Loading...
1/* n2-drv.c: Niagara-2 RNG driver.
2 *
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/delay.h>
10#include <linux/init.h>
11#include <linux/slab.h>
12#include <linux/workqueue.h>
13#include <linux/preempt.h>
14#include <linux/hw_random.h>
15
16#include <linux/of.h>
17#include <linux/of_device.h>
18
19#include <asm/hypervisor.h>
20
21#include "n2rng.h"
22
23#define DRV_MODULE_NAME "n2rng"
24#define PFX DRV_MODULE_NAME ": "
25#define DRV_MODULE_VERSION "0.2"
26#define DRV_MODULE_RELDATE "July 27, 2011"
27
28static char version[] __devinitdata =
29 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30
31MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32MODULE_DESCRIPTION("Niagara2 RNG driver");
33MODULE_LICENSE("GPL");
34MODULE_VERSION(DRV_MODULE_VERSION);
35
36/* The Niagara2 RNG provides a 64-bit read-only random number
37 * register, plus a control register. Access to the RNG is
38 * virtualized through the hypervisor so that both guests and control
39 * nodes can access the device.
40 *
41 * The entropy source consists of raw entropy sources, each
42 * constructed from a voltage controlled oscillator whose phase is
43 * jittered by thermal noise sources.
44 *
45 * The oscillator in each of the three raw entropy sources run at
46 * different frequencies. Normally, all three generator outputs are
47 * gathered, xored together, and fed into a CRC circuit, the output of
48 * which is the 64-bit read-only register.
49 *
50 * Some time is necessary for all the necessary entropy to build up
51 * such that a full 64-bits of entropy are available in the register.
52 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53 * an interlock which blocks register reads until sufficient entropy
54 * is available.
55 *
56 * A control register is provided for adjusting various aspects of RNG
57 * operation, and to enable diagnostic modes. Each of the three raw
58 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
59 * provided are fields for controlling the minimum time in cycles
60 * between read accesses to the register (RNG_CTL_WAIT, this controls
61 * the interlock described in the previous paragraph).
62 *
63 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64 * all three entropy sources enabled, and the interlock time set
65 * appropriately.
66 *
67 * The CRC polynomial used by the chip is:
68 *
69 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72 *
73 * The RNG_CTL_VCO value of each noise cell must be programmed
74 * separately. This is why 4 control register values must be provided
75 * to the hypervisor. During a write, the hypervisor writes them all,
76 * one at a time, to the actual RNG_CTL register. The first three
77 * values are used to setup the desired RNG_CTL_VCO for each entropy
78 * source, for example:
79 *
80 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83 *
84 * And then the fourth value sets the final chip state and enables
85 * desired.
86 */
87
88static int n2rng_hv_err_trans(unsigned long hv_err)
89{
90 switch (hv_err) {
91 case HV_EOK:
92 return 0;
93 case HV_EWOULDBLOCK:
94 return -EAGAIN;
95 case HV_ENOACCESS:
96 return -EPERM;
97 case HV_EIO:
98 return -EIO;
99 case HV_EBUSY:
100 return -EBUSY;
101 case HV_EBADALIGN:
102 case HV_ENORADDR:
103 return -EFAULT;
104 default:
105 return -EINVAL;
106 }
107}
108
109static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110 unsigned long unit)
111{
112 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113 int block = 0, busy = 0;
114
115 while (1) {
116 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117 &ticks,
118 &watchdog_delta,
119 &watchdog_status);
120 if (hv_err == HV_EOK)
121 break;
122
123 if (hv_err == HV_EBUSY) {
124 if (++busy >= N2RNG_BUSY_LIMIT)
125 break;
126
127 udelay(1);
128 } else if (hv_err == HV_EWOULDBLOCK) {
129 if (++block >= N2RNG_BLOCK_LIMIT)
130 break;
131
132 __delay(ticks);
133 } else
134 break;
135 }
136
137 return hv_err;
138}
139
140/* In multi-socket situations, the hypervisor might need to
141 * queue up the RNG control register write if it's for a unit
142 * that is on a cpu socket other than the one we are executing on.
143 *
144 * We poll here waiting for a successful read of that control
145 * register to make sure the write has been actually performed.
146 */
147static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148{
149 unsigned long ra = __pa(&np->scratch_control[0]);
150
151 return n2rng_generic_read_control_v2(ra, unit);
152}
153
154static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155 unsigned long state,
156 unsigned long control_ra,
157 unsigned long watchdog_timeout,
158 unsigned long *ticks)
159{
160 unsigned long hv_err;
161
162 if (np->hvapi_major == 1) {
163 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164 watchdog_timeout, ticks);
165 } else {
166 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167 watchdog_timeout, unit);
168 if (hv_err == HV_EOK)
169 hv_err = n2rng_control_settle_v2(np, unit);
170 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171 }
172
173 return hv_err;
174}
175
176static int n2rng_generic_read_data(unsigned long data_ra)
177{
178 unsigned long ticks, hv_err;
179 int block = 0, hcheck = 0;
180
181 while (1) {
182 hv_err = sun4v_rng_data_read(data_ra, &ticks);
183 if (hv_err == HV_EOK)
184 return 0;
185
186 if (hv_err == HV_EWOULDBLOCK) {
187 if (++block >= N2RNG_BLOCK_LIMIT)
188 return -EWOULDBLOCK;
189 __delay(ticks);
190 } else if (hv_err == HV_ENOACCESS) {
191 return -EPERM;
192 } else if (hv_err == HV_EIO) {
193 if (++hcheck >= N2RNG_HCHECK_LIMIT)
194 return -EIO;
195 udelay(10000);
196 } else
197 return -ENODEV;
198 }
199}
200
201static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202 unsigned long unit,
203 unsigned long data_ra,
204 unsigned long data_len,
205 unsigned long *ticks)
206{
207 unsigned long hv_err;
208
209 if (np->hvapi_major == 1) {
210 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211 } else {
212 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213 unit, ticks);
214 if (!*ticks)
215 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 }
217 return hv_err;
218}
219
220static int n2rng_generic_read_diag_data(struct n2rng *np,
221 unsigned long unit,
222 unsigned long data_ra,
223 unsigned long data_len)
224{
225 unsigned long ticks, hv_err;
226 int block = 0;
227
228 while (1) {
229 hv_err = n2rng_read_diag_data_one(np, unit,
230 data_ra, data_len,
231 &ticks);
232 if (hv_err == HV_EOK)
233 return 0;
234
235 if (hv_err == HV_EWOULDBLOCK) {
236 if (++block >= N2RNG_BLOCK_LIMIT)
237 return -EWOULDBLOCK;
238 __delay(ticks);
239 } else if (hv_err == HV_ENOACCESS) {
240 return -EPERM;
241 } else if (hv_err == HV_EIO) {
242 return -EIO;
243 } else
244 return -ENODEV;
245 }
246}
247
248
249static int n2rng_generic_write_control(struct n2rng *np,
250 unsigned long control_ra,
251 unsigned long unit,
252 unsigned long state)
253{
254 unsigned long hv_err, ticks;
255 int block = 0, busy = 0;
256
257 while (1) {
258 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259 np->wd_timeo, &ticks);
260 if (hv_err == HV_EOK)
261 return 0;
262
263 if (hv_err == HV_EWOULDBLOCK) {
264 if (++block >= N2RNG_BLOCK_LIMIT)
265 return -EWOULDBLOCK;
266 __delay(ticks);
267 } else if (hv_err == HV_EBUSY) {
268 if (++busy >= N2RNG_BUSY_LIMIT)
269 return -EBUSY;
270 udelay(1);
271 } else
272 return -ENODEV;
273 }
274}
275
276/* Just try to see if we can successfully access the control register
277 * of the RNG on the domain on which we are currently executing.
278 */
279static int n2rng_try_read_ctl(struct n2rng *np)
280{
281 unsigned long hv_err;
282 unsigned long x;
283
284 if (np->hvapi_major == 1) {
285 hv_err = sun4v_rng_get_diag_ctl();
286 } else {
287 /* We purposefully give invalid arguments, HV_NOACCESS
288 * is higher priority than the errors we'd get from
289 * these other cases, and that's the error we are
290 * truly interested in.
291 */
292 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293 switch (hv_err) {
294 case HV_EWOULDBLOCK:
295 case HV_ENOACCESS:
296 break;
297 default:
298 hv_err = HV_EOK;
299 break;
300 }
301 }
302
303 return n2rng_hv_err_trans(hv_err);
304}
305
306#define CONTROL_DEFAULT_BASE \
307 ((2 << RNG_CTL_ASEL_SHIFT) | \
308 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
309 RNG_CTL_LFSR)
310
311#define CONTROL_DEFAULT_0 \
312 (CONTROL_DEFAULT_BASE | \
313 (1 << RNG_CTL_VCO_SHIFT) | \
314 RNG_CTL_ES1)
315#define CONTROL_DEFAULT_1 \
316 (CONTROL_DEFAULT_BASE | \
317 (2 << RNG_CTL_VCO_SHIFT) | \
318 RNG_CTL_ES2)
319#define CONTROL_DEFAULT_2 \
320 (CONTROL_DEFAULT_BASE | \
321 (3 << RNG_CTL_VCO_SHIFT) | \
322 RNG_CTL_ES3)
323#define CONTROL_DEFAULT_3 \
324 (CONTROL_DEFAULT_BASE | \
325 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
326
327static void n2rng_control_swstate_init(struct n2rng *np)
328{
329 int i;
330
331 np->flags |= N2RNG_FLAG_CONTROL;
332
333 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
334 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
335 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
336
337 for (i = 0; i < np->num_units; i++) {
338 struct n2rng_unit *up = &np->units[i];
339
340 up->control[0] = CONTROL_DEFAULT_0;
341 up->control[1] = CONTROL_DEFAULT_1;
342 up->control[2] = CONTROL_DEFAULT_2;
343 up->control[3] = CONTROL_DEFAULT_3;
344 }
345
346 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
347}
348
349static int n2rng_grab_diag_control(struct n2rng *np)
350{
351 int i, busy_count, err = -ENODEV;
352
353 busy_count = 0;
354 for (i = 0; i < 100; i++) {
355 err = n2rng_try_read_ctl(np);
356 if (err != -EAGAIN)
357 break;
358
359 if (++busy_count > 100) {
360 dev_err(&np->op->dev,
361 "Grab diag control timeout.\n");
362 return -ENODEV;
363 }
364
365 udelay(1);
366 }
367
368 return err;
369}
370
371static int n2rng_init_control(struct n2rng *np)
372{
373 int err = n2rng_grab_diag_control(np);
374
375 /* Not in the control domain, that's OK we are only a consumer
376 * of the RNG data, we don't setup and program it.
377 */
378 if (err == -EPERM)
379 return 0;
380 if (err)
381 return err;
382
383 n2rng_control_swstate_init(np);
384
385 return 0;
386}
387
388static int n2rng_data_read(struct hwrng *rng, u32 *data)
389{
390 struct n2rng *np = (struct n2rng *) rng->priv;
391 unsigned long ra = __pa(&np->test_data);
392 int len;
393
394 if (!(np->flags & N2RNG_FLAG_READY)) {
395 len = 0;
396 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
397 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
398 *data = np->buffer;
399 len = 4;
400 } else {
401 int err = n2rng_generic_read_data(ra);
402 if (!err) {
403 np->buffer = np->test_data >> 32;
404 *data = np->test_data & 0xffffffff;
405 len = 4;
406 } else {
407 dev_err(&np->op->dev, "RNG error, restesting\n");
408 np->flags &= ~N2RNG_FLAG_READY;
409 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
410 schedule_delayed_work(&np->work, 0);
411 len = 0;
412 }
413 }
414
415 return len;
416}
417
418/* On a guest node, just make sure we can read random data properly.
419 * If a control node reboots or reloads it's n2rng driver, this won't
420 * work during that time. So we have to keep probing until the device
421 * becomes usable.
422 */
423static int n2rng_guest_check(struct n2rng *np)
424{
425 unsigned long ra = __pa(&np->test_data);
426
427 return n2rng_generic_read_data(ra);
428}
429
430static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
431 u64 *pre_control, u64 pre_state,
432 u64 *buffer, unsigned long buf_len,
433 u64 *post_control, u64 post_state)
434{
435 unsigned long post_ctl_ra = __pa(post_control);
436 unsigned long pre_ctl_ra = __pa(pre_control);
437 unsigned long buffer_ra = __pa(buffer);
438 int err;
439
440 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
441 if (err)
442 return err;
443
444 err = n2rng_generic_read_diag_data(np, unit,
445 buffer_ra, buf_len);
446
447 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
448 post_state);
449
450 return err;
451}
452
453static u64 advance_polynomial(u64 poly, u64 val, int count)
454{
455 int i;
456
457 for (i = 0; i < count; i++) {
458 int highbit_set = ((s64)val < 0);
459
460 val <<= 1;
461 if (highbit_set)
462 val ^= poly;
463 }
464
465 return val;
466}
467
468static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
469{
470 int i, count = 0;
471
472 /* Purposefully skip over the first word. */
473 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
474 if (np->test_buffer[i] == val)
475 count++;
476 }
477 return count;
478}
479
480static void n2rng_dump_test_buffer(struct n2rng *np)
481{
482 int i;
483
484 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
485 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
486 i, np->test_buffer[i]);
487}
488
489static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
490{
491 u64 val = SELFTEST_VAL;
492 int err, matches, limit;
493
494 matches = 0;
495 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
496 matches += n2rng_test_buffer_find(np, val);
497 if (matches >= SELFTEST_MATCH_GOAL)
498 break;
499 val = advance_polynomial(SELFTEST_POLY, val, 1);
500 }
501
502 err = 0;
503 if (limit >= SELFTEST_LOOPS_MAX) {
504 err = -ENODEV;
505 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
506 n2rng_dump_test_buffer(np);
507 } else
508 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
509
510 return err;
511}
512
513static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
514{
515 int err;
516
517 np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
520 np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
521 RNG_CTL_LFSR |
522 ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
523
524
525 err = n2rng_entropy_diag_read(np, unit, np->test_control,
526 HV_RNG_STATE_HEALTHCHECK,
527 np->test_buffer,
528 sizeof(np->test_buffer),
529 &np->units[unit].control[0],
530 np->hv_state);
531 if (err)
532 return err;
533
534 return n2rng_check_selftest_buffer(np, unit);
535}
536
537static int n2rng_control_check(struct n2rng *np)
538{
539 int i;
540
541 for (i = 0; i < np->num_units; i++) {
542 int err = n2rng_control_selftest(np, i);
543 if (err)
544 return err;
545 }
546 return 0;
547}
548
549/* The sanity checks passed, install the final configuration into the
550 * chip, it's ready to use.
551 */
552static int n2rng_control_configure_units(struct n2rng *np)
553{
554 int unit, err;
555
556 err = 0;
557 for (unit = 0; unit < np->num_units; unit++) {
558 struct n2rng_unit *up = &np->units[unit];
559 unsigned long ctl_ra = __pa(&up->control[0]);
560 int esrc;
561 u64 base;
562
563 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
564 (2 << RNG_CTL_ASEL_SHIFT) |
565 RNG_CTL_LFSR);
566
567 /* XXX This isn't the best. We should fetch a bunch
568 * XXX of words using each entropy source combined XXX
569 * with each VCO setting, and see which combinations
570 * XXX give the best random data.
571 */
572 for (esrc = 0; esrc < 3; esrc++)
573 up->control[esrc] = base |
574 (esrc << RNG_CTL_VCO_SHIFT) |
575 (RNG_CTL_ES1 << esrc);
576
577 up->control[3] = base |
578 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
579
580 err = n2rng_generic_write_control(np, ctl_ra, unit,
581 HV_RNG_STATE_CONFIGURED);
582 if (err)
583 break;
584 }
585
586 return err;
587}
588
589static void n2rng_work(struct work_struct *work)
590{
591 struct n2rng *np = container_of(work, struct n2rng, work.work);
592 int err = 0;
593
594 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
595 err = n2rng_guest_check(np);
596 } else {
597 preempt_disable();
598 err = n2rng_control_check(np);
599 preempt_enable();
600
601 if (!err)
602 err = n2rng_control_configure_units(np);
603 }
604
605 if (!err) {
606 np->flags |= N2RNG_FLAG_READY;
607 dev_info(&np->op->dev, "RNG ready\n");
608 }
609
610 if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
611 schedule_delayed_work(&np->work, HZ * 2);
612}
613
614static void __devinit n2rng_driver_version(void)
615{
616 static int n2rng_version_printed;
617
618 if (n2rng_version_printed++ == 0)
619 pr_info("%s", version);
620}
621
622static const struct of_device_id n2rng_match[];
623static int __devinit n2rng_probe(struct platform_device *op)
624{
625 const struct of_device_id *match;
626 int multi_capable;
627 int err = -ENOMEM;
628 struct n2rng *np;
629
630 match = of_match_device(n2rng_match, &op->dev);
631 if (!match)
632 return -EINVAL;
633 multi_capable = (match->data != NULL);
634
635 n2rng_driver_version();
636 np = kzalloc(sizeof(*np), GFP_KERNEL);
637 if (!np)
638 goto out;
639 np->op = op;
640
641 INIT_DELAYED_WORK(&np->work, n2rng_work);
642
643 if (multi_capable)
644 np->flags |= N2RNG_FLAG_MULTI;
645
646 err = -ENODEV;
647 np->hvapi_major = 2;
648 if (sun4v_hvapi_register(HV_GRP_RNG,
649 np->hvapi_major,
650 &np->hvapi_minor)) {
651 np->hvapi_major = 1;
652 if (sun4v_hvapi_register(HV_GRP_RNG,
653 np->hvapi_major,
654 &np->hvapi_minor)) {
655 dev_err(&op->dev, "Cannot register suitable "
656 "HVAPI version.\n");
657 goto out_free;
658 }
659 }
660
661 if (np->flags & N2RNG_FLAG_MULTI) {
662 if (np->hvapi_major < 2) {
663 dev_err(&op->dev, "multi-unit-capable RNG requires "
664 "HVAPI major version 2 or later, got %lu\n",
665 np->hvapi_major);
666 goto out_hvapi_unregister;
667 }
668 np->num_units = of_getintprop_default(op->dev.of_node,
669 "rng-#units", 0);
670 if (!np->num_units) {
671 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
672 goto out_hvapi_unregister;
673 }
674 } else
675 np->num_units = 1;
676
677 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
678 np->hvapi_major, np->hvapi_minor);
679
680 np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
681 GFP_KERNEL);
682 err = -ENOMEM;
683 if (!np->units)
684 goto out_hvapi_unregister;
685
686 err = n2rng_init_control(np);
687 if (err)
688 goto out_free_units;
689
690 dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 ((np->flags & N2RNG_FLAG_MULTI) ?
692 "multi-unit-capable" : "single-unit"),
693 np->num_units);
694
695 np->hwrng.name = "n2rng";
696 np->hwrng.data_read = n2rng_data_read;
697 np->hwrng.priv = (unsigned long) np;
698
699 err = hwrng_register(&np->hwrng);
700 if (err)
701 goto out_free_units;
702
703 dev_set_drvdata(&op->dev, np);
704
705 schedule_delayed_work(&np->work, 0);
706
707 return 0;
708
709out_free_units:
710 kfree(np->units);
711 np->units = NULL;
712
713out_hvapi_unregister:
714 sun4v_hvapi_unregister(HV_GRP_RNG);
715
716out_free:
717 kfree(np);
718out:
719 return err;
720}
721
722static int __devexit n2rng_remove(struct platform_device *op)
723{
724 struct n2rng *np = dev_get_drvdata(&op->dev);
725
726 np->flags |= N2RNG_FLAG_SHUTDOWN;
727
728 cancel_delayed_work_sync(&np->work);
729
730 hwrng_unregister(&np->hwrng);
731
732 sun4v_hvapi_unregister(HV_GRP_RNG);
733
734 kfree(np->units);
735 np->units = NULL;
736
737 kfree(np);
738
739 dev_set_drvdata(&op->dev, NULL);
740
741 return 0;
742}
743
744static const struct of_device_id n2rng_match[] = {
745 {
746 .name = "random-number-generator",
747 .compatible = "SUNW,n2-rng",
748 },
749 {
750 .name = "random-number-generator",
751 .compatible = "SUNW,vf-rng",
752 .data = (void *) 1,
753 },
754 {
755 .name = "random-number-generator",
756 .compatible = "SUNW,kt-rng",
757 .data = (void *) 1,
758 },
759 {},
760};
761MODULE_DEVICE_TABLE(of, n2rng_match);
762
763static struct platform_driver n2rng_driver = {
764 .driver = {
765 .name = "n2rng",
766 .owner = THIS_MODULE,
767 .of_match_table = n2rng_match,
768 },
769 .probe = n2rng_probe,
770 .remove = __devexit_p(n2rng_remove),
771};
772
773static int __init n2rng_init(void)
774{
775 return platform_driver_register(&n2rng_driver);
776}
777
778static void __exit n2rng_exit(void)
779{
780 platform_driver_unregister(&n2rng_driver);
781}
782
783module_init(n2rng_init);
784module_exit(n2rng_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/* n2-drv.c: Niagara-2 RNG driver.
3 *
4 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/types.h>
10#include <linux/delay.h>
11#include <linux/slab.h>
12#include <linux/workqueue.h>
13#include <linux/preempt.h>
14#include <linux/hw_random.h>
15
16#include <linux/of.h>
17#include <linux/platform_device.h>
18#include <linux/property.h>
19
20#include <asm/hypervisor.h>
21
22#include "n2rng.h"
23
24#define DRV_MODULE_NAME "n2rng"
25#define PFX DRV_MODULE_NAME ": "
26#define DRV_MODULE_VERSION "0.3"
27#define DRV_MODULE_RELDATE "Jan 7, 2017"
28
29static char version[] =
30 DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
31
32MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
33MODULE_DESCRIPTION("Niagara2 RNG driver");
34MODULE_LICENSE("GPL");
35MODULE_VERSION(DRV_MODULE_VERSION);
36
37/* The Niagara2 RNG provides a 64-bit read-only random number
38 * register, plus a control register. Access to the RNG is
39 * virtualized through the hypervisor so that both guests and control
40 * nodes can access the device.
41 *
42 * The entropy source consists of raw entropy sources, each
43 * constructed from a voltage controlled oscillator whose phase is
44 * jittered by thermal noise sources.
45 *
46 * The oscillator in each of the three raw entropy sources run at
47 * different frequencies. Normally, all three generator outputs are
48 * gathered, xored together, and fed into a CRC circuit, the output of
49 * which is the 64-bit read-only register.
50 *
51 * Some time is necessary for all the necessary entropy to build up
52 * such that a full 64-bits of entropy are available in the register.
53 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
54 * an interlock which blocks register reads until sufficient entropy
55 * is available.
56 *
57 * A control register is provided for adjusting various aspects of RNG
58 * operation, and to enable diagnostic modes. Each of the three raw
59 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
60 * provided are fields for controlling the minimum time in cycles
61 * between read accesses to the register (RNG_CTL_WAIT, this controls
62 * the interlock described in the previous paragraph).
63 *
64 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
65 * all three entropy sources enabled, and the interlock time set
66 * appropriately.
67 *
68 * The CRC polynomial used by the chip is:
69 *
70 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
71 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
72 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
73 *
74 * The RNG_CTL_VCO value of each noise cell must be programmed
75 * separately. This is why 4 control register values must be provided
76 * to the hypervisor. During a write, the hypervisor writes them all,
77 * one at a time, to the actual RNG_CTL register. The first three
78 * values are used to setup the desired RNG_CTL_VCO for each entropy
79 * source, for example:
80 *
81 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
82 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
83 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
84 *
85 * And then the fourth value sets the final chip state and enables
86 * desired.
87 */
88
89static int n2rng_hv_err_trans(unsigned long hv_err)
90{
91 switch (hv_err) {
92 case HV_EOK:
93 return 0;
94 case HV_EWOULDBLOCK:
95 return -EAGAIN;
96 case HV_ENOACCESS:
97 return -EPERM;
98 case HV_EIO:
99 return -EIO;
100 case HV_EBUSY:
101 return -EBUSY;
102 case HV_EBADALIGN:
103 case HV_ENORADDR:
104 return -EFAULT;
105 default:
106 return -EINVAL;
107 }
108}
109
110static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
111 unsigned long unit)
112{
113 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
114 int block = 0, busy = 0;
115
116 while (1) {
117 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
118 &ticks,
119 &watchdog_delta,
120 &watchdog_status);
121 if (hv_err == HV_EOK)
122 break;
123
124 if (hv_err == HV_EBUSY) {
125 if (++busy >= N2RNG_BUSY_LIMIT)
126 break;
127
128 udelay(1);
129 } else if (hv_err == HV_EWOULDBLOCK) {
130 if (++block >= N2RNG_BLOCK_LIMIT)
131 break;
132
133 __delay(ticks);
134 } else
135 break;
136 }
137
138 return hv_err;
139}
140
141/* In multi-socket situations, the hypervisor might need to
142 * queue up the RNG control register write if it's for a unit
143 * that is on a cpu socket other than the one we are executing on.
144 *
145 * We poll here waiting for a successful read of that control
146 * register to make sure the write has been actually performed.
147 */
148static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
149{
150 unsigned long ra = __pa(&np->scratch_control[0]);
151
152 return n2rng_generic_read_control_v2(ra, unit);
153}
154
155static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
156 unsigned long state,
157 unsigned long control_ra,
158 unsigned long watchdog_timeout,
159 unsigned long *ticks)
160{
161 unsigned long hv_err;
162
163 if (np->hvapi_major == 1) {
164 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
165 watchdog_timeout, ticks);
166 } else {
167 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
168 watchdog_timeout, unit);
169 if (hv_err == HV_EOK)
170 hv_err = n2rng_control_settle_v2(np, unit);
171 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
172 }
173
174 return hv_err;
175}
176
177static int n2rng_generic_read_data(unsigned long data_ra)
178{
179 unsigned long ticks, hv_err;
180 int block = 0, hcheck = 0;
181
182 while (1) {
183 hv_err = sun4v_rng_data_read(data_ra, &ticks);
184 if (hv_err == HV_EOK)
185 return 0;
186
187 if (hv_err == HV_EWOULDBLOCK) {
188 if (++block >= N2RNG_BLOCK_LIMIT)
189 return -EWOULDBLOCK;
190 __delay(ticks);
191 } else if (hv_err == HV_ENOACCESS) {
192 return -EPERM;
193 } else if (hv_err == HV_EIO) {
194 if (++hcheck >= N2RNG_HCHECK_LIMIT)
195 return -EIO;
196 udelay(10000);
197 } else
198 return -ENODEV;
199 }
200}
201
202static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
203 unsigned long unit,
204 unsigned long data_ra,
205 unsigned long data_len,
206 unsigned long *ticks)
207{
208 unsigned long hv_err;
209
210 if (np->hvapi_major == 1) {
211 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
212 } else {
213 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
214 unit, ticks);
215 if (!*ticks)
216 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
217 }
218 return hv_err;
219}
220
221static int n2rng_generic_read_diag_data(struct n2rng *np,
222 unsigned long unit,
223 unsigned long data_ra,
224 unsigned long data_len)
225{
226 unsigned long ticks, hv_err;
227 int block = 0;
228
229 while (1) {
230 hv_err = n2rng_read_diag_data_one(np, unit,
231 data_ra, data_len,
232 &ticks);
233 if (hv_err == HV_EOK)
234 return 0;
235
236 if (hv_err == HV_EWOULDBLOCK) {
237 if (++block >= N2RNG_BLOCK_LIMIT)
238 return -EWOULDBLOCK;
239 __delay(ticks);
240 } else if (hv_err == HV_ENOACCESS) {
241 return -EPERM;
242 } else if (hv_err == HV_EIO) {
243 return -EIO;
244 } else
245 return -ENODEV;
246 }
247}
248
249
250static int n2rng_generic_write_control(struct n2rng *np,
251 unsigned long control_ra,
252 unsigned long unit,
253 unsigned long state)
254{
255 unsigned long hv_err, ticks;
256 int block = 0, busy = 0;
257
258 while (1) {
259 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
260 np->wd_timeo, &ticks);
261 if (hv_err == HV_EOK)
262 return 0;
263
264 if (hv_err == HV_EWOULDBLOCK) {
265 if (++block >= N2RNG_BLOCK_LIMIT)
266 return -EWOULDBLOCK;
267 __delay(ticks);
268 } else if (hv_err == HV_EBUSY) {
269 if (++busy >= N2RNG_BUSY_LIMIT)
270 return -EBUSY;
271 udelay(1);
272 } else
273 return -ENODEV;
274 }
275}
276
277/* Just try to see if we can successfully access the control register
278 * of the RNG on the domain on which we are currently executing.
279 */
280static int n2rng_try_read_ctl(struct n2rng *np)
281{
282 unsigned long hv_err;
283 unsigned long x;
284
285 if (np->hvapi_major == 1) {
286 hv_err = sun4v_rng_get_diag_ctl();
287 } else {
288 /* We purposefully give invalid arguments, HV_NOACCESS
289 * is higher priority than the errors we'd get from
290 * these other cases, and that's the error we are
291 * truly interested in.
292 */
293 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
294 switch (hv_err) {
295 case HV_EWOULDBLOCK:
296 case HV_ENOACCESS:
297 break;
298 default:
299 hv_err = HV_EOK;
300 break;
301 }
302 }
303
304 return n2rng_hv_err_trans(hv_err);
305}
306
307static u64 n2rng_control_default(struct n2rng *np, int ctl)
308{
309 u64 val = 0;
310
311 if (np->data->chip_version == 1) {
312 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
313 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
314 RNG_CTL_LFSR);
315
316 switch (ctl) {
317 case 0:
318 val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
319 break;
320 case 1:
321 val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
322 break;
323 case 2:
324 val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
325 break;
326 case 3:
327 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
328 break;
329 default:
330 break;
331 }
332
333 } else {
334 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
335 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
336 RNG_CTL_LFSR);
337
338 switch (ctl) {
339 case 0:
340 val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
341 break;
342 case 1:
343 val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
344 break;
345 case 2:
346 val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
347 break;
348 case 3:
349 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
350 break;
351 default:
352 break;
353 }
354 }
355
356 return val;
357}
358
359static void n2rng_control_swstate_init(struct n2rng *np)
360{
361 int i;
362
363 np->flags |= N2RNG_FLAG_CONTROL;
364
365 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
366 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
367 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
368
369 for (i = 0; i < np->num_units; i++) {
370 struct n2rng_unit *up = &np->units[i];
371
372 up->control[0] = n2rng_control_default(np, 0);
373 up->control[1] = n2rng_control_default(np, 1);
374 up->control[2] = n2rng_control_default(np, 2);
375 up->control[3] = n2rng_control_default(np, 3);
376 }
377
378 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
379}
380
381static int n2rng_grab_diag_control(struct n2rng *np)
382{
383 int i, busy_count, err = -ENODEV;
384
385 busy_count = 0;
386 for (i = 0; i < 100; i++) {
387 err = n2rng_try_read_ctl(np);
388 if (err != -EAGAIN)
389 break;
390
391 if (++busy_count > 100) {
392 dev_err(&np->op->dev,
393 "Grab diag control timeout.\n");
394 return -ENODEV;
395 }
396
397 udelay(1);
398 }
399
400 return err;
401}
402
403static int n2rng_init_control(struct n2rng *np)
404{
405 int err = n2rng_grab_diag_control(np);
406
407 /* Not in the control domain, that's OK we are only a consumer
408 * of the RNG data, we don't setup and program it.
409 */
410 if (err == -EPERM)
411 return 0;
412 if (err)
413 return err;
414
415 n2rng_control_swstate_init(np);
416
417 return 0;
418}
419
420static int n2rng_data_read(struct hwrng *rng, u32 *data)
421{
422 struct n2rng *np = (struct n2rng *) rng->priv;
423 unsigned long ra = __pa(&np->test_data);
424 int len;
425
426 if (!(np->flags & N2RNG_FLAG_READY)) {
427 len = 0;
428 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
429 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
430 *data = np->buffer;
431 len = 4;
432 } else {
433 int err = n2rng_generic_read_data(ra);
434 if (!err) {
435 np->flags |= N2RNG_FLAG_BUFFER_VALID;
436 np->buffer = np->test_data >> 32;
437 *data = np->test_data & 0xffffffff;
438 len = 4;
439 } else {
440 dev_err(&np->op->dev, "RNG error, retesting\n");
441 np->flags &= ~N2RNG_FLAG_READY;
442 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
443 schedule_delayed_work(&np->work, 0);
444 len = 0;
445 }
446 }
447
448 return len;
449}
450
451/* On a guest node, just make sure we can read random data properly.
452 * If a control node reboots or reloads it's n2rng driver, this won't
453 * work during that time. So we have to keep probing until the device
454 * becomes usable.
455 */
456static int n2rng_guest_check(struct n2rng *np)
457{
458 unsigned long ra = __pa(&np->test_data);
459
460 return n2rng_generic_read_data(ra);
461}
462
463static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
464 u64 *pre_control, u64 pre_state,
465 u64 *buffer, unsigned long buf_len,
466 u64 *post_control, u64 post_state)
467{
468 unsigned long post_ctl_ra = __pa(post_control);
469 unsigned long pre_ctl_ra = __pa(pre_control);
470 unsigned long buffer_ra = __pa(buffer);
471 int err;
472
473 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
474 if (err)
475 return err;
476
477 err = n2rng_generic_read_diag_data(np, unit,
478 buffer_ra, buf_len);
479
480 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
481 post_state);
482
483 return err;
484}
485
486static u64 advance_polynomial(u64 poly, u64 val, int count)
487{
488 int i;
489
490 for (i = 0; i < count; i++) {
491 int highbit_set = ((s64)val < 0);
492
493 val <<= 1;
494 if (highbit_set)
495 val ^= poly;
496 }
497
498 return val;
499}
500
501static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
502{
503 int i, count = 0;
504
505 /* Purposefully skip over the first word. */
506 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
507 if (np->test_buffer[i] == val)
508 count++;
509 }
510 return count;
511}
512
513static void n2rng_dump_test_buffer(struct n2rng *np)
514{
515 int i;
516
517 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
518 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
519 i, np->test_buffer[i]);
520}
521
522static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
523{
524 u64 val;
525 int err, matches, limit;
526
527 switch (np->data->id) {
528 case N2_n2_rng:
529 case N2_vf_rng:
530 case N2_kt_rng:
531 case N2_m4_rng: /* yes, m4 uses the old value */
532 val = RNG_v1_SELFTEST_VAL;
533 break;
534 default:
535 val = RNG_v2_SELFTEST_VAL;
536 break;
537 }
538
539 matches = 0;
540 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
541 matches += n2rng_test_buffer_find(np, val);
542 if (matches >= SELFTEST_MATCH_GOAL)
543 break;
544 val = advance_polynomial(SELFTEST_POLY, val, 1);
545 }
546
547 err = 0;
548 if (limit >= SELFTEST_LOOPS_MAX) {
549 err = -ENODEV;
550 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
551 n2rng_dump_test_buffer(np);
552 } else
553 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
554
555 return err;
556}
557
558static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
559{
560 int err;
561 u64 base, base3;
562
563 switch (np->data->id) {
564 case N2_n2_rng:
565 case N2_vf_rng:
566 case N2_kt_rng:
567 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
568 base3 = base | RNG_CTL_LFSR |
569 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
570 break;
571 case N2_m4_rng:
572 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
573 base3 = base | RNG_CTL_LFSR |
574 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
575 break;
576 default:
577 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
578 base3 = base | RNG_CTL_LFSR |
579 (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
580 break;
581 }
582
583 np->test_control[0] = base;
584 np->test_control[1] = base;
585 np->test_control[2] = base;
586 np->test_control[3] = base3;
587
588 err = n2rng_entropy_diag_read(np, unit, np->test_control,
589 HV_RNG_STATE_HEALTHCHECK,
590 np->test_buffer,
591 sizeof(np->test_buffer),
592 &np->units[unit].control[0],
593 np->hv_state);
594 if (err)
595 return err;
596
597 return n2rng_check_selftest_buffer(np, unit);
598}
599
600static int n2rng_control_check(struct n2rng *np)
601{
602 int i;
603
604 for (i = 0; i < np->num_units; i++) {
605 int err = n2rng_control_selftest(np, i);
606 if (err)
607 return err;
608 }
609 return 0;
610}
611
612/* The sanity checks passed, install the final configuration into the
613 * chip, it's ready to use.
614 */
615static int n2rng_control_configure_units(struct n2rng *np)
616{
617 int unit, err;
618
619 err = 0;
620 for (unit = 0; unit < np->num_units; unit++) {
621 struct n2rng_unit *up = &np->units[unit];
622 unsigned long ctl_ra = __pa(&up->control[0]);
623 int esrc;
624 u64 base, shift;
625
626 if (np->data->chip_version == 1) {
627 base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
628 (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
629 RNG_CTL_LFSR);
630 shift = RNG_v1_CTL_VCO_SHIFT;
631 } else {
632 base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
633 (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
634 RNG_CTL_LFSR);
635 shift = RNG_v2_CTL_VCO_SHIFT;
636 }
637
638 /* XXX This isn't the best. We should fetch a bunch
639 * XXX of words using each entropy source combined XXX
640 * with each VCO setting, and see which combinations
641 * XXX give the best random data.
642 */
643 for (esrc = 0; esrc < 3; esrc++)
644 up->control[esrc] = base |
645 (esrc << shift) |
646 (RNG_CTL_ES1 << esrc);
647
648 up->control[3] = base |
649 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
650
651 err = n2rng_generic_write_control(np, ctl_ra, unit,
652 HV_RNG_STATE_CONFIGURED);
653 if (err)
654 break;
655 }
656
657 return err;
658}
659
660static void n2rng_work(struct work_struct *work)
661{
662 struct n2rng *np = container_of(work, struct n2rng, work.work);
663 int err = 0;
664 static int retries = 4;
665
666 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
667 err = n2rng_guest_check(np);
668 } else {
669 preempt_disable();
670 err = n2rng_control_check(np);
671 preempt_enable();
672
673 if (!err)
674 err = n2rng_control_configure_units(np);
675 }
676
677 if (!err) {
678 np->flags |= N2RNG_FLAG_READY;
679 dev_info(&np->op->dev, "RNG ready\n");
680 }
681
682 if (--retries == 0)
683 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
684 else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
685 schedule_delayed_work(&np->work, HZ * 2);
686}
687
688static void n2rng_driver_version(void)
689{
690 static int n2rng_version_printed;
691
692 if (n2rng_version_printed++ == 0)
693 pr_info("%s", version);
694}
695
696static const struct of_device_id n2rng_match[];
697static int n2rng_probe(struct platform_device *op)
698{
699 int err = -ENOMEM;
700 struct n2rng *np;
701
702 n2rng_driver_version();
703 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
704 if (!np)
705 goto out;
706 np->op = op;
707 np->data = (struct n2rng_template *)device_get_match_data(&op->dev);
708
709 INIT_DELAYED_WORK(&np->work, n2rng_work);
710
711 if (np->data->multi_capable)
712 np->flags |= N2RNG_FLAG_MULTI;
713
714 err = -ENODEV;
715 np->hvapi_major = 2;
716 if (sun4v_hvapi_register(HV_GRP_RNG,
717 np->hvapi_major,
718 &np->hvapi_minor)) {
719 np->hvapi_major = 1;
720 if (sun4v_hvapi_register(HV_GRP_RNG,
721 np->hvapi_major,
722 &np->hvapi_minor)) {
723 dev_err(&op->dev, "Cannot register suitable "
724 "HVAPI version.\n");
725 goto out;
726 }
727 }
728
729 if (np->flags & N2RNG_FLAG_MULTI) {
730 if (np->hvapi_major < 2) {
731 dev_err(&op->dev, "multi-unit-capable RNG requires "
732 "HVAPI major version 2 or later, got %lu\n",
733 np->hvapi_major);
734 goto out_hvapi_unregister;
735 }
736 np->num_units = of_getintprop_default(op->dev.of_node,
737 "rng-#units", 0);
738 if (!np->num_units) {
739 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
740 goto out_hvapi_unregister;
741 }
742 } else {
743 np->num_units = 1;
744 }
745
746 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
747 np->hvapi_major, np->hvapi_minor);
748 np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
749 GFP_KERNEL);
750 err = -ENOMEM;
751 if (!np->units)
752 goto out_hvapi_unregister;
753
754 err = n2rng_init_control(np);
755 if (err)
756 goto out_hvapi_unregister;
757
758 dev_info(&op->dev, "Found %s RNG, units: %d\n",
759 ((np->flags & N2RNG_FLAG_MULTI) ?
760 "multi-unit-capable" : "single-unit"),
761 np->num_units);
762
763 np->hwrng.name = DRV_MODULE_NAME;
764 np->hwrng.data_read = n2rng_data_read;
765 np->hwrng.priv = (unsigned long) np;
766
767 err = devm_hwrng_register(&op->dev, &np->hwrng);
768 if (err)
769 goto out_hvapi_unregister;
770
771 platform_set_drvdata(op, np);
772
773 schedule_delayed_work(&np->work, 0);
774
775 return 0;
776
777out_hvapi_unregister:
778 sun4v_hvapi_unregister(HV_GRP_RNG);
779
780out:
781 return err;
782}
783
784static void n2rng_remove(struct platform_device *op)
785{
786 struct n2rng *np = platform_get_drvdata(op);
787
788 np->flags |= N2RNG_FLAG_SHUTDOWN;
789
790 cancel_delayed_work_sync(&np->work);
791
792 sun4v_hvapi_unregister(HV_GRP_RNG);
793}
794
795static struct n2rng_template n2_template = {
796 .id = N2_n2_rng,
797 .multi_capable = 0,
798 .chip_version = 1,
799};
800
801static struct n2rng_template vf_template = {
802 .id = N2_vf_rng,
803 .multi_capable = 1,
804 .chip_version = 1,
805};
806
807static struct n2rng_template kt_template = {
808 .id = N2_kt_rng,
809 .multi_capable = 1,
810 .chip_version = 1,
811};
812
813static struct n2rng_template m4_template = {
814 .id = N2_m4_rng,
815 .multi_capable = 1,
816 .chip_version = 2,
817};
818
819static struct n2rng_template m7_template = {
820 .id = N2_m7_rng,
821 .multi_capable = 1,
822 .chip_version = 2,
823};
824
825static const struct of_device_id n2rng_match[] = {
826 {
827 .name = "random-number-generator",
828 .compatible = "SUNW,n2-rng",
829 .data = &n2_template,
830 },
831 {
832 .name = "random-number-generator",
833 .compatible = "SUNW,vf-rng",
834 .data = &vf_template,
835 },
836 {
837 .name = "random-number-generator",
838 .compatible = "SUNW,kt-rng",
839 .data = &kt_template,
840 },
841 {
842 .name = "random-number-generator",
843 .compatible = "ORCL,m4-rng",
844 .data = &m4_template,
845 },
846 {
847 .name = "random-number-generator",
848 .compatible = "ORCL,m7-rng",
849 .data = &m7_template,
850 },
851 {},
852};
853MODULE_DEVICE_TABLE(of, n2rng_match);
854
855static struct platform_driver n2rng_driver = {
856 .driver = {
857 .name = "n2rng",
858 .of_match_table = n2rng_match,
859 },
860 .probe = n2rng_probe,
861 .remove_new = n2rng_remove,
862};
863
864module_platform_driver(n2rng_driver);