Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
   3 * supports DVS or DVFS
   4 *
   5 * Copyright (c) 2016 Broadcom
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation version 2.
  10 *
  11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  12 * kind, whether express or implied; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17/*
  18 * "AVS" is the name of a firmware developed at Broadcom. It derives
  19 * its name from the technique called "Adaptive Voltage Scaling".
  20 * Adaptive voltage scaling was the original purpose of this firmware.
  21 * The AVS firmware still supports "AVS mode", where all it does is
  22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
  23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
  24 * DVFS mode.
  25 *
  26 * In the context of this document and the related driver, "AVS" by
  27 * itself always means the Broadcom firmware and never refers to the
  28 * technique called "Adaptive Voltage Scaling".
  29 *
  30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
  31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
  32 * DVFS. The AVS firmware is running on its own co-processor. The
  33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
  34 * (SMP) systems which share clock and voltage across all CPUs.
  35 *
  36 * Actual voltage and frequency scaling is done solely by the AVS
  37 * firmware. This driver does not change frequency or voltage itself.
  38 * It provides a standard CPUfreq interface to the rest of the kernel
  39 * and to userland. It interfaces with the AVS firmware to effect the
  40 * requested changes and to report back the current system status in a
  41 * way that is expected by existing tools.
  42 */
  43
  44#include <linux/cpufreq.h>
  45#include <linux/interrupt.h>
  46#include <linux/io.h>
  47#include <linux/module.h>
  48#include <linux/of_address.h>
  49#include <linux/platform_device.h>
  50#include <linux/semaphore.h>
  51
  52#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
  53#include <linux/ctype.h>
  54#include <linux/debugfs.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#endif
  58
  59/* Max number of arguments AVS calls take */
  60#define AVS_MAX_CMD_ARGS	4
  61/*
  62 * This macro is used to generate AVS parameter register offsets. For
  63 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
  64 * access outside of the parameter range. (Offset 0 is the first parameter.)
  65 */
  66#define AVS_PARAM_MULT(x)	((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
  67
  68/* AVS Mailbox Register offsets */
  69#define AVS_MBOX_COMMAND	0x00
  70#define AVS_MBOX_STATUS		0x04
  71#define AVS_MBOX_VOLTAGE0	0x08
  72#define AVS_MBOX_TEMP0		0x0c
  73#define AVS_MBOX_PV0		0x10
  74#define AVS_MBOX_MV0		0x14
  75#define AVS_MBOX_PARAM(x)	(0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
  76#define AVS_MBOX_REVISION	0x28
  77#define AVS_MBOX_PSTATE		0x2c
  78#define AVS_MBOX_HEARTBEAT	0x30
  79#define AVS_MBOX_MAGIC		0x34
  80#define AVS_MBOX_SIGMA_HVT	0x38
  81#define AVS_MBOX_SIGMA_SVT	0x3c
  82#define AVS_MBOX_VOLTAGE1	0x40
  83#define AVS_MBOX_TEMP1		0x44
  84#define AVS_MBOX_PV1		0x48
  85#define AVS_MBOX_MV1		0x4c
  86#define AVS_MBOX_FREQUENCY	0x50
  87
  88/* AVS Commands */
  89#define AVS_CMD_AVAILABLE	0x00
  90#define AVS_CMD_DISABLE		0x10
  91#define AVS_CMD_ENABLE		0x11
  92#define AVS_CMD_S2_ENTER	0x12
  93#define AVS_CMD_S2_EXIT		0x13
  94#define AVS_CMD_BBM_ENTER	0x14
  95#define AVS_CMD_BBM_EXIT	0x15
  96#define AVS_CMD_S3_ENTER	0x16
  97#define AVS_CMD_S3_EXIT		0x17
  98#define AVS_CMD_BALANCE		0x18
  99/* PMAP and P-STATE commands */
 100#define AVS_CMD_GET_PMAP	0x30
 101#define AVS_CMD_SET_PMAP	0x31
 102#define AVS_CMD_GET_PSTATE	0x40
 103#define AVS_CMD_SET_PSTATE	0x41
 104
 105/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
 106#define AVS_MODE_AVS		0x0
 107#define AVS_MODE_DFS		0x1
 108#define AVS_MODE_DVS		0x2
 109#define AVS_MODE_DVFS		0x3
 110
 111/*
 112 * PMAP parameter p1
 113 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
 114 */
 115#define NDIV_INT_SHIFT		0
 116#define NDIV_INT_MASK		0x3ff
 117#define PDIV_SHIFT		10
 118#define PDIV_MASK		0xf
 119#define MDIV_P0_SHIFT		16
 120#define MDIV_P0_MASK		0xff
 121/*
 122 * PMAP parameter p2
 123 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
 124 */
 125#define MDIV_P1_SHIFT		0
 126#define MDIV_P1_MASK		0xff
 127#define MDIV_P2_SHIFT		8
 128#define MDIV_P2_MASK		0xff
 129#define MDIV_P3_SHIFT		16
 130#define MDIV_P3_MASK		0xff
 131#define MDIV_P4_SHIFT		24
 132#define MDIV_P4_MASK		0xff
 133
 134/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
 135#define AVS_PSTATE_P0		0x0
 136#define AVS_PSTATE_P1		0x1
 137#define AVS_PSTATE_P2		0x2
 138#define AVS_PSTATE_P3		0x3
 139#define AVS_PSTATE_P4		0x4
 140#define AVS_PSTATE_MAX		AVS_PSTATE_P4
 141
 142/* CPU L2 Interrupt Controller Registers */
 143#define AVS_CPU_L2_SET0		0x04
 144#define AVS_CPU_L2_INT_MASK	BIT(31)
 145
 146/* AVS Command Status Values */
 147#define AVS_STATUS_CLEAR	0x00
 148/* Command/notification accepted */
 149#define AVS_STATUS_SUCCESS	0xf0
 150/* Command/notification rejected */
 151#define AVS_STATUS_FAILURE	0xff
 152/* Invalid command/notification (unknown) */
 153#define AVS_STATUS_INVALID	0xf1
 154/* Non-AVS modes are not supported */
 155#define AVS_STATUS_NO_SUPP	0xf2
 156/* Cannot set P-State until P-Map supplied */
 157#define AVS_STATUS_NO_MAP	0xf3
 158/* Cannot change P-Map after initial P-Map set */
 159#define AVS_STATUS_MAP_SET	0xf4
 160/* Max AVS status; higher numbers are used for debugging */
 161#define AVS_STATUS_MAX		0xff
 162
 163/* Other AVS related constants */
 164#define AVS_LOOP_LIMIT		10000
 165#define AVS_TIMEOUT		300 /* in ms; expected completion is < 10ms */
 166#define AVS_FIRMWARE_MAGIC	0xa11600d1
 167
 168#define BRCM_AVS_CPUFREQ_PREFIX	"brcmstb-avs"
 169#define BRCM_AVS_CPUFREQ_NAME	BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
 170#define BRCM_AVS_CPU_DATA	"brcm,avs-cpu-data-mem"
 171#define BRCM_AVS_CPU_INTR	"brcm,avs-cpu-l2-intr"
 172#define BRCM_AVS_HOST_INTR	"sw_intr"
 173
 174struct pmap {
 175	unsigned int mode;
 176	unsigned int p1;
 177	unsigned int p2;
 178	unsigned int state;
 179};
 180
 181struct private_data {
 182	void __iomem *base;
 183	void __iomem *avs_intr_base;
 184	struct device *dev;
 185#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
 186	struct dentry *debugfs;
 187#endif
 188	struct completion done;
 189	struct semaphore sem;
 190	struct pmap pmap;
 191};
 192
 193#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
 194
 195enum debugfs_format {
 196	DEBUGFS_NORMAL,
 197	DEBUGFS_FLOAT,
 198	DEBUGFS_REV,
 199};
 200
 201struct debugfs_data {
 202	struct debugfs_entry *entry;
 203	struct private_data *priv;
 204};
 205
 206struct debugfs_entry {
 207	char *name;
 208	u32 offset;
 209	fmode_t mode;
 210	enum debugfs_format format;
 211};
 212
 213#define DEBUGFS_ENTRY(name, mode, format)	{ \
 214	#name, AVS_MBOX_##name, mode, format \
 215}
 216
 217/*
 218 * These are used for debugfs only. Otherwise we use AVS_MBOX_PARAM() directly.
 219 */
 220#define AVS_MBOX_PARAM1		AVS_MBOX_PARAM(0)
 221#define AVS_MBOX_PARAM2		AVS_MBOX_PARAM(1)
 222#define AVS_MBOX_PARAM3		AVS_MBOX_PARAM(2)
 223#define AVS_MBOX_PARAM4		AVS_MBOX_PARAM(3)
 224
 225/*
 226 * This table stores the name, access permissions and offset for each hardware
 227 * register and is used to generate debugfs entries.
 228 */
 229static struct debugfs_entry debugfs_entries[] = {
 230	DEBUGFS_ENTRY(COMMAND, S_IWUSR, DEBUGFS_NORMAL),
 231	DEBUGFS_ENTRY(STATUS, S_IWUSR, DEBUGFS_NORMAL),
 232	DEBUGFS_ENTRY(VOLTAGE0, 0, DEBUGFS_FLOAT),
 233	DEBUGFS_ENTRY(TEMP0, 0, DEBUGFS_FLOAT),
 234	DEBUGFS_ENTRY(PV0, 0, DEBUGFS_FLOAT),
 235	DEBUGFS_ENTRY(MV0, 0, DEBUGFS_FLOAT),
 236	DEBUGFS_ENTRY(PARAM1, S_IWUSR, DEBUGFS_NORMAL),
 237	DEBUGFS_ENTRY(PARAM2, S_IWUSR, DEBUGFS_NORMAL),
 238	DEBUGFS_ENTRY(PARAM3, S_IWUSR, DEBUGFS_NORMAL),
 239	DEBUGFS_ENTRY(PARAM4, S_IWUSR, DEBUGFS_NORMAL),
 240	DEBUGFS_ENTRY(REVISION, 0, DEBUGFS_REV),
 241	DEBUGFS_ENTRY(PSTATE, 0, DEBUGFS_NORMAL),
 242	DEBUGFS_ENTRY(HEARTBEAT, 0, DEBUGFS_NORMAL),
 243	DEBUGFS_ENTRY(MAGIC, S_IWUSR, DEBUGFS_NORMAL),
 244	DEBUGFS_ENTRY(SIGMA_HVT, 0, DEBUGFS_NORMAL),
 245	DEBUGFS_ENTRY(SIGMA_SVT, 0, DEBUGFS_NORMAL),
 246	DEBUGFS_ENTRY(VOLTAGE1, 0, DEBUGFS_FLOAT),
 247	DEBUGFS_ENTRY(TEMP1, 0, DEBUGFS_FLOAT),
 248	DEBUGFS_ENTRY(PV1, 0, DEBUGFS_FLOAT),
 249	DEBUGFS_ENTRY(MV1, 0, DEBUGFS_FLOAT),
 250	DEBUGFS_ENTRY(FREQUENCY, 0, DEBUGFS_NORMAL),
 251};
 252
 253static int brcm_avs_target_index(struct cpufreq_policy *, unsigned int);
 254
 255static char *__strtolower(char *s)
 256{
 257	char *p;
 258
 259	for (p = s; *p; p++)
 260		*p = tolower(*p);
 261
 262	return s;
 263}
 264
 265#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
 266
 267static void __iomem *__map_region(const char *name)
 268{
 269	struct device_node *np;
 270	void __iomem *ptr;
 271
 272	np = of_find_compatible_node(NULL, NULL, name);
 273	if (!np)
 274		return NULL;
 275
 276	ptr = of_iomap(np, 0);
 277	of_node_put(np);
 278
 279	return ptr;
 280}
 281
 282static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
 283			       u32 args[])
 284{
 285	unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
 286	void __iomem *base = priv->base;
 287	unsigned int i;
 288	int ret;
 289	u32 val;
 290
 291	ret = down_interruptible(&priv->sem);
 292	if (ret)
 293		return ret;
 294
 295	/*
 296	 * Make sure no other command is currently running: cmd is 0 if AVS
 297	 * co-processor is idle. Due to the guard above, we should almost never
 298	 * have to wait here.
 299	 */
 300	for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
 301		val = readl(base + AVS_MBOX_COMMAND);
 302
 303	/* Give the caller a chance to retry if AVS is busy. */
 304	if (i == AVS_LOOP_LIMIT) {
 305		ret = -EAGAIN;
 306		goto out;
 307	}
 308
 309	/* Clear status before we begin. */
 310	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
 311
 312	/* We need to send arguments for this command. */
 313	if (args && is_send) {
 314		for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
 315			writel(args[i], base + AVS_MBOX_PARAM(i));
 316	}
 317
 318	/* Protect from spurious interrupts. */
 319	reinit_completion(&priv->done);
 320
 321	/* Now issue the command & tell firmware to wake up to process it. */
 322	writel(cmd, base + AVS_MBOX_COMMAND);
 323	writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
 324
 325	/* Wait for AVS co-processor to finish processing the command. */
 326	time_left = wait_for_completion_timeout(&priv->done, time_left);
 327
 328	/*
 329	 * If the AVS status is not in the expected range, it means AVS didn't
 330	 * complete our command in time, and we return an error. Also, if there
 331	 * is no "time left", we timed out waiting for the interrupt.
 332	 */
 333	val = readl(base + AVS_MBOX_STATUS);
 334	if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
 335		dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
 336			cmd);
 337		dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n",
 338			jiffies_to_msecs(time_left), val);
 339		ret = -ETIMEDOUT;
 340		goto out;
 341	}
 342
 343	/* This command returned arguments, so we read them back. */
 344	if (args && !is_send) {
 345		for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
 346			args[i] = readl(base + AVS_MBOX_PARAM(i));
 347	}
 348
 349	/* Clear status to tell AVS co-processor we are done. */
 350	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
 351
 352	/* Convert firmware errors to errno's as much as possible. */
 353	switch (val) {
 354	case AVS_STATUS_INVALID:
 355		ret = -EINVAL;
 356		break;
 357	case AVS_STATUS_NO_SUPP:
 358		ret = -ENOTSUPP;
 359		break;
 360	case AVS_STATUS_NO_MAP:
 361		ret = -ENOENT;
 362		break;
 363	case AVS_STATUS_MAP_SET:
 364		ret = -EEXIST;
 365		break;
 366	case AVS_STATUS_FAILURE:
 367		ret = -EIO;
 368		break;
 369	}
 370
 371out:
 372	up(&priv->sem);
 373
 374	return ret;
 375}
 376
 377static irqreturn_t irq_handler(int irq, void *data)
 378{
 379	struct private_data *priv = data;
 380
 381	/* AVS command completed execution. Wake up __issue_avs_command(). */
 382	complete(&priv->done);
 383
 384	return IRQ_HANDLED;
 385}
 386
 387static char *brcm_avs_mode_to_string(unsigned int mode)
 388{
 389	switch (mode) {
 390	case AVS_MODE_AVS:
 391		return "AVS";
 392	case AVS_MODE_DFS:
 393		return "DFS";
 394	case AVS_MODE_DVS:
 395		return "DVS";
 396	case AVS_MODE_DVFS:
 397		return "DVFS";
 398	}
 399	return NULL;
 400}
 401
 402static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
 403			      unsigned int *ndiv)
 404{
 405	*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
 406	*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
 407	*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
 408}
 409
 410static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
 411			      unsigned int *mdiv_p2, unsigned int *mdiv_p3,
 412			      unsigned int *mdiv_p4)
 413{
 414	*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
 415	*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
 416	*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
 417	*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
 418}
 419
 420static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
 421{
 422	u32 args[AVS_MAX_CMD_ARGS];
 423	int ret;
 424
 425	ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
 426	if (ret || !pmap)
 427		return ret;
 428
 429	pmap->mode = args[0];
 430	pmap->p1 = args[1];
 431	pmap->p2 = args[2];
 432	pmap->state = args[3];
 433
 434	return 0;
 435}
 436
 437static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
 438{
 439	u32 args[AVS_MAX_CMD_ARGS];
 440
 441	args[0] = pmap->mode;
 442	args[1] = pmap->p1;
 443	args[2] = pmap->p2;
 444	args[3] = pmap->state;
 445
 446	return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
 447}
 448
 449static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
 450{
 451	u32 args[AVS_MAX_CMD_ARGS];
 452	int ret;
 453
 454	ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
 455	if (ret)
 456		return ret;
 457	*pstate = args[0];
 458
 459	return 0;
 460}
 461
 462static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
 463{
 464	u32 args[AVS_MAX_CMD_ARGS];
 465
 466	args[0] = pstate;
 467
 468	return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
 469}
 470
 471static unsigned long brcm_avs_get_voltage(void __iomem *base)
 472{
 473	return readl(base + AVS_MBOX_VOLTAGE1);
 474}
 475
 476static unsigned long brcm_avs_get_frequency(void __iomem *base)
 477{
 478	return readl(base + AVS_MBOX_FREQUENCY) * 1000;	/* in kHz */
 479}
 480
 481/*
 482 * We determine which frequencies are supported by cycling through all P-states
 483 * and reading back what frequency we are running at for each P-state.
 484 */
 485static struct cpufreq_frequency_table *
 486brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
 487{
 488	struct cpufreq_frequency_table *table;
 489	unsigned int pstate;
 490	int i, ret;
 491
 492	/* Remember P-state for later */
 493	ret = brcm_avs_get_pstate(priv, &pstate);
 494	if (ret)
 495		return ERR_PTR(ret);
 496
 497	table = devm_kzalloc(dev, (AVS_PSTATE_MAX + 1) * sizeof(*table),
 498			     GFP_KERNEL);
 499	if (!table)
 500		return ERR_PTR(-ENOMEM);
 501
 502	for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
 503		ret = brcm_avs_set_pstate(priv, i);
 504		if (ret)
 505			return ERR_PTR(ret);
 506		table[i].frequency = brcm_avs_get_frequency(priv->base);
 507		table[i].driver_data = i;
 508	}
 509	table[i].frequency = CPUFREQ_TABLE_END;
 510
 511	/* Restore P-state */
 512	ret = brcm_avs_set_pstate(priv, pstate);
 513	if (ret)
 514		return ERR_PTR(ret);
 515
 516	return table;
 517}
 518
 519#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
 520
 521#define MANT(x)	(unsigned int)(abs((x)) / 1000)
 522#define FRAC(x)	(unsigned int)(abs((x)) - abs((x)) / 1000 * 1000)
 523
 524static int brcm_avs_debug_show(struct seq_file *s, void *data)
 525{
 526	struct debugfs_data *dbgfs = s->private;
 527	void __iomem *base;
 528	u32 val, offset;
 529
 530	if (!dbgfs) {
 531		seq_puts(s, "No device pointer\n");
 532		return 0;
 533	}
 534
 535	base = dbgfs->priv->base;
 536	offset = dbgfs->entry->offset;
 537	val = readl(base + offset);
 538	switch (dbgfs->entry->format) {
 539	case DEBUGFS_NORMAL:
 540		seq_printf(s, "%u\n", val);
 541		break;
 542	case DEBUGFS_FLOAT:
 543		seq_printf(s, "%d.%03d\n", MANT(val), FRAC(val));
 544		break;
 545	case DEBUGFS_REV:
 546		seq_printf(s, "%c.%c.%c.%c\n", (val >> 24 & 0xff),
 547			   (val >> 16 & 0xff), (val >> 8 & 0xff),
 548			   val & 0xff);
 549		break;
 550	}
 551	seq_printf(s, "0x%08x\n", val);
 552
 553	return 0;
 554}
 555
 556#undef MANT
 557#undef FRAC
 558
 559static ssize_t brcm_avs_seq_write(struct file *file, const char __user *buf,
 560				  size_t size, loff_t *ppos)
 561{
 562	struct seq_file *s = file->private_data;
 563	struct debugfs_data *dbgfs = s->private;
 564	struct private_data *priv = dbgfs->priv;
 565	void __iomem *base, *avs_intr_base;
 566	bool use_issue_command = false;
 567	unsigned long val, offset;
 568	char str[128];
 569	int ret;
 570	char *str_ptr = str;
 571
 572	if (size >= sizeof(str))
 573		return -E2BIG;
 574
 575	memset(str, 0, sizeof(str));
 576	ret = copy_from_user(str, buf, size);
 577	if (ret)
 578		return ret;
 579
 580	base = priv->base;
 581	avs_intr_base = priv->avs_intr_base;
 582	offset = dbgfs->entry->offset;
 583	/*
 584	 * Special case writing to "command" entry only: if the string starts
 585	 * with a 'c', we use the driver's __issue_avs_command() function.
 586	 * Otherwise, we perform a raw write. This should allow testing of raw
 587	 * access as well as using the higher level function. (Raw access
 588	 * doesn't clear the firmware return status after issuing the command.)
 589	 */
 590	if (str_ptr[0] == 'c' && offset == AVS_MBOX_COMMAND) {
 591		use_issue_command = true;
 592		str_ptr++;
 593	}
 594	if (kstrtoul(str_ptr, 0, &val) != 0)
 595		return -EINVAL;
 596
 597	/*
 598	 * Setting the P-state is a special case. We need to update the CPU
 599	 * frequency we report.
 600	 */
 601	if (val == AVS_CMD_SET_PSTATE) {
 602		struct cpufreq_policy *policy;
 603		unsigned int pstate;
 604
 605		policy = cpufreq_cpu_get(smp_processor_id());
 606		/* Read back the P-state we are about to set */
 607		pstate = readl(base + AVS_MBOX_PARAM(0));
 608		if (use_issue_command) {
 609			ret = brcm_avs_target_index(policy, pstate);
 610			return ret ? ret : size;
 611		}
 612		policy->cur = policy->freq_table[pstate].frequency;
 613	}
 614
 615	if (use_issue_command) {
 616		ret = __issue_avs_command(priv, val, false, NULL);
 617	} else {
 618		/* Locking here is not perfect, but is only for debug. */
 619		ret = down_interruptible(&priv->sem);
 620		if (ret)
 621			return ret;
 622
 623		writel(val, base + offset);
 624		/* We have to wake up the firmware to process a command. */
 625		if (offset == AVS_MBOX_COMMAND)
 626			writel(AVS_CPU_L2_INT_MASK,
 627			       avs_intr_base + AVS_CPU_L2_SET0);
 628		up(&priv->sem);
 629	}
 630
 631	return ret ? ret : size;
 632}
 633
 634static struct debugfs_entry *__find_debugfs_entry(const char *name)
 635{
 636	int i;
 637
 638	for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++)
 639		if (strcasecmp(debugfs_entries[i].name, name) == 0)
 640			return &debugfs_entries[i];
 641
 642	return NULL;
 643}
 644
 645static int brcm_avs_debug_open(struct inode *inode, struct file *file)
 646{
 647	struct debugfs_data *data;
 648	fmode_t fmode;
 649	int ret;
 650
 651	/*
 652	 * seq_open(), which is called by single_open(), clears "write" access.
 653	 * We need write access to some files, so we preserve our access mode
 654	 * and restore it.
 655	 */
 656	fmode = file->f_mode;
 657	/*
 658	 * Check access permissions even for root. We don't want to be writing
 659	 * to read-only registers. Access for regular users has already been
 660	 * checked by the VFS layer.
 661	 */
 662	if ((fmode & FMODE_WRITER) && !(inode->i_mode & S_IWUSR))
 663		return -EACCES;
 664
 665	data = kmalloc(sizeof(*data), GFP_KERNEL);
 666	if (!data)
 667		return -ENOMEM;
 668	/*
 669	 * We use the same file system operations for all our debug files. To
 670	 * produce specific output, we look up the file name upon opening a
 671	 * debugfs entry and map it to a memory offset. This offset is then used
 672	 * in the generic "show" function to read a specific register.
 673	 */
 674	data->entry = __find_debugfs_entry(file->f_path.dentry->d_iname);
 675	data->priv = inode->i_private;
 676
 677	ret = single_open(file, brcm_avs_debug_show, data);
 678	if (ret)
 679		kfree(data);
 680	file->f_mode = fmode;
 681
 682	return ret;
 683}
 684
 685static int brcm_avs_debug_release(struct inode *inode, struct file *file)
 686{
 687	struct seq_file *seq_priv = file->private_data;
 688	struct debugfs_data *data = seq_priv->private;
 689
 690	kfree(data);
 691	return single_release(inode, file);
 692}
 693
 694static const struct file_operations brcm_avs_debug_ops = {
 695	.open		= brcm_avs_debug_open,
 696	.read		= seq_read,
 697	.write		= brcm_avs_seq_write,
 698	.llseek		= seq_lseek,
 699	.release	= brcm_avs_debug_release,
 700};
 701
 702static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev)
 703{
 704	struct private_data *priv = platform_get_drvdata(pdev);
 705	struct dentry *dir;
 706	int i;
 707
 708	if (!priv)
 709		return;
 710
 711	dir = debugfs_create_dir(BRCM_AVS_CPUFREQ_NAME, NULL);
 712	if (IS_ERR_OR_NULL(dir))
 713		return;
 714	priv->debugfs = dir;
 715
 716	for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) {
 717		/*
 718		 * The DEBUGFS_ENTRY macro generates uppercase strings. We
 719		 * convert them to lowercase before creating the debugfs
 720		 * entries.
 721		 */
 722		char *entry = __strtolower(debugfs_entries[i].name);
 723		fmode_t mode = debugfs_entries[i].mode;
 724
 725		if (!debugfs_create_file(entry, S_IFREG | S_IRUGO | mode,
 726					 dir, priv, &brcm_avs_debug_ops)) {
 727			priv->debugfs = NULL;
 728			debugfs_remove_recursive(dir);
 729			break;
 730		}
 731	}
 732}
 733
 734static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev)
 735{
 736	struct private_data *priv = platform_get_drvdata(pdev);
 737
 738	if (priv && priv->debugfs) {
 739		debugfs_remove_recursive(priv->debugfs);
 740		priv->debugfs = NULL;
 741	}
 742}
 743
 744#else
 745
 746static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) {}
 747static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) {}
 748
 749#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
 750
 751/*
 752 * To ensure the right firmware is running we need to
 753 *    - check the MAGIC matches what we expect
 754 *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
 755 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
 756 */
 757static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
 758{
 759	u32 magic;
 760	int rc;
 761
 762	rc = brcm_avs_get_pmap(priv, NULL);
 763	magic = readl(priv->base + AVS_MBOX_MAGIC);
 764
 765	return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
 766		(rc != -EINVAL);
 767}
 768
 769static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
 770{
 771	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 772	struct private_data *priv = policy->driver_data;
 773
 774	return brcm_avs_get_frequency(priv->base);
 775}
 776
 777static int brcm_avs_target_index(struct cpufreq_policy *policy,
 778				 unsigned int index)
 779{
 780	return brcm_avs_set_pstate(policy->driver_data,
 781				  policy->freq_table[index].driver_data);
 782}
 783
 784static int brcm_avs_suspend(struct cpufreq_policy *policy)
 785{
 786	struct private_data *priv = policy->driver_data;
 787	int ret;
 788
 789	ret = brcm_avs_get_pmap(priv, &priv->pmap);
 790	if (ret)
 791		return ret;
 792
 793	/*
 794	 * We can't use the P-state returned by brcm_avs_get_pmap(), since
 795	 * that's the initial P-state from when the P-map was downloaded to the
 796	 * AVS co-processor, not necessarily the P-state we are running at now.
 797	 * So, we get the current P-state explicitly.
 798	 */
 799	return brcm_avs_get_pstate(priv, &priv->pmap.state);
 800}
 801
 802static int brcm_avs_resume(struct cpufreq_policy *policy)
 803{
 804	struct private_data *priv = policy->driver_data;
 805	int ret;
 806
 807	ret = brcm_avs_set_pmap(priv, &priv->pmap);
 808	if (ret == -EEXIST) {
 809		struct platform_device *pdev  = cpufreq_get_driver_data();
 810		struct device *dev = &pdev->dev;
 811
 812		dev_warn(dev, "PMAP was already set\n");
 813		ret = 0;
 814	}
 815
 816	return ret;
 817}
 818
 819/*
 820 * All initialization code that we only want to execute once goes here. Setup
 821 * code that can be re-tried on every core (if it failed before) can go into
 822 * brcm_avs_cpufreq_init().
 823 */
 824static int brcm_avs_prepare_init(struct platform_device *pdev)
 825{
 826	struct private_data *priv;
 827	struct device *dev;
 828	int host_irq, ret;
 829
 830	dev = &pdev->dev;
 831	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
 832	if (!priv)
 833		return -ENOMEM;
 834
 835	priv->dev = dev;
 836	sema_init(&priv->sem, 1);
 837	init_completion(&priv->done);
 838	platform_set_drvdata(pdev, priv);
 839
 840	priv->base = __map_region(BRCM_AVS_CPU_DATA);
 841	if (!priv->base) {
 842		dev_err(dev, "Couldn't find property %s in device tree.\n",
 843			BRCM_AVS_CPU_DATA);
 844		return -ENOENT;
 845	}
 846
 847	priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
 848	if (!priv->avs_intr_base) {
 849		dev_err(dev, "Couldn't find property %s in device tree.\n",
 850			BRCM_AVS_CPU_INTR);
 851		ret = -ENOENT;
 852		goto unmap_base;
 853	}
 854
 855	host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
 856	if (host_irq < 0) {
 857		dev_err(dev, "Couldn't find interrupt %s -- %d\n",
 858			BRCM_AVS_HOST_INTR, host_irq);
 859		ret = host_irq;
 860		goto unmap_intr_base;
 861	}
 862
 863	ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
 864			       BRCM_AVS_HOST_INTR, priv);
 865	if (ret) {
 866		dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
 867			BRCM_AVS_HOST_INTR, host_irq, ret);
 868		goto unmap_intr_base;
 869	}
 870
 871	if (brcm_avs_is_firmware_loaded(priv))
 872		return 0;
 873
 874	dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
 875	ret = -ENODEV;
 876
 877unmap_intr_base:
 878	iounmap(priv->avs_intr_base);
 879unmap_base:
 880	iounmap(priv->base);
 881	platform_set_drvdata(pdev, NULL);
 882
 883	return ret;
 884}
 885
 886static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
 887{
 888	struct cpufreq_frequency_table *freq_table;
 889	struct platform_device *pdev;
 890	struct private_data *priv;
 891	struct device *dev;
 892	int ret;
 893
 894	pdev = cpufreq_get_driver_data();
 895	priv = platform_get_drvdata(pdev);
 896	policy->driver_data = priv;
 897	dev = &pdev->dev;
 898
 899	freq_table = brcm_avs_get_freq_table(dev, priv);
 900	if (IS_ERR(freq_table)) {
 901		ret = PTR_ERR(freq_table);
 902		dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
 903		return ret;
 904	}
 905
 906	ret = cpufreq_table_validate_and_show(policy, freq_table);
 907	if (ret) {
 908		dev_err(dev, "invalid frequency table: %d\n", ret);
 909		return ret;
 910	}
 911
 912	/* All cores share the same clock and thus the same policy. */
 913	cpumask_setall(policy->cpus);
 914
 915	ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
 916	if (!ret) {
 917		unsigned int pstate;
 918
 919		ret = brcm_avs_get_pstate(priv, &pstate);
 920		if (!ret) {
 921			policy->cur = freq_table[pstate].frequency;
 922			dev_info(dev, "registered\n");
 923			return 0;
 924		}
 925	}
 926
 927	dev_err(dev, "couldn't initialize driver (%d)\n", ret);
 928
 929	return ret;
 930}
 931
 932static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
 933{
 934	struct private_data *priv = policy->driver_data;
 935	unsigned int pstate;
 936
 937	if (brcm_avs_get_pstate(priv, &pstate))
 938		return sprintf(buf, "<unknown>\n");
 939
 940	return sprintf(buf, "%u\n", pstate);
 941}
 942
 943static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
 944{
 945	struct private_data *priv = policy->driver_data;
 946	struct pmap pmap;
 947
 948	if (brcm_avs_get_pmap(priv, &pmap))
 949		return sprintf(buf, "<unknown>\n");
 950
 951	return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
 952		pmap.mode);
 953}
 954
 955static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
 956{
 957	unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
 958	struct private_data *priv = policy->driver_data;
 959	unsigned int ndiv, pdiv;
 960	struct pmap pmap;
 961
 962	if (brcm_avs_get_pmap(priv, &pmap))
 963		return sprintf(buf, "<unknown>\n");
 964
 965	brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
 966	brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
 967
 968	return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
 969		pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
 970		mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
 971}
 972
 973static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
 974{
 975	struct private_data *priv = policy->driver_data;
 976
 977	return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
 978}
 979
 980static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
 981{
 982	struct private_data *priv = policy->driver_data;
 983
 984	return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
 985}
 986
 987cpufreq_freq_attr_ro(brcm_avs_pstate);
 988cpufreq_freq_attr_ro(brcm_avs_mode);
 989cpufreq_freq_attr_ro(brcm_avs_pmap);
 990cpufreq_freq_attr_ro(brcm_avs_voltage);
 991cpufreq_freq_attr_ro(brcm_avs_frequency);
 992
 993static struct freq_attr *brcm_avs_cpufreq_attr[] = {
 994	&cpufreq_freq_attr_scaling_available_freqs,
 995	&brcm_avs_pstate,
 996	&brcm_avs_mode,
 997	&brcm_avs_pmap,
 998	&brcm_avs_voltage,
 999	&brcm_avs_frequency,
1000	NULL
1001};
1002
1003static struct cpufreq_driver brcm_avs_driver = {
1004	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK,
1005	.verify		= cpufreq_generic_frequency_table_verify,
1006	.target_index	= brcm_avs_target_index,
1007	.get		= brcm_avs_cpufreq_get,
1008	.suspend	= brcm_avs_suspend,
1009	.resume		= brcm_avs_resume,
1010	.init		= brcm_avs_cpufreq_init,
1011	.attr		= brcm_avs_cpufreq_attr,
1012	.name		= BRCM_AVS_CPUFREQ_PREFIX,
1013};
1014
1015static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
1016{
1017	int ret;
1018
1019	ret = brcm_avs_prepare_init(pdev);
1020	if (ret)
1021		return ret;
1022
1023	brcm_avs_driver.driver_data = pdev;
1024	ret = cpufreq_register_driver(&brcm_avs_driver);
1025	if (!ret)
1026		brcm_avs_cpufreq_debug_init(pdev);
1027
1028	return ret;
1029}
1030
1031static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
1032{
1033	struct private_data *priv;
1034	int ret;
1035
1036	ret = cpufreq_unregister_driver(&brcm_avs_driver);
1037	if (ret)
1038		return ret;
1039
1040	brcm_avs_cpufreq_debug_exit(pdev);
1041
1042	priv = platform_get_drvdata(pdev);
1043	iounmap(priv->base);
1044	iounmap(priv->avs_intr_base);
1045	platform_set_drvdata(pdev, NULL);
1046
1047	return 0;
1048}
1049
1050static const struct of_device_id brcm_avs_cpufreq_match[] = {
1051	{ .compatible = BRCM_AVS_CPU_DATA },
1052	{ }
1053};
1054MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
1055
1056static struct platform_driver brcm_avs_cpufreq_platdrv = {
1057	.driver = {
1058		.name	= BRCM_AVS_CPUFREQ_NAME,
1059		.of_match_table = brcm_avs_cpufreq_match,
1060	},
1061	.probe		= brcm_avs_cpufreq_probe,
1062	.remove		= brcm_avs_cpufreq_remove,
1063};
1064module_platform_driver(brcm_avs_cpufreq_platdrv);
1065
1066MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
1067MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
1068MODULE_LICENSE("GPL");