Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Linux performance counter support for ARC700 series
  3 *
  4 * Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com)
  5 *
  6 * This code is inspired by the perf support of various other architectures.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 */
 13#include <linux/errno.h>
 14#include <linux/interrupt.h>
 15#include <linux/module.h>
 16#include <linux/of.h>
 17#include <linux/perf_event.h>
 18#include <linux/platform_device.h>
 19#include <asm/arcregs.h>
 20#include <asm/stacktrace.h>
 21
 22struct arc_pmu {
 23	struct pmu	pmu;
 24	unsigned int	irq;
 25	int		n_counters;
 26	u64		max_period;
 27	int		ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
 28};
 29
 30struct arc_pmu_cpu {
 31	/*
 32	 * A 1 bit for an index indicates that the counter is being used for
 33	 * an event. A 0 means that the counter can be used.
 34	 */
 35	unsigned long	used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
 36
 37	/*
 38	 * The events that are active on the PMU for the given index.
 39	 */
 40	struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
 41};
 42
 43struct arc_callchain_trace {
 44	int depth;
 45	void *perf_stuff;
 46};
 47
 48static int callchain_trace(unsigned int addr, void *data)
 49{
 50	struct arc_callchain_trace *ctrl = data;
 51	struct perf_callchain_entry *entry = ctrl->perf_stuff;
 52	perf_callchain_store(entry, addr);
 53
 54	if (ctrl->depth++ < 3)
 55		return 0;
 56
 57	return -1;
 58}
 59
 60void
 61perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
 62{
 63	struct arc_callchain_trace ctrl = {
 64		.depth = 0,
 65		.perf_stuff = entry,
 66	};
 67
 68	arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
 69}
 70
 71void
 72perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
 73{
 74	/*
 75	 * User stack can't be unwound trivially with kernel dwarf unwinder
 76	 * So for now just record the user PC
 77	 */
 78	perf_callchain_store(entry, instruction_pointer(regs));
 79}
 80
 81static struct arc_pmu *arc_pmu;
 82static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
 83
 84/* read counter #idx; note that counter# != event# on ARC! */
 85static uint64_t arc_pmu_read_counter(int idx)
 86{
 87	uint32_t tmp;
 88	uint64_t result;
 89
 90	/*
 91	 * ARC supports making 'snapshots' of the counters, so we don't
 92	 * need to care about counters wrapping to 0 underneath our feet
 93	 */
 94	write_aux_reg(ARC_REG_PCT_INDEX, idx);
 95	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
 96	write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
 97	result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
 98	result |= read_aux_reg(ARC_REG_PCT_SNAPL);
 99
100	return result;
101}
102
103static void arc_perf_event_update(struct perf_event *event,
104				  struct hw_perf_event *hwc, int idx)
105{
106	uint64_t prev_raw_count = local64_read(&hwc->prev_count);
107	uint64_t new_raw_count = arc_pmu_read_counter(idx);
108	int64_t delta = new_raw_count - prev_raw_count;
109
110	/*
111	 * We don't afaraid of hwc->prev_count changing beneath our feet
112	 * because there's no way for us to re-enter this function anytime.
113	 */
114	local64_set(&hwc->prev_count, new_raw_count);
115	local64_add(delta, &event->count);
116	local64_sub(delta, &hwc->period_left);
117}
118
119static void arc_pmu_read(struct perf_event *event)
120{
121	arc_perf_event_update(event, &event->hw, event->hw.idx);
122}
123
124static int arc_pmu_cache_event(u64 config)
125{
126	unsigned int cache_type, cache_op, cache_result;
127	int ret;
128
129	cache_type	= (config >>  0) & 0xff;
130	cache_op	= (config >>  8) & 0xff;
131	cache_result	= (config >> 16) & 0xff;
132	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
133		return -EINVAL;
134	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135		return -EINVAL;
136	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137		return -EINVAL;
138
139	ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
140
141	if (ret == CACHE_OP_UNSUPPORTED)
142		return -ENOENT;
143
144	pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
145		 cache_type, cache_op, cache_result, ret,
146		 arc_pmu_ev_hw_map[ret]);
147
148	return ret;
149}
150
151/* initializes hw_perf_event structure if event is supported */
152static int arc_pmu_event_init(struct perf_event *event)
153{
154	struct hw_perf_event *hwc = &event->hw;
155	int ret;
156
157	if (!is_sampling_event(event)) {
158		hwc->sample_period  = arc_pmu->max_period;
159		hwc->last_period = hwc->sample_period;
160		local64_set(&hwc->period_left, hwc->sample_period);
161	}
162
163	hwc->config = 0;
164
165	if (is_isa_arcv2()) {
166		/* "exclude user" means "count only kernel" */
167		if (event->attr.exclude_user)
168			hwc->config |= ARC_REG_PCT_CONFIG_KERN;
169
170		/* "exclude kernel" means "count only user" */
171		if (event->attr.exclude_kernel)
172			hwc->config |= ARC_REG_PCT_CONFIG_USER;
173	}
174
175	switch (event->attr.type) {
176	case PERF_TYPE_HARDWARE:
177		if (event->attr.config >= PERF_COUNT_HW_MAX)
178			return -ENOENT;
179		if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
180			return -ENOENT;
181		hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
182		pr_debug("init event %d with h/w %d \'%s\'\n",
183			 (int) event->attr.config, (int) hwc->config,
184			 arc_pmu_ev_hw_map[event->attr.config]);
185		return 0;
186
187	case PERF_TYPE_HW_CACHE:
188		ret = arc_pmu_cache_event(event->attr.config);
189		if (ret < 0)
190			return ret;
191		hwc->config |= arc_pmu->ev_hw_idx[ret];
192		return 0;
193	default:
194		return -ENOENT;
195	}
196}
197
198/* starts all counters */
199static void arc_pmu_enable(struct pmu *pmu)
200{
201	uint32_t tmp;
202	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
203	write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
204}
205
206/* stops all counters */
207static void arc_pmu_disable(struct pmu *pmu)
208{
209	uint32_t tmp;
210	tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
211	write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
212}
213
214static int arc_pmu_event_set_period(struct perf_event *event)
215{
216	struct hw_perf_event *hwc = &event->hw;
217	s64 left = local64_read(&hwc->period_left);
218	s64 period = hwc->sample_period;
219	int idx = hwc->idx;
220	int overflow = 0;
221	u64 value;
222
223	if (unlikely(left <= -period)) {
224		/* left underflowed by more than period. */
225		left = period;
226		local64_set(&hwc->period_left, left);
227		hwc->last_period = period;
228		overflow = 1;
229	} else	if (unlikely(left <= 0)) {
230		/* left underflowed by less than period. */
231		left += period;
232		local64_set(&hwc->period_left, left);
233		hwc->last_period = period;
234		overflow = 1;
235	}
236
237	if (left > arc_pmu->max_period)
238		left = arc_pmu->max_period;
239
240	value = arc_pmu->max_period - left;
241	local64_set(&hwc->prev_count, value);
242
243	/* Select counter */
244	write_aux_reg(ARC_REG_PCT_INDEX, idx);
245
246	/* Write value */
247	write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value);
248	write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32));
249
250	perf_event_update_userpage(event);
251
252	return overflow;
253}
254
255/*
256 * Assigns hardware counter to hardware condition.
257 * Note that there is no separate start/stop mechanism;
258 * stopping is achieved by assigning the 'never' condition
259 */
260static void arc_pmu_start(struct perf_event *event, int flags)
261{
262	struct hw_perf_event *hwc = &event->hw;
263	int idx = hwc->idx;
264
265	if (WARN_ON_ONCE(idx == -1))
266		return;
267
268	if (flags & PERF_EF_RELOAD)
269		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
270
271	hwc->state = 0;
272
273	arc_pmu_event_set_period(event);
274
275	/* Enable interrupt for this counter */
276	if (is_sampling_event(event))
277		write_aux_reg(ARC_REG_PCT_INT_CTRL,
278			      read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
279
280	/* enable ARC pmu here */
281	write_aux_reg(ARC_REG_PCT_INDEX, idx);		/* counter # */
282	write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config);	/* condition */
283}
284
285static void arc_pmu_stop(struct perf_event *event, int flags)
286{
287	struct hw_perf_event *hwc = &event->hw;
288	int idx = hwc->idx;
289
290	/* Disable interrupt for this counter */
291	if (is_sampling_event(event)) {
292		/*
293		 * Reset interrupt flag by writing of 1. This is required
294		 * to make sure pending interrupt was not left.
295		 */
296		write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
297		write_aux_reg(ARC_REG_PCT_INT_CTRL,
298			      read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx));
299	}
300
301	if (!(event->hw.state & PERF_HES_STOPPED)) {
302		/* stop ARC pmu here */
303		write_aux_reg(ARC_REG_PCT_INDEX, idx);
304
305		/* condition code #0 is always "never" */
306		write_aux_reg(ARC_REG_PCT_CONFIG, 0);
307
308		event->hw.state |= PERF_HES_STOPPED;
309	}
310
311	if ((flags & PERF_EF_UPDATE) &&
312	    !(event->hw.state & PERF_HES_UPTODATE)) {
313		arc_perf_event_update(event, &event->hw, idx);
314		event->hw.state |= PERF_HES_UPTODATE;
315	}
316}
317
318static void arc_pmu_del(struct perf_event *event, int flags)
319{
320	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
321
322	arc_pmu_stop(event, PERF_EF_UPDATE);
323	__clear_bit(event->hw.idx, pmu_cpu->used_mask);
324
325	pmu_cpu->act_counter[event->hw.idx] = 0;
326
327	perf_event_update_userpage(event);
328}
329
330/* allocate hardware counter and optionally start counting */
331static int arc_pmu_add(struct perf_event *event, int flags)
332{
333	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
334	struct hw_perf_event *hwc = &event->hw;
335	int idx = hwc->idx;
336
337	if (__test_and_set_bit(idx, pmu_cpu->used_mask)) {
338		idx = find_first_zero_bit(pmu_cpu->used_mask,
339					  arc_pmu->n_counters);
340		if (idx == arc_pmu->n_counters)
341			return -EAGAIN;
342
343		__set_bit(idx, pmu_cpu->used_mask);
344		hwc->idx = idx;
345	}
346
347	write_aux_reg(ARC_REG_PCT_INDEX, idx);
348
349	pmu_cpu->act_counter[idx] = event;
350
351	if (is_sampling_event(event)) {
352		/* Mimic full counter overflow as other arches do */
353		write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period);
354		write_aux_reg(ARC_REG_PCT_INT_CNTH,
355			      (arc_pmu->max_period >> 32));
356	}
357
358	write_aux_reg(ARC_REG_PCT_CONFIG, 0);
359	write_aux_reg(ARC_REG_PCT_COUNTL, 0);
360	write_aux_reg(ARC_REG_PCT_COUNTH, 0);
361	local64_set(&hwc->prev_count, 0);
362
363	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
364	if (flags & PERF_EF_START)
365		arc_pmu_start(event, PERF_EF_RELOAD);
366
367	perf_event_update_userpage(event);
368
369	return 0;
370}
371
372#ifdef CONFIG_ISA_ARCV2
373static irqreturn_t arc_pmu_intr(int irq, void *dev)
374{
375	struct perf_sample_data data;
376	struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
377	struct pt_regs *regs;
378	int active_ints;
379	int idx;
380
381	arc_pmu_disable(&arc_pmu->pmu);
382
383	active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
384
385	regs = get_irq_regs();
386
387	for (idx = 0; idx < arc_pmu->n_counters; idx++) {
388		struct perf_event *event = pmu_cpu->act_counter[idx];
389		struct hw_perf_event *hwc;
390
391		if (!(active_ints & (1 << idx)))
392			continue;
393
394		/* Reset interrupt flag by writing of 1 */
395		write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
396
397		/*
398		 * On reset of "interrupt active" bit corresponding
399		 * "interrupt enable" bit gets automatically reset as well.
400		 * Now we need to re-enable interrupt for the counter.
401		 */
402		write_aux_reg(ARC_REG_PCT_INT_CTRL,
403			read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
404
405		hwc = &event->hw;
406
407		WARN_ON_ONCE(hwc->idx != idx);
408
409		arc_perf_event_update(event, &event->hw, event->hw.idx);
410		perf_sample_data_init(&data, 0, hwc->last_period);
411		if (!arc_pmu_event_set_period(event))
412			continue;
413
414		if (perf_event_overflow(event, &data, regs))
415			arc_pmu_stop(event, 0);
416	}
417
418	arc_pmu_enable(&arc_pmu->pmu);
419
420	return IRQ_HANDLED;
421}
422#else
423
424static irqreturn_t arc_pmu_intr(int irq, void *dev)
425{
426	return IRQ_NONE;
427}
428
429#endif /* CONFIG_ISA_ARCV2 */
430
431static void arc_cpu_pmu_irq_init(void *data)
432{
433	int irq = *(int *)data;
434
435	enable_percpu_irq(irq, IRQ_TYPE_NONE);
436
437	/* Clear all pending interrupt flags */
438	write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
439}
440
441static int arc_pmu_device_probe(struct platform_device *pdev)
442{
443	struct arc_reg_pct_build pct_bcr;
444	struct arc_reg_cc_build cc_bcr;
445	int i, j, has_interrupts;
446	int counter_size;	/* in bits */
447
448	union cc_name {
449		struct {
450			uint32_t word0, word1;
451			char sentinel;
452		} indiv;
453		char str[9];
454	} cc_name;
455
456
457	READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
458	if (!pct_bcr.v) {
459		pr_err("This core does not have performance counters!\n");
460		return -ENODEV;
461	}
462	BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS);
463
464	READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
465	BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */
466
467	arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
468	if (!arc_pmu)
469		return -ENOMEM;
470
471	has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
472
473	arc_pmu->n_counters = pct_bcr.c;
474	counter_size = 32 + (pct_bcr.s << 4);
475
476	arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
477
478	pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
479		arc_pmu->n_counters, counter_size, cc_bcr.c,
480		has_interrupts ? ", [overflow IRQ support]":"");
481
482	cc_name.str[8] = 0;
483	for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
484		arc_pmu->ev_hw_idx[i] = -1;
485
486	/* loop thru all available h/w condition indexes */
487	for (j = 0; j < cc_bcr.c; j++) {
488		write_aux_reg(ARC_REG_CC_INDEX, j);
489		cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0);
490		cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1);
491
492		/* See if it has been mapped to a perf event_id */
493		for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
494			if (arc_pmu_ev_hw_map[i] &&
495			    !strcmp(arc_pmu_ev_hw_map[i], cc_name.str) &&
496			    strlen(arc_pmu_ev_hw_map[i])) {
497				pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
498					 i, cc_name.str, j);
499				arc_pmu->ev_hw_idx[i] = j;
500			}
501		}
502	}
503
504	arc_pmu->pmu = (struct pmu) {
505		.pmu_enable	= arc_pmu_enable,
506		.pmu_disable	= arc_pmu_disable,
507		.event_init	= arc_pmu_event_init,
508		.add		= arc_pmu_add,
509		.del		= arc_pmu_del,
510		.start		= arc_pmu_start,
511		.stop		= arc_pmu_stop,
512		.read		= arc_pmu_read,
513	};
514
515	if (has_interrupts) {
516		int irq = platform_get_irq(pdev, 0);
517
518		if (irq < 0) {
519			pr_err("Cannot get IRQ number for the platform\n");
520			return -ENODEV;
521		}
522
523		arc_pmu->irq = irq;
524
525		/* intc map function ensures irq_set_percpu_devid() called */
526		request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
527				   this_cpu_ptr(&arc_pmu_cpu));
528
529		on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
530
531	} else
532		arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
533
534	return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW);
535}
536
537#ifdef CONFIG_OF
538static const struct of_device_id arc_pmu_match[] = {
539	{ .compatible = "snps,arc700-pct" },
540	{ .compatible = "snps,archs-pct" },
541	{},
542};
543MODULE_DEVICE_TABLE(of, arc_pmu_match);
544#endif
545
546static struct platform_driver arc_pmu_driver = {
547	.driver	= {
548		.name		= "arc-pct",
549		.of_match_table = of_match_ptr(arc_pmu_match),
550	},
551	.probe		= arc_pmu_device_probe,
552};
553
554module_platform_driver(arc_pmu_driver);
555
556MODULE_LICENSE("GPL");
557MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
558MODULE_DESCRIPTION("ARC PMU driver");