Loading...
1/*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/acct.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include "internal.h"
36
37
38LIST_HEAD(super_blocks);
39DEFINE_SPINLOCK(sb_lock);
40
41/*
42 * One thing we have to be careful of with a per-sb shrinker is that we don't
43 * drop the last active reference to the superblock from within the shrinker.
44 * If that happens we could trigger unregistering the shrinker from within the
45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46 * take a passive reference to the superblock to avoid this from occurring.
47 */
48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
49{
50 struct super_block *sb;
51 int fs_objects = 0;
52 int total_objects;
53
54 sb = container_of(shrink, struct super_block, s_shrink);
55
56 /*
57 * Deadlock avoidance. We may hold various FS locks, and we don't want
58 * to recurse into the FS that called us in clear_inode() and friends..
59 */
60 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
61 return -1;
62
63 if (!grab_super_passive(sb))
64 return -1;
65
66 if (sb->s_op && sb->s_op->nr_cached_objects)
67 fs_objects = sb->s_op->nr_cached_objects(sb);
68
69 total_objects = sb->s_nr_dentry_unused +
70 sb->s_nr_inodes_unused + fs_objects + 1;
71
72 if (sc->nr_to_scan) {
73 int dentries;
74 int inodes;
75
76 /* proportion the scan between the caches */
77 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
78 total_objects;
79 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
80 total_objects;
81 if (fs_objects)
82 fs_objects = (sc->nr_to_scan * fs_objects) /
83 total_objects;
84 /*
85 * prune the dcache first as the icache is pinned by it, then
86 * prune the icache, followed by the filesystem specific caches
87 */
88 prune_dcache_sb(sb, dentries);
89 prune_icache_sb(sb, inodes);
90
91 if (fs_objects && sb->s_op->free_cached_objects) {
92 sb->s_op->free_cached_objects(sb, fs_objects);
93 fs_objects = sb->s_op->nr_cached_objects(sb);
94 }
95 total_objects = sb->s_nr_dentry_unused +
96 sb->s_nr_inodes_unused + fs_objects;
97 }
98
99 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
100 drop_super(sb);
101 return total_objects;
102}
103
104/**
105 * alloc_super - create new superblock
106 * @type: filesystem type superblock should belong to
107 *
108 * Allocates and initializes a new &struct super_block. alloc_super()
109 * returns a pointer new superblock or %NULL if allocation had failed.
110 */
111static struct super_block *alloc_super(struct file_system_type *type)
112{
113 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
114 static const struct super_operations default_op;
115
116 if (s) {
117 if (security_sb_alloc(s)) {
118 kfree(s);
119 s = NULL;
120 goto out;
121 }
122#ifdef CONFIG_SMP
123 s->s_files = alloc_percpu(struct list_head);
124 if (!s->s_files) {
125 security_sb_free(s);
126 kfree(s);
127 s = NULL;
128 goto out;
129 } else {
130 int i;
131
132 for_each_possible_cpu(i)
133 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
134 }
135#else
136 INIT_LIST_HEAD(&s->s_files);
137#endif
138 s->s_bdi = &default_backing_dev_info;
139 INIT_LIST_HEAD(&s->s_instances);
140 INIT_HLIST_BL_HEAD(&s->s_anon);
141 INIT_LIST_HEAD(&s->s_inodes);
142 INIT_LIST_HEAD(&s->s_dentry_lru);
143 INIT_LIST_HEAD(&s->s_inode_lru);
144 spin_lock_init(&s->s_inode_lru_lock);
145 init_rwsem(&s->s_umount);
146 mutex_init(&s->s_lock);
147 lockdep_set_class(&s->s_umount, &type->s_umount_key);
148 /*
149 * The locking rules for s_lock are up to the
150 * filesystem. For example ext3fs has different
151 * lock ordering than usbfs:
152 */
153 lockdep_set_class(&s->s_lock, &type->s_lock_key);
154 /*
155 * sget() can have s_umount recursion.
156 *
157 * When it cannot find a suitable sb, it allocates a new
158 * one (this one), and tries again to find a suitable old
159 * one.
160 *
161 * In case that succeeds, it will acquire the s_umount
162 * lock of the old one. Since these are clearly distrinct
163 * locks, and this object isn't exposed yet, there's no
164 * risk of deadlocks.
165 *
166 * Annotate this by putting this lock in a different
167 * subclass.
168 */
169 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
170 s->s_count = 1;
171 atomic_set(&s->s_active, 1);
172 mutex_init(&s->s_vfs_rename_mutex);
173 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
174 mutex_init(&s->s_dquot.dqio_mutex);
175 mutex_init(&s->s_dquot.dqonoff_mutex);
176 init_rwsem(&s->s_dquot.dqptr_sem);
177 init_waitqueue_head(&s->s_wait_unfrozen);
178 s->s_maxbytes = MAX_NON_LFS;
179 s->s_op = &default_op;
180 s->s_time_gran = 1000000000;
181 s->cleancache_poolid = -1;
182
183 s->s_shrink.seeks = DEFAULT_SEEKS;
184 s->s_shrink.shrink = prune_super;
185 s->s_shrink.batch = 1024;
186 }
187out:
188 return s;
189}
190
191/**
192 * destroy_super - frees a superblock
193 * @s: superblock to free
194 *
195 * Frees a superblock.
196 */
197static inline void destroy_super(struct super_block *s)
198{
199#ifdef CONFIG_SMP
200 free_percpu(s->s_files);
201#endif
202 security_sb_free(s);
203 kfree(s->s_subtype);
204 kfree(s->s_options);
205 kfree(s);
206}
207
208/* Superblock refcounting */
209
210/*
211 * Drop a superblock's refcount. The caller must hold sb_lock.
212 */
213void __put_super(struct super_block *sb)
214{
215 if (!--sb->s_count) {
216 list_del_init(&sb->s_list);
217 destroy_super(sb);
218 }
219}
220
221/**
222 * put_super - drop a temporary reference to superblock
223 * @sb: superblock in question
224 *
225 * Drops a temporary reference, frees superblock if there's no
226 * references left.
227 */
228void put_super(struct super_block *sb)
229{
230 spin_lock(&sb_lock);
231 __put_super(sb);
232 spin_unlock(&sb_lock);
233}
234
235
236/**
237 * deactivate_locked_super - drop an active reference to superblock
238 * @s: superblock to deactivate
239 *
240 * Drops an active reference to superblock, converting it into a temprory
241 * one if there is no other active references left. In that case we
242 * tell fs driver to shut it down and drop the temporary reference we
243 * had just acquired.
244 *
245 * Caller holds exclusive lock on superblock; that lock is released.
246 */
247void deactivate_locked_super(struct super_block *s)
248{
249 struct file_system_type *fs = s->s_type;
250 if (atomic_dec_and_test(&s->s_active)) {
251 cleancache_flush_fs(s);
252 fs->kill_sb(s);
253
254 /* caches are now gone, we can safely kill the shrinker now */
255 unregister_shrinker(&s->s_shrink);
256
257 /*
258 * We need to call rcu_barrier so all the delayed rcu free
259 * inodes are flushed before we release the fs module.
260 */
261 rcu_barrier();
262 put_filesystem(fs);
263 put_super(s);
264 } else {
265 up_write(&s->s_umount);
266 }
267}
268
269EXPORT_SYMBOL(deactivate_locked_super);
270
271/**
272 * deactivate_super - drop an active reference to superblock
273 * @s: superblock to deactivate
274 *
275 * Variant of deactivate_locked_super(), except that superblock is *not*
276 * locked by caller. If we are going to drop the final active reference,
277 * lock will be acquired prior to that.
278 */
279void deactivate_super(struct super_block *s)
280{
281 if (!atomic_add_unless(&s->s_active, -1, 1)) {
282 down_write(&s->s_umount);
283 deactivate_locked_super(s);
284 }
285}
286
287EXPORT_SYMBOL(deactivate_super);
288
289/**
290 * grab_super - acquire an active reference
291 * @s: reference we are trying to make active
292 *
293 * Tries to acquire an active reference. grab_super() is used when we
294 * had just found a superblock in super_blocks or fs_type->fs_supers
295 * and want to turn it into a full-blown active reference. grab_super()
296 * is called with sb_lock held and drops it. Returns 1 in case of
297 * success, 0 if we had failed (superblock contents was already dead or
298 * dying when grab_super() had been called).
299 */
300static int grab_super(struct super_block *s) __releases(sb_lock)
301{
302 if (atomic_inc_not_zero(&s->s_active)) {
303 spin_unlock(&sb_lock);
304 return 1;
305 }
306 /* it's going away */
307 s->s_count++;
308 spin_unlock(&sb_lock);
309 /* wait for it to die */
310 down_write(&s->s_umount);
311 up_write(&s->s_umount);
312 put_super(s);
313 return 0;
314}
315
316/*
317 * grab_super_passive - acquire a passive reference
318 * @s: reference we are trying to grab
319 *
320 * Tries to acquire a passive reference. This is used in places where we
321 * cannot take an active reference but we need to ensure that the
322 * superblock does not go away while we are working on it. It returns
323 * false if a reference was not gained, and returns true with the s_umount
324 * lock held in read mode if a reference is gained. On successful return,
325 * the caller must drop the s_umount lock and the passive reference when
326 * done.
327 */
328bool grab_super_passive(struct super_block *sb)
329{
330 spin_lock(&sb_lock);
331 if (list_empty(&sb->s_instances)) {
332 spin_unlock(&sb_lock);
333 return false;
334 }
335
336 sb->s_count++;
337 spin_unlock(&sb_lock);
338
339 if (down_read_trylock(&sb->s_umount)) {
340 if (sb->s_root)
341 return true;
342 up_read(&sb->s_umount);
343 }
344
345 put_super(sb);
346 return false;
347}
348
349/*
350 * Superblock locking. We really ought to get rid of these two.
351 */
352void lock_super(struct super_block * sb)
353{
354 mutex_lock(&sb->s_lock);
355}
356
357void unlock_super(struct super_block * sb)
358{
359 mutex_unlock(&sb->s_lock);
360}
361
362EXPORT_SYMBOL(lock_super);
363EXPORT_SYMBOL(unlock_super);
364
365/**
366 * generic_shutdown_super - common helper for ->kill_sb()
367 * @sb: superblock to kill
368 *
369 * generic_shutdown_super() does all fs-independent work on superblock
370 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
371 * that need destruction out of superblock, call generic_shutdown_super()
372 * and release aforementioned objects. Note: dentries and inodes _are_
373 * taken care of and do not need specific handling.
374 *
375 * Upon calling this function, the filesystem may no longer alter or
376 * rearrange the set of dentries belonging to this super_block, nor may it
377 * change the attachments of dentries to inodes.
378 */
379void generic_shutdown_super(struct super_block *sb)
380{
381 const struct super_operations *sop = sb->s_op;
382
383 if (sb->s_root) {
384 shrink_dcache_for_umount(sb);
385 sync_filesystem(sb);
386 sb->s_flags &= ~MS_ACTIVE;
387
388 fsnotify_unmount_inodes(&sb->s_inodes);
389
390 evict_inodes(sb);
391
392 if (sop->put_super)
393 sop->put_super(sb);
394
395 if (!list_empty(&sb->s_inodes)) {
396 printk("VFS: Busy inodes after unmount of %s. "
397 "Self-destruct in 5 seconds. Have a nice day...\n",
398 sb->s_id);
399 }
400 }
401 spin_lock(&sb_lock);
402 /* should be initialized for __put_super_and_need_restart() */
403 list_del_init(&sb->s_instances);
404 spin_unlock(&sb_lock);
405 up_write(&sb->s_umount);
406}
407
408EXPORT_SYMBOL(generic_shutdown_super);
409
410/**
411 * sget - find or create a superblock
412 * @type: filesystem type superblock should belong to
413 * @test: comparison callback
414 * @set: setup callback
415 * @data: argument to each of them
416 */
417struct super_block *sget(struct file_system_type *type,
418 int (*test)(struct super_block *,void *),
419 int (*set)(struct super_block *,void *),
420 void *data)
421{
422 struct super_block *s = NULL;
423 struct super_block *old;
424 int err;
425
426retry:
427 spin_lock(&sb_lock);
428 if (test) {
429 list_for_each_entry(old, &type->fs_supers, s_instances) {
430 if (!test(old, data))
431 continue;
432 if (!grab_super(old))
433 goto retry;
434 if (s) {
435 up_write(&s->s_umount);
436 destroy_super(s);
437 s = NULL;
438 }
439 down_write(&old->s_umount);
440 if (unlikely(!(old->s_flags & MS_BORN))) {
441 deactivate_locked_super(old);
442 goto retry;
443 }
444 return old;
445 }
446 }
447 if (!s) {
448 spin_unlock(&sb_lock);
449 s = alloc_super(type);
450 if (!s)
451 return ERR_PTR(-ENOMEM);
452 goto retry;
453 }
454
455 err = set(s, data);
456 if (err) {
457 spin_unlock(&sb_lock);
458 up_write(&s->s_umount);
459 destroy_super(s);
460 return ERR_PTR(err);
461 }
462 s->s_type = type;
463 strlcpy(s->s_id, type->name, sizeof(s->s_id));
464 list_add_tail(&s->s_list, &super_blocks);
465 list_add(&s->s_instances, &type->fs_supers);
466 spin_unlock(&sb_lock);
467 get_filesystem(type);
468 register_shrinker(&s->s_shrink);
469 return s;
470}
471
472EXPORT_SYMBOL(sget);
473
474void drop_super(struct super_block *sb)
475{
476 up_read(&sb->s_umount);
477 put_super(sb);
478}
479
480EXPORT_SYMBOL(drop_super);
481
482/**
483 * sync_supers - helper for periodic superblock writeback
484 *
485 * Call the write_super method if present on all dirty superblocks in
486 * the system. This is for the periodic writeback used by most older
487 * filesystems. For data integrity superblock writeback use
488 * sync_filesystems() instead.
489 *
490 * Note: check the dirty flag before waiting, so we don't
491 * hold up the sync while mounting a device. (The newly
492 * mounted device won't need syncing.)
493 */
494void sync_supers(void)
495{
496 struct super_block *sb, *p = NULL;
497
498 spin_lock(&sb_lock);
499 list_for_each_entry(sb, &super_blocks, s_list) {
500 if (list_empty(&sb->s_instances))
501 continue;
502 if (sb->s_op->write_super && sb->s_dirt) {
503 sb->s_count++;
504 spin_unlock(&sb_lock);
505
506 down_read(&sb->s_umount);
507 if (sb->s_root && sb->s_dirt)
508 sb->s_op->write_super(sb);
509 up_read(&sb->s_umount);
510
511 spin_lock(&sb_lock);
512 if (p)
513 __put_super(p);
514 p = sb;
515 }
516 }
517 if (p)
518 __put_super(p);
519 spin_unlock(&sb_lock);
520}
521
522/**
523 * iterate_supers - call function for all active superblocks
524 * @f: function to call
525 * @arg: argument to pass to it
526 *
527 * Scans the superblock list and calls given function, passing it
528 * locked superblock and given argument.
529 */
530void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
531{
532 struct super_block *sb, *p = NULL;
533
534 spin_lock(&sb_lock);
535 list_for_each_entry(sb, &super_blocks, s_list) {
536 if (list_empty(&sb->s_instances))
537 continue;
538 sb->s_count++;
539 spin_unlock(&sb_lock);
540
541 down_read(&sb->s_umount);
542 if (sb->s_root)
543 f(sb, arg);
544 up_read(&sb->s_umount);
545
546 spin_lock(&sb_lock);
547 if (p)
548 __put_super(p);
549 p = sb;
550 }
551 if (p)
552 __put_super(p);
553 spin_unlock(&sb_lock);
554}
555
556/**
557 * iterate_supers_type - call function for superblocks of given type
558 * @type: fs type
559 * @f: function to call
560 * @arg: argument to pass to it
561 *
562 * Scans the superblock list and calls given function, passing it
563 * locked superblock and given argument.
564 */
565void iterate_supers_type(struct file_system_type *type,
566 void (*f)(struct super_block *, void *), void *arg)
567{
568 struct super_block *sb, *p = NULL;
569
570 spin_lock(&sb_lock);
571 list_for_each_entry(sb, &type->fs_supers, s_instances) {
572 sb->s_count++;
573 spin_unlock(&sb_lock);
574
575 down_read(&sb->s_umount);
576 if (sb->s_root)
577 f(sb, arg);
578 up_read(&sb->s_umount);
579
580 spin_lock(&sb_lock);
581 if (p)
582 __put_super(p);
583 p = sb;
584 }
585 if (p)
586 __put_super(p);
587 spin_unlock(&sb_lock);
588}
589
590EXPORT_SYMBOL(iterate_supers_type);
591
592/**
593 * get_super - get the superblock of a device
594 * @bdev: device to get the superblock for
595 *
596 * Scans the superblock list and finds the superblock of the file system
597 * mounted on the device given. %NULL is returned if no match is found.
598 */
599
600struct super_block *get_super(struct block_device *bdev)
601{
602 struct super_block *sb;
603
604 if (!bdev)
605 return NULL;
606
607 spin_lock(&sb_lock);
608rescan:
609 list_for_each_entry(sb, &super_blocks, s_list) {
610 if (list_empty(&sb->s_instances))
611 continue;
612 if (sb->s_bdev == bdev) {
613 sb->s_count++;
614 spin_unlock(&sb_lock);
615 down_read(&sb->s_umount);
616 /* still alive? */
617 if (sb->s_root)
618 return sb;
619 up_read(&sb->s_umount);
620 /* nope, got unmounted */
621 spin_lock(&sb_lock);
622 __put_super(sb);
623 goto rescan;
624 }
625 }
626 spin_unlock(&sb_lock);
627 return NULL;
628}
629
630EXPORT_SYMBOL(get_super);
631
632/**
633 * get_active_super - get an active reference to the superblock of a device
634 * @bdev: device to get the superblock for
635 *
636 * Scans the superblock list and finds the superblock of the file system
637 * mounted on the device given. Returns the superblock with an active
638 * reference or %NULL if none was found.
639 */
640struct super_block *get_active_super(struct block_device *bdev)
641{
642 struct super_block *sb;
643
644 if (!bdev)
645 return NULL;
646
647restart:
648 spin_lock(&sb_lock);
649 list_for_each_entry(sb, &super_blocks, s_list) {
650 if (list_empty(&sb->s_instances))
651 continue;
652 if (sb->s_bdev == bdev) {
653 if (grab_super(sb)) /* drops sb_lock */
654 return sb;
655 else
656 goto restart;
657 }
658 }
659 spin_unlock(&sb_lock);
660 return NULL;
661}
662
663struct super_block *user_get_super(dev_t dev)
664{
665 struct super_block *sb;
666
667 spin_lock(&sb_lock);
668rescan:
669 list_for_each_entry(sb, &super_blocks, s_list) {
670 if (list_empty(&sb->s_instances))
671 continue;
672 if (sb->s_dev == dev) {
673 sb->s_count++;
674 spin_unlock(&sb_lock);
675 down_read(&sb->s_umount);
676 /* still alive? */
677 if (sb->s_root)
678 return sb;
679 up_read(&sb->s_umount);
680 /* nope, got unmounted */
681 spin_lock(&sb_lock);
682 __put_super(sb);
683 goto rescan;
684 }
685 }
686 spin_unlock(&sb_lock);
687 return NULL;
688}
689
690/**
691 * do_remount_sb - asks filesystem to change mount options.
692 * @sb: superblock in question
693 * @flags: numeric part of options
694 * @data: the rest of options
695 * @force: whether or not to force the change
696 *
697 * Alters the mount options of a mounted file system.
698 */
699int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
700{
701 int retval;
702 int remount_ro;
703
704 if (sb->s_frozen != SB_UNFROZEN)
705 return -EBUSY;
706
707#ifdef CONFIG_BLOCK
708 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
709 return -EACCES;
710#endif
711
712 if (flags & MS_RDONLY)
713 acct_auto_close(sb);
714 shrink_dcache_sb(sb);
715 sync_filesystem(sb);
716
717 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
718
719 /* If we are remounting RDONLY and current sb is read/write,
720 make sure there are no rw files opened */
721 if (remount_ro) {
722 if (force)
723 mark_files_ro(sb);
724 else if (!fs_may_remount_ro(sb))
725 return -EBUSY;
726 }
727
728 if (sb->s_op->remount_fs) {
729 retval = sb->s_op->remount_fs(sb, &flags, data);
730 if (retval)
731 return retval;
732 }
733 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
734
735 /*
736 * Some filesystems modify their metadata via some other path than the
737 * bdev buffer cache (eg. use a private mapping, or directories in
738 * pagecache, etc). Also file data modifications go via their own
739 * mappings. So If we try to mount readonly then copy the filesystem
740 * from bdev, we could get stale data, so invalidate it to give a best
741 * effort at coherency.
742 */
743 if (remount_ro && sb->s_bdev)
744 invalidate_bdev(sb->s_bdev);
745 return 0;
746}
747
748static void do_emergency_remount(struct work_struct *work)
749{
750 struct super_block *sb, *p = NULL;
751
752 spin_lock(&sb_lock);
753 list_for_each_entry(sb, &super_blocks, s_list) {
754 if (list_empty(&sb->s_instances))
755 continue;
756 sb->s_count++;
757 spin_unlock(&sb_lock);
758 down_write(&sb->s_umount);
759 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
760 /*
761 * What lock protects sb->s_flags??
762 */
763 do_remount_sb(sb, MS_RDONLY, NULL, 1);
764 }
765 up_write(&sb->s_umount);
766 spin_lock(&sb_lock);
767 if (p)
768 __put_super(p);
769 p = sb;
770 }
771 if (p)
772 __put_super(p);
773 spin_unlock(&sb_lock);
774 kfree(work);
775 printk("Emergency Remount complete\n");
776}
777
778void emergency_remount(void)
779{
780 struct work_struct *work;
781
782 work = kmalloc(sizeof(*work), GFP_ATOMIC);
783 if (work) {
784 INIT_WORK(work, do_emergency_remount);
785 schedule_work(work);
786 }
787}
788
789/*
790 * Unnamed block devices are dummy devices used by virtual
791 * filesystems which don't use real block-devices. -- jrs
792 */
793
794static DEFINE_IDA(unnamed_dev_ida);
795static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
796static int unnamed_dev_start = 0; /* don't bother trying below it */
797
798int get_anon_bdev(dev_t *p)
799{
800 int dev;
801 int error;
802
803 retry:
804 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
805 return -ENOMEM;
806 spin_lock(&unnamed_dev_lock);
807 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
808 if (!error)
809 unnamed_dev_start = dev + 1;
810 spin_unlock(&unnamed_dev_lock);
811 if (error == -EAGAIN)
812 /* We raced and lost with another CPU. */
813 goto retry;
814 else if (error)
815 return -EAGAIN;
816
817 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
818 spin_lock(&unnamed_dev_lock);
819 ida_remove(&unnamed_dev_ida, dev);
820 if (unnamed_dev_start > dev)
821 unnamed_dev_start = dev;
822 spin_unlock(&unnamed_dev_lock);
823 return -EMFILE;
824 }
825 *p = MKDEV(0, dev & MINORMASK);
826 return 0;
827}
828EXPORT_SYMBOL(get_anon_bdev);
829
830void free_anon_bdev(dev_t dev)
831{
832 int slot = MINOR(dev);
833 spin_lock(&unnamed_dev_lock);
834 ida_remove(&unnamed_dev_ida, slot);
835 if (slot < unnamed_dev_start)
836 unnamed_dev_start = slot;
837 spin_unlock(&unnamed_dev_lock);
838}
839EXPORT_SYMBOL(free_anon_bdev);
840
841int set_anon_super(struct super_block *s, void *data)
842{
843 int error = get_anon_bdev(&s->s_dev);
844 if (!error)
845 s->s_bdi = &noop_backing_dev_info;
846 return error;
847}
848
849EXPORT_SYMBOL(set_anon_super);
850
851void kill_anon_super(struct super_block *sb)
852{
853 dev_t dev = sb->s_dev;
854 generic_shutdown_super(sb);
855 free_anon_bdev(dev);
856}
857
858EXPORT_SYMBOL(kill_anon_super);
859
860void kill_litter_super(struct super_block *sb)
861{
862 if (sb->s_root)
863 d_genocide(sb->s_root);
864 kill_anon_super(sb);
865}
866
867EXPORT_SYMBOL(kill_litter_super);
868
869static int ns_test_super(struct super_block *sb, void *data)
870{
871 return sb->s_fs_info == data;
872}
873
874static int ns_set_super(struct super_block *sb, void *data)
875{
876 sb->s_fs_info = data;
877 return set_anon_super(sb, NULL);
878}
879
880struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
881 void *data, int (*fill_super)(struct super_block *, void *, int))
882{
883 struct super_block *sb;
884
885 sb = sget(fs_type, ns_test_super, ns_set_super, data);
886 if (IS_ERR(sb))
887 return ERR_CAST(sb);
888
889 if (!sb->s_root) {
890 int err;
891 sb->s_flags = flags;
892 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
893 if (err) {
894 deactivate_locked_super(sb);
895 return ERR_PTR(err);
896 }
897
898 sb->s_flags |= MS_ACTIVE;
899 }
900
901 return dget(sb->s_root);
902}
903
904EXPORT_SYMBOL(mount_ns);
905
906#ifdef CONFIG_BLOCK
907static int set_bdev_super(struct super_block *s, void *data)
908{
909 s->s_bdev = data;
910 s->s_dev = s->s_bdev->bd_dev;
911
912 /*
913 * We set the bdi here to the queue backing, file systems can
914 * overwrite this in ->fill_super()
915 */
916 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
917 return 0;
918}
919
920static int test_bdev_super(struct super_block *s, void *data)
921{
922 return (void *)s->s_bdev == data;
923}
924
925struct dentry *mount_bdev(struct file_system_type *fs_type,
926 int flags, const char *dev_name, void *data,
927 int (*fill_super)(struct super_block *, void *, int))
928{
929 struct block_device *bdev;
930 struct super_block *s;
931 fmode_t mode = FMODE_READ | FMODE_EXCL;
932 int error = 0;
933
934 if (!(flags & MS_RDONLY))
935 mode |= FMODE_WRITE;
936
937 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
938 if (IS_ERR(bdev))
939 return ERR_CAST(bdev);
940
941 /*
942 * once the super is inserted into the list by sget, s_umount
943 * will protect the lockfs code from trying to start a snapshot
944 * while we are mounting
945 */
946 mutex_lock(&bdev->bd_fsfreeze_mutex);
947 if (bdev->bd_fsfreeze_count > 0) {
948 mutex_unlock(&bdev->bd_fsfreeze_mutex);
949 error = -EBUSY;
950 goto error_bdev;
951 }
952 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
953 mutex_unlock(&bdev->bd_fsfreeze_mutex);
954 if (IS_ERR(s))
955 goto error_s;
956
957 if (s->s_root) {
958 if ((flags ^ s->s_flags) & MS_RDONLY) {
959 deactivate_locked_super(s);
960 error = -EBUSY;
961 goto error_bdev;
962 }
963
964 /*
965 * s_umount nests inside bd_mutex during
966 * __invalidate_device(). blkdev_put() acquires
967 * bd_mutex and can't be called under s_umount. Drop
968 * s_umount temporarily. This is safe as we're
969 * holding an active reference.
970 */
971 up_write(&s->s_umount);
972 blkdev_put(bdev, mode);
973 down_write(&s->s_umount);
974 } else {
975 char b[BDEVNAME_SIZE];
976
977 s->s_flags = flags | MS_NOSEC;
978 s->s_mode = mode;
979 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
980 sb_set_blocksize(s, block_size(bdev));
981 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
982 if (error) {
983 deactivate_locked_super(s);
984 goto error;
985 }
986
987 s->s_flags |= MS_ACTIVE;
988 bdev->bd_super = s;
989 }
990
991 return dget(s->s_root);
992
993error_s:
994 error = PTR_ERR(s);
995error_bdev:
996 blkdev_put(bdev, mode);
997error:
998 return ERR_PTR(error);
999}
1000EXPORT_SYMBOL(mount_bdev);
1001
1002void kill_block_super(struct super_block *sb)
1003{
1004 struct block_device *bdev = sb->s_bdev;
1005 fmode_t mode = sb->s_mode;
1006
1007 bdev->bd_super = NULL;
1008 generic_shutdown_super(sb);
1009 sync_blockdev(bdev);
1010 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1011 blkdev_put(bdev, mode | FMODE_EXCL);
1012}
1013
1014EXPORT_SYMBOL(kill_block_super);
1015#endif
1016
1017struct dentry *mount_nodev(struct file_system_type *fs_type,
1018 int flags, void *data,
1019 int (*fill_super)(struct super_block *, void *, int))
1020{
1021 int error;
1022 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1023
1024 if (IS_ERR(s))
1025 return ERR_CAST(s);
1026
1027 s->s_flags = flags;
1028
1029 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1030 if (error) {
1031 deactivate_locked_super(s);
1032 return ERR_PTR(error);
1033 }
1034 s->s_flags |= MS_ACTIVE;
1035 return dget(s->s_root);
1036}
1037EXPORT_SYMBOL(mount_nodev);
1038
1039static int compare_single(struct super_block *s, void *p)
1040{
1041 return 1;
1042}
1043
1044struct dentry *mount_single(struct file_system_type *fs_type,
1045 int flags, void *data,
1046 int (*fill_super)(struct super_block *, void *, int))
1047{
1048 struct super_block *s;
1049 int error;
1050
1051 s = sget(fs_type, compare_single, set_anon_super, NULL);
1052 if (IS_ERR(s))
1053 return ERR_CAST(s);
1054 if (!s->s_root) {
1055 s->s_flags = flags;
1056 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057 if (error) {
1058 deactivate_locked_super(s);
1059 return ERR_PTR(error);
1060 }
1061 s->s_flags |= MS_ACTIVE;
1062 } else {
1063 do_remount_sb(s, flags, data, 0);
1064 }
1065 return dget(s->s_root);
1066}
1067EXPORT_SYMBOL(mount_single);
1068
1069struct dentry *
1070mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1071{
1072 struct dentry *root;
1073 struct super_block *sb;
1074 char *secdata = NULL;
1075 int error = -ENOMEM;
1076
1077 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078 secdata = alloc_secdata();
1079 if (!secdata)
1080 goto out;
1081
1082 error = security_sb_copy_data(data, secdata);
1083 if (error)
1084 goto out_free_secdata;
1085 }
1086
1087 root = type->mount(type, flags, name, data);
1088 if (IS_ERR(root)) {
1089 error = PTR_ERR(root);
1090 goto out_free_secdata;
1091 }
1092 sb = root->d_sb;
1093 BUG_ON(!sb);
1094 WARN_ON(!sb->s_bdi);
1095 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096 sb->s_flags |= MS_BORN;
1097
1098 error = security_sb_kern_mount(sb, flags, secdata);
1099 if (error)
1100 goto out_sb;
1101
1102 /*
1103 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104 * but s_maxbytes was an unsigned long long for many releases. Throw
1105 * this warning for a little while to try and catch filesystems that
1106 * violate this rule.
1107 */
1108 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1110
1111 up_write(&sb->s_umount);
1112 free_secdata(secdata);
1113 return root;
1114out_sb:
1115 dput(root);
1116 deactivate_locked_super(sb);
1117out_free_secdata:
1118 free_secdata(secdata);
1119out:
1120 return ERR_PTR(error);
1121}
1122
1123/**
1124 * freeze_super - lock the filesystem and force it into a consistent state
1125 * @sb: the super to lock
1126 *
1127 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1128 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1129 * -EBUSY.
1130 */
1131int freeze_super(struct super_block *sb)
1132{
1133 int ret;
1134
1135 atomic_inc(&sb->s_active);
1136 down_write(&sb->s_umount);
1137 if (sb->s_frozen) {
1138 deactivate_locked_super(sb);
1139 return -EBUSY;
1140 }
1141
1142 if (sb->s_flags & MS_RDONLY) {
1143 sb->s_frozen = SB_FREEZE_TRANS;
1144 smp_wmb();
1145 up_write(&sb->s_umount);
1146 return 0;
1147 }
1148
1149 sb->s_frozen = SB_FREEZE_WRITE;
1150 smp_wmb();
1151
1152 sync_filesystem(sb);
1153
1154 sb->s_frozen = SB_FREEZE_TRANS;
1155 smp_wmb();
1156
1157 sync_blockdev(sb->s_bdev);
1158 if (sb->s_op->freeze_fs) {
1159 ret = sb->s_op->freeze_fs(sb);
1160 if (ret) {
1161 printk(KERN_ERR
1162 "VFS:Filesystem freeze failed\n");
1163 sb->s_frozen = SB_UNFROZEN;
1164 deactivate_locked_super(sb);
1165 return ret;
1166 }
1167 }
1168 up_write(&sb->s_umount);
1169 return 0;
1170}
1171EXPORT_SYMBOL(freeze_super);
1172
1173/**
1174 * thaw_super -- unlock filesystem
1175 * @sb: the super to thaw
1176 *
1177 * Unlocks the filesystem and marks it writeable again after freeze_super().
1178 */
1179int thaw_super(struct super_block *sb)
1180{
1181 int error;
1182
1183 down_write(&sb->s_umount);
1184 if (sb->s_frozen == SB_UNFROZEN) {
1185 up_write(&sb->s_umount);
1186 return -EINVAL;
1187 }
1188
1189 if (sb->s_flags & MS_RDONLY)
1190 goto out;
1191
1192 if (sb->s_op->unfreeze_fs) {
1193 error = sb->s_op->unfreeze_fs(sb);
1194 if (error) {
1195 printk(KERN_ERR
1196 "VFS:Filesystem thaw failed\n");
1197 sb->s_frozen = SB_FREEZE_TRANS;
1198 up_write(&sb->s_umount);
1199 return error;
1200 }
1201 }
1202
1203out:
1204 sb->s_frozen = SB_UNFROZEN;
1205 smp_wmb();
1206 wake_up(&sb->s_wait_unfrozen);
1207 deactivate_locked_super(sb);
1208
1209 return 0;
1210}
1211EXPORT_SYMBOL(thaw_super);
1/*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/export.h>
24#include <linux/slab.h>
25#include <linux/acct.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include <linux/fsnotify.h>
36#include <linux/lockdep.h>
37#include "internal.h"
38
39
40LIST_HEAD(super_blocks);
41DEFINE_SPINLOCK(sb_lock);
42
43static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47};
48
49/*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58{
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!grab_super_passive(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80
81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 total_objects = dentries + inodes + fs_objects + 1;
84
85 /* proportion the scan between the caches */
86 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88
89 /*
90 * prune the dcache first as the icache is pinned by it, then
91 * prune the icache, followed by the filesystem specific caches
92 */
93 freed = prune_dcache_sb(sb, dentries, sc->nid);
94 freed += prune_icache_sb(sb, inodes, sc->nid);
95
96 if (fs_objects) {
97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 total_objects);
99 freed += sb->s_op->free_cached_objects(sb, fs_objects,
100 sc->nid);
101 }
102
103 drop_super(sb);
104 return freed;
105}
106
107static unsigned long super_cache_count(struct shrinker *shrink,
108 struct shrink_control *sc)
109{
110 struct super_block *sb;
111 long total_objects = 0;
112
113 sb = container_of(shrink, struct super_block, s_shrink);
114
115 if (!grab_super_passive(sb))
116 return 0;
117
118 if (sb->s_op && sb->s_op->nr_cached_objects)
119 total_objects = sb->s_op->nr_cached_objects(sb,
120 sc->nid);
121
122 total_objects += list_lru_count_node(&sb->s_dentry_lru,
123 sc->nid);
124 total_objects += list_lru_count_node(&sb->s_inode_lru,
125 sc->nid);
126
127 total_objects = vfs_pressure_ratio(total_objects);
128 drop_super(sb);
129 return total_objects;
130}
131
132/**
133 * destroy_super - frees a superblock
134 * @s: superblock to free
135 *
136 * Frees a superblock.
137 */
138static void destroy_super(struct super_block *s)
139{
140 int i;
141 list_lru_destroy(&s->s_dentry_lru);
142 list_lru_destroy(&s->s_inode_lru);
143 for (i = 0; i < SB_FREEZE_LEVELS; i++)
144 percpu_counter_destroy(&s->s_writers.counter[i]);
145 security_sb_free(s);
146 WARN_ON(!list_empty(&s->s_mounts));
147 kfree(s->s_subtype);
148 kfree(s->s_options);
149 kfree_rcu(s, rcu);
150}
151
152/**
153 * alloc_super - create new superblock
154 * @type: filesystem type superblock should belong to
155 * @flags: the mount flags
156 *
157 * Allocates and initializes a new &struct super_block. alloc_super()
158 * returns a pointer new superblock or %NULL if allocation had failed.
159 */
160static struct super_block *alloc_super(struct file_system_type *type, int flags)
161{
162 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
163 static const struct super_operations default_op;
164 int i;
165
166 if (!s)
167 return NULL;
168
169 INIT_LIST_HEAD(&s->s_mounts);
170
171 if (security_sb_alloc(s))
172 goto fail;
173
174 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
175 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
176 goto fail;
177 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
178 &type->s_writers_key[i], 0);
179 }
180 init_waitqueue_head(&s->s_writers.wait);
181 init_waitqueue_head(&s->s_writers.wait_unfrozen);
182 s->s_flags = flags;
183 s->s_bdi = &default_backing_dev_info;
184 INIT_HLIST_NODE(&s->s_instances);
185 INIT_HLIST_BL_HEAD(&s->s_anon);
186 INIT_LIST_HEAD(&s->s_inodes);
187
188 if (list_lru_init(&s->s_dentry_lru))
189 goto fail;
190 if (list_lru_init(&s->s_inode_lru))
191 goto fail;
192
193 init_rwsem(&s->s_umount);
194 lockdep_set_class(&s->s_umount, &type->s_umount_key);
195 /*
196 * sget() can have s_umount recursion.
197 *
198 * When it cannot find a suitable sb, it allocates a new
199 * one (this one), and tries again to find a suitable old
200 * one.
201 *
202 * In case that succeeds, it will acquire the s_umount
203 * lock of the old one. Since these are clearly distrinct
204 * locks, and this object isn't exposed yet, there's no
205 * risk of deadlocks.
206 *
207 * Annotate this by putting this lock in a different
208 * subclass.
209 */
210 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
211 s->s_count = 1;
212 atomic_set(&s->s_active, 1);
213 mutex_init(&s->s_vfs_rename_mutex);
214 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
215 mutex_init(&s->s_dquot.dqio_mutex);
216 mutex_init(&s->s_dquot.dqonoff_mutex);
217 init_rwsem(&s->s_dquot.dqptr_sem);
218 s->s_maxbytes = MAX_NON_LFS;
219 s->s_op = &default_op;
220 s->s_time_gran = 1000000000;
221 s->cleancache_poolid = -1;
222
223 s->s_shrink.seeks = DEFAULT_SEEKS;
224 s->s_shrink.scan_objects = super_cache_scan;
225 s->s_shrink.count_objects = super_cache_count;
226 s->s_shrink.batch = 1024;
227 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
228 return s;
229
230fail:
231 destroy_super(s);
232 return NULL;
233}
234
235/* Superblock refcounting */
236
237/*
238 * Drop a superblock's refcount. The caller must hold sb_lock.
239 */
240static void __put_super(struct super_block *sb)
241{
242 if (!--sb->s_count) {
243 list_del_init(&sb->s_list);
244 destroy_super(sb);
245 }
246}
247
248/**
249 * put_super - drop a temporary reference to superblock
250 * @sb: superblock in question
251 *
252 * Drops a temporary reference, frees superblock if there's no
253 * references left.
254 */
255static void put_super(struct super_block *sb)
256{
257 spin_lock(&sb_lock);
258 __put_super(sb);
259 spin_unlock(&sb_lock);
260}
261
262
263/**
264 * deactivate_locked_super - drop an active reference to superblock
265 * @s: superblock to deactivate
266 *
267 * Drops an active reference to superblock, converting it into a temprory
268 * one if there is no other active references left. In that case we
269 * tell fs driver to shut it down and drop the temporary reference we
270 * had just acquired.
271 *
272 * Caller holds exclusive lock on superblock; that lock is released.
273 */
274void deactivate_locked_super(struct super_block *s)
275{
276 struct file_system_type *fs = s->s_type;
277 if (atomic_dec_and_test(&s->s_active)) {
278 cleancache_invalidate_fs(s);
279 fs->kill_sb(s);
280
281 /* caches are now gone, we can safely kill the shrinker now */
282 unregister_shrinker(&s->s_shrink);
283
284 put_filesystem(fs);
285 put_super(s);
286 } else {
287 up_write(&s->s_umount);
288 }
289}
290
291EXPORT_SYMBOL(deactivate_locked_super);
292
293/**
294 * deactivate_super - drop an active reference to superblock
295 * @s: superblock to deactivate
296 *
297 * Variant of deactivate_locked_super(), except that superblock is *not*
298 * locked by caller. If we are going to drop the final active reference,
299 * lock will be acquired prior to that.
300 */
301void deactivate_super(struct super_block *s)
302{
303 if (!atomic_add_unless(&s->s_active, -1, 1)) {
304 down_write(&s->s_umount);
305 deactivate_locked_super(s);
306 }
307}
308
309EXPORT_SYMBOL(deactivate_super);
310
311/**
312 * grab_super - acquire an active reference
313 * @s: reference we are trying to make active
314 *
315 * Tries to acquire an active reference. grab_super() is used when we
316 * had just found a superblock in super_blocks or fs_type->fs_supers
317 * and want to turn it into a full-blown active reference. grab_super()
318 * is called with sb_lock held and drops it. Returns 1 in case of
319 * success, 0 if we had failed (superblock contents was already dead or
320 * dying when grab_super() had been called). Note that this is only
321 * called for superblocks not in rundown mode (== ones still on ->fs_supers
322 * of their type), so increment of ->s_count is OK here.
323 */
324static int grab_super(struct super_block *s) __releases(sb_lock)
325{
326 s->s_count++;
327 spin_unlock(&sb_lock);
328 down_write(&s->s_umount);
329 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
330 put_super(s);
331 return 1;
332 }
333 up_write(&s->s_umount);
334 put_super(s);
335 return 0;
336}
337
338/*
339 * grab_super_passive - acquire a passive reference
340 * @sb: reference we are trying to grab
341 *
342 * Tries to acquire a passive reference. This is used in places where we
343 * cannot take an active reference but we need to ensure that the
344 * superblock does not go away while we are working on it. It returns
345 * false if a reference was not gained, and returns true with the s_umount
346 * lock held in read mode if a reference is gained. On successful return,
347 * the caller must drop the s_umount lock and the passive reference when
348 * done.
349 */
350bool grab_super_passive(struct super_block *sb)
351{
352 spin_lock(&sb_lock);
353 if (hlist_unhashed(&sb->s_instances)) {
354 spin_unlock(&sb_lock);
355 return false;
356 }
357
358 sb->s_count++;
359 spin_unlock(&sb_lock);
360
361 if (down_read_trylock(&sb->s_umount)) {
362 if (sb->s_root && (sb->s_flags & MS_BORN))
363 return true;
364 up_read(&sb->s_umount);
365 }
366
367 put_super(sb);
368 return false;
369}
370
371/**
372 * generic_shutdown_super - common helper for ->kill_sb()
373 * @sb: superblock to kill
374 *
375 * generic_shutdown_super() does all fs-independent work on superblock
376 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
377 * that need destruction out of superblock, call generic_shutdown_super()
378 * and release aforementioned objects. Note: dentries and inodes _are_
379 * taken care of and do not need specific handling.
380 *
381 * Upon calling this function, the filesystem may no longer alter or
382 * rearrange the set of dentries belonging to this super_block, nor may it
383 * change the attachments of dentries to inodes.
384 */
385void generic_shutdown_super(struct super_block *sb)
386{
387 const struct super_operations *sop = sb->s_op;
388
389 if (sb->s_root) {
390 shrink_dcache_for_umount(sb);
391 sync_filesystem(sb);
392 sb->s_flags &= ~MS_ACTIVE;
393
394 fsnotify_unmount_inodes(&sb->s_inodes);
395
396 evict_inodes(sb);
397
398 if (sb->s_dio_done_wq) {
399 destroy_workqueue(sb->s_dio_done_wq);
400 sb->s_dio_done_wq = NULL;
401 }
402
403 if (sop->put_super)
404 sop->put_super(sb);
405
406 if (!list_empty(&sb->s_inodes)) {
407 printk("VFS: Busy inodes after unmount of %s. "
408 "Self-destruct in 5 seconds. Have a nice day...\n",
409 sb->s_id);
410 }
411 }
412 spin_lock(&sb_lock);
413 /* should be initialized for __put_super_and_need_restart() */
414 hlist_del_init(&sb->s_instances);
415 spin_unlock(&sb_lock);
416 up_write(&sb->s_umount);
417}
418
419EXPORT_SYMBOL(generic_shutdown_super);
420
421/**
422 * sget - find or create a superblock
423 * @type: filesystem type superblock should belong to
424 * @test: comparison callback
425 * @set: setup callback
426 * @flags: mount flags
427 * @data: argument to each of them
428 */
429struct super_block *sget(struct file_system_type *type,
430 int (*test)(struct super_block *,void *),
431 int (*set)(struct super_block *,void *),
432 int flags,
433 void *data)
434{
435 struct super_block *s = NULL;
436 struct super_block *old;
437 int err;
438
439retry:
440 spin_lock(&sb_lock);
441 if (test) {
442 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
443 if (!test(old, data))
444 continue;
445 if (!grab_super(old))
446 goto retry;
447 if (s) {
448 up_write(&s->s_umount);
449 destroy_super(s);
450 s = NULL;
451 }
452 return old;
453 }
454 }
455 if (!s) {
456 spin_unlock(&sb_lock);
457 s = alloc_super(type, flags);
458 if (!s)
459 return ERR_PTR(-ENOMEM);
460 goto retry;
461 }
462
463 err = set(s, data);
464 if (err) {
465 spin_unlock(&sb_lock);
466 up_write(&s->s_umount);
467 destroy_super(s);
468 return ERR_PTR(err);
469 }
470 s->s_type = type;
471 strlcpy(s->s_id, type->name, sizeof(s->s_id));
472 list_add_tail(&s->s_list, &super_blocks);
473 hlist_add_head(&s->s_instances, &type->fs_supers);
474 spin_unlock(&sb_lock);
475 get_filesystem(type);
476 register_shrinker(&s->s_shrink);
477 return s;
478}
479
480EXPORT_SYMBOL(sget);
481
482void drop_super(struct super_block *sb)
483{
484 up_read(&sb->s_umount);
485 put_super(sb);
486}
487
488EXPORT_SYMBOL(drop_super);
489
490/**
491 * iterate_supers - call function for all active superblocks
492 * @f: function to call
493 * @arg: argument to pass to it
494 *
495 * Scans the superblock list and calls given function, passing it
496 * locked superblock and given argument.
497 */
498void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
499{
500 struct super_block *sb, *p = NULL;
501
502 spin_lock(&sb_lock);
503 list_for_each_entry(sb, &super_blocks, s_list) {
504 if (hlist_unhashed(&sb->s_instances))
505 continue;
506 sb->s_count++;
507 spin_unlock(&sb_lock);
508
509 down_read(&sb->s_umount);
510 if (sb->s_root && (sb->s_flags & MS_BORN))
511 f(sb, arg);
512 up_read(&sb->s_umount);
513
514 spin_lock(&sb_lock);
515 if (p)
516 __put_super(p);
517 p = sb;
518 }
519 if (p)
520 __put_super(p);
521 spin_unlock(&sb_lock);
522}
523
524/**
525 * iterate_supers_type - call function for superblocks of given type
526 * @type: fs type
527 * @f: function to call
528 * @arg: argument to pass to it
529 *
530 * Scans the superblock list and calls given function, passing it
531 * locked superblock and given argument.
532 */
533void iterate_supers_type(struct file_system_type *type,
534 void (*f)(struct super_block *, void *), void *arg)
535{
536 struct super_block *sb, *p = NULL;
537
538 spin_lock(&sb_lock);
539 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
540 sb->s_count++;
541 spin_unlock(&sb_lock);
542
543 down_read(&sb->s_umount);
544 if (sb->s_root && (sb->s_flags & MS_BORN))
545 f(sb, arg);
546 up_read(&sb->s_umount);
547
548 spin_lock(&sb_lock);
549 if (p)
550 __put_super(p);
551 p = sb;
552 }
553 if (p)
554 __put_super(p);
555 spin_unlock(&sb_lock);
556}
557
558EXPORT_SYMBOL(iterate_supers_type);
559
560/**
561 * get_super - get the superblock of a device
562 * @bdev: device to get the superblock for
563 *
564 * Scans the superblock list and finds the superblock of the file system
565 * mounted on the device given. %NULL is returned if no match is found.
566 */
567
568struct super_block *get_super(struct block_device *bdev)
569{
570 struct super_block *sb;
571
572 if (!bdev)
573 return NULL;
574
575 spin_lock(&sb_lock);
576rescan:
577 list_for_each_entry(sb, &super_blocks, s_list) {
578 if (hlist_unhashed(&sb->s_instances))
579 continue;
580 if (sb->s_bdev == bdev) {
581 sb->s_count++;
582 spin_unlock(&sb_lock);
583 down_read(&sb->s_umount);
584 /* still alive? */
585 if (sb->s_root && (sb->s_flags & MS_BORN))
586 return sb;
587 up_read(&sb->s_umount);
588 /* nope, got unmounted */
589 spin_lock(&sb_lock);
590 __put_super(sb);
591 goto rescan;
592 }
593 }
594 spin_unlock(&sb_lock);
595 return NULL;
596}
597
598EXPORT_SYMBOL(get_super);
599
600/**
601 * get_super_thawed - get thawed superblock of a device
602 * @bdev: device to get the superblock for
603 *
604 * Scans the superblock list and finds the superblock of the file system
605 * mounted on the device. The superblock is returned once it is thawed
606 * (or immediately if it was not frozen). %NULL is returned if no match
607 * is found.
608 */
609struct super_block *get_super_thawed(struct block_device *bdev)
610{
611 while (1) {
612 struct super_block *s = get_super(bdev);
613 if (!s || s->s_writers.frozen == SB_UNFROZEN)
614 return s;
615 up_read(&s->s_umount);
616 wait_event(s->s_writers.wait_unfrozen,
617 s->s_writers.frozen == SB_UNFROZEN);
618 put_super(s);
619 }
620}
621EXPORT_SYMBOL(get_super_thawed);
622
623/**
624 * get_active_super - get an active reference to the superblock of a device
625 * @bdev: device to get the superblock for
626 *
627 * Scans the superblock list and finds the superblock of the file system
628 * mounted on the device given. Returns the superblock with an active
629 * reference or %NULL if none was found.
630 */
631struct super_block *get_active_super(struct block_device *bdev)
632{
633 struct super_block *sb;
634
635 if (!bdev)
636 return NULL;
637
638restart:
639 spin_lock(&sb_lock);
640 list_for_each_entry(sb, &super_blocks, s_list) {
641 if (hlist_unhashed(&sb->s_instances))
642 continue;
643 if (sb->s_bdev == bdev) {
644 if (!grab_super(sb))
645 goto restart;
646 up_write(&sb->s_umount);
647 return sb;
648 }
649 }
650 spin_unlock(&sb_lock);
651 return NULL;
652}
653
654struct super_block *user_get_super(dev_t dev)
655{
656 struct super_block *sb;
657
658 spin_lock(&sb_lock);
659rescan:
660 list_for_each_entry(sb, &super_blocks, s_list) {
661 if (hlist_unhashed(&sb->s_instances))
662 continue;
663 if (sb->s_dev == dev) {
664 sb->s_count++;
665 spin_unlock(&sb_lock);
666 down_read(&sb->s_umount);
667 /* still alive? */
668 if (sb->s_root && (sb->s_flags & MS_BORN))
669 return sb;
670 up_read(&sb->s_umount);
671 /* nope, got unmounted */
672 spin_lock(&sb_lock);
673 __put_super(sb);
674 goto rescan;
675 }
676 }
677 spin_unlock(&sb_lock);
678 return NULL;
679}
680
681/**
682 * do_remount_sb - asks filesystem to change mount options.
683 * @sb: superblock in question
684 * @flags: numeric part of options
685 * @data: the rest of options
686 * @force: whether or not to force the change
687 *
688 * Alters the mount options of a mounted file system.
689 */
690int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
691{
692 int retval;
693 int remount_ro;
694
695 if (sb->s_writers.frozen != SB_UNFROZEN)
696 return -EBUSY;
697
698#ifdef CONFIG_BLOCK
699 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
700 return -EACCES;
701#endif
702
703 if (flags & MS_RDONLY)
704 acct_auto_close(sb);
705 shrink_dcache_sb(sb);
706
707 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
708
709 /* If we are remounting RDONLY and current sb is read/write,
710 make sure there are no rw files opened */
711 if (remount_ro) {
712 if (force) {
713 sb->s_readonly_remount = 1;
714 smp_wmb();
715 } else {
716 retval = sb_prepare_remount_readonly(sb);
717 if (retval)
718 return retval;
719 }
720 }
721
722 if (sb->s_op->remount_fs) {
723 retval = sb->s_op->remount_fs(sb, &flags, data);
724 if (retval) {
725 if (!force)
726 goto cancel_readonly;
727 /* If forced remount, go ahead despite any errors */
728 WARN(1, "forced remount of a %s fs returned %i\n",
729 sb->s_type->name, retval);
730 }
731 }
732 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
733 /* Needs to be ordered wrt mnt_is_readonly() */
734 smp_wmb();
735 sb->s_readonly_remount = 0;
736
737 /*
738 * Some filesystems modify their metadata via some other path than the
739 * bdev buffer cache (eg. use a private mapping, or directories in
740 * pagecache, etc). Also file data modifications go via their own
741 * mappings. So If we try to mount readonly then copy the filesystem
742 * from bdev, we could get stale data, so invalidate it to give a best
743 * effort at coherency.
744 */
745 if (remount_ro && sb->s_bdev)
746 invalidate_bdev(sb->s_bdev);
747 return 0;
748
749cancel_readonly:
750 sb->s_readonly_remount = 0;
751 return retval;
752}
753
754static void do_emergency_remount(struct work_struct *work)
755{
756 struct super_block *sb, *p = NULL;
757
758 spin_lock(&sb_lock);
759 list_for_each_entry(sb, &super_blocks, s_list) {
760 if (hlist_unhashed(&sb->s_instances))
761 continue;
762 sb->s_count++;
763 spin_unlock(&sb_lock);
764 down_write(&sb->s_umount);
765 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
766 !(sb->s_flags & MS_RDONLY)) {
767 /*
768 * What lock protects sb->s_flags??
769 */
770 do_remount_sb(sb, MS_RDONLY, NULL, 1);
771 }
772 up_write(&sb->s_umount);
773 spin_lock(&sb_lock);
774 if (p)
775 __put_super(p);
776 p = sb;
777 }
778 if (p)
779 __put_super(p);
780 spin_unlock(&sb_lock);
781 kfree(work);
782 printk("Emergency Remount complete\n");
783}
784
785void emergency_remount(void)
786{
787 struct work_struct *work;
788
789 work = kmalloc(sizeof(*work), GFP_ATOMIC);
790 if (work) {
791 INIT_WORK(work, do_emergency_remount);
792 schedule_work(work);
793 }
794}
795
796/*
797 * Unnamed block devices are dummy devices used by virtual
798 * filesystems which don't use real block-devices. -- jrs
799 */
800
801static DEFINE_IDA(unnamed_dev_ida);
802static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
803/* Many userspace utilities consider an FSID of 0 invalid.
804 * Always return at least 1 from get_anon_bdev.
805 */
806static int unnamed_dev_start = 1;
807
808int get_anon_bdev(dev_t *p)
809{
810 int dev;
811 int error;
812
813 retry:
814 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
815 return -ENOMEM;
816 spin_lock(&unnamed_dev_lock);
817 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
818 if (!error)
819 unnamed_dev_start = dev + 1;
820 spin_unlock(&unnamed_dev_lock);
821 if (error == -EAGAIN)
822 /* We raced and lost with another CPU. */
823 goto retry;
824 else if (error)
825 return -EAGAIN;
826
827 if (dev == (1 << MINORBITS)) {
828 spin_lock(&unnamed_dev_lock);
829 ida_remove(&unnamed_dev_ida, dev);
830 if (unnamed_dev_start > dev)
831 unnamed_dev_start = dev;
832 spin_unlock(&unnamed_dev_lock);
833 return -EMFILE;
834 }
835 *p = MKDEV(0, dev & MINORMASK);
836 return 0;
837}
838EXPORT_SYMBOL(get_anon_bdev);
839
840void free_anon_bdev(dev_t dev)
841{
842 int slot = MINOR(dev);
843 spin_lock(&unnamed_dev_lock);
844 ida_remove(&unnamed_dev_ida, slot);
845 if (slot < unnamed_dev_start)
846 unnamed_dev_start = slot;
847 spin_unlock(&unnamed_dev_lock);
848}
849EXPORT_SYMBOL(free_anon_bdev);
850
851int set_anon_super(struct super_block *s, void *data)
852{
853 int error = get_anon_bdev(&s->s_dev);
854 if (!error)
855 s->s_bdi = &noop_backing_dev_info;
856 return error;
857}
858
859EXPORT_SYMBOL(set_anon_super);
860
861void kill_anon_super(struct super_block *sb)
862{
863 dev_t dev = sb->s_dev;
864 generic_shutdown_super(sb);
865 free_anon_bdev(dev);
866}
867
868EXPORT_SYMBOL(kill_anon_super);
869
870void kill_litter_super(struct super_block *sb)
871{
872 if (sb->s_root)
873 d_genocide(sb->s_root);
874 kill_anon_super(sb);
875}
876
877EXPORT_SYMBOL(kill_litter_super);
878
879static int ns_test_super(struct super_block *sb, void *data)
880{
881 return sb->s_fs_info == data;
882}
883
884static int ns_set_super(struct super_block *sb, void *data)
885{
886 sb->s_fs_info = data;
887 return set_anon_super(sb, NULL);
888}
889
890struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
891 void *data, int (*fill_super)(struct super_block *, void *, int))
892{
893 struct super_block *sb;
894
895 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
896 if (IS_ERR(sb))
897 return ERR_CAST(sb);
898
899 if (!sb->s_root) {
900 int err;
901 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
902 if (err) {
903 deactivate_locked_super(sb);
904 return ERR_PTR(err);
905 }
906
907 sb->s_flags |= MS_ACTIVE;
908 }
909
910 return dget(sb->s_root);
911}
912
913EXPORT_SYMBOL(mount_ns);
914
915#ifdef CONFIG_BLOCK
916static int set_bdev_super(struct super_block *s, void *data)
917{
918 s->s_bdev = data;
919 s->s_dev = s->s_bdev->bd_dev;
920
921 /*
922 * We set the bdi here to the queue backing, file systems can
923 * overwrite this in ->fill_super()
924 */
925 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
926 return 0;
927}
928
929static int test_bdev_super(struct super_block *s, void *data)
930{
931 return (void *)s->s_bdev == data;
932}
933
934struct dentry *mount_bdev(struct file_system_type *fs_type,
935 int flags, const char *dev_name, void *data,
936 int (*fill_super)(struct super_block *, void *, int))
937{
938 struct block_device *bdev;
939 struct super_block *s;
940 fmode_t mode = FMODE_READ | FMODE_EXCL;
941 int error = 0;
942
943 if (!(flags & MS_RDONLY))
944 mode |= FMODE_WRITE;
945
946 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
947 if (IS_ERR(bdev))
948 return ERR_CAST(bdev);
949
950 /*
951 * once the super is inserted into the list by sget, s_umount
952 * will protect the lockfs code from trying to start a snapshot
953 * while we are mounting
954 */
955 mutex_lock(&bdev->bd_fsfreeze_mutex);
956 if (bdev->bd_fsfreeze_count > 0) {
957 mutex_unlock(&bdev->bd_fsfreeze_mutex);
958 error = -EBUSY;
959 goto error_bdev;
960 }
961 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
962 bdev);
963 mutex_unlock(&bdev->bd_fsfreeze_mutex);
964 if (IS_ERR(s))
965 goto error_s;
966
967 if (s->s_root) {
968 if ((flags ^ s->s_flags) & MS_RDONLY) {
969 deactivate_locked_super(s);
970 error = -EBUSY;
971 goto error_bdev;
972 }
973
974 /*
975 * s_umount nests inside bd_mutex during
976 * __invalidate_device(). blkdev_put() acquires
977 * bd_mutex and can't be called under s_umount. Drop
978 * s_umount temporarily. This is safe as we're
979 * holding an active reference.
980 */
981 up_write(&s->s_umount);
982 blkdev_put(bdev, mode);
983 down_write(&s->s_umount);
984 } else {
985 char b[BDEVNAME_SIZE];
986
987 s->s_mode = mode;
988 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
989 sb_set_blocksize(s, block_size(bdev));
990 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
991 if (error) {
992 deactivate_locked_super(s);
993 goto error;
994 }
995
996 s->s_flags |= MS_ACTIVE;
997 bdev->bd_super = s;
998 }
999
1000 return dget(s->s_root);
1001
1002error_s:
1003 error = PTR_ERR(s);
1004error_bdev:
1005 blkdev_put(bdev, mode);
1006error:
1007 return ERR_PTR(error);
1008}
1009EXPORT_SYMBOL(mount_bdev);
1010
1011void kill_block_super(struct super_block *sb)
1012{
1013 struct block_device *bdev = sb->s_bdev;
1014 fmode_t mode = sb->s_mode;
1015
1016 bdev->bd_super = NULL;
1017 generic_shutdown_super(sb);
1018 sync_blockdev(bdev);
1019 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1020 blkdev_put(bdev, mode | FMODE_EXCL);
1021}
1022
1023EXPORT_SYMBOL(kill_block_super);
1024#endif
1025
1026struct dentry *mount_nodev(struct file_system_type *fs_type,
1027 int flags, void *data,
1028 int (*fill_super)(struct super_block *, void *, int))
1029{
1030 int error;
1031 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1032
1033 if (IS_ERR(s))
1034 return ERR_CAST(s);
1035
1036 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1037 if (error) {
1038 deactivate_locked_super(s);
1039 return ERR_PTR(error);
1040 }
1041 s->s_flags |= MS_ACTIVE;
1042 return dget(s->s_root);
1043}
1044EXPORT_SYMBOL(mount_nodev);
1045
1046static int compare_single(struct super_block *s, void *p)
1047{
1048 return 1;
1049}
1050
1051struct dentry *mount_single(struct file_system_type *fs_type,
1052 int flags, void *data,
1053 int (*fill_super)(struct super_block *, void *, int))
1054{
1055 struct super_block *s;
1056 int error;
1057
1058 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1059 if (IS_ERR(s))
1060 return ERR_CAST(s);
1061 if (!s->s_root) {
1062 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1063 if (error) {
1064 deactivate_locked_super(s);
1065 return ERR_PTR(error);
1066 }
1067 s->s_flags |= MS_ACTIVE;
1068 } else {
1069 do_remount_sb(s, flags, data, 0);
1070 }
1071 return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_single);
1074
1075struct dentry *
1076mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1077{
1078 struct dentry *root;
1079 struct super_block *sb;
1080 char *secdata = NULL;
1081 int error = -ENOMEM;
1082
1083 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1084 secdata = alloc_secdata();
1085 if (!secdata)
1086 goto out;
1087
1088 error = security_sb_copy_data(data, secdata);
1089 if (error)
1090 goto out_free_secdata;
1091 }
1092
1093 root = type->mount(type, flags, name, data);
1094 if (IS_ERR(root)) {
1095 error = PTR_ERR(root);
1096 goto out_free_secdata;
1097 }
1098 sb = root->d_sb;
1099 BUG_ON(!sb);
1100 WARN_ON(!sb->s_bdi);
1101 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1102 sb->s_flags |= MS_BORN;
1103
1104 error = security_sb_kern_mount(sb, flags, secdata);
1105 if (error)
1106 goto out_sb;
1107
1108 /*
1109 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1110 * but s_maxbytes was an unsigned long long for many releases. Throw
1111 * this warning for a little while to try and catch filesystems that
1112 * violate this rule.
1113 */
1114 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1115 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1116
1117 up_write(&sb->s_umount);
1118 free_secdata(secdata);
1119 return root;
1120out_sb:
1121 dput(root);
1122 deactivate_locked_super(sb);
1123out_free_secdata:
1124 free_secdata(secdata);
1125out:
1126 return ERR_PTR(error);
1127}
1128
1129/*
1130 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1131 * instead.
1132 */
1133void __sb_end_write(struct super_block *sb, int level)
1134{
1135 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1136 /*
1137 * Make sure s_writers are updated before we wake up waiters in
1138 * freeze_super().
1139 */
1140 smp_mb();
1141 if (waitqueue_active(&sb->s_writers.wait))
1142 wake_up(&sb->s_writers.wait);
1143 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1144}
1145EXPORT_SYMBOL(__sb_end_write);
1146
1147#ifdef CONFIG_LOCKDEP
1148/*
1149 * We want lockdep to tell us about possible deadlocks with freezing but
1150 * it's it bit tricky to properly instrument it. Getting a freeze protection
1151 * works as getting a read lock but there are subtle problems. XFS for example
1152 * gets freeze protection on internal level twice in some cases, which is OK
1153 * only because we already hold a freeze protection also on higher level. Due
1154 * to these cases we have to tell lockdep we are doing trylock when we
1155 * already hold a freeze protection for a higher freeze level.
1156 */
1157static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1158 unsigned long ip)
1159{
1160 int i;
1161
1162 if (!trylock) {
1163 for (i = 0; i < level - 1; i++)
1164 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1165 trylock = true;
1166 break;
1167 }
1168 }
1169 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1170}
1171#endif
1172
1173/*
1174 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1175 * instead.
1176 */
1177int __sb_start_write(struct super_block *sb, int level, bool wait)
1178{
1179retry:
1180 if (unlikely(sb->s_writers.frozen >= level)) {
1181 if (!wait)
1182 return 0;
1183 wait_event(sb->s_writers.wait_unfrozen,
1184 sb->s_writers.frozen < level);
1185 }
1186
1187#ifdef CONFIG_LOCKDEP
1188 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1189#endif
1190 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1191 /*
1192 * Make sure counter is updated before we check for frozen.
1193 * freeze_super() first sets frozen and then checks the counter.
1194 */
1195 smp_mb();
1196 if (unlikely(sb->s_writers.frozen >= level)) {
1197 __sb_end_write(sb, level);
1198 goto retry;
1199 }
1200 return 1;
1201}
1202EXPORT_SYMBOL(__sb_start_write);
1203
1204/**
1205 * sb_wait_write - wait until all writers to given file system finish
1206 * @sb: the super for which we wait
1207 * @level: type of writers we wait for (normal vs page fault)
1208 *
1209 * This function waits until there are no writers of given type to given file
1210 * system. Caller of this function should make sure there can be no new writers
1211 * of type @level before calling this function. Otherwise this function can
1212 * livelock.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216 s64 writers;
1217
1218 /*
1219 * We just cycle-through lockdep here so that it does not complain
1220 * about returning with lock to userspace
1221 */
1222 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1223 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1224
1225 do {
1226 DEFINE_WAIT(wait);
1227
1228 /*
1229 * We use a barrier in prepare_to_wait() to separate setting
1230 * of frozen and checking of the counter
1231 */
1232 prepare_to_wait(&sb->s_writers.wait, &wait,
1233 TASK_UNINTERRUPTIBLE);
1234
1235 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1236 if (writers)
1237 schedule();
1238
1239 finish_wait(&sb->s_writers.wait, &wait);
1240 } while (writers);
1241}
1242
1243/**
1244 * freeze_super - lock the filesystem and force it into a consistent state
1245 * @sb: the super to lock
1246 *
1247 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1248 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1249 * -EBUSY.
1250 *
1251 * During this function, sb->s_writers.frozen goes through these values:
1252 *
1253 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1254 *
1255 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1256 * writes should be blocked, though page faults are still allowed. We wait for
1257 * all writes to complete and then proceed to the next stage.
1258 *
1259 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1260 * but internal fs threads can still modify the filesystem (although they
1261 * should not dirty new pages or inodes), writeback can run etc. After waiting
1262 * for all running page faults we sync the filesystem which will clean all
1263 * dirty pages and inodes (no new dirty pages or inodes can be created when
1264 * sync is running).
1265 *
1266 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1267 * modification are blocked (e.g. XFS preallocation truncation on inode
1268 * reclaim). This is usually implemented by blocking new transactions for
1269 * filesystems that have them and need this additional guard. After all
1270 * internal writers are finished we call ->freeze_fs() to finish filesystem
1271 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1272 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1273 *
1274 * sb->s_writers.frozen is protected by sb->s_umount.
1275 */
1276int freeze_super(struct super_block *sb)
1277{
1278 int ret;
1279
1280 atomic_inc(&sb->s_active);
1281 down_write(&sb->s_umount);
1282 if (sb->s_writers.frozen != SB_UNFROZEN) {
1283 deactivate_locked_super(sb);
1284 return -EBUSY;
1285 }
1286
1287 if (!(sb->s_flags & MS_BORN)) {
1288 up_write(&sb->s_umount);
1289 return 0; /* sic - it's "nothing to do" */
1290 }
1291
1292 if (sb->s_flags & MS_RDONLY) {
1293 /* Nothing to do really... */
1294 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1295 up_write(&sb->s_umount);
1296 return 0;
1297 }
1298
1299 /* From now on, no new normal writers can start */
1300 sb->s_writers.frozen = SB_FREEZE_WRITE;
1301 smp_wmb();
1302
1303 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1304 up_write(&sb->s_umount);
1305
1306 sb_wait_write(sb, SB_FREEZE_WRITE);
1307
1308 /* Now we go and block page faults... */
1309 down_write(&sb->s_umount);
1310 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1311 smp_wmb();
1312
1313 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1314
1315 /* All writers are done so after syncing there won't be dirty data */
1316 sync_filesystem(sb);
1317
1318 /* Now wait for internal filesystem counter */
1319 sb->s_writers.frozen = SB_FREEZE_FS;
1320 smp_wmb();
1321 sb_wait_write(sb, SB_FREEZE_FS);
1322
1323 if (sb->s_op->freeze_fs) {
1324 ret = sb->s_op->freeze_fs(sb);
1325 if (ret) {
1326 printk(KERN_ERR
1327 "VFS:Filesystem freeze failed\n");
1328 sb->s_writers.frozen = SB_UNFROZEN;
1329 smp_wmb();
1330 wake_up(&sb->s_writers.wait_unfrozen);
1331 deactivate_locked_super(sb);
1332 return ret;
1333 }
1334 }
1335 /*
1336 * This is just for debugging purposes so that fs can warn if it
1337 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1338 */
1339 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1340 up_write(&sb->s_umount);
1341 return 0;
1342}
1343EXPORT_SYMBOL(freeze_super);
1344
1345/**
1346 * thaw_super -- unlock filesystem
1347 * @sb: the super to thaw
1348 *
1349 * Unlocks the filesystem and marks it writeable again after freeze_super().
1350 */
1351int thaw_super(struct super_block *sb)
1352{
1353 int error;
1354
1355 down_write(&sb->s_umount);
1356 if (sb->s_writers.frozen == SB_UNFROZEN) {
1357 up_write(&sb->s_umount);
1358 return -EINVAL;
1359 }
1360
1361 if (sb->s_flags & MS_RDONLY)
1362 goto out;
1363
1364 if (sb->s_op->unfreeze_fs) {
1365 error = sb->s_op->unfreeze_fs(sb);
1366 if (error) {
1367 printk(KERN_ERR
1368 "VFS:Filesystem thaw failed\n");
1369 up_write(&sb->s_umount);
1370 return error;
1371 }
1372 }
1373
1374out:
1375 sb->s_writers.frozen = SB_UNFROZEN;
1376 smp_wmb();
1377 wake_up(&sb->s_writers.wait_unfrozen);
1378 deactivate_locked_super(sb);
1379
1380 return 0;
1381}
1382EXPORT_SYMBOL(thaw_super);