Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * kaslr.c
  4 *
  5 * This contains the routines needed to generate a reasonable level of
  6 * entropy to choose a randomized kernel base address offset in support
  7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
  8 * handles walking the physical memory maps (and tracking memory regions
  9 * to avoid) in order to select a physical memory location that can
 10 * contain the entire properly aligned running kernel image.
 11 *
 12 */
 13
 14/*
 15 * isspace() in linux/ctype.h is expected by next_args() to filter
 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 17 * since isdigit() is implemented in both of them. Hence disable it
 18 * here.
 19 */
 20#define BOOT_CTYPE_H
 21
 22#include "misc.h"
 23#include "error.h"
 24#include "../string.h"
 25
 26#include <generated/compile.h>
 27#include <linux/module.h>
 28#include <linux/uts.h>
 29#include <linux/utsname.h>
 30#include <linux/ctype.h>
 31#include <linux/efi.h>
 32#include <generated/utsrelease.h>
 33#include <asm/efi.h>
 34
 35/* Macros used by the included decompressor code below. */
 36#define STATIC
 37#include <linux/decompress/mm.h>
 38
 39#ifdef CONFIG_X86_5LEVEL
 40unsigned int __pgtable_l5_enabled;
 41unsigned int pgdir_shift __ro_after_init = 39;
 42unsigned int ptrs_per_p4d __ro_after_init = 1;
 43#endif
 44
 45extern unsigned long get_cmd_line_ptr(void);
 46
 47/* Used by PAGE_KERN* macros: */
 48pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 49
 50/* Simplified build-specific string for starting entropy. */
 51static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
 52		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
 53
 54static unsigned long rotate_xor(unsigned long hash, const void *area,
 55				size_t size)
 56{
 57	size_t i;
 58	unsigned long *ptr = (unsigned long *)area;
 59
 60	for (i = 0; i < size / sizeof(hash); i++) {
 61		/* Rotate by odd number of bits and XOR. */
 62		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
 63		hash ^= ptr[i];
 64	}
 65
 66	return hash;
 67}
 68
 69/* Attempt to create a simple but unpredictable starting entropy. */
 70static unsigned long get_boot_seed(void)
 71{
 72	unsigned long hash = 0;
 73
 74	hash = rotate_xor(hash, build_str, sizeof(build_str));
 75	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
 76
 77	return hash;
 78}
 79
 80#define KASLR_COMPRESSED_BOOT
 81#include "../../lib/kaslr.c"
 82
 83
 84/* Only supporting at most 4 unusable memmap regions with kaslr */
 85#define MAX_MEMMAP_REGIONS	4
 86
 87static bool memmap_too_large;
 88
 89
 90/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
 91static unsigned long long mem_limit = ULLONG_MAX;
 92
 93/* Number of immovable memory regions */
 94static int num_immovable_mem;
 95
 96enum mem_avoid_index {
 97	MEM_AVOID_ZO_RANGE = 0,
 98	MEM_AVOID_INITRD,
 99	MEM_AVOID_CMDLINE,
100	MEM_AVOID_BOOTPARAMS,
101	MEM_AVOID_MEMMAP_BEGIN,
102	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
103	MEM_AVOID_MAX,
104};
105
106static struct mem_vector mem_avoid[MEM_AVOID_MAX];
107
108static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
109{
110	/* Item one is entirely before item two. */
111	if (one->start + one->size <= two->start)
112		return false;
113	/* Item one is entirely after item two. */
114	if (one->start >= two->start + two->size)
115		return false;
116	return true;
117}
118
119char *skip_spaces(const char *str)
120{
121	while (isspace(*str))
122		++str;
123	return (char *)str;
124}
125#include "../../../../lib/ctype.c"
126#include "../../../../lib/cmdline.c"
127
128enum parse_mode {
129	PARSE_MEMMAP,
130	PARSE_EFI,
131};
132
133static int
134parse_memmap(char *p, unsigned long long *start, unsigned long long *size,
135		enum parse_mode mode)
136{
137	char *oldp;
138
139	if (!p)
140		return -EINVAL;
141
142	/* We don't care about this option here */
143	if (!strncmp(p, "exactmap", 8))
144		return -EINVAL;
145
146	oldp = p;
147	*size = memparse(p, &p);
148	if (p == oldp)
149		return -EINVAL;
150
151	switch (*p) {
152	case '#':
153	case '$':
154	case '!':
155		*start = memparse(p + 1, &p);
156		return 0;
157	case '@':
158		if (mode == PARSE_MEMMAP) {
159			/*
160			 * memmap=nn@ss specifies usable region, should
161			 * be skipped
162			 */
163			*size = 0;
164		} else {
165			unsigned long long flags;
166
167			/*
168			 * efi_fake_mem=nn@ss:attr the attr specifies
169			 * flags that might imply a soft-reservation.
170			 */
171			*start = memparse(p + 1, &p);
172			if (p && *p == ':') {
173				p++;
174				if (kstrtoull(p, 0, &flags) < 0)
175					*size = 0;
176				else if (flags & EFI_MEMORY_SP)
177					return 0;
178			}
179			*size = 0;
180		}
181		fallthrough;
182	default:
183		/*
184		 * If w/o offset, only size specified, memmap=nn[KMG] has the
185		 * same behaviour as mem=nn[KMG]. It limits the max address
186		 * system can use. Region above the limit should be avoided.
187		 */
188		*start = 0;
189		return 0;
190	}
191
192	return -EINVAL;
193}
194
195static void mem_avoid_memmap(enum parse_mode mode, char *str)
196{
197	static int i;
198
199	if (i >= MAX_MEMMAP_REGIONS)
200		return;
201
202	while (str && (i < MAX_MEMMAP_REGIONS)) {
203		int rc;
204		unsigned long long start, size;
205		char *k = strchr(str, ',');
206
207		if (k)
208			*k++ = 0;
209
210		rc = parse_memmap(str, &start, &size, mode);
211		if (rc < 0)
212			break;
213		str = k;
214
215		if (start == 0) {
216			/* Store the specified memory limit if size > 0 */
217			if (size > 0)
218				mem_limit = size;
219
220			continue;
221		}
222
223		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
224		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
225		i++;
226	}
227
228	/* More than 4 memmaps, fail kaslr */
229	if ((i >= MAX_MEMMAP_REGIONS) && str)
230		memmap_too_large = true;
231}
232
233/* Store the number of 1GB huge pages which users specified: */
234static unsigned long max_gb_huge_pages;
235
236static void parse_gb_huge_pages(char *param, char *val)
237{
238	static bool gbpage_sz;
239	char *p;
240
241	if (!strcmp(param, "hugepagesz")) {
242		p = val;
243		if (memparse(p, &p) != PUD_SIZE) {
244			gbpage_sz = false;
245			return;
246		}
247
248		if (gbpage_sz)
249			warn("Repeatedly set hugeTLB page size of 1G!\n");
250		gbpage_sz = true;
251		return;
252	}
253
254	if (!strcmp(param, "hugepages") && gbpage_sz) {
255		p = val;
256		max_gb_huge_pages = simple_strtoull(p, &p, 0);
257		return;
258	}
259}
260
261static void handle_mem_options(void)
262{
263	char *args = (char *)get_cmd_line_ptr();
264	size_t len = strlen((char *)args);
265	char *tmp_cmdline;
266	char *param, *val;
267	u64 mem_size;
268
269	if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
270		!strstr(args, "hugepages"))
271		return;
272
273	tmp_cmdline = malloc(len + 1);
274	if (!tmp_cmdline)
275		error("Failed to allocate space for tmp_cmdline");
276
277	memcpy(tmp_cmdline, args, len);
278	tmp_cmdline[len] = 0;
279	args = tmp_cmdline;
280
281	/* Chew leading spaces */
282	args = skip_spaces(args);
283
284	while (*args) {
285		args = next_arg(args, &param, &val);
286		/* Stop at -- */
287		if (!val && strcmp(param, "--") == 0) {
288			warn("Only '--' specified in cmdline");
289			goto out;
290		}
291
292		if (!strcmp(param, "memmap")) {
293			mem_avoid_memmap(PARSE_MEMMAP, val);
294		} else if (strstr(param, "hugepages")) {
295			parse_gb_huge_pages(param, val);
296		} else if (!strcmp(param, "mem")) {
297			char *p = val;
298
299			if (!strcmp(p, "nopentium"))
300				continue;
301			mem_size = memparse(p, &p);
302			if (mem_size == 0)
303				goto out;
304
305			mem_limit = mem_size;
306		} else if (!strcmp(param, "efi_fake_mem")) {
307			mem_avoid_memmap(PARSE_EFI, val);
308		}
309	}
310
311out:
312	free(tmp_cmdline);
313	return;
314}
315
316/*
317 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
318 * The mem_avoid array is used to store the ranges that need to be avoided
319 * when KASLR searches for an appropriate random address. We must avoid any
320 * regions that are unsafe to overlap with during decompression, and other
321 * things like the initrd, cmdline and boot_params. This comment seeks to
322 * explain mem_avoid as clearly as possible since incorrect mem_avoid
323 * memory ranges lead to really hard to debug boot failures.
324 *
325 * The initrd, cmdline, and boot_params are trivial to identify for
326 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
327 * MEM_AVOID_BOOTPARAMS respectively below.
328 *
329 * What is not obvious how to avoid is the range of memory that is used
330 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
331 * the compressed kernel (ZO) and its run space, which is used to extract
332 * the uncompressed kernel (VO) and relocs.
333 *
334 * ZO's full run size sits against the end of the decompression buffer, so
335 * we can calculate where text, data, bss, etc of ZO are positioned more
336 * easily.
337 *
338 * For additional background, the decompression calculations can be found
339 * in header.S, and the memory diagram is based on the one found in misc.c.
340 *
341 * The following conditions are already enforced by the image layouts and
342 * associated code:
343 *  - input + input_size >= output + output_size
344 *  - kernel_total_size <= init_size
345 *  - kernel_total_size <= output_size (see Note below)
346 *  - output + init_size >= output + output_size
347 *
348 * (Note that kernel_total_size and output_size have no fundamental
349 * relationship, but output_size is passed to choose_random_location
350 * as a maximum of the two. The diagram is showing a case where
351 * kernel_total_size is larger than output_size, but this case is
352 * handled by bumping output_size.)
353 *
354 * The above conditions can be illustrated by a diagram:
355 *
356 * 0   output            input            input+input_size    output+init_size
357 * |     |                 |                             |             |
358 * |     |                 |                             |             |
359 * |-----|--------|--------|--------------|-----------|--|-------------|
360 *                |                       |           |
361 *                |                       |           |
362 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
363 *
364 * [output, output+init_size) is the entire memory range used for
365 * extracting the compressed image.
366 *
367 * [output, output+kernel_total_size) is the range needed for the
368 * uncompressed kernel (VO) and its run size (bss, brk, etc).
369 *
370 * [output, output+output_size) is VO plus relocs (i.e. the entire
371 * uncompressed payload contained by ZO). This is the area of the buffer
372 * written to during decompression.
373 *
374 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
375 * range of the copied ZO and decompression code. (i.e. the range
376 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
377 *
378 * [input, input+input_size) is the original copied compressed image (ZO)
379 * (i.e. it does not include its run size). This range must be avoided
380 * because it contains the data used for decompression.
381 *
382 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
383 * range includes ZO's heap and stack, and must be avoided since it
384 * performs the decompression.
385 *
386 * Since the above two ranges need to be avoided and they are adjacent,
387 * they can be merged, resulting in: [input, output+init_size) which
388 * becomes the MEM_AVOID_ZO_RANGE below.
389 */
390static void mem_avoid_init(unsigned long input, unsigned long input_size,
391			   unsigned long output)
392{
393	unsigned long init_size = boot_params->hdr.init_size;
394	u64 initrd_start, initrd_size;
395	u64 cmd_line, cmd_line_size;
396	char *ptr;
397
398	/*
399	 * Avoid the region that is unsafe to overlap during
400	 * decompression.
401	 */
402	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
403	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
404	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
405			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
406
407	/* Avoid initrd. */
408	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
409	initrd_start |= boot_params->hdr.ramdisk_image;
410	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
411	initrd_size |= boot_params->hdr.ramdisk_size;
412	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
413	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
414	/* No need to set mapping for initrd, it will be handled in VO. */
415
416	/* Avoid kernel command line. */
417	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
418	cmd_line |= boot_params->hdr.cmd_line_ptr;
419	/* Calculate size of cmd_line. */
420	ptr = (char *)(unsigned long)cmd_line;
421	for (cmd_line_size = 0; ptr[cmd_line_size++];)
422		;
423	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
424	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
425	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
426			 mem_avoid[MEM_AVOID_CMDLINE].size);
427
428	/* Avoid boot parameters. */
429	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
430	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
431	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
432			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
433
434	/* We don't need to set a mapping for setup_data. */
435
436	/* Mark the memmap regions we need to avoid */
437	handle_mem_options();
438
439	/* Enumerate the immovable memory regions */
440	num_immovable_mem = count_immovable_mem_regions();
441
442#ifdef CONFIG_X86_VERBOSE_BOOTUP
443	/* Make sure video RAM can be used. */
444	add_identity_map(0, PMD_SIZE);
445#endif
446}
447
448/*
449 * Does this memory vector overlap a known avoided area? If so, record the
450 * overlap region with the lowest address.
451 */
452static bool mem_avoid_overlap(struct mem_vector *img,
453			      struct mem_vector *overlap)
454{
455	int i;
456	struct setup_data *ptr;
457	unsigned long earliest = img->start + img->size;
458	bool is_overlapping = false;
459
460	for (i = 0; i < MEM_AVOID_MAX; i++) {
461		if (mem_overlaps(img, &mem_avoid[i]) &&
462		    mem_avoid[i].start < earliest) {
463			*overlap = mem_avoid[i];
464			earliest = overlap->start;
465			is_overlapping = true;
466		}
467	}
468
469	/* Avoid all entries in the setup_data linked list. */
470	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
471	while (ptr) {
472		struct mem_vector avoid;
473
474		avoid.start = (unsigned long)ptr;
475		avoid.size = sizeof(*ptr) + ptr->len;
476
477		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
478			*overlap = avoid;
479			earliest = overlap->start;
480			is_overlapping = true;
481		}
482
483		if (ptr->type == SETUP_INDIRECT &&
484		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
485			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
486			avoid.size = ((struct setup_indirect *)ptr->data)->len;
487
488			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
489				*overlap = avoid;
490				earliest = overlap->start;
491				is_overlapping = true;
492			}
493		}
494
495		ptr = (struct setup_data *)(unsigned long)ptr->next;
496	}
497
498	return is_overlapping;
499}
500
501struct slot_area {
502	unsigned long addr;
503	int num;
504};
505
506#define MAX_SLOT_AREA 100
507
508static struct slot_area slot_areas[MAX_SLOT_AREA];
509
510static unsigned long slot_max;
511
512static unsigned long slot_area_index;
513
514static void store_slot_info(struct mem_vector *region, unsigned long image_size)
515{
516	struct slot_area slot_area;
517
518	if (slot_area_index == MAX_SLOT_AREA)
519		return;
520
521	slot_area.addr = region->start;
522	slot_area.num = (region->size - image_size) /
523			CONFIG_PHYSICAL_ALIGN + 1;
524
525	if (slot_area.num > 0) {
526		slot_areas[slot_area_index++] = slot_area;
527		slot_max += slot_area.num;
528	}
529}
530
531/*
532 * Skip as many 1GB huge pages as possible in the passed region
533 * according to the number which users specified:
534 */
535static void
536process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
537{
538	unsigned long addr, size = 0;
539	struct mem_vector tmp;
540	int i = 0;
541
542	if (!max_gb_huge_pages) {
543		store_slot_info(region, image_size);
544		return;
545	}
546
547	addr = ALIGN(region->start, PUD_SIZE);
548	/* Did we raise the address above the passed in memory entry? */
549	if (addr < region->start + region->size)
550		size = region->size - (addr - region->start);
551
552	/* Check how many 1GB huge pages can be filtered out: */
553	while (size > PUD_SIZE && max_gb_huge_pages) {
554		size -= PUD_SIZE;
555		max_gb_huge_pages--;
556		i++;
557	}
558
559	/* No good 1GB huge pages found: */
560	if (!i) {
561		store_slot_info(region, image_size);
562		return;
563	}
564
565	/*
566	 * Skip those 'i'*1GB good huge pages, and continue checking and
567	 * processing the remaining head or tail part of the passed region
568	 * if available.
569	 */
570
571	if (addr >= region->start + image_size) {
572		tmp.start = region->start;
573		tmp.size = addr - region->start;
574		store_slot_info(&tmp, image_size);
575	}
576
577	size  = region->size - (addr - region->start) - i * PUD_SIZE;
578	if (size >= image_size) {
579		tmp.start = addr + i * PUD_SIZE;
580		tmp.size = size;
581		store_slot_info(&tmp, image_size);
582	}
583}
584
585static unsigned long slots_fetch_random(void)
586{
587	unsigned long slot;
588	int i;
589
590	/* Handle case of no slots stored. */
591	if (slot_max == 0)
592		return 0;
593
594	slot = kaslr_get_random_long("Physical") % slot_max;
595
596	for (i = 0; i < slot_area_index; i++) {
597		if (slot >= slot_areas[i].num) {
598			slot -= slot_areas[i].num;
599			continue;
600		}
601		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
602	}
603
604	if (i == slot_area_index)
605		debug_putstr("slots_fetch_random() failed!?\n");
606	return 0;
607}
608
609static void __process_mem_region(struct mem_vector *entry,
610				 unsigned long minimum,
611				 unsigned long image_size)
612{
613	struct mem_vector region, overlap;
614	unsigned long start_orig, end;
615	struct mem_vector cur_entry;
616
617	/* On 32-bit, ignore entries entirely above our maximum. */
618	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
619		return;
620
621	/* Ignore entries entirely below our minimum. */
622	if (entry->start + entry->size < minimum)
623		return;
624
625	/* Ignore entries above memory limit */
626	end = min(entry->size + entry->start, mem_limit);
627	if (entry->start >= end)
628		return;
629	cur_entry.start = entry->start;
630	cur_entry.size = end - entry->start;
631
632	region.start = cur_entry.start;
633	region.size = cur_entry.size;
634
635	/* Give up if slot area array is full. */
636	while (slot_area_index < MAX_SLOT_AREA) {
637		start_orig = region.start;
638
639		/* Potentially raise address to minimum location. */
640		if (region.start < minimum)
641			region.start = minimum;
642
643		/* Potentially raise address to meet alignment needs. */
644		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
645
646		/* Did we raise the address above the passed in memory entry? */
647		if (region.start > cur_entry.start + cur_entry.size)
648			return;
649
650		/* Reduce size by any delta from the original address. */
651		region.size -= region.start - start_orig;
652
653		/* On 32-bit, reduce region size to fit within max size. */
654		if (IS_ENABLED(CONFIG_X86_32) &&
655		    region.start + region.size > KERNEL_IMAGE_SIZE)
656			region.size = KERNEL_IMAGE_SIZE - region.start;
657
658		/* Return if region can't contain decompressed kernel */
659		if (region.size < image_size)
660			return;
661
662		/* If nothing overlaps, store the region and return. */
663		if (!mem_avoid_overlap(&region, &overlap)) {
664			process_gb_huge_pages(&region, image_size);
665			return;
666		}
667
668		/* Store beginning of region if holds at least image_size. */
669		if (overlap.start > region.start + image_size) {
670			struct mem_vector beginning;
671
672			beginning.start = region.start;
673			beginning.size = overlap.start - region.start;
674			process_gb_huge_pages(&beginning, image_size);
675		}
676
677		/* Return if overlap extends to or past end of region. */
678		if (overlap.start + overlap.size >= region.start + region.size)
679			return;
680
681		/* Clip off the overlapping region and start over. */
682		region.size -= overlap.start - region.start + overlap.size;
683		region.start = overlap.start + overlap.size;
684	}
685}
686
687static bool process_mem_region(struct mem_vector *region,
688			       unsigned long long minimum,
689			       unsigned long long image_size)
690{
691	int i;
692	/*
693	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
694	 * use @region directly.
695	 */
696	if (!num_immovable_mem) {
697		__process_mem_region(region, minimum, image_size);
698
699		if (slot_area_index == MAX_SLOT_AREA) {
700			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
701			return 1;
702		}
703		return 0;
704	}
705
706#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
707	/*
708	 * If immovable memory found, filter the intersection between
709	 * immovable memory and @region.
710	 */
711	for (i = 0; i < num_immovable_mem; i++) {
712		unsigned long long start, end, entry_end, region_end;
713		struct mem_vector entry;
714
715		if (!mem_overlaps(region, &immovable_mem[i]))
716			continue;
717
718		start = immovable_mem[i].start;
719		end = start + immovable_mem[i].size;
720		region_end = region->start + region->size;
721
722		entry.start = clamp(region->start, start, end);
723		entry_end = clamp(region_end, start, end);
724		entry.size = entry_end - entry.start;
725
726		__process_mem_region(&entry, minimum, image_size);
727
728		if (slot_area_index == MAX_SLOT_AREA) {
729			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
730			return 1;
731		}
732	}
733#endif
734	return 0;
735}
736
737#ifdef CONFIG_EFI
738/*
739 * Returns true if mirror region found (and must have been processed
740 * for slots adding)
741 */
742static bool
743process_efi_entries(unsigned long minimum, unsigned long image_size)
744{
745	struct efi_info *e = &boot_params->efi_info;
746	bool efi_mirror_found = false;
747	struct mem_vector region;
748	efi_memory_desc_t *md;
749	unsigned long pmap;
750	char *signature;
751	u32 nr_desc;
752	int i;
753
754	signature = (char *)&e->efi_loader_signature;
755	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
756	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
757		return false;
758
759#ifdef CONFIG_X86_32
760	/* Can't handle data above 4GB at this time */
761	if (e->efi_memmap_hi) {
762		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
763		return false;
764	}
765	pmap =  e->efi_memmap;
766#else
767	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
768#endif
769
770	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
771	for (i = 0; i < nr_desc; i++) {
772		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
773		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
774			efi_mirror_found = true;
775			break;
776		}
777	}
778
779	for (i = 0; i < nr_desc; i++) {
780		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
781
782		/*
783		 * Here we are more conservative in picking free memory than
784		 * the EFI spec allows:
785		 *
786		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
787		 * free memory and thus available to place the kernel image into,
788		 * but in practice there's firmware where using that memory leads
789		 * to crashes.
790		 *
791		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
792		 */
793		if (md->type != EFI_CONVENTIONAL_MEMORY)
794			continue;
795
796		if (efi_soft_reserve_enabled() &&
797		    (md->attribute & EFI_MEMORY_SP))
798			continue;
799
800		if (efi_mirror_found &&
801		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
802			continue;
803
804		region.start = md->phys_addr;
805		region.size = md->num_pages << EFI_PAGE_SHIFT;
806		if (process_mem_region(&region, minimum, image_size))
807			break;
808	}
809	return true;
810}
811#else
812static inline bool
813process_efi_entries(unsigned long minimum, unsigned long image_size)
814{
815	return false;
816}
817#endif
818
819static void process_e820_entries(unsigned long minimum,
820				 unsigned long image_size)
821{
822	int i;
823	struct mem_vector region;
824	struct boot_e820_entry *entry;
825
826	/* Verify potential e820 positions, appending to slots list. */
827	for (i = 0; i < boot_params->e820_entries; i++) {
828		entry = &boot_params->e820_table[i];
829		/* Skip non-RAM entries. */
830		if (entry->type != E820_TYPE_RAM)
831			continue;
832		region.start = entry->addr;
833		region.size = entry->size;
834		if (process_mem_region(&region, minimum, image_size))
835			break;
836	}
837}
838
839static unsigned long find_random_phys_addr(unsigned long minimum,
840					   unsigned long image_size)
841{
842	/* Check if we had too many memmaps. */
843	if (memmap_too_large) {
844		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
845		return 0;
846	}
847
848	/* Make sure minimum is aligned. */
849	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
850
851	if (process_efi_entries(minimum, image_size))
852		return slots_fetch_random();
853
854	process_e820_entries(minimum, image_size);
855	return slots_fetch_random();
856}
857
858static unsigned long find_random_virt_addr(unsigned long minimum,
859					   unsigned long image_size)
860{
861	unsigned long slots, random_addr;
862
863	/* Make sure minimum is aligned. */
864	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
865	/* Align image_size for easy slot calculations. */
866	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
867
868	/*
869	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
870	 * that can hold image_size within the range of minimum to
871	 * KERNEL_IMAGE_SIZE?
872	 */
873	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
874		 CONFIG_PHYSICAL_ALIGN + 1;
875
876	random_addr = kaslr_get_random_long("Virtual") % slots;
877
878	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
879}
880
881/*
882 * Since this function examines addresses much more numerically,
883 * it takes the input and output pointers as 'unsigned long'.
884 */
885void choose_random_location(unsigned long input,
886			    unsigned long input_size,
887			    unsigned long *output,
888			    unsigned long output_size,
889			    unsigned long *virt_addr)
890{
891	unsigned long random_addr, min_addr;
892
893	if (cmdline_find_option_bool("nokaslr")) {
894		warn("KASLR disabled: 'nokaslr' on cmdline.");
895		return;
896	}
897
898#ifdef CONFIG_X86_5LEVEL
899	if (__read_cr4() & X86_CR4_LA57) {
900		__pgtable_l5_enabled = 1;
901		pgdir_shift = 48;
902		ptrs_per_p4d = 512;
903	}
904#endif
905
906	boot_params->hdr.loadflags |= KASLR_FLAG;
907
908	/* Prepare to add new identity pagetables on demand. */
909	initialize_identity_maps();
910
911	/* Record the various known unsafe memory ranges. */
912	mem_avoid_init(input, input_size, *output);
913
914	/*
915	 * Low end of the randomization range should be the
916	 * smaller of 512M or the initial kernel image
917	 * location:
918	 */
919	min_addr = min(*output, 512UL << 20);
920
921	/* Walk available memory entries to find a random address. */
922	random_addr = find_random_phys_addr(min_addr, output_size);
923	if (!random_addr) {
924		warn("Physical KASLR disabled: no suitable memory region!");
925	} else {
926		/* Update the new physical address location. */
927		if (*output != random_addr) {
928			add_identity_map(random_addr, output_size);
929			*output = random_addr;
930		}
931
932		/*
933		 * This loads the identity mapping page table.
934		 * This should only be done if a new physical address
935		 * is found for the kernel, otherwise we should keep
936		 * the old page table to make it be like the "nokaslr"
937		 * case.
938		 */
939		finalize_identity_maps();
940	}
941
942
943	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
944	if (IS_ENABLED(CONFIG_X86_64))
945		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
946	*virt_addr = random_addr;
947}