601			 0 : MI_BATCH_NON_SECURE_I965));
1602	intel_ring_emit(ring, offset);
1603	intel_ring_advance(ring);
1604
1605	return 0;
1606}
1607
1608/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1609#define I830_BATCH_LIMIT (256*1024)
1610#define I830_TLB_ENTRIES (2)
1611#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1612static int
1613i830_emit_bb_start(struct drm_i915_gem_request *req,
1614		   u64 offset, u32 len,
1615		   unsigned int dispatch_flags)
1616{
1617	struct intel_ring *ring = req->ring;
1618	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1619	int ret;
1620
1621	ret = intel_ring_begin(req, 6);
1622	if (ret)
1623		return ret;
 
1624
1625	/* Evict the invalid PTE TLBs */
1626	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1627	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1628	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1629	intel_ring_emit(ring, cs_offset);
1630	intel_ring_emit(ring, 0xdeadbeef);
1631	intel_ring_emit(ring, MI_NOOP);
1632	intel_ring_advance(ring);
1633
1634	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1635		if (len > I830_BATCH_LIMIT)
1636			return -ENOSPC;
1637
1638		ret = intel_ring_begin(req, 6 + 2);
1639		if (ret)
1640			return ret;
1641
1642		/* Blit the batch (which has now all relocs applied) to the
1643		 * stable batch scratch bo area (so that the CS never
1644		 * stumbles over its tlb invalidation bug) ...
1645		 */
1646		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1647		intel_ring_emit(ring,
1648				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1649		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1650		intel_ring_emit(ring, cs_offset);
1651		intel_ring_emit(ring, 4096);
1652		intel_ring_emit(ring, offset);
1653
1654		intel_ring_emit(ring, MI_FLUSH);
1655		intel_ring_emit(ring, MI_NOOP);
1656		intel_ring_advance(ring);
1657
1658		/* ... and execute it. */
1659		offset = cs_offset;
1660	}
1661
1662	ret = intel_ring_begin(req, 2);
1663	if (ret)
1664		return ret;
1665
1666	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1667	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1668					0 : MI_BATCH_NON_SECURE));
1669	intel_ring_advance(ring);
1670
1671	return 0;
1672}
1673
1674static int
1675i915_emit_bb_start(struct drm_i915_gem_request *req,
1676		   u64 offset, u32 len,
1677		   unsigned int dispatch_flags)
1678{
1679	struct intel_ring *ring = req->ring;
1680	int ret;
1681
1682	ret = intel_ring_begin(req, 2);
1683	if (ret)
1684		return ret;
1685
1686	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1687	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1688					0 : MI_BATCH_NON_SECURE));
1689	intel_ring_advance(ring);
1690
1691	return 0;
1692}
1693
1694static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1695{
1696	struct drm_i915_private *dev_priv = engine->i915;
1697
1698	if (!dev_priv->status_page_dmah)
1699		return;
1700
1701	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1702	engine->status_page.page_addr = NULL;
1703}
1704
1705static void cleanup_status_page(struct intel_engine_cs *engine)
1706{
1707	struct i915_vma *vma;
1708	struct drm_i915_gem_object *obj;
1709
1710	vma = fetch_and_zero(&engine->status_page.vma);
1711	if (!vma)
1712		return;
1713
1714	obj = vma->obj;
1715
1716	i915_vma_unpin(vma);
1717	i915_vma_close(vma);
1718
1719	i915_gem_object_unpin_map(obj);
1720	__i915_gem_object_release_unless_active(obj);
1721}
1722
1723static int init_status_page(struct intel_engine_cs *engine)
1724{
 
 
1725	struct drm_i915_gem_object *obj;
1726	struct i915_vma *vma;
1727	unsigned int flags;
1728	void *vaddr;
1729	int ret;
1730
1731	obj = i915_gem_object_create_internal(engine->i915, 4096);
1732	if (IS_ERR(obj)) {
1733		DRM_ERROR("Failed to allocate status page\n");
1734		return PTR_ERR(obj);
 
1735	}
1736
1737	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1738	if (ret)
1739		goto err;
1740
1741	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1742	if (IS_ERR(vma)) {
1743		ret = PTR_ERR(vma);
1744		goto err;
1745	}
1746
1747	flags = PIN_GLOBAL;
1748	if (!HAS_LLC(engine->i915))
1749		/* On g33, we cannot place HWS above 256MiB, so
1750		 * restrict its pinning to the low mappable arena.
1751		 * Though this restriction is not documented for
1752		 * gen4, gen5, or byt, they also behave similarly
1753		 * and hang if the HWS is placed at the top of the
1754		 * GTT. To generalise, it appears that all !llc
1755		 * platforms have issues with us placing the HWS
1756		 * above the mappable region (even though we never
1757		 * actualy map it).
1758		 */
1759		flags |= PIN_MAPPABLE;
1760	ret = i915_vma_pin(vma, 0, 4096, flags);
1761	if (ret)
1762		goto err;
1763
1764	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1765	if (IS_ERR(vaddr)) {
1766		ret = PTR_ERR(vaddr);
1767		goto err_unpin;
1768	}
 
 
1769
1770	engine->status_page.vma = vma;
1771	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1772	engine->status_page.page_addr = memset(vaddr, 0, 4096);
1773
1774	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1775			 engine->name, i915_ggtt_offset(vma));
1776	return 0;
1777
1778err_unpin:
1779	i915_vma_unpin(vma);
 
 
1780err:
1781	i915_gem_object_put(obj);
1782	return ret;
1783}
1784
1785static int init_phys_status_page(struct intel_engine_cs *engine)
 
1786{
1787	struct drm_i915_private *dev_priv = engine->i915;
1788
1789	dev_priv->status_page_dmah =
1790		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1791	if (!dev_priv->status_page_dmah)
1792		return -ENOMEM;
1793
1794	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1795	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1796
1797	return 0;
1798}
1799
1800int intel_ring_pin(struct intel_ring *ring)
1801{
1802	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1803	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1804	enum i915_map_type map;
1805	struct i915_vma *vma = ring->vma;
1806	void *addr;
1807	int ret;
1808
1809	GEM_BUG_ON(ring->vaddr);
 
 
 
1810
1811	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
 
 
1812
1813	if (vma->obj->stolen)
1814		flags |= PIN_MAPPABLE;
1815
1816	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1817		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1818			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1819		else
1820			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1821		if (unlikely(ret))
1822			return ret;
1823	}
1824
1825	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1826	if (unlikely(ret))
1827		return ret;
 
 
 
1828
1829	if (i915_vma_is_map_and_fenceable(vma))
1830		addr = (void __force *)i915_vma_pin_iomap(vma);
1831	else
1832		addr = i915_gem_object_pin_map(vma->obj, map);
1833	if (IS_ERR(addr))
1834		goto err;
1835
1836	ring->vaddr = addr;
1837	return 0;
 
1838
1839err:
1840	i915_vma_unpin(vma);
1841	return PTR_ERR(addr);
1842}
 
1843
1844void intel_ring_unpin(struct intel_ring *ring)
1845{
1846	GEM_BUG_ON(!ring->vma);
1847	GEM_BUG_ON(!ring->vaddr);
 
 
1848
1849	if (i915_vma_is_map_and_fenceable(ring->vma))
1850		i915_vma_unpin_iomap(ring->vma);
1851	else
1852		i915_gem_object_unpin_map(ring->vma->obj);
1853	ring->vaddr = NULL;
1854
1855	i915_vma_unpin(ring->vma);
1856}
1857
1858static struct i915_vma *
1859intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1860{
1861	struct drm_i915_gem_object *obj;
1862	struct i915_vma *vma;
1863
1864	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1865	if (!obj)
1866		obj = i915_gem_object_create(&dev_priv->drm, size);
1867	if (IS_ERR(obj))
1868		return ERR_CAST(obj);
1869
1870	/* mark ring buffers as read-only from GPU side by default */
1871	obj->gt_ro = 1;
1872
1873	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1874	if (IS_ERR(vma))
1875		goto err;
1876
1877	return vma;
1878
1879err:
1880	i915_gem_object_put(obj);
1881	return vma;
1882}
1883
1884struct intel_ring *
1885intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1886{
1887	struct intel_ring *ring;
1888	struct i915_vma *vma;
1889
1890	GEM_BUG_ON(!is_power_of_2(size));
1891	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1892
1893	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1894	if (!ring)
1895		return ERR_PTR(-ENOMEM);
1896
1897	ring->engine = engine;
1898
1899	INIT_LIST_HEAD(&ring->request_list);
1900
1901	ring->size = size;
1902	/* Workaround an erratum on the i830 which causes a hang if
1903	 * the TAIL pointer points to within the last 2 cachelines
1904	 * of the buffer.
1905	 */
1906	ring->effective_size = size;
1907	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1908		ring->effective_size -= 2 * CACHELINE_BYTES;
1909
1910	ring->last_retired_head = -1;
1911	intel_ring_update_space(ring);
1912
1913	vma = intel_ring_create_vma(engine->i915, size);
1914	if (IS_ERR(vma)) {
1915		kfree(ring);
1916		return ERR_CAST(vma);
1917	}
1918	ring->vma = vma;
1919
1920	return ring;
1921}
1922
1923void
1924intel_ring_free(struct intel_ring *ring)
1925{
1926	struct drm_i915_gem_object *obj = ring->vma->obj;
1927
1928	i915_vma_close(ring->vma);
1929	__i915_gem_object_release_unless_active(obj);
1930
1931	kfree(ring);
1932}
1933
1934static int intel_ring_context_pin(struct i915_gem_context *ctx,
1935				  struct intel_engine_cs *engine)
1936{
1937	struct intel_context *ce = &ctx->engine[engine->id];
1938	int ret;
1939
1940	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1941
1942	if (ce->pin_count++)
1943		return 0;
1944
1945	if (ce->state) {
1946		struct i915_vma *vma;
1947
1948		vma = i915_gem_context_pin_legacy(ctx, PIN_HIGH);
1949		if (IS_ERR(vma)) {
1950			ret = PTR_ERR(vma);
1951			goto error;
1952		}
1953	}
1954
1955	/* The kernel context is only used as a placeholder for flushing the
1956	 * active context. It is never used for submitting user rendering and
1957	 * as such never requires the golden render context, and so we can skip
1958	 * emitting it when we switch to the kernel context. This is required
1959	 * as during eviction we cannot allocate and pin the renderstate in
1960	 * order to initialise the context.
1961	 */
1962	if (ctx == ctx->i915->kernel_context)
1963		ce->initialised = true;
1964
1965	i915_gem_context_get(ctx);
1966	return 0;
1967
1968error:
1969	ce->pin_count = 0;
 
 
 
 
 
 
 
1970	return ret;
1971}
1972
1973static void intel_ring_context_unpin(struct i915_gem_context *ctx,
1974				     struct intel_engine_cs *engine)
1975{
1976	struct intel_context *ce = &ctx->engine[engine->id];
 
1977
1978	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1979
1980	if (--ce->pin_count)
1981		return;
1982
1983	if (ce->state)
1984		i915_vma_unpin(ce->state);
1985
1986	i915_gem_context_put(ctx);
1987}
1988
1989static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1990{
1991	struct drm_i915_private *dev_priv = engine->i915;
1992	struct intel_ring *ring;
1993	int ret;
1994
1995	WARN_ON(engine->buffer);
1996
1997	intel_engine_setup_common(engine);
1998
1999	ret = intel_engine_init_common(engine);
2000	if (ret)
2001		goto error;
 
2002
2003	/* We may need to do things with the shrinker which
2004	 * require us to immediately switch back to the default
2005	 * context. This can cause a problem as pinning the
2006	 * default context also requires GTT space which may not
2007	 * be available. To avoid this we always pin the default
2008	 * context.
2009	 */
2010	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2011	if (ret)
2012		goto error;
2013
2014	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2015	if (IS_ERR(ring)) {
2016		ret = PTR_ERR(ring);
2017		goto error;
2018	}
2019
2020	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2021		WARN_ON(engine->id != RCS);
2022		ret = init_phys_status_page(engine);
2023		if (ret)
2024			goto error;
2025	} else {
2026		ret = init_status_page(engine);
2027		if (ret)
2028			goto error;
2029	}
2030
2031	ret = intel_ring_pin(ring);
2032	if (ret) {
2033		intel_ring_free(ring);
2034		goto error;
2035	}
2036	engine->buffer = ring;
2037
2038	return 0;
2039
2040error:
2041	intel_engine_cleanup(engine);
2042	return ret;
2043}
2044
2045void intel_engine_cleanup(struct intel_engine_cs *engine)
2046{
2047	struct drm_i915_private *dev_priv;
 
2048
2049	dev_priv = engine->i915;
2050
2051	if (engine->buffer) {
2052		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2053			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2054
2055		intel_ring_unpin(engine->buffer);
2056		intel_ring_free(engine->buffer);
2057		engine->buffer = NULL;
2058	}
2059
2060	if (engine->cleanup)
2061		engine->cleanup(engine);
2062
2063	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2064		WARN_ON(engine->id != RCS);
2065		cleanup_phys_status_page(engine);
2066	} else {
2067		cleanup_status_page(engine);
2068	}
2069
2070	intel_engine_cleanup_common(engine);
2071
2072	intel_ring_context_unpin(dev_priv->kernel_context, engine);
2073
2074	engine->i915 = NULL;
2075	dev_priv->engine[engine->id] = NULL;
2076	kfree(engine);
2077}
2078
2079void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2080{
2081	struct intel_engine_cs *engine;
2082	enum intel_engine_id id;
2083
2084	for_each_engine(engine, dev_priv, id) {
2085		engine->buffer->head = engine->buffer->tail;
2086		engine->buffer->last_retired_head = -1;
2087	}
2088}
2089
2090int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2091{
2092	int ret;
2093
2094	/* Flush enough space to reduce the likelihood of waiting after
2095	 * we start building the request - in which case we will just
2096	 * have to repeat work.
2097	 */
2098	request->reserved_space += LEGACY_REQUEST_SIZE;
2099
2100	request->ring = request->engine->buffer;
2101
2102	ret = intel_ring_begin(request, 0);
2103	if (ret)
2104		return ret;
2105
2106	request->reserved_space -= LEGACY_REQUEST_SIZE;
2107	return 0;
2108}
2109
2110static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2111{
2112	struct intel_ring *ring = req->ring;
2113	struct drm_i915_gem_request *target;
2114	long timeout;
2115
2116	lockdep_assert_held(&req->i915->drm.struct_mutex);
2117
2118	intel_ring_update_space(ring);
2119	if (ring->space >= bytes)
2120		return 0;
2121
2122	/*
2123	 * Space is reserved in the ringbuffer for finalising the request,
2124	 * as that cannot be allowed to fail. During request finalisation,
2125	 * reserved_space is set to 0 to stop the overallocation and the
2126	 * assumption is that then we never need to wait (which has the
2127	 * risk of failing with EINTR).
2128	 *
2129	 * See also i915_gem_request_alloc() and i915_add_request().
2130	 */
2131	GEM_BUG_ON(!req->reserved_space);
2132
2133	list_for_each_entry(target, &ring->request_list, ring_link) {
2134		unsigned space;
2135
2136		/* Would completion of this request free enough space? */
2137		space = __intel_ring_space(target->postfix, ring->tail,
2138					   ring->size);
2139		if (space >= bytes)
2140			break;
2141	}
2142
2143	if (WARN_ON(&target->ring_link == &ring->request_list))
2144		return -ENOSPC;
 
 
 
 
 
 
 
2145
2146	timeout = i915_wait_request(target,
2147				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2148				    MAX_SCHEDULE_TIMEOUT);
2149	if (timeout < 0)
2150		return timeout;
2151
2152	i915_gem_request_retire_upto(target);
2153
2154	intel_ring_update_space(ring);
2155	GEM_BUG_ON(ring->space < bytes);
2156	return 0;
 
2157}
2158
2159int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
 
2160{
2161	struct intel_ring *ring = req->ring;
2162	int remain_actual = ring->size - ring->tail;
2163	int remain_usable = ring->effective_size - ring->tail;
2164	int bytes = num_dwords * sizeof(u32);
2165	int total_bytes, wait_bytes;
2166	bool need_wrap = false;
2167
2168	total_bytes = bytes + req->reserved_space;
 
2169
2170	if (unlikely(bytes > remain_usable)) {
2171		/*
2172		 * Not enough space for the basic request. So need to flush
2173		 * out the remainder and then wait for base + reserved.
2174		 */
2175		wait_bytes = remain_actual + total_bytes;
2176		need_wrap = true;
2177	} else if (unlikely(total_bytes > remain_usable)) {
2178		/*
2179		 * The base request will fit but the reserved space
2180		 * falls off the end. So we don't need an immediate wrap
2181		 * and only need to effectively wait for the reserved
2182		 * size space from the start of ringbuffer.
2183		 */
2184		wait_bytes = remain_actual + req->reserved_space;
2185	} else {
2186		/* No wrapping required, just waiting. */
2187		wait_bytes = total_bytes;
2188	}
2189
2190	if (wait_bytes > ring->space) {
2191		int ret = wait_for_space(req, wait_bytes);
2192		if (unlikely(ret))
2193			return ret;
2194	}
2195
2196	if (unlikely(need_wrap)) {
2197		GEM_BUG_ON(remain_actual > ring->space);
2198		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2199
2200		/* Fill the tail with MI_NOOP */
2201		memset(ring->vaddr + ring->tail, 0, remain_actual);
2202		ring->tail = 0;
2203		ring->space -= remain_actual;
2204	}
2205
2206	ring->space -= bytes;
2207	GEM_BUG_ON(ring->space < 0);
2208	return 0;
2209}
2210
2211/* Align the ring tail to a cacheline boundary */
2212int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2213{
2214	struct intel_ring *ring = req->ring;
2215	int num_dwords =
2216		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2217	int ret;
2218
2219	if (num_dwords == 0)
2220		return 0;
2221
2222	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2223	ret = intel_ring_begin(req, num_dwords);
2224	if (ret)
2225		return ret;
2226
2227	while (num_dwords--)
2228		intel_ring_emit(ring, MI_NOOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229
2230	intel_ring_advance(ring);
2231
2232	return 0;
2233}
2234
2235static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
 
2236{
2237	struct drm_i915_private *dev_priv = request->i915;
2238
2239	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2240
2241       /* Every tail move must follow the sequence below */
2242
2243	/* Disable notification that the ring is IDLE. The GT
2244	 * will then assume that it is busy and bring it out of rc6.
2245	 */
2246	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2247		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2248
2249	/* Clear the context id. Here be magic! */
2250	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2251
2252	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2253	if (intel_wait_for_register_fw(dev_priv,
2254				       GEN6_BSD_SLEEP_PSMI_CONTROL,
2255				       GEN6_BSD_SLEEP_INDICATOR,
2256				       0,
2257				       50))
2258		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2259
2260	/* Now that the ring is fully powered up, update the tail */
2261	i9xx_submit_request(request);
2262
2263	/* Let the ring send IDLE messages to the GT again,
2264	 * and so let it sleep to conserve power when idle.
2265	 */
2266	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2267		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2268
2269	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2270}
2271
2272static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
2273{
2274	struct intel_ring *ring = req->ring;
2275	uint32_t cmd;
2276	int ret;
2277
2278	ret = intel_ring_begin(req, 4);
2279	if (ret)
2280		return ret;
2281
2282	cmd = MI_FLUSH_DW;
2283	if (INTEL_GEN(req->i915) >= 8)
2284		cmd += 1;
2285
2286	/* We always require a command barrier so that subsequent
2287	 * commands, such as breadcrumb interrupts, are strictly ordered
2288	 * wrt the contents of the write cache being flushed to memory
2289	 * (and thus being coherent from the CPU).
2290	 */
2291	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2292
2293	/*
2294	 * Bspec vol 1c.5 - video engine command streamer:
2295	 * "If ENABLED, all TLBs will be invalidated once the flush
2296	 * operation is complete. This bit is only valid when the
2297	 * Post-Sync Operation field is a value of 1h or 3h."
2298	 */
2299	if (mode & EMIT_INVALIDATE)
2300		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2301
2302	intel_ring_emit(ring, cmd);
2303	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2304	if (INTEL_GEN(req->i915) >= 8) {
2305		intel_ring_emit(ring, 0); /* upper addr */
2306		intel_ring_emit(ring, 0); /* value */
2307	} else  {
2308		intel_ring_emit(ring, 0);
2309		intel_ring_emit(ring, MI_NOOP);
2310	}
2311	intel_ring_advance(ring);
2312	return 0;
2313}
2314
2315static int
2316gen8_emit_bb_start(struct drm_i915_gem_request *req,
2317		   u64 offset, u32 len,
2318		   unsigned int dispatch_flags)
2319{
2320	struct intel_ring *ring = req->ring;
2321	bool ppgtt = USES_PPGTT(req->i915) &&
2322			!(dispatch_flags & I915_DISPATCH_SECURE);
2323	int ret;
2324
2325	ret = intel_ring_begin(req, 4);
2326	if (ret)
2327		return ret;
2328
2329	/* FIXME(BDW): Address space and security selectors. */
2330	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2331			(dispatch_flags & I915_DISPATCH_RS ?
2332			 MI_BATCH_RESOURCE_STREAMER : 0));
2333	intel_ring_emit(ring, lower_32_bits(offset));
2334	intel_ring_emit(ring, upper_32_bits(offset));
2335	intel_ring_emit(ring, MI_NOOP);
2336	intel_ring_advance(ring);
2337
2338	return 0;
2339}
2340
2341static int
2342hsw_emit_bb_start(struct drm_i915_gem_request *req,
2343		  u64 offset, u32 len,
2344		  unsigned int dispatch_flags)
2345{
2346	struct intel_ring *ring = req->ring;
2347	int ret;
 
 
2348
2349	ret = intel_ring_begin(req, 2);
2350	if (ret)
2351		return ret;
 
 
 
 
2352
2353	intel_ring_emit(ring,
2354			MI_BATCH_BUFFER_START |
2355			(dispatch_flags & I915_DISPATCH_SECURE ?
2356			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2357			(dispatch_flags & I915_DISPATCH_RS ?
2358			 MI_BATCH_RESOURCE_STREAMER : 0));
2359	/* bit0-7 is the length on GEN6+ */
2360	intel_ring_emit(ring, offset);
2361	intel_ring_advance(ring);
2362
2363	return 0;
2364}
2365
2366static int
2367gen6_emit_bb_start(struct drm_i915_gem_request *req,
2368		   u64 offset, u32 len,
2369		   unsigned int dispatch_flags)
2370{
2371	struct intel_ring *ring = req->ring;
2372	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374	ret = intel_ring_begin(req, 2);
2375	if (ret)
2376		return ret;
2377
2378	intel_ring_emit(ring,
2379			MI_BATCH_BUFFER_START |
2380			(dispatch_flags & I915_DISPATCH_SECURE ?
2381			 0 : MI_BATCH_NON_SECURE_I965));
2382	/* bit0-7 is the length on GEN6+ */
2383	intel_ring_emit(ring, offset);
2384	intel_ring_advance(ring);
2385
2386	return 0;
2387}
2388
2389/* Blitter support (SandyBridge+) */
2390
2391static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2392{
2393	struct intel_ring *ring = req->ring;
2394	uint32_t cmd;
2395	int ret;
 
2396
2397	ret = intel_ring_begin(req, 4);
2398	if (ret)
2399		return ret;
2400
2401	cmd = MI_FLUSH_DW;
2402	if (INTEL_GEN(req->i915) >= 8)
2403		cmd += 1;
 
 
 
 
2404
2405	/* We always require a command barrier so that subsequent
2406	 * commands, such as breadcrumb interrupts, are strictly ordered
2407	 * wrt the contents of the write cache being flushed to memory
2408	 * (and thus being coherent from the CPU).
2409	 */
2410	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2411
2412	/*
2413	 * Bspec vol 1c.3 - blitter engine command streamer:
2414	 * "If ENABLED, all TLBs will be invalidated once the flush
2415	 * operation is complete. This bit is only valid when the
2416	 * Post-Sync Operation field is a value of 1h or 3h."
2417	 */
2418	if (mode & EMIT_INVALIDATE)
2419		cmd |= MI_INVALIDATE_TLB;
2420	intel_ring_emit(ring, cmd);
2421	intel_ring_emit(ring,
2422			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2423	if (INTEL_GEN(req->i915) >= 8) {
2424		intel_ring_emit(ring, 0); /* upper addr */
2425		intel_ring_emit(ring, 0); /* value */
2426	} else  {
2427		intel_ring_emit(ring, 0);
2428		intel_ring_emit(ring, MI_NOOP);
2429	}
2430	intel_ring_advance(ring);
2431
2432	return 0;
2433}
2434
2435static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2436				       struct intel_engine_cs *engine)
2437{
2438	struct drm_i915_gem_object *obj;
2439	int ret, i;
 
 
2440
2441	if (!i915.semaphores)
2442		return;
 
2443
2444	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2445		struct i915_vma *vma;
 
 
 
2446
2447		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2448		if (IS_ERR(obj))
2449			goto err;
2450
2451		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2452		if (IS_ERR(vma))
2453			goto err_obj;
2454
2455		ret = i915_gem_object_set_to_gtt_domain(obj, false);
2456		if (ret)
2457			goto err_obj;
2458
2459		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2460		if (ret)
2461			goto err_obj;
2462
2463		dev_priv->semaphore = vma;
2464	}
2465
2466	if (INTEL_GEN(dev_priv) >= 8) {
2467		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2468
2469		engine->semaphore.sync_to = gen8_ring_sync_to;
2470		engine->semaphore.signal = gen8_xcs_signal;
2471
2472		for (i = 0; i < I915_NUM_ENGINES; i++) {
2473			u32 ring_offset;
2474
2475			if (i != engine->id)
2476				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2477			else
2478				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2479
2480			engine->semaphore.signal_ggtt[i] = ring_offset;
2481		}
2482	} else if (INTEL_GEN(dev_priv) >= 6) {
2483		engine->semaphore.sync_to = gen6_ring_sync_to;
2484		engine->semaphore.signal = gen6_signal;
2485
2486		/*
2487		 * The current semaphore is only applied on pre-gen8
2488		 * platform.  And there is no VCS2 ring on the pre-gen8
2489		 * platform. So the semaphore between RCS and VCS2 is
2490		 * initialized as INVALID.  Gen8 will initialize the
2491		 * sema between VCS2 and RCS later.
2492		 */
2493		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2494			static const struct {
2495				u32 wait_mbox;
2496				i915_reg_t mbox_reg;
2497			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2498				[RCS_HW] = {
2499					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2500					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2501					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2502				},
2503				[VCS_HW] = {
2504					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2505					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2506					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2507				},
2508				[BCS_HW] = {
2509					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2510					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2511					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2512				},
2513				[VECS_HW] = {
2514					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2515					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2516					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2517				},
2518			};
2519			u32 wait_mbox;
2520			i915_reg_t mbox_reg;
2521
2522			if (i == engine->hw_id) {
2523				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2524				mbox_reg = GEN6_NOSYNC;
2525			} else {
2526				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2527				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2528			}
2529
2530			engine->semaphore.mbox.wait[i] = wait_mbox;
2531			engine->semaphore.mbox.signal[i] = mbox_reg;
2532		}
2533	}
2534
2535	return;
2536
2537err_obj:
2538	i915_gem_object_put(obj);
2539err:
2540	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2541	i915.semaphores = 0;
2542}
2543
2544static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2545				struct intel_engine_cs *engine)
2546{
2547	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
 
 
 
2548
2549	if (INTEL_GEN(dev_priv) >= 8) {
2550		engine->irq_enable = gen8_irq_enable;
2551		engine->irq_disable = gen8_irq_disable;
2552		engine->irq_seqno_barrier = gen6_seqno_barrier;
2553	} else if (INTEL_GEN(dev_priv) >= 6) {
2554		engine->irq_enable = gen6_irq_enable;
2555		engine->irq_disable = gen6_irq_disable;
2556		engine->irq_seqno_barrier = gen6_seqno_barrier;
2557	} else if (INTEL_GEN(dev_priv) >= 5) {
2558		engine->irq_enable = gen5_irq_enable;
2559		engine->irq_disable = gen5_irq_disable;
2560		engine->irq_seqno_barrier = gen5_seqno_barrier;
2561	} else if (INTEL_GEN(dev_priv) >= 3) {
2562		engine->irq_enable = i9xx_irq_enable;
2563		engine->irq_disable = i9xx_irq_disable;
2564	} else {
2565		engine->irq_enable = i8xx_irq_enable;
2566		engine->irq_disable = i8xx_irq_disable;
2567	}
2568}
2569
2570static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2571				      struct intel_engine_cs *engine)
2572{
2573	intel_ring_init_irq(dev_priv, engine);
2574	intel_ring_init_semaphores(dev_priv, engine);
2575
2576	engine->init_hw = init_ring_common;
2577	engine->reset_hw = reset_ring_common;
2578
2579	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2580	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2581	if (i915.semaphores) {
2582		int num_rings;
2583
2584		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2585
2586		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2587		if (INTEL_GEN(dev_priv) >= 8) {
2588			engine->emit_breadcrumb_sz += num_rings * 6;
2589		} else {
2590			engine->emit_breadcrumb_sz += num_rings * 3;
2591			if (num_rings & 1)
2592				engine->emit_breadcrumb_sz++;
2593		}
2594	}
2595	engine->submit_request = i9xx_submit_request;
2596
2597	if (INTEL_GEN(dev_priv) >= 8)
2598		engine->emit_bb_start = gen8_emit_bb_start;
2599	else if (INTEL_GEN(dev_priv) >= 6)
2600		engine->emit_bb_start = gen6_emit_bb_start;
2601	else if (INTEL_GEN(dev_priv) >= 4)
2602		engine->emit_bb_start = i965_emit_bb_start;
2603	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2604		engine->emit_bb_start = i830_emit_bb_start;
2605	else
2606		engine->emit_bb_start = i915_emit_bb_start;
2607}
2608
2609int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
 
2610{
2611	struct drm_i915_private *dev_priv = engine->i915;
2612	int ret;
2613
2614	intel_ring_default_vfuncs(dev_priv, engine);
2615
2616	if (HAS_L3_DPF(dev_priv))
2617		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2618
2619	if (INTEL_GEN(dev_priv) >= 8) {
2620		engine->init_context = intel_rcs_ctx_init;
2621		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2622		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2623		engine->emit_flush = gen8_render_ring_flush;
2624		if (i915.semaphores) {
2625			int num_rings;
2626
2627			engine->semaphore.signal = gen8_rcs_signal;
2628
2629			num_rings =
2630				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2631			engine->emit_breadcrumb_sz += num_rings * 6;
2632		}
2633	} else if (INTEL_GEN(dev_priv) >= 6) {
2634		engine->init_context = intel_rcs_ctx_init;
2635		engine->emit_flush = gen7_render_ring_flush;
2636		if (IS_GEN6(dev_priv))
2637			engine->emit_flush = gen6_render_ring_flush;
2638	} else if (IS_GEN5(dev_priv)) {
2639		engine->emit_flush = gen4_render_ring_flush;
2640	} else {
2641		if (INTEL_GEN(dev_priv) < 4)
2642			engine->emit_flush = gen2_render_ring_flush;
2643		else
2644			engine->emit_flush = gen4_render_ring_flush;
2645		engine->irq_enable_mask = I915_USER_INTERRUPT;
2646	}
2647
2648	if (IS_HASWELL(dev_priv))
2649		engine->emit_bb_start = hsw_emit_bb_start;
2650
2651	engine->init_hw = init_render_ring;
2652	engine->cleanup = render_ring_cleanup;
2653
2654	ret = intel_init_ring_buffer(engine);
2655	if (ret)
2656		return ret;
2657
2658	if (INTEL_GEN(dev_priv) >= 6) {
2659		ret = intel_engine_create_scratch(engine, 4096);
2660		if (ret)
2661			return ret;
2662	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2663		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2664		if (ret)
2665			return ret;
2666	}
2667
2668	return 0;
2669}
2670
2671int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2672{
2673	struct drm_i915_private *dev_priv = engine->i915;
2674
2675	intel_ring_default_vfuncs(dev_priv, engine);
2676
2677	if (INTEL_GEN(dev_priv) >= 6) {
2678		/* gen6 bsd needs a special wa for tail updates */
2679		if (IS_GEN6(dev_priv))
2680			engine->submit_request = gen6_bsd_submit_request;
2681		engine->emit_flush = gen6_bsd_ring_flush;
2682		if (INTEL_GEN(dev_priv) < 8)
2683			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2684	} else {
2685		engine->mmio_base = BSD_RING_BASE;
2686		engine->emit_flush = bsd_ring_flush;
2687		if (IS_GEN5(dev_priv))
2688			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2689		else
2690			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691	}
2692
2693	return intel_init_ring_buffer(engine);
2694}
2695
2696/**
2697 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2698 */
2699int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2700{
2701	struct drm_i915_private *dev_priv = engine->i915;
2702
2703	intel_ring_default_vfuncs(dev_priv, engine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704
2705	engine->emit_flush = gen6_bsd_ring_flush;
2706
2707	return intel_init_ring_buffer(engine);
2708}
2709
2710int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2711{
2712	struct drm_i915_private *dev_priv = engine->i915;
 
2713
2714	intel_ring_default_vfuncs(dev_priv, engine);
2715
2716	engine->emit_flush = gen6_ring_flush;
2717	if (INTEL_GEN(dev_priv) < 8)
2718		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2719
2720	return intel_init_ring_buffer(engine);
2721}
2722
2723int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2724{
2725	struct drm_i915_private *dev_priv = engine->i915;
 
2726
2727	intel_ring_default_vfuncs(dev_priv, engine);
2728
2729	engine->emit_flush = gen6_ring_flush;
2730
2731	if (INTEL_GEN(dev_priv) < 8) {
2732		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2733		engine->irq_enable = hsw_vebox_irq_enable;
2734		engine->irq_disable = hsw_vebox_irq_disable;
2735	}
2736
2737	return intel_init_ring_buffer(engine);
2738}