Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v3.1
   1/*
   2 * Copyright (C) 2001-2004 by David Brownell
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the
   6 * Free Software Foundation; either version 2 of the License, or (at your
   7 * option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but
  10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 * for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software Foundation,
  16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19/* this file is part of ehci-hcd.c */
  20
  21/*-------------------------------------------------------------------------*/
  22
  23/*
  24 * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
  25 *
  26 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
  27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  28 * buffers needed for the larger number).  We use one QH per endpoint, queue
  29 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
  30 *
  31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  32 * interrupts) needs careful scheduling.  Performance improvements can be
  33 * an ongoing challenge.  That's in "ehci-sched.c".
  34 *
  35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  37 * (b) special fields in qh entries or (c) split iso entries.  TTs will
  38 * buffer low/full speed data so the host collects it at high speed.
  39 */
  40
  41/*-------------------------------------------------------------------------*/
  42
  43/* fill a qtd, returning how much of the buffer we were able to queue up */
  44
  45static int
  46qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  47		  size_t len, int token, int maxpacket)
  48{
  49	int	i, count;
  50	u64	addr = buf;
  51
  52	/* one buffer entry per 4K ... first might be short or unaligned */
  53	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  54	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  55	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
  56	if (likely (len < count))		/* ... iff needed */
  57		count = len;
  58	else {
  59		buf +=  0x1000;
  60		buf &= ~0x0fff;
  61
  62		/* per-qtd limit: from 16K to 20K (best alignment) */
  63		for (i = 1; count < len && i < 5; i++) {
  64			addr = buf;
  65			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  66			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  67					(u32)(addr >> 32));
  68			buf += 0x1000;
  69			if ((count + 0x1000) < len)
  70				count += 0x1000;
  71			else
  72				count = len;
  73		}
  74
  75		/* short packets may only terminate transfers */
  76		if (count != len)
  77			count -= (count % maxpacket);
  78	}
  79	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  80	qtd->length = count;
  81
  82	return count;
  83}
  84
  85/*-------------------------------------------------------------------------*/
  86
  87static inline void
  88qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  89{
  90	struct ehci_qh_hw *hw = qh->hw;
  91
  92	/* writes to an active overlay are unsafe */
  93	BUG_ON(qh->qh_state != QH_STATE_IDLE);
  94
  95	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  96	hw->hw_alt_next = EHCI_LIST_END(ehci);
  97
  98	/* Except for control endpoints, we make hardware maintain data
  99	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
 100	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
 101	 * ever clear it.
 102	 */
 103	if (!(hw->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
 104		unsigned	is_out, epnum;
 105
 106		is_out = qh->is_out;
 107		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
 108		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
 109			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
 110			usb_settoggle (qh->dev, epnum, is_out, 1);
 111		}
 112	}
 113
 114	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
 115	wmb ();
 116	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
 117}
 118
 119/* if it weren't for a common silicon quirk (writing the dummy into the qh
 120 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 121 * recovery (including urb dequeue) would need software changes to a QH...
 122 */
 123static void
 124qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
 125{
 126	struct ehci_qtd *qtd;
 127
 128	if (list_empty (&qh->qtd_list))
 129		qtd = qh->dummy;
 130	else {
 131		qtd = list_entry (qh->qtd_list.next,
 132				struct ehci_qtd, qtd_list);
 133		/* first qtd may already be partially processed */
 134		if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current)
 135			qtd = NULL;
 136	}
 137
 138	if (qtd)
 139		qh_update (ehci, qh, qtd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 140}
 141
 142/*-------------------------------------------------------------------------*/
 143
 144static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
 145
 146static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
 147		struct usb_host_endpoint *ep)
 148{
 149	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
 150	struct ehci_qh		*qh = ep->hcpriv;
 151	unsigned long		flags;
 152
 153	spin_lock_irqsave(&ehci->lock, flags);
 154	qh->clearing_tt = 0;
 155	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
 156			&& HC_IS_RUNNING(hcd->state))
 157		qh_link_async(ehci, qh);
 158	spin_unlock_irqrestore(&ehci->lock, flags);
 159}
 160
 161static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
 162		struct urb *urb, u32 token)
 163{
 164
 165	/* If an async split transaction gets an error or is unlinked,
 166	 * the TT buffer may be left in an indeterminate state.  We
 167	 * have to clear the TT buffer.
 168	 *
 169	 * Note: this routine is never called for Isochronous transfers.
 170	 */
 171	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
 172#ifdef DEBUG
 173		struct usb_device *tt = urb->dev->tt->hub;
 174		dev_dbg(&tt->dev,
 175			"clear tt buffer port %d, a%d ep%d t%08x\n",
 176			urb->dev->ttport, urb->dev->devnum,
 177			usb_pipeendpoint(urb->pipe), token);
 178#endif /* DEBUG */
 179		if (!ehci_is_TDI(ehci)
 180				|| urb->dev->tt->hub !=
 181				   ehci_to_hcd(ehci)->self.root_hub) {
 182			if (usb_hub_clear_tt_buffer(urb) == 0)
 183				qh->clearing_tt = 1;
 184		} else {
 185
 186			/* REVISIT ARC-derived cores don't clear the root
 187			 * hub TT buffer in this way...
 188			 */
 189		}
 190	}
 191}
 192
 193static int qtd_copy_status (
 194	struct ehci_hcd *ehci,
 195	struct urb *urb,
 196	size_t length,
 197	u32 token
 198)
 199{
 200	int	status = -EINPROGRESS;
 201
 202	/* count IN/OUT bytes, not SETUP (even short packets) */
 203	if (likely (QTD_PID (token) != 2))
 204		urb->actual_length += length - QTD_LENGTH (token);
 205
 206	/* don't modify error codes */
 207	if (unlikely(urb->unlinked))
 208		return status;
 209
 210	/* force cleanup after short read; not always an error */
 211	if (unlikely (IS_SHORT_READ (token)))
 212		status = -EREMOTEIO;
 213
 214	/* serious "can't proceed" faults reported by the hardware */
 215	if (token & QTD_STS_HALT) {
 216		if (token & QTD_STS_BABBLE) {
 217			/* FIXME "must" disable babbling device's port too */
 218			status = -EOVERFLOW;
 219		/* CERR nonzero + halt --> stall */
 220		} else if (QTD_CERR(token)) {
 221			status = -EPIPE;
 222
 223		/* In theory, more than one of the following bits can be set
 224		 * since they are sticky and the transaction is retried.
 225		 * Which to test first is rather arbitrary.
 226		 */
 227		} else if (token & QTD_STS_MMF) {
 228			/* fs/ls interrupt xfer missed the complete-split */
 229			status = -EPROTO;
 230		} else if (token & QTD_STS_DBE) {
 231			status = (QTD_PID (token) == 1) /* IN ? */
 232				? -ENOSR  /* hc couldn't read data */
 233				: -ECOMM; /* hc couldn't write data */
 234		} else if (token & QTD_STS_XACT) {
 235			/* timeout, bad CRC, wrong PID, etc */
 236			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
 237				urb->dev->devpath,
 238				usb_pipeendpoint(urb->pipe),
 239				usb_pipein(urb->pipe) ? "in" : "out");
 240			status = -EPROTO;
 241		} else {	/* unknown */
 242			status = -EPROTO;
 243		}
 244
 245		ehci_vdbg (ehci,
 246			"dev%d ep%d%s qtd token %08x --> status %d\n",
 247			usb_pipedevice (urb->pipe),
 248			usb_pipeendpoint (urb->pipe),
 249			usb_pipein (urb->pipe) ? "in" : "out",
 250			token, status);
 251	}
 252
 253	return status;
 254}
 255
 256static void
 257ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
 258__releases(ehci->lock)
 259__acquires(ehci->lock)
 260{
 261	if (likely (urb->hcpriv != NULL)) {
 262		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
 263
 264		/* S-mask in a QH means it's an interrupt urb */
 265		if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
 266
 267			/* ... update hc-wide periodic stats (for usbfs) */
 268			ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
 269		}
 270		qh_put (qh);
 271	}
 272
 273	if (unlikely(urb->unlinked)) {
 274		COUNT(ehci->stats.unlink);
 275	} else {
 276		/* report non-error and short read status as zero */
 277		if (status == -EINPROGRESS || status == -EREMOTEIO)
 278			status = 0;
 279		COUNT(ehci->stats.complete);
 280	}
 281
 282#ifdef EHCI_URB_TRACE
 283	ehci_dbg (ehci,
 284		"%s %s urb %p ep%d%s status %d len %d/%d\n",
 285		__func__, urb->dev->devpath, urb,
 286		usb_pipeendpoint (urb->pipe),
 287		usb_pipein (urb->pipe) ? "in" : "out",
 288		status,
 289		urb->actual_length, urb->transfer_buffer_length);
 290#endif
 291
 292	/* complete() can reenter this HCD */
 293	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
 294	spin_unlock (&ehci->lock);
 295	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
 296	spin_lock (&ehci->lock);
 297}
 298
 299static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
 300static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
 301
 302static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
 303
 304/*
 305 * Process and free completed qtds for a qh, returning URBs to drivers.
 306 * Chases up to qh->hw_current.  Returns number of completions called,
 307 * indicating how much "real" work we did.
 308 */
 309static unsigned
 310qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
 311{
 312	struct ehci_qtd		*last, *end = qh->dummy;
 313	struct list_head	*entry, *tmp;
 314	int			last_status;
 315	int			stopped;
 316	unsigned		count = 0;
 317	u8			state;
 318	struct ehci_qh_hw	*hw = qh->hw;
 319
 320	if (unlikely (list_empty (&qh->qtd_list)))
 321		return count;
 322
 323	/* completions (or tasks on other cpus) must never clobber HALT
 324	 * till we've gone through and cleaned everything up, even when
 325	 * they add urbs to this qh's queue or mark them for unlinking.
 326	 *
 327	 * NOTE:  unlinking expects to be done in queue order.
 328	 *
 329	 * It's a bug for qh->qh_state to be anything other than
 330	 * QH_STATE_IDLE, unless our caller is scan_async() or
 331	 * scan_periodic().
 332	 */
 333	state = qh->qh_state;
 334	qh->qh_state = QH_STATE_COMPLETING;
 335	stopped = (state == QH_STATE_IDLE);
 336
 337 rescan:
 338	last = NULL;
 339	last_status = -EINPROGRESS;
 340	qh->needs_rescan = 0;
 341
 342	/* remove de-activated QTDs from front of queue.
 343	 * after faults (including short reads), cleanup this urb
 344	 * then let the queue advance.
 345	 * if queue is stopped, handles unlinks.
 346	 */
 347	list_for_each_safe (entry, tmp, &qh->qtd_list) {
 348		struct ehci_qtd	*qtd;
 349		struct urb	*urb;
 350		u32		token = 0;
 351
 352		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 353		urb = qtd->urb;
 354
 355		/* clean up any state from previous QTD ...*/
 356		if (last) {
 357			if (likely (last->urb != urb)) {
 358				ehci_urb_done(ehci, last->urb, last_status);
 359				count++;
 360				last_status = -EINPROGRESS;
 361			}
 362			ehci_qtd_free (ehci, last);
 363			last = NULL;
 364		}
 365
 366		/* ignore urbs submitted during completions we reported */
 367		if (qtd == end)
 368			break;
 369
 370		/* hardware copies qtd out of qh overlay */
 371		rmb ();
 372		token = hc32_to_cpu(ehci, qtd->hw_token);
 373
 374		/* always clean up qtds the hc de-activated */
 375 retry_xacterr:
 376		if ((token & QTD_STS_ACTIVE) == 0) {
 377
 
 
 
 
 
 
 
 
 
 
 
 378			/* on STALL, error, and short reads this urb must
 379			 * complete and all its qtds must be recycled.
 380			 */
 381			if ((token & QTD_STS_HALT) != 0) {
 382
 383				/* retry transaction errors until we
 384				 * reach the software xacterr limit
 385				 */
 386				if ((token & QTD_STS_XACT) &&
 387						QTD_CERR(token) == 0 &&
 388						++qh->xacterrs < QH_XACTERR_MAX &&
 389						!urb->unlinked) {
 390					ehci_dbg(ehci,
 391	"detected XactErr len %zu/%zu retry %d\n",
 392	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
 393
 394					/* reset the token in the qtd and the
 395					 * qh overlay (which still contains
 396					 * the qtd) so that we pick up from
 397					 * where we left off
 398					 */
 399					token &= ~QTD_STS_HALT;
 400					token |= QTD_STS_ACTIVE |
 401							(EHCI_TUNE_CERR << 10);
 402					qtd->hw_token = cpu_to_hc32(ehci,
 403							token);
 404					wmb();
 405					hw->hw_token = cpu_to_hc32(ehci,
 406							token);
 407					goto retry_xacterr;
 408				}
 409				stopped = 1;
 
 410
 411			/* magic dummy for some short reads; qh won't advance.
 412			 * that silicon quirk can kick in with this dummy too.
 413			 *
 414			 * other short reads won't stop the queue, including
 415			 * control transfers (status stage handles that) or
 416			 * most other single-qtd reads ... the queue stops if
 417			 * URB_SHORT_NOT_OK was set so the driver submitting
 418			 * the urbs could clean it up.
 419			 */
 420			} else if (IS_SHORT_READ (token)
 421					&& !(qtd->hw_alt_next
 422						& EHCI_LIST_END(ehci))) {
 423				stopped = 1;
 
 424			}
 425
 426		/* stop scanning when we reach qtds the hc is using */
 427		} else if (likely (!stopped
 428				&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
 429			break;
 430
 431		/* scan the whole queue for unlinks whenever it stops */
 432		} else {
 433			stopped = 1;
 434
 435			/* cancel everything if we halt, suspend, etc */
 436			if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
 437				last_status = -ESHUTDOWN;
 
 
 438
 439			/* this qtd is active; skip it unless a previous qtd
 440			 * for its urb faulted, or its urb was canceled.
 441			 */
 442			else if (last_status == -EINPROGRESS && !urb->unlinked)
 443				continue;
 444
 445			/* qh unlinked; token in overlay may be most current */
 446			if (state == QH_STATE_IDLE
 447					&& cpu_to_hc32(ehci, qtd->qtd_dma)
 448						== hw->hw_current) {
 
 
 
 
 
 
 
 449				token = hc32_to_cpu(ehci, hw->hw_token);
 
 
 450
 451				/* An unlink may leave an incomplete
 452				 * async transaction in the TT buffer.
 453				 * We have to clear it.
 454				 */
 455				ehci_clear_tt_buffer(ehci, qh, urb, token);
 456			}
 457		}
 458
 459		/* unless we already know the urb's status, collect qtd status
 460		 * and update count of bytes transferred.  in common short read
 461		 * cases with only one data qtd (including control transfers),
 462		 * queue processing won't halt.  but with two or more qtds (for
 463		 * example, with a 32 KB transfer), when the first qtd gets a
 464		 * short read the second must be removed by hand.
 465		 */
 466		if (last_status == -EINPROGRESS) {
 467			last_status = qtd_copy_status(ehci, urb,
 468					qtd->length, token);
 469			if (last_status == -EREMOTEIO
 470					&& (qtd->hw_alt_next
 471						& EHCI_LIST_END(ehci)))
 472				last_status = -EINPROGRESS;
 473
 474			/* As part of low/full-speed endpoint-halt processing
 475			 * we must clear the TT buffer (11.17.5).
 476			 */
 477			if (unlikely(last_status != -EINPROGRESS &&
 478					last_status != -EREMOTEIO)) {
 479				/* The TT's in some hubs malfunction when they
 480				 * receive this request following a STALL (they
 481				 * stop sending isochronous packets).  Since a
 482				 * STALL can't leave the TT buffer in a busy
 483				 * state (if you believe Figures 11-48 - 11-51
 484				 * in the USB 2.0 spec), we won't clear the TT
 485				 * buffer in this case.  Strictly speaking this
 486				 * is a violation of the spec.
 487				 */
 488				if (last_status != -EPIPE)
 489					ehci_clear_tt_buffer(ehci, qh, urb,
 490							token);
 491			}
 492		}
 493
 494		/* if we're removing something not at the queue head,
 495		 * patch the hardware queue pointer.
 496		 */
 497		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
 498			last = list_entry (qtd->qtd_list.prev,
 499					struct ehci_qtd, qtd_list);
 500			last->hw_next = qtd->hw_next;
 501		}
 502
 503		/* remove qtd; it's recycled after possible urb completion */
 504		list_del (&qtd->qtd_list);
 505		last = qtd;
 506
 507		/* reinit the xacterr counter for the next qtd */
 508		qh->xacterrs = 0;
 509	}
 510
 511	/* last urb's completion might still need calling */
 512	if (likely (last != NULL)) {
 513		ehci_urb_done(ehci, last->urb, last_status);
 514		count++;
 515		ehci_qtd_free (ehci, last);
 516	}
 517
 518	/* Do we need to rescan for URBs dequeued during a giveback? */
 519	if (unlikely(qh->needs_rescan)) {
 520		/* If the QH is already unlinked, do the rescan now. */
 521		if (state == QH_STATE_IDLE)
 522			goto rescan;
 523
 524		/* Otherwise we have to wait until the QH is fully unlinked.
 525		 * Our caller will start an unlink if qh->needs_rescan is
 526		 * set.  But if an unlink has already started, nothing needs
 527		 * to be done.
 528		 */
 529		if (state != QH_STATE_LINKED)
 530			qh->needs_rescan = 0;
 531	}
 532
 533	/* restore original state; caller must unlink or relink */
 534	qh->qh_state = state;
 535
 536	/* be sure the hardware's done with the qh before refreshing
 537	 * it after fault cleanup, or recovering from silicon wrongly
 538	 * overlaying the dummy qtd (which reduces DMA chatter).
 
 
 
 
 
 
 
 
 
 
 
 539	 */
 540	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
 541		switch (state) {
 542		case QH_STATE_IDLE:
 543			qh_refresh(ehci, qh);
 544			break;
 545		case QH_STATE_LINKED:
 546			/* We won't refresh a QH that's linked (after the HC
 547			 * stopped the queue).  That avoids a race:
 548			 *  - HC reads first part of QH;
 549			 *  - CPU updates that first part and the token;
 550			 *  - HC reads rest of that QH, including token
 551			 * Result:  HC gets an inconsistent image, and then
 552			 * DMAs to/from the wrong memory (corrupting it).
 553			 *
 554			 * That should be rare for interrupt transfers,
 555			 * except maybe high bandwidth ...
 556			 */
 557
 558			/* Tell the caller to start an unlink */
 559			qh->needs_rescan = 1;
 560			break;
 561		/* otherwise, unlink already started */
 562		}
 563	}
 564
 565	return count;
 
 566}
 567
 568/*-------------------------------------------------------------------------*/
 569
 570// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
 571#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
 572// ... and packet size, for any kind of endpoint descriptor
 573#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
 574
 575/*
 576 * reverse of qh_urb_transaction:  free a list of TDs.
 577 * used for cleanup after errors, before HC sees an URB's TDs.
 578 */
 579static void qtd_list_free (
 580	struct ehci_hcd		*ehci,
 581	struct urb		*urb,
 582	struct list_head	*qtd_list
 583) {
 584	struct list_head	*entry, *temp;
 585
 586	list_for_each_safe (entry, temp, qtd_list) {
 587		struct ehci_qtd	*qtd;
 588
 589		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 590		list_del (&qtd->qtd_list);
 591		ehci_qtd_free (ehci, qtd);
 592	}
 593}
 594
 595/*
 596 * create a list of filled qtds for this URB; won't link into qh.
 597 */
 598static struct list_head *
 599qh_urb_transaction (
 600	struct ehci_hcd		*ehci,
 601	struct urb		*urb,
 602	struct list_head	*head,
 603	gfp_t			flags
 604) {
 605	struct ehci_qtd		*qtd, *qtd_prev;
 606	dma_addr_t		buf;
 607	int			len, this_sg_len, maxpacket;
 608	int			is_input;
 609	u32			token;
 610	int			i;
 611	struct scatterlist	*sg;
 612
 613	/*
 614	 * URBs map to sequences of QTDs:  one logical transaction
 615	 */
 616	qtd = ehci_qtd_alloc (ehci, flags);
 617	if (unlikely (!qtd))
 618		return NULL;
 619	list_add_tail (&qtd->qtd_list, head);
 620	qtd->urb = urb;
 621
 622	token = QTD_STS_ACTIVE;
 623	token |= (EHCI_TUNE_CERR << 10);
 624	/* for split transactions, SplitXState initialized to zero */
 625
 626	len = urb->transfer_buffer_length;
 627	is_input = usb_pipein (urb->pipe);
 628	if (usb_pipecontrol (urb->pipe)) {
 629		/* SETUP pid */
 630		qtd_fill(ehci, qtd, urb->setup_dma,
 631				sizeof (struct usb_ctrlrequest),
 632				token | (2 /* "setup" */ << 8), 8);
 633
 634		/* ... and always at least one more pid */
 635		token ^= QTD_TOGGLE;
 636		qtd_prev = qtd;
 637		qtd = ehci_qtd_alloc (ehci, flags);
 638		if (unlikely (!qtd))
 639			goto cleanup;
 640		qtd->urb = urb;
 641		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 642		list_add_tail (&qtd->qtd_list, head);
 643
 644		/* for zero length DATA stages, STATUS is always IN */
 645		if (len == 0)
 646			token |= (1 /* "in" */ << 8);
 647	}
 648
 649	/*
 650	 * data transfer stage:  buffer setup
 651	 */
 652	i = urb->num_sgs;
 653	if (len > 0 && i > 0) {
 654		sg = urb->sg;
 655		buf = sg_dma_address(sg);
 656
 657		/* urb->transfer_buffer_length may be smaller than the
 658		 * size of the scatterlist (or vice versa)
 659		 */
 660		this_sg_len = min_t(int, sg_dma_len(sg), len);
 661	} else {
 662		sg = NULL;
 663		buf = urb->transfer_dma;
 664		this_sg_len = len;
 665	}
 666
 667	if (is_input)
 668		token |= (1 /* "in" */ << 8);
 669	/* else it's already initted to "out" pid (0 << 8) */
 670
 671	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
 672
 673	/*
 674	 * buffer gets wrapped in one or more qtds;
 675	 * last one may be "short" (including zero len)
 676	 * and may serve as a control status ack
 677	 */
 678	for (;;) {
 679		int this_qtd_len;
 680
 681		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
 682				maxpacket);
 683		this_sg_len -= this_qtd_len;
 684		len -= this_qtd_len;
 685		buf += this_qtd_len;
 686
 687		/*
 688		 * short reads advance to a "magic" dummy instead of the next
 689		 * qtd ... that forces the queue to stop, for manual cleanup.
 690		 * (this will usually be overridden later.)
 691		 */
 692		if (is_input)
 693			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
 694
 695		/* qh makes control packets use qtd toggle; maybe switch it */
 696		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
 697			token ^= QTD_TOGGLE;
 698
 699		if (likely(this_sg_len <= 0)) {
 700			if (--i <= 0 || len <= 0)
 701				break;
 702			sg = sg_next(sg);
 703			buf = sg_dma_address(sg);
 704			this_sg_len = min_t(int, sg_dma_len(sg), len);
 705		}
 706
 707		qtd_prev = qtd;
 708		qtd = ehci_qtd_alloc (ehci, flags);
 709		if (unlikely (!qtd))
 710			goto cleanup;
 711		qtd->urb = urb;
 712		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 713		list_add_tail (&qtd->qtd_list, head);
 714	}
 715
 716	/*
 717	 * unless the caller requires manual cleanup after short reads,
 718	 * have the alt_next mechanism keep the queue running after the
 719	 * last data qtd (the only one, for control and most other cases).
 720	 */
 721	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
 722				|| usb_pipecontrol (urb->pipe)))
 723		qtd->hw_alt_next = EHCI_LIST_END(ehci);
 724
 725	/*
 726	 * control requests may need a terminating data "status" ack;
 727	 * bulk ones may need a terminating short packet (zero length).
 
 728	 */
 729	if (likely (urb->transfer_buffer_length != 0)) {
 730		int	one_more = 0;
 731
 732		if (usb_pipecontrol (urb->pipe)) {
 733			one_more = 1;
 734			token ^= 0x0100;	/* "in" <--> "out"  */
 735			token |= QTD_TOGGLE;	/* force DATA1 */
 736		} else if (usb_pipebulk (urb->pipe)
 737				&& (urb->transfer_flags & URB_ZERO_PACKET)
 738				&& !(urb->transfer_buffer_length % maxpacket)) {
 739			one_more = 1;
 740		}
 741		if (one_more) {
 742			qtd_prev = qtd;
 743			qtd = ehci_qtd_alloc (ehci, flags);
 744			if (unlikely (!qtd))
 745				goto cleanup;
 746			qtd->urb = urb;
 747			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 748			list_add_tail (&qtd->qtd_list, head);
 749
 750			/* never any data in such packets */
 751			qtd_fill(ehci, qtd, 0, 0, token, 0);
 752		}
 753	}
 754
 755	/* by default, enable interrupt on urb completion */
 756	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
 757		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
 758	return head;
 759
 760cleanup:
 761	qtd_list_free (ehci, urb, head);
 762	return NULL;
 763}
 764
 765/*-------------------------------------------------------------------------*/
 766
 767// Would be best to create all qh's from config descriptors,
 768// when each interface/altsetting is established.  Unlink
 769// any previous qh and cancel its urbs first; endpoints are
 770// implicitly reset then (data toggle too).
 771// That'd mean updating how usbcore talks to HCDs. (2.7?)
 772
 773
 774/*
 775 * Each QH holds a qtd list; a QH is used for everything except iso.
 776 *
 777 * For interrupt urbs, the scheduler must set the microframe scheduling
 778 * mask(s) each time the QH gets scheduled.  For highspeed, that's
 779 * just one microframe in the s-mask.  For split interrupt transactions
 780 * there are additional complications: c-mask, maybe FSTNs.
 781 */
 782static struct ehci_qh *
 783qh_make (
 784	struct ehci_hcd		*ehci,
 785	struct urb		*urb,
 786	gfp_t			flags
 787) {
 788	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
 
 789	u32			info1 = 0, info2 = 0;
 790	int			is_input, type;
 791	int			maxp = 0;
 
 792	struct usb_tt		*tt = urb->dev->tt;
 793	struct ehci_qh_hw	*hw;
 794
 795	if (!qh)
 796		return qh;
 797
 798	/*
 799	 * init endpoint/device data for this QH
 800	 */
 801	info1 |= usb_pipeendpoint (urb->pipe) << 8;
 802	info1 |= usb_pipedevice (urb->pipe) << 0;
 803
 804	is_input = usb_pipein (urb->pipe);
 805	type = usb_pipetype (urb->pipe);
 806	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
 
 
 807
 808	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
 809	 * acts like up to 3KB, but is built from smaller packets.
 810	 */
 811	if (max_packet(maxp) > 1024) {
 812		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
 813		goto done;
 814	}
 815
 816	/* Compute interrupt scheduling parameters just once, and save.
 817	 * - allowing for high bandwidth, how many nsec/uframe are used?
 818	 * - split transactions need a second CSPLIT uframe; same question
 819	 * - splits also need a schedule gap (for full/low speed I/O)
 820	 * - qh has a polling interval
 821	 *
 822	 * For control/bulk requests, the HC or TT handles these.
 823	 */
 824	if (type == PIPE_INTERRUPT) {
 825		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
 826				is_input, 0,
 827				hb_mult(maxp) * max_packet(maxp)));
 828		qh->start = NO_FRAME;
 829		qh->stamp = ehci->periodic_stamp;
 830
 831		if (urb->dev->speed == USB_SPEED_HIGH) {
 832			qh->c_usecs = 0;
 833			qh->gap_uf = 0;
 834
 835			qh->period = urb->interval >> 3;
 836			if (qh->period == 0 && urb->interval != 1) {
 837				/* NOTE interval 2 or 4 uframes could work.
 838				 * But interval 1 scheduling is simpler, and
 839				 * includes high bandwidth.
 840				 */
 841				urb->interval = 1;
 842			} else if (qh->period > ehci->periodic_size) {
 843				qh->period = ehci->periodic_size;
 844				urb->interval = qh->period << 3;
 845			}
 
 
 
 
 
 
 
 
 
 846		} else {
 847			int		think_time;
 848
 849			/* gap is f(FS/LS transfer times) */
 850			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
 851					is_input, 0, maxp) / (125 * 1000);
 852
 853			/* FIXME this just approximates SPLIT/CSPLIT times */
 854			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
 855				qh->c_usecs = qh->usecs + HS_USECS (0);
 856				qh->usecs = HS_USECS (1);
 857			} else {		// SPLIT+DATA, gap, CSPLIT
 858				qh->usecs += HS_USECS (1);
 859				qh->c_usecs = HS_USECS (0);
 860			}
 861
 862			think_time = tt ? tt->think_time : 0;
 863			qh->tt_usecs = NS_TO_US (think_time +
 864					usb_calc_bus_time (urb->dev->speed,
 865					is_input, 0, max_packet (maxp)));
 866			qh->period = urb->interval;
 867			if (qh->period > ehci->periodic_size) {
 868				qh->period = ehci->periodic_size;
 869				urb->interval = qh->period;
 870			}
 
 
 
 
 
 
 
 871		}
 872	}
 873
 874	/* support for tt scheduling, and access to toggles */
 875	qh->dev = urb->dev;
 
 876
 877	/* using TT? */
 878	switch (urb->dev->speed) {
 879	case USB_SPEED_LOW:
 880		info1 |= (1 << 12);	/* EPS "low" */
 881		/* FALL THROUGH */
 882
 883	case USB_SPEED_FULL:
 884		/* EPS 0 means "full" */
 885		if (type != PIPE_INTERRUPT)
 886			info1 |= (EHCI_TUNE_RL_TT << 28);
 887		if (type == PIPE_CONTROL) {
 888			info1 |= (1 << 27);	/* for TT */
 889			info1 |= 1 << 14;	/* toggle from qtd */
 890		}
 891		info1 |= maxp << 16;
 892
 893		info2 |= (EHCI_TUNE_MULT_TT << 30);
 894
 895		/* Some Freescale processors have an erratum in which the
 896		 * port number in the queue head was 0..N-1 instead of 1..N.
 897		 */
 898		if (ehci_has_fsl_portno_bug(ehci))
 899			info2 |= (urb->dev->ttport-1) << 23;
 900		else
 901			info2 |= urb->dev->ttport << 23;
 902
 903		/* set the address of the TT; for TDI's integrated
 904		 * root hub tt, leave it zeroed.
 905		 */
 906		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
 907			info2 |= tt->hub->devnum << 16;
 908
 909		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
 910
 911		break;
 912
 913	case USB_SPEED_HIGH:		/* no TT involved */
 914		info1 |= (2 << 12);	/* EPS "high" */
 915		if (type == PIPE_CONTROL) {
 916			info1 |= (EHCI_TUNE_RL_HS << 28);
 917			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
 918			info1 |= 1 << 14;	/* toggle from qtd */
 919			info2 |= (EHCI_TUNE_MULT_HS << 30);
 920		} else if (type == PIPE_BULK) {
 921			info1 |= (EHCI_TUNE_RL_HS << 28);
 922			/* The USB spec says that high speed bulk endpoints
 923			 * always use 512 byte maxpacket.  But some device
 924			 * vendors decided to ignore that, and MSFT is happy
 925			 * to help them do so.  So now people expect to use
 926			 * such nonconformant devices with Linux too; sigh.
 927			 */
 928			info1 |= max_packet(maxp) << 16;
 929			info2 |= (EHCI_TUNE_MULT_HS << 30);
 930		} else {		/* PIPE_INTERRUPT */
 931			info1 |= max_packet (maxp) << 16;
 932			info2 |= hb_mult (maxp) << 30;
 933		}
 934		break;
 935	default:
 936		dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
 
 937done:
 938		qh_put (qh);
 939		return NULL;
 940	}
 941
 942	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
 943
 944	/* init as live, toggle clear, advance to dummy */
 945	qh->qh_state = QH_STATE_IDLE;
 946	hw = qh->hw;
 947	hw->hw_info1 = cpu_to_hc32(ehci, info1);
 948	hw->hw_info2 = cpu_to_hc32(ehci, info2);
 949	qh->is_out = !is_input;
 950	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
 951	qh_refresh (ehci, qh);
 952	return qh;
 953}
 954
 955/*-------------------------------------------------------------------------*/
 956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957/* move qh (and its qtds) onto async queue; maybe enable queue.  */
 958
 959static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
 960{
 961	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
 962	struct ehci_qh	*head;
 963
 964	/* Don't link a QH if there's a Clear-TT-Buffer pending */
 965	if (unlikely(qh->clearing_tt))
 966		return;
 967
 968	WARN_ON(qh->qh_state != QH_STATE_IDLE);
 969
 970	/* (re)start the async schedule? */
 971	head = ehci->async;
 972	timer_action_done (ehci, TIMER_ASYNC_OFF);
 973	if (!head->qh_next.qh) {
 974		u32	cmd = ehci_readl(ehci, &ehci->regs->command);
 975
 976		if (!(cmd & CMD_ASE)) {
 977			/* in case a clear of CMD_ASE didn't take yet */
 978			(void)handshake(ehci, &ehci->regs->status,
 979					STS_ASS, 0, 150);
 980			cmd |= CMD_ASE | CMD_RUN;
 981			ehci_writel(ehci, cmd, &ehci->regs->command);
 982			ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
 983			/* posted write need not be known to HC yet ... */
 984		}
 985	}
 986
 987	/* clear halt and/or toggle; and maybe recover from silicon quirk */
 988	qh_refresh(ehci, qh);
 989
 990	/* splice right after start */
 
 991	qh->qh_next = head->qh_next;
 992	qh->hw->hw_next = head->hw->hw_next;
 993	wmb ();
 994
 995	head->qh_next.qh = qh;
 996	head->hw->hw_next = dma;
 997
 998	qh_get(qh);
 999	qh->xacterrs = 0;
1000	qh->qh_state = QH_STATE_LINKED;
 
 
1001	/* qtd completions reported later by interrupt */
 
 
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/*
1007 * For control/bulk/interrupt, return QH with these TDs appended.
1008 * Allocates and initializes the QH if necessary.
1009 * Returns null if it can't allocate a QH it needs to.
1010 * If the QH has TDs (urbs) already, that's great.
1011 */
1012static struct ehci_qh *qh_append_tds (
1013	struct ehci_hcd		*ehci,
1014	struct urb		*urb,
1015	struct list_head	*qtd_list,
1016	int			epnum,
1017	void			**ptr
1018)
1019{
1020	struct ehci_qh		*qh = NULL;
1021	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1022
1023	qh = (struct ehci_qh *) *ptr;
1024	if (unlikely (qh == NULL)) {
1025		/* can't sleep here, we have ehci->lock... */
1026		qh = qh_make (ehci, urb, GFP_ATOMIC);
1027		*ptr = qh;
1028	}
1029	if (likely (qh != NULL)) {
1030		struct ehci_qtd	*qtd;
1031
1032		if (unlikely (list_empty (qtd_list)))
1033			qtd = NULL;
1034		else
1035			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1036					qtd_list);
1037
1038		/* control qh may need patching ... */
1039		if (unlikely (epnum == 0)) {
1040
1041                        /* usb_reset_device() briefly reverts to address 0 */
1042                        if (usb_pipedevice (urb->pipe) == 0)
1043				qh->hw->hw_info1 &= ~qh_addr_mask;
1044		}
1045
1046		/* just one way to queue requests: swap with the dummy qtd.
1047		 * only hc or qh_refresh() ever modify the overlay.
1048		 */
1049		if (likely (qtd != NULL)) {
1050			struct ehci_qtd		*dummy;
1051			dma_addr_t		dma;
1052			__hc32			token;
1053
1054			/* to avoid racing the HC, use the dummy td instead of
1055			 * the first td of our list (becomes new dummy).  both
1056			 * tds stay deactivated until we're done, when the
1057			 * HC is allowed to fetch the old dummy (4.10.2).
1058			 */
1059			token = qtd->hw_token;
1060			qtd->hw_token = HALT_BIT(ehci);
1061			wmb ();
1062			dummy = qh->dummy;
1063
1064			dma = dummy->qtd_dma;
1065			*dummy = *qtd;
1066			dummy->qtd_dma = dma;
1067
1068			list_del (&qtd->qtd_list);
1069			list_add (&dummy->qtd_list, qtd_list);
1070			list_splice_tail(qtd_list, &qh->qtd_list);
1071
1072			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1073			qh->dummy = qtd;
1074
1075			/* hc must see the new dummy at list end */
1076			dma = qtd->qtd_dma;
1077			qtd = list_entry (qh->qtd_list.prev,
1078					struct ehci_qtd, qtd_list);
1079			qtd->hw_next = QTD_NEXT(ehci, dma);
1080
1081			/* let the hc process these next qtds */
1082			wmb ();
1083			dummy->hw_token = token;
1084
1085			urb->hcpriv = qh_get (qh);
1086		}
1087	}
1088	return qh;
1089}
1090
1091/*-------------------------------------------------------------------------*/
1092
1093static int
1094submit_async (
1095	struct ehci_hcd		*ehci,
1096	struct urb		*urb,
1097	struct list_head	*qtd_list,
1098	gfp_t			mem_flags
1099) {
1100	int			epnum;
1101	unsigned long		flags;
1102	struct ehci_qh		*qh = NULL;
1103	int			rc;
1104
1105	epnum = urb->ep->desc.bEndpointAddress;
1106
1107#ifdef EHCI_URB_TRACE
1108	{
1109		struct ehci_qtd *qtd;
1110		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1111		ehci_dbg(ehci,
1112			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1113			 __func__, urb->dev->devpath, urb,
1114			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1115			 urb->transfer_buffer_length,
1116			 qtd, urb->ep->hcpriv);
1117	}
1118#endif
1119
1120	spin_lock_irqsave (&ehci->lock, flags);
1121	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1122		rc = -ESHUTDOWN;
1123		goto done;
1124	}
1125	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1126	if (unlikely(rc))
1127		goto done;
1128
1129	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1130	if (unlikely(qh == NULL)) {
1131		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1132		rc = -ENOMEM;
1133		goto done;
1134	}
1135
1136	/* Control/bulk operations through TTs don't need scheduling,
1137	 * the HC and TT handle it when the TT has a buffer ready.
1138	 */
1139	if (likely (qh->qh_state == QH_STATE_IDLE))
1140		qh_link_async(ehci, qh);
1141 done:
1142	spin_unlock_irqrestore (&ehci->lock, flags);
1143	if (unlikely (qh == NULL))
1144		qtd_list_free (ehci, urb, qtd_list);
1145	return rc;
1146}
1147
1148/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149
1150/* the async qh for the qtds being reclaimed are now unlinked from the HC */
 
 
 
1151
1152static void end_unlink_async (struct ehci_hcd *ehci)
1153{
1154	struct ehci_qh		*qh = ehci->reclaim;
1155	struct ehci_qh		*next;
1156
1157	iaa_watchdog_done(ehci);
 
 
 
 
 
1158
1159	// qh->hw_next = cpu_to_hc32(qh->qh_dma);
1160	qh->qh_state = QH_STATE_IDLE;
1161	qh->qh_next.qh = NULL;
1162	qh_put (qh);			// refcount from reclaim
1163
1164	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1165	next = qh->reclaim;
1166	ehci->reclaim = next;
1167	qh->reclaim = NULL;
1168
1169	qh_completions (ehci, qh);
1170
1171	if (!list_empty (&qh->qtd_list)
1172			&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
1173		qh_link_async (ehci, qh);
1174	else {
1175		/* it's not free to turn the async schedule on/off; leave it
1176		 * active but idle for a while once it empties.
1177		 */
1178		if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
1179				&& ehci->async->qh_next.qh == NULL)
1180			timer_action (ehci, TIMER_ASYNC_OFF);
1181	}
1182	qh_put(qh);			/* refcount from async list */
1183
1184	if (next) {
1185		ehci->reclaim = NULL;
1186		start_unlink_async (ehci, next);
1187	}
1188
1189	if (ehci->has_synopsys_hc_bug)
1190		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1191			    &ehci->regs->async_next);
1192}
 
 
1193
1194/* makes sure the async qh will become idle */
1195/* caller must own ehci->lock */
1196
1197static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
1198{
1199	int		cmd = ehci_readl(ehci, &ehci->regs->command);
1200	struct ehci_qh	*prev;
1201
1202#ifdef DEBUG
1203	assert_spin_locked(&ehci->lock);
1204	if (ehci->reclaim
1205			|| (qh->qh_state != QH_STATE_LINKED
1206				&& qh->qh_state != QH_STATE_UNLINK_WAIT)
1207			)
1208		BUG ();
1209#endif
1210
1211	/* stop async schedule right now? */
1212	if (unlikely (qh == ehci->async)) {
1213		/* can't get here without STS_ASS set */
1214		if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
1215				&& !ehci->reclaim) {
1216			/* ... and CMD_IAAD clear */
1217			ehci_writel(ehci, cmd & ~CMD_ASE,
1218				    &ehci->regs->command);
1219			wmb ();
1220			// handshake later, if we need to
1221			timer_action_done (ehci, TIMER_ASYNC_OFF);
1222		}
1223		return;
1224	}
1225
1226	qh->qh_state = QH_STATE_UNLINK;
1227	ehci->reclaim = qh = qh_get (qh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
 
 
 
 
 
 
 
 
 
1229	prev = ehci->async;
1230	while (prev->qh_next.qh != qh)
1231		prev = prev->qh_next.qh;
1232
1233	prev->hw->hw_next = qh->hw->hw_next;
1234	prev->qh_next = qh->qh_next;
1235	if (ehci->qh_scan_next == qh)
1236		ehci->qh_scan_next = qh->qh_next.qh;
1237	wmb ();
1238
 
 
1239	/* If the controller isn't running, we don't have to wait for it */
1240	if (unlikely(!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))) {
1241		/* if (unlikely (qh->reclaim != 0))
1242		 *	this will recurse, probably not much
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243		 */
1244		end_unlink_async (ehci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246	}
 
 
 
 
 
 
 
 
 
 
 
 
1247
1248	cmd |= CMD_IAAD;
1249	ehci_writel(ehci, cmd, &ehci->regs->command);
1250	(void)ehci_readl(ehci, &ehci->regs->command);
1251	iaa_watchdog_start(ehci);
1252}
1253
1254/*-------------------------------------------------------------------------*/
1255
1256static void scan_async (struct ehci_hcd *ehci)
1257{
1258	bool			stopped;
1259	struct ehci_qh		*qh;
1260	enum ehci_timer_action	action = TIMER_IO_WATCHDOG;
1261
1262	timer_action_done (ehci, TIMER_ASYNC_SHRINK);
1263	stopped = !HC_IS_RUNNING(ehci_to_hcd(ehci)->state);
1264
1265	ehci->qh_scan_next = ehci->async->qh_next.qh;
1266	while (ehci->qh_scan_next) {
1267		qh = ehci->qh_scan_next;
1268		ehci->qh_scan_next = qh->qh_next.qh;
1269 rescan:
1270		/* clean any finished work for this qh */
1271		if (!list_empty(&qh->qtd_list)) {
1272			int temp;
1273
1274			/*
1275			 * Unlinks could happen here; completion reporting
1276			 * drops the lock.  That's why ehci->qh_scan_next
1277			 * always holds the next qh to scan; if the next qh
1278			 * gets unlinked then ehci->qh_scan_next is adjusted
1279			 * in start_unlink_async().
1280			 */
1281			qh = qh_get(qh);
1282			temp = qh_completions(ehci, qh);
1283			if (qh->needs_rescan)
1284				unlink_async(ehci, qh);
1285			qh->unlink_time = jiffies + EHCI_SHRINK_JIFFIES;
1286			qh_put(qh);
1287			if (temp != 0)
1288				goto rescan;
1289		}
1290
1291		/* unlink idle entries, reducing DMA usage as well
1292		 * as HCD schedule-scanning costs.  delay for any qh
1293		 * we just scanned, there's a not-unusual case that it
1294		 * doesn't stay idle for long.
1295		 * (plus, avoids some kind of re-activation race.)
1296		 */
1297		if (list_empty(&qh->qtd_list)
1298				&& qh->qh_state == QH_STATE_LINKED) {
1299			if (!ehci->reclaim && (stopped ||
1300					time_after_eq(jiffies, qh->unlink_time)))
1301				start_unlink_async(ehci, qh);
1302			else
1303				action = TIMER_ASYNC_SHRINK;
 
 
 
1304		}
1305	}
1306	if (action == TIMER_ASYNC_SHRINK)
1307		timer_action (ehci, TIMER_ASYNC_SHRINK);
 
 
 
 
 
 
 
 
 
 
 
1308}
v4.10.11
   1/*
   2 * Copyright (C) 2001-2004 by David Brownell
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the
   6 * Free Software Foundation; either version 2 of the License, or (at your
   7 * option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but
  10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 * for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software Foundation,
  16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19/* this file is part of ehci-hcd.c */
  20
  21/*-------------------------------------------------------------------------*/
  22
  23/*
  24 * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
  25 *
  26 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
  27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  28 * buffers needed for the larger number).  We use one QH per endpoint, queue
  29 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
  30 *
  31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  32 * interrupts) needs careful scheduling.  Performance improvements can be
  33 * an ongoing challenge.  That's in "ehci-sched.c".
  34 *
  35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  37 * (b) special fields in qh entries or (c) split iso entries.  TTs will
  38 * buffer low/full speed data so the host collects it at high speed.
  39 */
  40
  41/*-------------------------------------------------------------------------*/
  42
  43/* fill a qtd, returning how much of the buffer we were able to queue up */
  44
  45static int
  46qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  47		  size_t len, int token, int maxpacket)
  48{
  49	int	i, count;
  50	u64	addr = buf;
  51
  52	/* one buffer entry per 4K ... first might be short or unaligned */
  53	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  54	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  55	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
  56	if (likely (len < count))		/* ... iff needed */
  57		count = len;
  58	else {
  59		buf +=  0x1000;
  60		buf &= ~0x0fff;
  61
  62		/* per-qtd limit: from 16K to 20K (best alignment) */
  63		for (i = 1; count < len && i < 5; i++) {
  64			addr = buf;
  65			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  66			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  67					(u32)(addr >> 32));
  68			buf += 0x1000;
  69			if ((count + 0x1000) < len)
  70				count += 0x1000;
  71			else
  72				count = len;
  73		}
  74
  75		/* short packets may only terminate transfers */
  76		if (count != len)
  77			count -= (count % maxpacket);
  78	}
  79	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  80	qtd->length = count;
  81
  82	return count;
  83}
  84
  85/*-------------------------------------------------------------------------*/
  86
  87static inline void
  88qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  89{
  90	struct ehci_qh_hw *hw = qh->hw;
  91
  92	/* writes to an active overlay are unsafe */
  93	WARN_ON(qh->qh_state != QH_STATE_IDLE);
  94
  95	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  96	hw->hw_alt_next = EHCI_LIST_END(ehci);
  97
  98	/* Except for control endpoints, we make hardware maintain data
  99	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
 100	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
 101	 * ever clear it.
 102	 */
 103	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
 104		unsigned	is_out, epnum;
 105
 106		is_out = qh->is_out;
 107		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
 108		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
 109			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
 110			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
 111		}
 112	}
 113
 
 
 114	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
 115}
 116
 117/* if it weren't for a common silicon quirk (writing the dummy into the qh
 118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 119 * recovery (including urb dequeue) would need software changes to a QH...
 120 */
 121static void
 122qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
 123{
 124	struct ehci_qtd *qtd;
 125
 126	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
 
 
 
 
 
 
 
 
 127
 128	/*
 129	 * first qtd may already be partially processed.
 130	 * If we come here during unlink, the QH overlay region
 131	 * might have reference to the just unlinked qtd. The
 132	 * qtd is updated in qh_completions(). Update the QH
 133	 * overlay here.
 134	 */
 135	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
 136		qh->hw->hw_qtd_next = qtd->hw_next;
 137		if (qh->should_be_inactive)
 138			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
 139	} else {
 140		qh_update(ehci, qh, qtd);
 141	}
 142	qh->should_be_inactive = 0;
 143}
 144
 145/*-------------------------------------------------------------------------*/
 146
 147static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
 148
 149static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
 150		struct usb_host_endpoint *ep)
 151{
 152	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
 153	struct ehci_qh		*qh = ep->hcpriv;
 154	unsigned long		flags;
 155
 156	spin_lock_irqsave(&ehci->lock, flags);
 157	qh->clearing_tt = 0;
 158	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
 159			&& ehci->rh_state == EHCI_RH_RUNNING)
 160		qh_link_async(ehci, qh);
 161	spin_unlock_irqrestore(&ehci->lock, flags);
 162}
 163
 164static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
 165		struct urb *urb, u32 token)
 166{
 167
 168	/* If an async split transaction gets an error or is unlinked,
 169	 * the TT buffer may be left in an indeterminate state.  We
 170	 * have to clear the TT buffer.
 171	 *
 172	 * Note: this routine is never called for Isochronous transfers.
 173	 */
 174	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
 175#ifdef CONFIG_DYNAMIC_DEBUG
 176		struct usb_device *tt = urb->dev->tt->hub;
 177		dev_dbg(&tt->dev,
 178			"clear tt buffer port %d, a%d ep%d t%08x\n",
 179			urb->dev->ttport, urb->dev->devnum,
 180			usb_pipeendpoint(urb->pipe), token);
 181#endif /* CONFIG_DYNAMIC_DEBUG */
 182		if (!ehci_is_TDI(ehci)
 183				|| urb->dev->tt->hub !=
 184				   ehci_to_hcd(ehci)->self.root_hub) {
 185			if (usb_hub_clear_tt_buffer(urb) == 0)
 186				qh->clearing_tt = 1;
 187		} else {
 188
 189			/* REVISIT ARC-derived cores don't clear the root
 190			 * hub TT buffer in this way...
 191			 */
 192		}
 193	}
 194}
 195
 196static int qtd_copy_status (
 197	struct ehci_hcd *ehci,
 198	struct urb *urb,
 199	size_t length,
 200	u32 token
 201)
 202{
 203	int	status = -EINPROGRESS;
 204
 205	/* count IN/OUT bytes, not SETUP (even short packets) */
 206	if (likely (QTD_PID (token) != 2))
 207		urb->actual_length += length - QTD_LENGTH (token);
 208
 209	/* don't modify error codes */
 210	if (unlikely(urb->unlinked))
 211		return status;
 212
 213	/* force cleanup after short read; not always an error */
 214	if (unlikely (IS_SHORT_READ (token)))
 215		status = -EREMOTEIO;
 216
 217	/* serious "can't proceed" faults reported by the hardware */
 218	if (token & QTD_STS_HALT) {
 219		if (token & QTD_STS_BABBLE) {
 220			/* FIXME "must" disable babbling device's port too */
 221			status = -EOVERFLOW;
 222		/* CERR nonzero + halt --> stall */
 223		} else if (QTD_CERR(token)) {
 224			status = -EPIPE;
 225
 226		/* In theory, more than one of the following bits can be set
 227		 * since they are sticky and the transaction is retried.
 228		 * Which to test first is rather arbitrary.
 229		 */
 230		} else if (token & QTD_STS_MMF) {
 231			/* fs/ls interrupt xfer missed the complete-split */
 232			status = -EPROTO;
 233		} else if (token & QTD_STS_DBE) {
 234			status = (QTD_PID (token) == 1) /* IN ? */
 235				? -ENOSR  /* hc couldn't read data */
 236				: -ECOMM; /* hc couldn't write data */
 237		} else if (token & QTD_STS_XACT) {
 238			/* timeout, bad CRC, wrong PID, etc */
 239			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
 240				urb->dev->devpath,
 241				usb_pipeendpoint(urb->pipe),
 242				usb_pipein(urb->pipe) ? "in" : "out");
 243			status = -EPROTO;
 244		} else {	/* unknown */
 245			status = -EPROTO;
 246		}
 
 
 
 
 
 
 
 247	}
 248
 249	return status;
 250}
 251
 252static void
 253ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
 
 
 254{
 255	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
 256		/* ... update hc-wide periodic stats */
 257		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
 
 
 
 
 
 
 
 258	}
 259
 260	if (unlikely(urb->unlinked)) {
 261		COUNT(ehci->stats.unlink);
 262	} else {
 263		/* report non-error and short read status as zero */
 264		if (status == -EINPROGRESS || status == -EREMOTEIO)
 265			status = 0;
 266		COUNT(ehci->stats.complete);
 267	}
 268
 269#ifdef EHCI_URB_TRACE
 270	ehci_dbg (ehci,
 271		"%s %s urb %p ep%d%s status %d len %d/%d\n",
 272		__func__, urb->dev->devpath, urb,
 273		usb_pipeendpoint (urb->pipe),
 274		usb_pipein (urb->pipe) ? "in" : "out",
 275		status,
 276		urb->actual_length, urb->transfer_buffer_length);
 277#endif
 278
 
 279	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
 
 280	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
 
 281}
 282
 
 
 
 283static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
 284
 285/*
 286 * Process and free completed qtds for a qh, returning URBs to drivers.
 287 * Chases up to qh->hw_current.  Returns nonzero if the caller should
 288 * unlink qh.
 289 */
 290static unsigned
 291qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
 292{
 293	struct ehci_qtd		*last, *end = qh->dummy;
 294	struct list_head	*entry, *tmp;
 295	int			last_status;
 296	int			stopped;
 
 297	u8			state;
 298	struct ehci_qh_hw	*hw = qh->hw;
 299
 
 
 
 300	/* completions (or tasks on other cpus) must never clobber HALT
 301	 * till we've gone through and cleaned everything up, even when
 302	 * they add urbs to this qh's queue or mark them for unlinking.
 303	 *
 304	 * NOTE:  unlinking expects to be done in queue order.
 305	 *
 306	 * It's a bug for qh->qh_state to be anything other than
 307	 * QH_STATE_IDLE, unless our caller is scan_async() or
 308	 * scan_intr().
 309	 */
 310	state = qh->qh_state;
 311	qh->qh_state = QH_STATE_COMPLETING;
 312	stopped = (state == QH_STATE_IDLE);
 313
 314 rescan:
 315	last = NULL;
 316	last_status = -EINPROGRESS;
 317	qh->dequeue_during_giveback = 0;
 318
 319	/* remove de-activated QTDs from front of queue.
 320	 * after faults (including short reads), cleanup this urb
 321	 * then let the queue advance.
 322	 * if queue is stopped, handles unlinks.
 323	 */
 324	list_for_each_safe (entry, tmp, &qh->qtd_list) {
 325		struct ehci_qtd	*qtd;
 326		struct urb	*urb;
 327		u32		token = 0;
 328
 329		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 330		urb = qtd->urb;
 331
 332		/* clean up any state from previous QTD ...*/
 333		if (last) {
 334			if (likely (last->urb != urb)) {
 335				ehci_urb_done(ehci, last->urb, last_status);
 
 336				last_status = -EINPROGRESS;
 337			}
 338			ehci_qtd_free (ehci, last);
 339			last = NULL;
 340		}
 341
 342		/* ignore urbs submitted during completions we reported */
 343		if (qtd == end)
 344			break;
 345
 346		/* hardware copies qtd out of qh overlay */
 347		rmb ();
 348		token = hc32_to_cpu(ehci, qtd->hw_token);
 349
 350		/* always clean up qtds the hc de-activated */
 351 retry_xacterr:
 352		if ((token & QTD_STS_ACTIVE) == 0) {
 353
 354			/* Report Data Buffer Error: non-fatal but useful */
 355			if (token & QTD_STS_DBE)
 356				ehci_dbg(ehci,
 357					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
 358					urb,
 359					usb_endpoint_num(&urb->ep->desc),
 360					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
 361					urb->transfer_buffer_length,
 362					qtd,
 363					qh);
 364
 365			/* on STALL, error, and short reads this urb must
 366			 * complete and all its qtds must be recycled.
 367			 */
 368			if ((token & QTD_STS_HALT) != 0) {
 369
 370				/* retry transaction errors until we
 371				 * reach the software xacterr limit
 372				 */
 373				if ((token & QTD_STS_XACT) &&
 374						QTD_CERR(token) == 0 &&
 375						++qh->xacterrs < QH_XACTERR_MAX &&
 376						!urb->unlinked) {
 377					ehci_dbg(ehci,
 378	"detected XactErr len %zu/%zu retry %d\n",
 379	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
 380
 381					/* reset the token in the qtd and the
 382					 * qh overlay (which still contains
 383					 * the qtd) so that we pick up from
 384					 * where we left off
 385					 */
 386					token &= ~QTD_STS_HALT;
 387					token |= QTD_STS_ACTIVE |
 388							(EHCI_TUNE_CERR << 10);
 389					qtd->hw_token = cpu_to_hc32(ehci,
 390							token);
 391					wmb();
 392					hw->hw_token = cpu_to_hc32(ehci,
 393							token);
 394					goto retry_xacterr;
 395				}
 396				stopped = 1;
 397				qh->unlink_reason |= QH_UNLINK_HALTED;
 398
 399			/* magic dummy for some short reads; qh won't advance.
 400			 * that silicon quirk can kick in with this dummy too.
 401			 *
 402			 * other short reads won't stop the queue, including
 403			 * control transfers (status stage handles that) or
 404			 * most other single-qtd reads ... the queue stops if
 405			 * URB_SHORT_NOT_OK was set so the driver submitting
 406			 * the urbs could clean it up.
 407			 */
 408			} else if (IS_SHORT_READ (token)
 409					&& !(qtd->hw_alt_next
 410						& EHCI_LIST_END(ehci))) {
 411				stopped = 1;
 412				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
 413			}
 414
 415		/* stop scanning when we reach qtds the hc is using */
 416		} else if (likely (!stopped
 417				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
 418			break;
 419
 420		/* scan the whole queue for unlinks whenever it stops */
 421		} else {
 422			stopped = 1;
 423
 424			/* cancel everything if we halt, suspend, etc */
 425			if (ehci->rh_state < EHCI_RH_RUNNING) {
 426				last_status = -ESHUTDOWN;
 427				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
 428			}
 429
 430			/* this qtd is active; skip it unless a previous qtd
 431			 * for its urb faulted, or its urb was canceled.
 432			 */
 433			else if (last_status == -EINPROGRESS && !urb->unlinked)
 434				continue;
 435
 436			/*
 437			 * If this was the active qtd when the qh was unlinked
 438			 * and the overlay's token is active, then the overlay
 439			 * hasn't been written back to the qtd yet so use its
 440			 * token instead of the qtd's.  After the qtd is
 441			 * processed and removed, the overlay won't be valid
 442			 * any more.
 443			 */
 444			if (state == QH_STATE_IDLE &&
 445					qh->qtd_list.next == &qtd->qtd_list &&
 446					(hw->hw_token & ACTIVE_BIT(ehci))) {
 447				token = hc32_to_cpu(ehci, hw->hw_token);
 448				hw->hw_token &= ~ACTIVE_BIT(ehci);
 449				qh->should_be_inactive = 1;
 450
 451				/* An unlink may leave an incomplete
 452				 * async transaction in the TT buffer.
 453				 * We have to clear it.
 454				 */
 455				ehci_clear_tt_buffer(ehci, qh, urb, token);
 456			}
 457		}
 458
 459		/* unless we already know the urb's status, collect qtd status
 460		 * and update count of bytes transferred.  in common short read
 461		 * cases with only one data qtd (including control transfers),
 462		 * queue processing won't halt.  but with two or more qtds (for
 463		 * example, with a 32 KB transfer), when the first qtd gets a
 464		 * short read the second must be removed by hand.
 465		 */
 466		if (last_status == -EINPROGRESS) {
 467			last_status = qtd_copy_status(ehci, urb,
 468					qtd->length, token);
 469			if (last_status == -EREMOTEIO
 470					&& (qtd->hw_alt_next
 471						& EHCI_LIST_END(ehci)))
 472				last_status = -EINPROGRESS;
 473
 474			/* As part of low/full-speed endpoint-halt processing
 475			 * we must clear the TT buffer (11.17.5).
 476			 */
 477			if (unlikely(last_status != -EINPROGRESS &&
 478					last_status != -EREMOTEIO)) {
 479				/* The TT's in some hubs malfunction when they
 480				 * receive this request following a STALL (they
 481				 * stop sending isochronous packets).  Since a
 482				 * STALL can't leave the TT buffer in a busy
 483				 * state (if you believe Figures 11-48 - 11-51
 484				 * in the USB 2.0 spec), we won't clear the TT
 485				 * buffer in this case.  Strictly speaking this
 486				 * is a violation of the spec.
 487				 */
 488				if (last_status != -EPIPE)
 489					ehci_clear_tt_buffer(ehci, qh, urb,
 490							token);
 491			}
 492		}
 493
 494		/* if we're removing something not at the queue head,
 495		 * patch the hardware queue pointer.
 496		 */
 497		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
 498			last = list_entry (qtd->qtd_list.prev,
 499					struct ehci_qtd, qtd_list);
 500			last->hw_next = qtd->hw_next;
 501		}
 502
 503		/* remove qtd; it's recycled after possible urb completion */
 504		list_del (&qtd->qtd_list);
 505		last = qtd;
 506
 507		/* reinit the xacterr counter for the next qtd */
 508		qh->xacterrs = 0;
 509	}
 510
 511	/* last urb's completion might still need calling */
 512	if (likely (last != NULL)) {
 513		ehci_urb_done(ehci, last->urb, last_status);
 
 514		ehci_qtd_free (ehci, last);
 515	}
 516
 517	/* Do we need to rescan for URBs dequeued during a giveback? */
 518	if (unlikely(qh->dequeue_during_giveback)) {
 519		/* If the QH is already unlinked, do the rescan now. */
 520		if (state == QH_STATE_IDLE)
 521			goto rescan;
 522
 523		/* Otherwise the caller must unlink the QH. */
 
 
 
 
 
 
 524	}
 525
 526	/* restore original state; caller must unlink or relink */
 527	qh->qh_state = state;
 528
 529	/* be sure the hardware's done with the qh before refreshing
 530	 * it after fault cleanup, or recovering from silicon wrongly
 531	 * overlaying the dummy qtd (which reduces DMA chatter).
 532	 *
 533	 * We won't refresh a QH that's linked (after the HC
 534	 * stopped the queue).  That avoids a race:
 535	 *  - HC reads first part of QH;
 536	 *  - CPU updates that first part and the token;
 537	 *  - HC reads rest of that QH, including token
 538	 * Result:  HC gets an inconsistent image, and then
 539	 * DMAs to/from the wrong memory (corrupting it).
 540	 *
 541	 * That should be rare for interrupt transfers,
 542	 * except maybe high bandwidth ...
 543	 */
 544	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
 545		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547	/* Let the caller know if the QH needs to be unlinked. */
 548	return qh->unlink_reason;
 549}
 550
 551/*-------------------------------------------------------------------------*/
 552
 
 
 
 
 
 553/*
 554 * reverse of qh_urb_transaction:  free a list of TDs.
 555 * used for cleanup after errors, before HC sees an URB's TDs.
 556 */
 557static void qtd_list_free (
 558	struct ehci_hcd		*ehci,
 559	struct urb		*urb,
 560	struct list_head	*qtd_list
 561) {
 562	struct list_head	*entry, *temp;
 563
 564	list_for_each_safe (entry, temp, qtd_list) {
 565		struct ehci_qtd	*qtd;
 566
 567		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 568		list_del (&qtd->qtd_list);
 569		ehci_qtd_free (ehci, qtd);
 570	}
 571}
 572
 573/*
 574 * create a list of filled qtds for this URB; won't link into qh.
 575 */
 576static struct list_head *
 577qh_urb_transaction (
 578	struct ehci_hcd		*ehci,
 579	struct urb		*urb,
 580	struct list_head	*head,
 581	gfp_t			flags
 582) {
 583	struct ehci_qtd		*qtd, *qtd_prev;
 584	dma_addr_t		buf;
 585	int			len, this_sg_len, maxpacket;
 586	int			is_input;
 587	u32			token;
 588	int			i;
 589	struct scatterlist	*sg;
 590
 591	/*
 592	 * URBs map to sequences of QTDs:  one logical transaction
 593	 */
 594	qtd = ehci_qtd_alloc (ehci, flags);
 595	if (unlikely (!qtd))
 596		return NULL;
 597	list_add_tail (&qtd->qtd_list, head);
 598	qtd->urb = urb;
 599
 600	token = QTD_STS_ACTIVE;
 601	token |= (EHCI_TUNE_CERR << 10);
 602	/* for split transactions, SplitXState initialized to zero */
 603
 604	len = urb->transfer_buffer_length;
 605	is_input = usb_pipein (urb->pipe);
 606	if (usb_pipecontrol (urb->pipe)) {
 607		/* SETUP pid */
 608		qtd_fill(ehci, qtd, urb->setup_dma,
 609				sizeof (struct usb_ctrlrequest),
 610				token | (2 /* "setup" */ << 8), 8);
 611
 612		/* ... and always at least one more pid */
 613		token ^= QTD_TOGGLE;
 614		qtd_prev = qtd;
 615		qtd = ehci_qtd_alloc (ehci, flags);
 616		if (unlikely (!qtd))
 617			goto cleanup;
 618		qtd->urb = urb;
 619		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 620		list_add_tail (&qtd->qtd_list, head);
 621
 622		/* for zero length DATA stages, STATUS is always IN */
 623		if (len == 0)
 624			token |= (1 /* "in" */ << 8);
 625	}
 626
 627	/*
 628	 * data transfer stage:  buffer setup
 629	 */
 630	i = urb->num_mapped_sgs;
 631	if (len > 0 && i > 0) {
 632		sg = urb->sg;
 633		buf = sg_dma_address(sg);
 634
 635		/* urb->transfer_buffer_length may be smaller than the
 636		 * size of the scatterlist (or vice versa)
 637		 */
 638		this_sg_len = min_t(int, sg_dma_len(sg), len);
 639	} else {
 640		sg = NULL;
 641		buf = urb->transfer_dma;
 642		this_sg_len = len;
 643	}
 644
 645	if (is_input)
 646		token |= (1 /* "in" */ << 8);
 647	/* else it's already initted to "out" pid (0 << 8) */
 648
 649	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
 650
 651	/*
 652	 * buffer gets wrapped in one or more qtds;
 653	 * last one may be "short" (including zero len)
 654	 * and may serve as a control status ack
 655	 */
 656	for (;;) {
 657		int this_qtd_len;
 658
 659		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
 660				maxpacket);
 661		this_sg_len -= this_qtd_len;
 662		len -= this_qtd_len;
 663		buf += this_qtd_len;
 664
 665		/*
 666		 * short reads advance to a "magic" dummy instead of the next
 667		 * qtd ... that forces the queue to stop, for manual cleanup.
 668		 * (this will usually be overridden later.)
 669		 */
 670		if (is_input)
 671			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
 672
 673		/* qh makes control packets use qtd toggle; maybe switch it */
 674		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
 675			token ^= QTD_TOGGLE;
 676
 677		if (likely(this_sg_len <= 0)) {
 678			if (--i <= 0 || len <= 0)
 679				break;
 680			sg = sg_next(sg);
 681			buf = sg_dma_address(sg);
 682			this_sg_len = min_t(int, sg_dma_len(sg), len);
 683		}
 684
 685		qtd_prev = qtd;
 686		qtd = ehci_qtd_alloc (ehci, flags);
 687		if (unlikely (!qtd))
 688			goto cleanup;
 689		qtd->urb = urb;
 690		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 691		list_add_tail (&qtd->qtd_list, head);
 692	}
 693
 694	/*
 695	 * unless the caller requires manual cleanup after short reads,
 696	 * have the alt_next mechanism keep the queue running after the
 697	 * last data qtd (the only one, for control and most other cases).
 698	 */
 699	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
 700				|| usb_pipecontrol (urb->pipe)))
 701		qtd->hw_alt_next = EHCI_LIST_END(ehci);
 702
 703	/*
 704	 * control requests may need a terminating data "status" ack;
 705	 * other OUT ones may need a terminating short packet
 706	 * (zero length).
 707	 */
 708	if (likely (urb->transfer_buffer_length != 0)) {
 709		int	one_more = 0;
 710
 711		if (usb_pipecontrol (urb->pipe)) {
 712			one_more = 1;
 713			token ^= 0x0100;	/* "in" <--> "out"  */
 714			token |= QTD_TOGGLE;	/* force DATA1 */
 715		} else if (usb_pipeout(urb->pipe)
 716				&& (urb->transfer_flags & URB_ZERO_PACKET)
 717				&& !(urb->transfer_buffer_length % maxpacket)) {
 718			one_more = 1;
 719		}
 720		if (one_more) {
 721			qtd_prev = qtd;
 722			qtd = ehci_qtd_alloc (ehci, flags);
 723			if (unlikely (!qtd))
 724				goto cleanup;
 725			qtd->urb = urb;
 726			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 727			list_add_tail (&qtd->qtd_list, head);
 728
 729			/* never any data in such packets */
 730			qtd_fill(ehci, qtd, 0, 0, token, 0);
 731		}
 732	}
 733
 734	/* by default, enable interrupt on urb completion */
 735	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
 736		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
 737	return head;
 738
 739cleanup:
 740	qtd_list_free (ehci, urb, head);
 741	return NULL;
 742}
 743
 744/*-------------------------------------------------------------------------*/
 745
 746// Would be best to create all qh's from config descriptors,
 747// when each interface/altsetting is established.  Unlink
 748// any previous qh and cancel its urbs first; endpoints are
 749// implicitly reset then (data toggle too).
 750// That'd mean updating how usbcore talks to HCDs. (2.7?)
 751
 752
 753/*
 754 * Each QH holds a qtd list; a QH is used for everything except iso.
 755 *
 756 * For interrupt urbs, the scheduler must set the microframe scheduling
 757 * mask(s) each time the QH gets scheduled.  For highspeed, that's
 758 * just one microframe in the s-mask.  For split interrupt transactions
 759 * there are additional complications: c-mask, maybe FSTNs.
 760 */
 761static struct ehci_qh *
 762qh_make (
 763	struct ehci_hcd		*ehci,
 764	struct urb		*urb,
 765	gfp_t			flags
 766) {
 767	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
 768	struct usb_host_endpoint *ep;
 769	u32			info1 = 0, info2 = 0;
 770	int			is_input, type;
 771	int			maxp = 0;
 772	int			mult;
 773	struct usb_tt		*tt = urb->dev->tt;
 774	struct ehci_qh_hw	*hw;
 775
 776	if (!qh)
 777		return qh;
 778
 779	/*
 780	 * init endpoint/device data for this QH
 781	 */
 782	info1 |= usb_pipeendpoint (urb->pipe) << 8;
 783	info1 |= usb_pipedevice (urb->pipe) << 0;
 784
 785	is_input = usb_pipein (urb->pipe);
 786	type = usb_pipetype (urb->pipe);
 787	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
 788	maxp = usb_endpoint_maxp (&ep->desc);
 789	mult = usb_endpoint_maxp_mult (&ep->desc);
 790
 791	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
 792	 * acts like up to 3KB, but is built from smaller packets.
 793	 */
 794	if (maxp > 1024) {
 795		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
 796		goto done;
 797	}
 798
 799	/* Compute interrupt scheduling parameters just once, and save.
 800	 * - allowing for high bandwidth, how many nsec/uframe are used?
 801	 * - split transactions need a second CSPLIT uframe; same question
 802	 * - splits also need a schedule gap (for full/low speed I/O)
 803	 * - qh has a polling interval
 804	 *
 805	 * For control/bulk requests, the HC or TT handles these.
 806	 */
 807	if (type == PIPE_INTERRUPT) {
 808		unsigned	tmp;
 809
 810		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
 811				is_input, 0, mult * maxp));
 812		qh->ps.phase = NO_FRAME;
 813
 814		if (urb->dev->speed == USB_SPEED_HIGH) {
 815			qh->ps.c_usecs = 0;
 816			qh->gap_uf = 0;
 817
 818			if (urb->interval > 1 && urb->interval < 8) {
 
 819				/* NOTE interval 2 or 4 uframes could work.
 820				 * But interval 1 scheduling is simpler, and
 821				 * includes high bandwidth.
 822				 */
 823				urb->interval = 1;
 824			} else if (urb->interval > ehci->periodic_size << 3) {
 825				urb->interval = ehci->periodic_size << 3;
 
 826			}
 827			qh->ps.period = urb->interval >> 3;
 828
 829			/* period for bandwidth allocation */
 830			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
 831					1 << (urb->ep->desc.bInterval - 1));
 832
 833			/* Allow urb->interval to override */
 834			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
 835			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
 836		} else {
 837			int		think_time;
 838
 839			/* gap is f(FS/LS transfer times) */
 840			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
 841					is_input, 0, maxp) / (125 * 1000);
 842
 843			/* FIXME this just approximates SPLIT/CSPLIT times */
 844			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
 845				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
 846				qh->ps.usecs = HS_USECS(1);
 847			} else {		// SPLIT+DATA, gap, CSPLIT
 848				qh->ps.usecs += HS_USECS(1);
 849				qh->ps.c_usecs = HS_USECS(0);
 850			}
 851
 852			think_time = tt ? tt->think_time : 0;
 853			qh->ps.tt_usecs = NS_TO_US(think_time +
 854					usb_calc_bus_time (urb->dev->speed,
 855					is_input, 0, maxp));
 856			if (urb->interval > ehci->periodic_size)
 857				urb->interval = ehci->periodic_size;
 858			qh->ps.period = urb->interval;
 859
 860			/* period for bandwidth allocation */
 861			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
 862					urb->ep->desc.bInterval);
 863			tmp = rounddown_pow_of_two(tmp);
 864
 865			/* Allow urb->interval to override */
 866			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
 867			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
 868		}
 869	}
 870
 871	/* support for tt scheduling, and access to toggles */
 872	qh->ps.udev = urb->dev;
 873	qh->ps.ep = urb->ep;
 874
 875	/* using TT? */
 876	switch (urb->dev->speed) {
 877	case USB_SPEED_LOW:
 878		info1 |= QH_LOW_SPEED;
 879		/* FALL THROUGH */
 880
 881	case USB_SPEED_FULL:
 882		/* EPS 0 means "full" */
 883		if (type != PIPE_INTERRUPT)
 884			info1 |= (EHCI_TUNE_RL_TT << 28);
 885		if (type == PIPE_CONTROL) {
 886			info1 |= QH_CONTROL_EP;		/* for TT */
 887			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
 888		}
 889		info1 |= maxp << 16;
 890
 891		info2 |= (EHCI_TUNE_MULT_TT << 30);
 892
 893		/* Some Freescale processors have an erratum in which the
 894		 * port number in the queue head was 0..N-1 instead of 1..N.
 895		 */
 896		if (ehci_has_fsl_portno_bug(ehci))
 897			info2 |= (urb->dev->ttport-1) << 23;
 898		else
 899			info2 |= urb->dev->ttport << 23;
 900
 901		/* set the address of the TT; for TDI's integrated
 902		 * root hub tt, leave it zeroed.
 903		 */
 904		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
 905			info2 |= tt->hub->devnum << 16;
 906
 907		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
 908
 909		break;
 910
 911	case USB_SPEED_HIGH:		/* no TT involved */
 912		info1 |= QH_HIGH_SPEED;
 913		if (type == PIPE_CONTROL) {
 914			info1 |= (EHCI_TUNE_RL_HS << 28);
 915			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
 916			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
 917			info2 |= (EHCI_TUNE_MULT_HS << 30);
 918		} else if (type == PIPE_BULK) {
 919			info1 |= (EHCI_TUNE_RL_HS << 28);
 920			/* The USB spec says that high speed bulk endpoints
 921			 * always use 512 byte maxpacket.  But some device
 922			 * vendors decided to ignore that, and MSFT is happy
 923			 * to help them do so.  So now people expect to use
 924			 * such nonconformant devices with Linux too; sigh.
 925			 */
 926			info1 |= maxp << 16;
 927			info2 |= (EHCI_TUNE_MULT_HS << 30);
 928		} else {		/* PIPE_INTERRUPT */
 929			info1 |= maxp << 16;
 930			info2 |= mult << 30;
 931		}
 932		break;
 933	default:
 934		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
 935			urb->dev->speed);
 936done:
 937		qh_destroy(ehci, qh);
 938		return NULL;
 939	}
 940
 941	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
 942
 943	/* init as live, toggle clear */
 944	qh->qh_state = QH_STATE_IDLE;
 945	hw = qh->hw;
 946	hw->hw_info1 = cpu_to_hc32(ehci, info1);
 947	hw->hw_info2 = cpu_to_hc32(ehci, info2);
 948	qh->is_out = !is_input;
 949	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
 
 950	return qh;
 951}
 952
 953/*-------------------------------------------------------------------------*/
 954
 955static void enable_async(struct ehci_hcd *ehci)
 956{
 957	if (ehci->async_count++)
 958		return;
 959
 960	/* Stop waiting to turn off the async schedule */
 961	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
 962
 963	/* Don't start the schedule until ASS is 0 */
 964	ehci_poll_ASS(ehci);
 965	turn_on_io_watchdog(ehci);
 966}
 967
 968static void disable_async(struct ehci_hcd *ehci)
 969{
 970	if (--ehci->async_count)
 971		return;
 972
 973	/* The async schedule and unlink lists are supposed to be empty */
 974	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
 975			!list_empty(&ehci->async_idle));
 976
 977	/* Don't turn off the schedule until ASS is 1 */
 978	ehci_poll_ASS(ehci);
 979}
 980
 981/* move qh (and its qtds) onto async queue; maybe enable queue.  */
 982
 983static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
 984{
 985	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
 986	struct ehci_qh	*head;
 987
 988	/* Don't link a QH if there's a Clear-TT-Buffer pending */
 989	if (unlikely(qh->clearing_tt))
 990		return;
 991
 992	WARN_ON(qh->qh_state != QH_STATE_IDLE);
 993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	/* clear halt and/or toggle; and maybe recover from silicon quirk */
 995	qh_refresh(ehci, qh);
 996
 997	/* splice right after start */
 998	head = ehci->async;
 999	qh->qh_next = head->qh_next;
1000	qh->hw->hw_next = head->hw->hw_next;
1001	wmb ();
1002
1003	head->qh_next.qh = qh;
1004	head->hw->hw_next = dma;
1005
 
 
1006	qh->qh_state = QH_STATE_LINKED;
1007	qh->xacterrs = 0;
1008	qh->unlink_reason = 0;
1009	/* qtd completions reported later by interrupt */
1010
1011	enable_async(ehci);
1012}
1013
1014/*-------------------------------------------------------------------------*/
1015
1016/*
1017 * For control/bulk/interrupt, return QH with these TDs appended.
1018 * Allocates and initializes the QH if necessary.
1019 * Returns null if it can't allocate a QH it needs to.
1020 * If the QH has TDs (urbs) already, that's great.
1021 */
1022static struct ehci_qh *qh_append_tds (
1023	struct ehci_hcd		*ehci,
1024	struct urb		*urb,
1025	struct list_head	*qtd_list,
1026	int			epnum,
1027	void			**ptr
1028)
1029{
1030	struct ehci_qh		*qh = NULL;
1031	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1032
1033	qh = (struct ehci_qh *) *ptr;
1034	if (unlikely (qh == NULL)) {
1035		/* can't sleep here, we have ehci->lock... */
1036		qh = qh_make (ehci, urb, GFP_ATOMIC);
1037		*ptr = qh;
1038	}
1039	if (likely (qh != NULL)) {
1040		struct ehci_qtd	*qtd;
1041
1042		if (unlikely (list_empty (qtd_list)))
1043			qtd = NULL;
1044		else
1045			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1046					qtd_list);
1047
1048		/* control qh may need patching ... */
1049		if (unlikely (epnum == 0)) {
1050
1051                        /* usb_reset_device() briefly reverts to address 0 */
1052                        if (usb_pipedevice (urb->pipe) == 0)
1053				qh->hw->hw_info1 &= ~qh_addr_mask;
1054		}
1055
1056		/* just one way to queue requests: swap with the dummy qtd.
1057		 * only hc or qh_refresh() ever modify the overlay.
1058		 */
1059		if (likely (qtd != NULL)) {
1060			struct ehci_qtd		*dummy;
1061			dma_addr_t		dma;
1062			__hc32			token;
1063
1064			/* to avoid racing the HC, use the dummy td instead of
1065			 * the first td of our list (becomes new dummy).  both
1066			 * tds stay deactivated until we're done, when the
1067			 * HC is allowed to fetch the old dummy (4.10.2).
1068			 */
1069			token = qtd->hw_token;
1070			qtd->hw_token = HALT_BIT(ehci);
1071
1072			dummy = qh->dummy;
1073
1074			dma = dummy->qtd_dma;
1075			*dummy = *qtd;
1076			dummy->qtd_dma = dma;
1077
1078			list_del (&qtd->qtd_list);
1079			list_add (&dummy->qtd_list, qtd_list);
1080			list_splice_tail(qtd_list, &qh->qtd_list);
1081
1082			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1083			qh->dummy = qtd;
1084
1085			/* hc must see the new dummy at list end */
1086			dma = qtd->qtd_dma;
1087			qtd = list_entry (qh->qtd_list.prev,
1088					struct ehci_qtd, qtd_list);
1089			qtd->hw_next = QTD_NEXT(ehci, dma);
1090
1091			/* let the hc process these next qtds */
1092			wmb ();
1093			dummy->hw_token = token;
1094
1095			urb->hcpriv = qh;
1096		}
1097	}
1098	return qh;
1099}
1100
1101/*-------------------------------------------------------------------------*/
1102
1103static int
1104submit_async (
1105	struct ehci_hcd		*ehci,
1106	struct urb		*urb,
1107	struct list_head	*qtd_list,
1108	gfp_t			mem_flags
1109) {
1110	int			epnum;
1111	unsigned long		flags;
1112	struct ehci_qh		*qh = NULL;
1113	int			rc;
1114
1115	epnum = urb->ep->desc.bEndpointAddress;
1116
1117#ifdef EHCI_URB_TRACE
1118	{
1119		struct ehci_qtd *qtd;
1120		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1121		ehci_dbg(ehci,
1122			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1123			 __func__, urb->dev->devpath, urb,
1124			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1125			 urb->transfer_buffer_length,
1126			 qtd, urb->ep->hcpriv);
1127	}
1128#endif
1129
1130	spin_lock_irqsave (&ehci->lock, flags);
1131	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1132		rc = -ESHUTDOWN;
1133		goto done;
1134	}
1135	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1136	if (unlikely(rc))
1137		goto done;
1138
1139	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1140	if (unlikely(qh == NULL)) {
1141		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1142		rc = -ENOMEM;
1143		goto done;
1144	}
1145
1146	/* Control/bulk operations through TTs don't need scheduling,
1147	 * the HC and TT handle it when the TT has a buffer ready.
1148	 */
1149	if (likely (qh->qh_state == QH_STATE_IDLE))
1150		qh_link_async(ehci, qh);
1151 done:
1152	spin_unlock_irqrestore (&ehci->lock, flags);
1153	if (unlikely (qh == NULL))
1154		qtd_list_free (ehci, urb, qtd_list);
1155	return rc;
1156}
1157
1158/*-------------------------------------------------------------------------*/
1159#ifdef CONFIG_USB_HCD_TEST_MODE
1160/*
1161 * This function creates the qtds and submits them for the
1162 * SINGLE_STEP_SET_FEATURE Test.
1163 * This is done in two parts: first SETUP req for GetDesc is sent then
1164 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1165 *
1166 * is_setup : i/p arguement decides which of the two stage needs to be
1167 * performed; TRUE - SETUP and FALSE - IN+STATUS
1168 * Returns 0 if success
1169 */
1170static int submit_single_step_set_feature(
1171	struct usb_hcd  *hcd,
1172	struct urb      *urb,
1173	int             is_setup
1174) {
1175	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1176	struct list_head	qtd_list;
1177	struct list_head	*head;
1178
1179	struct ehci_qtd		*qtd, *qtd_prev;
1180	dma_addr_t		buf;
1181	int			len, maxpacket;
1182	u32			token;
1183
1184	INIT_LIST_HEAD(&qtd_list);
1185	head = &qtd_list;
 
 
1186
1187	/* URBs map to sequences of QTDs:  one logical transaction */
1188	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1189	if (unlikely(!qtd))
1190		return -1;
1191	list_add_tail(&qtd->qtd_list, head);
1192	qtd->urb = urb;
1193
1194	token = QTD_STS_ACTIVE;
1195	token |= (EHCI_TUNE_CERR << 10);
 
 
1196
1197	len = urb->transfer_buffer_length;
1198	/*
1199	 * Check if the request is to perform just the SETUP stage (getDesc)
1200	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1201	 * 15 secs after the setup
1202	 */
1203	if (is_setup) {
1204		/* SETUP pid */
1205		qtd_fill(ehci, qtd, urb->setup_dma,
1206				sizeof(struct usb_ctrlrequest),
1207				token | (2 /* "setup" */ << 8), 8);
1208
1209		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1210		return 0; /*Return now; we shall come back after 15 seconds*/
 
 
 
 
 
 
 
 
 
1211	}
1212
1213	/*
1214	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1215	 * the get_Desc SETUP which was sent 15seconds back
1216	 */
1217	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1218	buf = urb->transfer_dma;
1219
1220	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
 
1221
1222	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
 
 
 
1223
1224	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
 
 
 
 
 
 
 
1225
1226	/*
1227	 * Our IN phase shall always be a short read; so keep the queue running
1228	 * and let it advance to the next qtd which zero length OUT status
1229	 */
1230	qtd->hw_alt_next = EHCI_LIST_END(ehci);
 
 
 
 
 
 
 
 
 
1231
1232	/* STATUS stage for GetDesc control request */
1233	token ^= 0x0100;        /* "in" <--> "out"  */
1234	token |= QTD_TOGGLE;    /* force DATA1 */
1235
1236	qtd_prev = qtd;
1237	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1238	if (unlikely(!qtd))
1239		goto cleanup;
1240	qtd->urb = urb;
1241	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1242	list_add_tail(&qtd->qtd_list, head);
1243
1244	/* dont fill any data in such packets */
1245	qtd_fill(ehci, qtd, 0, 0, token, 0);
1246
1247	/* by default, enable interrupt on urb completion */
1248	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1249		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1250
1251	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1252
1253	return 0;
1254
1255cleanup:
1256	qtd_list_free(ehci, urb, head);
1257	return -1;
1258}
1259#endif /* CONFIG_USB_HCD_TEST_MODE */
1260
1261/*-------------------------------------------------------------------------*/
1262
1263static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1264{
1265	struct ehci_qh		*prev;
1266
1267	/* Add to the end of the list of QHs waiting for the next IAAD */
1268	qh->qh_state = QH_STATE_UNLINK_WAIT;
1269	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1270
1271	/* Unlink it from the schedule */
1272	prev = ehci->async;
1273	while (prev->qh_next.qh != qh)
1274		prev = prev->qh_next.qh;
1275
1276	prev->hw->hw_next = qh->hw->hw_next;
1277	prev->qh_next = qh->qh_next;
1278	if (ehci->qh_scan_next == qh)
1279		ehci->qh_scan_next = qh->qh_next.qh;
1280}
1281
1282static void start_iaa_cycle(struct ehci_hcd *ehci)
1283{
1284	/* If the controller isn't running, we don't have to wait for it */
1285	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1286		end_unlink_async(ehci);
1287
1288	/* Otherwise start a new IAA cycle if one isn't already running */
1289	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1290			!ehci->iaa_in_progress) {
1291
1292		/* Make sure the unlinks are all visible to the hardware */
1293		wmb();
1294
1295		ehci_writel(ehci, ehci->command | CMD_IAAD,
1296				&ehci->regs->command);
1297		ehci_readl(ehci, &ehci->regs->command);
1298		ehci->iaa_in_progress = true;
1299		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1300	}
1301}
1302
1303static void end_iaa_cycle(struct ehci_hcd *ehci)
1304{
1305	if (ehci->has_synopsys_hc_bug)
1306		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1307			    &ehci->regs->async_next);
1308
1309	/* The current IAA cycle has ended */
1310	ehci->iaa_in_progress = false;
1311
1312	end_unlink_async(ehci);
1313}
1314
1315/* See if the async qh for the qtds being unlinked are now gone from the HC */
1316
1317static void end_unlink_async(struct ehci_hcd *ehci)
1318{
1319	struct ehci_qh		*qh;
1320	bool			early_exit;
1321
1322	if (list_empty(&ehci->async_unlink))
1323		return;
1324	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1325			unlink_node);	/* QH whose IAA cycle just ended */
1326
1327	/*
1328	 * If async_unlinking is set then this routine is already running,
1329	 * either on the stack or on another CPU.
1330	 */
1331	early_exit = ehci->async_unlinking;
1332
1333	/* If the controller isn't running, process all the waiting QHs */
1334	if (ehci->rh_state < EHCI_RH_RUNNING)
1335		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1336
1337	/*
1338	 * Intel (?) bug: The HC can write back the overlay region even
1339	 * after the IAA interrupt occurs.  In self-defense, always go
1340	 * through two IAA cycles for each QH.
1341	 */
1342	else if (qh->qh_state == QH_STATE_UNLINK) {
1343		/*
1344		 * Second IAA cycle has finished.  Process only the first
1345		 * waiting QH (NVIDIA (?) bug).
1346		 */
1347		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1348	}
1349
1350	/*
1351	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1352	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1353	 * may still be active will wait until 2 ms have passed with no
1354	 * change to the hw_current and hw_token fields (this delay occurs
1355	 * between the two IAA cycles).
1356	 *
1357	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1358	 * from the async schedule and recommends waiting until the QH
1359	 * goes inactive.  This is ridiculous because the QH will _never_
1360	 * become inactive if the endpoint NAKs indefinitely.
1361	 */
1362
1363	/* Some reasons for unlinking guarantee the QH can't be active */
1364	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1365			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1366		goto DelayDone;
1367
1368	/* The QH can't be active if the queue was and still is empty... */
1369	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1370			list_empty(&qh->qtd_list))
1371		goto DelayDone;
1372
1373	/* ... or if the QH has halted */
1374	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1375		goto DelayDone;
1376
1377	/* Otherwise we have to wait until the QH stops changing */
1378	else {
1379		__hc32		qh_current, qh_token;
1380
1381		qh_current = qh->hw->hw_current;
1382		qh_token = qh->hw->hw_token;
1383		if (qh_current != ehci->old_current ||
1384				qh_token != ehci->old_token) {
1385			ehci->old_current = qh_current;
1386			ehci->old_token = qh_token;
1387			ehci_enable_event(ehci,
1388					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1389			return;
1390		}
1391 DelayDone:
1392		qh->qh_state = QH_STATE_UNLINK;
1393		early_exit = true;
1394	}
1395	ehci->old_current = ~0;		/* Prepare for next QH */
1396
1397	/* Start a new IAA cycle if any QHs are waiting for it */
1398	if (!list_empty(&ehci->async_unlink))
1399		start_iaa_cycle(ehci);
1400
1401	/*
1402	 * Don't allow nesting or concurrent calls,
1403	 * or wait for the second IAA cycle for the next QH.
1404	 */
1405	if (early_exit)
1406		return;
1407
1408	/* Process the idle QHs */
1409	ehci->async_unlinking = true;
1410	while (!list_empty(&ehci->async_idle)) {
1411		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1412				unlink_node);
1413		list_del(&qh->unlink_node);
1414
1415		qh->qh_state = QH_STATE_IDLE;
1416		qh->qh_next.qh = NULL;
1417
1418		if (!list_empty(&qh->qtd_list))
1419			qh_completions(ehci, qh);
1420		if (!list_empty(&qh->qtd_list) &&
1421				ehci->rh_state == EHCI_RH_RUNNING)
1422			qh_link_async(ehci, qh);
1423		disable_async(ehci);
1424	}
1425	ehci->async_unlinking = false;
1426}
1427
1428static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1429
1430static void unlink_empty_async(struct ehci_hcd *ehci)
1431{
1432	struct ehci_qh		*qh;
1433	struct ehci_qh		*qh_to_unlink = NULL;
1434	int			count = 0;
1435
1436	/* Find the last async QH which has been empty for a timer cycle */
1437	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1438		if (list_empty(&qh->qtd_list) &&
1439				qh->qh_state == QH_STATE_LINKED) {
1440			++count;
1441			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1442				qh_to_unlink = qh;
1443		}
1444	}
1445
1446	/* If nothing else is being unlinked, unlink the last empty QH */
1447	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1448		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1449		start_unlink_async(ehci, qh_to_unlink);
1450		--count;
1451	}
1452
1453	/* Other QHs will be handled later */
1454	if (count > 0) {
1455		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1456		++ehci->async_unlink_cycle;
1457	}
1458}
1459
1460#ifdef	CONFIG_PM
1461
1462/* The root hub is suspended; unlink all the async QHs */
1463static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1464{
1465	struct ehci_qh		*qh;
1466
1467	while (ehci->async->qh_next.qh) {
1468		qh = ehci->async->qh_next.qh;
1469		WARN_ON(!list_empty(&qh->qtd_list));
1470		single_unlink_async(ehci, qh);
1471	}
1472}
1473
1474#endif
1475
1476/* makes sure the async qh will become idle */
1477/* caller must own ehci->lock */
1478
1479static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1480{
1481	/* If the QH isn't linked then there's nothing we can do. */
1482	if (qh->qh_state != QH_STATE_LINKED)
1483		return;
1484
1485	single_unlink_async(ehci, qh);
1486	start_iaa_cycle(ehci);
 
 
1487}
1488
1489/*-------------------------------------------------------------------------*/
1490
1491static void scan_async (struct ehci_hcd *ehci)
1492{
 
1493	struct ehci_qh		*qh;
1494	bool			check_unlinks_later = false;
 
 
 
1495
1496	ehci->qh_scan_next = ehci->async->qh_next.qh;
1497	while (ehci->qh_scan_next) {
1498		qh = ehci->qh_scan_next;
1499		ehci->qh_scan_next = qh->qh_next.qh;
1500
1501		/* clean any finished work for this qh */
1502		if (!list_empty(&qh->qtd_list)) {
1503			int temp;
1504
1505			/*
1506			 * Unlinks could happen here; completion reporting
1507			 * drops the lock.  That's why ehci->qh_scan_next
1508			 * always holds the next qh to scan; if the next qh
1509			 * gets unlinked then ehci->qh_scan_next is adjusted
1510			 * in single_unlink_async().
1511			 */
 
1512			temp = qh_completions(ehci, qh);
1513			if (unlikely(temp)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514				start_unlink_async(ehci, qh);
1515			} else if (list_empty(&qh->qtd_list)
1516					&& qh->qh_state == QH_STATE_LINKED) {
1517				qh->unlink_cycle = ehci->async_unlink_cycle;
1518				check_unlinks_later = true;
1519			}
1520		}
1521	}
1522
1523	/*
1524	 * Unlink empty entries, reducing DMA usage as well
1525	 * as HCD schedule-scanning costs.  Delay for any qh
1526	 * we just scanned, there's a not-unusual case that it
1527	 * doesn't stay idle for long.
1528	 */
1529	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1530			!(ehci->enabled_hrtimer_events &
1531				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1532		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1533		++ehci->async_unlink_cycle;
1534	}
1535}