Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Linux performance counter support for ARC700 series
  3 *
  4 * Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com)
  5 *
  6 * This code is inspired by the perf support of various other architectures.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 */
 13#include <linux/errno.h>
 14#include <linux/interrupt.h>
 15#include <linux/module.h>
 16#include <linux/of.h>
 17#include <linux/perf_event.h>
 18#include <linux/platform_device.h>
 19#include <asm/arcregs.h>
 20#include <asm/stacktrace.h>
 21
 22struct arc_pmu {
 23	struct pmu	pmu;
 24	unsigned int	irq;
 25	int		n_counters;
 26	u64		max_period;
 27	int		ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
 28};
 29
 30struct arc_pmu_cpu {
 31	/*
 32	 * A 1 bit for an index indicates that the counter is being used for
 33	 * an event. A 0 means that the counter can be used.
 34	 */
 35	unsigned long	used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
 36
 37	/*
 38	 * The events that are active on the PMU for the given index.
 39	 */
 40	struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
 41};
 42
 43struct arc_callchain_trace {
 44	int depth;
 45	void *perf_stuff;
 46};
 47
 48static int callchain_trace(unsigned int addr, void *data)
 49{
 50	struct arc_callchain_trace *ctrl = data;
 51	struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
 52	perf_callchain_store(entry, addr);
 53
 54	if (ctrl->depth++ < 3)
 55		return 0;
 56
 57	return -1;
 58}
 59
 60void
 61perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
 62{
 63	struct arc_callchain_trace ctrl = {
 64		.depth = 0,
 65		.perf_stuff = entry,
 66	};
 67
 68	arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
 69}
 70
 71void
 72perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
 73{
 74	/*
 75	 * User stack can't be unwound trivially with kernel dwarf unwinder
 76	 * So for now just record the user PC
 77	 */
 78	perf_callchain_store(entry, instruction_pointer(regs));
 79}
 80
 81static struct arc_pmu *arc_pmu;
 82static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
 83
 84/* read counter #idx; note that counter# != event# on ARC! */
 85static uint64_t arc_pmu_read_counter(int idx)
 86{
 87	uint32_t tmp;
 88	uint64_t result;
 89
 90	/*
 91	 * ARC supports making 'snapshots' of the counters, so we don't
 92	 * need to care about counters wrapping to 0 underneath our feet
 93	 */
 94	write_aux_reg(ARC_REG_PCT_INDEX, idx);
 95	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
 96	write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
 97	result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
 98	result |= read_aux_reg(ARC_REG_PCT_SNAPL);
 99
100	return result;
101}
102
103static void arc_perf_event_update(struct perf_event *event,
104				  struct hw_perf_event *hwc, int idx)
105{
106	uint64_t prev_raw_count = local64_read(&hwc->prev_count);
107	uint64_t new_raw_count = arc_pmu_read_counter(idx);
108	int64_t delta = new_raw_count - prev_raw_count;
109
110	/*
111	 * We aren't afraid of hwc->prev_count changing beneath our feet
112	 * because there's no way for us to re-enter this function anytime.
113	 */
114	local64_set(&hwc->prev_count, new_raw_count);
115	local64_add(delta, &event->count);
116	local64_sub(delta, &hwc->period_left);
117}
118
119static void arc_pmu_read(struct perf_event *event)
120{
121	arc_perf_event_update(event, &event->hw, event->hw.idx);
122}
123
124static int arc_pmu_cache_event(u64 config)
125{
126	unsigned int cache_type, cache_op, cache_result;
127	int ret;
128
129	cache_type	= (config >>  0) & 0xff;
130	cache_op	= (config >>  8) & 0xff;
131	cache_result	= (config >> 16) & 0xff;
132	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
133		return -EINVAL;
134	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135		return -EINVAL;
136	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137		return -EINVAL;
138
139	ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
140
141	if (ret == CACHE_OP_UNSUPPORTED)
142		return -ENOENT;
143
144	pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
145		 cache_type, cache_op, cache_result, ret,
146		 arc_pmu_ev_hw_map[ret]);
147
148	return ret;
149}
150
151/* initializes hw_perf_event structure if event is supported */
152static int arc_pmu_event_init(struct perf_event *event)
153{
154	struct hw_perf_event *hwc = &event->hw;
155	int ret;
156
157	if (!is_sampling_event(event)) {
158		hwc->sample_period  = arc_pmu->max_period;
159		hwc->last_period = hwc->sample_period;
160		local64_set(&hwc->period_left, hwc->sample_period);
161	}
162
163	hwc->config = 0;
164
165	if (is_isa_arcv2()) {
166		/* "exclude user" means "count only kernel" */
167		if (event->attr.exclude_user)
168			hwc->config |= ARC_REG_PCT_CONFIG_KERN;
169
170		/* "exclude kernel" means "count only user" */
171		if (event->attr.exclude_kernel)
172			hwc->config |= ARC_REG_PCT_CONFIG_USER;
173	}
174
175	switch (event->attr.type) {
176	case PERF_TYPE_HARDWARE:
177		if (event->attr.config >= PERF_COUNT_HW_MAX)
178			return -ENOENT;
179		if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
180			return -ENOENT;
181		hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
182		pr_debug("init event %d with h/w %08x \'%s\'\n",
183			 (int)event->attr.config, (int)hwc->config,
184			 arc_pmu_ev_hw_map[event->attr.config]);
185		return 0;
186
187	case PERF_TYPE_HW_CACHE:
188		ret = arc_pmu_cache_event(event->attr.config);
189		if (ret < 0)
190			return ret;
191		hwc->config |= arc_pmu->ev_hw_idx[ret];
192		pr_debug("init cache event with h/w %08x \'%s\'\n",
193			 (int)hwc->config, arc_pmu_ev_hw_map[ret]);
194		return 0;
195	default:
196		return -ENOENT;
197	}
198}
199
200/* starts all counters */
201static void arc_pmu_enable(struct pmu *pmu)
202{
203	uint32_t tmp;
204	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
205	write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
206}
207
208/* stops all counters */
209static void arc_pmu_disable(struct pmu *pmu)
210{
211	uint32_t tmp;
212	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
213	write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
214}
215
216static int arc_pmu_event_set_period(struct perf_event *event)
217{
218	struct hw_perf_event *hwc = &event->hw;
219	s64 left = local64_read(&hwc->period_left);
220	s64 period = hwc->sample_period;
221	int idx = hwc->idx;
222	int overflow = 0;
223	u64 value;
224
225	if (unlikely(left <= -period)) {
226		/* left underflowed by more than period. */
227		left = period;
228		local64_set(&hwc->period_left, left);
229		hwc->last_period = period;
230		overflow = 1;
231	} else	if (unlikely(left <= 0)) {
232		/* left underflowed by less than period. */
233		left += period;
234		local64_set(&hwc->period_left, left);
235		hwc->last_period = period;
236		overflow = 1;
237	}
238
239	if (left > arc_pmu->max_period)
240		left = arc_pmu->max_period;
241
242	value = arc_pmu->max_period - left;
243	local64_set(&hwc->prev_count, value);
244
245	/* Select counter */
246	write_aux_reg(ARC_REG_PCT_INDEX, idx);
247
248	/* Write value */
249	write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value);
250	write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32));
251
252	perf_event_update_userpage(event);
253
254	return overflow;
255}
256
257/*
258 * Assigns hardware counter to hardware condition.
259 * Note that there is no separate start/stop mechanism;
260 * stopping is achieved by assigning the 'never' condition
261 */
262static void arc_pmu_start(struct perf_event *event, int flags)
263{
264	struct hw_perf_event *hwc = &event->hw;
265	int idx = hwc->idx;
266
267	if (WARN_ON_ONCE(idx == -1))
268		return;
269
270	if (flags & PERF_EF_RELOAD)
271		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
272
273	hwc->state = 0;
274
275	arc_pmu_event_set_period(event);
276
277	/* Enable interrupt for this counter */
278	if (is_sampling_event(event))
279		write_aux_reg(ARC_REG_PCT_INT_CTRL,
280			      read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
281
282	/* enable ARC pmu here */
283	write_aux_reg(ARC_REG_PCT_INDEX, idx);		/* counter # */
284	write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config);	/* condition */
285}
286
287static void arc_pmu_stop(struct perf_event *event, int flags)
288{
289	struct hw_perf_event *hwc = &event->hw;
290	int idx = hwc->idx;
291
292	/* Disable interrupt for this counter */
293	if (is_sampling_event(event)) {
294		/*
295		 * Reset interrupt flag by writing of 1. This is required
296		 * to make sure pending interrupt was not left.
297		 */
298		write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
299		write_aux_reg(ARC_REG_PCT_INT_CTRL,
300			      read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx));
301	}
302
303	if (!(event->hw.state & PERF_HES_STOPPED)) {
304		/* stop ARC pmu here */
305		write_aux_reg(ARC_REG_PCT_INDEX, idx);
306
307		/* condition code #0 is always "never" */
308		write_aux_reg(ARC_REG_PCT_CONFIG, 0);
309
310		event->hw.state |= PERF_HES_STOPPED;
311	}
312
313	if ((flags & PERF_EF_UPDATE) &&
314	    !(event->hw.state & PERF_HES_UPTODATE)) {
315		arc_perf_event_update(event, &event->hw, idx);
316		event->hw.state |= PERF_HES_UPTODATE;
317	}
318}
319
320static void arc_pmu_del(struct perf_event *event, int flags)
321{
322	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
323
324	arc_pmu_stop(event, PERF_EF_UPDATE);
325	__clear_bit(event->hw.idx, pmu_cpu->used_mask);
326
327	pmu_cpu->act_counter[event->hw.idx] = 0;
328
329	perf_event_update_userpage(event);
330}
331
332/* allocate hardware counter and optionally start counting */
333static int arc_pmu_add(struct perf_event *event, int flags)
334{
335	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
336	struct hw_perf_event *hwc = &event->hw;
337	int idx = hwc->idx;
338
339	if (__test_and_set_bit(idx, pmu_cpu->used_mask)) {
340		idx = find_first_zero_bit(pmu_cpu->used_mask,
341					  arc_pmu->n_counters);
342		if (idx == arc_pmu->n_counters)
343			return -EAGAIN;
344
345		__set_bit(idx, pmu_cpu->used_mask);
346		hwc->idx = idx;
347	}
348
349	write_aux_reg(ARC_REG_PCT_INDEX, idx);
350
351	pmu_cpu->act_counter[idx] = event;
352
353	if (is_sampling_event(event)) {
354		/* Mimic full counter overflow as other arches do */
355		write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period);
356		write_aux_reg(ARC_REG_PCT_INT_CNTH,
357			      (arc_pmu->max_period >> 32));
358	}
359
360	write_aux_reg(ARC_REG_PCT_CONFIG, 0);
361	write_aux_reg(ARC_REG_PCT_COUNTL, 0);
362	write_aux_reg(ARC_REG_PCT_COUNTH, 0);
363	local64_set(&hwc->prev_count, 0);
364
365	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
366	if (flags & PERF_EF_START)
367		arc_pmu_start(event, PERF_EF_RELOAD);
368
369	perf_event_update_userpage(event);
370
371	return 0;
372}
373
374#ifdef CONFIG_ISA_ARCV2
375static irqreturn_t arc_pmu_intr(int irq, void *dev)
376{
377	struct perf_sample_data data;
378	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
379	struct pt_regs *regs;
380	int active_ints;
381	int idx;
382
383	arc_pmu_disable(&arc_pmu->pmu);
384
385	active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
386
387	regs = get_irq_regs();
388
389	for (idx = 0; idx < arc_pmu->n_counters; idx++) {
390		struct perf_event *event = pmu_cpu->act_counter[idx];
391		struct hw_perf_event *hwc;
392
393		if (!(active_ints & (1 << idx)))
394			continue;
395
396		/* Reset interrupt flag by writing of 1 */
397		write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
398
399		/*
400		 * On reset of "interrupt active" bit corresponding
401		 * "interrupt enable" bit gets automatically reset as well.
402		 * Now we need to re-enable interrupt for the counter.
403		 */
404		write_aux_reg(ARC_REG_PCT_INT_CTRL,
405			read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
406
407		hwc = &event->hw;
408
409		WARN_ON_ONCE(hwc->idx != idx);
410
411		arc_perf_event_update(event, &event->hw, event->hw.idx);
412		perf_sample_data_init(&data, 0, hwc->last_period);
413		if (!arc_pmu_event_set_period(event))
414			continue;
415
416		if (perf_event_overflow(event, &data, regs))
417			arc_pmu_stop(event, 0);
418	}
419
420	arc_pmu_enable(&arc_pmu->pmu);
421
422	return IRQ_HANDLED;
423}
424#else
425
426static irqreturn_t arc_pmu_intr(int irq, void *dev)
427{
428	return IRQ_NONE;
429}
430
431#endif /* CONFIG_ISA_ARCV2 */
432
433static void arc_cpu_pmu_irq_init(void *data)
434{
435	int irq = *(int *)data;
436
437	enable_percpu_irq(irq, IRQ_TYPE_NONE);
438
439	/* Clear all pending interrupt flags */
440	write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
441}
442
443static int arc_pmu_device_probe(struct platform_device *pdev)
444{
445	struct arc_reg_pct_build pct_bcr;
446	struct arc_reg_cc_build cc_bcr;
447	int i, j, has_interrupts;
448	int counter_size;	/* in bits */
449
450	union cc_name {
451		struct {
452			uint32_t word0, word1;
453			char sentinel;
454		} indiv;
455		char str[9];
456	} cc_name;
457
458
459	READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
460	if (!pct_bcr.v) {
461		pr_err("This core does not have performance counters!\n");
462		return -ENODEV;
463	}
464	BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS);
465
466	READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
467	BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */
468
469	arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
470	if (!arc_pmu)
471		return -ENOMEM;
472
473	has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
474
475	arc_pmu->n_counters = pct_bcr.c;
476	counter_size = 32 + (pct_bcr.s << 4);
477
478	arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
479
480	pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
481		arc_pmu->n_counters, counter_size, cc_bcr.c,
482		has_interrupts ? ", [overflow IRQ support]":"");
483
484	cc_name.str[8] = 0;
485	for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
486		arc_pmu->ev_hw_idx[i] = -1;
487
488	/* loop thru all available h/w condition indexes */
489	for (j = 0; j < cc_bcr.c; j++) {
490		write_aux_reg(ARC_REG_CC_INDEX, j);
491		cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0);
492		cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1);
493
494		/* See if it has been mapped to a perf event_id */
495		for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
496			if (arc_pmu_ev_hw_map[i] &&
497			    !strcmp(arc_pmu_ev_hw_map[i], cc_name.str) &&
498			    strlen(arc_pmu_ev_hw_map[i])) {
499				pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
500					 i, cc_name.str, j);
501				arc_pmu->ev_hw_idx[i] = j;
502			}
503		}
504	}
505
506	arc_pmu->pmu = (struct pmu) {
507		.pmu_enable	= arc_pmu_enable,
508		.pmu_disable	= arc_pmu_disable,
509		.event_init	= arc_pmu_event_init,
510		.add		= arc_pmu_add,
511		.del		= arc_pmu_del,
512		.start		= arc_pmu_start,
513		.stop		= arc_pmu_stop,
514		.read		= arc_pmu_read,
515	};
516
517	if (has_interrupts) {
518		int irq = platform_get_irq(pdev, 0);
519
520		if (irq < 0) {
521			pr_err("Cannot get IRQ number for the platform\n");
522			return -ENODEV;
523		}
524
525		arc_pmu->irq = irq;
526
527		/* intc map function ensures irq_set_percpu_devid() called */
528		request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
529				   this_cpu_ptr(&arc_pmu_cpu));
530
531		on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
532
533	} else
534		arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
535
536	return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW);
537}
538
539#ifdef CONFIG_OF
540static const struct of_device_id arc_pmu_match[] = {
541	{ .compatible = "snps,arc700-pct" },
542	{ .compatible = "snps,archs-pct" },
543	{},
544};
545MODULE_DEVICE_TABLE(of, arc_pmu_match);
546#endif
547
548static struct platform_driver arc_pmu_driver = {
549	.driver	= {
550		.name		= "arc-pct",
551		.of_match_table = of_match_ptr(arc_pmu_match),
552	},
553	.probe		= arc_pmu_device_probe,
554};
555
556module_platform_driver(arc_pmu_driver);
557
558MODULE_LICENSE("GPL");
559MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
560MODULE_DESCRIPTION("ARC PMU driver");