Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
  1/*
  2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
  3 * supports DVS or DVFS
  4 *
  5 * Copyright (c) 2016 Broadcom
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License as
  9 * published by the Free Software Foundation version 2.
 10 *
 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 12 * kind, whether express or implied; without even the implied warranty
 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 */
 16
 17/*
 18 * "AVS" is the name of a firmware developed at Broadcom. It derives
 19 * its name from the technique called "Adaptive Voltage Scaling".
 20 * Adaptive voltage scaling was the original purpose of this firmware.
 21 * The AVS firmware still supports "AVS mode", where all it does is
 22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
 23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
 24 * DVFS mode.
 25 *
 26 * In the context of this document and the related driver, "AVS" by
 27 * itself always means the Broadcom firmware and never refers to the
 28 * technique called "Adaptive Voltage Scaling".
 29 *
 30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
 31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
 32 * DVFS. The AVS firmware is running on its own co-processor. The
 33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
 34 * (SMP) systems which share clock and voltage across all CPUs.
 35 *
 36 * Actual voltage and frequency scaling is done solely by the AVS
 37 * firmware. This driver does not change frequency or voltage itself.
 38 * It provides a standard CPUfreq interface to the rest of the kernel
 39 * and to userland. It interfaces with the AVS firmware to effect the
 40 * requested changes and to report back the current system status in a
 41 * way that is expected by existing tools.
 42 */
 43
 44#include <linux/cpufreq.h>
 45#include <linux/interrupt.h>
 46#include <linux/io.h>
 47#include <linux/module.h>
 48#include <linux/of_address.h>
 49#include <linux/platform_device.h>
 50#include <linux/semaphore.h>
 51
 52/* Max number of arguments AVS calls take */
 53#define AVS_MAX_CMD_ARGS	4
 54/*
 55 * This macro is used to generate AVS parameter register offsets. For
 56 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
 57 * access outside of the parameter range. (Offset 0 is the first parameter.)
 58 */
 59#define AVS_PARAM_MULT(x)	((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
 60
 61/* AVS Mailbox Register offsets */
 62#define AVS_MBOX_COMMAND	0x00
 63#define AVS_MBOX_STATUS		0x04
 64#define AVS_MBOX_VOLTAGE0	0x08
 65#define AVS_MBOX_TEMP0		0x0c
 66#define AVS_MBOX_PV0		0x10
 67#define AVS_MBOX_MV0		0x14
 68#define AVS_MBOX_PARAM(x)	(0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
 69#define AVS_MBOX_REVISION	0x28
 70#define AVS_MBOX_PSTATE		0x2c
 71#define AVS_MBOX_HEARTBEAT	0x30
 72#define AVS_MBOX_MAGIC		0x34
 73#define AVS_MBOX_SIGMA_HVT	0x38
 74#define AVS_MBOX_SIGMA_SVT	0x3c
 75#define AVS_MBOX_VOLTAGE1	0x40
 76#define AVS_MBOX_TEMP1		0x44
 77#define AVS_MBOX_PV1		0x48
 78#define AVS_MBOX_MV1		0x4c
 79#define AVS_MBOX_FREQUENCY	0x50
 80
 81/* AVS Commands */
 82#define AVS_CMD_AVAILABLE	0x00
 83#define AVS_CMD_DISABLE		0x10
 84#define AVS_CMD_ENABLE		0x11
 85#define AVS_CMD_S2_ENTER	0x12
 86#define AVS_CMD_S2_EXIT		0x13
 87#define AVS_CMD_BBM_ENTER	0x14
 88#define AVS_CMD_BBM_EXIT	0x15
 89#define AVS_CMD_S3_ENTER	0x16
 90#define AVS_CMD_S3_EXIT		0x17
 91#define AVS_CMD_BALANCE		0x18
 92/* PMAP and P-STATE commands */
 93#define AVS_CMD_GET_PMAP	0x30
 94#define AVS_CMD_SET_PMAP	0x31
 95#define AVS_CMD_GET_PSTATE	0x40
 96#define AVS_CMD_SET_PSTATE	0x41
 97
 98/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
 99#define AVS_MODE_AVS		0x0
100#define AVS_MODE_DFS		0x1
101#define AVS_MODE_DVS		0x2
102#define AVS_MODE_DVFS		0x3
103
104/*
105 * PMAP parameter p1
106 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
107 */
108#define NDIV_INT_SHIFT		0
109#define NDIV_INT_MASK		0x3ff
110#define PDIV_SHIFT		10
111#define PDIV_MASK		0xf
112#define MDIV_P0_SHIFT		16
113#define MDIV_P0_MASK		0xff
114/*
115 * PMAP parameter p2
116 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
117 */
118#define MDIV_P1_SHIFT		0
119#define MDIV_P1_MASK		0xff
120#define MDIV_P2_SHIFT		8
121#define MDIV_P2_MASK		0xff
122#define MDIV_P3_SHIFT		16
123#define MDIV_P3_MASK		0xff
124#define MDIV_P4_SHIFT		24
125#define MDIV_P4_MASK		0xff
126
127/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
128#define AVS_PSTATE_P0		0x0
129#define AVS_PSTATE_P1		0x1
130#define AVS_PSTATE_P2		0x2
131#define AVS_PSTATE_P3		0x3
132#define AVS_PSTATE_P4		0x4
133#define AVS_PSTATE_MAX		AVS_PSTATE_P4
134
135/* CPU L2 Interrupt Controller Registers */
136#define AVS_CPU_L2_SET0		0x04
137#define AVS_CPU_L2_INT_MASK	BIT(31)
138
139/* AVS Command Status Values */
140#define AVS_STATUS_CLEAR	0x00
141/* Command/notification accepted */
142#define AVS_STATUS_SUCCESS	0xf0
143/* Command/notification rejected */
144#define AVS_STATUS_FAILURE	0xff
145/* Invalid command/notification (unknown) */
146#define AVS_STATUS_INVALID	0xf1
147/* Non-AVS modes are not supported */
148#define AVS_STATUS_NO_SUPP	0xf2
149/* Cannot set P-State until P-Map supplied */
150#define AVS_STATUS_NO_MAP	0xf3
151/* Cannot change P-Map after initial P-Map set */
152#define AVS_STATUS_MAP_SET	0xf4
153/* Max AVS status; higher numbers are used for debugging */
154#define AVS_STATUS_MAX		0xff
155
156/* Other AVS related constants */
157#define AVS_LOOP_LIMIT		10000
158#define AVS_TIMEOUT		300 /* in ms; expected completion is < 10ms */
159#define AVS_FIRMWARE_MAGIC	0xa11600d1
160
161#define BRCM_AVS_CPUFREQ_PREFIX	"brcmstb-avs"
162#define BRCM_AVS_CPUFREQ_NAME	BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
163#define BRCM_AVS_CPU_DATA	"brcm,avs-cpu-data-mem"
164#define BRCM_AVS_CPU_INTR	"brcm,avs-cpu-l2-intr"
165#define BRCM_AVS_HOST_INTR	"sw_intr"
166
167struct pmap {
168	unsigned int mode;
169	unsigned int p1;
170	unsigned int p2;
171	unsigned int state;
172};
173
174struct private_data {
175	void __iomem *base;
176	void __iomem *avs_intr_base;
177	struct device *dev;
178	struct completion done;
179	struct semaphore sem;
180	struct pmap pmap;
181};
182
183static void __iomem *__map_region(const char *name)
184{
185	struct device_node *np;
186	void __iomem *ptr;
187
188	np = of_find_compatible_node(NULL, NULL, name);
189	if (!np)
190		return NULL;
191
192	ptr = of_iomap(np, 0);
193	of_node_put(np);
194
195	return ptr;
196}
197
198static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
199			       u32 args[])
200{
201	unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
202	void __iomem *base = priv->base;
203	unsigned int i;
204	int ret;
205	u32 val;
206
207	ret = down_interruptible(&priv->sem);
208	if (ret)
209		return ret;
210
211	/*
212	 * Make sure no other command is currently running: cmd is 0 if AVS
213	 * co-processor is idle. Due to the guard above, we should almost never
214	 * have to wait here.
215	 */
216	for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
217		val = readl(base + AVS_MBOX_COMMAND);
218
219	/* Give the caller a chance to retry if AVS is busy. */
220	if (i == AVS_LOOP_LIMIT) {
221		ret = -EAGAIN;
222		goto out;
223	}
224
225	/* Clear status before we begin. */
226	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
227
228	/* We need to send arguments for this command. */
229	if (args && is_send) {
230		for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
231			writel(args[i], base + AVS_MBOX_PARAM(i));
232	}
233
234	/* Protect from spurious interrupts. */
235	reinit_completion(&priv->done);
236
237	/* Now issue the command & tell firmware to wake up to process it. */
238	writel(cmd, base + AVS_MBOX_COMMAND);
239	writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
240
241	/* Wait for AVS co-processor to finish processing the command. */
242	time_left = wait_for_completion_timeout(&priv->done, time_left);
243
244	/*
245	 * If the AVS status is not in the expected range, it means AVS didn't
246	 * complete our command in time, and we return an error. Also, if there
247	 * is no "time left", we timed out waiting for the interrupt.
248	 */
249	val = readl(base + AVS_MBOX_STATUS);
250	if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
251		dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
252			cmd);
253		dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n",
254			jiffies_to_msecs(time_left), val);
255		ret = -ETIMEDOUT;
256		goto out;
257	}
258
259	/* This command returned arguments, so we read them back. */
260	if (args && !is_send) {
261		for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
262			args[i] = readl(base + AVS_MBOX_PARAM(i));
263	}
264
265	/* Clear status to tell AVS co-processor we are done. */
266	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
267
268	/* Convert firmware errors to errno's as much as possible. */
269	switch (val) {
270	case AVS_STATUS_INVALID:
271		ret = -EINVAL;
272		break;
273	case AVS_STATUS_NO_SUPP:
274		ret = -ENOTSUPP;
275		break;
276	case AVS_STATUS_NO_MAP:
277		ret = -ENOENT;
278		break;
279	case AVS_STATUS_MAP_SET:
280		ret = -EEXIST;
281		break;
282	case AVS_STATUS_FAILURE:
283		ret = -EIO;
284		break;
285	}
286
287out:
288	up(&priv->sem);
289
290	return ret;
291}
292
293static irqreturn_t irq_handler(int irq, void *data)
294{
295	struct private_data *priv = data;
296
297	/* AVS command completed execution. Wake up __issue_avs_command(). */
298	complete(&priv->done);
299
300	return IRQ_HANDLED;
301}
302
303static char *brcm_avs_mode_to_string(unsigned int mode)
304{
305	switch (mode) {
306	case AVS_MODE_AVS:
307		return "AVS";
308	case AVS_MODE_DFS:
309		return "DFS";
310	case AVS_MODE_DVS:
311		return "DVS";
312	case AVS_MODE_DVFS:
313		return "DVFS";
314	}
315	return NULL;
316}
317
318static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
319			      unsigned int *ndiv)
320{
321	*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
322	*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
323	*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
324}
325
326static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
327			      unsigned int *mdiv_p2, unsigned int *mdiv_p3,
328			      unsigned int *mdiv_p4)
329{
330	*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
331	*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
332	*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
333	*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
334}
335
336static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
337{
338	u32 args[AVS_MAX_CMD_ARGS];
339	int ret;
340
341	ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
342	if (ret || !pmap)
343		return ret;
344
345	pmap->mode = args[0];
346	pmap->p1 = args[1];
347	pmap->p2 = args[2];
348	pmap->state = args[3];
349
350	return 0;
351}
352
353static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
354{
355	u32 args[AVS_MAX_CMD_ARGS];
356
357	args[0] = pmap->mode;
358	args[1] = pmap->p1;
359	args[2] = pmap->p2;
360	args[3] = pmap->state;
361
362	return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
363}
364
365static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
366{
367	u32 args[AVS_MAX_CMD_ARGS];
368	int ret;
369
370	ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
371	if (ret)
372		return ret;
373	*pstate = args[0];
374
375	return 0;
376}
377
378static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
379{
380	u32 args[AVS_MAX_CMD_ARGS];
381
382	args[0] = pstate;
383
384	return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
385}
386
387static u32 brcm_avs_get_voltage(void __iomem *base)
388{
389	return readl(base + AVS_MBOX_VOLTAGE1);
390}
391
392static u32 brcm_avs_get_frequency(void __iomem *base)
393{
394	return readl(base + AVS_MBOX_FREQUENCY) * 1000;	/* in kHz */
395}
396
397/*
398 * We determine which frequencies are supported by cycling through all P-states
399 * and reading back what frequency we are running at for each P-state.
400 */
401static struct cpufreq_frequency_table *
402brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
403{
404	struct cpufreq_frequency_table *table;
405	unsigned int pstate;
406	int i, ret;
407
408	/* Remember P-state for later */
409	ret = brcm_avs_get_pstate(priv, &pstate);
410	if (ret)
411		return ERR_PTR(ret);
412
413	table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1, sizeof(*table),
414			     GFP_KERNEL);
415	if (!table)
416		return ERR_PTR(-ENOMEM);
417
418	for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
419		ret = brcm_avs_set_pstate(priv, i);
420		if (ret)
421			return ERR_PTR(ret);
422		table[i].frequency = brcm_avs_get_frequency(priv->base);
423		table[i].driver_data = i;
424	}
425	table[i].frequency = CPUFREQ_TABLE_END;
426
427	/* Restore P-state */
428	ret = brcm_avs_set_pstate(priv, pstate);
429	if (ret)
430		return ERR_PTR(ret);
431
432	return table;
433}
434
435/*
436 * To ensure the right firmware is running we need to
437 *    - check the MAGIC matches what we expect
438 *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
439 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
440 */
441static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
442{
443	u32 magic;
444	int rc;
445
446	rc = brcm_avs_get_pmap(priv, NULL);
447	magic = readl(priv->base + AVS_MBOX_MAGIC);
448
449	return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) ||
450		(rc != -EINVAL));
451}
452
453static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
454{
455	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
456	struct private_data *priv = policy->driver_data;
457
458	return brcm_avs_get_frequency(priv->base);
459}
460
461static int brcm_avs_target_index(struct cpufreq_policy *policy,
462				 unsigned int index)
463{
464	return brcm_avs_set_pstate(policy->driver_data,
465				  policy->freq_table[index].driver_data);
466}
467
468static int brcm_avs_suspend(struct cpufreq_policy *policy)
469{
470	struct private_data *priv = policy->driver_data;
471	int ret;
472
473	ret = brcm_avs_get_pmap(priv, &priv->pmap);
474	if (ret)
475		return ret;
476
477	/*
478	 * We can't use the P-state returned by brcm_avs_get_pmap(), since
479	 * that's the initial P-state from when the P-map was downloaded to the
480	 * AVS co-processor, not necessarily the P-state we are running at now.
481	 * So, we get the current P-state explicitly.
482	 */
483	return brcm_avs_get_pstate(priv, &priv->pmap.state);
484}
485
486static int brcm_avs_resume(struct cpufreq_policy *policy)
487{
488	struct private_data *priv = policy->driver_data;
489	int ret;
490
491	ret = brcm_avs_set_pmap(priv, &priv->pmap);
492	if (ret == -EEXIST) {
493		struct platform_device *pdev  = cpufreq_get_driver_data();
494		struct device *dev = &pdev->dev;
495
496		dev_warn(dev, "PMAP was already set\n");
497		ret = 0;
498	}
499
500	return ret;
501}
502
503/*
504 * All initialization code that we only want to execute once goes here. Setup
505 * code that can be re-tried on every core (if it failed before) can go into
506 * brcm_avs_cpufreq_init().
507 */
508static int brcm_avs_prepare_init(struct platform_device *pdev)
509{
510	struct private_data *priv;
511	struct device *dev;
512	int host_irq, ret;
513
514	dev = &pdev->dev;
515	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
516	if (!priv)
517		return -ENOMEM;
518
519	priv->dev = dev;
520	sema_init(&priv->sem, 1);
521	init_completion(&priv->done);
522	platform_set_drvdata(pdev, priv);
523
524	priv->base = __map_region(BRCM_AVS_CPU_DATA);
525	if (!priv->base) {
526		dev_err(dev, "Couldn't find property %s in device tree.\n",
527			BRCM_AVS_CPU_DATA);
528		return -ENOENT;
529	}
530
531	priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
532	if (!priv->avs_intr_base) {
533		dev_err(dev, "Couldn't find property %s in device tree.\n",
534			BRCM_AVS_CPU_INTR);
535		ret = -ENOENT;
536		goto unmap_base;
537	}
538
539	host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
540	if (host_irq < 0) {
541		dev_err(dev, "Couldn't find interrupt %s -- %d\n",
542			BRCM_AVS_HOST_INTR, host_irq);
543		ret = host_irq;
544		goto unmap_intr_base;
545	}
546
547	ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
548			       BRCM_AVS_HOST_INTR, priv);
549	if (ret) {
550		dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
551			BRCM_AVS_HOST_INTR, host_irq, ret);
552		goto unmap_intr_base;
553	}
554
555	if (brcm_avs_is_firmware_loaded(priv))
556		return 0;
557
558	dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
559	ret = -ENODEV;
560
561unmap_intr_base:
562	iounmap(priv->avs_intr_base);
563unmap_base:
564	iounmap(priv->base);
565
566	return ret;
567}
568
569static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
570{
571	struct cpufreq_frequency_table *freq_table;
572	struct platform_device *pdev;
573	struct private_data *priv;
574	struct device *dev;
575	int ret;
576
577	pdev = cpufreq_get_driver_data();
578	priv = platform_get_drvdata(pdev);
579	policy->driver_data = priv;
580	dev = &pdev->dev;
581
582	freq_table = brcm_avs_get_freq_table(dev, priv);
583	if (IS_ERR(freq_table)) {
584		ret = PTR_ERR(freq_table);
585		dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
586		return ret;
587	}
588
589	policy->freq_table = freq_table;
590
591	/* All cores share the same clock and thus the same policy. */
592	cpumask_setall(policy->cpus);
593
594	ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
595	if (!ret) {
596		unsigned int pstate;
597
598		ret = brcm_avs_get_pstate(priv, &pstate);
599		if (!ret) {
600			policy->cur = freq_table[pstate].frequency;
601			dev_info(dev, "registered\n");
602			return 0;
603		}
604	}
605
606	dev_err(dev, "couldn't initialize driver (%d)\n", ret);
607
608	return ret;
609}
610
611static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
612{
613	struct private_data *priv = policy->driver_data;
614	unsigned int pstate;
615
616	if (brcm_avs_get_pstate(priv, &pstate))
617		return sprintf(buf, "<unknown>\n");
618
619	return sprintf(buf, "%u\n", pstate);
620}
621
622static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
623{
624	struct private_data *priv = policy->driver_data;
625	struct pmap pmap;
626
627	if (brcm_avs_get_pmap(priv, &pmap))
628		return sprintf(buf, "<unknown>\n");
629
630	return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
631		pmap.mode);
632}
633
634static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
635{
636	unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
637	struct private_data *priv = policy->driver_data;
638	unsigned int ndiv, pdiv;
639	struct pmap pmap;
640
641	if (brcm_avs_get_pmap(priv, &pmap))
642		return sprintf(buf, "<unknown>\n");
643
644	brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
645	brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
646
647	return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
648		pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
649		mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
650}
651
652static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
653{
654	struct private_data *priv = policy->driver_data;
655
656	return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base));
657}
658
659static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
660{
661	struct private_data *priv = policy->driver_data;
662
663	return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base));
664}
665
666cpufreq_freq_attr_ro(brcm_avs_pstate);
667cpufreq_freq_attr_ro(brcm_avs_mode);
668cpufreq_freq_attr_ro(brcm_avs_pmap);
669cpufreq_freq_attr_ro(brcm_avs_voltage);
670cpufreq_freq_attr_ro(brcm_avs_frequency);
671
672static struct freq_attr *brcm_avs_cpufreq_attr[] = {
673	&cpufreq_freq_attr_scaling_available_freqs,
674	&brcm_avs_pstate,
675	&brcm_avs_mode,
676	&brcm_avs_pmap,
677	&brcm_avs_voltage,
678	&brcm_avs_frequency,
679	NULL
680};
681
682static struct cpufreq_driver brcm_avs_driver = {
683	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK,
684	.verify		= cpufreq_generic_frequency_table_verify,
685	.target_index	= brcm_avs_target_index,
686	.get		= brcm_avs_cpufreq_get,
687	.suspend	= brcm_avs_suspend,
688	.resume		= brcm_avs_resume,
689	.init		= brcm_avs_cpufreq_init,
690	.attr		= brcm_avs_cpufreq_attr,
691	.name		= BRCM_AVS_CPUFREQ_PREFIX,
692};
693
694static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
695{
696	int ret;
697
698	ret = brcm_avs_prepare_init(pdev);
699	if (ret)
700		return ret;
701
702	brcm_avs_driver.driver_data = pdev;
703
704	return cpufreq_register_driver(&brcm_avs_driver);
705}
706
707static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
708{
709	struct private_data *priv;
710	int ret;
711
712	ret = cpufreq_unregister_driver(&brcm_avs_driver);
713	if (ret)
714		return ret;
715
716	priv = platform_get_drvdata(pdev);
717	iounmap(priv->base);
718	iounmap(priv->avs_intr_base);
719
720	return 0;
721}
722
723static const struct of_device_id brcm_avs_cpufreq_match[] = {
724	{ .compatible = BRCM_AVS_CPU_DATA },
725	{ }
726};
727MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
728
729static struct platform_driver brcm_avs_cpufreq_platdrv = {
730	.driver = {
731		.name	= BRCM_AVS_CPUFREQ_NAME,
732		.of_match_table = brcm_avs_cpufreq_match,
733	},
734	.probe		= brcm_avs_cpufreq_probe,
735	.remove		= brcm_avs_cpufreq_remove,
736};
737module_platform_driver(brcm_avs_cpufreq_platdrv);
738
739MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
740MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
741MODULE_LICENSE("GPL");