Linux Audio

Check our new training course

Loading...
v3.1
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/sysdev.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
 
 
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
  18
  19#define HPET_MASK			CLOCKSOURCE_MASK(32)
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC			1000000L
  24
  25#define HPET_DEV_USED_BIT		2
  26#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID			0x8
  28#define HPET_DEV_FSB_CAP		0x1000
  29#define HPET_DEV_PERI_CAP		0x2000
  30
  31#define HPET_MIN_CYCLES			128
  32#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
  34#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
  35
  36/*
  37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  38 */
  39unsigned long				hpet_address;
  40u8					hpet_blockid; /* OS timer block num */
  41u8					hpet_msi_disable;
  42
  43#ifdef CONFIG_PCI_MSI
  44static unsigned long			hpet_num_timers;
  45#endif
  46static void __iomem			*hpet_virt_address;
  47
  48struct hpet_dev {
  49	struct clock_event_device	evt;
  50	unsigned int			num;
  51	int				cpu;
  52	unsigned int			irq;
  53	unsigned int			flags;
  54	char				name[10];
  55};
  56
 
 
 
 
 
  57inline unsigned int hpet_readl(unsigned int a)
  58{
  59	return readl(hpet_virt_address + a);
  60}
  61
  62static inline void hpet_writel(unsigned int d, unsigned int a)
  63{
  64	writel(d, hpet_virt_address + a);
  65}
  66
  67#ifdef CONFIG_X86_64
  68#include <asm/pgtable.h>
  69#endif
  70
  71static inline void hpet_set_mapping(void)
  72{
  73	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  74#ifdef CONFIG_X86_64
  75	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  76#endif
  77}
  78
  79static inline void hpet_clear_mapping(void)
  80{
  81	iounmap(hpet_virt_address);
  82	hpet_virt_address = NULL;
  83}
  84
  85/*
  86 * HPET command line enable / disable
  87 */
  88static int boot_hpet_disable;
  89int hpet_force_user;
  90static int hpet_verbose;
  91
  92static int __init hpet_setup(char *str)
  93{
  94	if (str) {
 
 
 
 
  95		if (!strncmp("disable", str, 7))
  96			boot_hpet_disable = 1;
  97		if (!strncmp("force", str, 5))
  98			hpet_force_user = 1;
  99		if (!strncmp("verbose", str, 7))
 100			hpet_verbose = 1;
 
 101	}
 102	return 1;
 103}
 104__setup("hpet=", hpet_setup);
 105
 106static int __init disable_hpet(char *str)
 107{
 108	boot_hpet_disable = 1;
 109	return 1;
 110}
 111__setup("nohpet", disable_hpet);
 112
 113static inline int is_hpet_capable(void)
 114{
 115	return !boot_hpet_disable && hpet_address;
 116}
 117
 118/*
 119 * HPET timer interrupt enable / disable
 120 */
 121static int hpet_legacy_int_enabled;
 122
 123/**
 124 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 125 */
 126int is_hpet_enabled(void)
 127{
 128	return is_hpet_capable() && hpet_legacy_int_enabled;
 129}
 130EXPORT_SYMBOL_GPL(is_hpet_enabled);
 131
 132static void _hpet_print_config(const char *function, int line)
 133{
 134	u32 i, timers, l, h;
 135	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 136	l = hpet_readl(HPET_ID);
 137	h = hpet_readl(HPET_PERIOD);
 138	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 139	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 140	l = hpet_readl(HPET_CFG);
 141	h = hpet_readl(HPET_STATUS);
 142	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 143	l = hpet_readl(HPET_COUNTER);
 144	h = hpet_readl(HPET_COUNTER+4);
 145	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 146
 147	for (i = 0; i < timers; i++) {
 148		l = hpet_readl(HPET_Tn_CFG(i));
 149		h = hpet_readl(HPET_Tn_CFG(i)+4);
 150		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 151		       i, l, h);
 152		l = hpet_readl(HPET_Tn_CMP(i));
 153		h = hpet_readl(HPET_Tn_CMP(i)+4);
 154		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 155		       i, l, h);
 156		l = hpet_readl(HPET_Tn_ROUTE(i));
 157		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 158		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 159		       i, l, h);
 160	}
 161}
 162
 163#define hpet_print_config()					\
 164do {								\
 165	if (hpet_verbose)					\
 166		_hpet_print_config(__FUNCTION__, __LINE__);	\
 167} while (0)
 168
 169/*
 170 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 171 * timer 0 and timer 1 in case of RTC emulation.
 172 */
 173#ifdef CONFIG_HPET
 174
 175static void hpet_reserve_msi_timers(struct hpet_data *hd);
 176
 177static void hpet_reserve_platform_timers(unsigned int id)
 178{
 179	struct hpet __iomem *hpet = hpet_virt_address;
 180	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 181	unsigned int nrtimers, i;
 182	struct hpet_data hd;
 183
 184	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 185
 186	memset(&hd, 0, sizeof(hd));
 187	hd.hd_phys_address	= hpet_address;
 188	hd.hd_address		= hpet;
 189	hd.hd_nirqs		= nrtimers;
 190	hpet_reserve_timer(&hd, 0);
 191
 192#ifdef CONFIG_HPET_EMULATE_RTC
 193	hpet_reserve_timer(&hd, 1);
 194#endif
 195
 196	/*
 197	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 198	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 199	 * don't bother configuring *any* comparator interrupts.
 200	 */
 201	hd.hd_irq[0] = HPET_LEGACY_8254;
 202	hd.hd_irq[1] = HPET_LEGACY_RTC;
 203
 204	for (i = 2; i < nrtimers; timer++, i++) {
 205		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 206			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 207	}
 208
 209	hpet_reserve_msi_timers(&hd);
 210
 211	hpet_alloc(&hd);
 212
 213}
 214#else
 215static void hpet_reserve_platform_timers(unsigned int id) { }
 216#endif
 217
 218/*
 219 * Common hpet info
 220 */
 221static unsigned long hpet_freq;
 222
 223static void hpet_legacy_set_mode(enum clock_event_mode mode,
 224			  struct clock_event_device *evt);
 225static int hpet_legacy_next_event(unsigned long delta,
 226			   struct clock_event_device *evt);
 227
 228/*
 229 * The hpet clock event device
 230 */
 231static struct clock_event_device hpet_clockevent = {
 232	.name		= "hpet",
 233	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 234	.set_mode	= hpet_legacy_set_mode,
 235	.set_next_event = hpet_legacy_next_event,
 236	.irq		= 0,
 237	.rating		= 50,
 238};
 239
 240static void hpet_stop_counter(void)
 241{
 242	unsigned long cfg = hpet_readl(HPET_CFG);
 243	cfg &= ~HPET_CFG_ENABLE;
 244	hpet_writel(cfg, HPET_CFG);
 245}
 246
 247static void hpet_reset_counter(void)
 248{
 249	hpet_writel(0, HPET_COUNTER);
 250	hpet_writel(0, HPET_COUNTER + 4);
 251}
 252
 253static void hpet_start_counter(void)
 254{
 255	unsigned int cfg = hpet_readl(HPET_CFG);
 256	cfg |= HPET_CFG_ENABLE;
 257	hpet_writel(cfg, HPET_CFG);
 258}
 259
 260static void hpet_restart_counter(void)
 261{
 262	hpet_stop_counter();
 263	hpet_reset_counter();
 264	hpet_start_counter();
 265}
 266
 267static void hpet_resume_device(void)
 268{
 269	force_hpet_resume();
 270}
 271
 272static void hpet_resume_counter(struct clocksource *cs)
 273{
 274	hpet_resume_device();
 275	hpet_restart_counter();
 276}
 277
 278static void hpet_enable_legacy_int(void)
 279{
 280	unsigned int cfg = hpet_readl(HPET_CFG);
 281
 282	cfg |= HPET_CFG_LEGACY;
 283	hpet_writel(cfg, HPET_CFG);
 284	hpet_legacy_int_enabled = 1;
 285}
 286
 287static void hpet_legacy_clockevent_register(void)
 288{
 289	/* Start HPET legacy interrupts */
 290	hpet_enable_legacy_int();
 291
 292	/*
 293	 * Start hpet with the boot cpu mask and make it
 294	 * global after the IO_APIC has been initialized.
 295	 */
 296	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 297	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 298					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 299	global_clock_event = &hpet_clockevent;
 300	printk(KERN_DEBUG "hpet clockevent registered\n");
 301}
 302
 303static int hpet_setup_msi_irq(unsigned int irq);
 304
 305static void hpet_set_mode(enum clock_event_mode mode,
 306			  struct clock_event_device *evt, int timer)
 307{
 308	unsigned int cfg, cmp, now;
 309	uint64_t delta;
 310
 311	switch (mode) {
 312	case CLOCK_EVT_MODE_PERIODIC:
 313		hpet_stop_counter();
 314		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 315		delta >>= evt->shift;
 316		now = hpet_readl(HPET_COUNTER);
 317		cmp = now + (unsigned int) delta;
 318		cfg = hpet_readl(HPET_Tn_CFG(timer));
 319		/* Make sure we use edge triggered interrupts */
 320		cfg &= ~HPET_TN_LEVEL;
 321		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 322		       HPET_TN_SETVAL | HPET_TN_32BIT;
 323		hpet_writel(cfg, HPET_Tn_CFG(timer));
 324		hpet_writel(cmp, HPET_Tn_CMP(timer));
 325		udelay(1);
 326		/*
 327		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 328		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 329		 * bit is automatically cleared after the first write.
 330		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 331		 * Publication # 24674)
 332		 */
 333		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 334		hpet_start_counter();
 335		hpet_print_config();
 336		break;
 337
 338	case CLOCK_EVT_MODE_ONESHOT:
 339		cfg = hpet_readl(HPET_Tn_CFG(timer));
 340		cfg &= ~HPET_TN_PERIODIC;
 341		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 342		hpet_writel(cfg, HPET_Tn_CFG(timer));
 343		break;
 344
 345	case CLOCK_EVT_MODE_UNUSED:
 346	case CLOCK_EVT_MODE_SHUTDOWN:
 347		cfg = hpet_readl(HPET_Tn_CFG(timer));
 348		cfg &= ~HPET_TN_ENABLE;
 349		hpet_writel(cfg, HPET_Tn_CFG(timer));
 350		break;
 351
 352	case CLOCK_EVT_MODE_RESUME:
 353		if (timer == 0) {
 354			hpet_enable_legacy_int();
 355		} else {
 356			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 357			hpet_setup_msi_irq(hdev->irq);
 358			disable_irq(hdev->irq);
 359			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 360			enable_irq(hdev->irq);
 361		}
 362		hpet_print_config();
 363		break;
 
 
 
 
 
 
 
 364	}
 
 
 
 365}
 366
 367static int hpet_next_event(unsigned long delta,
 368			   struct clock_event_device *evt, int timer)
 369{
 370	u32 cnt;
 371	s32 res;
 372
 373	cnt = hpet_readl(HPET_COUNTER);
 374	cnt += (u32) delta;
 375	hpet_writel(cnt, HPET_Tn_CMP(timer));
 376
 377	/*
 378	 * HPETs are a complete disaster. The compare register is
 379	 * based on a equal comparison and neither provides a less
 380	 * than or equal functionality (which would require to take
 381	 * the wraparound into account) nor a simple count down event
 382	 * mode. Further the write to the comparator register is
 383	 * delayed internally up to two HPET clock cycles in certain
 384	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 385	 * longer delays. We worked around that by reading back the
 386	 * compare register, but that required another workaround for
 387	 * ICH9,10 chips where the first readout after write can
 388	 * return the old stale value. We already had a minimum
 389	 * programming delta of 5us enforced, but a NMI or SMI hitting
 390	 * between the counter readout and the comparator write can
 391	 * move us behind that point easily. Now instead of reading
 392	 * the compare register back several times, we make the ETIME
 393	 * decision based on the following: Return ETIME if the
 394	 * counter value after the write is less than HPET_MIN_CYCLES
 395	 * away from the event or if the counter is already ahead of
 396	 * the event. The minimum programming delta for the generic
 397	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 398	 */
 399	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 400
 401	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 402}
 403
 404static void hpet_legacy_set_mode(enum clock_event_mode mode,
 405			struct clock_event_device *evt)
 406{
 407	hpet_set_mode(mode, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410static int hpet_legacy_next_event(unsigned long delta,
 411			struct clock_event_device *evt)
 412{
 413	return hpet_next_event(delta, evt, 0);
 414}
 415
 416/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417 * HPET MSI Support
 418 */
 419#ifdef CONFIG_PCI_MSI
 420
 421static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 422static struct hpet_dev	*hpet_devs;
 
 423
 424void hpet_msi_unmask(struct irq_data *data)
 425{
 426	struct hpet_dev *hdev = data->handler_data;
 427	unsigned int cfg;
 428
 429	/* unmask it */
 430	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 431	cfg |= HPET_TN_FSB;
 432	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 433}
 434
 435void hpet_msi_mask(struct irq_data *data)
 436{
 437	struct hpet_dev *hdev = data->handler_data;
 438	unsigned int cfg;
 439
 440	/* mask it */
 441	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 442	cfg &= ~HPET_TN_FSB;
 443	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 444}
 445
 446void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 447{
 448	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 449	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 450}
 451
 452void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 455	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 456	msg->address_hi = 0;
 457}
 458
 459static void hpet_msi_set_mode(enum clock_event_mode mode,
 460				struct clock_event_device *evt)
 461{
 462	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 463	hpet_set_mode(mode, evt, hdev->num);
 
 464}
 465
 466static int hpet_msi_next_event(unsigned long delta,
 467				struct clock_event_device *evt)
 468{
 469	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 470	return hpet_next_event(delta, evt, hdev->num);
 471}
 472
 473static int hpet_setup_msi_irq(unsigned int irq)
 474{
 475	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
 476		destroy_irq(irq);
 477		return -EINVAL;
 478	}
 479	return 0;
 480}
 481
 482static int hpet_assign_irq(struct hpet_dev *dev)
 483{
 484	unsigned int irq;
 485
 486	irq = create_irq_nr(0, -1);
 487	if (!irq)
 488		return -EINVAL;
 489
 490	irq_set_handler_data(irq, dev);
 
 
 491
 492	if (hpet_setup_msi_irq(irq))
 493		return -EINVAL;
 494
 495	dev->irq = irq;
 496	return 0;
 
 
 
 497}
 498
 499static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 500{
 501	struct hpet_dev *dev = (struct hpet_dev *)data;
 502	struct clock_event_device *hevt = &dev->evt;
 503
 504	if (!hevt->event_handler) {
 505		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 506				dev->num);
 507		return IRQ_HANDLED;
 508	}
 509
 510	hevt->event_handler(hevt);
 511	return IRQ_HANDLED;
 512}
 513
 514static int hpet_setup_irq(struct hpet_dev *dev)
 515{
 516
 517	if (request_irq(dev->irq, hpet_interrupt_handler,
 518			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 519			dev->name, dev))
 520		return -1;
 521
 522	disable_irq(dev->irq);
 523	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 524	enable_irq(dev->irq);
 525
 526	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 527			 dev->name, dev->irq);
 528
 529	return 0;
 530}
 531
 532/* This should be called in specific @cpu */
 533static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 534{
 535	struct clock_event_device *evt = &hdev->evt;
 536
 537	WARN_ON(cpu != smp_processor_id());
 538	if (!(hdev->flags & HPET_DEV_VALID))
 539		return;
 540
 541	if (hpet_setup_msi_irq(hdev->irq))
 542		return;
 543
 544	hdev->cpu = cpu;
 545	per_cpu(cpu_hpet_dev, cpu) = hdev;
 546	evt->name = hdev->name;
 547	hpet_setup_irq(hdev);
 548	evt->irq = hdev->irq;
 549
 550	evt->rating = 110;
 551	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 552	if (hdev->flags & HPET_DEV_PERI_CAP)
 553		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 
 
 554
 555	evt->set_mode = hpet_msi_set_mode;
 
 
 556	evt->set_next_event = hpet_msi_next_event;
 557	evt->cpumask = cpumask_of(hdev->cpu);
 558
 559	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 560					0x7FFFFFFF);
 561}
 562
 563#ifdef CONFIG_HPET
 564/* Reserve at least one timer for userspace (/dev/hpet) */
 565#define RESERVE_TIMERS 1
 566#else
 567#define RESERVE_TIMERS 0
 568#endif
 569
 570static void hpet_msi_capability_lookup(unsigned int start_timer)
 571{
 572	unsigned int id;
 573	unsigned int num_timers;
 574	unsigned int num_timers_used = 0;
 575	int i;
 576
 577	if (hpet_msi_disable)
 578		return;
 579
 580	if (boot_cpu_has(X86_FEATURE_ARAT))
 581		return;
 582	id = hpet_readl(HPET_ID);
 583
 584	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 585	num_timers++; /* Value read out starts from 0 */
 586	hpet_print_config();
 587
 
 
 
 
 588	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 589	if (!hpet_devs)
 590		return;
 591
 592	hpet_num_timers = num_timers;
 593
 594	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 595		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 596		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 597
 598		/* Only consider HPET timer with MSI support */
 599		if (!(cfg & HPET_TN_FSB_CAP))
 600			continue;
 601
 602		hdev->flags = 0;
 603		if (cfg & HPET_TN_PERIODIC_CAP)
 604			hdev->flags |= HPET_DEV_PERI_CAP;
 
 605		hdev->num = i;
 606
 607		sprintf(hdev->name, "hpet%d", i);
 608		if (hpet_assign_irq(hdev))
 609			continue;
 610
 
 611		hdev->flags |= HPET_DEV_FSB_CAP;
 612		hdev->flags |= HPET_DEV_VALID;
 613		num_timers_used++;
 614		if (num_timers_used == num_possible_cpus())
 615			break;
 616	}
 617
 618	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 619		num_timers, num_timers_used);
 620}
 621
 622#ifdef CONFIG_HPET
 623static void hpet_reserve_msi_timers(struct hpet_data *hd)
 624{
 625	int i;
 626
 627	if (!hpet_devs)
 628		return;
 629
 630	for (i = 0; i < hpet_num_timers; i++) {
 631		struct hpet_dev *hdev = &hpet_devs[i];
 632
 633		if (!(hdev->flags & HPET_DEV_VALID))
 634			continue;
 635
 636		hd->hd_irq[hdev->num] = hdev->irq;
 637		hpet_reserve_timer(hd, hdev->num);
 638	}
 639}
 640#endif
 641
 642static struct hpet_dev *hpet_get_unused_timer(void)
 643{
 644	int i;
 645
 646	if (!hpet_devs)
 647		return NULL;
 648
 649	for (i = 0; i < hpet_num_timers; i++) {
 650		struct hpet_dev *hdev = &hpet_devs[i];
 651
 652		if (!(hdev->flags & HPET_DEV_VALID))
 653			continue;
 654		if (test_and_set_bit(HPET_DEV_USED_BIT,
 655			(unsigned long *)&hdev->flags))
 656			continue;
 657		return hdev;
 658	}
 659	return NULL;
 660}
 661
 662struct hpet_work_struct {
 663	struct delayed_work work;
 664	struct completion complete;
 665};
 666
 667static void hpet_work(struct work_struct *w)
 668{
 669	struct hpet_dev *hdev;
 670	int cpu = smp_processor_id();
 671	struct hpet_work_struct *hpet_work;
 672
 673	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 674
 675	hdev = hpet_get_unused_timer();
 676	if (hdev)
 677		init_one_hpet_msi_clockevent(hdev, cpu);
 678
 679	complete(&hpet_work->complete);
 680}
 681
 682static int hpet_cpuhp_notify(struct notifier_block *n,
 683		unsigned long action, void *hcpu)
 684{
 685	unsigned long cpu = (unsigned long)hcpu;
 686	struct hpet_work_struct work;
 687	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 688
 689	switch (action & 0xf) {
 690	case CPU_ONLINE:
 691		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 692		init_completion(&work.complete);
 693		/* FIXME: add schedule_work_on() */
 694		schedule_delayed_work_on(cpu, &work.work, 0);
 695		wait_for_completion(&work.complete);
 696		destroy_timer_on_stack(&work.work.timer);
 697		break;
 698	case CPU_DEAD:
 699		if (hdev) {
 700			free_irq(hdev->irq, hdev);
 701			hdev->flags &= ~HPET_DEV_USED;
 702			per_cpu(cpu_hpet_dev, cpu) = NULL;
 703		}
 704		break;
 705	}
 706	return NOTIFY_OK;
 707}
 708#else
 709
 710static int hpet_setup_msi_irq(unsigned int irq)
 711{
 
 
 
 
 
 
 
 712	return 0;
 713}
 
 
 714static void hpet_msi_capability_lookup(unsigned int start_timer)
 715{
 716	return;
 717}
 718
 719#ifdef CONFIG_HPET
 720static void hpet_reserve_msi_timers(struct hpet_data *hd)
 721{
 722	return;
 723}
 724#endif
 725
 726static int hpet_cpuhp_notify(struct notifier_block *n,
 727		unsigned long action, void *hcpu)
 728{
 729	return NOTIFY_OK;
 730}
 731
 732#endif
 733
 734/*
 735 * Clock source related code
 736 */
 737static cycle_t read_hpet(struct clocksource *cs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738{
 739	return (cycle_t)hpet_readl(HPET_COUNTER);
 740}
 
 741
 742static struct clocksource clocksource_hpet = {
 743	.name		= "hpet",
 744	.rating		= 250,
 745	.read		= read_hpet,
 746	.mask		= HPET_MASK,
 747	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 748	.resume		= hpet_resume_counter,
 749#ifdef CONFIG_X86_64
 750	.archdata	= { .vclock_mode = VCLOCK_HPET },
 751#endif
 752};
 753
 754static int hpet_clocksource_register(void)
 755{
 756	u64 start, now;
 757	cycle_t t1;
 758
 759	/* Start the counter */
 760	hpet_restart_counter();
 761
 762	/* Verify whether hpet counter works */
 763	t1 = hpet_readl(HPET_COUNTER);
 764	rdtscll(start);
 765
 766	/*
 767	 * We don't know the TSC frequency yet, but waiting for
 768	 * 200000 TSC cycles is safe:
 769	 * 4 GHz == 50us
 770	 * 1 GHz == 200us
 771	 */
 772	do {
 773		rep_nop();
 774		rdtscll(now);
 775	} while ((now - start) < 200000UL);
 776
 777	if (t1 == hpet_readl(HPET_COUNTER)) {
 778		printk(KERN_WARNING
 779		       "HPET counter not counting. HPET disabled\n");
 780		return -ENODEV;
 781	}
 782
 783	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 784	return 0;
 785}
 786
 
 
 787/**
 788 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 789 */
 790int __init hpet_enable(void)
 791{
 792	unsigned long hpet_period;
 793	unsigned int id;
 794	u64 freq;
 795	int i;
 796
 797	if (!is_hpet_capable())
 798		return 0;
 799
 800	hpet_set_mapping();
 801
 802	/*
 803	 * Read the period and check for a sane value:
 804	 */
 805	hpet_period = hpet_readl(HPET_PERIOD);
 806
 807	/*
 808	 * AMD SB700 based systems with spread spectrum enabled use a
 809	 * SMM based HPET emulation to provide proper frequency
 810	 * setting. The SMM code is initialized with the first HPET
 811	 * register access and takes some time to complete. During
 812	 * this time the config register reads 0xffffffff. We check
 813	 * for max. 1000 loops whether the config register reads a non
 814	 * 0xffffffff value to make sure that HPET is up and running
 815	 * before we go further. A counting loop is safe, as the HPET
 816	 * access takes thousands of CPU cycles. On non SB700 based
 817	 * machines this check is only done once and has no side
 818	 * effects.
 819	 */
 820	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 821		if (i == 1000) {
 822			printk(KERN_WARNING
 823			       "HPET config register value = 0xFFFFFFFF. "
 824			       "Disabling HPET\n");
 825			goto out_nohpet;
 826		}
 827	}
 828
 829	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 830		goto out_nohpet;
 831
 832	/*
 833	 * The period is a femto seconds value. Convert it to a
 834	 * frequency.
 835	 */
 836	freq = FSEC_PER_SEC;
 837	do_div(freq, hpet_period);
 838	hpet_freq = freq;
 839
 840	/*
 841	 * Read the HPET ID register to retrieve the IRQ routing
 842	 * information and the number of channels
 843	 */
 844	id = hpet_readl(HPET_ID);
 845	hpet_print_config();
 846
 
 
 847#ifdef CONFIG_HPET_EMULATE_RTC
 848	/*
 849	 * The legacy routing mode needs at least two channels, tick timer
 850	 * and the rtc emulation channel.
 851	 */
 852	if (!(id & HPET_ID_NUMBER))
 853		goto out_nohpet;
 854#endif
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	if (hpet_clocksource_register())
 857		goto out_nohpet;
 858
 859	if (id & HPET_ID_LEGSUP) {
 860		hpet_legacy_clockevent_register();
 861		return 1;
 862	}
 863	return 0;
 864
 865out_nohpet:
 866	hpet_clear_mapping();
 867	hpet_address = 0;
 868	return 0;
 869}
 870
 871/*
 872 * Needs to be late, as the reserve_timer code calls kalloc !
 873 *
 874 * Not a problem on i386 as hpet_enable is called from late_time_init,
 875 * but on x86_64 it is necessary !
 876 */
 877static __init int hpet_late_init(void)
 878{
 879	int cpu;
 880
 881	if (boot_hpet_disable)
 882		return -ENODEV;
 883
 884	if (!hpet_address) {
 885		if (!force_hpet_address)
 886			return -ENODEV;
 887
 888		hpet_address = force_hpet_address;
 889		hpet_enable();
 890	}
 891
 892	if (!hpet_virt_address)
 893		return -ENODEV;
 894
 895	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 896		hpet_msi_capability_lookup(2);
 897	else
 898		hpet_msi_capability_lookup(0);
 899
 900	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 901	hpet_print_config();
 902
 903	if (hpet_msi_disable)
 904		return 0;
 905
 906	if (boot_cpu_has(X86_FEATURE_ARAT))
 907		return 0;
 908
 909	for_each_online_cpu(cpu) {
 910		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 911	}
 912
 913	/* This notifier should be called after workqueue is ready */
 914	hotcpu_notifier(hpet_cpuhp_notify, -20);
 915
 
 
 
 
 
 
 916	return 0;
 
 
 
 
 917}
 918fs_initcall(hpet_late_init);
 919
 920void hpet_disable(void)
 921{
 922	if (is_hpet_capable() && hpet_virt_address) {
 923		unsigned int cfg = hpet_readl(HPET_CFG);
 924
 925		if (hpet_legacy_int_enabled) {
 
 
 926			cfg &= ~HPET_CFG_LEGACY;
 927			hpet_legacy_int_enabled = 0;
 928		}
 929		cfg &= ~HPET_CFG_ENABLE;
 930		hpet_writel(cfg, HPET_CFG);
 
 
 
 
 
 
 
 
 
 
 
 
 931	}
 932}
 933
 934#ifdef CONFIG_HPET_EMULATE_RTC
 935
 936/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 937 * is enabled, we support RTC interrupt functionality in software.
 938 * RTC has 3 kinds of interrupts:
 939 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 940 *    is updated
 941 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 942 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 943 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 944 * (1) and (2) above are implemented using polling at a frequency of
 945 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 946 * overhead. (DEFAULT_RTC_INT_FREQ)
 947 * For (3), we use interrupts at 64Hz or user specified periodic
 948 * frequency, whichever is higher.
 949 */
 950#include <linux/mc146818rtc.h>
 951#include <linux/rtc.h>
 952#include <asm/rtc.h>
 953
 954#define DEFAULT_RTC_INT_FREQ	64
 955#define DEFAULT_RTC_SHIFT	6
 956#define RTC_NUM_INTS		1
 957
 958static unsigned long hpet_rtc_flags;
 959static int hpet_prev_update_sec;
 960static struct rtc_time hpet_alarm_time;
 961static unsigned long hpet_pie_count;
 962static u32 hpet_t1_cmp;
 963static u32 hpet_default_delta;
 964static u32 hpet_pie_delta;
 965static unsigned long hpet_pie_limit;
 966
 967static rtc_irq_handler irq_handler;
 968
 969/*
 970 * Check that the hpet counter c1 is ahead of the c2
 971 */
 972static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 973{
 974	return (s32)(c2 - c1) < 0;
 975}
 976
 977/*
 978 * Registers a IRQ handler.
 979 */
 980int hpet_register_irq_handler(rtc_irq_handler handler)
 981{
 982	if (!is_hpet_enabled())
 983		return -ENODEV;
 984	if (irq_handler)
 985		return -EBUSY;
 986
 987	irq_handler = handler;
 988
 989	return 0;
 990}
 991EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
 992
 993/*
 994 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 995 * and does cleanup.
 996 */
 997void hpet_unregister_irq_handler(rtc_irq_handler handler)
 998{
 999	if (!is_hpet_enabled())
1000		return;
1001
1002	irq_handler = NULL;
1003	hpet_rtc_flags = 0;
1004}
1005EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1006
1007/*
1008 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1009 * is not supported by all HPET implementations for timer 1.
1010 *
1011 * hpet_rtc_timer_init() is called when the rtc is initialized.
1012 */
1013int hpet_rtc_timer_init(void)
1014{
1015	unsigned int cfg, cnt, delta;
1016	unsigned long flags;
1017
1018	if (!is_hpet_enabled())
1019		return 0;
1020
1021	if (!hpet_default_delta) {
1022		uint64_t clc;
1023
1024		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1025		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1026		hpet_default_delta = clc;
1027	}
1028
1029	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1030		delta = hpet_default_delta;
1031	else
1032		delta = hpet_pie_delta;
1033
1034	local_irq_save(flags);
1035
1036	cnt = delta + hpet_readl(HPET_COUNTER);
1037	hpet_writel(cnt, HPET_T1_CMP);
1038	hpet_t1_cmp = cnt;
1039
1040	cfg = hpet_readl(HPET_T1_CFG);
1041	cfg &= ~HPET_TN_PERIODIC;
1042	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1043	hpet_writel(cfg, HPET_T1_CFG);
1044
1045	local_irq_restore(flags);
1046
1047	return 1;
1048}
1049EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1050
 
 
 
 
 
 
 
1051/*
1052 * The functions below are called from rtc driver.
1053 * Return 0 if HPET is not being used.
1054 * Otherwise do the necessary changes and return 1.
1055 */
1056int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1057{
1058	if (!is_hpet_enabled())
1059		return 0;
1060
1061	hpet_rtc_flags &= ~bit_mask;
 
 
 
1062	return 1;
1063}
1064EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1065
1066int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1067{
1068	unsigned long oldbits = hpet_rtc_flags;
1069
1070	if (!is_hpet_enabled())
1071		return 0;
1072
1073	hpet_rtc_flags |= bit_mask;
1074
1075	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1076		hpet_prev_update_sec = -1;
1077
1078	if (!oldbits)
1079		hpet_rtc_timer_init();
1080
1081	return 1;
1082}
1083EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1084
1085int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1086			unsigned char sec)
1087{
1088	if (!is_hpet_enabled())
1089		return 0;
1090
1091	hpet_alarm_time.tm_hour = hrs;
1092	hpet_alarm_time.tm_min = min;
1093	hpet_alarm_time.tm_sec = sec;
1094
1095	return 1;
1096}
1097EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1098
1099int hpet_set_periodic_freq(unsigned long freq)
1100{
1101	uint64_t clc;
1102
1103	if (!is_hpet_enabled())
1104		return 0;
1105
1106	if (freq <= DEFAULT_RTC_INT_FREQ)
1107		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1108	else {
1109		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1110		do_div(clc, freq);
1111		clc >>= hpet_clockevent.shift;
1112		hpet_pie_delta = clc;
1113		hpet_pie_limit = 0;
1114	}
1115	return 1;
1116}
1117EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1118
1119int hpet_rtc_dropped_irq(void)
1120{
1121	return is_hpet_enabled();
1122}
1123EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1124
1125static void hpet_rtc_timer_reinit(void)
1126{
1127	unsigned int cfg, delta;
1128	int lost_ints = -1;
1129
1130	if (unlikely(!hpet_rtc_flags)) {
1131		cfg = hpet_readl(HPET_T1_CFG);
1132		cfg &= ~HPET_TN_ENABLE;
1133		hpet_writel(cfg, HPET_T1_CFG);
1134		return;
1135	}
1136
1137	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1138		delta = hpet_default_delta;
1139	else
1140		delta = hpet_pie_delta;
1141
1142	/*
1143	 * Increment the comparator value until we are ahead of the
1144	 * current count.
1145	 */
1146	do {
1147		hpet_t1_cmp += delta;
1148		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1149		lost_ints++;
1150	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1151
1152	if (lost_ints) {
1153		if (hpet_rtc_flags & RTC_PIE)
1154			hpet_pie_count += lost_ints;
1155		if (printk_ratelimit())
1156			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1157				lost_ints);
1158	}
1159}
1160
1161irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1162{
1163	struct rtc_time curr_time;
1164	unsigned long rtc_int_flag = 0;
1165
1166	hpet_rtc_timer_reinit();
1167	memset(&curr_time, 0, sizeof(struct rtc_time));
1168
1169	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1170		get_rtc_time(&curr_time);
1171
1172	if (hpet_rtc_flags & RTC_UIE &&
1173	    curr_time.tm_sec != hpet_prev_update_sec) {
1174		if (hpet_prev_update_sec >= 0)
1175			rtc_int_flag = RTC_UF;
1176		hpet_prev_update_sec = curr_time.tm_sec;
1177	}
1178
1179	if (hpet_rtc_flags & RTC_PIE &&
1180	    ++hpet_pie_count >= hpet_pie_limit) {
1181		rtc_int_flag |= RTC_PF;
1182		hpet_pie_count = 0;
1183	}
1184
1185	if (hpet_rtc_flags & RTC_AIE &&
1186	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1187	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1188	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1189			rtc_int_flag |= RTC_AF;
1190
1191	if (rtc_int_flag) {
1192		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1193		if (irq_handler)
1194			irq_handler(rtc_int_flag, dev_id);
1195	}
1196	return IRQ_HANDLED;
1197}
1198EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1199#endif
v4.10.11
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/cpufeature.h>
  16#include <asm/irqdomain.h>
  17#include <asm/fixmap.h>
  18#include <asm/hpet.h>
  19#include <asm/time.h>
  20
  21#define HPET_MASK			CLOCKSOURCE_MASK(32)
  22
  23/* FSEC = 10^-15
  24   NSEC = 10^-9 */
  25#define FSEC_PER_NSEC			1000000L
  26
  27#define HPET_DEV_USED_BIT		2
  28#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  29#define HPET_DEV_VALID			0x8
  30#define HPET_DEV_FSB_CAP		0x1000
  31#define HPET_DEV_PERI_CAP		0x2000
  32
  33#define HPET_MIN_CYCLES			128
  34#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  35
 
 
  36/*
  37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  38 */
  39unsigned long				hpet_address;
  40u8					hpet_blockid; /* OS timer block num */
  41bool					hpet_msi_disable;
  42
  43#ifdef CONFIG_PCI_MSI
  44static unsigned int			hpet_num_timers;
  45#endif
  46static void __iomem			*hpet_virt_address;
  47
  48struct hpet_dev {
  49	struct clock_event_device	evt;
  50	unsigned int			num;
  51	int				cpu;
  52	unsigned int			irq;
  53	unsigned int			flags;
  54	char				name[10];
  55};
  56
  57static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
  58{
  59	return container_of(evtdev, struct hpet_dev, evt);
  60}
  61
  62inline unsigned int hpet_readl(unsigned int a)
  63{
  64	return readl(hpet_virt_address + a);
  65}
  66
  67static inline void hpet_writel(unsigned int d, unsigned int a)
  68{
  69	writel(d, hpet_virt_address + a);
  70}
  71
  72#ifdef CONFIG_X86_64
  73#include <asm/pgtable.h>
  74#endif
  75
  76static inline void hpet_set_mapping(void)
  77{
  78	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
 
 
 
  79}
  80
  81static inline void hpet_clear_mapping(void)
  82{
  83	iounmap(hpet_virt_address);
  84	hpet_virt_address = NULL;
  85}
  86
  87/*
  88 * HPET command line enable / disable
  89 */
  90bool boot_hpet_disable;
  91bool hpet_force_user;
  92static bool hpet_verbose;
  93
  94static int __init hpet_setup(char *str)
  95{
  96	while (str) {
  97		char *next = strchr(str, ',');
  98
  99		if (next)
 100			*next++ = 0;
 101		if (!strncmp("disable", str, 7))
 102			boot_hpet_disable = true;
 103		if (!strncmp("force", str, 5))
 104			hpet_force_user = true;
 105		if (!strncmp("verbose", str, 7))
 106			hpet_verbose = true;
 107		str = next;
 108	}
 109	return 1;
 110}
 111__setup("hpet=", hpet_setup);
 112
 113static int __init disable_hpet(char *str)
 114{
 115	boot_hpet_disable = true;
 116	return 1;
 117}
 118__setup("nohpet", disable_hpet);
 119
 120static inline int is_hpet_capable(void)
 121{
 122	return !boot_hpet_disable && hpet_address;
 123}
 124
 125/*
 126 * HPET timer interrupt enable / disable
 127 */
 128static bool hpet_legacy_int_enabled;
 129
 130/**
 131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 132 */
 133int is_hpet_enabled(void)
 134{
 135	return is_hpet_capable() && hpet_legacy_int_enabled;
 136}
 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
 138
 139static void _hpet_print_config(const char *function, int line)
 140{
 141	u32 i, timers, l, h;
 142	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 143	l = hpet_readl(HPET_ID);
 144	h = hpet_readl(HPET_PERIOD);
 145	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 146	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 147	l = hpet_readl(HPET_CFG);
 148	h = hpet_readl(HPET_STATUS);
 149	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 150	l = hpet_readl(HPET_COUNTER);
 151	h = hpet_readl(HPET_COUNTER+4);
 152	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 153
 154	for (i = 0; i < timers; i++) {
 155		l = hpet_readl(HPET_Tn_CFG(i));
 156		h = hpet_readl(HPET_Tn_CFG(i)+4);
 157		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 158		       i, l, h);
 159		l = hpet_readl(HPET_Tn_CMP(i));
 160		h = hpet_readl(HPET_Tn_CMP(i)+4);
 161		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 162		       i, l, h);
 163		l = hpet_readl(HPET_Tn_ROUTE(i));
 164		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 165		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 166		       i, l, h);
 167	}
 168}
 169
 170#define hpet_print_config()					\
 171do {								\
 172	if (hpet_verbose)					\
 173		_hpet_print_config(__func__, __LINE__);	\
 174} while (0)
 175
 176/*
 177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 178 * timer 0 and timer 1 in case of RTC emulation.
 179 */
 180#ifdef CONFIG_HPET
 181
 182static void hpet_reserve_msi_timers(struct hpet_data *hd);
 183
 184static void hpet_reserve_platform_timers(unsigned int id)
 185{
 186	struct hpet __iomem *hpet = hpet_virt_address;
 187	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 188	unsigned int nrtimers, i;
 189	struct hpet_data hd;
 190
 191	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 192
 193	memset(&hd, 0, sizeof(hd));
 194	hd.hd_phys_address	= hpet_address;
 195	hd.hd_address		= hpet;
 196	hd.hd_nirqs		= nrtimers;
 197	hpet_reserve_timer(&hd, 0);
 198
 199#ifdef CONFIG_HPET_EMULATE_RTC
 200	hpet_reserve_timer(&hd, 1);
 201#endif
 202
 203	/*
 204	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 205	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 206	 * don't bother configuring *any* comparator interrupts.
 207	 */
 208	hd.hd_irq[0] = HPET_LEGACY_8254;
 209	hd.hd_irq[1] = HPET_LEGACY_RTC;
 210
 211	for (i = 2; i < nrtimers; timer++, i++) {
 212		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 213			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 214	}
 215
 216	hpet_reserve_msi_timers(&hd);
 217
 218	hpet_alloc(&hd);
 219
 220}
 221#else
 222static void hpet_reserve_platform_timers(unsigned int id) { }
 223#endif
 224
 225/*
 226 * Common hpet info
 227 */
 228static unsigned long hpet_freq;
 229
 230static struct clock_event_device hpet_clockevent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231
 232static void hpet_stop_counter(void)
 233{
 234	u32 cfg = hpet_readl(HPET_CFG);
 235	cfg &= ~HPET_CFG_ENABLE;
 236	hpet_writel(cfg, HPET_CFG);
 237}
 238
 239static void hpet_reset_counter(void)
 240{
 241	hpet_writel(0, HPET_COUNTER);
 242	hpet_writel(0, HPET_COUNTER + 4);
 243}
 244
 245static void hpet_start_counter(void)
 246{
 247	unsigned int cfg = hpet_readl(HPET_CFG);
 248	cfg |= HPET_CFG_ENABLE;
 249	hpet_writel(cfg, HPET_CFG);
 250}
 251
 252static void hpet_restart_counter(void)
 253{
 254	hpet_stop_counter();
 255	hpet_reset_counter();
 256	hpet_start_counter();
 257}
 258
 259static void hpet_resume_device(void)
 260{
 261	force_hpet_resume();
 262}
 263
 264static void hpet_resume_counter(struct clocksource *cs)
 265{
 266	hpet_resume_device();
 267	hpet_restart_counter();
 268}
 269
 270static void hpet_enable_legacy_int(void)
 271{
 272	unsigned int cfg = hpet_readl(HPET_CFG);
 273
 274	cfg |= HPET_CFG_LEGACY;
 275	hpet_writel(cfg, HPET_CFG);
 276	hpet_legacy_int_enabled = true;
 277}
 278
 279static void hpet_legacy_clockevent_register(void)
 280{
 281	/* Start HPET legacy interrupts */
 282	hpet_enable_legacy_int();
 283
 284	/*
 285	 * Start hpet with the boot cpu mask and make it
 286	 * global after the IO_APIC has been initialized.
 287	 */
 288	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 289	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 290					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 291	global_clock_event = &hpet_clockevent;
 292	printk(KERN_DEBUG "hpet clockevent registered\n");
 293}
 294
 295static int hpet_set_periodic(struct clock_event_device *evt, int timer)
 
 
 
 296{
 297	unsigned int cfg, cmp, now;
 298	uint64_t delta;
 299
 300	hpet_stop_counter();
 301	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 302	delta >>= evt->shift;
 303	now = hpet_readl(HPET_COUNTER);
 304	cmp = now + (unsigned int)delta;
 305	cfg = hpet_readl(HPET_Tn_CFG(timer));
 306	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 307	       HPET_TN_32BIT;
 308	hpet_writel(cfg, HPET_Tn_CFG(timer));
 309	hpet_writel(cmp, HPET_Tn_CMP(timer));
 310	udelay(1);
 311	/*
 312	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 313	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 314	 * bit is automatically cleared after the first write.
 315	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 316	 * Publication # 24674)
 317	 */
 318	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
 319	hpet_start_counter();
 320	hpet_print_config();
 321
 322	return 0;
 323}
 324
 325static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
 326{
 327	unsigned int cfg;
 328
 329	cfg = hpet_readl(HPET_Tn_CFG(timer));
 330	cfg &= ~HPET_TN_PERIODIC;
 331	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 332	hpet_writel(cfg, HPET_Tn_CFG(timer));
 333
 334	return 0;
 335}
 336
 337static int hpet_shutdown(struct clock_event_device *evt, int timer)
 338{
 339	unsigned int cfg;
 340
 341	cfg = hpet_readl(HPET_Tn_CFG(timer));
 342	cfg &= ~HPET_TN_ENABLE;
 343	hpet_writel(cfg, HPET_Tn_CFG(timer));
 344
 345	return 0;
 346}
 347
 348static int hpet_resume(struct clock_event_device *evt, int timer)
 349{
 350	if (!timer) {
 351		hpet_enable_legacy_int();
 352	} else {
 353		struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 354
 355		irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
 356		irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
 357		disable_irq(hdev->irq);
 358		irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 359		enable_irq(hdev->irq);
 360	}
 361	hpet_print_config();
 362
 363	return 0;
 364}
 365
 366static int hpet_next_event(unsigned long delta,
 367			   struct clock_event_device *evt, int timer)
 368{
 369	u32 cnt;
 370	s32 res;
 371
 372	cnt = hpet_readl(HPET_COUNTER);
 373	cnt += (u32) delta;
 374	hpet_writel(cnt, HPET_Tn_CMP(timer));
 375
 376	/*
 377	 * HPETs are a complete disaster. The compare register is
 378	 * based on a equal comparison and neither provides a less
 379	 * than or equal functionality (which would require to take
 380	 * the wraparound into account) nor a simple count down event
 381	 * mode. Further the write to the comparator register is
 382	 * delayed internally up to two HPET clock cycles in certain
 383	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 384	 * longer delays. We worked around that by reading back the
 385	 * compare register, but that required another workaround for
 386	 * ICH9,10 chips where the first readout after write can
 387	 * return the old stale value. We already had a minimum
 388	 * programming delta of 5us enforced, but a NMI or SMI hitting
 389	 * between the counter readout and the comparator write can
 390	 * move us behind that point easily. Now instead of reading
 391	 * the compare register back several times, we make the ETIME
 392	 * decision based on the following: Return ETIME if the
 393	 * counter value after the write is less than HPET_MIN_CYCLES
 394	 * away from the event or if the counter is already ahead of
 395	 * the event. The minimum programming delta for the generic
 396	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 397	 */
 398	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 399
 400	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 401}
 402
 403static int hpet_legacy_shutdown(struct clock_event_device *evt)
 
 404{
 405	return hpet_shutdown(evt, 0);
 406}
 407
 408static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
 409{
 410	return hpet_set_oneshot(evt, 0);
 411}
 412
 413static int hpet_legacy_set_periodic(struct clock_event_device *evt)
 414{
 415	return hpet_set_periodic(evt, 0);
 416}
 417
 418static int hpet_legacy_resume(struct clock_event_device *evt)
 419{
 420	return hpet_resume(evt, 0);
 421}
 422
 423static int hpet_legacy_next_event(unsigned long delta,
 424			struct clock_event_device *evt)
 425{
 426	return hpet_next_event(delta, evt, 0);
 427}
 428
 429/*
 430 * The hpet clock event device
 431 */
 432static struct clock_event_device hpet_clockevent = {
 433	.name			= "hpet",
 434	.features		= CLOCK_EVT_FEAT_PERIODIC |
 435				  CLOCK_EVT_FEAT_ONESHOT,
 436	.set_state_periodic	= hpet_legacy_set_periodic,
 437	.set_state_oneshot	= hpet_legacy_set_oneshot,
 438	.set_state_shutdown	= hpet_legacy_shutdown,
 439	.tick_resume		= hpet_legacy_resume,
 440	.set_next_event		= hpet_legacy_next_event,
 441	.irq			= 0,
 442	.rating			= 50,
 443};
 444
 445/*
 446 * HPET MSI Support
 447 */
 448#ifdef CONFIG_PCI_MSI
 449
 450static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 451static struct hpet_dev	*hpet_devs;
 452static struct irq_domain *hpet_domain;
 453
 454void hpet_msi_unmask(struct irq_data *data)
 455{
 456	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
 457	unsigned int cfg;
 458
 459	/* unmask it */
 460	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 461	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 462	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 463}
 464
 465void hpet_msi_mask(struct irq_data *data)
 466{
 467	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
 468	unsigned int cfg;
 469
 470	/* mask it */
 471	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 472	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 473	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 474}
 475
 476void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 477{
 478	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 479	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 480}
 481
 482void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 483{
 484	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 485	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 486	msg->address_hi = 0;
 487}
 488
 489static int hpet_msi_shutdown(struct clock_event_device *evt)
 
 490{
 491	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 492
 493	return hpet_shutdown(evt, hdev->num);
 494}
 495
 496static int hpet_msi_set_oneshot(struct clock_event_device *evt)
 
 497{
 498	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 
 
 499
 500	return hpet_set_oneshot(evt, hdev->num);
 
 
 
 
 
 
 501}
 502
 503static int hpet_msi_set_periodic(struct clock_event_device *evt)
 504{
 505	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 506
 507	return hpet_set_periodic(evt, hdev->num);
 508}
 
 509
 510static int hpet_msi_resume(struct clock_event_device *evt)
 511{
 512	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 513
 514	return hpet_resume(evt, hdev->num);
 515}
 516
 517static int hpet_msi_next_event(unsigned long delta,
 518				struct clock_event_device *evt)
 519{
 520	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 521	return hpet_next_event(delta, evt, hdev->num);
 522}
 523
 524static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 525{
 526	struct hpet_dev *dev = (struct hpet_dev *)data;
 527	struct clock_event_device *hevt = &dev->evt;
 528
 529	if (!hevt->event_handler) {
 530		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 531				dev->num);
 532		return IRQ_HANDLED;
 533	}
 534
 535	hevt->event_handler(hevt);
 536	return IRQ_HANDLED;
 537}
 538
 539static int hpet_setup_irq(struct hpet_dev *dev)
 540{
 541
 542	if (request_irq(dev->irq, hpet_interrupt_handler,
 543			IRQF_TIMER | IRQF_NOBALANCING,
 544			dev->name, dev))
 545		return -1;
 546
 547	disable_irq(dev->irq);
 548	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 549	enable_irq(dev->irq);
 550
 551	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 552			 dev->name, dev->irq);
 553
 554	return 0;
 555}
 556
 557/* This should be called in specific @cpu */
 558static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 559{
 560	struct clock_event_device *evt = &hdev->evt;
 561
 562	WARN_ON(cpu != smp_processor_id());
 563	if (!(hdev->flags & HPET_DEV_VALID))
 564		return;
 565
 
 
 
 566	hdev->cpu = cpu;
 567	per_cpu(cpu_hpet_dev, cpu) = hdev;
 568	evt->name = hdev->name;
 569	hpet_setup_irq(hdev);
 570	evt->irq = hdev->irq;
 571
 572	evt->rating = 110;
 573	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 574	if (hdev->flags & HPET_DEV_PERI_CAP) {
 575		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 576		evt->set_state_periodic = hpet_msi_set_periodic;
 577	}
 578
 579	evt->set_state_shutdown = hpet_msi_shutdown;
 580	evt->set_state_oneshot = hpet_msi_set_oneshot;
 581	evt->tick_resume = hpet_msi_resume;
 582	evt->set_next_event = hpet_msi_next_event;
 583	evt->cpumask = cpumask_of(hdev->cpu);
 584
 585	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 586					0x7FFFFFFF);
 587}
 588
 589#ifdef CONFIG_HPET
 590/* Reserve at least one timer for userspace (/dev/hpet) */
 591#define RESERVE_TIMERS 1
 592#else
 593#define RESERVE_TIMERS 0
 594#endif
 595
 596static void hpet_msi_capability_lookup(unsigned int start_timer)
 597{
 598	unsigned int id;
 599	unsigned int num_timers;
 600	unsigned int num_timers_used = 0;
 601	int i, irq;
 602
 603	if (hpet_msi_disable)
 604		return;
 605
 606	if (boot_cpu_has(X86_FEATURE_ARAT))
 607		return;
 608	id = hpet_readl(HPET_ID);
 609
 610	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 611	num_timers++; /* Value read out starts from 0 */
 612	hpet_print_config();
 613
 614	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 615	if (!hpet_domain)
 616		return;
 617
 618	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 619	if (!hpet_devs)
 620		return;
 621
 622	hpet_num_timers = num_timers;
 623
 624	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 625		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 626		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 627
 628		/* Only consider HPET timer with MSI support */
 629		if (!(cfg & HPET_TN_FSB_CAP))
 630			continue;
 631
 632		hdev->flags = 0;
 633		if (cfg & HPET_TN_PERIODIC_CAP)
 634			hdev->flags |= HPET_DEV_PERI_CAP;
 635		sprintf(hdev->name, "hpet%d", i);
 636		hdev->num = i;
 637
 638		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
 639		if (irq <= 0)
 640			continue;
 641
 642		hdev->irq = irq;
 643		hdev->flags |= HPET_DEV_FSB_CAP;
 644		hdev->flags |= HPET_DEV_VALID;
 645		num_timers_used++;
 646		if (num_timers_used == num_possible_cpus())
 647			break;
 648	}
 649
 650	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 651		num_timers, num_timers_used);
 652}
 653
 654#ifdef CONFIG_HPET
 655static void hpet_reserve_msi_timers(struct hpet_data *hd)
 656{
 657	int i;
 658
 659	if (!hpet_devs)
 660		return;
 661
 662	for (i = 0; i < hpet_num_timers; i++) {
 663		struct hpet_dev *hdev = &hpet_devs[i];
 664
 665		if (!(hdev->flags & HPET_DEV_VALID))
 666			continue;
 667
 668		hd->hd_irq[hdev->num] = hdev->irq;
 669		hpet_reserve_timer(hd, hdev->num);
 670	}
 671}
 672#endif
 673
 674static struct hpet_dev *hpet_get_unused_timer(void)
 675{
 676	int i;
 677
 678	if (!hpet_devs)
 679		return NULL;
 680
 681	for (i = 0; i < hpet_num_timers; i++) {
 682		struct hpet_dev *hdev = &hpet_devs[i];
 683
 684		if (!(hdev->flags & HPET_DEV_VALID))
 685			continue;
 686		if (test_and_set_bit(HPET_DEV_USED_BIT,
 687			(unsigned long *)&hdev->flags))
 688			continue;
 689		return hdev;
 690	}
 691	return NULL;
 692}
 693
 694struct hpet_work_struct {
 695	struct delayed_work work;
 696	struct completion complete;
 697};
 698
 699static void hpet_work(struct work_struct *w)
 700{
 701	struct hpet_dev *hdev;
 702	int cpu = smp_processor_id();
 703	struct hpet_work_struct *hpet_work;
 704
 705	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 706
 707	hdev = hpet_get_unused_timer();
 708	if (hdev)
 709		init_one_hpet_msi_clockevent(hdev, cpu);
 710
 711	complete(&hpet_work->complete);
 712}
 713
 714static int hpet_cpuhp_online(unsigned int cpu)
 
 715{
 
 716	struct hpet_work_struct work;
 
 717
 718	INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 719	init_completion(&work.complete);
 720	/* FIXME: add schedule_work_on() */
 721	schedule_delayed_work_on(cpu, &work.work, 0);
 722	wait_for_completion(&work.complete);
 723	destroy_delayed_work_on_stack(&work.work);
 724	return 0;
 
 
 
 
 
 
 
 
 
 
 
 725}
 
 726
 727static int hpet_cpuhp_dead(unsigned int cpu)
 728{
 729	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 730
 731	if (!hdev)
 732		return 0;
 733	free_irq(hdev->irq, hdev);
 734	hdev->flags &= ~HPET_DEV_USED;
 735	per_cpu(cpu_hpet_dev, cpu) = NULL;
 736	return 0;
 737}
 738#else
 739
 740static void hpet_msi_capability_lookup(unsigned int start_timer)
 741{
 742	return;
 743}
 744
 745#ifdef CONFIG_HPET
 746static void hpet_reserve_msi_timers(struct hpet_data *hd)
 747{
 748	return;
 749}
 750#endif
 751
 752#define hpet_cpuhp_online	NULL
 753#define hpet_cpuhp_dead		NULL
 
 
 
 754
 755#endif
 756
 757/*
 758 * Clock source related code
 759 */
 760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 761/*
 762 * Reading the HPET counter is a very slow operation. If a large number of
 763 * CPUs are trying to access the HPET counter simultaneously, it can cause
 764 * massive delay and slow down system performance dramatically. This may
 765 * happen when HPET is the default clock source instead of TSC. For a
 766 * really large system with hundreds of CPUs, the slowdown may be so
 767 * severe that it may actually crash the system because of a NMI watchdog
 768 * soft lockup, for example.
 769 *
 770 * If multiple CPUs are trying to access the HPET counter at the same time,
 771 * we don't actually need to read the counter multiple times. Instead, the
 772 * other CPUs can use the counter value read by the first CPU in the group.
 773 *
 774 * This special feature is only enabled on x86-64 systems. It is unlikely
 775 * that 32-bit x86 systems will have enough CPUs to require this feature
 776 * with its associated locking overhead. And we also need 64-bit atomic
 777 * read.
 778 *
 779 * The lock and the hpet value are stored together and can be read in a
 780 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 781 * is 32 bits in size.
 782 */
 783union hpet_lock {
 784	struct {
 785		arch_spinlock_t lock;
 786		u32 value;
 787	};
 788	u64 lockval;
 789};
 790
 791static union hpet_lock hpet __cacheline_aligned = {
 792	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 793};
 794
 795static u64 read_hpet(struct clocksource *cs)
 796{
 797	unsigned long flags;
 798	union hpet_lock old, new;
 799
 800	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 801
 802	/*
 803	 * Read HPET directly if in NMI.
 804	 */
 805	if (in_nmi())
 806		return (u64)hpet_readl(HPET_COUNTER);
 807
 808	/*
 809	 * Read the current state of the lock and HPET value atomically.
 810	 */
 811	old.lockval = READ_ONCE(hpet.lockval);
 812
 813	if (arch_spin_is_locked(&old.lock))
 814		goto contended;
 815
 816	local_irq_save(flags);
 817	if (arch_spin_trylock(&hpet.lock)) {
 818		new.value = hpet_readl(HPET_COUNTER);
 819		/*
 820		 * Use WRITE_ONCE() to prevent store tearing.
 821		 */
 822		WRITE_ONCE(hpet.value, new.value);
 823		arch_spin_unlock(&hpet.lock);
 824		local_irq_restore(flags);
 825		return (u64)new.value;
 826	}
 827	local_irq_restore(flags);
 828
 829contended:
 830	/*
 831	 * Contended case
 832	 * --------------
 833	 * Wait until the HPET value change or the lock is free to indicate
 834	 * its value is up-to-date.
 835	 *
 836	 * It is possible that old.value has already contained the latest
 837	 * HPET value while the lock holder was in the process of releasing
 838	 * the lock. Checking for lock state change will enable us to return
 839	 * the value immediately instead of waiting for the next HPET reader
 840	 * to come along.
 841	 */
 842	do {
 843		cpu_relax();
 844		new.lockval = READ_ONCE(hpet.lockval);
 845	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 846
 847	return (u64)new.value;
 848}
 849#else
 850/*
 851 * For UP or 32-bit.
 852 */
 853static u64 read_hpet(struct clocksource *cs)
 854{
 855	return (u64)hpet_readl(HPET_COUNTER);
 856}
 857#endif
 858
 859static struct clocksource clocksource_hpet = {
 860	.name		= "hpet",
 861	.rating		= 250,
 862	.read		= read_hpet,
 863	.mask		= HPET_MASK,
 864	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 865	.resume		= hpet_resume_counter,
 
 
 
 866};
 867
 868static int hpet_clocksource_register(void)
 869{
 870	u64 start, now;
 871	u64 t1;
 872
 873	/* Start the counter */
 874	hpet_restart_counter();
 875
 876	/* Verify whether hpet counter works */
 877	t1 = hpet_readl(HPET_COUNTER);
 878	start = rdtsc();
 879
 880	/*
 881	 * We don't know the TSC frequency yet, but waiting for
 882	 * 200000 TSC cycles is safe:
 883	 * 4 GHz == 50us
 884	 * 1 GHz == 200us
 885	 */
 886	do {
 887		rep_nop();
 888		now = rdtsc();
 889	} while ((now - start) < 200000UL);
 890
 891	if (t1 == hpet_readl(HPET_COUNTER)) {
 892		printk(KERN_WARNING
 893		       "HPET counter not counting. HPET disabled\n");
 894		return -ENODEV;
 895	}
 896
 897	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 898	return 0;
 899}
 900
 901static u32 *hpet_boot_cfg;
 902
 903/**
 904 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 905 */
 906int __init hpet_enable(void)
 907{
 908	u32 hpet_period, cfg, id;
 
 909	u64 freq;
 910	unsigned int i, last;
 911
 912	if (!is_hpet_capable())
 913		return 0;
 914
 915	hpet_set_mapping();
 916
 917	/*
 918	 * Read the period and check for a sane value:
 919	 */
 920	hpet_period = hpet_readl(HPET_PERIOD);
 921
 922	/*
 923	 * AMD SB700 based systems with spread spectrum enabled use a
 924	 * SMM based HPET emulation to provide proper frequency
 925	 * setting. The SMM code is initialized with the first HPET
 926	 * register access and takes some time to complete. During
 927	 * this time the config register reads 0xffffffff. We check
 928	 * for max. 1000 loops whether the config register reads a non
 929	 * 0xffffffff value to make sure that HPET is up and running
 930	 * before we go further. A counting loop is safe, as the HPET
 931	 * access takes thousands of CPU cycles. On non SB700 based
 932	 * machines this check is only done once and has no side
 933	 * effects.
 934	 */
 935	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 936		if (i == 1000) {
 937			printk(KERN_WARNING
 938			       "HPET config register value = 0xFFFFFFFF. "
 939			       "Disabling HPET\n");
 940			goto out_nohpet;
 941		}
 942	}
 943
 944	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 945		goto out_nohpet;
 946
 947	/*
 948	 * The period is a femto seconds value. Convert it to a
 949	 * frequency.
 950	 */
 951	freq = FSEC_PER_SEC;
 952	do_div(freq, hpet_period);
 953	hpet_freq = freq;
 954
 955	/*
 956	 * Read the HPET ID register to retrieve the IRQ routing
 957	 * information and the number of channels
 958	 */
 959	id = hpet_readl(HPET_ID);
 960	hpet_print_config();
 961
 962	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 963
 964#ifdef CONFIG_HPET_EMULATE_RTC
 965	/*
 966	 * The legacy routing mode needs at least two channels, tick timer
 967	 * and the rtc emulation channel.
 968	 */
 969	if (!last)
 970		goto out_nohpet;
 971#endif
 972
 973	cfg = hpet_readl(HPET_CFG);
 974	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 975				GFP_KERNEL);
 976	if (hpet_boot_cfg)
 977		*hpet_boot_cfg = cfg;
 978	else
 979		pr_warn("HPET initial state will not be saved\n");
 980	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 981	hpet_writel(cfg, HPET_CFG);
 982	if (cfg)
 983		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 984			cfg);
 985
 986	for (i = 0; i <= last; ++i) {
 987		cfg = hpet_readl(HPET_Tn_CFG(i));
 988		if (hpet_boot_cfg)
 989			hpet_boot_cfg[i + 1] = cfg;
 990		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 991		hpet_writel(cfg, HPET_Tn_CFG(i));
 992		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 993			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 994			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 995		if (cfg)
 996			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 997				cfg, i);
 998	}
 999	hpet_print_config();
1000
1001	if (hpet_clocksource_register())
1002		goto out_nohpet;
1003
1004	if (id & HPET_ID_LEGSUP) {
1005		hpet_legacy_clockevent_register();
1006		return 1;
1007	}
1008	return 0;
1009
1010out_nohpet:
1011	hpet_clear_mapping();
1012	hpet_address = 0;
1013	return 0;
1014}
1015
1016/*
1017 * Needs to be late, as the reserve_timer code calls kalloc !
1018 *
1019 * Not a problem on i386 as hpet_enable is called from late_time_init,
1020 * but on x86_64 it is necessary !
1021 */
1022static __init int hpet_late_init(void)
1023{
1024	int ret;
1025
1026	if (boot_hpet_disable)
1027		return -ENODEV;
1028
1029	if (!hpet_address) {
1030		if (!force_hpet_address)
1031			return -ENODEV;
1032
1033		hpet_address = force_hpet_address;
1034		hpet_enable();
1035	}
1036
1037	if (!hpet_virt_address)
1038		return -ENODEV;
1039
1040	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1041		hpet_msi_capability_lookup(2);
1042	else
1043		hpet_msi_capability_lookup(0);
1044
1045	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1046	hpet_print_config();
1047
1048	if (hpet_msi_disable)
1049		return 0;
1050
1051	if (boot_cpu_has(X86_FEATURE_ARAT))
1052		return 0;
1053
 
 
 
 
1054	/* This notifier should be called after workqueue is ready */
1055	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1056				hpet_cpuhp_online, NULL);
1057	if (ret)
1058		return ret;
1059	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1060				hpet_cpuhp_dead);
1061	if (ret)
1062		goto err_cpuhp;
1063	return 0;
1064
1065err_cpuhp:
1066	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1067	return ret;
1068}
1069fs_initcall(hpet_late_init);
1070
1071void hpet_disable(void)
1072{
1073	if (is_hpet_capable() && hpet_virt_address) {
1074		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1075
1076		if (hpet_boot_cfg)
1077			cfg = *hpet_boot_cfg;
1078		else if (hpet_legacy_int_enabled) {
1079			cfg &= ~HPET_CFG_LEGACY;
1080			hpet_legacy_int_enabled = false;
1081		}
1082		cfg &= ~HPET_CFG_ENABLE;
1083		hpet_writel(cfg, HPET_CFG);
1084
1085		if (!hpet_boot_cfg)
1086			return;
1087
1088		id = hpet_readl(HPET_ID);
1089		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1090
1091		for (id = 0; id <= last; ++id)
1092			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1093
1094		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1095			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1096	}
1097}
1098
1099#ifdef CONFIG_HPET_EMULATE_RTC
1100
1101/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1102 * is enabled, we support RTC interrupt functionality in software.
1103 * RTC has 3 kinds of interrupts:
1104 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1105 *    is updated
1106 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1107 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1108 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1109 * (1) and (2) above are implemented using polling at a frequency of
1110 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1111 * overhead. (DEFAULT_RTC_INT_FREQ)
1112 * For (3), we use interrupts at 64Hz or user specified periodic
1113 * frequency, whichever is higher.
1114 */
1115#include <linux/mc146818rtc.h>
1116#include <linux/rtc.h>
 
1117
1118#define DEFAULT_RTC_INT_FREQ	64
1119#define DEFAULT_RTC_SHIFT	6
1120#define RTC_NUM_INTS		1
1121
1122static unsigned long hpet_rtc_flags;
1123static int hpet_prev_update_sec;
1124static struct rtc_time hpet_alarm_time;
1125static unsigned long hpet_pie_count;
1126static u32 hpet_t1_cmp;
1127static u32 hpet_default_delta;
1128static u32 hpet_pie_delta;
1129static unsigned long hpet_pie_limit;
1130
1131static rtc_irq_handler irq_handler;
1132
1133/*
1134 * Check that the hpet counter c1 is ahead of the c2
1135 */
1136static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1137{
1138	return (s32)(c2 - c1) < 0;
1139}
1140
1141/*
1142 * Registers a IRQ handler.
1143 */
1144int hpet_register_irq_handler(rtc_irq_handler handler)
1145{
1146	if (!is_hpet_enabled())
1147		return -ENODEV;
1148	if (irq_handler)
1149		return -EBUSY;
1150
1151	irq_handler = handler;
1152
1153	return 0;
1154}
1155EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1156
1157/*
1158 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1159 * and does cleanup.
1160 */
1161void hpet_unregister_irq_handler(rtc_irq_handler handler)
1162{
1163	if (!is_hpet_enabled())
1164		return;
1165
1166	irq_handler = NULL;
1167	hpet_rtc_flags = 0;
1168}
1169EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1170
1171/*
1172 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1173 * is not supported by all HPET implementations for timer 1.
1174 *
1175 * hpet_rtc_timer_init() is called when the rtc is initialized.
1176 */
1177int hpet_rtc_timer_init(void)
1178{
1179	unsigned int cfg, cnt, delta;
1180	unsigned long flags;
1181
1182	if (!is_hpet_enabled())
1183		return 0;
1184
1185	if (!hpet_default_delta) {
1186		uint64_t clc;
1187
1188		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1189		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1190		hpet_default_delta = clc;
1191	}
1192
1193	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1194		delta = hpet_default_delta;
1195	else
1196		delta = hpet_pie_delta;
1197
1198	local_irq_save(flags);
1199
1200	cnt = delta + hpet_readl(HPET_COUNTER);
1201	hpet_writel(cnt, HPET_T1_CMP);
1202	hpet_t1_cmp = cnt;
1203
1204	cfg = hpet_readl(HPET_T1_CFG);
1205	cfg &= ~HPET_TN_PERIODIC;
1206	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1207	hpet_writel(cfg, HPET_T1_CFG);
1208
1209	local_irq_restore(flags);
1210
1211	return 1;
1212}
1213EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1214
1215static void hpet_disable_rtc_channel(void)
1216{
1217	u32 cfg = hpet_readl(HPET_T1_CFG);
1218	cfg &= ~HPET_TN_ENABLE;
1219	hpet_writel(cfg, HPET_T1_CFG);
1220}
1221
1222/*
1223 * The functions below are called from rtc driver.
1224 * Return 0 if HPET is not being used.
1225 * Otherwise do the necessary changes and return 1.
1226 */
1227int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1228{
1229	if (!is_hpet_enabled())
1230		return 0;
1231
1232	hpet_rtc_flags &= ~bit_mask;
1233	if (unlikely(!hpet_rtc_flags))
1234		hpet_disable_rtc_channel();
1235
1236	return 1;
1237}
1238EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1239
1240int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1241{
1242	unsigned long oldbits = hpet_rtc_flags;
1243
1244	if (!is_hpet_enabled())
1245		return 0;
1246
1247	hpet_rtc_flags |= bit_mask;
1248
1249	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1250		hpet_prev_update_sec = -1;
1251
1252	if (!oldbits)
1253		hpet_rtc_timer_init();
1254
1255	return 1;
1256}
1257EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1258
1259int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1260			unsigned char sec)
1261{
1262	if (!is_hpet_enabled())
1263		return 0;
1264
1265	hpet_alarm_time.tm_hour = hrs;
1266	hpet_alarm_time.tm_min = min;
1267	hpet_alarm_time.tm_sec = sec;
1268
1269	return 1;
1270}
1271EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1272
1273int hpet_set_periodic_freq(unsigned long freq)
1274{
1275	uint64_t clc;
1276
1277	if (!is_hpet_enabled())
1278		return 0;
1279
1280	if (freq <= DEFAULT_RTC_INT_FREQ)
1281		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1282	else {
1283		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1284		do_div(clc, freq);
1285		clc >>= hpet_clockevent.shift;
1286		hpet_pie_delta = clc;
1287		hpet_pie_limit = 0;
1288	}
1289	return 1;
1290}
1291EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1292
1293int hpet_rtc_dropped_irq(void)
1294{
1295	return is_hpet_enabled();
1296}
1297EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1298
1299static void hpet_rtc_timer_reinit(void)
1300{
1301	unsigned int delta;
1302	int lost_ints = -1;
1303
1304	if (unlikely(!hpet_rtc_flags))
1305		hpet_disable_rtc_channel();
 
 
 
 
1306
1307	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1308		delta = hpet_default_delta;
1309	else
1310		delta = hpet_pie_delta;
1311
1312	/*
1313	 * Increment the comparator value until we are ahead of the
1314	 * current count.
1315	 */
1316	do {
1317		hpet_t1_cmp += delta;
1318		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1319		lost_ints++;
1320	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1321
1322	if (lost_ints) {
1323		if (hpet_rtc_flags & RTC_PIE)
1324			hpet_pie_count += lost_ints;
1325		if (printk_ratelimit())
1326			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1327				lost_ints);
1328	}
1329}
1330
1331irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1332{
1333	struct rtc_time curr_time;
1334	unsigned long rtc_int_flag = 0;
1335
1336	hpet_rtc_timer_reinit();
1337	memset(&curr_time, 0, sizeof(struct rtc_time));
1338
1339	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1340		mc146818_get_time(&curr_time);
1341
1342	if (hpet_rtc_flags & RTC_UIE &&
1343	    curr_time.tm_sec != hpet_prev_update_sec) {
1344		if (hpet_prev_update_sec >= 0)
1345			rtc_int_flag = RTC_UF;
1346		hpet_prev_update_sec = curr_time.tm_sec;
1347	}
1348
1349	if (hpet_rtc_flags & RTC_PIE &&
1350	    ++hpet_pie_count >= hpet_pie_limit) {
1351		rtc_int_flag |= RTC_PF;
1352		hpet_pie_count = 0;
1353	}
1354
1355	if (hpet_rtc_flags & RTC_AIE &&
1356	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1357	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1358	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1359			rtc_int_flag |= RTC_AF;
1360
1361	if (rtc_int_flag) {
1362		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1363		if (irq_handler)
1364			irq_handler(rtc_int_flag, dev_id);
1365	}
1366	return IRQ_HANDLED;
1367}
1368EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1369#endif