Loading...
1/* n2-drv.c: Niagara-2 RNG driver.
2 *
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/delay.h>
10#include <linux/init.h>
11#include <linux/slab.h>
12#include <linux/workqueue.h>
13#include <linux/preempt.h>
14#include <linux/hw_random.h>
15
16#include <linux/of.h>
17#include <linux/of_device.h>
18
19#include <asm/hypervisor.h>
20
21#include "n2rng.h"
22
23#define DRV_MODULE_NAME "n2rng"
24#define PFX DRV_MODULE_NAME ": "
25#define DRV_MODULE_VERSION "0.2"
26#define DRV_MODULE_RELDATE "July 27, 2011"
27
28static char version[] __devinitdata =
29 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30
31MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32MODULE_DESCRIPTION("Niagara2 RNG driver");
33MODULE_LICENSE("GPL");
34MODULE_VERSION(DRV_MODULE_VERSION);
35
36/* The Niagara2 RNG provides a 64-bit read-only random number
37 * register, plus a control register. Access to the RNG is
38 * virtualized through the hypervisor so that both guests and control
39 * nodes can access the device.
40 *
41 * The entropy source consists of raw entropy sources, each
42 * constructed from a voltage controlled oscillator whose phase is
43 * jittered by thermal noise sources.
44 *
45 * The oscillator in each of the three raw entropy sources run at
46 * different frequencies. Normally, all three generator outputs are
47 * gathered, xored together, and fed into a CRC circuit, the output of
48 * which is the 64-bit read-only register.
49 *
50 * Some time is necessary for all the necessary entropy to build up
51 * such that a full 64-bits of entropy are available in the register.
52 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53 * an interlock which blocks register reads until sufficient entropy
54 * is available.
55 *
56 * A control register is provided for adjusting various aspects of RNG
57 * operation, and to enable diagnostic modes. Each of the three raw
58 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
59 * provided are fields for controlling the minimum time in cycles
60 * between read accesses to the register (RNG_CTL_WAIT, this controls
61 * the interlock described in the previous paragraph).
62 *
63 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64 * all three entropy sources enabled, and the interlock time set
65 * appropriately.
66 *
67 * The CRC polynomial used by the chip is:
68 *
69 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72 *
73 * The RNG_CTL_VCO value of each noise cell must be programmed
74 * separately. This is why 4 control register values must be provided
75 * to the hypervisor. During a write, the hypervisor writes them all,
76 * one at a time, to the actual RNG_CTL register. The first three
77 * values are used to setup the desired RNG_CTL_VCO for each entropy
78 * source, for example:
79 *
80 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83 *
84 * And then the fourth value sets the final chip state and enables
85 * desired.
86 */
87
88static int n2rng_hv_err_trans(unsigned long hv_err)
89{
90 switch (hv_err) {
91 case HV_EOK:
92 return 0;
93 case HV_EWOULDBLOCK:
94 return -EAGAIN;
95 case HV_ENOACCESS:
96 return -EPERM;
97 case HV_EIO:
98 return -EIO;
99 case HV_EBUSY:
100 return -EBUSY;
101 case HV_EBADALIGN:
102 case HV_ENORADDR:
103 return -EFAULT;
104 default:
105 return -EINVAL;
106 }
107}
108
109static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110 unsigned long unit)
111{
112 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113 int block = 0, busy = 0;
114
115 while (1) {
116 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117 &ticks,
118 &watchdog_delta,
119 &watchdog_status);
120 if (hv_err == HV_EOK)
121 break;
122
123 if (hv_err == HV_EBUSY) {
124 if (++busy >= N2RNG_BUSY_LIMIT)
125 break;
126
127 udelay(1);
128 } else if (hv_err == HV_EWOULDBLOCK) {
129 if (++block >= N2RNG_BLOCK_LIMIT)
130 break;
131
132 __delay(ticks);
133 } else
134 break;
135 }
136
137 return hv_err;
138}
139
140/* In multi-socket situations, the hypervisor might need to
141 * queue up the RNG control register write if it's for a unit
142 * that is on a cpu socket other than the one we are executing on.
143 *
144 * We poll here waiting for a successful read of that control
145 * register to make sure the write has been actually performed.
146 */
147static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148{
149 unsigned long ra = __pa(&np->scratch_control[0]);
150
151 return n2rng_generic_read_control_v2(ra, unit);
152}
153
154static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155 unsigned long state,
156 unsigned long control_ra,
157 unsigned long watchdog_timeout,
158 unsigned long *ticks)
159{
160 unsigned long hv_err;
161
162 if (np->hvapi_major == 1) {
163 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164 watchdog_timeout, ticks);
165 } else {
166 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167 watchdog_timeout, unit);
168 if (hv_err == HV_EOK)
169 hv_err = n2rng_control_settle_v2(np, unit);
170 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171 }
172
173 return hv_err;
174}
175
176static int n2rng_generic_read_data(unsigned long data_ra)
177{
178 unsigned long ticks, hv_err;
179 int block = 0, hcheck = 0;
180
181 while (1) {
182 hv_err = sun4v_rng_data_read(data_ra, &ticks);
183 if (hv_err == HV_EOK)
184 return 0;
185
186 if (hv_err == HV_EWOULDBLOCK) {
187 if (++block >= N2RNG_BLOCK_LIMIT)
188 return -EWOULDBLOCK;
189 __delay(ticks);
190 } else if (hv_err == HV_ENOACCESS) {
191 return -EPERM;
192 } else if (hv_err == HV_EIO) {
193 if (++hcheck >= N2RNG_HCHECK_LIMIT)
194 return -EIO;
195 udelay(10000);
196 } else
197 return -ENODEV;
198 }
199}
200
201static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202 unsigned long unit,
203 unsigned long data_ra,
204 unsigned long data_len,
205 unsigned long *ticks)
206{
207 unsigned long hv_err;
208
209 if (np->hvapi_major == 1) {
210 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211 } else {
212 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213 unit, ticks);
214 if (!*ticks)
215 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 }
217 return hv_err;
218}
219
220static int n2rng_generic_read_diag_data(struct n2rng *np,
221 unsigned long unit,
222 unsigned long data_ra,
223 unsigned long data_len)
224{
225 unsigned long ticks, hv_err;
226 int block = 0;
227
228 while (1) {
229 hv_err = n2rng_read_diag_data_one(np, unit,
230 data_ra, data_len,
231 &ticks);
232 if (hv_err == HV_EOK)
233 return 0;
234
235 if (hv_err == HV_EWOULDBLOCK) {
236 if (++block >= N2RNG_BLOCK_LIMIT)
237 return -EWOULDBLOCK;
238 __delay(ticks);
239 } else if (hv_err == HV_ENOACCESS) {
240 return -EPERM;
241 } else if (hv_err == HV_EIO) {
242 return -EIO;
243 } else
244 return -ENODEV;
245 }
246}
247
248
249static int n2rng_generic_write_control(struct n2rng *np,
250 unsigned long control_ra,
251 unsigned long unit,
252 unsigned long state)
253{
254 unsigned long hv_err, ticks;
255 int block = 0, busy = 0;
256
257 while (1) {
258 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259 np->wd_timeo, &ticks);
260 if (hv_err == HV_EOK)
261 return 0;
262
263 if (hv_err == HV_EWOULDBLOCK) {
264 if (++block >= N2RNG_BLOCK_LIMIT)
265 return -EWOULDBLOCK;
266 __delay(ticks);
267 } else if (hv_err == HV_EBUSY) {
268 if (++busy >= N2RNG_BUSY_LIMIT)
269 return -EBUSY;
270 udelay(1);
271 } else
272 return -ENODEV;
273 }
274}
275
276/* Just try to see if we can successfully access the control register
277 * of the RNG on the domain on which we are currently executing.
278 */
279static int n2rng_try_read_ctl(struct n2rng *np)
280{
281 unsigned long hv_err;
282 unsigned long x;
283
284 if (np->hvapi_major == 1) {
285 hv_err = sun4v_rng_get_diag_ctl();
286 } else {
287 /* We purposefully give invalid arguments, HV_NOACCESS
288 * is higher priority than the errors we'd get from
289 * these other cases, and that's the error we are
290 * truly interested in.
291 */
292 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293 switch (hv_err) {
294 case HV_EWOULDBLOCK:
295 case HV_ENOACCESS:
296 break;
297 default:
298 hv_err = HV_EOK;
299 break;
300 }
301 }
302
303 return n2rng_hv_err_trans(hv_err);
304}
305
306#define CONTROL_DEFAULT_BASE \
307 ((2 << RNG_CTL_ASEL_SHIFT) | \
308 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
309 RNG_CTL_LFSR)
310
311#define CONTROL_DEFAULT_0 \
312 (CONTROL_DEFAULT_BASE | \
313 (1 << RNG_CTL_VCO_SHIFT) | \
314 RNG_CTL_ES1)
315#define CONTROL_DEFAULT_1 \
316 (CONTROL_DEFAULT_BASE | \
317 (2 << RNG_CTL_VCO_SHIFT) | \
318 RNG_CTL_ES2)
319#define CONTROL_DEFAULT_2 \
320 (CONTROL_DEFAULT_BASE | \
321 (3 << RNG_CTL_VCO_SHIFT) | \
322 RNG_CTL_ES3)
323#define CONTROL_DEFAULT_3 \
324 (CONTROL_DEFAULT_BASE | \
325 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
326
327static void n2rng_control_swstate_init(struct n2rng *np)
328{
329 int i;
330
331 np->flags |= N2RNG_FLAG_CONTROL;
332
333 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
334 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
335 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
336
337 for (i = 0; i < np->num_units; i++) {
338 struct n2rng_unit *up = &np->units[i];
339
340 up->control[0] = CONTROL_DEFAULT_0;
341 up->control[1] = CONTROL_DEFAULT_1;
342 up->control[2] = CONTROL_DEFAULT_2;
343 up->control[3] = CONTROL_DEFAULT_3;
344 }
345
346 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
347}
348
349static int n2rng_grab_diag_control(struct n2rng *np)
350{
351 int i, busy_count, err = -ENODEV;
352
353 busy_count = 0;
354 for (i = 0; i < 100; i++) {
355 err = n2rng_try_read_ctl(np);
356 if (err != -EAGAIN)
357 break;
358
359 if (++busy_count > 100) {
360 dev_err(&np->op->dev,
361 "Grab diag control timeout.\n");
362 return -ENODEV;
363 }
364
365 udelay(1);
366 }
367
368 return err;
369}
370
371static int n2rng_init_control(struct n2rng *np)
372{
373 int err = n2rng_grab_diag_control(np);
374
375 /* Not in the control domain, that's OK we are only a consumer
376 * of the RNG data, we don't setup and program it.
377 */
378 if (err == -EPERM)
379 return 0;
380 if (err)
381 return err;
382
383 n2rng_control_swstate_init(np);
384
385 return 0;
386}
387
388static int n2rng_data_read(struct hwrng *rng, u32 *data)
389{
390 struct n2rng *np = (struct n2rng *) rng->priv;
391 unsigned long ra = __pa(&np->test_data);
392 int len;
393
394 if (!(np->flags & N2RNG_FLAG_READY)) {
395 len = 0;
396 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
397 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
398 *data = np->buffer;
399 len = 4;
400 } else {
401 int err = n2rng_generic_read_data(ra);
402 if (!err) {
403 np->buffer = np->test_data >> 32;
404 *data = np->test_data & 0xffffffff;
405 len = 4;
406 } else {
407 dev_err(&np->op->dev, "RNG error, restesting\n");
408 np->flags &= ~N2RNG_FLAG_READY;
409 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
410 schedule_delayed_work(&np->work, 0);
411 len = 0;
412 }
413 }
414
415 return len;
416}
417
418/* On a guest node, just make sure we can read random data properly.
419 * If a control node reboots or reloads it's n2rng driver, this won't
420 * work during that time. So we have to keep probing until the device
421 * becomes usable.
422 */
423static int n2rng_guest_check(struct n2rng *np)
424{
425 unsigned long ra = __pa(&np->test_data);
426
427 return n2rng_generic_read_data(ra);
428}
429
430static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
431 u64 *pre_control, u64 pre_state,
432 u64 *buffer, unsigned long buf_len,
433 u64 *post_control, u64 post_state)
434{
435 unsigned long post_ctl_ra = __pa(post_control);
436 unsigned long pre_ctl_ra = __pa(pre_control);
437 unsigned long buffer_ra = __pa(buffer);
438 int err;
439
440 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
441 if (err)
442 return err;
443
444 err = n2rng_generic_read_diag_data(np, unit,
445 buffer_ra, buf_len);
446
447 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
448 post_state);
449
450 return err;
451}
452
453static u64 advance_polynomial(u64 poly, u64 val, int count)
454{
455 int i;
456
457 for (i = 0; i < count; i++) {
458 int highbit_set = ((s64)val < 0);
459
460 val <<= 1;
461 if (highbit_set)
462 val ^= poly;
463 }
464
465 return val;
466}
467
468static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
469{
470 int i, count = 0;
471
472 /* Purposefully skip over the first word. */
473 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
474 if (np->test_buffer[i] == val)
475 count++;
476 }
477 return count;
478}
479
480static void n2rng_dump_test_buffer(struct n2rng *np)
481{
482 int i;
483
484 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
485 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
486 i, np->test_buffer[i]);
487}
488
489static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
490{
491 u64 val = SELFTEST_VAL;
492 int err, matches, limit;
493
494 matches = 0;
495 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
496 matches += n2rng_test_buffer_find(np, val);
497 if (matches >= SELFTEST_MATCH_GOAL)
498 break;
499 val = advance_polynomial(SELFTEST_POLY, val, 1);
500 }
501
502 err = 0;
503 if (limit >= SELFTEST_LOOPS_MAX) {
504 err = -ENODEV;
505 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
506 n2rng_dump_test_buffer(np);
507 } else
508 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
509
510 return err;
511}
512
513static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
514{
515 int err;
516
517 np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
520 np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
521 RNG_CTL_LFSR |
522 ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
523
524
525 err = n2rng_entropy_diag_read(np, unit, np->test_control,
526 HV_RNG_STATE_HEALTHCHECK,
527 np->test_buffer,
528 sizeof(np->test_buffer),
529 &np->units[unit].control[0],
530 np->hv_state);
531 if (err)
532 return err;
533
534 return n2rng_check_selftest_buffer(np, unit);
535}
536
537static int n2rng_control_check(struct n2rng *np)
538{
539 int i;
540
541 for (i = 0; i < np->num_units; i++) {
542 int err = n2rng_control_selftest(np, i);
543 if (err)
544 return err;
545 }
546 return 0;
547}
548
549/* The sanity checks passed, install the final configuration into the
550 * chip, it's ready to use.
551 */
552static int n2rng_control_configure_units(struct n2rng *np)
553{
554 int unit, err;
555
556 err = 0;
557 for (unit = 0; unit < np->num_units; unit++) {
558 struct n2rng_unit *up = &np->units[unit];
559 unsigned long ctl_ra = __pa(&up->control[0]);
560 int esrc;
561 u64 base;
562
563 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
564 (2 << RNG_CTL_ASEL_SHIFT) |
565 RNG_CTL_LFSR);
566
567 /* XXX This isn't the best. We should fetch a bunch
568 * XXX of words using each entropy source combined XXX
569 * with each VCO setting, and see which combinations
570 * XXX give the best random data.
571 */
572 for (esrc = 0; esrc < 3; esrc++)
573 up->control[esrc] = base |
574 (esrc << RNG_CTL_VCO_SHIFT) |
575 (RNG_CTL_ES1 << esrc);
576
577 up->control[3] = base |
578 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
579
580 err = n2rng_generic_write_control(np, ctl_ra, unit,
581 HV_RNG_STATE_CONFIGURED);
582 if (err)
583 break;
584 }
585
586 return err;
587}
588
589static void n2rng_work(struct work_struct *work)
590{
591 struct n2rng *np = container_of(work, struct n2rng, work.work);
592 int err = 0;
593
594 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
595 err = n2rng_guest_check(np);
596 } else {
597 preempt_disable();
598 err = n2rng_control_check(np);
599 preempt_enable();
600
601 if (!err)
602 err = n2rng_control_configure_units(np);
603 }
604
605 if (!err) {
606 np->flags |= N2RNG_FLAG_READY;
607 dev_info(&np->op->dev, "RNG ready\n");
608 }
609
610 if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
611 schedule_delayed_work(&np->work, HZ * 2);
612}
613
614static void __devinit n2rng_driver_version(void)
615{
616 static int n2rng_version_printed;
617
618 if (n2rng_version_printed++ == 0)
619 pr_info("%s", version);
620}
621
622static const struct of_device_id n2rng_match[];
623static int __devinit n2rng_probe(struct platform_device *op)
624{
625 const struct of_device_id *match;
626 int multi_capable;
627 int err = -ENOMEM;
628 struct n2rng *np;
629
630 match = of_match_device(n2rng_match, &op->dev);
631 if (!match)
632 return -EINVAL;
633 multi_capable = (match->data != NULL);
634
635 n2rng_driver_version();
636 np = kzalloc(sizeof(*np), GFP_KERNEL);
637 if (!np)
638 goto out;
639 np->op = op;
640
641 INIT_DELAYED_WORK(&np->work, n2rng_work);
642
643 if (multi_capable)
644 np->flags |= N2RNG_FLAG_MULTI;
645
646 err = -ENODEV;
647 np->hvapi_major = 2;
648 if (sun4v_hvapi_register(HV_GRP_RNG,
649 np->hvapi_major,
650 &np->hvapi_minor)) {
651 np->hvapi_major = 1;
652 if (sun4v_hvapi_register(HV_GRP_RNG,
653 np->hvapi_major,
654 &np->hvapi_minor)) {
655 dev_err(&op->dev, "Cannot register suitable "
656 "HVAPI version.\n");
657 goto out_free;
658 }
659 }
660
661 if (np->flags & N2RNG_FLAG_MULTI) {
662 if (np->hvapi_major < 2) {
663 dev_err(&op->dev, "multi-unit-capable RNG requires "
664 "HVAPI major version 2 or later, got %lu\n",
665 np->hvapi_major);
666 goto out_hvapi_unregister;
667 }
668 np->num_units = of_getintprop_default(op->dev.of_node,
669 "rng-#units", 0);
670 if (!np->num_units) {
671 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
672 goto out_hvapi_unregister;
673 }
674 } else
675 np->num_units = 1;
676
677 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
678 np->hvapi_major, np->hvapi_minor);
679
680 np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
681 GFP_KERNEL);
682 err = -ENOMEM;
683 if (!np->units)
684 goto out_hvapi_unregister;
685
686 err = n2rng_init_control(np);
687 if (err)
688 goto out_free_units;
689
690 dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 ((np->flags & N2RNG_FLAG_MULTI) ?
692 "multi-unit-capable" : "single-unit"),
693 np->num_units);
694
695 np->hwrng.name = "n2rng";
696 np->hwrng.data_read = n2rng_data_read;
697 np->hwrng.priv = (unsigned long) np;
698
699 err = hwrng_register(&np->hwrng);
700 if (err)
701 goto out_free_units;
702
703 dev_set_drvdata(&op->dev, np);
704
705 schedule_delayed_work(&np->work, 0);
706
707 return 0;
708
709out_free_units:
710 kfree(np->units);
711 np->units = NULL;
712
713out_hvapi_unregister:
714 sun4v_hvapi_unregister(HV_GRP_RNG);
715
716out_free:
717 kfree(np);
718out:
719 return err;
720}
721
722static int __devexit n2rng_remove(struct platform_device *op)
723{
724 struct n2rng *np = dev_get_drvdata(&op->dev);
725
726 np->flags |= N2RNG_FLAG_SHUTDOWN;
727
728 cancel_delayed_work_sync(&np->work);
729
730 hwrng_unregister(&np->hwrng);
731
732 sun4v_hvapi_unregister(HV_GRP_RNG);
733
734 kfree(np->units);
735 np->units = NULL;
736
737 kfree(np);
738
739 dev_set_drvdata(&op->dev, NULL);
740
741 return 0;
742}
743
744static const struct of_device_id n2rng_match[] = {
745 {
746 .name = "random-number-generator",
747 .compatible = "SUNW,n2-rng",
748 },
749 {
750 .name = "random-number-generator",
751 .compatible = "SUNW,vf-rng",
752 .data = (void *) 1,
753 },
754 {
755 .name = "random-number-generator",
756 .compatible = "SUNW,kt-rng",
757 .data = (void *) 1,
758 },
759 {},
760};
761MODULE_DEVICE_TABLE(of, n2rng_match);
762
763static struct platform_driver n2rng_driver = {
764 .driver = {
765 .name = "n2rng",
766 .owner = THIS_MODULE,
767 .of_match_table = n2rng_match,
768 },
769 .probe = n2rng_probe,
770 .remove = __devexit_p(n2rng_remove),
771};
772
773static int __init n2rng_init(void)
774{
775 return platform_driver_register(&n2rng_driver);
776}
777
778static void __exit n2rng_exit(void)
779{
780 platform_driver_unregister(&n2rng_driver);
781}
782
783module_init(n2rng_init);
784module_exit(n2rng_exit);
1/* n2-drv.c: Niagara-2 RNG driver.
2 *
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/delay.h>
10#include <linux/slab.h>
11#include <linux/workqueue.h>
12#include <linux/preempt.h>
13#include <linux/hw_random.h>
14
15#include <linux/of.h>
16#include <linux/of_device.h>
17
18#include <asm/hypervisor.h>
19
20#include "n2rng.h"
21
22#define DRV_MODULE_NAME "n2rng"
23#define PFX DRV_MODULE_NAME ": "
24#define DRV_MODULE_VERSION "0.2"
25#define DRV_MODULE_RELDATE "July 27, 2011"
26
27static char version[] =
28 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29
30MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31MODULE_DESCRIPTION("Niagara2 RNG driver");
32MODULE_LICENSE("GPL");
33MODULE_VERSION(DRV_MODULE_VERSION);
34
35/* The Niagara2 RNG provides a 64-bit read-only random number
36 * register, plus a control register. Access to the RNG is
37 * virtualized through the hypervisor so that both guests and control
38 * nodes can access the device.
39 *
40 * The entropy source consists of raw entropy sources, each
41 * constructed from a voltage controlled oscillator whose phase is
42 * jittered by thermal noise sources.
43 *
44 * The oscillator in each of the three raw entropy sources run at
45 * different frequencies. Normally, all three generator outputs are
46 * gathered, xored together, and fed into a CRC circuit, the output of
47 * which is the 64-bit read-only register.
48 *
49 * Some time is necessary for all the necessary entropy to build up
50 * such that a full 64-bits of entropy are available in the register.
51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52 * an interlock which blocks register reads until sufficient entropy
53 * is available.
54 *
55 * A control register is provided for adjusting various aspects of RNG
56 * operation, and to enable diagnostic modes. Each of the three raw
57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
58 * provided are fields for controlling the minimum time in cycles
59 * between read accesses to the register (RNG_CTL_WAIT, this controls
60 * the interlock described in the previous paragraph).
61 *
62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63 * all three entropy sources enabled, and the interlock time set
64 * appropriately.
65 *
66 * The CRC polynomial used by the chip is:
67 *
68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71 *
72 * The RNG_CTL_VCO value of each noise cell must be programmed
73 * separately. This is why 4 control register values must be provided
74 * to the hypervisor. During a write, the hypervisor writes them all,
75 * one at a time, to the actual RNG_CTL register. The first three
76 * values are used to setup the desired RNG_CTL_VCO for each entropy
77 * source, for example:
78 *
79 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82 *
83 * And then the fourth value sets the final chip state and enables
84 * desired.
85 */
86
87static int n2rng_hv_err_trans(unsigned long hv_err)
88{
89 switch (hv_err) {
90 case HV_EOK:
91 return 0;
92 case HV_EWOULDBLOCK:
93 return -EAGAIN;
94 case HV_ENOACCESS:
95 return -EPERM;
96 case HV_EIO:
97 return -EIO;
98 case HV_EBUSY:
99 return -EBUSY;
100 case HV_EBADALIGN:
101 case HV_ENORADDR:
102 return -EFAULT;
103 default:
104 return -EINVAL;
105 }
106}
107
108static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 unsigned long unit)
110{
111 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 int block = 0, busy = 0;
113
114 while (1) {
115 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 &ticks,
117 &watchdog_delta,
118 &watchdog_status);
119 if (hv_err == HV_EOK)
120 break;
121
122 if (hv_err == HV_EBUSY) {
123 if (++busy >= N2RNG_BUSY_LIMIT)
124 break;
125
126 udelay(1);
127 } else if (hv_err == HV_EWOULDBLOCK) {
128 if (++block >= N2RNG_BLOCK_LIMIT)
129 break;
130
131 __delay(ticks);
132 } else
133 break;
134 }
135
136 return hv_err;
137}
138
139/* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
142 *
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
145 */
146static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147{
148 unsigned long ra = __pa(&np->scratch_control[0]);
149
150 return n2rng_generic_read_control_v2(ra, unit);
151}
152
153static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 unsigned long state,
155 unsigned long control_ra,
156 unsigned long watchdog_timeout,
157 unsigned long *ticks)
158{
159 unsigned long hv_err;
160
161 if (np->hvapi_major == 1) {
162 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 watchdog_timeout, ticks);
164 } else {
165 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 watchdog_timeout, unit);
167 if (hv_err == HV_EOK)
168 hv_err = n2rng_control_settle_v2(np, unit);
169 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170 }
171
172 return hv_err;
173}
174
175static int n2rng_generic_read_data(unsigned long data_ra)
176{
177 unsigned long ticks, hv_err;
178 int block = 0, hcheck = 0;
179
180 while (1) {
181 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 if (hv_err == HV_EOK)
183 return 0;
184
185 if (hv_err == HV_EWOULDBLOCK) {
186 if (++block >= N2RNG_BLOCK_LIMIT)
187 return -EWOULDBLOCK;
188 __delay(ticks);
189 } else if (hv_err == HV_ENOACCESS) {
190 return -EPERM;
191 } else if (hv_err == HV_EIO) {
192 if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 return -EIO;
194 udelay(10000);
195 } else
196 return -ENODEV;
197 }
198}
199
200static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 unsigned long unit,
202 unsigned long data_ra,
203 unsigned long data_len,
204 unsigned long *ticks)
205{
206 unsigned long hv_err;
207
208 if (np->hvapi_major == 1) {
209 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 } else {
211 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 unit, ticks);
213 if (!*ticks)
214 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215 }
216 return hv_err;
217}
218
219static int n2rng_generic_read_diag_data(struct n2rng *np,
220 unsigned long unit,
221 unsigned long data_ra,
222 unsigned long data_len)
223{
224 unsigned long ticks, hv_err;
225 int block = 0;
226
227 while (1) {
228 hv_err = n2rng_read_diag_data_one(np, unit,
229 data_ra, data_len,
230 &ticks);
231 if (hv_err == HV_EOK)
232 return 0;
233
234 if (hv_err == HV_EWOULDBLOCK) {
235 if (++block >= N2RNG_BLOCK_LIMIT)
236 return -EWOULDBLOCK;
237 __delay(ticks);
238 } else if (hv_err == HV_ENOACCESS) {
239 return -EPERM;
240 } else if (hv_err == HV_EIO) {
241 return -EIO;
242 } else
243 return -ENODEV;
244 }
245}
246
247
248static int n2rng_generic_write_control(struct n2rng *np,
249 unsigned long control_ra,
250 unsigned long unit,
251 unsigned long state)
252{
253 unsigned long hv_err, ticks;
254 int block = 0, busy = 0;
255
256 while (1) {
257 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 np->wd_timeo, &ticks);
259 if (hv_err == HV_EOK)
260 return 0;
261
262 if (hv_err == HV_EWOULDBLOCK) {
263 if (++block >= N2RNG_BLOCK_LIMIT)
264 return -EWOULDBLOCK;
265 __delay(ticks);
266 } else if (hv_err == HV_EBUSY) {
267 if (++busy >= N2RNG_BUSY_LIMIT)
268 return -EBUSY;
269 udelay(1);
270 } else
271 return -ENODEV;
272 }
273}
274
275/* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
277 */
278static int n2rng_try_read_ctl(struct n2rng *np)
279{
280 unsigned long hv_err;
281 unsigned long x;
282
283 if (np->hvapi_major == 1) {
284 hv_err = sun4v_rng_get_diag_ctl();
285 } else {
286 /* We purposefully give invalid arguments, HV_NOACCESS
287 * is higher priority than the errors we'd get from
288 * these other cases, and that's the error we are
289 * truly interested in.
290 */
291 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 switch (hv_err) {
293 case HV_EWOULDBLOCK:
294 case HV_ENOACCESS:
295 break;
296 default:
297 hv_err = HV_EOK;
298 break;
299 }
300 }
301
302 return n2rng_hv_err_trans(hv_err);
303}
304
305#define CONTROL_DEFAULT_BASE \
306 ((2 << RNG_CTL_ASEL_SHIFT) | \
307 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
308 RNG_CTL_LFSR)
309
310#define CONTROL_DEFAULT_0 \
311 (CONTROL_DEFAULT_BASE | \
312 (1 << RNG_CTL_VCO_SHIFT) | \
313 RNG_CTL_ES1)
314#define CONTROL_DEFAULT_1 \
315 (CONTROL_DEFAULT_BASE | \
316 (2 << RNG_CTL_VCO_SHIFT) | \
317 RNG_CTL_ES2)
318#define CONTROL_DEFAULT_2 \
319 (CONTROL_DEFAULT_BASE | \
320 (3 << RNG_CTL_VCO_SHIFT) | \
321 RNG_CTL_ES3)
322#define CONTROL_DEFAULT_3 \
323 (CONTROL_DEFAULT_BASE | \
324 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
325
326static void n2rng_control_swstate_init(struct n2rng *np)
327{
328 int i;
329
330 np->flags |= N2RNG_FLAG_CONTROL;
331
332 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
335
336 for (i = 0; i < np->num_units; i++) {
337 struct n2rng_unit *up = &np->units[i];
338
339 up->control[0] = CONTROL_DEFAULT_0;
340 up->control[1] = CONTROL_DEFAULT_1;
341 up->control[2] = CONTROL_DEFAULT_2;
342 up->control[3] = CONTROL_DEFAULT_3;
343 }
344
345 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
346}
347
348static int n2rng_grab_diag_control(struct n2rng *np)
349{
350 int i, busy_count, err = -ENODEV;
351
352 busy_count = 0;
353 for (i = 0; i < 100; i++) {
354 err = n2rng_try_read_ctl(np);
355 if (err != -EAGAIN)
356 break;
357
358 if (++busy_count > 100) {
359 dev_err(&np->op->dev,
360 "Grab diag control timeout.\n");
361 return -ENODEV;
362 }
363
364 udelay(1);
365 }
366
367 return err;
368}
369
370static int n2rng_init_control(struct n2rng *np)
371{
372 int err = n2rng_grab_diag_control(np);
373
374 /* Not in the control domain, that's OK we are only a consumer
375 * of the RNG data, we don't setup and program it.
376 */
377 if (err == -EPERM)
378 return 0;
379 if (err)
380 return err;
381
382 n2rng_control_swstate_init(np);
383
384 return 0;
385}
386
387static int n2rng_data_read(struct hwrng *rng, u32 *data)
388{
389 struct n2rng *np = (struct n2rng *) rng->priv;
390 unsigned long ra = __pa(&np->test_data);
391 int len;
392
393 if (!(np->flags & N2RNG_FLAG_READY)) {
394 len = 0;
395 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397 *data = np->buffer;
398 len = 4;
399 } else {
400 int err = n2rng_generic_read_data(ra);
401 if (!err) {
402 np->buffer = np->test_data >> 32;
403 *data = np->test_data & 0xffffffff;
404 len = 4;
405 } else {
406 dev_err(&np->op->dev, "RNG error, restesting\n");
407 np->flags &= ~N2RNG_FLAG_READY;
408 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409 schedule_delayed_work(&np->work, 0);
410 len = 0;
411 }
412 }
413
414 return len;
415}
416
417/* On a guest node, just make sure we can read random data properly.
418 * If a control node reboots or reloads it's n2rng driver, this won't
419 * work during that time. So we have to keep probing until the device
420 * becomes usable.
421 */
422static int n2rng_guest_check(struct n2rng *np)
423{
424 unsigned long ra = __pa(&np->test_data);
425
426 return n2rng_generic_read_data(ra);
427}
428
429static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430 u64 *pre_control, u64 pre_state,
431 u64 *buffer, unsigned long buf_len,
432 u64 *post_control, u64 post_state)
433{
434 unsigned long post_ctl_ra = __pa(post_control);
435 unsigned long pre_ctl_ra = __pa(pre_control);
436 unsigned long buffer_ra = __pa(buffer);
437 int err;
438
439 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440 if (err)
441 return err;
442
443 err = n2rng_generic_read_diag_data(np, unit,
444 buffer_ra, buf_len);
445
446 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447 post_state);
448
449 return err;
450}
451
452static u64 advance_polynomial(u64 poly, u64 val, int count)
453{
454 int i;
455
456 for (i = 0; i < count; i++) {
457 int highbit_set = ((s64)val < 0);
458
459 val <<= 1;
460 if (highbit_set)
461 val ^= poly;
462 }
463
464 return val;
465}
466
467static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
468{
469 int i, count = 0;
470
471 /* Purposefully skip over the first word. */
472 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473 if (np->test_buffer[i] == val)
474 count++;
475 }
476 return count;
477}
478
479static void n2rng_dump_test_buffer(struct n2rng *np)
480{
481 int i;
482
483 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485 i, np->test_buffer[i]);
486}
487
488static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
489{
490 u64 val = SELFTEST_VAL;
491 int err, matches, limit;
492
493 matches = 0;
494 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495 matches += n2rng_test_buffer_find(np, val);
496 if (matches >= SELFTEST_MATCH_GOAL)
497 break;
498 val = advance_polynomial(SELFTEST_POLY, val, 1);
499 }
500
501 err = 0;
502 if (limit >= SELFTEST_LOOPS_MAX) {
503 err = -ENODEV;
504 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505 n2rng_dump_test_buffer(np);
506 } else
507 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
508
509 return err;
510}
511
512static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
513{
514 int err;
515
516 np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517 np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520 RNG_CTL_LFSR |
521 ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
522
523
524 err = n2rng_entropy_diag_read(np, unit, np->test_control,
525 HV_RNG_STATE_HEALTHCHECK,
526 np->test_buffer,
527 sizeof(np->test_buffer),
528 &np->units[unit].control[0],
529 np->hv_state);
530 if (err)
531 return err;
532
533 return n2rng_check_selftest_buffer(np, unit);
534}
535
536static int n2rng_control_check(struct n2rng *np)
537{
538 int i;
539
540 for (i = 0; i < np->num_units; i++) {
541 int err = n2rng_control_selftest(np, i);
542 if (err)
543 return err;
544 }
545 return 0;
546}
547
548/* The sanity checks passed, install the final configuration into the
549 * chip, it's ready to use.
550 */
551static int n2rng_control_configure_units(struct n2rng *np)
552{
553 int unit, err;
554
555 err = 0;
556 for (unit = 0; unit < np->num_units; unit++) {
557 struct n2rng_unit *up = &np->units[unit];
558 unsigned long ctl_ra = __pa(&up->control[0]);
559 int esrc;
560 u64 base;
561
562 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563 (2 << RNG_CTL_ASEL_SHIFT) |
564 RNG_CTL_LFSR);
565
566 /* XXX This isn't the best. We should fetch a bunch
567 * XXX of words using each entropy source combined XXX
568 * with each VCO setting, and see which combinations
569 * XXX give the best random data.
570 */
571 for (esrc = 0; esrc < 3; esrc++)
572 up->control[esrc] = base |
573 (esrc << RNG_CTL_VCO_SHIFT) |
574 (RNG_CTL_ES1 << esrc);
575
576 up->control[3] = base |
577 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
578
579 err = n2rng_generic_write_control(np, ctl_ra, unit,
580 HV_RNG_STATE_CONFIGURED);
581 if (err)
582 break;
583 }
584
585 return err;
586}
587
588static void n2rng_work(struct work_struct *work)
589{
590 struct n2rng *np = container_of(work, struct n2rng, work.work);
591 int err = 0;
592
593 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594 err = n2rng_guest_check(np);
595 } else {
596 preempt_disable();
597 err = n2rng_control_check(np);
598 preempt_enable();
599
600 if (!err)
601 err = n2rng_control_configure_units(np);
602 }
603
604 if (!err) {
605 np->flags |= N2RNG_FLAG_READY;
606 dev_info(&np->op->dev, "RNG ready\n");
607 }
608
609 if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
610 schedule_delayed_work(&np->work, HZ * 2);
611}
612
613static void n2rng_driver_version(void)
614{
615 static int n2rng_version_printed;
616
617 if (n2rng_version_printed++ == 0)
618 pr_info("%s", version);
619}
620
621static const struct of_device_id n2rng_match[];
622static int n2rng_probe(struct platform_device *op)
623{
624 const struct of_device_id *match;
625 int multi_capable;
626 int err = -ENOMEM;
627 struct n2rng *np;
628
629 match = of_match_device(n2rng_match, &op->dev);
630 if (!match)
631 return -EINVAL;
632 multi_capable = (match->data != NULL);
633
634 n2rng_driver_version();
635 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636 if (!np)
637 goto out;
638 np->op = op;
639
640 INIT_DELAYED_WORK(&np->work, n2rng_work);
641
642 if (multi_capable)
643 np->flags |= N2RNG_FLAG_MULTI;
644
645 err = -ENODEV;
646 np->hvapi_major = 2;
647 if (sun4v_hvapi_register(HV_GRP_RNG,
648 np->hvapi_major,
649 &np->hvapi_minor)) {
650 np->hvapi_major = 1;
651 if (sun4v_hvapi_register(HV_GRP_RNG,
652 np->hvapi_major,
653 &np->hvapi_minor)) {
654 dev_err(&op->dev, "Cannot register suitable "
655 "HVAPI version.\n");
656 goto out;
657 }
658 }
659
660 if (np->flags & N2RNG_FLAG_MULTI) {
661 if (np->hvapi_major < 2) {
662 dev_err(&op->dev, "multi-unit-capable RNG requires "
663 "HVAPI major version 2 or later, got %lu\n",
664 np->hvapi_major);
665 goto out_hvapi_unregister;
666 }
667 np->num_units = of_getintprop_default(op->dev.of_node,
668 "rng-#units", 0);
669 if (!np->num_units) {
670 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671 goto out_hvapi_unregister;
672 }
673 } else
674 np->num_units = 1;
675
676 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677 np->hvapi_major, np->hvapi_minor);
678
679 np->units = devm_kzalloc(&op->dev,
680 sizeof(struct n2rng_unit) * np->num_units,
681 GFP_KERNEL);
682 err = -ENOMEM;
683 if (!np->units)
684 goto out_hvapi_unregister;
685
686 err = n2rng_init_control(np);
687 if (err)
688 goto out_hvapi_unregister;
689
690 dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 ((np->flags & N2RNG_FLAG_MULTI) ?
692 "multi-unit-capable" : "single-unit"),
693 np->num_units);
694
695 np->hwrng.name = "n2rng";
696 np->hwrng.data_read = n2rng_data_read;
697 np->hwrng.priv = (unsigned long) np;
698
699 err = hwrng_register(&np->hwrng);
700 if (err)
701 goto out_hvapi_unregister;
702
703 platform_set_drvdata(op, np);
704
705 schedule_delayed_work(&np->work, 0);
706
707 return 0;
708
709out_hvapi_unregister:
710 sun4v_hvapi_unregister(HV_GRP_RNG);
711
712out:
713 return err;
714}
715
716static int n2rng_remove(struct platform_device *op)
717{
718 struct n2rng *np = platform_get_drvdata(op);
719
720 np->flags |= N2RNG_FLAG_SHUTDOWN;
721
722 cancel_delayed_work_sync(&np->work);
723
724 hwrng_unregister(&np->hwrng);
725
726 sun4v_hvapi_unregister(HV_GRP_RNG);
727
728 return 0;
729}
730
731static const struct of_device_id n2rng_match[] = {
732 {
733 .name = "random-number-generator",
734 .compatible = "SUNW,n2-rng",
735 },
736 {
737 .name = "random-number-generator",
738 .compatible = "SUNW,vf-rng",
739 .data = (void *) 1,
740 },
741 {
742 .name = "random-number-generator",
743 .compatible = "SUNW,kt-rng",
744 .data = (void *) 1,
745 },
746 {
747 .name = "random-number-generator",
748 .compatible = "ORCL,m4-rng",
749 .data = (void *) 1,
750 },
751 {
752 .name = "random-number-generator",
753 .compatible = "ORCL,m7-rng",
754 .data = (void *) 1,
755 },
756 {},
757};
758MODULE_DEVICE_TABLE(of, n2rng_match);
759
760static struct platform_driver n2rng_driver = {
761 .driver = {
762 .name = "n2rng",
763 .of_match_table = n2rng_match,
764 },
765 .probe = n2rng_probe,
766 .remove = n2rng_remove,
767};
768
769module_platform_driver(n2rng_driver);