Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
 
 
 
  35#include "internal.h"
  36
  37
  38LIST_HEAD(super_blocks);
  39DEFINE_SPINLOCK(sb_lock);
 
 
 
 
 
 
  40
  41/*
  42 * One thing we have to be careful of with a per-sb shrinker is that we don't
  43 * drop the last active reference to the superblock from within the shrinker.
  44 * If that happens we could trigger unregistering the shrinker from within the
  45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  46 * take a passive reference to the superblock to avoid this from occurring.
  47 */
  48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
 
  49{
  50	struct super_block *sb;
  51	int	fs_objects = 0;
  52	int	total_objects;
 
 
 
  53
  54	sb = container_of(shrink, struct super_block, s_shrink);
  55
  56	/*
  57	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  58	 * to recurse into the FS that called us in clear_inode() and friends..
  59	 */
  60	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
  61		return -1;
  62
  63	if (!grab_super_passive(sb))
  64		return -1;
  65
  66	if (sb->s_op && sb->s_op->nr_cached_objects)
  67		fs_objects = sb->s_op->nr_cached_objects(sb);
  68
  69	total_objects = sb->s_nr_dentry_unused +
  70			sb->s_nr_inodes_unused + fs_objects + 1;
  71
  72	if (sc->nr_to_scan) {
  73		int	dentries;
  74		int	inodes;
  75
  76		/* proportion the scan between the caches */
  77		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
  78							total_objects;
  79		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
  80							total_objects;
  81		if (fs_objects)
  82			fs_objects = (sc->nr_to_scan * fs_objects) /
  83							total_objects;
  84		/*
  85		 * prune the dcache first as the icache is pinned by it, then
  86		 * prune the icache, followed by the filesystem specific caches
  87		 */
  88		prune_dcache_sb(sb, dentries);
  89		prune_icache_sb(sb, inodes);
  90
  91		if (fs_objects && sb->s_op->free_cached_objects) {
  92			sb->s_op->free_cached_objects(sb, fs_objects);
  93			fs_objects = sb->s_op->nr_cached_objects(sb);
  94		}
  95		total_objects = sb->s_nr_dentry_unused +
  96				sb->s_nr_inodes_unused + fs_objects;
 
 
 
 
 
 
 
 
 
  97	}
  98
  99	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
 100	drop_super(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101	return total_objects;
 102}
 103
 104/**
 105 *	alloc_super	-	create new superblock
 106 *	@type:	filesystem type superblock should belong to
 107 *
 108 *	Allocates and initializes a new &struct super_block.  alloc_super()
 109 *	returns a pointer new superblock or %NULL if allocation had failed.
 110 */
 111static struct super_block *alloc_super(struct file_system_type *type)
 112{
 113	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 114	static const struct super_operations default_op;
 
 115
 116	if (s) {
 117		if (security_sb_alloc(s)) {
 118			kfree(s);
 119			s = NULL;
 120			goto out;
 121		}
 122#ifdef CONFIG_SMP
 123		s->s_files = alloc_percpu(struct list_head);
 124		if (!s->s_files) {
 125			security_sb_free(s);
 126			kfree(s);
 127			s = NULL;
 128			goto out;
 129		} else {
 130			int i;
 131
 132			for_each_possible_cpu(i)
 133				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
 134		}
 135#else
 136		INIT_LIST_HEAD(&s->s_files);
 137#endif
 138		s->s_bdi = &default_backing_dev_info;
 139		INIT_LIST_HEAD(&s->s_instances);
 140		INIT_HLIST_BL_HEAD(&s->s_anon);
 141		INIT_LIST_HEAD(&s->s_inodes);
 142		INIT_LIST_HEAD(&s->s_dentry_lru);
 143		INIT_LIST_HEAD(&s->s_inode_lru);
 144		spin_lock_init(&s->s_inode_lru_lock);
 145		init_rwsem(&s->s_umount);
 146		mutex_init(&s->s_lock);
 147		lockdep_set_class(&s->s_umount, &type->s_umount_key);
 148		/*
 149		 * The locking rules for s_lock are up to the
 150		 * filesystem. For example ext3fs has different
 151		 * lock ordering than usbfs:
 152		 */
 153		lockdep_set_class(&s->s_lock, &type->s_lock_key);
 154		/*
 155		 * sget() can have s_umount recursion.
 156		 *
 157		 * When it cannot find a suitable sb, it allocates a new
 158		 * one (this one), and tries again to find a suitable old
 159		 * one.
 160		 *
 161		 * In case that succeeds, it will acquire the s_umount
 162		 * lock of the old one. Since these are clearly distrinct
 163		 * locks, and this object isn't exposed yet, there's no
 164		 * risk of deadlocks.
 165		 *
 166		 * Annotate this by putting this lock in a different
 167		 * subclass.
 168		 */
 169		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 170		s->s_count = 1;
 171		atomic_set(&s->s_active, 1);
 172		mutex_init(&s->s_vfs_rename_mutex);
 173		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 174		mutex_init(&s->s_dquot.dqio_mutex);
 175		mutex_init(&s->s_dquot.dqonoff_mutex);
 176		init_rwsem(&s->s_dquot.dqptr_sem);
 177		init_waitqueue_head(&s->s_wait_unfrozen);
 178		s->s_maxbytes = MAX_NON_LFS;
 179		s->s_op = &default_op;
 180		s->s_time_gran = 1000000000;
 181		s->cleancache_poolid = -1;
 182
 183		s->s_shrink.seeks = DEFAULT_SEEKS;
 184		s->s_shrink.shrink = prune_super;
 185		s->s_shrink.batch = 1024;
 186	}
 187out:
 188	return s;
 189}
 190
 191/**
 192 *	destroy_super	-	frees a superblock
 193 *	@s: superblock to free
 194 *
 195 *	Frees a superblock.
 196 */
 197static inline void destroy_super(struct super_block *s)
 198{
 199#ifdef CONFIG_SMP
 200	free_percpu(s->s_files);
 201#endif
 202	security_sb_free(s);
 
 
 203	kfree(s->s_subtype);
 204	kfree(s->s_options);
 205	kfree(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206}
 207
 208/* Superblock refcounting  */
 209
 210/*
 211 * Drop a superblock's refcount.  The caller must hold sb_lock.
 212 */
 213void __put_super(struct super_block *sb)
 214{
 215	if (!--sb->s_count) {
 216		list_del_init(&sb->s_list);
 217		destroy_super(sb);
 218	}
 219}
 220
 221/**
 222 *	put_super	-	drop a temporary reference to superblock
 223 *	@sb: superblock in question
 224 *
 225 *	Drops a temporary reference, frees superblock if there's no
 226 *	references left.
 227 */
 228void put_super(struct super_block *sb)
 229{
 230	spin_lock(&sb_lock);
 231	__put_super(sb);
 232	spin_unlock(&sb_lock);
 233}
 234
 235
 236/**
 237 *	deactivate_locked_super	-	drop an active reference to superblock
 238 *	@s: superblock to deactivate
 239 *
 240 *	Drops an active reference to superblock, converting it into a temprory
 241 *	one if there is no other active references left.  In that case we
 242 *	tell fs driver to shut it down and drop the temporary reference we
 243 *	had just acquired.
 244 *
 245 *	Caller holds exclusive lock on superblock; that lock is released.
 246 */
 247void deactivate_locked_super(struct super_block *s)
 248{
 249	struct file_system_type *fs = s->s_type;
 250	if (atomic_dec_and_test(&s->s_active)) {
 251		cleancache_flush_fs(s);
 252		fs->kill_sb(s);
 253
 254		/* caches are now gone, we can safely kill the shrinker now */
 255		unregister_shrinker(&s->s_shrink);
 
 256
 257		/*
 258		 * We need to call rcu_barrier so all the delayed rcu free
 259		 * inodes are flushed before we release the fs module.
 
 260		 */
 261		rcu_barrier();
 
 
 262		put_filesystem(fs);
 263		put_super(s);
 264	} else {
 265		up_write(&s->s_umount);
 266	}
 267}
 268
 269EXPORT_SYMBOL(deactivate_locked_super);
 270
 271/**
 272 *	deactivate_super	-	drop an active reference to superblock
 273 *	@s: superblock to deactivate
 274 *
 275 *	Variant of deactivate_locked_super(), except that superblock is *not*
 276 *	locked by caller.  If we are going to drop the final active reference,
 277 *	lock will be acquired prior to that.
 278 */
 279void deactivate_super(struct super_block *s)
 280{
 281        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 282		down_write(&s->s_umount);
 283		deactivate_locked_super(s);
 284	}
 285}
 286
 287EXPORT_SYMBOL(deactivate_super);
 288
 289/**
 290 *	grab_super - acquire an active reference
 291 *	@s: reference we are trying to make active
 292 *
 293 *	Tries to acquire an active reference.  grab_super() is used when we
 294 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 295 *	and want to turn it into a full-blown active reference.  grab_super()
 296 *	is called with sb_lock held and drops it.  Returns 1 in case of
 297 *	success, 0 if we had failed (superblock contents was already dead or
 298 *	dying when grab_super() had been called).
 
 
 299 */
 300static int grab_super(struct super_block *s) __releases(sb_lock)
 301{
 302	if (atomic_inc_not_zero(&s->s_active)) {
 303		spin_unlock(&sb_lock);
 304		return 1;
 305	}
 306	/* it's going away */
 307	s->s_count++;
 308	spin_unlock(&sb_lock);
 309	/* wait for it to die */
 310	down_write(&s->s_umount);
 
 
 
 
 311	up_write(&s->s_umount);
 312	put_super(s);
 313	return 0;
 314}
 315
 316/*
 317 *	grab_super_passive - acquire a passive reference
 318 *	@s: reference we are trying to grab
 319 *
 320 *	Tries to acquire a passive reference. This is used in places where we
 321 *	cannot take an active reference but we need to ensure that the
 322 *	superblock does not go away while we are working on it. It returns
 323 *	false if a reference was not gained, and returns true with the s_umount
 324 *	lock held in read mode if a reference is gained. On successful return,
 325 *	the caller must drop the s_umount lock and the passive reference when
 326 *	done.
 
 
 
 
 
 327 */
 328bool grab_super_passive(struct super_block *sb)
 329{
 330	spin_lock(&sb_lock);
 331	if (list_empty(&sb->s_instances)) {
 332		spin_unlock(&sb_lock);
 333		return false;
 334	}
 335
 336	sb->s_count++;
 337	spin_unlock(&sb_lock);
 338
 339	if (down_read_trylock(&sb->s_umount)) {
 340		if (sb->s_root)
 
 341			return true;
 342		up_read(&sb->s_umount);
 343	}
 344
 345	put_super(sb);
 346	return false;
 347}
 348
 349/*
 350 * Superblock locking.  We really ought to get rid of these two.
 351 */
 352void lock_super(struct super_block * sb)
 353{
 354	mutex_lock(&sb->s_lock);
 355}
 356
 357void unlock_super(struct super_block * sb)
 358{
 359	mutex_unlock(&sb->s_lock);
 360}
 361
 362EXPORT_SYMBOL(lock_super);
 363EXPORT_SYMBOL(unlock_super);
 364
 365/**
 366 *	generic_shutdown_super	-	common helper for ->kill_sb()
 367 *	@sb: superblock to kill
 368 *
 369 *	generic_shutdown_super() does all fs-independent work on superblock
 370 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 371 *	that need destruction out of superblock, call generic_shutdown_super()
 372 *	and release aforementioned objects.  Note: dentries and inodes _are_
 373 *	taken care of and do not need specific handling.
 374 *
 375 *	Upon calling this function, the filesystem may no longer alter or
 376 *	rearrange the set of dentries belonging to this super_block, nor may it
 377 *	change the attachments of dentries to inodes.
 378 */
 379void generic_shutdown_super(struct super_block *sb)
 380{
 381	const struct super_operations *sop = sb->s_op;
 382
 383	if (sb->s_root) {
 384		shrink_dcache_for_umount(sb);
 385		sync_filesystem(sb);
 386		sb->s_flags &= ~MS_ACTIVE;
 387
 388		fsnotify_unmount_inodes(&sb->s_inodes);
 
 389
 390		evict_inodes(sb);
 391
 
 
 
 
 
 392		if (sop->put_super)
 393			sop->put_super(sb);
 394
 395		if (!list_empty(&sb->s_inodes)) {
 396			printk("VFS: Busy inodes after unmount of %s. "
 397			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 398			   sb->s_id);
 399		}
 400	}
 401	spin_lock(&sb_lock);
 402	/* should be initialized for __put_super_and_need_restart() */
 403	list_del_init(&sb->s_instances);
 404	spin_unlock(&sb_lock);
 405	up_write(&sb->s_umount);
 406}
 407
 408EXPORT_SYMBOL(generic_shutdown_super);
 409
 410/**
 411 *	sget	-	find or create a superblock
 412 *	@type:	filesystem type superblock should belong to
 413 *	@test:	comparison callback
 414 *	@set:	setup callback
 
 
 415 *	@data:	argument to each of them
 416 */
 417struct super_block *sget(struct file_system_type *type,
 418			int (*test)(struct super_block *,void *),
 419			int (*set)(struct super_block *,void *),
 
 420			void *data)
 421{
 422	struct super_block *s = NULL;
 423	struct super_block *old;
 424	int err;
 425
 
 
 
 
 426retry:
 427	spin_lock(&sb_lock);
 428	if (test) {
 429		list_for_each_entry(old, &type->fs_supers, s_instances) {
 430			if (!test(old, data))
 431				continue;
 
 
 
 
 
 
 
 
 432			if (!grab_super(old))
 433				goto retry;
 434			if (s) {
 435				up_write(&s->s_umount);
 436				destroy_super(s);
 437				s = NULL;
 438			}
 439			down_write(&old->s_umount);
 440			if (unlikely(!(old->s_flags & MS_BORN))) {
 441				deactivate_locked_super(old);
 442				goto retry;
 443			}
 444			return old;
 445		}
 446	}
 447	if (!s) {
 448		spin_unlock(&sb_lock);
 449		s = alloc_super(type);
 450		if (!s)
 451			return ERR_PTR(-ENOMEM);
 452		goto retry;
 453	}
 454		
 455	err = set(s, data);
 456	if (err) {
 457		spin_unlock(&sb_lock);
 458		up_write(&s->s_umount);
 459		destroy_super(s);
 460		return ERR_PTR(err);
 461	}
 462	s->s_type = type;
 463	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 464	list_add_tail(&s->s_list, &super_blocks);
 465	list_add(&s->s_instances, &type->fs_supers);
 466	spin_unlock(&sb_lock);
 467	get_filesystem(type);
 468	register_shrinker(&s->s_shrink);
 469	return s;
 470}
 471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472EXPORT_SYMBOL(sget);
 473
 474void drop_super(struct super_block *sb)
 475{
 476	up_read(&sb->s_umount);
 477	put_super(sb);
 478}
 479
 480EXPORT_SYMBOL(drop_super);
 481
 482/**
 483 * sync_supers - helper for periodic superblock writeback
 484 *
 485 * Call the write_super method if present on all dirty superblocks in
 486 * the system.  This is for the periodic writeback used by most older
 487 * filesystems.  For data integrity superblock writeback use
 488 * sync_filesystems() instead.
 489 *
 490 * Note: check the dirty flag before waiting, so we don't
 491 * hold up the sync while mounting a device. (The newly
 492 * mounted device won't need syncing.)
 493 */
 494void sync_supers(void)
 495{
 496	struct super_block *sb, *p = NULL;
 497
 498	spin_lock(&sb_lock);
 499	list_for_each_entry(sb, &super_blocks, s_list) {
 500		if (list_empty(&sb->s_instances))
 501			continue;
 502		if (sb->s_op->write_super && sb->s_dirt) {
 503			sb->s_count++;
 504			spin_unlock(&sb_lock);
 505
 506			down_read(&sb->s_umount);
 507			if (sb->s_root && sb->s_dirt)
 508				sb->s_op->write_super(sb);
 509			up_read(&sb->s_umount);
 510
 511			spin_lock(&sb_lock);
 512			if (p)
 513				__put_super(p);
 514			p = sb;
 515		}
 516	}
 517	if (p)
 518		__put_super(p);
 519	spin_unlock(&sb_lock);
 520}
 
 521
 522/**
 523 *	iterate_supers - call function for all active superblocks
 524 *	@f: function to call
 525 *	@arg: argument to pass to it
 526 *
 527 *	Scans the superblock list and calls given function, passing it
 528 *	locked superblock and given argument.
 529 */
 530void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 531{
 532	struct super_block *sb, *p = NULL;
 533
 534	spin_lock(&sb_lock);
 535	list_for_each_entry(sb, &super_blocks, s_list) {
 536		if (list_empty(&sb->s_instances))
 537			continue;
 538		sb->s_count++;
 539		spin_unlock(&sb_lock);
 540
 541		down_read(&sb->s_umount);
 542		if (sb->s_root)
 543			f(sb, arg);
 544		up_read(&sb->s_umount);
 545
 546		spin_lock(&sb_lock);
 547		if (p)
 548			__put_super(p);
 549		p = sb;
 550	}
 551	if (p)
 552		__put_super(p);
 553	spin_unlock(&sb_lock);
 554}
 555
 556/**
 557 *	iterate_supers_type - call function for superblocks of given type
 558 *	@type: fs type
 559 *	@f: function to call
 560 *	@arg: argument to pass to it
 561 *
 562 *	Scans the superblock list and calls given function, passing it
 563 *	locked superblock and given argument.
 564 */
 565void iterate_supers_type(struct file_system_type *type,
 566	void (*f)(struct super_block *, void *), void *arg)
 567{
 568	struct super_block *sb, *p = NULL;
 569
 570	spin_lock(&sb_lock);
 571	list_for_each_entry(sb, &type->fs_supers, s_instances) {
 572		sb->s_count++;
 573		spin_unlock(&sb_lock);
 574
 575		down_read(&sb->s_umount);
 576		if (sb->s_root)
 577			f(sb, arg);
 578		up_read(&sb->s_umount);
 579
 580		spin_lock(&sb_lock);
 581		if (p)
 582			__put_super(p);
 583		p = sb;
 584	}
 585	if (p)
 586		__put_super(p);
 587	spin_unlock(&sb_lock);
 588}
 589
 590EXPORT_SYMBOL(iterate_supers_type);
 591
 592/**
 593 *	get_super - get the superblock of a device
 594 *	@bdev: device to get the superblock for
 595 *	
 596 *	Scans the superblock list and finds the superblock of the file system
 597 *	mounted on the device given. %NULL is returned if no match is found.
 598 */
 599
 600struct super_block *get_super(struct block_device *bdev)
 601{
 602	struct super_block *sb;
 603
 604	if (!bdev)
 605		return NULL;
 606
 607	spin_lock(&sb_lock);
 608rescan:
 609	list_for_each_entry(sb, &super_blocks, s_list) {
 610		if (list_empty(&sb->s_instances))
 611			continue;
 612		if (sb->s_bdev == bdev) {
 613			sb->s_count++;
 614			spin_unlock(&sb_lock);
 615			down_read(&sb->s_umount);
 
 
 
 616			/* still alive? */
 617			if (sb->s_root)
 618				return sb;
 619			up_read(&sb->s_umount);
 
 
 
 620			/* nope, got unmounted */
 621			spin_lock(&sb_lock);
 622			__put_super(sb);
 623			goto rescan;
 624		}
 625	}
 626	spin_unlock(&sb_lock);
 627	return NULL;
 628}
 629
 
 
 
 
 
 
 
 
 
 
 
 630EXPORT_SYMBOL(get_super);
 631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632/**
 633 * get_active_super - get an active reference to the superblock of a device
 634 * @bdev: device to get the superblock for
 635 *
 636 * Scans the superblock list and finds the superblock of the file system
 637 * mounted on the device given.  Returns the superblock with an active
 638 * reference or %NULL if none was found.
 639 */
 640struct super_block *get_active_super(struct block_device *bdev)
 641{
 642	struct super_block *sb;
 643
 644	if (!bdev)
 645		return NULL;
 646
 647restart:
 648	spin_lock(&sb_lock);
 649	list_for_each_entry(sb, &super_blocks, s_list) {
 650		if (list_empty(&sb->s_instances))
 651			continue;
 652		if (sb->s_bdev == bdev) {
 653			if (grab_super(sb)) /* drops sb_lock */
 654				return sb;
 655			else
 656				goto restart;
 
 
 657		}
 658	}
 659	spin_unlock(&sb_lock);
 660	return NULL;
 661}
 662 
 663struct super_block *user_get_super(dev_t dev)
 664{
 665	struct super_block *sb;
 666
 667	spin_lock(&sb_lock);
 668rescan:
 669	list_for_each_entry(sb, &super_blocks, s_list) {
 670		if (list_empty(&sb->s_instances))
 671			continue;
 672		if (sb->s_dev ==  dev) {
 673			sb->s_count++;
 674			spin_unlock(&sb_lock);
 675			down_read(&sb->s_umount);
 676			/* still alive? */
 677			if (sb->s_root)
 678				return sb;
 679			up_read(&sb->s_umount);
 680			/* nope, got unmounted */
 681			spin_lock(&sb_lock);
 682			__put_super(sb);
 683			goto rescan;
 684		}
 685	}
 686	spin_unlock(&sb_lock);
 687	return NULL;
 688}
 689
 690/**
 691 *	do_remount_sb - asks filesystem to change mount options.
 692 *	@sb:	superblock in question
 693 *	@flags:	numeric part of options
 694 *	@data:	the rest of options
 695 *      @force: whether or not to force the change
 696 *
 697 *	Alters the mount options of a mounted file system.
 698 */
 699int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 700{
 701	int retval;
 702	int remount_ro;
 703
 704	if (sb->s_frozen != SB_UNFROZEN)
 705		return -EBUSY;
 706
 707#ifdef CONFIG_BLOCK
 708	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 709		return -EACCES;
 710#endif
 711
 712	if (flags & MS_RDONLY)
 713		acct_auto_close(sb);
 714	shrink_dcache_sb(sb);
 715	sync_filesystem(sb);
 716
 717	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	/* If we are remounting RDONLY and current sb is read/write,
 720	   make sure there are no rw files opened */
 721	if (remount_ro) {
 722		if (force)
 723			mark_files_ro(sb);
 724		else if (!fs_may_remount_ro(sb))
 725			return -EBUSY;
 
 
 
 
 726	}
 727
 728	if (sb->s_op->remount_fs) {
 729		retval = sb->s_op->remount_fs(sb, &flags, data);
 730		if (retval)
 731			return retval;
 
 
 
 
 
 732	}
 733	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 
 
 
 734
 735	/*
 736	 * Some filesystems modify their metadata via some other path than the
 737	 * bdev buffer cache (eg. use a private mapping, or directories in
 738	 * pagecache, etc). Also file data modifications go via their own
 739	 * mappings. So If we try to mount readonly then copy the filesystem
 740	 * from bdev, we could get stale data, so invalidate it to give a best
 741	 * effort at coherency.
 742	 */
 743	if (remount_ro && sb->s_bdev)
 744		invalidate_bdev(sb->s_bdev);
 745	return 0;
 
 
 
 
 746}
 747
 748static void do_emergency_remount(struct work_struct *work)
 749{
 750	struct super_block *sb, *p = NULL;
 751
 752	spin_lock(&sb_lock);
 753	list_for_each_entry(sb, &super_blocks, s_list) {
 754		if (list_empty(&sb->s_instances))
 755			continue;
 756		sb->s_count++;
 757		spin_unlock(&sb_lock);
 758		down_write(&sb->s_umount);
 759		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
 
 760			/*
 761			 * What lock protects sb->s_flags??
 762			 */
 763			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 764		}
 765		up_write(&sb->s_umount);
 766		spin_lock(&sb_lock);
 767		if (p)
 768			__put_super(p);
 769		p = sb;
 770	}
 771	if (p)
 772		__put_super(p);
 773	spin_unlock(&sb_lock);
 774	kfree(work);
 775	printk("Emergency Remount complete\n");
 776}
 777
 778void emergency_remount(void)
 779{
 780	struct work_struct *work;
 781
 782	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 783	if (work) {
 784		INIT_WORK(work, do_emergency_remount);
 785		schedule_work(work);
 786	}
 787}
 788
 789/*
 790 * Unnamed block devices are dummy devices used by virtual
 791 * filesystems which don't use real block-devices.  -- jrs
 792 */
 793
 794static DEFINE_IDA(unnamed_dev_ida);
 795static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 796static int unnamed_dev_start = 0; /* don't bother trying below it */
 
 
 
 797
 798int get_anon_bdev(dev_t *p)
 799{
 800	int dev;
 801	int error;
 802
 803 retry:
 804	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 805		return -ENOMEM;
 806	spin_lock(&unnamed_dev_lock);
 807	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 808	if (!error)
 809		unnamed_dev_start = dev + 1;
 810	spin_unlock(&unnamed_dev_lock);
 811	if (error == -EAGAIN)
 812		/* We raced and lost with another CPU. */
 813		goto retry;
 814	else if (error)
 815		return -EAGAIN;
 816
 817	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 818		spin_lock(&unnamed_dev_lock);
 819		ida_remove(&unnamed_dev_ida, dev);
 820		if (unnamed_dev_start > dev)
 821			unnamed_dev_start = dev;
 822		spin_unlock(&unnamed_dev_lock);
 823		return -EMFILE;
 824	}
 825	*p = MKDEV(0, dev & MINORMASK);
 826	return 0;
 827}
 828EXPORT_SYMBOL(get_anon_bdev);
 829
 830void free_anon_bdev(dev_t dev)
 831{
 832	int slot = MINOR(dev);
 833	spin_lock(&unnamed_dev_lock);
 834	ida_remove(&unnamed_dev_ida, slot);
 835	if (slot < unnamed_dev_start)
 836		unnamed_dev_start = slot;
 837	spin_unlock(&unnamed_dev_lock);
 838}
 839EXPORT_SYMBOL(free_anon_bdev);
 840
 841int set_anon_super(struct super_block *s, void *data)
 842{
 843	int error = get_anon_bdev(&s->s_dev);
 844	if (!error)
 845		s->s_bdi = &noop_backing_dev_info;
 846	return error;
 847}
 848
 849EXPORT_SYMBOL(set_anon_super);
 850
 851void kill_anon_super(struct super_block *sb)
 852{
 853	dev_t dev = sb->s_dev;
 854	generic_shutdown_super(sb);
 855	free_anon_bdev(dev);
 856}
 857
 858EXPORT_SYMBOL(kill_anon_super);
 859
 860void kill_litter_super(struct super_block *sb)
 861{
 862	if (sb->s_root)
 863		d_genocide(sb->s_root);
 864	kill_anon_super(sb);
 865}
 866
 867EXPORT_SYMBOL(kill_litter_super);
 868
 869static int ns_test_super(struct super_block *sb, void *data)
 870{
 871	return sb->s_fs_info == data;
 872}
 873
 874static int ns_set_super(struct super_block *sb, void *data)
 875{
 876	sb->s_fs_info = data;
 877	return set_anon_super(sb, NULL);
 878}
 879
 880struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 881	void *data, int (*fill_super)(struct super_block *, void *, int))
 
 882{
 883	struct super_block *sb;
 884
 885	sb = sget(fs_type, ns_test_super, ns_set_super, data);
 
 
 
 
 
 
 
 886	if (IS_ERR(sb))
 887		return ERR_CAST(sb);
 888
 889	if (!sb->s_root) {
 890		int err;
 891		sb->s_flags = flags;
 892		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 893		if (err) {
 894			deactivate_locked_super(sb);
 895			return ERR_PTR(err);
 896		}
 897
 898		sb->s_flags |= MS_ACTIVE;
 899	}
 900
 901	return dget(sb->s_root);
 902}
 903
 904EXPORT_SYMBOL(mount_ns);
 905
 906#ifdef CONFIG_BLOCK
 907static int set_bdev_super(struct super_block *s, void *data)
 908{
 909	s->s_bdev = data;
 910	s->s_dev = s->s_bdev->bd_dev;
 911
 912	/*
 913	 * We set the bdi here to the queue backing, file systems can
 914	 * overwrite this in ->fill_super()
 915	 */
 916	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 917	return 0;
 918}
 919
 920static int test_bdev_super(struct super_block *s, void *data)
 921{
 922	return (void *)s->s_bdev == data;
 923}
 924
 925struct dentry *mount_bdev(struct file_system_type *fs_type,
 926	int flags, const char *dev_name, void *data,
 927	int (*fill_super)(struct super_block *, void *, int))
 928{
 929	struct block_device *bdev;
 930	struct super_block *s;
 931	fmode_t mode = FMODE_READ | FMODE_EXCL;
 932	int error = 0;
 933
 934	if (!(flags & MS_RDONLY))
 935		mode |= FMODE_WRITE;
 936
 937	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 938	if (IS_ERR(bdev))
 939		return ERR_CAST(bdev);
 940
 941	/*
 942	 * once the super is inserted into the list by sget, s_umount
 943	 * will protect the lockfs code from trying to start a snapshot
 944	 * while we are mounting
 945	 */
 946	mutex_lock(&bdev->bd_fsfreeze_mutex);
 947	if (bdev->bd_fsfreeze_count > 0) {
 948		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 949		error = -EBUSY;
 950		goto error_bdev;
 951	}
 952	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 
 953	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 954	if (IS_ERR(s))
 955		goto error_s;
 956
 957	if (s->s_root) {
 958		if ((flags ^ s->s_flags) & MS_RDONLY) {
 959			deactivate_locked_super(s);
 960			error = -EBUSY;
 961			goto error_bdev;
 962		}
 963
 964		/*
 965		 * s_umount nests inside bd_mutex during
 966		 * __invalidate_device().  blkdev_put() acquires
 967		 * bd_mutex and can't be called under s_umount.  Drop
 968		 * s_umount temporarily.  This is safe as we're
 969		 * holding an active reference.
 970		 */
 971		up_write(&s->s_umount);
 972		blkdev_put(bdev, mode);
 973		down_write(&s->s_umount);
 974	} else {
 975		char b[BDEVNAME_SIZE];
 976
 977		s->s_flags = flags | MS_NOSEC;
 978		s->s_mode = mode;
 979		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 980		sb_set_blocksize(s, block_size(bdev));
 981		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 982		if (error) {
 983			deactivate_locked_super(s);
 984			goto error;
 985		}
 986
 987		s->s_flags |= MS_ACTIVE;
 988		bdev->bd_super = s;
 989	}
 990
 991	return dget(s->s_root);
 992
 993error_s:
 994	error = PTR_ERR(s);
 995error_bdev:
 996	blkdev_put(bdev, mode);
 997error:
 998	return ERR_PTR(error);
 999}
1000EXPORT_SYMBOL(mount_bdev);
1001
1002void kill_block_super(struct super_block *sb)
1003{
1004	struct block_device *bdev = sb->s_bdev;
1005	fmode_t mode = sb->s_mode;
1006
1007	bdev->bd_super = NULL;
1008	generic_shutdown_super(sb);
1009	sync_blockdev(bdev);
1010	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1011	blkdev_put(bdev, mode | FMODE_EXCL);
1012}
1013
1014EXPORT_SYMBOL(kill_block_super);
1015#endif
1016
1017struct dentry *mount_nodev(struct file_system_type *fs_type,
1018	int flags, void *data,
1019	int (*fill_super)(struct super_block *, void *, int))
1020{
1021	int error;
1022	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1023
1024	if (IS_ERR(s))
1025		return ERR_CAST(s);
1026
1027	s->s_flags = flags;
1028
1029	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1030	if (error) {
1031		deactivate_locked_super(s);
1032		return ERR_PTR(error);
1033	}
1034	s->s_flags |= MS_ACTIVE;
1035	return dget(s->s_root);
1036}
1037EXPORT_SYMBOL(mount_nodev);
1038
1039static int compare_single(struct super_block *s, void *p)
1040{
1041	return 1;
1042}
1043
1044struct dentry *mount_single(struct file_system_type *fs_type,
1045	int flags, void *data,
1046	int (*fill_super)(struct super_block *, void *, int))
1047{
1048	struct super_block *s;
1049	int error;
1050
1051	s = sget(fs_type, compare_single, set_anon_super, NULL);
1052	if (IS_ERR(s))
1053		return ERR_CAST(s);
1054	if (!s->s_root) {
1055		s->s_flags = flags;
1056		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057		if (error) {
1058			deactivate_locked_super(s);
1059			return ERR_PTR(error);
1060		}
1061		s->s_flags |= MS_ACTIVE;
1062	} else {
1063		do_remount_sb(s, flags, data, 0);
1064	}
1065	return dget(s->s_root);
1066}
1067EXPORT_SYMBOL(mount_single);
1068
1069struct dentry *
1070mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1071{
1072	struct dentry *root;
1073	struct super_block *sb;
1074	char *secdata = NULL;
1075	int error = -ENOMEM;
1076
1077	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078		secdata = alloc_secdata();
1079		if (!secdata)
1080			goto out;
1081
1082		error = security_sb_copy_data(data, secdata);
1083		if (error)
1084			goto out_free_secdata;
1085	}
1086
1087	root = type->mount(type, flags, name, data);
1088	if (IS_ERR(root)) {
1089		error = PTR_ERR(root);
1090		goto out_free_secdata;
1091	}
1092	sb = root->d_sb;
1093	BUG_ON(!sb);
1094	WARN_ON(!sb->s_bdi);
1095	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096	sb->s_flags |= MS_BORN;
1097
1098	error = security_sb_kern_mount(sb, flags, secdata);
1099	if (error)
1100		goto out_sb;
1101
1102	/*
1103	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104	 * but s_maxbytes was an unsigned long long for many releases. Throw
1105	 * this warning for a little while to try and catch filesystems that
1106	 * violate this rule.
1107	 */
1108	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1110
1111	up_write(&sb->s_umount);
1112	free_secdata(secdata);
1113	return root;
1114out_sb:
1115	dput(root);
1116	deactivate_locked_super(sb);
1117out_free_secdata:
1118	free_secdata(secdata);
1119out:
1120	return ERR_PTR(error);
1121}
1122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123/**
1124 * freeze_super - lock the filesystem and force it into a consistent state
1125 * @sb: the super to lock
1126 *
1127 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1128 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1129 * -EBUSY.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130 */
1131int freeze_super(struct super_block *sb)
1132{
1133	int ret;
1134
1135	atomic_inc(&sb->s_active);
1136	down_write(&sb->s_umount);
1137	if (sb->s_frozen) {
1138		deactivate_locked_super(sb);
1139		return -EBUSY;
1140	}
1141
 
 
 
 
 
1142	if (sb->s_flags & MS_RDONLY) {
1143		sb->s_frozen = SB_FREEZE_TRANS;
1144		smp_wmb();
1145		up_write(&sb->s_umount);
1146		return 0;
1147	}
1148
1149	sb->s_frozen = SB_FREEZE_WRITE;
1150	smp_wmb();
 
 
 
 
 
 
 
1151
 
1152	sync_filesystem(sb);
1153
1154	sb->s_frozen = SB_FREEZE_TRANS;
1155	smp_wmb();
 
1156
1157	sync_blockdev(sb->s_bdev);
1158	if (sb->s_op->freeze_fs) {
1159		ret = sb->s_op->freeze_fs(sb);
1160		if (ret) {
1161			printk(KERN_ERR
1162				"VFS:Filesystem freeze failed\n");
1163			sb->s_frozen = SB_UNFROZEN;
 
 
1164			deactivate_locked_super(sb);
1165			return ret;
1166		}
1167	}
 
 
 
 
 
 
1168	up_write(&sb->s_umount);
1169	return 0;
1170}
1171EXPORT_SYMBOL(freeze_super);
1172
1173/**
1174 * thaw_super -- unlock filesystem
1175 * @sb: the super to thaw
1176 *
1177 * Unlocks the filesystem and marks it writeable again after freeze_super().
1178 */
1179int thaw_super(struct super_block *sb)
1180{
1181	int error;
1182
1183	down_write(&sb->s_umount);
1184	if (sb->s_frozen == SB_UNFROZEN) {
1185		up_write(&sb->s_umount);
1186		return -EINVAL;
1187	}
1188
1189	if (sb->s_flags & MS_RDONLY)
 
1190		goto out;
 
 
 
1191
1192	if (sb->s_op->unfreeze_fs) {
1193		error = sb->s_op->unfreeze_fs(sb);
1194		if (error) {
1195			printk(KERN_ERR
1196				"VFS:Filesystem thaw failed\n");
1197			sb->s_frozen = SB_FREEZE_TRANS;
1198			up_write(&sb->s_umount);
1199			return error;
1200		}
1201	}
1202
 
 
1203out:
1204	sb->s_frozen = SB_UNFROZEN;
1205	smp_wmb();
1206	wake_up(&sb->s_wait_unfrozen);
1207	deactivate_locked_super(sb);
1208
1209	return 0;
1210}
1211EXPORT_SYMBOL(thaw_super);
v4.10.11
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
 
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>		/* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
  36#include <linux/user_namespace.h>
  37#include "internal.h"
  38
  39
  40static LIST_HEAD(super_blocks);
  41static DEFINE_SPINLOCK(sb_lock);
  42
  43static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  44	"sb_writers",
  45	"sb_pagefaults",
  46	"sb_internal",
  47};
  48
  49/*
  50 * One thing we have to be careful of with a per-sb shrinker is that we don't
  51 * drop the last active reference to the superblock from within the shrinker.
  52 * If that happens we could trigger unregistering the shrinker from within the
  53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  54 * take a passive reference to the superblock to avoid this from occurring.
  55 */
  56static unsigned long super_cache_scan(struct shrinker *shrink,
  57				      struct shrink_control *sc)
  58{
  59	struct super_block *sb;
  60	long	fs_objects = 0;
  61	long	total_objects;
  62	long	freed = 0;
  63	long	dentries;
  64	long	inodes;
  65
  66	sb = container_of(shrink, struct super_block, s_shrink);
  67
  68	/*
  69	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  70	 * to recurse into the FS that called us in clear_inode() and friends..
  71	 */
  72	if (!(sc->gfp_mask & __GFP_FS))
  73		return SHRINK_STOP;
 
 
 
  74
  75	if (!trylock_super(sb))
  76		return SHRINK_STOP;
  77
  78	if (sb->s_op->nr_cached_objects)
  79		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  80
  81	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  82	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  83	total_objects = dentries + inodes + fs_objects + 1;
  84	if (!total_objects)
  85		total_objects = 1;
  86
  87	/* proportion the scan between the caches */
  88	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  89	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  90	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
 
 
 
 
 
 
 
 
  91
  92	/*
  93	 * prune the dcache first as the icache is pinned by it, then
  94	 * prune the icache, followed by the filesystem specific caches
  95	 *
  96	 * Ensure that we always scan at least one object - memcg kmem
  97	 * accounting uses this to fully empty the caches.
  98	 */
  99	sc->nr_to_scan = dentries + 1;
 100	freed = prune_dcache_sb(sb, sc);
 101	sc->nr_to_scan = inodes + 1;
 102	freed += prune_icache_sb(sb, sc);
 103
 104	if (fs_objects) {
 105		sc->nr_to_scan = fs_objects + 1;
 106		freed += sb->s_op->free_cached_objects(sb, sc);
 107	}
 108
 109	up_read(&sb->s_umount);
 110	return freed;
 111}
 112
 113static unsigned long super_cache_count(struct shrinker *shrink,
 114				       struct shrink_control *sc)
 115{
 116	struct super_block *sb;
 117	long	total_objects = 0;
 118
 119	sb = container_of(shrink, struct super_block, s_shrink);
 120
 121	/*
 122	 * Don't call trylock_super as it is a potential
 123	 * scalability bottleneck. The counts could get updated
 124	 * between super_cache_count and super_cache_scan anyway.
 125	 * Call to super_cache_count with shrinker_rwsem held
 126	 * ensures the safety of call to list_lru_shrink_count() and
 127	 * s_op->nr_cached_objects().
 128	 */
 129	if (sb->s_op && sb->s_op->nr_cached_objects)
 130		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 131
 132	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 133	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 134
 135	total_objects = vfs_pressure_ratio(total_objects);
 136	return total_objects;
 137}
 138
 139static void destroy_super_work(struct work_struct *work)
 
 
 
 
 
 
 
 140{
 141	struct super_block *s = container_of(work, struct super_block,
 142							destroy_work);
 143	int i;
 144
 145	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 146		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 147	kfree(s);
 148}
 
 
 
 
 
 
 
 
 
 
 
 149
 150static void destroy_super_rcu(struct rcu_head *head)
 151{
 152	struct super_block *s = container_of(head, struct super_block, rcu);
 153	INIT_WORK(&s->destroy_work, destroy_super_work);
 154	schedule_work(&s->destroy_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155}
 156
 157/**
 158 *	destroy_super	-	frees a superblock
 159 *	@s: superblock to free
 160 *
 161 *	Frees a superblock.
 162 */
 163static void destroy_super(struct super_block *s)
 164{
 165	list_lru_destroy(&s->s_dentry_lru);
 166	list_lru_destroy(&s->s_inode_lru);
 
 167	security_sb_free(s);
 168	WARN_ON(!list_empty(&s->s_mounts));
 169	put_user_ns(s->s_user_ns);
 170	kfree(s->s_subtype);
 171	kfree(s->s_options);
 172	call_rcu(&s->rcu, destroy_super_rcu);
 173}
 174
 175/**
 176 *	alloc_super	-	create new superblock
 177 *	@type:	filesystem type superblock should belong to
 178 *	@flags: the mount flags
 179 *	@user_ns: User namespace for the super_block
 180 *
 181 *	Allocates and initializes a new &struct super_block.  alloc_super()
 182 *	returns a pointer new superblock or %NULL if allocation had failed.
 183 */
 184static struct super_block *alloc_super(struct file_system_type *type, int flags,
 185				       struct user_namespace *user_ns)
 186{
 187	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 188	static const struct super_operations default_op;
 189	int i;
 190
 191	if (!s)
 192		return NULL;
 193
 194	INIT_LIST_HEAD(&s->s_mounts);
 195	s->s_user_ns = get_user_ns(user_ns);
 196
 197	if (security_sb_alloc(s))
 198		goto fail;
 199
 200	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 201		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 202					sb_writers_name[i],
 203					&type->s_writers_key[i]))
 204			goto fail;
 205	}
 206	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 207	s->s_bdi = &noop_backing_dev_info;
 208	s->s_flags = flags;
 209	if (s->s_user_ns != &init_user_ns)
 210		s->s_iflags |= SB_I_NODEV;
 211	INIT_HLIST_NODE(&s->s_instances);
 212	INIT_HLIST_BL_HEAD(&s->s_anon);
 213	mutex_init(&s->s_sync_lock);
 214	INIT_LIST_HEAD(&s->s_inodes);
 215	spin_lock_init(&s->s_inode_list_lock);
 216	INIT_LIST_HEAD(&s->s_inodes_wb);
 217	spin_lock_init(&s->s_inode_wblist_lock);
 218
 219	if (list_lru_init_memcg(&s->s_dentry_lru))
 220		goto fail;
 221	if (list_lru_init_memcg(&s->s_inode_lru))
 222		goto fail;
 223
 224	init_rwsem(&s->s_umount);
 225	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 226	/*
 227	 * sget() can have s_umount recursion.
 228	 *
 229	 * When it cannot find a suitable sb, it allocates a new
 230	 * one (this one), and tries again to find a suitable old
 231	 * one.
 232	 *
 233	 * In case that succeeds, it will acquire the s_umount
 234	 * lock of the old one. Since these are clearly distrinct
 235	 * locks, and this object isn't exposed yet, there's no
 236	 * risk of deadlocks.
 237	 *
 238	 * Annotate this by putting this lock in a different
 239	 * subclass.
 240	 */
 241	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 242	s->s_count = 1;
 243	atomic_set(&s->s_active, 1);
 244	mutex_init(&s->s_vfs_rename_mutex);
 245	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 246	mutex_init(&s->s_dquot.dqio_mutex);
 247	s->s_maxbytes = MAX_NON_LFS;
 248	s->s_op = &default_op;
 249	s->s_time_gran = 1000000000;
 250	s->cleancache_poolid = CLEANCACHE_NO_POOL;
 251
 252	s->s_shrink.seeks = DEFAULT_SEEKS;
 253	s->s_shrink.scan_objects = super_cache_scan;
 254	s->s_shrink.count_objects = super_cache_count;
 255	s->s_shrink.batch = 1024;
 256	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 257	return s;
 258
 259fail:
 260	destroy_super(s);
 261	return NULL;
 262}
 263
 264/* Superblock refcounting  */
 265
 266/*
 267 * Drop a superblock's refcount.  The caller must hold sb_lock.
 268 */
 269static void __put_super(struct super_block *sb)
 270{
 271	if (!--sb->s_count) {
 272		list_del_init(&sb->s_list);
 273		destroy_super(sb);
 274	}
 275}
 276
 277/**
 278 *	put_super	-	drop a temporary reference to superblock
 279 *	@sb: superblock in question
 280 *
 281 *	Drops a temporary reference, frees superblock if there's no
 282 *	references left.
 283 */
 284static void put_super(struct super_block *sb)
 285{
 286	spin_lock(&sb_lock);
 287	__put_super(sb);
 288	spin_unlock(&sb_lock);
 289}
 290
 291
 292/**
 293 *	deactivate_locked_super	-	drop an active reference to superblock
 294 *	@s: superblock to deactivate
 295 *
 296 *	Drops an active reference to superblock, converting it into a temporary
 297 *	one if there is no other active references left.  In that case we
 298 *	tell fs driver to shut it down and drop the temporary reference we
 299 *	had just acquired.
 300 *
 301 *	Caller holds exclusive lock on superblock; that lock is released.
 302 */
 303void deactivate_locked_super(struct super_block *s)
 304{
 305	struct file_system_type *fs = s->s_type;
 306	if (atomic_dec_and_test(&s->s_active)) {
 307		cleancache_invalidate_fs(s);
 
 
 
 308		unregister_shrinker(&s->s_shrink);
 309		fs->kill_sb(s);
 310
 311		/*
 312		 * Since list_lru_destroy() may sleep, we cannot call it from
 313		 * put_super(), where we hold the sb_lock. Therefore we destroy
 314		 * the lru lists right now.
 315		 */
 316		list_lru_destroy(&s->s_dentry_lru);
 317		list_lru_destroy(&s->s_inode_lru);
 318
 319		put_filesystem(fs);
 320		put_super(s);
 321	} else {
 322		up_write(&s->s_umount);
 323	}
 324}
 325
 326EXPORT_SYMBOL(deactivate_locked_super);
 327
 328/**
 329 *	deactivate_super	-	drop an active reference to superblock
 330 *	@s: superblock to deactivate
 331 *
 332 *	Variant of deactivate_locked_super(), except that superblock is *not*
 333 *	locked by caller.  If we are going to drop the final active reference,
 334 *	lock will be acquired prior to that.
 335 */
 336void deactivate_super(struct super_block *s)
 337{
 338        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 339		down_write(&s->s_umount);
 340		deactivate_locked_super(s);
 341	}
 342}
 343
 344EXPORT_SYMBOL(deactivate_super);
 345
 346/**
 347 *	grab_super - acquire an active reference
 348 *	@s: reference we are trying to make active
 349 *
 350 *	Tries to acquire an active reference.  grab_super() is used when we
 351 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 352 *	and want to turn it into a full-blown active reference.  grab_super()
 353 *	is called with sb_lock held and drops it.  Returns 1 in case of
 354 *	success, 0 if we had failed (superblock contents was already dead or
 355 *	dying when grab_super() had been called).  Note that this is only
 356 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 357 *	of their type), so increment of ->s_count is OK here.
 358 */
 359static int grab_super(struct super_block *s) __releases(sb_lock)
 360{
 
 
 
 
 
 361	s->s_count++;
 362	spin_unlock(&sb_lock);
 
 363	down_write(&s->s_umount);
 364	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 365		put_super(s);
 366		return 1;
 367	}
 368	up_write(&s->s_umount);
 369	put_super(s);
 370	return 0;
 371}
 372
 373/*
 374 *	trylock_super - try to grab ->s_umount shared
 375 *	@sb: reference we are trying to grab
 376 *
 377 *	Try to prevent fs shutdown.  This is used in places where we
 378 *	cannot take an active reference but we need to ensure that the
 379 *	filesystem is not shut down while we are working on it. It returns
 380 *	false if we cannot acquire s_umount or if we lose the race and
 381 *	filesystem already got into shutdown, and returns true with the s_umount
 382 *	lock held in read mode in case of success. On successful return,
 383 *	the caller must drop the s_umount lock when done.
 384 *
 385 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 386 *	The reason why it's safe is that we are OK with doing trylock instead
 387 *	of down_read().  There's a couple of places that are OK with that, but
 388 *	it's very much not a general-purpose interface.
 389 */
 390bool trylock_super(struct super_block *sb)
 391{
 
 
 
 
 
 
 
 
 
 392	if (down_read_trylock(&sb->s_umount)) {
 393		if (!hlist_unhashed(&sb->s_instances) &&
 394		    sb->s_root && (sb->s_flags & MS_BORN))
 395			return true;
 396		up_read(&sb->s_umount);
 397	}
 398
 
 399	return false;
 400}
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402/**
 403 *	generic_shutdown_super	-	common helper for ->kill_sb()
 404 *	@sb: superblock to kill
 405 *
 406 *	generic_shutdown_super() does all fs-independent work on superblock
 407 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 408 *	that need destruction out of superblock, call generic_shutdown_super()
 409 *	and release aforementioned objects.  Note: dentries and inodes _are_
 410 *	taken care of and do not need specific handling.
 411 *
 412 *	Upon calling this function, the filesystem may no longer alter or
 413 *	rearrange the set of dentries belonging to this super_block, nor may it
 414 *	change the attachments of dentries to inodes.
 415 */
 416void generic_shutdown_super(struct super_block *sb)
 417{
 418	const struct super_operations *sop = sb->s_op;
 419
 420	if (sb->s_root) {
 421		shrink_dcache_for_umount(sb);
 422		sync_filesystem(sb);
 423		sb->s_flags &= ~MS_ACTIVE;
 424
 425		fsnotify_unmount_inodes(sb);
 426		cgroup_writeback_umount();
 427
 428		evict_inodes(sb);
 429
 430		if (sb->s_dio_done_wq) {
 431			destroy_workqueue(sb->s_dio_done_wq);
 432			sb->s_dio_done_wq = NULL;
 433		}
 434
 435		if (sop->put_super)
 436			sop->put_super(sb);
 437
 438		if (!list_empty(&sb->s_inodes)) {
 439			printk("VFS: Busy inodes after unmount of %s. "
 440			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 441			   sb->s_id);
 442		}
 443	}
 444	spin_lock(&sb_lock);
 445	/* should be initialized for __put_super_and_need_restart() */
 446	hlist_del_init(&sb->s_instances);
 447	spin_unlock(&sb_lock);
 448	up_write(&sb->s_umount);
 449}
 450
 451EXPORT_SYMBOL(generic_shutdown_super);
 452
 453/**
 454 *	sget_userns -	find or create a superblock
 455 *	@type:	filesystem type superblock should belong to
 456 *	@test:	comparison callback
 457 *	@set:	setup callback
 458 *	@flags:	mount flags
 459 *	@user_ns: User namespace for the super_block
 460 *	@data:	argument to each of them
 461 */
 462struct super_block *sget_userns(struct file_system_type *type,
 463			int (*test)(struct super_block *,void *),
 464			int (*set)(struct super_block *,void *),
 465			int flags, struct user_namespace *user_ns,
 466			void *data)
 467{
 468	struct super_block *s = NULL;
 469	struct super_block *old;
 470	int err;
 471
 472	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
 473	    !(type->fs_flags & FS_USERNS_MOUNT) &&
 474	    !capable(CAP_SYS_ADMIN))
 475		return ERR_PTR(-EPERM);
 476retry:
 477	spin_lock(&sb_lock);
 478	if (test) {
 479		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 480			if (!test(old, data))
 481				continue;
 482			if (user_ns != old->s_user_ns) {
 483				spin_unlock(&sb_lock);
 484				if (s) {
 485					up_write(&s->s_umount);
 486					destroy_super(s);
 487				}
 488				return ERR_PTR(-EBUSY);
 489			}
 490			if (!grab_super(old))
 491				goto retry;
 492			if (s) {
 493				up_write(&s->s_umount);
 494				destroy_super(s);
 495				s = NULL;
 496			}
 
 
 
 
 
 497			return old;
 498		}
 499	}
 500	if (!s) {
 501		spin_unlock(&sb_lock);
 502		s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
 503		if (!s)
 504			return ERR_PTR(-ENOMEM);
 505		goto retry;
 506	}
 507		
 508	err = set(s, data);
 509	if (err) {
 510		spin_unlock(&sb_lock);
 511		up_write(&s->s_umount);
 512		destroy_super(s);
 513		return ERR_PTR(err);
 514	}
 515	s->s_type = type;
 516	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 517	list_add_tail(&s->s_list, &super_blocks);
 518	hlist_add_head(&s->s_instances, &type->fs_supers);
 519	spin_unlock(&sb_lock);
 520	get_filesystem(type);
 521	register_shrinker(&s->s_shrink);
 522	return s;
 523}
 524
 525EXPORT_SYMBOL(sget_userns);
 526
 527/**
 528 *	sget	-	find or create a superblock
 529 *	@type:	  filesystem type superblock should belong to
 530 *	@test:	  comparison callback
 531 *	@set:	  setup callback
 532 *	@flags:	  mount flags
 533 *	@data:	  argument to each of them
 534 */
 535struct super_block *sget(struct file_system_type *type,
 536			int (*test)(struct super_block *,void *),
 537			int (*set)(struct super_block *,void *),
 538			int flags,
 539			void *data)
 540{
 541	struct user_namespace *user_ns = current_user_ns();
 542
 543	/* We don't yet pass the user namespace of the parent
 544	 * mount through to here so always use &init_user_ns
 545	 * until that changes.
 546	 */
 547	if (flags & MS_SUBMOUNT)
 548		user_ns = &init_user_ns;
 549
 550	/* Ensure the requestor has permissions over the target filesystem */
 551	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 552		return ERR_PTR(-EPERM);
 553
 554	return sget_userns(type, test, set, flags, user_ns, data);
 555}
 556
 557EXPORT_SYMBOL(sget);
 558
 559void drop_super(struct super_block *sb)
 560{
 561	up_read(&sb->s_umount);
 562	put_super(sb);
 563}
 564
 565EXPORT_SYMBOL(drop_super);
 566
 567void drop_super_exclusive(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 568{
 569	up_write(&sb->s_umount);
 570	put_super(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571}
 572EXPORT_SYMBOL(drop_super_exclusive);
 573
 574/**
 575 *	iterate_supers - call function for all active superblocks
 576 *	@f: function to call
 577 *	@arg: argument to pass to it
 578 *
 579 *	Scans the superblock list and calls given function, passing it
 580 *	locked superblock and given argument.
 581 */
 582void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 583{
 584	struct super_block *sb, *p = NULL;
 585
 586	spin_lock(&sb_lock);
 587	list_for_each_entry(sb, &super_blocks, s_list) {
 588		if (hlist_unhashed(&sb->s_instances))
 589			continue;
 590		sb->s_count++;
 591		spin_unlock(&sb_lock);
 592
 593		down_read(&sb->s_umount);
 594		if (sb->s_root && (sb->s_flags & MS_BORN))
 595			f(sb, arg);
 596		up_read(&sb->s_umount);
 597
 598		spin_lock(&sb_lock);
 599		if (p)
 600			__put_super(p);
 601		p = sb;
 602	}
 603	if (p)
 604		__put_super(p);
 605	spin_unlock(&sb_lock);
 606}
 607
 608/**
 609 *	iterate_supers_type - call function for superblocks of given type
 610 *	@type: fs type
 611 *	@f: function to call
 612 *	@arg: argument to pass to it
 613 *
 614 *	Scans the superblock list and calls given function, passing it
 615 *	locked superblock and given argument.
 616 */
 617void iterate_supers_type(struct file_system_type *type,
 618	void (*f)(struct super_block *, void *), void *arg)
 619{
 620	struct super_block *sb, *p = NULL;
 621
 622	spin_lock(&sb_lock);
 623	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 624		sb->s_count++;
 625		spin_unlock(&sb_lock);
 626
 627		down_read(&sb->s_umount);
 628		if (sb->s_root && (sb->s_flags & MS_BORN))
 629			f(sb, arg);
 630		up_read(&sb->s_umount);
 631
 632		spin_lock(&sb_lock);
 633		if (p)
 634			__put_super(p);
 635		p = sb;
 636	}
 637	if (p)
 638		__put_super(p);
 639	spin_unlock(&sb_lock);
 640}
 641
 642EXPORT_SYMBOL(iterate_supers_type);
 643
 644static struct super_block *__get_super(struct block_device *bdev, bool excl)
 
 
 
 
 
 
 
 
 645{
 646	struct super_block *sb;
 647
 648	if (!bdev)
 649		return NULL;
 650
 651	spin_lock(&sb_lock);
 652rescan:
 653	list_for_each_entry(sb, &super_blocks, s_list) {
 654		if (hlist_unhashed(&sb->s_instances))
 655			continue;
 656		if (sb->s_bdev == bdev) {
 657			sb->s_count++;
 658			spin_unlock(&sb_lock);
 659			if (!excl)
 660				down_read(&sb->s_umount);
 661			else
 662				down_write(&sb->s_umount);
 663			/* still alive? */
 664			if (sb->s_root && (sb->s_flags & MS_BORN))
 665				return sb;
 666			if (!excl)
 667				up_read(&sb->s_umount);
 668			else
 669				up_write(&sb->s_umount);
 670			/* nope, got unmounted */
 671			spin_lock(&sb_lock);
 672			__put_super(sb);
 673			goto rescan;
 674		}
 675	}
 676	spin_unlock(&sb_lock);
 677	return NULL;
 678}
 679
 680/**
 681 *	get_super - get the superblock of a device
 682 *	@bdev: device to get the superblock for
 683 *
 684 *	Scans the superblock list and finds the superblock of the file system
 685 *	mounted on the device given. %NULL is returned if no match is found.
 686 */
 687struct super_block *get_super(struct block_device *bdev)
 688{
 689	return __get_super(bdev, false);
 690}
 691EXPORT_SYMBOL(get_super);
 692
 693static struct super_block *__get_super_thawed(struct block_device *bdev,
 694					      bool excl)
 695{
 696	while (1) {
 697		struct super_block *s = __get_super(bdev, excl);
 698		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 699			return s;
 700		if (!excl)
 701			up_read(&s->s_umount);
 702		else
 703			up_write(&s->s_umount);
 704		wait_event(s->s_writers.wait_unfrozen,
 705			   s->s_writers.frozen == SB_UNFROZEN);
 706		put_super(s);
 707	}
 708}
 709
 710/**
 711 *	get_super_thawed - get thawed superblock of a device
 712 *	@bdev: device to get the superblock for
 713 *
 714 *	Scans the superblock list and finds the superblock of the file system
 715 *	mounted on the device. The superblock is returned once it is thawed
 716 *	(or immediately if it was not frozen). %NULL is returned if no match
 717 *	is found.
 718 */
 719struct super_block *get_super_thawed(struct block_device *bdev)
 720{
 721	return __get_super_thawed(bdev, false);
 722}
 723EXPORT_SYMBOL(get_super_thawed);
 724
 725/**
 726 *	get_super_exclusive_thawed - get thawed superblock of a device
 727 *	@bdev: device to get the superblock for
 728 *
 729 *	Scans the superblock list and finds the superblock of the file system
 730 *	mounted on the device. The superblock is returned once it is thawed
 731 *	(or immediately if it was not frozen) and s_umount semaphore is held
 732 *	in exclusive mode. %NULL is returned if no match is found.
 733 */
 734struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 735{
 736	return __get_super_thawed(bdev, true);
 737}
 738EXPORT_SYMBOL(get_super_exclusive_thawed);
 739
 740/**
 741 * get_active_super - get an active reference to the superblock of a device
 742 * @bdev: device to get the superblock for
 743 *
 744 * Scans the superblock list and finds the superblock of the file system
 745 * mounted on the device given.  Returns the superblock with an active
 746 * reference or %NULL if none was found.
 747 */
 748struct super_block *get_active_super(struct block_device *bdev)
 749{
 750	struct super_block *sb;
 751
 752	if (!bdev)
 753		return NULL;
 754
 755restart:
 756	spin_lock(&sb_lock);
 757	list_for_each_entry(sb, &super_blocks, s_list) {
 758		if (hlist_unhashed(&sb->s_instances))
 759			continue;
 760		if (sb->s_bdev == bdev) {
 761			if (!grab_super(sb))
 
 
 762				goto restart;
 763			up_write(&sb->s_umount);
 764			return sb;
 765		}
 766	}
 767	spin_unlock(&sb_lock);
 768	return NULL;
 769}
 770 
 771struct super_block *user_get_super(dev_t dev)
 772{
 773	struct super_block *sb;
 774
 775	spin_lock(&sb_lock);
 776rescan:
 777	list_for_each_entry(sb, &super_blocks, s_list) {
 778		if (hlist_unhashed(&sb->s_instances))
 779			continue;
 780		if (sb->s_dev ==  dev) {
 781			sb->s_count++;
 782			spin_unlock(&sb_lock);
 783			down_read(&sb->s_umount);
 784			/* still alive? */
 785			if (sb->s_root && (sb->s_flags & MS_BORN))
 786				return sb;
 787			up_read(&sb->s_umount);
 788			/* nope, got unmounted */
 789			spin_lock(&sb_lock);
 790			__put_super(sb);
 791			goto rescan;
 792		}
 793	}
 794	spin_unlock(&sb_lock);
 795	return NULL;
 796}
 797
 798/**
 799 *	do_remount_sb - asks filesystem to change mount options.
 800 *	@sb:	superblock in question
 801 *	@flags:	numeric part of options
 802 *	@data:	the rest of options
 803 *      @force: whether or not to force the change
 804 *
 805 *	Alters the mount options of a mounted file system.
 806 */
 807int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 808{
 809	int retval;
 810	int remount_ro;
 811
 812	if (sb->s_writers.frozen != SB_UNFROZEN)
 813		return -EBUSY;
 814
 815#ifdef CONFIG_BLOCK
 816	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 817		return -EACCES;
 818#endif
 819
 
 
 
 
 
 820	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 821
 822	if (remount_ro) {
 823		if (!hlist_empty(&sb->s_pins)) {
 824			up_write(&sb->s_umount);
 825			group_pin_kill(&sb->s_pins);
 826			down_write(&sb->s_umount);
 827			if (!sb->s_root)
 828				return 0;
 829			if (sb->s_writers.frozen != SB_UNFROZEN)
 830				return -EBUSY;
 831			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 832		}
 833	}
 834	shrink_dcache_sb(sb);
 835
 836	/* If we are remounting RDONLY and current sb is read/write,
 837	   make sure there are no rw files opened */
 838	if (remount_ro) {
 839		if (force) {
 840			sb->s_readonly_remount = 1;
 841			smp_wmb();
 842		} else {
 843			retval = sb_prepare_remount_readonly(sb);
 844			if (retval)
 845				return retval;
 846		}
 847	}
 848
 849	if (sb->s_op->remount_fs) {
 850		retval = sb->s_op->remount_fs(sb, &flags, data);
 851		if (retval) {
 852			if (!force)
 853				goto cancel_readonly;
 854			/* If forced remount, go ahead despite any errors */
 855			WARN(1, "forced remount of a %s fs returned %i\n",
 856			     sb->s_type->name, retval);
 857		}
 858	}
 859	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 860	/* Needs to be ordered wrt mnt_is_readonly() */
 861	smp_wmb();
 862	sb->s_readonly_remount = 0;
 863
 864	/*
 865	 * Some filesystems modify their metadata via some other path than the
 866	 * bdev buffer cache (eg. use a private mapping, or directories in
 867	 * pagecache, etc). Also file data modifications go via their own
 868	 * mappings. So If we try to mount readonly then copy the filesystem
 869	 * from bdev, we could get stale data, so invalidate it to give a best
 870	 * effort at coherency.
 871	 */
 872	if (remount_ro && sb->s_bdev)
 873		invalidate_bdev(sb->s_bdev);
 874	return 0;
 875
 876cancel_readonly:
 877	sb->s_readonly_remount = 0;
 878	return retval;
 879}
 880
 881static void do_emergency_remount(struct work_struct *work)
 882{
 883	struct super_block *sb, *p = NULL;
 884
 885	spin_lock(&sb_lock);
 886	list_for_each_entry(sb, &super_blocks, s_list) {
 887		if (hlist_unhashed(&sb->s_instances))
 888			continue;
 889		sb->s_count++;
 890		spin_unlock(&sb_lock);
 891		down_write(&sb->s_umount);
 892		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 893		    !(sb->s_flags & MS_RDONLY)) {
 894			/*
 895			 * What lock protects sb->s_flags??
 896			 */
 897			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 898		}
 899		up_write(&sb->s_umount);
 900		spin_lock(&sb_lock);
 901		if (p)
 902			__put_super(p);
 903		p = sb;
 904	}
 905	if (p)
 906		__put_super(p);
 907	spin_unlock(&sb_lock);
 908	kfree(work);
 909	printk("Emergency Remount complete\n");
 910}
 911
 912void emergency_remount(void)
 913{
 914	struct work_struct *work;
 915
 916	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 917	if (work) {
 918		INIT_WORK(work, do_emergency_remount);
 919		schedule_work(work);
 920	}
 921}
 922
 923/*
 924 * Unnamed block devices are dummy devices used by virtual
 925 * filesystems which don't use real block-devices.  -- jrs
 926 */
 927
 928static DEFINE_IDA(unnamed_dev_ida);
 929static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 930/* Many userspace utilities consider an FSID of 0 invalid.
 931 * Always return at least 1 from get_anon_bdev.
 932 */
 933static int unnamed_dev_start = 1;
 934
 935int get_anon_bdev(dev_t *p)
 936{
 937	int dev;
 938	int error;
 939
 940 retry:
 941	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 942		return -ENOMEM;
 943	spin_lock(&unnamed_dev_lock);
 944	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 945	if (!error)
 946		unnamed_dev_start = dev + 1;
 947	spin_unlock(&unnamed_dev_lock);
 948	if (error == -EAGAIN)
 949		/* We raced and lost with another CPU. */
 950		goto retry;
 951	else if (error)
 952		return -EAGAIN;
 953
 954	if (dev >= (1 << MINORBITS)) {
 955		spin_lock(&unnamed_dev_lock);
 956		ida_remove(&unnamed_dev_ida, dev);
 957		if (unnamed_dev_start > dev)
 958			unnamed_dev_start = dev;
 959		spin_unlock(&unnamed_dev_lock);
 960		return -EMFILE;
 961	}
 962	*p = MKDEV(0, dev & MINORMASK);
 963	return 0;
 964}
 965EXPORT_SYMBOL(get_anon_bdev);
 966
 967void free_anon_bdev(dev_t dev)
 968{
 969	int slot = MINOR(dev);
 970	spin_lock(&unnamed_dev_lock);
 971	ida_remove(&unnamed_dev_ida, slot);
 972	if (slot < unnamed_dev_start)
 973		unnamed_dev_start = slot;
 974	spin_unlock(&unnamed_dev_lock);
 975}
 976EXPORT_SYMBOL(free_anon_bdev);
 977
 978int set_anon_super(struct super_block *s, void *data)
 979{
 980	return get_anon_bdev(&s->s_dev);
 
 
 
 981}
 982
 983EXPORT_SYMBOL(set_anon_super);
 984
 985void kill_anon_super(struct super_block *sb)
 986{
 987	dev_t dev = sb->s_dev;
 988	generic_shutdown_super(sb);
 989	free_anon_bdev(dev);
 990}
 991
 992EXPORT_SYMBOL(kill_anon_super);
 993
 994void kill_litter_super(struct super_block *sb)
 995{
 996	if (sb->s_root)
 997		d_genocide(sb->s_root);
 998	kill_anon_super(sb);
 999}
1000
1001EXPORT_SYMBOL(kill_litter_super);
1002
1003static int ns_test_super(struct super_block *sb, void *data)
1004{
1005	return sb->s_fs_info == data;
1006}
1007
1008static int ns_set_super(struct super_block *sb, void *data)
1009{
1010	sb->s_fs_info = data;
1011	return set_anon_super(sb, NULL);
1012}
1013
1014struct dentry *mount_ns(struct file_system_type *fs_type,
1015	int flags, void *data, void *ns, struct user_namespace *user_ns,
1016	int (*fill_super)(struct super_block *, void *, int))
1017{
1018	struct super_block *sb;
1019
1020	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1021	 * over the namespace.
1022	 */
1023	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1024		return ERR_PTR(-EPERM);
1025
1026	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1027			 user_ns, ns);
1028	if (IS_ERR(sb))
1029		return ERR_CAST(sb);
1030
1031	if (!sb->s_root) {
1032		int err;
 
1033		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1034		if (err) {
1035			deactivate_locked_super(sb);
1036			return ERR_PTR(err);
1037		}
1038
1039		sb->s_flags |= MS_ACTIVE;
1040	}
1041
1042	return dget(sb->s_root);
1043}
1044
1045EXPORT_SYMBOL(mount_ns);
1046
1047#ifdef CONFIG_BLOCK
1048static int set_bdev_super(struct super_block *s, void *data)
1049{
1050	s->s_bdev = data;
1051	s->s_dev = s->s_bdev->bd_dev;
1052
1053	/*
1054	 * We set the bdi here to the queue backing, file systems can
1055	 * overwrite this in ->fill_super()
1056	 */
1057	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1058	return 0;
1059}
1060
1061static int test_bdev_super(struct super_block *s, void *data)
1062{
1063	return (void *)s->s_bdev == data;
1064}
1065
1066struct dentry *mount_bdev(struct file_system_type *fs_type,
1067	int flags, const char *dev_name, void *data,
1068	int (*fill_super)(struct super_block *, void *, int))
1069{
1070	struct block_device *bdev;
1071	struct super_block *s;
1072	fmode_t mode = FMODE_READ | FMODE_EXCL;
1073	int error = 0;
1074
1075	if (!(flags & MS_RDONLY))
1076		mode |= FMODE_WRITE;
1077
1078	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1079	if (IS_ERR(bdev))
1080		return ERR_CAST(bdev);
1081
1082	/*
1083	 * once the super is inserted into the list by sget, s_umount
1084	 * will protect the lockfs code from trying to start a snapshot
1085	 * while we are mounting
1086	 */
1087	mutex_lock(&bdev->bd_fsfreeze_mutex);
1088	if (bdev->bd_fsfreeze_count > 0) {
1089		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1090		error = -EBUSY;
1091		goto error_bdev;
1092	}
1093	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1094		 bdev);
1095	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1096	if (IS_ERR(s))
1097		goto error_s;
1098
1099	if (s->s_root) {
1100		if ((flags ^ s->s_flags) & MS_RDONLY) {
1101			deactivate_locked_super(s);
1102			error = -EBUSY;
1103			goto error_bdev;
1104		}
1105
1106		/*
1107		 * s_umount nests inside bd_mutex during
1108		 * __invalidate_device().  blkdev_put() acquires
1109		 * bd_mutex and can't be called under s_umount.  Drop
1110		 * s_umount temporarily.  This is safe as we're
1111		 * holding an active reference.
1112		 */
1113		up_write(&s->s_umount);
1114		blkdev_put(bdev, mode);
1115		down_write(&s->s_umount);
1116	} else {
 
 
 
1117		s->s_mode = mode;
1118		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1119		sb_set_blocksize(s, block_size(bdev));
1120		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1121		if (error) {
1122			deactivate_locked_super(s);
1123			goto error;
1124		}
1125
1126		s->s_flags |= MS_ACTIVE;
1127		bdev->bd_super = s;
1128	}
1129
1130	return dget(s->s_root);
1131
1132error_s:
1133	error = PTR_ERR(s);
1134error_bdev:
1135	blkdev_put(bdev, mode);
1136error:
1137	return ERR_PTR(error);
1138}
1139EXPORT_SYMBOL(mount_bdev);
1140
1141void kill_block_super(struct super_block *sb)
1142{
1143	struct block_device *bdev = sb->s_bdev;
1144	fmode_t mode = sb->s_mode;
1145
1146	bdev->bd_super = NULL;
1147	generic_shutdown_super(sb);
1148	sync_blockdev(bdev);
1149	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1150	blkdev_put(bdev, mode | FMODE_EXCL);
1151}
1152
1153EXPORT_SYMBOL(kill_block_super);
1154#endif
1155
1156struct dentry *mount_nodev(struct file_system_type *fs_type,
1157	int flags, void *data,
1158	int (*fill_super)(struct super_block *, void *, int))
1159{
1160	int error;
1161	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1162
1163	if (IS_ERR(s))
1164		return ERR_CAST(s);
1165
 
 
1166	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1167	if (error) {
1168		deactivate_locked_super(s);
1169		return ERR_PTR(error);
1170	}
1171	s->s_flags |= MS_ACTIVE;
1172	return dget(s->s_root);
1173}
1174EXPORT_SYMBOL(mount_nodev);
1175
1176static int compare_single(struct super_block *s, void *p)
1177{
1178	return 1;
1179}
1180
1181struct dentry *mount_single(struct file_system_type *fs_type,
1182	int flags, void *data,
1183	int (*fill_super)(struct super_block *, void *, int))
1184{
1185	struct super_block *s;
1186	int error;
1187
1188	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1189	if (IS_ERR(s))
1190		return ERR_CAST(s);
1191	if (!s->s_root) {
 
1192		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1193		if (error) {
1194			deactivate_locked_super(s);
1195			return ERR_PTR(error);
1196		}
1197		s->s_flags |= MS_ACTIVE;
1198	} else {
1199		do_remount_sb(s, flags, data, 0);
1200	}
1201	return dget(s->s_root);
1202}
1203EXPORT_SYMBOL(mount_single);
1204
1205struct dentry *
1206mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1207{
1208	struct dentry *root;
1209	struct super_block *sb;
1210	char *secdata = NULL;
1211	int error = -ENOMEM;
1212
1213	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1214		secdata = alloc_secdata();
1215		if (!secdata)
1216			goto out;
1217
1218		error = security_sb_copy_data(data, secdata);
1219		if (error)
1220			goto out_free_secdata;
1221	}
1222
1223	root = type->mount(type, flags, name, data);
1224	if (IS_ERR(root)) {
1225		error = PTR_ERR(root);
1226		goto out_free_secdata;
1227	}
1228	sb = root->d_sb;
1229	BUG_ON(!sb);
1230	WARN_ON(!sb->s_bdi);
 
1231	sb->s_flags |= MS_BORN;
1232
1233	error = security_sb_kern_mount(sb, flags, secdata);
1234	if (error)
1235		goto out_sb;
1236
1237	/*
1238	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1239	 * but s_maxbytes was an unsigned long long for many releases. Throw
1240	 * this warning for a little while to try and catch filesystems that
1241	 * violate this rule.
1242	 */
1243	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1244		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1245
1246	up_write(&sb->s_umount);
1247	free_secdata(secdata);
1248	return root;
1249out_sb:
1250	dput(root);
1251	deactivate_locked_super(sb);
1252out_free_secdata:
1253	free_secdata(secdata);
1254out:
1255	return ERR_PTR(error);
1256}
1257
1258/*
1259 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1260 * instead.
1261 */
1262void __sb_end_write(struct super_block *sb, int level)
1263{
1264	percpu_up_read(sb->s_writers.rw_sem + level-1);
1265}
1266EXPORT_SYMBOL(__sb_end_write);
1267
1268/*
1269 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1270 * instead.
1271 */
1272int __sb_start_write(struct super_block *sb, int level, bool wait)
1273{
1274	bool force_trylock = false;
1275	int ret = 1;
1276
1277#ifdef CONFIG_LOCKDEP
1278	/*
1279	 * We want lockdep to tell us about possible deadlocks with freezing
1280	 * but it's it bit tricky to properly instrument it. Getting a freeze
1281	 * protection works as getting a read lock but there are subtle
1282	 * problems. XFS for example gets freeze protection on internal level
1283	 * twice in some cases, which is OK only because we already hold a
1284	 * freeze protection also on higher level. Due to these cases we have
1285	 * to use wait == F (trylock mode) which must not fail.
1286	 */
1287	if (wait) {
1288		int i;
1289
1290		for (i = 0; i < level - 1; i++)
1291			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1292				force_trylock = true;
1293				break;
1294			}
1295	}
1296#endif
1297	if (wait && !force_trylock)
1298		percpu_down_read(sb->s_writers.rw_sem + level-1);
1299	else
1300		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1301
1302	WARN_ON(force_trylock && !ret);
1303	return ret;
1304}
1305EXPORT_SYMBOL(__sb_start_write);
1306
1307/**
1308 * sb_wait_write - wait until all writers to given file system finish
1309 * @sb: the super for which we wait
1310 * @level: type of writers we wait for (normal vs page fault)
1311 *
1312 * This function waits until there are no writers of given type to given file
1313 * system.
1314 */
1315static void sb_wait_write(struct super_block *sb, int level)
1316{
1317	percpu_down_write(sb->s_writers.rw_sem + level-1);
1318}
1319
1320/*
1321 * We are going to return to userspace and forget about these locks, the
1322 * ownership goes to the caller of thaw_super() which does unlock().
1323 */
1324static void lockdep_sb_freeze_release(struct super_block *sb)
1325{
1326	int level;
1327
1328	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1329		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1330}
1331
1332/*
1333 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1334 */
1335static void lockdep_sb_freeze_acquire(struct super_block *sb)
1336{
1337	int level;
1338
1339	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1340		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1341}
1342
1343static void sb_freeze_unlock(struct super_block *sb)
1344{
1345	int level;
1346
1347	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1348		percpu_up_write(sb->s_writers.rw_sem + level);
1349}
1350
1351/**
1352 * freeze_super - lock the filesystem and force it into a consistent state
1353 * @sb: the super to lock
1354 *
1355 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1356 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1357 * -EBUSY.
1358 *
1359 * During this function, sb->s_writers.frozen goes through these values:
1360 *
1361 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1362 *
1363 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1364 * writes should be blocked, though page faults are still allowed. We wait for
1365 * all writes to complete and then proceed to the next stage.
1366 *
1367 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1368 * but internal fs threads can still modify the filesystem (although they
1369 * should not dirty new pages or inodes), writeback can run etc. After waiting
1370 * for all running page faults we sync the filesystem which will clean all
1371 * dirty pages and inodes (no new dirty pages or inodes can be created when
1372 * sync is running).
1373 *
1374 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1375 * modification are blocked (e.g. XFS preallocation truncation on inode
1376 * reclaim). This is usually implemented by blocking new transactions for
1377 * filesystems that have them and need this additional guard. After all
1378 * internal writers are finished we call ->freeze_fs() to finish filesystem
1379 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1380 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1381 *
1382 * sb->s_writers.frozen is protected by sb->s_umount.
1383 */
1384int freeze_super(struct super_block *sb)
1385{
1386	int ret;
1387
1388	atomic_inc(&sb->s_active);
1389	down_write(&sb->s_umount);
1390	if (sb->s_writers.frozen != SB_UNFROZEN) {
1391		deactivate_locked_super(sb);
1392		return -EBUSY;
1393	}
1394
1395	if (!(sb->s_flags & MS_BORN)) {
1396		up_write(&sb->s_umount);
1397		return 0;	/* sic - it's "nothing to do" */
1398	}
1399
1400	if (sb->s_flags & MS_RDONLY) {
1401		/* Nothing to do really... */
1402		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1403		up_write(&sb->s_umount);
1404		return 0;
1405	}
1406
1407	sb->s_writers.frozen = SB_FREEZE_WRITE;
1408	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1409	up_write(&sb->s_umount);
1410	sb_wait_write(sb, SB_FREEZE_WRITE);
1411	down_write(&sb->s_umount);
1412
1413	/* Now we go and block page faults... */
1414	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1415	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1416
1417	/* All writers are done so after syncing there won't be dirty data */
1418	sync_filesystem(sb);
1419
1420	/* Now wait for internal filesystem counter */
1421	sb->s_writers.frozen = SB_FREEZE_FS;
1422	sb_wait_write(sb, SB_FREEZE_FS);
1423
 
1424	if (sb->s_op->freeze_fs) {
1425		ret = sb->s_op->freeze_fs(sb);
1426		if (ret) {
1427			printk(KERN_ERR
1428				"VFS:Filesystem freeze failed\n");
1429			sb->s_writers.frozen = SB_UNFROZEN;
1430			sb_freeze_unlock(sb);
1431			wake_up(&sb->s_writers.wait_unfrozen);
1432			deactivate_locked_super(sb);
1433			return ret;
1434		}
1435	}
1436	/*
1437	 * For debugging purposes so that fs can warn if it sees write activity
1438	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1439	 */
1440	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1441	lockdep_sb_freeze_release(sb);
1442	up_write(&sb->s_umount);
1443	return 0;
1444}
1445EXPORT_SYMBOL(freeze_super);
1446
1447/**
1448 * thaw_super -- unlock filesystem
1449 * @sb: the super to thaw
1450 *
1451 * Unlocks the filesystem and marks it writeable again after freeze_super().
1452 */
1453int thaw_super(struct super_block *sb)
1454{
1455	int error;
1456
1457	down_write(&sb->s_umount);
1458	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1459		up_write(&sb->s_umount);
1460		return -EINVAL;
1461	}
1462
1463	if (sb->s_flags & MS_RDONLY) {
1464		sb->s_writers.frozen = SB_UNFROZEN;
1465		goto out;
1466	}
1467
1468	lockdep_sb_freeze_acquire(sb);
1469
1470	if (sb->s_op->unfreeze_fs) {
1471		error = sb->s_op->unfreeze_fs(sb);
1472		if (error) {
1473			printk(KERN_ERR
1474				"VFS:Filesystem thaw failed\n");
1475			lockdep_sb_freeze_release(sb);
1476			up_write(&sb->s_umount);
1477			return error;
1478		}
1479	}
1480
1481	sb->s_writers.frozen = SB_UNFROZEN;
1482	sb_freeze_unlock(sb);
1483out:
1484	wake_up(&sb->s_writers.wait_unfrozen);
 
 
1485	deactivate_locked_super(sb);
 
1486	return 0;
1487}
1488EXPORT_SYMBOL(thaw_super);