Linux Audio

Check our new training course

Loading...
v3.1
  1/* n2-drv.c: Niagara-2 RNG driver.
  2 *
  3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/module.h>
  8#include <linux/types.h>
  9#include <linux/delay.h>
 10#include <linux/init.h>
 11#include <linux/slab.h>
 12#include <linux/workqueue.h>
 13#include <linux/preempt.h>
 14#include <linux/hw_random.h>
 15
 16#include <linux/of.h>
 17#include <linux/of_device.h>
 18
 19#include <asm/hypervisor.h>
 20
 21#include "n2rng.h"
 22
 23#define DRV_MODULE_NAME		"n2rng"
 24#define PFX DRV_MODULE_NAME	": "
 25#define DRV_MODULE_VERSION	"0.2"
 26#define DRV_MODULE_RELDATE	"July 27, 2011"
 27
 28static char version[] __devinitdata =
 29	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 30
 31MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 32MODULE_DESCRIPTION("Niagara2 RNG driver");
 33MODULE_LICENSE("GPL");
 34MODULE_VERSION(DRV_MODULE_VERSION);
 35
 36/* The Niagara2 RNG provides a 64-bit read-only random number
 37 * register, plus a control register.  Access to the RNG is
 38 * virtualized through the hypervisor so that both guests and control
 39 * nodes can access the device.
 40 *
 41 * The entropy source consists of raw entropy sources, each
 42 * constructed from a voltage controlled oscillator whose phase is
 43 * jittered by thermal noise sources.
 44 *
 45 * The oscillator in each of the three raw entropy sources run at
 46 * different frequencies.  Normally, all three generator outputs are
 47 * gathered, xored together, and fed into a CRC circuit, the output of
 48 * which is the 64-bit read-only register.
 49 *
 50 * Some time is necessary for all the necessary entropy to build up
 51 * such that a full 64-bits of entropy are available in the register.
 52 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
 53 * an interlock which blocks register reads until sufficient entropy
 54 * is available.
 55 *
 56 * A control register is provided for adjusting various aspects of RNG
 57 * operation, and to enable diagnostic modes.  Each of the three raw
 58 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
 59 * provided are fields for controlling the minimum time in cycles
 60 * between read accesses to the register (RNG_CTL_WAIT, this controls
 61 * the interlock described in the previous paragraph).
 62 *
 63 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
 64 * all three entropy sources enabled, and the interlock time set
 65 * appropriately.
 66 *
 67 * The CRC polynomial used by the chip is:
 68 *
 69 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
 70 *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
 71 *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
 72 *
 73 * The RNG_CTL_VCO value of each noise cell must be programmed
 74 * separately.  This is why 4 control register values must be provided
 75 * to the hypervisor.  During a write, the hypervisor writes them all,
 76 * one at a time, to the actual RNG_CTL register.  The first three
 77 * values are used to setup the desired RNG_CTL_VCO for each entropy
 78 * source, for example:
 79 *
 80 *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
 81 *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
 82 *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
 83 *
 84 * And then the fourth value sets the final chip state and enables
 85 * desired.
 86 */
 87
 88static int n2rng_hv_err_trans(unsigned long hv_err)
 89{
 90	switch (hv_err) {
 91	case HV_EOK:
 92		return 0;
 93	case HV_EWOULDBLOCK:
 94		return -EAGAIN;
 95	case HV_ENOACCESS:
 96		return -EPERM;
 97	case HV_EIO:
 98		return -EIO;
 99	case HV_EBUSY:
100		return -EBUSY;
101	case HV_EBADALIGN:
102	case HV_ENORADDR:
103		return -EFAULT;
104	default:
105		return -EINVAL;
106	}
107}
108
109static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110						   unsigned long unit)
111{
112	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113	int block = 0, busy = 0;
114
115	while (1) {
116		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117					       &ticks,
118					       &watchdog_delta,
119					       &watchdog_status);
120		if (hv_err == HV_EOK)
121			break;
122
123		if (hv_err == HV_EBUSY) {
124			if (++busy >= N2RNG_BUSY_LIMIT)
125				break;
126
127			udelay(1);
128		} else if (hv_err == HV_EWOULDBLOCK) {
129			if (++block >= N2RNG_BLOCK_LIMIT)
130				break;
131
132			__delay(ticks);
133		} else
134			break;
135	}
136
137	return hv_err;
138}
139
140/* In multi-socket situations, the hypervisor might need to
141 * queue up the RNG control register write if it's for a unit
142 * that is on a cpu socket other than the one we are executing on.
143 *
144 * We poll here waiting for a successful read of that control
145 * register to make sure the write has been actually performed.
146 */
147static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148{
149	unsigned long ra = __pa(&np->scratch_control[0]);
150
151	return n2rng_generic_read_control_v2(ra, unit);
152}
153
154static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155					 unsigned long state,
156					 unsigned long control_ra,
157					 unsigned long watchdog_timeout,
158					 unsigned long *ticks)
159{
160	unsigned long hv_err;
161
162	if (np->hvapi_major == 1) {
163		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164						watchdog_timeout, ticks);
165	} else {
166		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167						watchdog_timeout, unit);
168		if (hv_err == HV_EOK)
169			hv_err = n2rng_control_settle_v2(np, unit);
170		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171	}
172
173	return hv_err;
174}
175
176static int n2rng_generic_read_data(unsigned long data_ra)
177{
178	unsigned long ticks, hv_err;
179	int block = 0, hcheck = 0;
180
181	while (1) {
182		hv_err = sun4v_rng_data_read(data_ra, &ticks);
183		if (hv_err == HV_EOK)
184			return 0;
185
186		if (hv_err == HV_EWOULDBLOCK) {
187			if (++block >= N2RNG_BLOCK_LIMIT)
188				return -EWOULDBLOCK;
189			__delay(ticks);
190		} else if (hv_err == HV_ENOACCESS) {
191			return -EPERM;
192		} else if (hv_err == HV_EIO) {
193			if (++hcheck >= N2RNG_HCHECK_LIMIT)
194				return -EIO;
195			udelay(10000);
196		} else
197			return -ENODEV;
198	}
199}
200
201static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202					      unsigned long unit,
203					      unsigned long data_ra,
204					      unsigned long data_len,
205					      unsigned long *ticks)
206{
207	unsigned long hv_err;
208
209	if (np->hvapi_major == 1) {
210		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211	} else {
212		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213						     unit, ticks);
214		if (!*ticks)
215			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216	}
217	return hv_err;
218}
219
220static int n2rng_generic_read_diag_data(struct n2rng *np,
221					unsigned long unit,
222					unsigned long data_ra,
223					unsigned long data_len)
224{
225	unsigned long ticks, hv_err;
226	int block = 0;
227
228	while (1) {
229		hv_err = n2rng_read_diag_data_one(np, unit,
230						  data_ra, data_len,
231						  &ticks);
232		if (hv_err == HV_EOK)
233			return 0;
234
235		if (hv_err == HV_EWOULDBLOCK) {
236			if (++block >= N2RNG_BLOCK_LIMIT)
237				return -EWOULDBLOCK;
238			__delay(ticks);
239		} else if (hv_err == HV_ENOACCESS) {
240			return -EPERM;
241		} else if (hv_err == HV_EIO) {
242			return -EIO;
243		} else
244			return -ENODEV;
245	}
246}
247
248
249static int n2rng_generic_write_control(struct n2rng *np,
250				       unsigned long control_ra,
251				       unsigned long unit,
252				       unsigned long state)
253{
254	unsigned long hv_err, ticks;
255	int block = 0, busy = 0;
256
257	while (1) {
258		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259					     np->wd_timeo, &ticks);
260		if (hv_err == HV_EOK)
261			return 0;
262
263		if (hv_err == HV_EWOULDBLOCK) {
264			if (++block >= N2RNG_BLOCK_LIMIT)
265				return -EWOULDBLOCK;
266			__delay(ticks);
267		} else if (hv_err == HV_EBUSY) {
268			if (++busy >= N2RNG_BUSY_LIMIT)
269				return -EBUSY;
270			udelay(1);
271		} else
272			return -ENODEV;
273	}
274}
275
276/* Just try to see if we can successfully access the control register
277 * of the RNG on the domain on which we are currently executing.
278 */
279static int n2rng_try_read_ctl(struct n2rng *np)
280{
281	unsigned long hv_err;
282	unsigned long x;
283
284	if (np->hvapi_major == 1) {
285		hv_err = sun4v_rng_get_diag_ctl();
286	} else {
287		/* We purposefully give invalid arguments, HV_NOACCESS
288		 * is higher priority than the errors we'd get from
289		 * these other cases, and that's the error we are
290		 * truly interested in.
291		 */
292		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293		switch (hv_err) {
294		case HV_EWOULDBLOCK:
295		case HV_ENOACCESS:
296			break;
297		default:
298			hv_err = HV_EOK;
299			break;
300		}
301	}
302
303	return n2rng_hv_err_trans(hv_err);
304}
305
306#define CONTROL_DEFAULT_BASE		\
307	((2 << RNG_CTL_ASEL_SHIFT) |	\
308	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
309	 RNG_CTL_LFSR)
310
311#define CONTROL_DEFAULT_0		\
312	(CONTROL_DEFAULT_BASE |		\
313	 (1 << RNG_CTL_VCO_SHIFT) |	\
314	 RNG_CTL_ES1)
315#define CONTROL_DEFAULT_1		\
316	(CONTROL_DEFAULT_BASE |		\
317	 (2 << RNG_CTL_VCO_SHIFT) |	\
318	 RNG_CTL_ES2)
319#define CONTROL_DEFAULT_2		\
320	(CONTROL_DEFAULT_BASE |		\
321	 (3 << RNG_CTL_VCO_SHIFT) |	\
322	 RNG_CTL_ES3)
323#define CONTROL_DEFAULT_3		\
324	(CONTROL_DEFAULT_BASE |		\
325	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
326
327static void n2rng_control_swstate_init(struct n2rng *np)
328{
329	int i;
330
331	np->flags |= N2RNG_FLAG_CONTROL;
332
333	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
334	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
335	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
336
337	for (i = 0; i < np->num_units; i++) {
338		struct n2rng_unit *up = &np->units[i];
339
340		up->control[0] = CONTROL_DEFAULT_0;
341		up->control[1] = CONTROL_DEFAULT_1;
342		up->control[2] = CONTROL_DEFAULT_2;
343		up->control[3] = CONTROL_DEFAULT_3;
344	}
345
346	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
347}
348
349static int n2rng_grab_diag_control(struct n2rng *np)
350{
351	int i, busy_count, err = -ENODEV;
352
353	busy_count = 0;
354	for (i = 0; i < 100; i++) {
355		err = n2rng_try_read_ctl(np);
356		if (err != -EAGAIN)
357			break;
358
359		if (++busy_count > 100) {
360			dev_err(&np->op->dev,
361				"Grab diag control timeout.\n");
362			return -ENODEV;
363		}
364
365		udelay(1);
366	}
367
368	return err;
369}
370
371static int n2rng_init_control(struct n2rng *np)
372{
373	int err = n2rng_grab_diag_control(np);
374
375	/* Not in the control domain, that's OK we are only a consumer
376	 * of the RNG data, we don't setup and program it.
377	 */
378	if (err == -EPERM)
379		return 0;
380	if (err)
381		return err;
382
383	n2rng_control_swstate_init(np);
384
385	return 0;
386}
387
388static int n2rng_data_read(struct hwrng *rng, u32 *data)
389{
390	struct n2rng *np = (struct n2rng *) rng->priv;
391	unsigned long ra = __pa(&np->test_data);
392	int len;
393
394	if (!(np->flags & N2RNG_FLAG_READY)) {
395		len = 0;
396	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
397		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
398		*data = np->buffer;
399		len = 4;
400	} else {
401		int err = n2rng_generic_read_data(ra);
402		if (!err) {
403			np->buffer = np->test_data >> 32;
404			*data = np->test_data & 0xffffffff;
405			len = 4;
406		} else {
407			dev_err(&np->op->dev, "RNG error, restesting\n");
408			np->flags &= ~N2RNG_FLAG_READY;
409			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
410				schedule_delayed_work(&np->work, 0);
411			len = 0;
412		}
413	}
414
415	return len;
416}
417
418/* On a guest node, just make sure we can read random data properly.
419 * If a control node reboots or reloads it's n2rng driver, this won't
420 * work during that time.  So we have to keep probing until the device
421 * becomes usable.
422 */
423static int n2rng_guest_check(struct n2rng *np)
424{
425	unsigned long ra = __pa(&np->test_data);
426
427	return n2rng_generic_read_data(ra);
428}
429
430static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
431				   u64 *pre_control, u64 pre_state,
432				   u64 *buffer, unsigned long buf_len,
433				   u64 *post_control, u64 post_state)
434{
435	unsigned long post_ctl_ra = __pa(post_control);
436	unsigned long pre_ctl_ra = __pa(pre_control);
437	unsigned long buffer_ra = __pa(buffer);
438	int err;
439
440	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
441	if (err)
442		return err;
443
444	err = n2rng_generic_read_diag_data(np, unit,
445					   buffer_ra, buf_len);
446
447	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
448					   post_state);
449
450	return err;
451}
452
453static u64 advance_polynomial(u64 poly, u64 val, int count)
454{
455	int i;
456
457	for (i = 0; i < count; i++) {
458		int highbit_set = ((s64)val < 0);
459
460		val <<= 1;
461		if (highbit_set)
462			val ^= poly;
463	}
464
465	return val;
466}
467
468static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
469{
470	int i, count = 0;
471
472	/* Purposefully skip over the first word.  */
473	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
474		if (np->test_buffer[i] == val)
475			count++;
476	}
477	return count;
478}
479
480static void n2rng_dump_test_buffer(struct n2rng *np)
481{
482	int i;
483
484	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
485		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
486			i, np->test_buffer[i]);
487}
488
489static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
490{
491	u64 val = SELFTEST_VAL;
492	int err, matches, limit;
493
494	matches = 0;
495	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
496		matches += n2rng_test_buffer_find(np, val);
497		if (matches >= SELFTEST_MATCH_GOAL)
498			break;
499		val = advance_polynomial(SELFTEST_POLY, val, 1);
500	}
501
502	err = 0;
503	if (limit >= SELFTEST_LOOPS_MAX) {
504		err = -ENODEV;
505		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
506		n2rng_dump_test_buffer(np);
507	} else
508		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
509
510	return err;
511}
512
513static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
514{
515	int err;
516
517	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
518	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
519	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
520	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
521			       RNG_CTL_LFSR |
522			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
523
524
525	err = n2rng_entropy_diag_read(np, unit, np->test_control,
526				      HV_RNG_STATE_HEALTHCHECK,
527				      np->test_buffer,
528				      sizeof(np->test_buffer),
529				      &np->units[unit].control[0],
530				      np->hv_state);
531	if (err)
532		return err;
533
534	return n2rng_check_selftest_buffer(np, unit);
535}
536
537static int n2rng_control_check(struct n2rng *np)
538{
539	int i;
540
541	for (i = 0; i < np->num_units; i++) {
542		int err = n2rng_control_selftest(np, i);
543		if (err)
544			return err;
545	}
546	return 0;
547}
548
549/* The sanity checks passed, install the final configuration into the
550 * chip, it's ready to use.
551 */
552static int n2rng_control_configure_units(struct n2rng *np)
553{
554	int unit, err;
555
556	err = 0;
557	for (unit = 0; unit < np->num_units; unit++) {
558		struct n2rng_unit *up = &np->units[unit];
559		unsigned long ctl_ra = __pa(&up->control[0]);
560		int esrc;
561		u64 base;
562
563		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
564			(2 << RNG_CTL_ASEL_SHIFT) |
565			RNG_CTL_LFSR);
566
567		/* XXX This isn't the best.  We should fetch a bunch
568		 * XXX of words using each entropy source combined XXX
569		 * with each VCO setting, and see which combinations
570		 * XXX give the best random data.
571		 */
572		for (esrc = 0; esrc < 3; esrc++)
573			up->control[esrc] = base |
574				(esrc << RNG_CTL_VCO_SHIFT) |
575				(RNG_CTL_ES1 << esrc);
576
577		up->control[3] = base |
578			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
579
580		err = n2rng_generic_write_control(np, ctl_ra, unit,
581						  HV_RNG_STATE_CONFIGURED);
582		if (err)
583			break;
584	}
585
586	return err;
587}
588
589static void n2rng_work(struct work_struct *work)
590{
591	struct n2rng *np = container_of(work, struct n2rng, work.work);
592	int err = 0;
593
594	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
595		err = n2rng_guest_check(np);
596	} else {
597		preempt_disable();
598		err = n2rng_control_check(np);
599		preempt_enable();
600
601		if (!err)
602			err = n2rng_control_configure_units(np);
603	}
604
605	if (!err) {
606		np->flags |= N2RNG_FLAG_READY;
607		dev_info(&np->op->dev, "RNG ready\n");
608	}
609
610	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
611		schedule_delayed_work(&np->work, HZ * 2);
612}
613
614static void __devinit n2rng_driver_version(void)
615{
616	static int n2rng_version_printed;
617
618	if (n2rng_version_printed++ == 0)
619		pr_info("%s", version);
620}
621
622static const struct of_device_id n2rng_match[];
623static int __devinit n2rng_probe(struct platform_device *op)
624{
625	const struct of_device_id *match;
626	int multi_capable;
627	int err = -ENOMEM;
628	struct n2rng *np;
629
630	match = of_match_device(n2rng_match, &op->dev);
631	if (!match)
632		return -EINVAL;
633	multi_capable = (match->data != NULL);
634
635	n2rng_driver_version();
636	np = kzalloc(sizeof(*np), GFP_KERNEL);
637	if (!np)
638		goto out;
639	np->op = op;
640
641	INIT_DELAYED_WORK(&np->work, n2rng_work);
642
643	if (multi_capable)
644		np->flags |= N2RNG_FLAG_MULTI;
645
646	err = -ENODEV;
647	np->hvapi_major = 2;
648	if (sun4v_hvapi_register(HV_GRP_RNG,
649				 np->hvapi_major,
650				 &np->hvapi_minor)) {
651		np->hvapi_major = 1;
652		if (sun4v_hvapi_register(HV_GRP_RNG,
653					 np->hvapi_major,
654					 &np->hvapi_minor)) {
655			dev_err(&op->dev, "Cannot register suitable "
656				"HVAPI version.\n");
657			goto out_free;
658		}
659	}
660
661	if (np->flags & N2RNG_FLAG_MULTI) {
662		if (np->hvapi_major < 2) {
663			dev_err(&op->dev, "multi-unit-capable RNG requires "
664				"HVAPI major version 2 or later, got %lu\n",
665				np->hvapi_major);
666			goto out_hvapi_unregister;
667		}
668		np->num_units = of_getintprop_default(op->dev.of_node,
669						      "rng-#units", 0);
670		if (!np->num_units) {
671			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
672			goto out_hvapi_unregister;
673		}
674	} else
675		np->num_units = 1;
676
677	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
678		 np->hvapi_major, np->hvapi_minor);
679
680	np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
681			    GFP_KERNEL);
 
682	err = -ENOMEM;
683	if (!np->units)
684		goto out_hvapi_unregister;
685
686	err = n2rng_init_control(np);
687	if (err)
688		goto out_free_units;
689
690	dev_info(&op->dev, "Found %s RNG, units: %d\n",
691		 ((np->flags & N2RNG_FLAG_MULTI) ?
692		  "multi-unit-capable" : "single-unit"),
693		 np->num_units);
694
695	np->hwrng.name = "n2rng";
696	np->hwrng.data_read = n2rng_data_read;
697	np->hwrng.priv = (unsigned long) np;
698
699	err = hwrng_register(&np->hwrng);
700	if (err)
701		goto out_free_units;
702
703	dev_set_drvdata(&op->dev, np);
704
705	schedule_delayed_work(&np->work, 0);
706
707	return 0;
708
709out_free_units:
710	kfree(np->units);
711	np->units = NULL;
712
713out_hvapi_unregister:
714	sun4v_hvapi_unregister(HV_GRP_RNG);
715
716out_free:
717	kfree(np);
718out:
719	return err;
720}
721
722static int __devexit n2rng_remove(struct platform_device *op)
723{
724	struct n2rng *np = dev_get_drvdata(&op->dev);
725
726	np->flags |= N2RNG_FLAG_SHUTDOWN;
727
728	cancel_delayed_work_sync(&np->work);
729
730	hwrng_unregister(&np->hwrng);
731
732	sun4v_hvapi_unregister(HV_GRP_RNG);
733
734	kfree(np->units);
735	np->units = NULL;
736
737	kfree(np);
738
739	dev_set_drvdata(&op->dev, NULL);
740
741	return 0;
742}
743
744static const struct of_device_id n2rng_match[] = {
745	{
746		.name		= "random-number-generator",
747		.compatible	= "SUNW,n2-rng",
748	},
749	{
750		.name		= "random-number-generator",
751		.compatible	= "SUNW,vf-rng",
752		.data		= (void *) 1,
753	},
754	{
755		.name		= "random-number-generator",
756		.compatible	= "SUNW,kt-rng",
757		.data		= (void *) 1,
758	},
 
 
 
 
 
 
 
 
 
 
759	{},
760};
761MODULE_DEVICE_TABLE(of, n2rng_match);
762
763static struct platform_driver n2rng_driver = {
764	.driver = {
765		.name = "n2rng",
766		.owner = THIS_MODULE,
767		.of_match_table = n2rng_match,
768	},
769	.probe		= n2rng_probe,
770	.remove		= __devexit_p(n2rng_remove),
771};
772
773static int __init n2rng_init(void)
774{
775	return platform_driver_register(&n2rng_driver);
776}
777
778static void __exit n2rng_exit(void)
779{
780	platform_driver_unregister(&n2rng_driver);
781}
782
783module_init(n2rng_init);
784module_exit(n2rng_exit);
v4.10.11
  1/* n2-drv.c: Niagara-2 RNG driver.
  2 *
  3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/module.h>
  8#include <linux/types.h>
  9#include <linux/delay.h>
 
 10#include <linux/slab.h>
 11#include <linux/workqueue.h>
 12#include <linux/preempt.h>
 13#include <linux/hw_random.h>
 14
 15#include <linux/of.h>
 16#include <linux/of_device.h>
 17
 18#include <asm/hypervisor.h>
 19
 20#include "n2rng.h"
 21
 22#define DRV_MODULE_NAME		"n2rng"
 23#define PFX DRV_MODULE_NAME	": "
 24#define DRV_MODULE_VERSION	"0.2"
 25#define DRV_MODULE_RELDATE	"July 27, 2011"
 26
 27static char version[] =
 28	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 29
 30MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 31MODULE_DESCRIPTION("Niagara2 RNG driver");
 32MODULE_LICENSE("GPL");
 33MODULE_VERSION(DRV_MODULE_VERSION);
 34
 35/* The Niagara2 RNG provides a 64-bit read-only random number
 36 * register, plus a control register.  Access to the RNG is
 37 * virtualized through the hypervisor so that both guests and control
 38 * nodes can access the device.
 39 *
 40 * The entropy source consists of raw entropy sources, each
 41 * constructed from a voltage controlled oscillator whose phase is
 42 * jittered by thermal noise sources.
 43 *
 44 * The oscillator in each of the three raw entropy sources run at
 45 * different frequencies.  Normally, all three generator outputs are
 46 * gathered, xored together, and fed into a CRC circuit, the output of
 47 * which is the 64-bit read-only register.
 48 *
 49 * Some time is necessary for all the necessary entropy to build up
 50 * such that a full 64-bits of entropy are available in the register.
 51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
 52 * an interlock which blocks register reads until sufficient entropy
 53 * is available.
 54 *
 55 * A control register is provided for adjusting various aspects of RNG
 56 * operation, and to enable diagnostic modes.  Each of the three raw
 57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
 58 * provided are fields for controlling the minimum time in cycles
 59 * between read accesses to the register (RNG_CTL_WAIT, this controls
 60 * the interlock described in the previous paragraph).
 61 *
 62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
 63 * all three entropy sources enabled, and the interlock time set
 64 * appropriately.
 65 *
 66 * The CRC polynomial used by the chip is:
 67 *
 68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
 69 *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
 70 *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
 71 *
 72 * The RNG_CTL_VCO value of each noise cell must be programmed
 73 * separately.  This is why 4 control register values must be provided
 74 * to the hypervisor.  During a write, the hypervisor writes them all,
 75 * one at a time, to the actual RNG_CTL register.  The first three
 76 * values are used to setup the desired RNG_CTL_VCO for each entropy
 77 * source, for example:
 78 *
 79 *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
 80 *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
 81 *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
 82 *
 83 * And then the fourth value sets the final chip state and enables
 84 * desired.
 85 */
 86
 87static int n2rng_hv_err_trans(unsigned long hv_err)
 88{
 89	switch (hv_err) {
 90	case HV_EOK:
 91		return 0;
 92	case HV_EWOULDBLOCK:
 93		return -EAGAIN;
 94	case HV_ENOACCESS:
 95		return -EPERM;
 96	case HV_EIO:
 97		return -EIO;
 98	case HV_EBUSY:
 99		return -EBUSY;
100	case HV_EBADALIGN:
101	case HV_ENORADDR:
102		return -EFAULT;
103	default:
104		return -EINVAL;
105	}
106}
107
108static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109						   unsigned long unit)
110{
111	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112	int block = 0, busy = 0;
113
114	while (1) {
115		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116					       &ticks,
117					       &watchdog_delta,
118					       &watchdog_status);
119		if (hv_err == HV_EOK)
120			break;
121
122		if (hv_err == HV_EBUSY) {
123			if (++busy >= N2RNG_BUSY_LIMIT)
124				break;
125
126			udelay(1);
127		} else if (hv_err == HV_EWOULDBLOCK) {
128			if (++block >= N2RNG_BLOCK_LIMIT)
129				break;
130
131			__delay(ticks);
132		} else
133			break;
134	}
135
136	return hv_err;
137}
138
139/* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
142 *
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
145 */
146static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147{
148	unsigned long ra = __pa(&np->scratch_control[0]);
149
150	return n2rng_generic_read_control_v2(ra, unit);
151}
152
153static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154					 unsigned long state,
155					 unsigned long control_ra,
156					 unsigned long watchdog_timeout,
157					 unsigned long *ticks)
158{
159	unsigned long hv_err;
160
161	if (np->hvapi_major == 1) {
162		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163						watchdog_timeout, ticks);
164	} else {
165		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166						watchdog_timeout, unit);
167		if (hv_err == HV_EOK)
168			hv_err = n2rng_control_settle_v2(np, unit);
169		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170	}
171
172	return hv_err;
173}
174
175static int n2rng_generic_read_data(unsigned long data_ra)
176{
177	unsigned long ticks, hv_err;
178	int block = 0, hcheck = 0;
179
180	while (1) {
181		hv_err = sun4v_rng_data_read(data_ra, &ticks);
182		if (hv_err == HV_EOK)
183			return 0;
184
185		if (hv_err == HV_EWOULDBLOCK) {
186			if (++block >= N2RNG_BLOCK_LIMIT)
187				return -EWOULDBLOCK;
188			__delay(ticks);
189		} else if (hv_err == HV_ENOACCESS) {
190			return -EPERM;
191		} else if (hv_err == HV_EIO) {
192			if (++hcheck >= N2RNG_HCHECK_LIMIT)
193				return -EIO;
194			udelay(10000);
195		} else
196			return -ENODEV;
197	}
198}
199
200static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201					      unsigned long unit,
202					      unsigned long data_ra,
203					      unsigned long data_len,
204					      unsigned long *ticks)
205{
206	unsigned long hv_err;
207
208	if (np->hvapi_major == 1) {
209		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210	} else {
211		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212						     unit, ticks);
213		if (!*ticks)
214			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215	}
216	return hv_err;
217}
218
219static int n2rng_generic_read_diag_data(struct n2rng *np,
220					unsigned long unit,
221					unsigned long data_ra,
222					unsigned long data_len)
223{
224	unsigned long ticks, hv_err;
225	int block = 0;
226
227	while (1) {
228		hv_err = n2rng_read_diag_data_one(np, unit,
229						  data_ra, data_len,
230						  &ticks);
231		if (hv_err == HV_EOK)
232			return 0;
233
234		if (hv_err == HV_EWOULDBLOCK) {
235			if (++block >= N2RNG_BLOCK_LIMIT)
236				return -EWOULDBLOCK;
237			__delay(ticks);
238		} else if (hv_err == HV_ENOACCESS) {
239			return -EPERM;
240		} else if (hv_err == HV_EIO) {
241			return -EIO;
242		} else
243			return -ENODEV;
244	}
245}
246
247
248static int n2rng_generic_write_control(struct n2rng *np,
249				       unsigned long control_ra,
250				       unsigned long unit,
251				       unsigned long state)
252{
253	unsigned long hv_err, ticks;
254	int block = 0, busy = 0;
255
256	while (1) {
257		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258					     np->wd_timeo, &ticks);
259		if (hv_err == HV_EOK)
260			return 0;
261
262		if (hv_err == HV_EWOULDBLOCK) {
263			if (++block >= N2RNG_BLOCK_LIMIT)
264				return -EWOULDBLOCK;
265			__delay(ticks);
266		} else if (hv_err == HV_EBUSY) {
267			if (++busy >= N2RNG_BUSY_LIMIT)
268				return -EBUSY;
269			udelay(1);
270		} else
271			return -ENODEV;
272	}
273}
274
275/* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
277 */
278static int n2rng_try_read_ctl(struct n2rng *np)
279{
280	unsigned long hv_err;
281	unsigned long x;
282
283	if (np->hvapi_major == 1) {
284		hv_err = sun4v_rng_get_diag_ctl();
285	} else {
286		/* We purposefully give invalid arguments, HV_NOACCESS
287		 * is higher priority than the errors we'd get from
288		 * these other cases, and that's the error we are
289		 * truly interested in.
290		 */
291		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292		switch (hv_err) {
293		case HV_EWOULDBLOCK:
294		case HV_ENOACCESS:
295			break;
296		default:
297			hv_err = HV_EOK;
298			break;
299		}
300	}
301
302	return n2rng_hv_err_trans(hv_err);
303}
304
305#define CONTROL_DEFAULT_BASE		\
306	((2 << RNG_CTL_ASEL_SHIFT) |	\
307	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
308	 RNG_CTL_LFSR)
309
310#define CONTROL_DEFAULT_0		\
311	(CONTROL_DEFAULT_BASE |		\
312	 (1 << RNG_CTL_VCO_SHIFT) |	\
313	 RNG_CTL_ES1)
314#define CONTROL_DEFAULT_1		\
315	(CONTROL_DEFAULT_BASE |		\
316	 (2 << RNG_CTL_VCO_SHIFT) |	\
317	 RNG_CTL_ES2)
318#define CONTROL_DEFAULT_2		\
319	(CONTROL_DEFAULT_BASE |		\
320	 (3 << RNG_CTL_VCO_SHIFT) |	\
321	 RNG_CTL_ES3)
322#define CONTROL_DEFAULT_3		\
323	(CONTROL_DEFAULT_BASE |		\
324	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
325
326static void n2rng_control_swstate_init(struct n2rng *np)
327{
328	int i;
329
330	np->flags |= N2RNG_FLAG_CONTROL;
331
332	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
335
336	for (i = 0; i < np->num_units; i++) {
337		struct n2rng_unit *up = &np->units[i];
338
339		up->control[0] = CONTROL_DEFAULT_0;
340		up->control[1] = CONTROL_DEFAULT_1;
341		up->control[2] = CONTROL_DEFAULT_2;
342		up->control[3] = CONTROL_DEFAULT_3;
343	}
344
345	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
346}
347
348static int n2rng_grab_diag_control(struct n2rng *np)
349{
350	int i, busy_count, err = -ENODEV;
351
352	busy_count = 0;
353	for (i = 0; i < 100; i++) {
354		err = n2rng_try_read_ctl(np);
355		if (err != -EAGAIN)
356			break;
357
358		if (++busy_count > 100) {
359			dev_err(&np->op->dev,
360				"Grab diag control timeout.\n");
361			return -ENODEV;
362		}
363
364		udelay(1);
365	}
366
367	return err;
368}
369
370static int n2rng_init_control(struct n2rng *np)
371{
372	int err = n2rng_grab_diag_control(np);
373
374	/* Not in the control domain, that's OK we are only a consumer
375	 * of the RNG data, we don't setup and program it.
376	 */
377	if (err == -EPERM)
378		return 0;
379	if (err)
380		return err;
381
382	n2rng_control_swstate_init(np);
383
384	return 0;
385}
386
387static int n2rng_data_read(struct hwrng *rng, u32 *data)
388{
389	struct n2rng *np = (struct n2rng *) rng->priv;
390	unsigned long ra = __pa(&np->test_data);
391	int len;
392
393	if (!(np->flags & N2RNG_FLAG_READY)) {
394		len = 0;
395	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397		*data = np->buffer;
398		len = 4;
399	} else {
400		int err = n2rng_generic_read_data(ra);
401		if (!err) {
402			np->buffer = np->test_data >> 32;
403			*data = np->test_data & 0xffffffff;
404			len = 4;
405		} else {
406			dev_err(&np->op->dev, "RNG error, restesting\n");
407			np->flags &= ~N2RNG_FLAG_READY;
408			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409				schedule_delayed_work(&np->work, 0);
410			len = 0;
411		}
412	}
413
414	return len;
415}
416
417/* On a guest node, just make sure we can read random data properly.
418 * If a control node reboots or reloads it's n2rng driver, this won't
419 * work during that time.  So we have to keep probing until the device
420 * becomes usable.
421 */
422static int n2rng_guest_check(struct n2rng *np)
423{
424	unsigned long ra = __pa(&np->test_data);
425
426	return n2rng_generic_read_data(ra);
427}
428
429static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430				   u64 *pre_control, u64 pre_state,
431				   u64 *buffer, unsigned long buf_len,
432				   u64 *post_control, u64 post_state)
433{
434	unsigned long post_ctl_ra = __pa(post_control);
435	unsigned long pre_ctl_ra = __pa(pre_control);
436	unsigned long buffer_ra = __pa(buffer);
437	int err;
438
439	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440	if (err)
441		return err;
442
443	err = n2rng_generic_read_diag_data(np, unit,
444					   buffer_ra, buf_len);
445
446	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447					   post_state);
448
449	return err;
450}
451
452static u64 advance_polynomial(u64 poly, u64 val, int count)
453{
454	int i;
455
456	for (i = 0; i < count; i++) {
457		int highbit_set = ((s64)val < 0);
458
459		val <<= 1;
460		if (highbit_set)
461			val ^= poly;
462	}
463
464	return val;
465}
466
467static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
468{
469	int i, count = 0;
470
471	/* Purposefully skip over the first word.  */
472	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473		if (np->test_buffer[i] == val)
474			count++;
475	}
476	return count;
477}
478
479static void n2rng_dump_test_buffer(struct n2rng *np)
480{
481	int i;
482
483	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485			i, np->test_buffer[i]);
486}
487
488static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
489{
490	u64 val = SELFTEST_VAL;
491	int err, matches, limit;
492
493	matches = 0;
494	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495		matches += n2rng_test_buffer_find(np, val);
496		if (matches >= SELFTEST_MATCH_GOAL)
497			break;
498		val = advance_polynomial(SELFTEST_POLY, val, 1);
499	}
500
501	err = 0;
502	if (limit >= SELFTEST_LOOPS_MAX) {
503		err = -ENODEV;
504		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505		n2rng_dump_test_buffer(np);
506	} else
507		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
508
509	return err;
510}
511
512static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
513{
514	int err;
515
516	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520			       RNG_CTL_LFSR |
521			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
522
523
524	err = n2rng_entropy_diag_read(np, unit, np->test_control,
525				      HV_RNG_STATE_HEALTHCHECK,
526				      np->test_buffer,
527				      sizeof(np->test_buffer),
528				      &np->units[unit].control[0],
529				      np->hv_state);
530	if (err)
531		return err;
532
533	return n2rng_check_selftest_buffer(np, unit);
534}
535
536static int n2rng_control_check(struct n2rng *np)
537{
538	int i;
539
540	for (i = 0; i < np->num_units; i++) {
541		int err = n2rng_control_selftest(np, i);
542		if (err)
543			return err;
544	}
545	return 0;
546}
547
548/* The sanity checks passed, install the final configuration into the
549 * chip, it's ready to use.
550 */
551static int n2rng_control_configure_units(struct n2rng *np)
552{
553	int unit, err;
554
555	err = 0;
556	for (unit = 0; unit < np->num_units; unit++) {
557		struct n2rng_unit *up = &np->units[unit];
558		unsigned long ctl_ra = __pa(&up->control[0]);
559		int esrc;
560		u64 base;
561
562		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563			(2 << RNG_CTL_ASEL_SHIFT) |
564			RNG_CTL_LFSR);
565
566		/* XXX This isn't the best.  We should fetch a bunch
567		 * XXX of words using each entropy source combined XXX
568		 * with each VCO setting, and see which combinations
569		 * XXX give the best random data.
570		 */
571		for (esrc = 0; esrc < 3; esrc++)
572			up->control[esrc] = base |
573				(esrc << RNG_CTL_VCO_SHIFT) |
574				(RNG_CTL_ES1 << esrc);
575
576		up->control[3] = base |
577			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
578
579		err = n2rng_generic_write_control(np, ctl_ra, unit,
580						  HV_RNG_STATE_CONFIGURED);
581		if (err)
582			break;
583	}
584
585	return err;
586}
587
588static void n2rng_work(struct work_struct *work)
589{
590	struct n2rng *np = container_of(work, struct n2rng, work.work);
591	int err = 0;
592
593	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594		err = n2rng_guest_check(np);
595	} else {
596		preempt_disable();
597		err = n2rng_control_check(np);
598		preempt_enable();
599
600		if (!err)
601			err = n2rng_control_configure_units(np);
602	}
603
604	if (!err) {
605		np->flags |= N2RNG_FLAG_READY;
606		dev_info(&np->op->dev, "RNG ready\n");
607	}
608
609	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
610		schedule_delayed_work(&np->work, HZ * 2);
611}
612
613static void n2rng_driver_version(void)
614{
615	static int n2rng_version_printed;
616
617	if (n2rng_version_printed++ == 0)
618		pr_info("%s", version);
619}
620
621static const struct of_device_id n2rng_match[];
622static int n2rng_probe(struct platform_device *op)
623{
624	const struct of_device_id *match;
625	int multi_capable;
626	int err = -ENOMEM;
627	struct n2rng *np;
628
629	match = of_match_device(n2rng_match, &op->dev);
630	if (!match)
631		return -EINVAL;
632	multi_capable = (match->data != NULL);
633
634	n2rng_driver_version();
635	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636	if (!np)
637		goto out;
638	np->op = op;
639
640	INIT_DELAYED_WORK(&np->work, n2rng_work);
641
642	if (multi_capable)
643		np->flags |= N2RNG_FLAG_MULTI;
644
645	err = -ENODEV;
646	np->hvapi_major = 2;
647	if (sun4v_hvapi_register(HV_GRP_RNG,
648				 np->hvapi_major,
649				 &np->hvapi_minor)) {
650		np->hvapi_major = 1;
651		if (sun4v_hvapi_register(HV_GRP_RNG,
652					 np->hvapi_major,
653					 &np->hvapi_minor)) {
654			dev_err(&op->dev, "Cannot register suitable "
655				"HVAPI version.\n");
656			goto out;
657		}
658	}
659
660	if (np->flags & N2RNG_FLAG_MULTI) {
661		if (np->hvapi_major < 2) {
662			dev_err(&op->dev, "multi-unit-capable RNG requires "
663				"HVAPI major version 2 or later, got %lu\n",
664				np->hvapi_major);
665			goto out_hvapi_unregister;
666		}
667		np->num_units = of_getintprop_default(op->dev.of_node,
668						      "rng-#units", 0);
669		if (!np->num_units) {
670			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671			goto out_hvapi_unregister;
672		}
673	} else
674		np->num_units = 1;
675
676	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677		 np->hvapi_major, np->hvapi_minor);
678
679	np->units = devm_kzalloc(&op->dev,
680				 sizeof(struct n2rng_unit) * np->num_units,
681				 GFP_KERNEL);
682	err = -ENOMEM;
683	if (!np->units)
684		goto out_hvapi_unregister;
685
686	err = n2rng_init_control(np);
687	if (err)
688		goto out_hvapi_unregister;
689
690	dev_info(&op->dev, "Found %s RNG, units: %d\n",
691		 ((np->flags & N2RNG_FLAG_MULTI) ?
692		  "multi-unit-capable" : "single-unit"),
693		 np->num_units);
694
695	np->hwrng.name = "n2rng";
696	np->hwrng.data_read = n2rng_data_read;
697	np->hwrng.priv = (unsigned long) np;
698
699	err = hwrng_register(&np->hwrng);
700	if (err)
701		goto out_hvapi_unregister;
702
703	platform_set_drvdata(op, np);
704
705	schedule_delayed_work(&np->work, 0);
706
707	return 0;
708
 
 
 
 
709out_hvapi_unregister:
710	sun4v_hvapi_unregister(HV_GRP_RNG);
711
 
 
712out:
713	return err;
714}
715
716static int n2rng_remove(struct platform_device *op)
717{
718	struct n2rng *np = platform_get_drvdata(op);
719
720	np->flags |= N2RNG_FLAG_SHUTDOWN;
721
722	cancel_delayed_work_sync(&np->work);
723
724	hwrng_unregister(&np->hwrng);
725
726	sun4v_hvapi_unregister(HV_GRP_RNG);
727
 
 
 
 
 
 
 
728	return 0;
729}
730
731static const struct of_device_id n2rng_match[] = {
732	{
733		.name		= "random-number-generator",
734		.compatible	= "SUNW,n2-rng",
735	},
736	{
737		.name		= "random-number-generator",
738		.compatible	= "SUNW,vf-rng",
739		.data		= (void *) 1,
740	},
741	{
742		.name		= "random-number-generator",
743		.compatible	= "SUNW,kt-rng",
744		.data		= (void *) 1,
745	},
746	{
747		.name		= "random-number-generator",
748		.compatible	= "ORCL,m4-rng",
749		.data		= (void *) 1,
750	},
751	{
752		.name		= "random-number-generator",
753		.compatible	= "ORCL,m7-rng",
754		.data		= (void *) 1,
755	},
756	{},
757};
758MODULE_DEVICE_TABLE(of, n2rng_match);
759
760static struct platform_driver n2rng_driver = {
761	.driver = {
762		.name = "n2rng",
 
763		.of_match_table = n2rng_match,
764	},
765	.probe		= n2rng_probe,
766	.remove		= n2rng_remove,
767};
768
769module_platform_driver(n2rng_driver);