Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * kaslr.c
  3 *
  4 * This contains the routines needed to generate a reasonable level of
  5 * entropy to choose a randomized kernel base address offset in support
  6 * of Kernel Address Space Layout Randomization (KASLR). Additionally
  7 * handles walking the physical memory maps (and tracking memory regions
  8 * to avoid) in order to select a physical memory location that can
  9 * contain the entire properly aligned running kernel image.
 10 *
 11 */
 12#include "misc.h"
 13#include "error.h"
 14
 15#include <generated/compile.h>
 16#include <linux/module.h>
 17#include <linux/uts.h>
 18#include <linux/utsname.h>
 19#include <generated/utsrelease.h>
 20
 21/* Simplified build-specific string for starting entropy. */
 22static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
 23		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
 24
 25static unsigned long rotate_xor(unsigned long hash, const void *area,
 26				size_t size)
 27{
 28	size_t i;
 29	unsigned long *ptr = (unsigned long *)area;
 30
 31	for (i = 0; i < size / sizeof(hash); i++) {
 32		/* Rotate by odd number of bits and XOR. */
 33		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
 34		hash ^= ptr[i];
 35	}
 36
 37	return hash;
 38}
 39
 40/* Attempt to create a simple but unpredictable starting entropy. */
 41static unsigned long get_boot_seed(void)
 42{
 43	unsigned long hash = 0;
 44
 45	hash = rotate_xor(hash, build_str, sizeof(build_str));
 46	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
 47
 48	return hash;
 49}
 50
 51#define KASLR_COMPRESSED_BOOT
 52#include "../../lib/kaslr.c"
 53
 54struct mem_vector {
 55	unsigned long start;
 56	unsigned long size;
 57};
 58
 59enum mem_avoid_index {
 60	MEM_AVOID_ZO_RANGE = 0,
 61	MEM_AVOID_INITRD,
 62	MEM_AVOID_CMDLINE,
 63	MEM_AVOID_BOOTPARAMS,
 64	MEM_AVOID_MAX,
 65};
 66
 67static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 68
 69static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 70{
 71	/* Item one is entirely before item two. */
 72	if (one->start + one->size <= two->start)
 73		return false;
 74	/* Item one is entirely after item two. */
 75	if (one->start >= two->start + two->size)
 76		return false;
 77	return true;
 78}
 79
 80/*
 81 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 82 * The mem_avoid array is used to store the ranges that need to be avoided
 83 * when KASLR searches for an appropriate random address. We must avoid any
 84 * regions that are unsafe to overlap with during decompression, and other
 85 * things like the initrd, cmdline and boot_params. This comment seeks to
 86 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 87 * memory ranges lead to really hard to debug boot failures.
 88 *
 89 * The initrd, cmdline, and boot_params are trivial to identify for
 90 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 91 * MEM_AVOID_BOOTPARAMS respectively below.
 92 *
 93 * What is not obvious how to avoid is the range of memory that is used
 94 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 95 * the compressed kernel (ZO) and its run space, which is used to extract
 96 * the uncompressed kernel (VO) and relocs.
 97 *
 98 * ZO's full run size sits against the end of the decompression buffer, so
 99 * we can calculate where text, data, bss, etc of ZO are positioned more
100 * easily.
101 *
102 * For additional background, the decompression calculations can be found
103 * in header.S, and the memory diagram is based on the one found in misc.c.
104 *
105 * The following conditions are already enforced by the image layouts and
106 * associated code:
107 *  - input + input_size >= output + output_size
108 *  - kernel_total_size <= init_size
109 *  - kernel_total_size <= output_size (see Note below)
110 *  - output + init_size >= output + output_size
111 *
112 * (Note that kernel_total_size and output_size have no fundamental
113 * relationship, but output_size is passed to choose_random_location
114 * as a maximum of the two. The diagram is showing a case where
115 * kernel_total_size is larger than output_size, but this case is
116 * handled by bumping output_size.)
117 *
118 * The above conditions can be illustrated by a diagram:
119 *
120 * 0   output            input            input+input_size    output+init_size
121 * |     |                 |                             |             |
122 * |     |                 |                             |             |
123 * |-----|--------|--------|--------------|-----------|--|-------------|
124 *                |                       |           |
125 *                |                       |           |
126 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
127 *
128 * [output, output+init_size) is the entire memory range used for
129 * extracting the compressed image.
130 *
131 * [output, output+kernel_total_size) is the range needed for the
132 * uncompressed kernel (VO) and its run size (bss, brk, etc).
133 *
134 * [output, output+output_size) is VO plus relocs (i.e. the entire
135 * uncompressed payload contained by ZO). This is the area of the buffer
136 * written to during decompression.
137 *
138 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
139 * range of the copied ZO and decompression code. (i.e. the range
140 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
141 *
142 * [input, input+input_size) is the original copied compressed image (ZO)
143 * (i.e. it does not include its run size). This range must be avoided
144 * because it contains the data used for decompression.
145 *
146 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
147 * range includes ZO's heap and stack, and must be avoided since it
148 * performs the decompression.
149 *
150 * Since the above two ranges need to be avoided and they are adjacent,
151 * they can be merged, resulting in: [input, output+init_size) which
152 * becomes the MEM_AVOID_ZO_RANGE below.
153 */
154static void mem_avoid_init(unsigned long input, unsigned long input_size,
155			   unsigned long output)
156{
157	unsigned long init_size = boot_params->hdr.init_size;
158	u64 initrd_start, initrd_size;
159	u64 cmd_line, cmd_line_size;
160	char *ptr;
161
162	/*
163	 * Avoid the region that is unsafe to overlap during
164	 * decompression.
165	 */
166	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
167	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
168	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
169			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
170
171	/* Avoid initrd. */
172	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
173	initrd_start |= boot_params->hdr.ramdisk_image;
174	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
175	initrd_size |= boot_params->hdr.ramdisk_size;
176	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
177	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
178	/* No need to set mapping for initrd, it will be handled in VO. */
179
180	/* Avoid kernel command line. */
181	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
182	cmd_line |= boot_params->hdr.cmd_line_ptr;
183	/* Calculate size of cmd_line. */
184	ptr = (char *)(unsigned long)cmd_line;
185	for (cmd_line_size = 0; ptr[cmd_line_size++]; )
186		;
187	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
188	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
189	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
190			 mem_avoid[MEM_AVOID_CMDLINE].size);
191
192	/* Avoid boot parameters. */
193	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
194	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
195	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
196			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
197
198	/* We don't need to set a mapping for setup_data. */
199
200#ifdef CONFIG_X86_VERBOSE_BOOTUP
201	/* Make sure video RAM can be used. */
202	add_identity_map(0, PMD_SIZE);
203#endif
204}
205
206/*
207 * Does this memory vector overlap a known avoided area? If so, record the
208 * overlap region with the lowest address.
209 */
210static bool mem_avoid_overlap(struct mem_vector *img,
211			      struct mem_vector *overlap)
212{
213	int i;
214	struct setup_data *ptr;
215	unsigned long earliest = img->start + img->size;
216	bool is_overlapping = false;
217
218	for (i = 0; i < MEM_AVOID_MAX; i++) {
219		if (mem_overlaps(img, &mem_avoid[i]) &&
220		    mem_avoid[i].start < earliest) {
221			*overlap = mem_avoid[i];
222			earliest = overlap->start;
223			is_overlapping = true;
224		}
225	}
226
227	/* Avoid all entries in the setup_data linked list. */
228	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
229	while (ptr) {
230		struct mem_vector avoid;
231
232		avoid.start = (unsigned long)ptr;
233		avoid.size = sizeof(*ptr) + ptr->len;
234
235		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
236			*overlap = avoid;
237			earliest = overlap->start;
238			is_overlapping = true;
239		}
240
241		ptr = (struct setup_data *)(unsigned long)ptr->next;
242	}
243
244	return is_overlapping;
245}
246
247struct slot_area {
248	unsigned long addr;
249	int num;
250};
251
252#define MAX_SLOT_AREA 100
253
254static struct slot_area slot_areas[MAX_SLOT_AREA];
255
256static unsigned long slot_max;
257
258static unsigned long slot_area_index;
259
260static void store_slot_info(struct mem_vector *region, unsigned long image_size)
261{
262	struct slot_area slot_area;
263
264	if (slot_area_index == MAX_SLOT_AREA)
265		return;
266
267	slot_area.addr = region->start;
268	slot_area.num = (region->size - image_size) /
269			CONFIG_PHYSICAL_ALIGN + 1;
270
271	if (slot_area.num > 0) {
272		slot_areas[slot_area_index++] = slot_area;
273		slot_max += slot_area.num;
274	}
275}
276
277static unsigned long slots_fetch_random(void)
278{
279	unsigned long slot;
280	int i;
281
282	/* Handle case of no slots stored. */
283	if (slot_max == 0)
284		return 0;
285
286	slot = kaslr_get_random_long("Physical") % slot_max;
287
288	for (i = 0; i < slot_area_index; i++) {
289		if (slot >= slot_areas[i].num) {
290			slot -= slot_areas[i].num;
291			continue;
292		}
293		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
294	}
295
296	if (i == slot_area_index)
297		debug_putstr("slots_fetch_random() failed!?\n");
298	return 0;
299}
300
301static void process_e820_entry(struct e820entry *entry,
302			       unsigned long minimum,
303			       unsigned long image_size)
304{
305	struct mem_vector region, overlap;
306	struct slot_area slot_area;
307	unsigned long start_orig;
308
309	/* Skip non-RAM entries. */
310	if (entry->type != E820_RAM)
311		return;
312
313	/* On 32-bit, ignore entries entirely above our maximum. */
314	if (IS_ENABLED(CONFIG_X86_32) && entry->addr >= KERNEL_IMAGE_SIZE)
315		return;
316
317	/* Ignore entries entirely below our minimum. */
318	if (entry->addr + entry->size < minimum)
319		return;
320
321	region.start = entry->addr;
322	region.size = entry->size;
323
324	/* Give up if slot area array is full. */
325	while (slot_area_index < MAX_SLOT_AREA) {
326		start_orig = region.start;
327
328		/* Potentially raise address to minimum location. */
329		if (region.start < minimum)
330			region.start = minimum;
331
332		/* Potentially raise address to meet alignment needs. */
333		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
334
335		/* Did we raise the address above this e820 region? */
336		if (region.start > entry->addr + entry->size)
337			return;
338
339		/* Reduce size by any delta from the original address. */
340		region.size -= region.start - start_orig;
341
342		/* On 32-bit, reduce region size to fit within max size. */
343		if (IS_ENABLED(CONFIG_X86_32) &&
344		    region.start + region.size > KERNEL_IMAGE_SIZE)
345			region.size = KERNEL_IMAGE_SIZE - region.start;
346
347		/* Return if region can't contain decompressed kernel */
348		if (region.size < image_size)
349			return;
350
351		/* If nothing overlaps, store the region and return. */
352		if (!mem_avoid_overlap(&region, &overlap)) {
353			store_slot_info(&region, image_size);
354			return;
355		}
356
357		/* Store beginning of region if holds at least image_size. */
358		if (overlap.start > region.start + image_size) {
359			struct mem_vector beginning;
360
361			beginning.start = region.start;
362			beginning.size = overlap.start - region.start;
363			store_slot_info(&beginning, image_size);
364		}
365
366		/* Return if overlap extends to or past end of region. */
367		if (overlap.start + overlap.size >= region.start + region.size)
368			return;
369
370		/* Clip off the overlapping region and start over. */
371		region.size -= overlap.start - region.start + overlap.size;
372		region.start = overlap.start + overlap.size;
373	}
374}
375
376static unsigned long find_random_phys_addr(unsigned long minimum,
377					   unsigned long image_size)
378{
379	int i;
380	unsigned long addr;
381
382	/* Make sure minimum is aligned. */
383	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
384
385	/* Verify potential e820 positions, appending to slots list. */
386	for (i = 0; i < boot_params->e820_entries; i++) {
387		process_e820_entry(&boot_params->e820_map[i], minimum,
388				   image_size);
389		if (slot_area_index == MAX_SLOT_AREA) {
390			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
391			break;
392		}
393	}
394
395	return slots_fetch_random();
396}
397
398static unsigned long find_random_virt_addr(unsigned long minimum,
399					   unsigned long image_size)
400{
401	unsigned long slots, random_addr;
402
403	/* Make sure minimum is aligned. */
404	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
405	/* Align image_size for easy slot calculations. */
406	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
407
408	/*
409	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
410	 * that can hold image_size within the range of minimum to
411	 * KERNEL_IMAGE_SIZE?
412	 */
413	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
414		 CONFIG_PHYSICAL_ALIGN + 1;
415
416	random_addr = kaslr_get_random_long("Virtual") % slots;
417
418	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
419}
420
421/*
422 * Since this function examines addresses much more numerically,
423 * it takes the input and output pointers as 'unsigned long'.
424 */
425void choose_random_location(unsigned long input,
426			    unsigned long input_size,
427			    unsigned long *output,
428			    unsigned long output_size,
429			    unsigned long *virt_addr)
430{
431	unsigned long random_addr, min_addr;
432
433	/* By default, keep output position unchanged. */
434	*virt_addr = *output;
435
436	if (cmdline_find_option_bool("nokaslr")) {
437		warn("KASLR disabled: 'nokaslr' on cmdline.");
438		return;
439	}
440
441	boot_params->hdr.loadflags |= KASLR_FLAG;
442
443	/* Prepare to add new identity pagetables on demand. */
444	initialize_identity_maps();
445
446	/* Record the various known unsafe memory ranges. */
447	mem_avoid_init(input, input_size, *output);
448
449	/*
450	 * Low end of the randomization range should be the
451	 * smaller of 512M or the initial kernel image
452	 * location:
453	 */
454	min_addr = min(*output, 512UL << 20);
455
456	/* Walk e820 and find a random address. */
457	random_addr = find_random_phys_addr(min_addr, output_size);
458	if (!random_addr) {
459		warn("KASLR disabled: could not find suitable E820 region!");
460	} else {
461		/* Update the new physical address location. */
462		if (*output != random_addr) {
463			add_identity_map(random_addr, output_size);
464			*output = random_addr;
465		}
466	}
467
468	/* This actually loads the identity pagetable on x86_64. */
469	finalize_identity_maps();
470
471	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
472	if (IS_ENABLED(CONFIG_X86_64))
473		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
474	*virt_addr = random_addr;
475}