Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
 
 
  35#include "internal.h"
  36
  37
  38LIST_HEAD(super_blocks);
  39DEFINE_SPINLOCK(sb_lock);
  40
 
 
 
 
 
 
  41/*
  42 * One thing we have to be careful of with a per-sb shrinker is that we don't
  43 * drop the last active reference to the superblock from within the shrinker.
  44 * If that happens we could trigger unregistering the shrinker from within the
  45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  46 * take a passive reference to the superblock to avoid this from occurring.
  47 */
  48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
 
  49{
  50	struct super_block *sb;
  51	int	fs_objects = 0;
  52	int	total_objects;
 
 
 
  53
  54	sb = container_of(shrink, struct super_block, s_shrink);
  55
  56	/*
  57	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  58	 * to recurse into the FS that called us in clear_inode() and friends..
  59	 */
  60	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
  61		return -1;
  62
  63	if (!grab_super_passive(sb))
  64		return -1;
  65
  66	if (sb->s_op && sb->s_op->nr_cached_objects)
  67		fs_objects = sb->s_op->nr_cached_objects(sb);
  68
  69	total_objects = sb->s_nr_dentry_unused +
  70			sb->s_nr_inodes_unused + fs_objects + 1;
 
 
 
 
 
  71
  72	if (sc->nr_to_scan) {
  73		int	dentries;
  74		int	inodes;
  75
  76		/* proportion the scan between the caches */
  77		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
  78							total_objects;
  79		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
  80							total_objects;
  81		if (fs_objects)
  82			fs_objects = (sc->nr_to_scan * fs_objects) /
  83							total_objects;
  84		/*
  85		 * prune the dcache first as the icache is pinned by it, then
  86		 * prune the icache, followed by the filesystem specific caches
  87		 */
  88		prune_dcache_sb(sb, dentries);
  89		prune_icache_sb(sb, inodes);
  90
  91		if (fs_objects && sb->s_op->free_cached_objects) {
  92			sb->s_op->free_cached_objects(sb, fs_objects);
  93			fs_objects = sb->s_op->nr_cached_objects(sb);
  94		}
  95		total_objects = sb->s_nr_dentry_unused +
  96				sb->s_nr_inodes_unused + fs_objects;
  97	}
  98
  99	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100	drop_super(sb);
 101	return total_objects;
 102}
 103
 104/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105 *	alloc_super	-	create new superblock
 106 *	@type:	filesystem type superblock should belong to
 
 107 *
 108 *	Allocates and initializes a new &struct super_block.  alloc_super()
 109 *	returns a pointer new superblock or %NULL if allocation had failed.
 110 */
 111static struct super_block *alloc_super(struct file_system_type *type)
 112{
 113	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 114	static const struct super_operations default_op;
 
 115
 116	if (s) {
 117		if (security_sb_alloc(s)) {
 118			kfree(s);
 119			s = NULL;
 120			goto out;
 121		}
 122#ifdef CONFIG_SMP
 123		s->s_files = alloc_percpu(struct list_head);
 124		if (!s->s_files) {
 125			security_sb_free(s);
 126			kfree(s);
 127			s = NULL;
 128			goto out;
 129		} else {
 130			int i;
 131
 132			for_each_possible_cpu(i)
 133				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
 134		}
 135#else
 136		INIT_LIST_HEAD(&s->s_files);
 137#endif
 138		s->s_bdi = &default_backing_dev_info;
 139		INIT_LIST_HEAD(&s->s_instances);
 140		INIT_HLIST_BL_HEAD(&s->s_anon);
 141		INIT_LIST_HEAD(&s->s_inodes);
 142		INIT_LIST_HEAD(&s->s_dentry_lru);
 143		INIT_LIST_HEAD(&s->s_inode_lru);
 144		spin_lock_init(&s->s_inode_lru_lock);
 145		init_rwsem(&s->s_umount);
 146		mutex_init(&s->s_lock);
 147		lockdep_set_class(&s->s_umount, &type->s_umount_key);
 148		/*
 149		 * The locking rules for s_lock are up to the
 150		 * filesystem. For example ext3fs has different
 151		 * lock ordering than usbfs:
 152		 */
 153		lockdep_set_class(&s->s_lock, &type->s_lock_key);
 154		/*
 155		 * sget() can have s_umount recursion.
 156		 *
 157		 * When it cannot find a suitable sb, it allocates a new
 158		 * one (this one), and tries again to find a suitable old
 159		 * one.
 160		 *
 161		 * In case that succeeds, it will acquire the s_umount
 162		 * lock of the old one. Since these are clearly distrinct
 163		 * locks, and this object isn't exposed yet, there's no
 164		 * risk of deadlocks.
 165		 *
 166		 * Annotate this by putting this lock in a different
 167		 * subclass.
 168		 */
 169		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 170		s->s_count = 1;
 171		atomic_set(&s->s_active, 1);
 172		mutex_init(&s->s_vfs_rename_mutex);
 173		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 174		mutex_init(&s->s_dquot.dqio_mutex);
 175		mutex_init(&s->s_dquot.dqonoff_mutex);
 176		init_rwsem(&s->s_dquot.dqptr_sem);
 177		init_waitqueue_head(&s->s_wait_unfrozen);
 178		s->s_maxbytes = MAX_NON_LFS;
 179		s->s_op = &default_op;
 180		s->s_time_gran = 1000000000;
 181		s->cleancache_poolid = -1;
 182
 183		s->s_shrink.seeks = DEFAULT_SEEKS;
 184		s->s_shrink.shrink = prune_super;
 185		s->s_shrink.batch = 1024;
 186	}
 187out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	return s;
 189}
 190
 191/**
 192 *	destroy_super	-	frees a superblock
 193 *	@s: superblock to free
 194 *
 195 *	Frees a superblock.
 196 */
 197static inline void destroy_super(struct super_block *s)
 198{
 199#ifdef CONFIG_SMP
 200	free_percpu(s->s_files);
 201#endif
 202	security_sb_free(s);
 203	kfree(s->s_subtype);
 204	kfree(s->s_options);
 205	kfree(s);
 206}
 207
 208/* Superblock refcounting  */
 209
 210/*
 211 * Drop a superblock's refcount.  The caller must hold sb_lock.
 212 */
 213void __put_super(struct super_block *sb)
 214{
 215	if (!--sb->s_count) {
 216		list_del_init(&sb->s_list);
 217		destroy_super(sb);
 218	}
 219}
 220
 221/**
 222 *	put_super	-	drop a temporary reference to superblock
 223 *	@sb: superblock in question
 224 *
 225 *	Drops a temporary reference, frees superblock if there's no
 226 *	references left.
 227 */
 228void put_super(struct super_block *sb)
 229{
 230	spin_lock(&sb_lock);
 231	__put_super(sb);
 232	spin_unlock(&sb_lock);
 233}
 234
 235
 236/**
 237 *	deactivate_locked_super	-	drop an active reference to superblock
 238 *	@s: superblock to deactivate
 239 *
 240 *	Drops an active reference to superblock, converting it into a temprory
 241 *	one if there is no other active references left.  In that case we
 242 *	tell fs driver to shut it down and drop the temporary reference we
 243 *	had just acquired.
 244 *
 245 *	Caller holds exclusive lock on superblock; that lock is released.
 246 */
 247void deactivate_locked_super(struct super_block *s)
 248{
 249	struct file_system_type *fs = s->s_type;
 250	if (atomic_dec_and_test(&s->s_active)) {
 251		cleancache_flush_fs(s);
 252		fs->kill_sb(s);
 253
 254		/* caches are now gone, we can safely kill the shrinker now */
 255		unregister_shrinker(&s->s_shrink);
 256
 257		/*
 258		 * We need to call rcu_barrier so all the delayed rcu free
 259		 * inodes are flushed before we release the fs module.
 260		 */
 261		rcu_barrier();
 262		put_filesystem(fs);
 263		put_super(s);
 264	} else {
 265		up_write(&s->s_umount);
 266	}
 267}
 268
 269EXPORT_SYMBOL(deactivate_locked_super);
 270
 271/**
 272 *	deactivate_super	-	drop an active reference to superblock
 273 *	@s: superblock to deactivate
 274 *
 275 *	Variant of deactivate_locked_super(), except that superblock is *not*
 276 *	locked by caller.  If we are going to drop the final active reference,
 277 *	lock will be acquired prior to that.
 278 */
 279void deactivate_super(struct super_block *s)
 280{
 281        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 282		down_write(&s->s_umount);
 283		deactivate_locked_super(s);
 284	}
 285}
 286
 287EXPORT_SYMBOL(deactivate_super);
 288
 289/**
 290 *	grab_super - acquire an active reference
 291 *	@s: reference we are trying to make active
 292 *
 293 *	Tries to acquire an active reference.  grab_super() is used when we
 294 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 295 *	and want to turn it into a full-blown active reference.  grab_super()
 296 *	is called with sb_lock held and drops it.  Returns 1 in case of
 297 *	success, 0 if we had failed (superblock contents was already dead or
 298 *	dying when grab_super() had been called).
 
 
 299 */
 300static int grab_super(struct super_block *s) __releases(sb_lock)
 301{
 302	if (atomic_inc_not_zero(&s->s_active)) {
 303		spin_unlock(&sb_lock);
 304		return 1;
 305	}
 306	/* it's going away */
 307	s->s_count++;
 308	spin_unlock(&sb_lock);
 309	/* wait for it to die */
 310	down_write(&s->s_umount);
 
 
 
 
 311	up_write(&s->s_umount);
 312	put_super(s);
 313	return 0;
 314}
 315
 316/*
 317 *	grab_super_passive - acquire a passive reference
 318 *	@s: reference we are trying to grab
 319 *
 320 *	Tries to acquire a passive reference. This is used in places where we
 321 *	cannot take an active reference but we need to ensure that the
 322 *	superblock does not go away while we are working on it. It returns
 323 *	false if a reference was not gained, and returns true with the s_umount
 324 *	lock held in read mode if a reference is gained. On successful return,
 325 *	the caller must drop the s_umount lock and the passive reference when
 326 *	done.
 327 */
 328bool grab_super_passive(struct super_block *sb)
 329{
 330	spin_lock(&sb_lock);
 331	if (list_empty(&sb->s_instances)) {
 332		spin_unlock(&sb_lock);
 333		return false;
 334	}
 335
 336	sb->s_count++;
 337	spin_unlock(&sb_lock);
 338
 339	if (down_read_trylock(&sb->s_umount)) {
 340		if (sb->s_root)
 341			return true;
 342		up_read(&sb->s_umount);
 343	}
 344
 345	put_super(sb);
 346	return false;
 347}
 348
 349/*
 350 * Superblock locking.  We really ought to get rid of these two.
 351 */
 352void lock_super(struct super_block * sb)
 353{
 354	mutex_lock(&sb->s_lock);
 355}
 356
 357void unlock_super(struct super_block * sb)
 358{
 359	mutex_unlock(&sb->s_lock);
 360}
 361
 362EXPORT_SYMBOL(lock_super);
 363EXPORT_SYMBOL(unlock_super);
 364
 365/**
 366 *	generic_shutdown_super	-	common helper for ->kill_sb()
 367 *	@sb: superblock to kill
 368 *
 369 *	generic_shutdown_super() does all fs-independent work on superblock
 370 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 371 *	that need destruction out of superblock, call generic_shutdown_super()
 372 *	and release aforementioned objects.  Note: dentries and inodes _are_
 373 *	taken care of and do not need specific handling.
 374 *
 375 *	Upon calling this function, the filesystem may no longer alter or
 376 *	rearrange the set of dentries belonging to this super_block, nor may it
 377 *	change the attachments of dentries to inodes.
 378 */
 379void generic_shutdown_super(struct super_block *sb)
 380{
 381	const struct super_operations *sop = sb->s_op;
 382
 383	if (sb->s_root) {
 384		shrink_dcache_for_umount(sb);
 385		sync_filesystem(sb);
 386		sb->s_flags &= ~MS_ACTIVE;
 387
 388		fsnotify_unmount_inodes(&sb->s_inodes);
 389
 390		evict_inodes(sb);
 391
 
 
 
 
 
 392		if (sop->put_super)
 393			sop->put_super(sb);
 394
 395		if (!list_empty(&sb->s_inodes)) {
 396			printk("VFS: Busy inodes after unmount of %s. "
 397			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 398			   sb->s_id);
 399		}
 400	}
 401	spin_lock(&sb_lock);
 402	/* should be initialized for __put_super_and_need_restart() */
 403	list_del_init(&sb->s_instances);
 404	spin_unlock(&sb_lock);
 405	up_write(&sb->s_umount);
 406}
 407
 408EXPORT_SYMBOL(generic_shutdown_super);
 409
 410/**
 411 *	sget	-	find or create a superblock
 412 *	@type:	filesystem type superblock should belong to
 413 *	@test:	comparison callback
 414 *	@set:	setup callback
 
 415 *	@data:	argument to each of them
 416 */
 417struct super_block *sget(struct file_system_type *type,
 418			int (*test)(struct super_block *,void *),
 419			int (*set)(struct super_block *,void *),
 
 420			void *data)
 421{
 422	struct super_block *s = NULL;
 423	struct super_block *old;
 424	int err;
 425
 426retry:
 427	spin_lock(&sb_lock);
 428	if (test) {
 429		list_for_each_entry(old, &type->fs_supers, s_instances) {
 430			if (!test(old, data))
 431				continue;
 432			if (!grab_super(old))
 433				goto retry;
 434			if (s) {
 435				up_write(&s->s_umount);
 436				destroy_super(s);
 437				s = NULL;
 438			}
 439			down_write(&old->s_umount);
 440			if (unlikely(!(old->s_flags & MS_BORN))) {
 441				deactivate_locked_super(old);
 442				goto retry;
 443			}
 444			return old;
 445		}
 446	}
 447	if (!s) {
 448		spin_unlock(&sb_lock);
 449		s = alloc_super(type);
 450		if (!s)
 451			return ERR_PTR(-ENOMEM);
 452		goto retry;
 453	}
 454		
 455	err = set(s, data);
 456	if (err) {
 457		spin_unlock(&sb_lock);
 458		up_write(&s->s_umount);
 459		destroy_super(s);
 460		return ERR_PTR(err);
 461	}
 462	s->s_type = type;
 463	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 464	list_add_tail(&s->s_list, &super_blocks);
 465	list_add(&s->s_instances, &type->fs_supers);
 466	spin_unlock(&sb_lock);
 467	get_filesystem(type);
 468	register_shrinker(&s->s_shrink);
 469	return s;
 470}
 471
 472EXPORT_SYMBOL(sget);
 473
 474void drop_super(struct super_block *sb)
 475{
 476	up_read(&sb->s_umount);
 477	put_super(sb);
 478}
 479
 480EXPORT_SYMBOL(drop_super);
 481
 482/**
 483 * sync_supers - helper for periodic superblock writeback
 484 *
 485 * Call the write_super method if present on all dirty superblocks in
 486 * the system.  This is for the periodic writeback used by most older
 487 * filesystems.  For data integrity superblock writeback use
 488 * sync_filesystems() instead.
 489 *
 490 * Note: check the dirty flag before waiting, so we don't
 491 * hold up the sync while mounting a device. (The newly
 492 * mounted device won't need syncing.)
 493 */
 494void sync_supers(void)
 495{
 496	struct super_block *sb, *p = NULL;
 497
 498	spin_lock(&sb_lock);
 499	list_for_each_entry(sb, &super_blocks, s_list) {
 500		if (list_empty(&sb->s_instances))
 501			continue;
 502		if (sb->s_op->write_super && sb->s_dirt) {
 503			sb->s_count++;
 504			spin_unlock(&sb_lock);
 505
 506			down_read(&sb->s_umount);
 507			if (sb->s_root && sb->s_dirt)
 508				sb->s_op->write_super(sb);
 509			up_read(&sb->s_umount);
 510
 511			spin_lock(&sb_lock);
 512			if (p)
 513				__put_super(p);
 514			p = sb;
 515		}
 516	}
 517	if (p)
 518		__put_super(p);
 519	spin_unlock(&sb_lock);
 520}
 521
 522/**
 523 *	iterate_supers - call function for all active superblocks
 524 *	@f: function to call
 525 *	@arg: argument to pass to it
 526 *
 527 *	Scans the superblock list and calls given function, passing it
 528 *	locked superblock and given argument.
 529 */
 530void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 531{
 532	struct super_block *sb, *p = NULL;
 533
 534	spin_lock(&sb_lock);
 535	list_for_each_entry(sb, &super_blocks, s_list) {
 536		if (list_empty(&sb->s_instances))
 537			continue;
 538		sb->s_count++;
 539		spin_unlock(&sb_lock);
 540
 541		down_read(&sb->s_umount);
 542		if (sb->s_root)
 543			f(sb, arg);
 544		up_read(&sb->s_umount);
 545
 546		spin_lock(&sb_lock);
 547		if (p)
 548			__put_super(p);
 549		p = sb;
 550	}
 551	if (p)
 552		__put_super(p);
 553	spin_unlock(&sb_lock);
 554}
 555
 556/**
 557 *	iterate_supers_type - call function for superblocks of given type
 558 *	@type: fs type
 559 *	@f: function to call
 560 *	@arg: argument to pass to it
 561 *
 562 *	Scans the superblock list and calls given function, passing it
 563 *	locked superblock and given argument.
 564 */
 565void iterate_supers_type(struct file_system_type *type,
 566	void (*f)(struct super_block *, void *), void *arg)
 567{
 568	struct super_block *sb, *p = NULL;
 569
 570	spin_lock(&sb_lock);
 571	list_for_each_entry(sb, &type->fs_supers, s_instances) {
 572		sb->s_count++;
 573		spin_unlock(&sb_lock);
 574
 575		down_read(&sb->s_umount);
 576		if (sb->s_root)
 577			f(sb, arg);
 578		up_read(&sb->s_umount);
 579
 580		spin_lock(&sb_lock);
 581		if (p)
 582			__put_super(p);
 583		p = sb;
 584	}
 585	if (p)
 586		__put_super(p);
 587	spin_unlock(&sb_lock);
 588}
 589
 590EXPORT_SYMBOL(iterate_supers_type);
 591
 592/**
 593 *	get_super - get the superblock of a device
 594 *	@bdev: device to get the superblock for
 595 *	
 596 *	Scans the superblock list and finds the superblock of the file system
 597 *	mounted on the device given. %NULL is returned if no match is found.
 598 */
 599
 600struct super_block *get_super(struct block_device *bdev)
 601{
 602	struct super_block *sb;
 603
 604	if (!bdev)
 605		return NULL;
 606
 607	spin_lock(&sb_lock);
 608rescan:
 609	list_for_each_entry(sb, &super_blocks, s_list) {
 610		if (list_empty(&sb->s_instances))
 611			continue;
 612		if (sb->s_bdev == bdev) {
 613			sb->s_count++;
 614			spin_unlock(&sb_lock);
 615			down_read(&sb->s_umount);
 616			/* still alive? */
 617			if (sb->s_root)
 618				return sb;
 619			up_read(&sb->s_umount);
 620			/* nope, got unmounted */
 621			spin_lock(&sb_lock);
 622			__put_super(sb);
 623			goto rescan;
 624		}
 625	}
 626	spin_unlock(&sb_lock);
 627	return NULL;
 628}
 629
 630EXPORT_SYMBOL(get_super);
 631
 632/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633 * get_active_super - get an active reference to the superblock of a device
 634 * @bdev: device to get the superblock for
 635 *
 636 * Scans the superblock list and finds the superblock of the file system
 637 * mounted on the device given.  Returns the superblock with an active
 638 * reference or %NULL if none was found.
 639 */
 640struct super_block *get_active_super(struct block_device *bdev)
 641{
 642	struct super_block *sb;
 643
 644	if (!bdev)
 645		return NULL;
 646
 647restart:
 648	spin_lock(&sb_lock);
 649	list_for_each_entry(sb, &super_blocks, s_list) {
 650		if (list_empty(&sb->s_instances))
 651			continue;
 652		if (sb->s_bdev == bdev) {
 653			if (grab_super(sb)) /* drops sb_lock */
 654				return sb;
 655			else
 656				goto restart;
 
 
 657		}
 658	}
 659	spin_unlock(&sb_lock);
 660	return NULL;
 661}
 662 
 663struct super_block *user_get_super(dev_t dev)
 664{
 665	struct super_block *sb;
 666
 667	spin_lock(&sb_lock);
 668rescan:
 669	list_for_each_entry(sb, &super_blocks, s_list) {
 670		if (list_empty(&sb->s_instances))
 671			continue;
 672		if (sb->s_dev ==  dev) {
 673			sb->s_count++;
 674			spin_unlock(&sb_lock);
 675			down_read(&sb->s_umount);
 676			/* still alive? */
 677			if (sb->s_root)
 678				return sb;
 679			up_read(&sb->s_umount);
 680			/* nope, got unmounted */
 681			spin_lock(&sb_lock);
 682			__put_super(sb);
 683			goto rescan;
 684		}
 685	}
 686	spin_unlock(&sb_lock);
 687	return NULL;
 688}
 689
 690/**
 691 *	do_remount_sb - asks filesystem to change mount options.
 692 *	@sb:	superblock in question
 693 *	@flags:	numeric part of options
 694 *	@data:	the rest of options
 695 *      @force: whether or not to force the change
 696 *
 697 *	Alters the mount options of a mounted file system.
 698 */
 699int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 700{
 701	int retval;
 702	int remount_ro;
 703
 704	if (sb->s_frozen != SB_UNFROZEN)
 705		return -EBUSY;
 706
 707#ifdef CONFIG_BLOCK
 708	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 709		return -EACCES;
 710#endif
 711
 712	if (flags & MS_RDONLY)
 713		acct_auto_close(sb);
 714	shrink_dcache_sb(sb);
 715	sync_filesystem(sb);
 716
 717	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 718
 719	/* If we are remounting RDONLY and current sb is read/write,
 720	   make sure there are no rw files opened */
 721	if (remount_ro) {
 722		if (force)
 723			mark_files_ro(sb);
 724		else if (!fs_may_remount_ro(sb))
 725			return -EBUSY;
 
 
 
 
 726	}
 727
 728	if (sb->s_op->remount_fs) {
 729		retval = sb->s_op->remount_fs(sb, &flags, data);
 730		if (retval)
 731			return retval;
 
 
 
 
 
 732	}
 733	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 
 
 
 734
 735	/*
 736	 * Some filesystems modify their metadata via some other path than the
 737	 * bdev buffer cache (eg. use a private mapping, or directories in
 738	 * pagecache, etc). Also file data modifications go via their own
 739	 * mappings. So If we try to mount readonly then copy the filesystem
 740	 * from bdev, we could get stale data, so invalidate it to give a best
 741	 * effort at coherency.
 742	 */
 743	if (remount_ro && sb->s_bdev)
 744		invalidate_bdev(sb->s_bdev);
 745	return 0;
 
 
 
 
 746}
 747
 748static void do_emergency_remount(struct work_struct *work)
 749{
 750	struct super_block *sb, *p = NULL;
 751
 752	spin_lock(&sb_lock);
 753	list_for_each_entry(sb, &super_blocks, s_list) {
 754		if (list_empty(&sb->s_instances))
 755			continue;
 756		sb->s_count++;
 757		spin_unlock(&sb_lock);
 758		down_write(&sb->s_umount);
 759		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
 
 760			/*
 761			 * What lock protects sb->s_flags??
 762			 */
 763			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 764		}
 765		up_write(&sb->s_umount);
 766		spin_lock(&sb_lock);
 767		if (p)
 768			__put_super(p);
 769		p = sb;
 770	}
 771	if (p)
 772		__put_super(p);
 773	spin_unlock(&sb_lock);
 774	kfree(work);
 775	printk("Emergency Remount complete\n");
 776}
 777
 778void emergency_remount(void)
 779{
 780	struct work_struct *work;
 781
 782	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 783	if (work) {
 784		INIT_WORK(work, do_emergency_remount);
 785		schedule_work(work);
 786	}
 787}
 788
 789/*
 790 * Unnamed block devices are dummy devices used by virtual
 791 * filesystems which don't use real block-devices.  -- jrs
 792 */
 793
 794static DEFINE_IDA(unnamed_dev_ida);
 795static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 796static int unnamed_dev_start = 0; /* don't bother trying below it */
 
 
 
 797
 798int get_anon_bdev(dev_t *p)
 799{
 800	int dev;
 801	int error;
 802
 803 retry:
 804	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 805		return -ENOMEM;
 806	spin_lock(&unnamed_dev_lock);
 807	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 808	if (!error)
 809		unnamed_dev_start = dev + 1;
 810	spin_unlock(&unnamed_dev_lock);
 811	if (error == -EAGAIN)
 812		/* We raced and lost with another CPU. */
 813		goto retry;
 814	else if (error)
 815		return -EAGAIN;
 816
 817	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 818		spin_lock(&unnamed_dev_lock);
 819		ida_remove(&unnamed_dev_ida, dev);
 820		if (unnamed_dev_start > dev)
 821			unnamed_dev_start = dev;
 822		spin_unlock(&unnamed_dev_lock);
 823		return -EMFILE;
 824	}
 825	*p = MKDEV(0, dev & MINORMASK);
 826	return 0;
 827}
 828EXPORT_SYMBOL(get_anon_bdev);
 829
 830void free_anon_bdev(dev_t dev)
 831{
 832	int slot = MINOR(dev);
 833	spin_lock(&unnamed_dev_lock);
 834	ida_remove(&unnamed_dev_ida, slot);
 835	if (slot < unnamed_dev_start)
 836		unnamed_dev_start = slot;
 837	spin_unlock(&unnamed_dev_lock);
 838}
 839EXPORT_SYMBOL(free_anon_bdev);
 840
 841int set_anon_super(struct super_block *s, void *data)
 842{
 843	int error = get_anon_bdev(&s->s_dev);
 844	if (!error)
 845		s->s_bdi = &noop_backing_dev_info;
 846	return error;
 847}
 848
 849EXPORT_SYMBOL(set_anon_super);
 850
 851void kill_anon_super(struct super_block *sb)
 852{
 853	dev_t dev = sb->s_dev;
 854	generic_shutdown_super(sb);
 855	free_anon_bdev(dev);
 856}
 857
 858EXPORT_SYMBOL(kill_anon_super);
 859
 860void kill_litter_super(struct super_block *sb)
 861{
 862	if (sb->s_root)
 863		d_genocide(sb->s_root);
 864	kill_anon_super(sb);
 865}
 866
 867EXPORT_SYMBOL(kill_litter_super);
 868
 869static int ns_test_super(struct super_block *sb, void *data)
 870{
 871	return sb->s_fs_info == data;
 872}
 873
 874static int ns_set_super(struct super_block *sb, void *data)
 875{
 876	sb->s_fs_info = data;
 877	return set_anon_super(sb, NULL);
 878}
 879
 880struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 881	void *data, int (*fill_super)(struct super_block *, void *, int))
 882{
 883	struct super_block *sb;
 884
 885	sb = sget(fs_type, ns_test_super, ns_set_super, data);
 886	if (IS_ERR(sb))
 887		return ERR_CAST(sb);
 888
 889	if (!sb->s_root) {
 890		int err;
 891		sb->s_flags = flags;
 892		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 893		if (err) {
 894			deactivate_locked_super(sb);
 895			return ERR_PTR(err);
 896		}
 897
 898		sb->s_flags |= MS_ACTIVE;
 899	}
 900
 901	return dget(sb->s_root);
 902}
 903
 904EXPORT_SYMBOL(mount_ns);
 905
 906#ifdef CONFIG_BLOCK
 907static int set_bdev_super(struct super_block *s, void *data)
 908{
 909	s->s_bdev = data;
 910	s->s_dev = s->s_bdev->bd_dev;
 911
 912	/*
 913	 * We set the bdi here to the queue backing, file systems can
 914	 * overwrite this in ->fill_super()
 915	 */
 916	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 917	return 0;
 918}
 919
 920static int test_bdev_super(struct super_block *s, void *data)
 921{
 922	return (void *)s->s_bdev == data;
 923}
 924
 925struct dentry *mount_bdev(struct file_system_type *fs_type,
 926	int flags, const char *dev_name, void *data,
 927	int (*fill_super)(struct super_block *, void *, int))
 928{
 929	struct block_device *bdev;
 930	struct super_block *s;
 931	fmode_t mode = FMODE_READ | FMODE_EXCL;
 932	int error = 0;
 933
 934	if (!(flags & MS_RDONLY))
 935		mode |= FMODE_WRITE;
 936
 937	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 938	if (IS_ERR(bdev))
 939		return ERR_CAST(bdev);
 940
 941	/*
 942	 * once the super is inserted into the list by sget, s_umount
 943	 * will protect the lockfs code from trying to start a snapshot
 944	 * while we are mounting
 945	 */
 946	mutex_lock(&bdev->bd_fsfreeze_mutex);
 947	if (bdev->bd_fsfreeze_count > 0) {
 948		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 949		error = -EBUSY;
 950		goto error_bdev;
 951	}
 952	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 
 953	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 954	if (IS_ERR(s))
 955		goto error_s;
 956
 957	if (s->s_root) {
 958		if ((flags ^ s->s_flags) & MS_RDONLY) {
 959			deactivate_locked_super(s);
 960			error = -EBUSY;
 961			goto error_bdev;
 962		}
 963
 964		/*
 965		 * s_umount nests inside bd_mutex during
 966		 * __invalidate_device().  blkdev_put() acquires
 967		 * bd_mutex and can't be called under s_umount.  Drop
 968		 * s_umount temporarily.  This is safe as we're
 969		 * holding an active reference.
 970		 */
 971		up_write(&s->s_umount);
 972		blkdev_put(bdev, mode);
 973		down_write(&s->s_umount);
 974	} else {
 975		char b[BDEVNAME_SIZE];
 976
 977		s->s_flags = flags | MS_NOSEC;
 978		s->s_mode = mode;
 979		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 980		sb_set_blocksize(s, block_size(bdev));
 981		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 982		if (error) {
 983			deactivate_locked_super(s);
 984			goto error;
 985		}
 986
 987		s->s_flags |= MS_ACTIVE;
 988		bdev->bd_super = s;
 989	}
 990
 991	return dget(s->s_root);
 992
 993error_s:
 994	error = PTR_ERR(s);
 995error_bdev:
 996	blkdev_put(bdev, mode);
 997error:
 998	return ERR_PTR(error);
 999}
1000EXPORT_SYMBOL(mount_bdev);
1001
1002void kill_block_super(struct super_block *sb)
1003{
1004	struct block_device *bdev = sb->s_bdev;
1005	fmode_t mode = sb->s_mode;
1006
1007	bdev->bd_super = NULL;
1008	generic_shutdown_super(sb);
1009	sync_blockdev(bdev);
1010	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1011	blkdev_put(bdev, mode | FMODE_EXCL);
1012}
1013
1014EXPORT_SYMBOL(kill_block_super);
1015#endif
1016
1017struct dentry *mount_nodev(struct file_system_type *fs_type,
1018	int flags, void *data,
1019	int (*fill_super)(struct super_block *, void *, int))
1020{
1021	int error;
1022	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1023
1024	if (IS_ERR(s))
1025		return ERR_CAST(s);
1026
1027	s->s_flags = flags;
1028
1029	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1030	if (error) {
1031		deactivate_locked_super(s);
1032		return ERR_PTR(error);
1033	}
1034	s->s_flags |= MS_ACTIVE;
1035	return dget(s->s_root);
1036}
1037EXPORT_SYMBOL(mount_nodev);
1038
1039static int compare_single(struct super_block *s, void *p)
1040{
1041	return 1;
1042}
1043
1044struct dentry *mount_single(struct file_system_type *fs_type,
1045	int flags, void *data,
1046	int (*fill_super)(struct super_block *, void *, int))
1047{
1048	struct super_block *s;
1049	int error;
1050
1051	s = sget(fs_type, compare_single, set_anon_super, NULL);
1052	if (IS_ERR(s))
1053		return ERR_CAST(s);
1054	if (!s->s_root) {
1055		s->s_flags = flags;
1056		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057		if (error) {
1058			deactivate_locked_super(s);
1059			return ERR_PTR(error);
1060		}
1061		s->s_flags |= MS_ACTIVE;
1062	} else {
1063		do_remount_sb(s, flags, data, 0);
1064	}
1065	return dget(s->s_root);
1066}
1067EXPORT_SYMBOL(mount_single);
1068
1069struct dentry *
1070mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1071{
1072	struct dentry *root;
1073	struct super_block *sb;
1074	char *secdata = NULL;
1075	int error = -ENOMEM;
1076
1077	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078		secdata = alloc_secdata();
1079		if (!secdata)
1080			goto out;
1081
1082		error = security_sb_copy_data(data, secdata);
1083		if (error)
1084			goto out_free_secdata;
1085	}
1086
1087	root = type->mount(type, flags, name, data);
1088	if (IS_ERR(root)) {
1089		error = PTR_ERR(root);
1090		goto out_free_secdata;
1091	}
1092	sb = root->d_sb;
1093	BUG_ON(!sb);
1094	WARN_ON(!sb->s_bdi);
1095	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096	sb->s_flags |= MS_BORN;
1097
1098	error = security_sb_kern_mount(sb, flags, secdata);
1099	if (error)
1100		goto out_sb;
1101
1102	/*
1103	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104	 * but s_maxbytes was an unsigned long long for many releases. Throw
1105	 * this warning for a little while to try and catch filesystems that
1106	 * violate this rule.
1107	 */
1108	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1110
1111	up_write(&sb->s_umount);
1112	free_secdata(secdata);
1113	return root;
1114out_sb:
1115	dput(root);
1116	deactivate_locked_super(sb);
1117out_free_secdata:
1118	free_secdata(secdata);
1119out:
1120	return ERR_PTR(error);
1121}
1122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123/**
1124 * freeze_super - lock the filesystem and force it into a consistent state
1125 * @sb: the super to lock
1126 *
1127 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1128 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1129 * -EBUSY.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130 */
1131int freeze_super(struct super_block *sb)
1132{
1133	int ret;
1134
1135	atomic_inc(&sb->s_active);
1136	down_write(&sb->s_umount);
1137	if (sb->s_frozen) {
1138		deactivate_locked_super(sb);
1139		return -EBUSY;
1140	}
1141
 
 
 
 
 
1142	if (sb->s_flags & MS_RDONLY) {
1143		sb->s_frozen = SB_FREEZE_TRANS;
1144		smp_wmb();
1145		up_write(&sb->s_umount);
1146		return 0;
1147	}
1148
1149	sb->s_frozen = SB_FREEZE_WRITE;
 
1150	smp_wmb();
1151
 
 
 
 
 
 
 
 
 
 
 
 
 
1152	sync_filesystem(sb);
1153
1154	sb->s_frozen = SB_FREEZE_TRANS;
 
1155	smp_wmb();
 
1156
1157	sync_blockdev(sb->s_bdev);
1158	if (sb->s_op->freeze_fs) {
1159		ret = sb->s_op->freeze_fs(sb);
1160		if (ret) {
1161			printk(KERN_ERR
1162				"VFS:Filesystem freeze failed\n");
1163			sb->s_frozen = SB_UNFROZEN;
 
 
1164			deactivate_locked_super(sb);
1165			return ret;
1166		}
1167	}
 
 
 
 
 
1168	up_write(&sb->s_umount);
1169	return 0;
1170}
1171EXPORT_SYMBOL(freeze_super);
1172
1173/**
1174 * thaw_super -- unlock filesystem
1175 * @sb: the super to thaw
1176 *
1177 * Unlocks the filesystem and marks it writeable again after freeze_super().
1178 */
1179int thaw_super(struct super_block *sb)
1180{
1181	int error;
1182
1183	down_write(&sb->s_umount);
1184	if (sb->s_frozen == SB_UNFROZEN) {
1185		up_write(&sb->s_umount);
1186		return -EINVAL;
1187	}
1188
1189	if (sb->s_flags & MS_RDONLY)
1190		goto out;
1191
1192	if (sb->s_op->unfreeze_fs) {
1193		error = sb->s_op->unfreeze_fs(sb);
1194		if (error) {
1195			printk(KERN_ERR
1196				"VFS:Filesystem thaw failed\n");
1197			sb->s_frozen = SB_FREEZE_TRANS;
1198			up_write(&sb->s_umount);
1199			return error;
1200		}
1201	}
1202
1203out:
1204	sb->s_frozen = SB_UNFROZEN;
1205	smp_wmb();
1206	wake_up(&sb->s_wait_unfrozen);
1207	deactivate_locked_super(sb);
1208
1209	return 0;
1210}
1211EXPORT_SYMBOL(thaw_super);
v3.15
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include "internal.h"
  38
  39
  40LIST_HEAD(super_blocks);
  41DEFINE_SPINLOCK(sb_lock);
  42
  43static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  44	"sb_writers",
  45	"sb_pagefaults",
  46	"sb_internal",
  47};
  48
  49/*
  50 * One thing we have to be careful of with a per-sb shrinker is that we don't
  51 * drop the last active reference to the superblock from within the shrinker.
  52 * If that happens we could trigger unregistering the shrinker from within the
  53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  54 * take a passive reference to the superblock to avoid this from occurring.
  55 */
  56static unsigned long super_cache_scan(struct shrinker *shrink,
  57				      struct shrink_control *sc)
  58{
  59	struct super_block *sb;
  60	long	fs_objects = 0;
  61	long	total_objects;
  62	long	freed = 0;
  63	long	dentries;
  64	long	inodes;
  65
  66	sb = container_of(shrink, struct super_block, s_shrink);
  67
  68	/*
  69	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  70	 * to recurse into the FS that called us in clear_inode() and friends..
  71	 */
  72	if (!(sc->gfp_mask & __GFP_FS))
  73		return SHRINK_STOP;
  74
  75	if (!grab_super_passive(sb))
  76		return SHRINK_STOP;
  77
  78	if (sb->s_op->nr_cached_objects)
  79		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
  80
  81	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
  82	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
  83	total_objects = dentries + inodes + fs_objects + 1;
  84
  85	/* proportion the scan between the caches */
  86	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  87	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  88
  89	/*
  90	 * prune the dcache first as the icache is pinned by it, then
  91	 * prune the icache, followed by the filesystem specific caches
  92	 */
  93	freed = prune_dcache_sb(sb, dentries, sc->nid);
  94	freed += prune_icache_sb(sb, inodes, sc->nid);
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96	if (fs_objects) {
  97		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
  98								total_objects);
  99		freed += sb->s_op->free_cached_objects(sb, fs_objects,
 100						       sc->nid);
 
 101	}
 102
 103	drop_super(sb);
 104	return freed;
 105}
 106
 107static unsigned long super_cache_count(struct shrinker *shrink,
 108				       struct shrink_control *sc)
 109{
 110	struct super_block *sb;
 111	long	total_objects = 0;
 112
 113	sb = container_of(shrink, struct super_block, s_shrink);
 114
 115	if (!grab_super_passive(sb))
 116		return 0;
 117
 118	if (sb->s_op && sb->s_op->nr_cached_objects)
 119		total_objects = sb->s_op->nr_cached_objects(sb,
 120						 sc->nid);
 121
 122	total_objects += list_lru_count_node(&sb->s_dentry_lru,
 123						 sc->nid);
 124	total_objects += list_lru_count_node(&sb->s_inode_lru,
 125						 sc->nid);
 126
 127	total_objects = vfs_pressure_ratio(total_objects);
 128	drop_super(sb);
 129	return total_objects;
 130}
 131
 132/**
 133 *	destroy_super	-	frees a superblock
 134 *	@s: superblock to free
 135 *
 136 *	Frees a superblock.
 137 */
 138static void destroy_super(struct super_block *s)
 139{
 140	int i;
 141	list_lru_destroy(&s->s_dentry_lru);
 142	list_lru_destroy(&s->s_inode_lru);
 143	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 144		percpu_counter_destroy(&s->s_writers.counter[i]);
 145	security_sb_free(s);
 146	WARN_ON(!list_empty(&s->s_mounts));
 147	kfree(s->s_subtype);
 148	kfree(s->s_options);
 149	kfree_rcu(s, rcu);
 150}
 151
 152/**
 153 *	alloc_super	-	create new superblock
 154 *	@type:	filesystem type superblock should belong to
 155 *	@flags: the mount flags
 156 *
 157 *	Allocates and initializes a new &struct super_block.  alloc_super()
 158 *	returns a pointer new superblock or %NULL if allocation had failed.
 159 */
 160static struct super_block *alloc_super(struct file_system_type *type, int flags)
 161{
 162	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 163	static const struct super_operations default_op;
 164	int i;
 165
 166	if (!s)
 167		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169	INIT_LIST_HEAD(&s->s_mounts);
 170
 171	if (security_sb_alloc(s))
 172		goto fail;
 173
 174	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 175		if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
 176			goto fail;
 177		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
 178				 &type->s_writers_key[i], 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179	}
 180	init_waitqueue_head(&s->s_writers.wait);
 181	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 182	s->s_flags = flags;
 183	s->s_bdi = &default_backing_dev_info;
 184	INIT_HLIST_NODE(&s->s_instances);
 185	INIT_HLIST_BL_HEAD(&s->s_anon);
 186	INIT_LIST_HEAD(&s->s_inodes);
 187
 188	if (list_lru_init(&s->s_dentry_lru))
 189		goto fail;
 190	if (list_lru_init(&s->s_inode_lru))
 191		goto fail;
 192
 193	init_rwsem(&s->s_umount);
 194	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 195	/*
 196	 * sget() can have s_umount recursion.
 197	 *
 198	 * When it cannot find a suitable sb, it allocates a new
 199	 * one (this one), and tries again to find a suitable old
 200	 * one.
 201	 *
 202	 * In case that succeeds, it will acquire the s_umount
 203	 * lock of the old one. Since these are clearly distrinct
 204	 * locks, and this object isn't exposed yet, there's no
 205	 * risk of deadlocks.
 206	 *
 207	 * Annotate this by putting this lock in a different
 208	 * subclass.
 209	 */
 210	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 211	s->s_count = 1;
 212	atomic_set(&s->s_active, 1);
 213	mutex_init(&s->s_vfs_rename_mutex);
 214	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 215	mutex_init(&s->s_dquot.dqio_mutex);
 216	mutex_init(&s->s_dquot.dqonoff_mutex);
 217	init_rwsem(&s->s_dquot.dqptr_sem);
 218	s->s_maxbytes = MAX_NON_LFS;
 219	s->s_op = &default_op;
 220	s->s_time_gran = 1000000000;
 221	s->cleancache_poolid = -1;
 222
 223	s->s_shrink.seeks = DEFAULT_SEEKS;
 224	s->s_shrink.scan_objects = super_cache_scan;
 225	s->s_shrink.count_objects = super_cache_count;
 226	s->s_shrink.batch = 1024;
 227	s->s_shrink.flags = SHRINKER_NUMA_AWARE;
 228	return s;
 
 229
 230fail:
 231	destroy_super(s);
 232	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235/* Superblock refcounting  */
 236
 237/*
 238 * Drop a superblock's refcount.  The caller must hold sb_lock.
 239 */
 240static void __put_super(struct super_block *sb)
 241{
 242	if (!--sb->s_count) {
 243		list_del_init(&sb->s_list);
 244		destroy_super(sb);
 245	}
 246}
 247
 248/**
 249 *	put_super	-	drop a temporary reference to superblock
 250 *	@sb: superblock in question
 251 *
 252 *	Drops a temporary reference, frees superblock if there's no
 253 *	references left.
 254 */
 255static void put_super(struct super_block *sb)
 256{
 257	spin_lock(&sb_lock);
 258	__put_super(sb);
 259	spin_unlock(&sb_lock);
 260}
 261
 262
 263/**
 264 *	deactivate_locked_super	-	drop an active reference to superblock
 265 *	@s: superblock to deactivate
 266 *
 267 *	Drops an active reference to superblock, converting it into a temprory
 268 *	one if there is no other active references left.  In that case we
 269 *	tell fs driver to shut it down and drop the temporary reference we
 270 *	had just acquired.
 271 *
 272 *	Caller holds exclusive lock on superblock; that lock is released.
 273 */
 274void deactivate_locked_super(struct super_block *s)
 275{
 276	struct file_system_type *fs = s->s_type;
 277	if (atomic_dec_and_test(&s->s_active)) {
 278		cleancache_invalidate_fs(s);
 279		fs->kill_sb(s);
 280
 281		/* caches are now gone, we can safely kill the shrinker now */
 282		unregister_shrinker(&s->s_shrink);
 283
 
 
 
 
 
 284		put_filesystem(fs);
 285		put_super(s);
 286	} else {
 287		up_write(&s->s_umount);
 288	}
 289}
 290
 291EXPORT_SYMBOL(deactivate_locked_super);
 292
 293/**
 294 *	deactivate_super	-	drop an active reference to superblock
 295 *	@s: superblock to deactivate
 296 *
 297 *	Variant of deactivate_locked_super(), except that superblock is *not*
 298 *	locked by caller.  If we are going to drop the final active reference,
 299 *	lock will be acquired prior to that.
 300 */
 301void deactivate_super(struct super_block *s)
 302{
 303        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 304		down_write(&s->s_umount);
 305		deactivate_locked_super(s);
 306	}
 307}
 308
 309EXPORT_SYMBOL(deactivate_super);
 310
 311/**
 312 *	grab_super - acquire an active reference
 313 *	@s: reference we are trying to make active
 314 *
 315 *	Tries to acquire an active reference.  grab_super() is used when we
 316 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 317 *	and want to turn it into a full-blown active reference.  grab_super()
 318 *	is called with sb_lock held and drops it.  Returns 1 in case of
 319 *	success, 0 if we had failed (superblock contents was already dead or
 320 *	dying when grab_super() had been called).  Note that this is only
 321 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 322 *	of their type), so increment of ->s_count is OK here.
 323 */
 324static int grab_super(struct super_block *s) __releases(sb_lock)
 325{
 
 
 
 
 
 326	s->s_count++;
 327	spin_unlock(&sb_lock);
 
 328	down_write(&s->s_umount);
 329	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 330		put_super(s);
 331		return 1;
 332	}
 333	up_write(&s->s_umount);
 334	put_super(s);
 335	return 0;
 336}
 337
 338/*
 339 *	grab_super_passive - acquire a passive reference
 340 *	@sb: reference we are trying to grab
 341 *
 342 *	Tries to acquire a passive reference. This is used in places where we
 343 *	cannot take an active reference but we need to ensure that the
 344 *	superblock does not go away while we are working on it. It returns
 345 *	false if a reference was not gained, and returns true with the s_umount
 346 *	lock held in read mode if a reference is gained. On successful return,
 347 *	the caller must drop the s_umount lock and the passive reference when
 348 *	done.
 349 */
 350bool grab_super_passive(struct super_block *sb)
 351{
 352	spin_lock(&sb_lock);
 353	if (hlist_unhashed(&sb->s_instances)) {
 354		spin_unlock(&sb_lock);
 355		return false;
 356	}
 357
 358	sb->s_count++;
 359	spin_unlock(&sb_lock);
 360
 361	if (down_read_trylock(&sb->s_umount)) {
 362		if (sb->s_root && (sb->s_flags & MS_BORN))
 363			return true;
 364		up_read(&sb->s_umount);
 365	}
 366
 367	put_super(sb);
 368	return false;
 369}
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371/**
 372 *	generic_shutdown_super	-	common helper for ->kill_sb()
 373 *	@sb: superblock to kill
 374 *
 375 *	generic_shutdown_super() does all fs-independent work on superblock
 376 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 377 *	that need destruction out of superblock, call generic_shutdown_super()
 378 *	and release aforementioned objects.  Note: dentries and inodes _are_
 379 *	taken care of and do not need specific handling.
 380 *
 381 *	Upon calling this function, the filesystem may no longer alter or
 382 *	rearrange the set of dentries belonging to this super_block, nor may it
 383 *	change the attachments of dentries to inodes.
 384 */
 385void generic_shutdown_super(struct super_block *sb)
 386{
 387	const struct super_operations *sop = sb->s_op;
 388
 389	if (sb->s_root) {
 390		shrink_dcache_for_umount(sb);
 391		sync_filesystem(sb);
 392		sb->s_flags &= ~MS_ACTIVE;
 393
 394		fsnotify_unmount_inodes(&sb->s_inodes);
 395
 396		evict_inodes(sb);
 397
 398		if (sb->s_dio_done_wq) {
 399			destroy_workqueue(sb->s_dio_done_wq);
 400			sb->s_dio_done_wq = NULL;
 401		}
 402
 403		if (sop->put_super)
 404			sop->put_super(sb);
 405
 406		if (!list_empty(&sb->s_inodes)) {
 407			printk("VFS: Busy inodes after unmount of %s. "
 408			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 409			   sb->s_id);
 410		}
 411	}
 412	spin_lock(&sb_lock);
 413	/* should be initialized for __put_super_and_need_restart() */
 414	hlist_del_init(&sb->s_instances);
 415	spin_unlock(&sb_lock);
 416	up_write(&sb->s_umount);
 417}
 418
 419EXPORT_SYMBOL(generic_shutdown_super);
 420
 421/**
 422 *	sget	-	find or create a superblock
 423 *	@type:	filesystem type superblock should belong to
 424 *	@test:	comparison callback
 425 *	@set:	setup callback
 426 *	@flags:	mount flags
 427 *	@data:	argument to each of them
 428 */
 429struct super_block *sget(struct file_system_type *type,
 430			int (*test)(struct super_block *,void *),
 431			int (*set)(struct super_block *,void *),
 432			int flags,
 433			void *data)
 434{
 435	struct super_block *s = NULL;
 436	struct super_block *old;
 437	int err;
 438
 439retry:
 440	spin_lock(&sb_lock);
 441	if (test) {
 442		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 443			if (!test(old, data))
 444				continue;
 445			if (!grab_super(old))
 446				goto retry;
 447			if (s) {
 448				up_write(&s->s_umount);
 449				destroy_super(s);
 450				s = NULL;
 451			}
 
 
 
 
 
 452			return old;
 453		}
 454	}
 455	if (!s) {
 456		spin_unlock(&sb_lock);
 457		s = alloc_super(type, flags);
 458		if (!s)
 459			return ERR_PTR(-ENOMEM);
 460		goto retry;
 461	}
 462		
 463	err = set(s, data);
 464	if (err) {
 465		spin_unlock(&sb_lock);
 466		up_write(&s->s_umount);
 467		destroy_super(s);
 468		return ERR_PTR(err);
 469	}
 470	s->s_type = type;
 471	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 472	list_add_tail(&s->s_list, &super_blocks);
 473	hlist_add_head(&s->s_instances, &type->fs_supers);
 474	spin_unlock(&sb_lock);
 475	get_filesystem(type);
 476	register_shrinker(&s->s_shrink);
 477	return s;
 478}
 479
 480EXPORT_SYMBOL(sget);
 481
 482void drop_super(struct super_block *sb)
 483{
 484	up_read(&sb->s_umount);
 485	put_super(sb);
 486}
 487
 488EXPORT_SYMBOL(drop_super);
 489
 490/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491 *	iterate_supers - call function for all active superblocks
 492 *	@f: function to call
 493 *	@arg: argument to pass to it
 494 *
 495 *	Scans the superblock list and calls given function, passing it
 496 *	locked superblock and given argument.
 497 */
 498void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 499{
 500	struct super_block *sb, *p = NULL;
 501
 502	spin_lock(&sb_lock);
 503	list_for_each_entry(sb, &super_blocks, s_list) {
 504		if (hlist_unhashed(&sb->s_instances))
 505			continue;
 506		sb->s_count++;
 507		spin_unlock(&sb_lock);
 508
 509		down_read(&sb->s_umount);
 510		if (sb->s_root && (sb->s_flags & MS_BORN))
 511			f(sb, arg);
 512		up_read(&sb->s_umount);
 513
 514		spin_lock(&sb_lock);
 515		if (p)
 516			__put_super(p);
 517		p = sb;
 518	}
 519	if (p)
 520		__put_super(p);
 521	spin_unlock(&sb_lock);
 522}
 523
 524/**
 525 *	iterate_supers_type - call function for superblocks of given type
 526 *	@type: fs type
 527 *	@f: function to call
 528 *	@arg: argument to pass to it
 529 *
 530 *	Scans the superblock list and calls given function, passing it
 531 *	locked superblock and given argument.
 532 */
 533void iterate_supers_type(struct file_system_type *type,
 534	void (*f)(struct super_block *, void *), void *arg)
 535{
 536	struct super_block *sb, *p = NULL;
 537
 538	spin_lock(&sb_lock);
 539	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 540		sb->s_count++;
 541		spin_unlock(&sb_lock);
 542
 543		down_read(&sb->s_umount);
 544		if (sb->s_root && (sb->s_flags & MS_BORN))
 545			f(sb, arg);
 546		up_read(&sb->s_umount);
 547
 548		spin_lock(&sb_lock);
 549		if (p)
 550			__put_super(p);
 551		p = sb;
 552	}
 553	if (p)
 554		__put_super(p);
 555	spin_unlock(&sb_lock);
 556}
 557
 558EXPORT_SYMBOL(iterate_supers_type);
 559
 560/**
 561 *	get_super - get the superblock of a device
 562 *	@bdev: device to get the superblock for
 563 *	
 564 *	Scans the superblock list and finds the superblock of the file system
 565 *	mounted on the device given. %NULL is returned if no match is found.
 566 */
 567
 568struct super_block *get_super(struct block_device *bdev)
 569{
 570	struct super_block *sb;
 571
 572	if (!bdev)
 573		return NULL;
 574
 575	spin_lock(&sb_lock);
 576rescan:
 577	list_for_each_entry(sb, &super_blocks, s_list) {
 578		if (hlist_unhashed(&sb->s_instances))
 579			continue;
 580		if (sb->s_bdev == bdev) {
 581			sb->s_count++;
 582			spin_unlock(&sb_lock);
 583			down_read(&sb->s_umount);
 584			/* still alive? */
 585			if (sb->s_root && (sb->s_flags & MS_BORN))
 586				return sb;
 587			up_read(&sb->s_umount);
 588			/* nope, got unmounted */
 589			spin_lock(&sb_lock);
 590			__put_super(sb);
 591			goto rescan;
 592		}
 593	}
 594	spin_unlock(&sb_lock);
 595	return NULL;
 596}
 597
 598EXPORT_SYMBOL(get_super);
 599
 600/**
 601 *	get_super_thawed - get thawed superblock of a device
 602 *	@bdev: device to get the superblock for
 603 *
 604 *	Scans the superblock list and finds the superblock of the file system
 605 *	mounted on the device. The superblock is returned once it is thawed
 606 *	(or immediately if it was not frozen). %NULL is returned if no match
 607 *	is found.
 608 */
 609struct super_block *get_super_thawed(struct block_device *bdev)
 610{
 611	while (1) {
 612		struct super_block *s = get_super(bdev);
 613		if (!s || s->s_writers.frozen == SB_UNFROZEN)
 614			return s;
 615		up_read(&s->s_umount);
 616		wait_event(s->s_writers.wait_unfrozen,
 617			   s->s_writers.frozen == SB_UNFROZEN);
 618		put_super(s);
 619	}
 620}
 621EXPORT_SYMBOL(get_super_thawed);
 622
 623/**
 624 * get_active_super - get an active reference to the superblock of a device
 625 * @bdev: device to get the superblock for
 626 *
 627 * Scans the superblock list and finds the superblock of the file system
 628 * mounted on the device given.  Returns the superblock with an active
 629 * reference or %NULL if none was found.
 630 */
 631struct super_block *get_active_super(struct block_device *bdev)
 632{
 633	struct super_block *sb;
 634
 635	if (!bdev)
 636		return NULL;
 637
 638restart:
 639	spin_lock(&sb_lock);
 640	list_for_each_entry(sb, &super_blocks, s_list) {
 641		if (hlist_unhashed(&sb->s_instances))
 642			continue;
 643		if (sb->s_bdev == bdev) {
 644			if (!grab_super(sb))
 
 
 645				goto restart;
 646			up_write(&sb->s_umount);
 647			return sb;
 648		}
 649	}
 650	spin_unlock(&sb_lock);
 651	return NULL;
 652}
 653 
 654struct super_block *user_get_super(dev_t dev)
 655{
 656	struct super_block *sb;
 657
 658	spin_lock(&sb_lock);
 659rescan:
 660	list_for_each_entry(sb, &super_blocks, s_list) {
 661		if (hlist_unhashed(&sb->s_instances))
 662			continue;
 663		if (sb->s_dev ==  dev) {
 664			sb->s_count++;
 665			spin_unlock(&sb_lock);
 666			down_read(&sb->s_umount);
 667			/* still alive? */
 668			if (sb->s_root && (sb->s_flags & MS_BORN))
 669				return sb;
 670			up_read(&sb->s_umount);
 671			/* nope, got unmounted */
 672			spin_lock(&sb_lock);
 673			__put_super(sb);
 674			goto rescan;
 675		}
 676	}
 677	spin_unlock(&sb_lock);
 678	return NULL;
 679}
 680
 681/**
 682 *	do_remount_sb - asks filesystem to change mount options.
 683 *	@sb:	superblock in question
 684 *	@flags:	numeric part of options
 685 *	@data:	the rest of options
 686 *      @force: whether or not to force the change
 687 *
 688 *	Alters the mount options of a mounted file system.
 689 */
 690int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 691{
 692	int retval;
 693	int remount_ro;
 694
 695	if (sb->s_writers.frozen != SB_UNFROZEN)
 696		return -EBUSY;
 697
 698#ifdef CONFIG_BLOCK
 699	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 700		return -EACCES;
 701#endif
 702
 703	if (flags & MS_RDONLY)
 704		acct_auto_close(sb);
 705	shrink_dcache_sb(sb);
 
 706
 707	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 708
 709	/* If we are remounting RDONLY and current sb is read/write,
 710	   make sure there are no rw files opened */
 711	if (remount_ro) {
 712		if (force) {
 713			sb->s_readonly_remount = 1;
 714			smp_wmb();
 715		} else {
 716			retval = sb_prepare_remount_readonly(sb);
 717			if (retval)
 718				return retval;
 719		}
 720	}
 721
 722	if (sb->s_op->remount_fs) {
 723		retval = sb->s_op->remount_fs(sb, &flags, data);
 724		if (retval) {
 725			if (!force)
 726				goto cancel_readonly;
 727			/* If forced remount, go ahead despite any errors */
 728			WARN(1, "forced remount of a %s fs returned %i\n",
 729			     sb->s_type->name, retval);
 730		}
 731	}
 732	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 733	/* Needs to be ordered wrt mnt_is_readonly() */
 734	smp_wmb();
 735	sb->s_readonly_remount = 0;
 736
 737	/*
 738	 * Some filesystems modify their metadata via some other path than the
 739	 * bdev buffer cache (eg. use a private mapping, or directories in
 740	 * pagecache, etc). Also file data modifications go via their own
 741	 * mappings. So If we try to mount readonly then copy the filesystem
 742	 * from bdev, we could get stale data, so invalidate it to give a best
 743	 * effort at coherency.
 744	 */
 745	if (remount_ro && sb->s_bdev)
 746		invalidate_bdev(sb->s_bdev);
 747	return 0;
 748
 749cancel_readonly:
 750	sb->s_readonly_remount = 0;
 751	return retval;
 752}
 753
 754static void do_emergency_remount(struct work_struct *work)
 755{
 756	struct super_block *sb, *p = NULL;
 757
 758	spin_lock(&sb_lock);
 759	list_for_each_entry(sb, &super_blocks, s_list) {
 760		if (hlist_unhashed(&sb->s_instances))
 761			continue;
 762		sb->s_count++;
 763		spin_unlock(&sb_lock);
 764		down_write(&sb->s_umount);
 765		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 766		    !(sb->s_flags & MS_RDONLY)) {
 767			/*
 768			 * What lock protects sb->s_flags??
 769			 */
 770			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 771		}
 772		up_write(&sb->s_umount);
 773		spin_lock(&sb_lock);
 774		if (p)
 775			__put_super(p);
 776		p = sb;
 777	}
 778	if (p)
 779		__put_super(p);
 780	spin_unlock(&sb_lock);
 781	kfree(work);
 782	printk("Emergency Remount complete\n");
 783}
 784
 785void emergency_remount(void)
 786{
 787	struct work_struct *work;
 788
 789	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 790	if (work) {
 791		INIT_WORK(work, do_emergency_remount);
 792		schedule_work(work);
 793	}
 794}
 795
 796/*
 797 * Unnamed block devices are dummy devices used by virtual
 798 * filesystems which don't use real block-devices.  -- jrs
 799 */
 800
 801static DEFINE_IDA(unnamed_dev_ida);
 802static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 803/* Many userspace utilities consider an FSID of 0 invalid.
 804 * Always return at least 1 from get_anon_bdev.
 805 */
 806static int unnamed_dev_start = 1;
 807
 808int get_anon_bdev(dev_t *p)
 809{
 810	int dev;
 811	int error;
 812
 813 retry:
 814	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 815		return -ENOMEM;
 816	spin_lock(&unnamed_dev_lock);
 817	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 818	if (!error)
 819		unnamed_dev_start = dev + 1;
 820	spin_unlock(&unnamed_dev_lock);
 821	if (error == -EAGAIN)
 822		/* We raced and lost with another CPU. */
 823		goto retry;
 824	else if (error)
 825		return -EAGAIN;
 826
 827	if (dev == (1 << MINORBITS)) {
 828		spin_lock(&unnamed_dev_lock);
 829		ida_remove(&unnamed_dev_ida, dev);
 830		if (unnamed_dev_start > dev)
 831			unnamed_dev_start = dev;
 832		spin_unlock(&unnamed_dev_lock);
 833		return -EMFILE;
 834	}
 835	*p = MKDEV(0, dev & MINORMASK);
 836	return 0;
 837}
 838EXPORT_SYMBOL(get_anon_bdev);
 839
 840void free_anon_bdev(dev_t dev)
 841{
 842	int slot = MINOR(dev);
 843	spin_lock(&unnamed_dev_lock);
 844	ida_remove(&unnamed_dev_ida, slot);
 845	if (slot < unnamed_dev_start)
 846		unnamed_dev_start = slot;
 847	spin_unlock(&unnamed_dev_lock);
 848}
 849EXPORT_SYMBOL(free_anon_bdev);
 850
 851int set_anon_super(struct super_block *s, void *data)
 852{
 853	int error = get_anon_bdev(&s->s_dev);
 854	if (!error)
 855		s->s_bdi = &noop_backing_dev_info;
 856	return error;
 857}
 858
 859EXPORT_SYMBOL(set_anon_super);
 860
 861void kill_anon_super(struct super_block *sb)
 862{
 863	dev_t dev = sb->s_dev;
 864	generic_shutdown_super(sb);
 865	free_anon_bdev(dev);
 866}
 867
 868EXPORT_SYMBOL(kill_anon_super);
 869
 870void kill_litter_super(struct super_block *sb)
 871{
 872	if (sb->s_root)
 873		d_genocide(sb->s_root);
 874	kill_anon_super(sb);
 875}
 876
 877EXPORT_SYMBOL(kill_litter_super);
 878
 879static int ns_test_super(struct super_block *sb, void *data)
 880{
 881	return sb->s_fs_info == data;
 882}
 883
 884static int ns_set_super(struct super_block *sb, void *data)
 885{
 886	sb->s_fs_info = data;
 887	return set_anon_super(sb, NULL);
 888}
 889
 890struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 891	void *data, int (*fill_super)(struct super_block *, void *, int))
 892{
 893	struct super_block *sb;
 894
 895	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
 896	if (IS_ERR(sb))
 897		return ERR_CAST(sb);
 898
 899	if (!sb->s_root) {
 900		int err;
 
 901		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 902		if (err) {
 903			deactivate_locked_super(sb);
 904			return ERR_PTR(err);
 905		}
 906
 907		sb->s_flags |= MS_ACTIVE;
 908	}
 909
 910	return dget(sb->s_root);
 911}
 912
 913EXPORT_SYMBOL(mount_ns);
 914
 915#ifdef CONFIG_BLOCK
 916static int set_bdev_super(struct super_block *s, void *data)
 917{
 918	s->s_bdev = data;
 919	s->s_dev = s->s_bdev->bd_dev;
 920
 921	/*
 922	 * We set the bdi here to the queue backing, file systems can
 923	 * overwrite this in ->fill_super()
 924	 */
 925	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 926	return 0;
 927}
 928
 929static int test_bdev_super(struct super_block *s, void *data)
 930{
 931	return (void *)s->s_bdev == data;
 932}
 933
 934struct dentry *mount_bdev(struct file_system_type *fs_type,
 935	int flags, const char *dev_name, void *data,
 936	int (*fill_super)(struct super_block *, void *, int))
 937{
 938	struct block_device *bdev;
 939	struct super_block *s;
 940	fmode_t mode = FMODE_READ | FMODE_EXCL;
 941	int error = 0;
 942
 943	if (!(flags & MS_RDONLY))
 944		mode |= FMODE_WRITE;
 945
 946	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 947	if (IS_ERR(bdev))
 948		return ERR_CAST(bdev);
 949
 950	/*
 951	 * once the super is inserted into the list by sget, s_umount
 952	 * will protect the lockfs code from trying to start a snapshot
 953	 * while we are mounting
 954	 */
 955	mutex_lock(&bdev->bd_fsfreeze_mutex);
 956	if (bdev->bd_fsfreeze_count > 0) {
 957		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 958		error = -EBUSY;
 959		goto error_bdev;
 960	}
 961	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
 962		 bdev);
 963	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 964	if (IS_ERR(s))
 965		goto error_s;
 966
 967	if (s->s_root) {
 968		if ((flags ^ s->s_flags) & MS_RDONLY) {
 969			deactivate_locked_super(s);
 970			error = -EBUSY;
 971			goto error_bdev;
 972		}
 973
 974		/*
 975		 * s_umount nests inside bd_mutex during
 976		 * __invalidate_device().  blkdev_put() acquires
 977		 * bd_mutex and can't be called under s_umount.  Drop
 978		 * s_umount temporarily.  This is safe as we're
 979		 * holding an active reference.
 980		 */
 981		up_write(&s->s_umount);
 982		blkdev_put(bdev, mode);
 983		down_write(&s->s_umount);
 984	} else {
 985		char b[BDEVNAME_SIZE];
 986
 
 987		s->s_mode = mode;
 988		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 989		sb_set_blocksize(s, block_size(bdev));
 990		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 991		if (error) {
 992			deactivate_locked_super(s);
 993			goto error;
 994		}
 995
 996		s->s_flags |= MS_ACTIVE;
 997		bdev->bd_super = s;
 998	}
 999
1000	return dget(s->s_root);
1001
1002error_s:
1003	error = PTR_ERR(s);
1004error_bdev:
1005	blkdev_put(bdev, mode);
1006error:
1007	return ERR_PTR(error);
1008}
1009EXPORT_SYMBOL(mount_bdev);
1010
1011void kill_block_super(struct super_block *sb)
1012{
1013	struct block_device *bdev = sb->s_bdev;
1014	fmode_t mode = sb->s_mode;
1015
1016	bdev->bd_super = NULL;
1017	generic_shutdown_super(sb);
1018	sync_blockdev(bdev);
1019	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1020	blkdev_put(bdev, mode | FMODE_EXCL);
1021}
1022
1023EXPORT_SYMBOL(kill_block_super);
1024#endif
1025
1026struct dentry *mount_nodev(struct file_system_type *fs_type,
1027	int flags, void *data,
1028	int (*fill_super)(struct super_block *, void *, int))
1029{
1030	int error;
1031	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1032
1033	if (IS_ERR(s))
1034		return ERR_CAST(s);
1035
 
 
1036	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1037	if (error) {
1038		deactivate_locked_super(s);
1039		return ERR_PTR(error);
1040	}
1041	s->s_flags |= MS_ACTIVE;
1042	return dget(s->s_root);
1043}
1044EXPORT_SYMBOL(mount_nodev);
1045
1046static int compare_single(struct super_block *s, void *p)
1047{
1048	return 1;
1049}
1050
1051struct dentry *mount_single(struct file_system_type *fs_type,
1052	int flags, void *data,
1053	int (*fill_super)(struct super_block *, void *, int))
1054{
1055	struct super_block *s;
1056	int error;
1057
1058	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1059	if (IS_ERR(s))
1060		return ERR_CAST(s);
1061	if (!s->s_root) {
 
1062		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1063		if (error) {
1064			deactivate_locked_super(s);
1065			return ERR_PTR(error);
1066		}
1067		s->s_flags |= MS_ACTIVE;
1068	} else {
1069		do_remount_sb(s, flags, data, 0);
1070	}
1071	return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_single);
1074
1075struct dentry *
1076mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1077{
1078	struct dentry *root;
1079	struct super_block *sb;
1080	char *secdata = NULL;
1081	int error = -ENOMEM;
1082
1083	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1084		secdata = alloc_secdata();
1085		if (!secdata)
1086			goto out;
1087
1088		error = security_sb_copy_data(data, secdata);
1089		if (error)
1090			goto out_free_secdata;
1091	}
1092
1093	root = type->mount(type, flags, name, data);
1094	if (IS_ERR(root)) {
1095		error = PTR_ERR(root);
1096		goto out_free_secdata;
1097	}
1098	sb = root->d_sb;
1099	BUG_ON(!sb);
1100	WARN_ON(!sb->s_bdi);
1101	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1102	sb->s_flags |= MS_BORN;
1103
1104	error = security_sb_kern_mount(sb, flags, secdata);
1105	if (error)
1106		goto out_sb;
1107
1108	/*
1109	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1110	 * but s_maxbytes was an unsigned long long for many releases. Throw
1111	 * this warning for a little while to try and catch filesystems that
1112	 * violate this rule.
1113	 */
1114	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1115		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1116
1117	up_write(&sb->s_umount);
1118	free_secdata(secdata);
1119	return root;
1120out_sb:
1121	dput(root);
1122	deactivate_locked_super(sb);
1123out_free_secdata:
1124	free_secdata(secdata);
1125out:
1126	return ERR_PTR(error);
1127}
1128
1129/*
1130 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1131 * instead.
1132 */
1133void __sb_end_write(struct super_block *sb, int level)
1134{
1135	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1136	/*
1137	 * Make sure s_writers are updated before we wake up waiters in
1138	 * freeze_super().
1139	 */
1140	smp_mb();
1141	if (waitqueue_active(&sb->s_writers.wait))
1142		wake_up(&sb->s_writers.wait);
1143	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1144}
1145EXPORT_SYMBOL(__sb_end_write);
1146
1147#ifdef CONFIG_LOCKDEP
1148/*
1149 * We want lockdep to tell us about possible deadlocks with freezing but
1150 * it's it bit tricky to properly instrument it. Getting a freeze protection
1151 * works as getting a read lock but there are subtle problems. XFS for example
1152 * gets freeze protection on internal level twice in some cases, which is OK
1153 * only because we already hold a freeze protection also on higher level. Due
1154 * to these cases we have to tell lockdep we are doing trylock when we
1155 * already hold a freeze protection for a higher freeze level.
1156 */
1157static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1158				unsigned long ip)
1159{
1160	int i;
1161
1162	if (!trylock) {
1163		for (i = 0; i < level - 1; i++)
1164			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1165				trylock = true;
1166				break;
1167			}
1168	}
1169	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1170}
1171#endif
1172
1173/*
1174 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1175 * instead.
1176 */
1177int __sb_start_write(struct super_block *sb, int level, bool wait)
1178{
1179retry:
1180	if (unlikely(sb->s_writers.frozen >= level)) {
1181		if (!wait)
1182			return 0;
1183		wait_event(sb->s_writers.wait_unfrozen,
1184			   sb->s_writers.frozen < level);
1185	}
1186
1187#ifdef CONFIG_LOCKDEP
1188	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1189#endif
1190	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1191	/*
1192	 * Make sure counter is updated before we check for frozen.
1193	 * freeze_super() first sets frozen and then checks the counter.
1194	 */
1195	smp_mb();
1196	if (unlikely(sb->s_writers.frozen >= level)) {
1197		__sb_end_write(sb, level);
1198		goto retry;
1199	}
1200	return 1;
1201}
1202EXPORT_SYMBOL(__sb_start_write);
1203
1204/**
1205 * sb_wait_write - wait until all writers to given file system finish
1206 * @sb: the super for which we wait
1207 * @level: type of writers we wait for (normal vs page fault)
1208 *
1209 * This function waits until there are no writers of given type to given file
1210 * system. Caller of this function should make sure there can be no new writers
1211 * of type @level before calling this function. Otherwise this function can
1212 * livelock.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216	s64 writers;
1217
1218	/*
1219	 * We just cycle-through lockdep here so that it does not complain
1220	 * about returning with lock to userspace
1221	 */
1222	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1223	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1224
1225	do {
1226		DEFINE_WAIT(wait);
1227
1228		/*
1229		 * We use a barrier in prepare_to_wait() to separate setting
1230		 * of frozen and checking of the counter
1231		 */
1232		prepare_to_wait(&sb->s_writers.wait, &wait,
1233				TASK_UNINTERRUPTIBLE);
1234
1235		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1236		if (writers)
1237			schedule();
1238
1239		finish_wait(&sb->s_writers.wait, &wait);
1240	} while (writers);
1241}
1242
1243/**
1244 * freeze_super - lock the filesystem and force it into a consistent state
1245 * @sb: the super to lock
1246 *
1247 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1248 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1249 * -EBUSY.
1250 *
1251 * During this function, sb->s_writers.frozen goes through these values:
1252 *
1253 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1254 *
1255 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1256 * writes should be blocked, though page faults are still allowed. We wait for
1257 * all writes to complete and then proceed to the next stage.
1258 *
1259 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1260 * but internal fs threads can still modify the filesystem (although they
1261 * should not dirty new pages or inodes), writeback can run etc. After waiting
1262 * for all running page faults we sync the filesystem which will clean all
1263 * dirty pages and inodes (no new dirty pages or inodes can be created when
1264 * sync is running).
1265 *
1266 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1267 * modification are blocked (e.g. XFS preallocation truncation on inode
1268 * reclaim). This is usually implemented by blocking new transactions for
1269 * filesystems that have them and need this additional guard. After all
1270 * internal writers are finished we call ->freeze_fs() to finish filesystem
1271 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1272 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1273 *
1274 * sb->s_writers.frozen is protected by sb->s_umount.
1275 */
1276int freeze_super(struct super_block *sb)
1277{
1278	int ret;
1279
1280	atomic_inc(&sb->s_active);
1281	down_write(&sb->s_umount);
1282	if (sb->s_writers.frozen != SB_UNFROZEN) {
1283		deactivate_locked_super(sb);
1284		return -EBUSY;
1285	}
1286
1287	if (!(sb->s_flags & MS_BORN)) {
1288		up_write(&sb->s_umount);
1289		return 0;	/* sic - it's "nothing to do" */
1290	}
1291
1292	if (sb->s_flags & MS_RDONLY) {
1293		/* Nothing to do really... */
1294		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1295		up_write(&sb->s_umount);
1296		return 0;
1297	}
1298
1299	/* From now on, no new normal writers can start */
1300	sb->s_writers.frozen = SB_FREEZE_WRITE;
1301	smp_wmb();
1302
1303	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1304	up_write(&sb->s_umount);
1305
1306	sb_wait_write(sb, SB_FREEZE_WRITE);
1307
1308	/* Now we go and block page faults... */
1309	down_write(&sb->s_umount);
1310	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1311	smp_wmb();
1312
1313	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1314
1315	/* All writers are done so after syncing there won't be dirty data */
1316	sync_filesystem(sb);
1317
1318	/* Now wait for internal filesystem counter */
1319	sb->s_writers.frozen = SB_FREEZE_FS;
1320	smp_wmb();
1321	sb_wait_write(sb, SB_FREEZE_FS);
1322
 
1323	if (sb->s_op->freeze_fs) {
1324		ret = sb->s_op->freeze_fs(sb);
1325		if (ret) {
1326			printk(KERN_ERR
1327				"VFS:Filesystem freeze failed\n");
1328			sb->s_writers.frozen = SB_UNFROZEN;
1329			smp_wmb();
1330			wake_up(&sb->s_writers.wait_unfrozen);
1331			deactivate_locked_super(sb);
1332			return ret;
1333		}
1334	}
1335	/*
1336	 * This is just for debugging purposes so that fs can warn if it
1337	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1338	 */
1339	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1340	up_write(&sb->s_umount);
1341	return 0;
1342}
1343EXPORT_SYMBOL(freeze_super);
1344
1345/**
1346 * thaw_super -- unlock filesystem
1347 * @sb: the super to thaw
1348 *
1349 * Unlocks the filesystem and marks it writeable again after freeze_super().
1350 */
1351int thaw_super(struct super_block *sb)
1352{
1353	int error;
1354
1355	down_write(&sb->s_umount);
1356	if (sb->s_writers.frozen == SB_UNFROZEN) {
1357		up_write(&sb->s_umount);
1358		return -EINVAL;
1359	}
1360
1361	if (sb->s_flags & MS_RDONLY)
1362		goto out;
1363
1364	if (sb->s_op->unfreeze_fs) {
1365		error = sb->s_op->unfreeze_fs(sb);
1366		if (error) {
1367			printk(KERN_ERR
1368				"VFS:Filesystem thaw failed\n");
 
1369			up_write(&sb->s_umount);
1370			return error;
1371		}
1372	}
1373
1374out:
1375	sb->s_writers.frozen = SB_UNFROZEN;
1376	smp_wmb();
1377	wake_up(&sb->s_writers.wait_unfrozen);
1378	deactivate_locked_super(sb);
1379
1380	return 0;
1381}
1382EXPORT_SYMBOL(thaw_super);