Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20	__dm_written_to_disk(src)
  21{
  22	memcpy(dest, src, len);
  23	__dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27			 unsigned index, void *elt)
  28	__dm_written_to_disk(elt)
  29{
  30	if (index < nr_elts)
  31		memmove(base + (elt_size * (index + 1)),
  32			base + (elt_size * index),
  33			(nr_elts - index) * elt_size);
  34
  35	memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45	while (hi - lo > 1) {
  46		int mid = lo + ((hi - lo) / 2);
  47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49		if (mid_key == key)
  50			return mid;
  51
  52		if (mid_key < key)
  53			lo = mid;
  54		else
  55			hi = mid;
  56	}
  57
  58	return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63	return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68	return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72		  struct dm_btree_value_type *vt)
  73{
  74	unsigned i;
  75	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76
  77	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78		for (i = 0; i < nr_entries; i++)
  79			dm_tm_inc(tm, value64(n, i));
  80	else if (vt->inc)
  81		for (i = 0; i < nr_entries; i++)
  82			vt->inc(vt->context, value_ptr(n, i));
  83}
  84
  85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86		      uint64_t key, void *value)
  87		      __dm_written_to_disk(value)
  88{
  89	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  90	__le64 key_le = cpu_to_le64(key);
  91
  92	if (index > nr_entries ||
  93	    index >= le32_to_cpu(node->header.max_entries)) {
  94		DMERR("too many entries in btree node for insert");
  95		__dm_unbless_for_disk(value);
  96		return -ENOMEM;
  97	}
  98
  99	__dm_bless_for_disk(&key_le);
 100
 101	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102	array_insert(value_base(node), value_size, nr_entries, index, value);
 103	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105	return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116	uint32_t total, n;
 117	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119	block_size -= sizeof(struct node_header);
 120	total = block_size / elt_size;
 121	n = total / 3;		/* rounds down */
 122
 123	return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128	int r;
 129	struct dm_block *b;
 130	struct btree_node *n;
 131	size_t block_size;
 132	uint32_t max_entries;
 133
 134	r = new_block(info, &b);
 135	if (r < 0)
 136		return r;
 137
 138	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139	max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141	n = dm_block_data(b);
 142	memset(n, 0, block_size);
 143	n->header.flags = cpu_to_le32(LEAF_NODE);
 144	n->header.nr_entries = cpu_to_le32(0);
 145	n->header.max_entries = cpu_to_le32(max_entries);
 146	n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148	*root = dm_block_location(b);
 149	unlock_block(info, b);
 150
 151	return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163	struct dm_block *b;
 164	struct btree_node *n;
 165	unsigned level;
 166	unsigned nr_children;
 167	unsigned current_child;
 168};
 169
 170struct del_stack {
 171	struct dm_btree_info *info;
 172	struct dm_transaction_manager *tm;
 173	int top;
 174	struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179	if (s->top < 0) {
 180		DMERR("btree deletion stack empty");
 181		return -EINVAL;
 182	}
 183
 184	*f = s->spine + s->top;
 185
 186	return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191	return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196	unsigned i;
 197	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199	for (i = 0; i < f->nr_children; i++)
 200		dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205	return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210	int r;
 211	uint32_t ref_count;
 212
 213	if (s->top >= MAX_SPINE_DEPTH - 1) {
 214		DMERR("btree deletion stack out of memory");
 215		return -ENOMEM;
 216	}
 217
 218	r = dm_tm_ref(s->tm, b, &ref_count);
 219	if (r)
 220		return r;
 221
 222	if (ref_count > 1)
 223		/*
 224		 * This is a shared node, so we can just decrement it's
 225		 * reference counter and leave the children.
 226		 */
 227		dm_tm_dec(s->tm, b);
 228
 229	else {
 230		uint32_t flags;
 231		struct frame *f = s->spine + ++s->top;
 232
 233		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234		if (r) {
 235			s->top--;
 236			return r;
 237		}
 238
 239		f->n = dm_block_data(f->b);
 240		f->level = level;
 241		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242		f->current_child = 0;
 243
 244		flags = le32_to_cpu(f->n->header.flags);
 245		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246			prefetch_children(s, f);
 247	}
 248
 249	return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254	struct frame *f = s->spine + s->top--;
 255
 256	dm_tm_dec(s->tm, dm_block_location(f->b));
 257	dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262	struct frame *f;
 263
 264	while (unprocessed_frames(s)) {
 265		f = s->spine + s->top--;
 266		dm_tm_unlock(s->tm, f->b);
 267	}
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272	int r;
 273	struct del_stack *s;
 274
 275	s = kmalloc(sizeof(*s), GFP_NOIO);
 276	if (!s)
 277		return -ENOMEM;
 278	s->info = info;
 279	s->tm = info->tm;
 280	s->top = -1;
 281
 282	r = push_frame(s, root, 0);
 283	if (r)
 284		goto out;
 285
 286	while (unprocessed_frames(s)) {
 287		uint32_t flags;
 288		struct frame *f;
 289		dm_block_t b;
 290
 291		r = top_frame(s, &f);
 292		if (r)
 293			goto out;
 294
 295		if (f->current_child >= f->nr_children) {
 296			pop_frame(s);
 297			continue;
 298		}
 299
 300		flags = le32_to_cpu(f->n->header.flags);
 301		if (flags & INTERNAL_NODE) {
 302			b = value64(f->n, f->current_child);
 303			f->current_child++;
 304			r = push_frame(s, b, f->level);
 305			if (r)
 306				goto out;
 307
 308		} else if (is_internal_level(info, f)) {
 309			b = value64(f->n, f->current_child);
 310			f->current_child++;
 311			r = push_frame(s, b, f->level + 1);
 312			if (r)
 313				goto out;
 314
 315		} else {
 316			if (info->value_type.dec) {
 317				unsigned i;
 318
 319				for (i = 0; i < f->nr_children; i++)
 320					info->value_type.dec(info->value_type.context,
 321							     value_ptr(f->n, i));
 322			}
 323			pop_frame(s);
 324		}
 325	}
 326out:
 327	if (r) {
 328		/* cleanup all frames of del_stack */
 329		unlock_all_frames(s);
 330	}
 331	kfree(s);
 332
 333	return r;
 334}
 335EXPORT_SYMBOL_GPL(dm_btree_del);
 336
 337/*----------------------------------------------------------------*/
 338
 339static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 340			    int (*search_fn)(struct btree_node *, uint64_t),
 341			    uint64_t *result_key, void *v, size_t value_size)
 342{
 343	int i, r;
 344	uint32_t flags, nr_entries;
 345
 346	do {
 347		r = ro_step(s, block);
 348		if (r < 0)
 349			return r;
 350
 351		i = search_fn(ro_node(s), key);
 352
 353		flags = le32_to_cpu(ro_node(s)->header.flags);
 354		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 355		if (i < 0 || i >= nr_entries)
 356			return -ENODATA;
 357
 358		if (flags & INTERNAL_NODE)
 359			block = value64(ro_node(s), i);
 360
 361	} while (!(flags & LEAF_NODE));
 362
 363	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 364	memcpy(v, value_ptr(ro_node(s), i), value_size);
 365
 366	return 0;
 367}
 368
 369int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 370		    uint64_t *keys, void *value_le)
 371{
 372	unsigned level, last_level = info->levels - 1;
 373	int r = -ENODATA;
 374	uint64_t rkey;
 375	__le64 internal_value_le;
 376	struct ro_spine spine;
 377
 378	init_ro_spine(&spine, info);
 379	for (level = 0; level < info->levels; level++) {
 380		size_t size;
 381		void *value_p;
 382
 383		if (level == last_level) {
 384			value_p = value_le;
 385			size = info->value_type.size;
 386
 387		} else {
 388			value_p = &internal_value_le;
 389			size = sizeof(uint64_t);
 390		}
 391
 392		r = btree_lookup_raw(&spine, root, keys[level],
 393				     lower_bound, &rkey,
 394				     value_p, size);
 395
 396		if (!r) {
 397			if (rkey != keys[level]) {
 398				exit_ro_spine(&spine);
 399				return -ENODATA;
 400			}
 401		} else {
 402			exit_ro_spine(&spine);
 403			return r;
 404		}
 405
 406		root = le64_to_cpu(internal_value_le);
 407	}
 408	exit_ro_spine(&spine);
 409
 410	return r;
 411}
 412EXPORT_SYMBOL_GPL(dm_btree_lookup);
 413
 414static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 415				       uint64_t key, uint64_t *rkey, void *value_le)
 416{
 417	int r, i;
 418	uint32_t flags, nr_entries;
 419	struct dm_block *node;
 420	struct btree_node *n;
 421
 422	r = bn_read_lock(info, root, &node);
 423	if (r)
 424		return r;
 425
 426	n = dm_block_data(node);
 427	flags = le32_to_cpu(n->header.flags);
 428	nr_entries = le32_to_cpu(n->header.nr_entries);
 429
 430	if (flags & INTERNAL_NODE) {
 431		i = lower_bound(n, key);
 432		if (i < 0) {
 433			/*
 434			 * avoid early -ENODATA return when all entries are
 435			 * higher than the search @key.
 436			 */
 437			i = 0;
 438		}
 439		if (i >= nr_entries) {
 440			r = -ENODATA;
 441			goto out;
 442		}
 443
 444		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 445		if (r == -ENODATA && i < (nr_entries - 1)) {
 446			i++;
 447			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 448		}
 449
 450	} else {
 451		i = upper_bound(n, key);
 452		if (i < 0 || i >= nr_entries) {
 453			r = -ENODATA;
 454			goto out;
 455		}
 456
 457		*rkey = le64_to_cpu(n->keys[i]);
 458		memcpy(value_le, value_ptr(n, i), info->value_type.size);
 459	}
 460out:
 461	dm_tm_unlock(info->tm, node);
 462	return r;
 463}
 464
 465int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 466			 uint64_t *keys, uint64_t *rkey, void *value_le)
 467{
 468	unsigned level;
 469	int r = -ENODATA;
 470	__le64 internal_value_le;
 471	struct ro_spine spine;
 472
 473	init_ro_spine(&spine, info);
 474	for (level = 0; level < info->levels - 1u; level++) {
 475		r = btree_lookup_raw(&spine, root, keys[level],
 476				     lower_bound, rkey,
 477				     &internal_value_le, sizeof(uint64_t));
 478		if (r)
 479			goto out;
 480
 481		if (*rkey != keys[level]) {
 482			r = -ENODATA;
 483			goto out;
 484		}
 485
 486		root = le64_to_cpu(internal_value_le);
 487	}
 488
 489	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 490out:
 491	exit_ro_spine(&spine);
 492	return r;
 493}
 494
 495EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 496
 497/*
 498 * Splits a node by creating a sibling node and shifting half the nodes
 499 * contents across.  Assumes there is a parent node, and it has room for
 500 * another child.
 501 *
 502 * Before:
 503 *	  +--------+
 504 *	  | Parent |
 505 *	  +--------+
 506 *	     |
 507 *	     v
 508 *	+----------+
 509 *	| A ++++++ |
 510 *	+----------+
 511 *
 512 *
 513 * After:
 514 *		+--------+
 515 *		| Parent |
 516 *		+--------+
 517 *		  |	|
 518 *		  v	+------+
 519 *	    +---------+	       |
 520 *	    | A* +++  |	       v
 521 *	    +---------+	  +-------+
 522 *			  | B +++ |
 523 *			  +-------+
 524 *
 525 * Where A* is a shadow of A.
 526 */
 527static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 528			       uint64_t key)
 529{
 530	int r;
 531	size_t size;
 532	unsigned nr_left, nr_right;
 533	struct dm_block *left, *right, *parent;
 534	struct btree_node *ln, *rn, *pn;
 535	__le64 location;
 536
 537	left = shadow_current(s);
 538
 539	r = new_block(s->info, &right);
 540	if (r < 0)
 541		return r;
 542
 543	ln = dm_block_data(left);
 544	rn = dm_block_data(right);
 545
 546	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 547	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 548
 549	ln->header.nr_entries = cpu_to_le32(nr_left);
 550
 551	rn->header.flags = ln->header.flags;
 552	rn->header.nr_entries = cpu_to_le32(nr_right);
 553	rn->header.max_entries = ln->header.max_entries;
 554	rn->header.value_size = ln->header.value_size;
 555	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 556
 557	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 558		sizeof(uint64_t) : s->info->value_type.size;
 559	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 560	       size * nr_right);
 561
 562	/*
 563	 * Patch up the parent
 564	 */
 565	parent = shadow_parent(s);
 566
 567	pn = dm_block_data(parent);
 568	location = cpu_to_le64(dm_block_location(left));
 569	__dm_bless_for_disk(&location);
 570	memcpy_disk(value_ptr(pn, parent_index),
 571		    &location, sizeof(__le64));
 572
 573	location = cpu_to_le64(dm_block_location(right));
 574	__dm_bless_for_disk(&location);
 575
 576	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 577		      le64_to_cpu(rn->keys[0]), &location);
 578	if (r) {
 579		unlock_block(s->info, right);
 580		return r;
 581	}
 582
 583	if (key < le64_to_cpu(rn->keys[0])) {
 584		unlock_block(s->info, right);
 585		s->nodes[1] = left;
 586	} else {
 587		unlock_block(s->info, left);
 588		s->nodes[1] = right;
 589	}
 590
 591	return 0;
 592}
 593
 594/*
 595 * Splits a node by creating two new children beneath the given node.
 596 *
 597 * Before:
 598 *	  +----------+
 599 *	  | A ++++++ |
 600 *	  +----------+
 601 *
 602 *
 603 * After:
 604 *	+------------+
 605 *	| A (shadow) |
 606 *	+------------+
 607 *	    |	|
 608 *   +------+	+----+
 609 *   |		     |
 610 *   v		     v
 611 * +-------+	 +-------+
 612 * | B +++ |	 | C +++ |
 613 * +-------+	 +-------+
 614 */
 615static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 616{
 617	int r;
 618	size_t size;
 619	unsigned nr_left, nr_right;
 620	struct dm_block *left, *right, *new_parent;
 621	struct btree_node *pn, *ln, *rn;
 622	__le64 val;
 623
 624	new_parent = shadow_current(s);
 625
 626	r = new_block(s->info, &left);
 627	if (r < 0)
 628		return r;
 629
 630	r = new_block(s->info, &right);
 631	if (r < 0) {
 632		unlock_block(s->info, left);
 633		return r;
 634	}
 635
 636	pn = dm_block_data(new_parent);
 637	ln = dm_block_data(left);
 638	rn = dm_block_data(right);
 639
 640	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 641	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 642
 643	ln->header.flags = pn->header.flags;
 644	ln->header.nr_entries = cpu_to_le32(nr_left);
 645	ln->header.max_entries = pn->header.max_entries;
 646	ln->header.value_size = pn->header.value_size;
 647
 648	rn->header.flags = pn->header.flags;
 649	rn->header.nr_entries = cpu_to_le32(nr_right);
 650	rn->header.max_entries = pn->header.max_entries;
 651	rn->header.value_size = pn->header.value_size;
 652
 653	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 654	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 655
 656	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 657		sizeof(__le64) : s->info->value_type.size;
 658	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 659	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 660	       nr_right * size);
 661
 662	/* new_parent should just point to l and r now */
 663	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 664	pn->header.nr_entries = cpu_to_le32(2);
 665	pn->header.max_entries = cpu_to_le32(
 666		calc_max_entries(sizeof(__le64),
 667				 dm_bm_block_size(
 668					 dm_tm_get_bm(s->info->tm))));
 669	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 670
 671	val = cpu_to_le64(dm_block_location(left));
 672	__dm_bless_for_disk(&val);
 673	pn->keys[0] = ln->keys[0];
 674	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 675
 676	val = cpu_to_le64(dm_block_location(right));
 677	__dm_bless_for_disk(&val);
 678	pn->keys[1] = rn->keys[0];
 679	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 680
 681	/*
 682	 * rejig the spine.  This is ugly, since it knows too
 683	 * much about the spine
 684	 */
 685	if (s->nodes[0] != new_parent) {
 686		unlock_block(s->info, s->nodes[0]);
 687		s->nodes[0] = new_parent;
 688	}
 689	if (key < le64_to_cpu(rn->keys[0])) {
 690		unlock_block(s->info, right);
 691		s->nodes[1] = left;
 692	} else {
 693		unlock_block(s->info, left);
 694		s->nodes[1] = right;
 695	}
 696	s->count = 2;
 697
 698	return 0;
 699}
 700
 701static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 702			    struct dm_btree_value_type *vt,
 703			    uint64_t key, unsigned *index)
 704{
 705	int r, i = *index, top = 1;
 706	struct btree_node *node;
 707
 708	for (;;) {
 709		r = shadow_step(s, root, vt);
 710		if (r < 0)
 711			return r;
 712
 713		node = dm_block_data(shadow_current(s));
 714
 715		/*
 716		 * We have to patch up the parent node, ugly, but I don't
 717		 * see a way to do this automatically as part of the spine
 718		 * op.
 719		 */
 720		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 721			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 722
 723			__dm_bless_for_disk(&location);
 724			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 725				    &location, sizeof(__le64));
 726		}
 727
 728		node = dm_block_data(shadow_current(s));
 729
 730		if (node->header.nr_entries == node->header.max_entries) {
 731			if (top)
 732				r = btree_split_beneath(s, key);
 733			else
 734				r = btree_split_sibling(s, i, key);
 735
 736			if (r < 0)
 737				return r;
 738		}
 739
 740		node = dm_block_data(shadow_current(s));
 741
 742		i = lower_bound(node, key);
 743
 744		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 745			break;
 746
 747		if (i < 0) {
 748			/* change the bounds on the lowest key */
 749			node->keys[0] = cpu_to_le64(key);
 750			i = 0;
 751		}
 752
 753		root = value64(node, i);
 754		top = 0;
 755	}
 756
 757	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 758		i++;
 759
 760	*index = i;
 761	return 0;
 762}
 763
 764static bool need_insert(struct btree_node *node, uint64_t *keys,
 765			unsigned level, unsigned index)
 766{
 767        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 768		(le64_to_cpu(node->keys[index]) != keys[level]));
 769}
 770
 771static int insert(struct dm_btree_info *info, dm_block_t root,
 772		  uint64_t *keys, void *value, dm_block_t *new_root,
 773		  int *inserted)
 774		  __dm_written_to_disk(value)
 775{
 776	int r;
 777	unsigned level, index = -1, last_level = info->levels - 1;
 778	dm_block_t block = root;
 779	struct shadow_spine spine;
 780	struct btree_node *n;
 781	struct dm_btree_value_type le64_type;
 782
 783	init_le64_type(info->tm, &le64_type);
 784	init_shadow_spine(&spine, info);
 785
 786	for (level = 0; level < (info->levels - 1); level++) {
 787		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 788		if (r < 0)
 789			goto bad;
 790
 791		n = dm_block_data(shadow_current(&spine));
 792
 793		if (need_insert(n, keys, level, index)) {
 794			dm_block_t new_tree;
 795			__le64 new_le;
 796
 797			r = dm_btree_empty(info, &new_tree);
 798			if (r < 0)
 799				goto bad;
 800
 801			new_le = cpu_to_le64(new_tree);
 802			__dm_bless_for_disk(&new_le);
 803
 804			r = insert_at(sizeof(uint64_t), n, index,
 805				      keys[level], &new_le);
 806			if (r)
 807				goto bad;
 808		}
 809
 810		if (level < last_level)
 811			block = value64(n, index);
 812	}
 813
 814	r = btree_insert_raw(&spine, block, &info->value_type,
 815			     keys[level], &index);
 816	if (r < 0)
 817		goto bad;
 818
 819	n = dm_block_data(shadow_current(&spine));
 820
 821	if (need_insert(n, keys, level, index)) {
 822		if (inserted)
 823			*inserted = 1;
 824
 825		r = insert_at(info->value_type.size, n, index,
 826			      keys[level], value);
 827		if (r)
 828			goto bad_unblessed;
 829	} else {
 830		if (inserted)
 831			*inserted = 0;
 832
 833		if (info->value_type.dec &&
 834		    (!info->value_type.equal ||
 835		     !info->value_type.equal(
 836			     info->value_type.context,
 837			     value_ptr(n, index),
 838			     value))) {
 839			info->value_type.dec(info->value_type.context,
 840					     value_ptr(n, index));
 841		}
 842		memcpy_disk(value_ptr(n, index),
 843			    value, info->value_type.size);
 844	}
 845
 846	*new_root = shadow_root(&spine);
 847	exit_shadow_spine(&spine);
 848
 849	return 0;
 850
 851bad:
 852	__dm_unbless_for_disk(value);
 853bad_unblessed:
 854	exit_shadow_spine(&spine);
 855	return r;
 856}
 857
 858int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 859		    uint64_t *keys, void *value, dm_block_t *new_root)
 860		    __dm_written_to_disk(value)
 861{
 862	return insert(info, root, keys, value, new_root, NULL);
 863}
 864EXPORT_SYMBOL_GPL(dm_btree_insert);
 865
 866int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 867			   uint64_t *keys, void *value, dm_block_t *new_root,
 868			   int *inserted)
 869			   __dm_written_to_disk(value)
 870{
 871	return insert(info, root, keys, value, new_root, inserted);
 872}
 873EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 874
 875/*----------------------------------------------------------------*/
 876
 877static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 878		    uint64_t *result_key, dm_block_t *next_block)
 879{
 880	int i, r;
 881	uint32_t flags;
 882
 883	do {
 884		r = ro_step(s, block);
 885		if (r < 0)
 886			return r;
 887
 888		flags = le32_to_cpu(ro_node(s)->header.flags);
 889		i = le32_to_cpu(ro_node(s)->header.nr_entries);
 890		if (!i)
 891			return -ENODATA;
 892		else
 893			i--;
 894
 895		if (find_highest)
 896			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 897		else
 898			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
 899
 900		if (next_block || flags & INTERNAL_NODE)
 901			block = value64(ro_node(s), i);
 902
 903	} while (flags & INTERNAL_NODE);
 904
 905	if (next_block)
 906		*next_block = block;
 907	return 0;
 908}
 909
 910static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 911			     bool find_highest, uint64_t *result_keys)
 912{
 913	int r = 0, count = 0, level;
 914	struct ro_spine spine;
 915
 916	init_ro_spine(&spine, info);
 917	for (level = 0; level < info->levels; level++) {
 918		r = find_key(&spine, root, find_highest, result_keys + level,
 919			     level == info->levels - 1 ? NULL : &root);
 920		if (r == -ENODATA) {
 921			r = 0;
 922			break;
 923
 924		} else if (r)
 925			break;
 926
 927		count++;
 928	}
 929	exit_ro_spine(&spine);
 930
 931	return r ? r : count;
 932}
 933
 934int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 935			      uint64_t *result_keys)
 936{
 937	return dm_btree_find_key(info, root, true, result_keys);
 938}
 939EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 940
 941int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 942			     uint64_t *result_keys)
 943{
 944	return dm_btree_find_key(info, root, false, result_keys);
 945}
 946EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 947
 948/*----------------------------------------------------------------*/
 949
 950/*
 951 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 952 * space.  Also this only works for single level trees.
 953 */
 954static int walk_node(struct dm_btree_info *info, dm_block_t block,
 955		     int (*fn)(void *context, uint64_t *keys, void *leaf),
 956		     void *context)
 957{
 958	int r;
 959	unsigned i, nr;
 960	struct dm_block *node;
 961	struct btree_node *n;
 962	uint64_t keys;
 963
 964	r = bn_read_lock(info, block, &node);
 965	if (r)
 966		return r;
 967
 968	n = dm_block_data(node);
 969
 970	nr = le32_to_cpu(n->header.nr_entries);
 971	for (i = 0; i < nr; i++) {
 972		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 973			r = walk_node(info, value64(n, i), fn, context);
 974			if (r)
 975				goto out;
 976		} else {
 977			keys = le64_to_cpu(*key_ptr(n, i));
 978			r = fn(context, &keys, value_ptr(n, i));
 979			if (r)
 980				goto out;
 981		}
 982	}
 983
 984out:
 985	dm_tm_unlock(info->tm, node);
 986	return r;
 987}
 988
 989int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 990		  int (*fn)(void *context, uint64_t *keys, void *leaf),
 991		  void *context)
 992{
 993	BUG_ON(info->levels > 1);
 994	return walk_node(info, root, fn, context);
 995}
 996EXPORT_SYMBOL_GPL(dm_btree_walk);
 997
 998/*----------------------------------------------------------------*/
 999
1000static void prefetch_values(struct dm_btree_cursor *c)
1001{
1002	unsigned i, nr;
1003	__le64 value_le;
1004	struct cursor_node *n = c->nodes + c->depth - 1;
1005	struct btree_node *bn = dm_block_data(n->b);
1006	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1007
1008	BUG_ON(c->info->value_type.size != sizeof(value_le));
1009
1010	nr = le32_to_cpu(bn->header.nr_entries);
1011	for (i = 0; i < nr; i++) {
1012		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1013		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1014	}
1015}
1016
1017static bool leaf_node(struct dm_btree_cursor *c)
1018{
1019	struct cursor_node *n = c->nodes + c->depth - 1;
1020	struct btree_node *bn = dm_block_data(n->b);
1021
1022	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1023}
1024
1025static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1026{
1027	int r;
1028	struct cursor_node *n = c->nodes + c->depth;
1029
1030	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1031		DMERR("couldn't push cursor node, stack depth too high");
1032		return -EINVAL;
1033	}
1034
1035	r = bn_read_lock(c->info, b, &n->b);
1036	if (r)
1037		return r;
1038
1039	n->index = 0;
1040	c->depth++;
1041
1042	if (c->prefetch_leaves || !leaf_node(c))
1043		prefetch_values(c);
1044
1045	return 0;
1046}
1047
1048static void pop_node(struct dm_btree_cursor *c)
1049{
1050	c->depth--;
1051	unlock_block(c->info, c->nodes[c->depth].b);
1052}
1053
1054static int inc_or_backtrack(struct dm_btree_cursor *c)
1055{
1056	struct cursor_node *n;
1057	struct btree_node *bn;
1058
1059	for (;;) {
1060		if (!c->depth)
1061			return -ENODATA;
1062
1063		n = c->nodes + c->depth - 1;
1064		bn = dm_block_data(n->b);
1065
1066		n->index++;
1067		if (n->index < le32_to_cpu(bn->header.nr_entries))
1068			break;
1069
1070		pop_node(c);
1071	}
1072
1073	return 0;
1074}
1075
1076static int find_leaf(struct dm_btree_cursor *c)
1077{
1078	int r = 0;
1079	struct cursor_node *n;
1080	struct btree_node *bn;
1081	__le64 value_le;
1082
1083	for (;;) {
1084		n = c->nodes + c->depth - 1;
1085		bn = dm_block_data(n->b);
1086
1087		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1088			break;
1089
1090		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1091		r = push_node(c, le64_to_cpu(value_le));
1092		if (r) {
1093			DMERR("push_node failed");
1094			break;
1095		}
1096	}
1097
1098	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1099		return -ENODATA;
1100
1101	return r;
1102}
1103
1104int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1105			  bool prefetch_leaves, struct dm_btree_cursor *c)
1106{
1107	int r;
1108
1109	c->info = info;
1110	c->root = root;
1111	c->depth = 0;
1112	c->prefetch_leaves = prefetch_leaves;
1113
1114	r = push_node(c, root);
1115	if (r)
1116		return r;
1117
1118	return find_leaf(c);
1119}
1120EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1121
1122void dm_btree_cursor_end(struct dm_btree_cursor *c)
1123{
1124	while (c->depth)
1125		pop_node(c);
1126}
1127EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1128
1129int dm_btree_cursor_next(struct dm_btree_cursor *c)
1130{
1131	int r = inc_or_backtrack(c);
1132	if (!r) {
1133		r = find_leaf(c);
1134		if (r)
1135			DMERR("find_leaf failed");
1136	}
1137
1138	return r;
1139}
1140EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1141
1142int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1143{
1144	if (c->depth) {
1145		struct cursor_node *n = c->nodes + c->depth - 1;
1146		struct btree_node *bn = dm_block_data(n->b);
1147
1148		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1149			return -EINVAL;
1150
1151		*key = le64_to_cpu(*key_ptr(bn, n->index));
1152		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1153		return 0;
1154
1155	} else
1156		return -ENODATA;
1157}
1158EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);