Loading...
1/*
2 * Copyright (C) 2001-2004 by David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/* this file is part of ehci-hcd.c */
20
21/*-------------------------------------------------------------------------*/
22
23/*
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
25 *
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
30 *
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
34 *
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
39 */
40
41/*-------------------------------------------------------------------------*/
42
43/* fill a qtd, returning how much of the buffer we were able to queue up */
44
45static int
46qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 size_t len, int token, int maxpacket)
48{
49 int i, count;
50 u64 addr = buf;
51
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56 if (likely (len < count)) /* ... iff needed */
57 count = len;
58 else {
59 buf += 0x1000;
60 buf &= ~0x0fff;
61
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i = 1; count < len && i < 5; i++) {
64 addr = buf;
65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 (u32)(addr >> 32));
68 buf += 0x1000;
69 if ((count + 0x1000) < len)
70 count += 0x1000;
71 else
72 count = len;
73 }
74
75 /* short packets may only terminate transfers */
76 if (count != len)
77 count -= (count % maxpacket);
78 }
79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 qtd->length = count;
81
82 return count;
83}
84
85/*-------------------------------------------------------------------------*/
86
87static inline void
88qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89{
90 struct ehci_qh_hw *hw = qh->hw;
91
92 /* writes to an active overlay are unsafe */
93 BUG_ON(qh->qh_state != QH_STATE_IDLE);
94
95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 hw->hw_alt_next = EHCI_LIST_END(ehci);
97
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 * ever clear it.
102 */
103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
104 unsigned is_out, epnum;
105
106 is_out = qh->is_out;
107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 usb_settoggle (qh->dev, epnum, is_out, 1);
111 }
112 }
113
114 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
115 wmb ();
116 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
117}
118
119/* if it weren't for a common silicon quirk (writing the dummy into the qh
120 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
121 * recovery (including urb dequeue) would need software changes to a QH...
122 */
123static void
124qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
125{
126 struct ehci_qtd *qtd;
127
128 if (list_empty (&qh->qtd_list))
129 qtd = qh->dummy;
130 else {
131 qtd = list_entry (qh->qtd_list.next,
132 struct ehci_qtd, qtd_list);
133 /* first qtd may already be partially processed */
134 if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current)
135 qtd = NULL;
136 }
137
138 if (qtd)
139 qh_update (ehci, qh, qtd);
140}
141
142/*-------------------------------------------------------------------------*/
143
144static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
145
146static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
147 struct usb_host_endpoint *ep)
148{
149 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
150 struct ehci_qh *qh = ep->hcpriv;
151 unsigned long flags;
152
153 spin_lock_irqsave(&ehci->lock, flags);
154 qh->clearing_tt = 0;
155 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
156 && HC_IS_RUNNING(hcd->state))
157 qh_link_async(ehci, qh);
158 spin_unlock_irqrestore(&ehci->lock, flags);
159}
160
161static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
162 struct urb *urb, u32 token)
163{
164
165 /* If an async split transaction gets an error or is unlinked,
166 * the TT buffer may be left in an indeterminate state. We
167 * have to clear the TT buffer.
168 *
169 * Note: this routine is never called for Isochronous transfers.
170 */
171 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
172#ifdef DEBUG
173 struct usb_device *tt = urb->dev->tt->hub;
174 dev_dbg(&tt->dev,
175 "clear tt buffer port %d, a%d ep%d t%08x\n",
176 urb->dev->ttport, urb->dev->devnum,
177 usb_pipeendpoint(urb->pipe), token);
178#endif /* DEBUG */
179 if (!ehci_is_TDI(ehci)
180 || urb->dev->tt->hub !=
181 ehci_to_hcd(ehci)->self.root_hub) {
182 if (usb_hub_clear_tt_buffer(urb) == 0)
183 qh->clearing_tt = 1;
184 } else {
185
186 /* REVISIT ARC-derived cores don't clear the root
187 * hub TT buffer in this way...
188 */
189 }
190 }
191}
192
193static int qtd_copy_status (
194 struct ehci_hcd *ehci,
195 struct urb *urb,
196 size_t length,
197 u32 token
198)
199{
200 int status = -EINPROGRESS;
201
202 /* count IN/OUT bytes, not SETUP (even short packets) */
203 if (likely (QTD_PID (token) != 2))
204 urb->actual_length += length - QTD_LENGTH (token);
205
206 /* don't modify error codes */
207 if (unlikely(urb->unlinked))
208 return status;
209
210 /* force cleanup after short read; not always an error */
211 if (unlikely (IS_SHORT_READ (token)))
212 status = -EREMOTEIO;
213
214 /* serious "can't proceed" faults reported by the hardware */
215 if (token & QTD_STS_HALT) {
216 if (token & QTD_STS_BABBLE) {
217 /* FIXME "must" disable babbling device's port too */
218 status = -EOVERFLOW;
219 /* CERR nonzero + halt --> stall */
220 } else if (QTD_CERR(token)) {
221 status = -EPIPE;
222
223 /* In theory, more than one of the following bits can be set
224 * since they are sticky and the transaction is retried.
225 * Which to test first is rather arbitrary.
226 */
227 } else if (token & QTD_STS_MMF) {
228 /* fs/ls interrupt xfer missed the complete-split */
229 status = -EPROTO;
230 } else if (token & QTD_STS_DBE) {
231 status = (QTD_PID (token) == 1) /* IN ? */
232 ? -ENOSR /* hc couldn't read data */
233 : -ECOMM; /* hc couldn't write data */
234 } else if (token & QTD_STS_XACT) {
235 /* timeout, bad CRC, wrong PID, etc */
236 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
237 urb->dev->devpath,
238 usb_pipeendpoint(urb->pipe),
239 usb_pipein(urb->pipe) ? "in" : "out");
240 status = -EPROTO;
241 } else { /* unknown */
242 status = -EPROTO;
243 }
244
245 ehci_vdbg (ehci,
246 "dev%d ep%d%s qtd token %08x --> status %d\n",
247 usb_pipedevice (urb->pipe),
248 usb_pipeendpoint (urb->pipe),
249 usb_pipein (urb->pipe) ? "in" : "out",
250 token, status);
251 }
252
253 return status;
254}
255
256static void
257ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
258__releases(ehci->lock)
259__acquires(ehci->lock)
260{
261 if (likely (urb->hcpriv != NULL)) {
262 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
263
264 /* S-mask in a QH means it's an interrupt urb */
265 if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
266
267 /* ... update hc-wide periodic stats (for usbfs) */
268 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
269 }
270 qh_put (qh);
271 }
272
273 if (unlikely(urb->unlinked)) {
274 COUNT(ehci->stats.unlink);
275 } else {
276 /* report non-error and short read status as zero */
277 if (status == -EINPROGRESS || status == -EREMOTEIO)
278 status = 0;
279 COUNT(ehci->stats.complete);
280 }
281
282#ifdef EHCI_URB_TRACE
283 ehci_dbg (ehci,
284 "%s %s urb %p ep%d%s status %d len %d/%d\n",
285 __func__, urb->dev->devpath, urb,
286 usb_pipeendpoint (urb->pipe),
287 usb_pipein (urb->pipe) ? "in" : "out",
288 status,
289 urb->actual_length, urb->transfer_buffer_length);
290#endif
291
292 /* complete() can reenter this HCD */
293 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
294 spin_unlock (&ehci->lock);
295 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
296 spin_lock (&ehci->lock);
297}
298
299static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
300static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
301
302static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
303
304/*
305 * Process and free completed qtds for a qh, returning URBs to drivers.
306 * Chases up to qh->hw_current. Returns number of completions called,
307 * indicating how much "real" work we did.
308 */
309static unsigned
310qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
311{
312 struct ehci_qtd *last, *end = qh->dummy;
313 struct list_head *entry, *tmp;
314 int last_status;
315 int stopped;
316 unsigned count = 0;
317 u8 state;
318 struct ehci_qh_hw *hw = qh->hw;
319
320 if (unlikely (list_empty (&qh->qtd_list)))
321 return count;
322
323 /* completions (or tasks on other cpus) must never clobber HALT
324 * till we've gone through and cleaned everything up, even when
325 * they add urbs to this qh's queue or mark them for unlinking.
326 *
327 * NOTE: unlinking expects to be done in queue order.
328 *
329 * It's a bug for qh->qh_state to be anything other than
330 * QH_STATE_IDLE, unless our caller is scan_async() or
331 * scan_periodic().
332 */
333 state = qh->qh_state;
334 qh->qh_state = QH_STATE_COMPLETING;
335 stopped = (state == QH_STATE_IDLE);
336
337 rescan:
338 last = NULL;
339 last_status = -EINPROGRESS;
340 qh->needs_rescan = 0;
341
342 /* remove de-activated QTDs from front of queue.
343 * after faults (including short reads), cleanup this urb
344 * then let the queue advance.
345 * if queue is stopped, handles unlinks.
346 */
347 list_for_each_safe (entry, tmp, &qh->qtd_list) {
348 struct ehci_qtd *qtd;
349 struct urb *urb;
350 u32 token = 0;
351
352 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
353 urb = qtd->urb;
354
355 /* clean up any state from previous QTD ...*/
356 if (last) {
357 if (likely (last->urb != urb)) {
358 ehci_urb_done(ehci, last->urb, last_status);
359 count++;
360 last_status = -EINPROGRESS;
361 }
362 ehci_qtd_free (ehci, last);
363 last = NULL;
364 }
365
366 /* ignore urbs submitted during completions we reported */
367 if (qtd == end)
368 break;
369
370 /* hardware copies qtd out of qh overlay */
371 rmb ();
372 token = hc32_to_cpu(ehci, qtd->hw_token);
373
374 /* always clean up qtds the hc de-activated */
375 retry_xacterr:
376 if ((token & QTD_STS_ACTIVE) == 0) {
377
378 /* on STALL, error, and short reads this urb must
379 * complete and all its qtds must be recycled.
380 */
381 if ((token & QTD_STS_HALT) != 0) {
382
383 /* retry transaction errors until we
384 * reach the software xacterr limit
385 */
386 if ((token & QTD_STS_XACT) &&
387 QTD_CERR(token) == 0 &&
388 ++qh->xacterrs < QH_XACTERR_MAX &&
389 !urb->unlinked) {
390 ehci_dbg(ehci,
391 "detected XactErr len %zu/%zu retry %d\n",
392 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
393
394 /* reset the token in the qtd and the
395 * qh overlay (which still contains
396 * the qtd) so that we pick up from
397 * where we left off
398 */
399 token &= ~QTD_STS_HALT;
400 token |= QTD_STS_ACTIVE |
401 (EHCI_TUNE_CERR << 10);
402 qtd->hw_token = cpu_to_hc32(ehci,
403 token);
404 wmb();
405 hw->hw_token = cpu_to_hc32(ehci,
406 token);
407 goto retry_xacterr;
408 }
409 stopped = 1;
410
411 /* magic dummy for some short reads; qh won't advance.
412 * that silicon quirk can kick in with this dummy too.
413 *
414 * other short reads won't stop the queue, including
415 * control transfers (status stage handles that) or
416 * most other single-qtd reads ... the queue stops if
417 * URB_SHORT_NOT_OK was set so the driver submitting
418 * the urbs could clean it up.
419 */
420 } else if (IS_SHORT_READ (token)
421 && !(qtd->hw_alt_next
422 & EHCI_LIST_END(ehci))) {
423 stopped = 1;
424 }
425
426 /* stop scanning when we reach qtds the hc is using */
427 } else if (likely (!stopped
428 && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
429 break;
430
431 /* scan the whole queue for unlinks whenever it stops */
432 } else {
433 stopped = 1;
434
435 /* cancel everything if we halt, suspend, etc */
436 if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
437 last_status = -ESHUTDOWN;
438
439 /* this qtd is active; skip it unless a previous qtd
440 * for its urb faulted, or its urb was canceled.
441 */
442 else if (last_status == -EINPROGRESS && !urb->unlinked)
443 continue;
444
445 /* qh unlinked; token in overlay may be most current */
446 if (state == QH_STATE_IDLE
447 && cpu_to_hc32(ehci, qtd->qtd_dma)
448 == hw->hw_current) {
449 token = hc32_to_cpu(ehci, hw->hw_token);
450
451 /* An unlink may leave an incomplete
452 * async transaction in the TT buffer.
453 * We have to clear it.
454 */
455 ehci_clear_tt_buffer(ehci, qh, urb, token);
456 }
457 }
458
459 /* unless we already know the urb's status, collect qtd status
460 * and update count of bytes transferred. in common short read
461 * cases with only one data qtd (including control transfers),
462 * queue processing won't halt. but with two or more qtds (for
463 * example, with a 32 KB transfer), when the first qtd gets a
464 * short read the second must be removed by hand.
465 */
466 if (last_status == -EINPROGRESS) {
467 last_status = qtd_copy_status(ehci, urb,
468 qtd->length, token);
469 if (last_status == -EREMOTEIO
470 && (qtd->hw_alt_next
471 & EHCI_LIST_END(ehci)))
472 last_status = -EINPROGRESS;
473
474 /* As part of low/full-speed endpoint-halt processing
475 * we must clear the TT buffer (11.17.5).
476 */
477 if (unlikely(last_status != -EINPROGRESS &&
478 last_status != -EREMOTEIO)) {
479 /* The TT's in some hubs malfunction when they
480 * receive this request following a STALL (they
481 * stop sending isochronous packets). Since a
482 * STALL can't leave the TT buffer in a busy
483 * state (if you believe Figures 11-48 - 11-51
484 * in the USB 2.0 spec), we won't clear the TT
485 * buffer in this case. Strictly speaking this
486 * is a violation of the spec.
487 */
488 if (last_status != -EPIPE)
489 ehci_clear_tt_buffer(ehci, qh, urb,
490 token);
491 }
492 }
493
494 /* if we're removing something not at the queue head,
495 * patch the hardware queue pointer.
496 */
497 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
498 last = list_entry (qtd->qtd_list.prev,
499 struct ehci_qtd, qtd_list);
500 last->hw_next = qtd->hw_next;
501 }
502
503 /* remove qtd; it's recycled after possible urb completion */
504 list_del (&qtd->qtd_list);
505 last = qtd;
506
507 /* reinit the xacterr counter for the next qtd */
508 qh->xacterrs = 0;
509 }
510
511 /* last urb's completion might still need calling */
512 if (likely (last != NULL)) {
513 ehci_urb_done(ehci, last->urb, last_status);
514 count++;
515 ehci_qtd_free (ehci, last);
516 }
517
518 /* Do we need to rescan for URBs dequeued during a giveback? */
519 if (unlikely(qh->needs_rescan)) {
520 /* If the QH is already unlinked, do the rescan now. */
521 if (state == QH_STATE_IDLE)
522 goto rescan;
523
524 /* Otherwise we have to wait until the QH is fully unlinked.
525 * Our caller will start an unlink if qh->needs_rescan is
526 * set. But if an unlink has already started, nothing needs
527 * to be done.
528 */
529 if (state != QH_STATE_LINKED)
530 qh->needs_rescan = 0;
531 }
532
533 /* restore original state; caller must unlink or relink */
534 qh->qh_state = state;
535
536 /* be sure the hardware's done with the qh before refreshing
537 * it after fault cleanup, or recovering from silicon wrongly
538 * overlaying the dummy qtd (which reduces DMA chatter).
539 */
540 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
541 switch (state) {
542 case QH_STATE_IDLE:
543 qh_refresh(ehci, qh);
544 break;
545 case QH_STATE_LINKED:
546 /* We won't refresh a QH that's linked (after the HC
547 * stopped the queue). That avoids a race:
548 * - HC reads first part of QH;
549 * - CPU updates that first part and the token;
550 * - HC reads rest of that QH, including token
551 * Result: HC gets an inconsistent image, and then
552 * DMAs to/from the wrong memory (corrupting it).
553 *
554 * That should be rare for interrupt transfers,
555 * except maybe high bandwidth ...
556 */
557
558 /* Tell the caller to start an unlink */
559 qh->needs_rescan = 1;
560 break;
561 /* otherwise, unlink already started */
562 }
563 }
564
565 return count;
566}
567
568/*-------------------------------------------------------------------------*/
569
570// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
571#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
572// ... and packet size, for any kind of endpoint descriptor
573#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
574
575/*
576 * reverse of qh_urb_transaction: free a list of TDs.
577 * used for cleanup after errors, before HC sees an URB's TDs.
578 */
579static void qtd_list_free (
580 struct ehci_hcd *ehci,
581 struct urb *urb,
582 struct list_head *qtd_list
583) {
584 struct list_head *entry, *temp;
585
586 list_for_each_safe (entry, temp, qtd_list) {
587 struct ehci_qtd *qtd;
588
589 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
590 list_del (&qtd->qtd_list);
591 ehci_qtd_free (ehci, qtd);
592 }
593}
594
595/*
596 * create a list of filled qtds for this URB; won't link into qh.
597 */
598static struct list_head *
599qh_urb_transaction (
600 struct ehci_hcd *ehci,
601 struct urb *urb,
602 struct list_head *head,
603 gfp_t flags
604) {
605 struct ehci_qtd *qtd, *qtd_prev;
606 dma_addr_t buf;
607 int len, this_sg_len, maxpacket;
608 int is_input;
609 u32 token;
610 int i;
611 struct scatterlist *sg;
612
613 /*
614 * URBs map to sequences of QTDs: one logical transaction
615 */
616 qtd = ehci_qtd_alloc (ehci, flags);
617 if (unlikely (!qtd))
618 return NULL;
619 list_add_tail (&qtd->qtd_list, head);
620 qtd->urb = urb;
621
622 token = QTD_STS_ACTIVE;
623 token |= (EHCI_TUNE_CERR << 10);
624 /* for split transactions, SplitXState initialized to zero */
625
626 len = urb->transfer_buffer_length;
627 is_input = usb_pipein (urb->pipe);
628 if (usb_pipecontrol (urb->pipe)) {
629 /* SETUP pid */
630 qtd_fill(ehci, qtd, urb->setup_dma,
631 sizeof (struct usb_ctrlrequest),
632 token | (2 /* "setup" */ << 8), 8);
633
634 /* ... and always at least one more pid */
635 token ^= QTD_TOGGLE;
636 qtd_prev = qtd;
637 qtd = ehci_qtd_alloc (ehci, flags);
638 if (unlikely (!qtd))
639 goto cleanup;
640 qtd->urb = urb;
641 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
642 list_add_tail (&qtd->qtd_list, head);
643
644 /* for zero length DATA stages, STATUS is always IN */
645 if (len == 0)
646 token |= (1 /* "in" */ << 8);
647 }
648
649 /*
650 * data transfer stage: buffer setup
651 */
652 i = urb->num_sgs;
653 if (len > 0 && i > 0) {
654 sg = urb->sg;
655 buf = sg_dma_address(sg);
656
657 /* urb->transfer_buffer_length may be smaller than the
658 * size of the scatterlist (or vice versa)
659 */
660 this_sg_len = min_t(int, sg_dma_len(sg), len);
661 } else {
662 sg = NULL;
663 buf = urb->transfer_dma;
664 this_sg_len = len;
665 }
666
667 if (is_input)
668 token |= (1 /* "in" */ << 8);
669 /* else it's already initted to "out" pid (0 << 8) */
670
671 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
672
673 /*
674 * buffer gets wrapped in one or more qtds;
675 * last one may be "short" (including zero len)
676 * and may serve as a control status ack
677 */
678 for (;;) {
679 int this_qtd_len;
680
681 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
682 maxpacket);
683 this_sg_len -= this_qtd_len;
684 len -= this_qtd_len;
685 buf += this_qtd_len;
686
687 /*
688 * short reads advance to a "magic" dummy instead of the next
689 * qtd ... that forces the queue to stop, for manual cleanup.
690 * (this will usually be overridden later.)
691 */
692 if (is_input)
693 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
694
695 /* qh makes control packets use qtd toggle; maybe switch it */
696 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
697 token ^= QTD_TOGGLE;
698
699 if (likely(this_sg_len <= 0)) {
700 if (--i <= 0 || len <= 0)
701 break;
702 sg = sg_next(sg);
703 buf = sg_dma_address(sg);
704 this_sg_len = min_t(int, sg_dma_len(sg), len);
705 }
706
707 qtd_prev = qtd;
708 qtd = ehci_qtd_alloc (ehci, flags);
709 if (unlikely (!qtd))
710 goto cleanup;
711 qtd->urb = urb;
712 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
713 list_add_tail (&qtd->qtd_list, head);
714 }
715
716 /*
717 * unless the caller requires manual cleanup after short reads,
718 * have the alt_next mechanism keep the queue running after the
719 * last data qtd (the only one, for control and most other cases).
720 */
721 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
722 || usb_pipecontrol (urb->pipe)))
723 qtd->hw_alt_next = EHCI_LIST_END(ehci);
724
725 /*
726 * control requests may need a terminating data "status" ack;
727 * bulk ones may need a terminating short packet (zero length).
728 */
729 if (likely (urb->transfer_buffer_length != 0)) {
730 int one_more = 0;
731
732 if (usb_pipecontrol (urb->pipe)) {
733 one_more = 1;
734 token ^= 0x0100; /* "in" <--> "out" */
735 token |= QTD_TOGGLE; /* force DATA1 */
736 } else if (usb_pipebulk (urb->pipe)
737 && (urb->transfer_flags & URB_ZERO_PACKET)
738 && !(urb->transfer_buffer_length % maxpacket)) {
739 one_more = 1;
740 }
741 if (one_more) {
742 qtd_prev = qtd;
743 qtd = ehci_qtd_alloc (ehci, flags);
744 if (unlikely (!qtd))
745 goto cleanup;
746 qtd->urb = urb;
747 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
748 list_add_tail (&qtd->qtd_list, head);
749
750 /* never any data in such packets */
751 qtd_fill(ehci, qtd, 0, 0, token, 0);
752 }
753 }
754
755 /* by default, enable interrupt on urb completion */
756 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
757 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
758 return head;
759
760cleanup:
761 qtd_list_free (ehci, urb, head);
762 return NULL;
763}
764
765/*-------------------------------------------------------------------------*/
766
767// Would be best to create all qh's from config descriptors,
768// when each interface/altsetting is established. Unlink
769// any previous qh and cancel its urbs first; endpoints are
770// implicitly reset then (data toggle too).
771// That'd mean updating how usbcore talks to HCDs. (2.7?)
772
773
774/*
775 * Each QH holds a qtd list; a QH is used for everything except iso.
776 *
777 * For interrupt urbs, the scheduler must set the microframe scheduling
778 * mask(s) each time the QH gets scheduled. For highspeed, that's
779 * just one microframe in the s-mask. For split interrupt transactions
780 * there are additional complications: c-mask, maybe FSTNs.
781 */
782static struct ehci_qh *
783qh_make (
784 struct ehci_hcd *ehci,
785 struct urb *urb,
786 gfp_t flags
787) {
788 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
789 u32 info1 = 0, info2 = 0;
790 int is_input, type;
791 int maxp = 0;
792 struct usb_tt *tt = urb->dev->tt;
793 struct ehci_qh_hw *hw;
794
795 if (!qh)
796 return qh;
797
798 /*
799 * init endpoint/device data for this QH
800 */
801 info1 |= usb_pipeendpoint (urb->pipe) << 8;
802 info1 |= usb_pipedevice (urb->pipe) << 0;
803
804 is_input = usb_pipein (urb->pipe);
805 type = usb_pipetype (urb->pipe);
806 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
807
808 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
809 * acts like up to 3KB, but is built from smaller packets.
810 */
811 if (max_packet(maxp) > 1024) {
812 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
813 goto done;
814 }
815
816 /* Compute interrupt scheduling parameters just once, and save.
817 * - allowing for high bandwidth, how many nsec/uframe are used?
818 * - split transactions need a second CSPLIT uframe; same question
819 * - splits also need a schedule gap (for full/low speed I/O)
820 * - qh has a polling interval
821 *
822 * For control/bulk requests, the HC or TT handles these.
823 */
824 if (type == PIPE_INTERRUPT) {
825 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
826 is_input, 0,
827 hb_mult(maxp) * max_packet(maxp)));
828 qh->start = NO_FRAME;
829 qh->stamp = ehci->periodic_stamp;
830
831 if (urb->dev->speed == USB_SPEED_HIGH) {
832 qh->c_usecs = 0;
833 qh->gap_uf = 0;
834
835 qh->period = urb->interval >> 3;
836 if (qh->period == 0 && urb->interval != 1) {
837 /* NOTE interval 2 or 4 uframes could work.
838 * But interval 1 scheduling is simpler, and
839 * includes high bandwidth.
840 */
841 urb->interval = 1;
842 } else if (qh->period > ehci->periodic_size) {
843 qh->period = ehci->periodic_size;
844 urb->interval = qh->period << 3;
845 }
846 } else {
847 int think_time;
848
849 /* gap is f(FS/LS transfer times) */
850 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
851 is_input, 0, maxp) / (125 * 1000);
852
853 /* FIXME this just approximates SPLIT/CSPLIT times */
854 if (is_input) { // SPLIT, gap, CSPLIT+DATA
855 qh->c_usecs = qh->usecs + HS_USECS (0);
856 qh->usecs = HS_USECS (1);
857 } else { // SPLIT+DATA, gap, CSPLIT
858 qh->usecs += HS_USECS (1);
859 qh->c_usecs = HS_USECS (0);
860 }
861
862 think_time = tt ? tt->think_time : 0;
863 qh->tt_usecs = NS_TO_US (think_time +
864 usb_calc_bus_time (urb->dev->speed,
865 is_input, 0, max_packet (maxp)));
866 qh->period = urb->interval;
867 if (qh->period > ehci->periodic_size) {
868 qh->period = ehci->periodic_size;
869 urb->interval = qh->period;
870 }
871 }
872 }
873
874 /* support for tt scheduling, and access to toggles */
875 qh->dev = urb->dev;
876
877 /* using TT? */
878 switch (urb->dev->speed) {
879 case USB_SPEED_LOW:
880 info1 |= (1 << 12); /* EPS "low" */
881 /* FALL THROUGH */
882
883 case USB_SPEED_FULL:
884 /* EPS 0 means "full" */
885 if (type != PIPE_INTERRUPT)
886 info1 |= (EHCI_TUNE_RL_TT << 28);
887 if (type == PIPE_CONTROL) {
888 info1 |= (1 << 27); /* for TT */
889 info1 |= 1 << 14; /* toggle from qtd */
890 }
891 info1 |= maxp << 16;
892
893 info2 |= (EHCI_TUNE_MULT_TT << 30);
894
895 /* Some Freescale processors have an erratum in which the
896 * port number in the queue head was 0..N-1 instead of 1..N.
897 */
898 if (ehci_has_fsl_portno_bug(ehci))
899 info2 |= (urb->dev->ttport-1) << 23;
900 else
901 info2 |= urb->dev->ttport << 23;
902
903 /* set the address of the TT; for TDI's integrated
904 * root hub tt, leave it zeroed.
905 */
906 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
907 info2 |= tt->hub->devnum << 16;
908
909 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
910
911 break;
912
913 case USB_SPEED_HIGH: /* no TT involved */
914 info1 |= (2 << 12); /* EPS "high" */
915 if (type == PIPE_CONTROL) {
916 info1 |= (EHCI_TUNE_RL_HS << 28);
917 info1 |= 64 << 16; /* usb2 fixed maxpacket */
918 info1 |= 1 << 14; /* toggle from qtd */
919 info2 |= (EHCI_TUNE_MULT_HS << 30);
920 } else if (type == PIPE_BULK) {
921 info1 |= (EHCI_TUNE_RL_HS << 28);
922 /* The USB spec says that high speed bulk endpoints
923 * always use 512 byte maxpacket. But some device
924 * vendors decided to ignore that, and MSFT is happy
925 * to help them do so. So now people expect to use
926 * such nonconformant devices with Linux too; sigh.
927 */
928 info1 |= max_packet(maxp) << 16;
929 info2 |= (EHCI_TUNE_MULT_HS << 30);
930 } else { /* PIPE_INTERRUPT */
931 info1 |= max_packet (maxp) << 16;
932 info2 |= hb_mult (maxp) << 30;
933 }
934 break;
935 default:
936 dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
937done:
938 qh_put (qh);
939 return NULL;
940 }
941
942 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
943
944 /* init as live, toggle clear, advance to dummy */
945 qh->qh_state = QH_STATE_IDLE;
946 hw = qh->hw;
947 hw->hw_info1 = cpu_to_hc32(ehci, info1);
948 hw->hw_info2 = cpu_to_hc32(ehci, info2);
949 qh->is_out = !is_input;
950 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
951 qh_refresh (ehci, qh);
952 return qh;
953}
954
955/*-------------------------------------------------------------------------*/
956
957/* move qh (and its qtds) onto async queue; maybe enable queue. */
958
959static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
960{
961 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
962 struct ehci_qh *head;
963
964 /* Don't link a QH if there's a Clear-TT-Buffer pending */
965 if (unlikely(qh->clearing_tt))
966 return;
967
968 WARN_ON(qh->qh_state != QH_STATE_IDLE);
969
970 /* (re)start the async schedule? */
971 head = ehci->async;
972 timer_action_done (ehci, TIMER_ASYNC_OFF);
973 if (!head->qh_next.qh) {
974 u32 cmd = ehci_readl(ehci, &ehci->regs->command);
975
976 if (!(cmd & CMD_ASE)) {
977 /* in case a clear of CMD_ASE didn't take yet */
978 (void)handshake(ehci, &ehci->regs->status,
979 STS_ASS, 0, 150);
980 cmd |= CMD_ASE | CMD_RUN;
981 ehci_writel(ehci, cmd, &ehci->regs->command);
982 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
983 /* posted write need not be known to HC yet ... */
984 }
985 }
986
987 /* clear halt and/or toggle; and maybe recover from silicon quirk */
988 qh_refresh(ehci, qh);
989
990 /* splice right after start */
991 qh->qh_next = head->qh_next;
992 qh->hw->hw_next = head->hw->hw_next;
993 wmb ();
994
995 head->qh_next.qh = qh;
996 head->hw->hw_next = dma;
997
998 qh_get(qh);
999 qh->xacterrs = 0;
1000 qh->qh_state = QH_STATE_LINKED;
1001 /* qtd completions reported later by interrupt */
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/*
1007 * For control/bulk/interrupt, return QH with these TDs appended.
1008 * Allocates and initializes the QH if necessary.
1009 * Returns null if it can't allocate a QH it needs to.
1010 * If the QH has TDs (urbs) already, that's great.
1011 */
1012static struct ehci_qh *qh_append_tds (
1013 struct ehci_hcd *ehci,
1014 struct urb *urb,
1015 struct list_head *qtd_list,
1016 int epnum,
1017 void **ptr
1018)
1019{
1020 struct ehci_qh *qh = NULL;
1021 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1022
1023 qh = (struct ehci_qh *) *ptr;
1024 if (unlikely (qh == NULL)) {
1025 /* can't sleep here, we have ehci->lock... */
1026 qh = qh_make (ehci, urb, GFP_ATOMIC);
1027 *ptr = qh;
1028 }
1029 if (likely (qh != NULL)) {
1030 struct ehci_qtd *qtd;
1031
1032 if (unlikely (list_empty (qtd_list)))
1033 qtd = NULL;
1034 else
1035 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1036 qtd_list);
1037
1038 /* control qh may need patching ... */
1039 if (unlikely (epnum == 0)) {
1040
1041 /* usb_reset_device() briefly reverts to address 0 */
1042 if (usb_pipedevice (urb->pipe) == 0)
1043 qh->hw->hw_info1 &= ~qh_addr_mask;
1044 }
1045
1046 /* just one way to queue requests: swap with the dummy qtd.
1047 * only hc or qh_refresh() ever modify the overlay.
1048 */
1049 if (likely (qtd != NULL)) {
1050 struct ehci_qtd *dummy;
1051 dma_addr_t dma;
1052 __hc32 token;
1053
1054 /* to avoid racing the HC, use the dummy td instead of
1055 * the first td of our list (becomes new dummy). both
1056 * tds stay deactivated until we're done, when the
1057 * HC is allowed to fetch the old dummy (4.10.2).
1058 */
1059 token = qtd->hw_token;
1060 qtd->hw_token = HALT_BIT(ehci);
1061 wmb ();
1062 dummy = qh->dummy;
1063
1064 dma = dummy->qtd_dma;
1065 *dummy = *qtd;
1066 dummy->qtd_dma = dma;
1067
1068 list_del (&qtd->qtd_list);
1069 list_add (&dummy->qtd_list, qtd_list);
1070 list_splice_tail(qtd_list, &qh->qtd_list);
1071
1072 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1073 qh->dummy = qtd;
1074
1075 /* hc must see the new dummy at list end */
1076 dma = qtd->qtd_dma;
1077 qtd = list_entry (qh->qtd_list.prev,
1078 struct ehci_qtd, qtd_list);
1079 qtd->hw_next = QTD_NEXT(ehci, dma);
1080
1081 /* let the hc process these next qtds */
1082 wmb ();
1083 dummy->hw_token = token;
1084
1085 urb->hcpriv = qh_get (qh);
1086 }
1087 }
1088 return qh;
1089}
1090
1091/*-------------------------------------------------------------------------*/
1092
1093static int
1094submit_async (
1095 struct ehci_hcd *ehci,
1096 struct urb *urb,
1097 struct list_head *qtd_list,
1098 gfp_t mem_flags
1099) {
1100 int epnum;
1101 unsigned long flags;
1102 struct ehci_qh *qh = NULL;
1103 int rc;
1104
1105 epnum = urb->ep->desc.bEndpointAddress;
1106
1107#ifdef EHCI_URB_TRACE
1108 {
1109 struct ehci_qtd *qtd;
1110 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1111 ehci_dbg(ehci,
1112 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1113 __func__, urb->dev->devpath, urb,
1114 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1115 urb->transfer_buffer_length,
1116 qtd, urb->ep->hcpriv);
1117 }
1118#endif
1119
1120 spin_lock_irqsave (&ehci->lock, flags);
1121 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1122 rc = -ESHUTDOWN;
1123 goto done;
1124 }
1125 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1126 if (unlikely(rc))
1127 goto done;
1128
1129 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1130 if (unlikely(qh == NULL)) {
1131 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1132 rc = -ENOMEM;
1133 goto done;
1134 }
1135
1136 /* Control/bulk operations through TTs don't need scheduling,
1137 * the HC and TT handle it when the TT has a buffer ready.
1138 */
1139 if (likely (qh->qh_state == QH_STATE_IDLE))
1140 qh_link_async(ehci, qh);
1141 done:
1142 spin_unlock_irqrestore (&ehci->lock, flags);
1143 if (unlikely (qh == NULL))
1144 qtd_list_free (ehci, urb, qtd_list);
1145 return rc;
1146}
1147
1148/*-------------------------------------------------------------------------*/
1149
1150/* the async qh for the qtds being reclaimed are now unlinked from the HC */
1151
1152static void end_unlink_async (struct ehci_hcd *ehci)
1153{
1154 struct ehci_qh *qh = ehci->reclaim;
1155 struct ehci_qh *next;
1156
1157 iaa_watchdog_done(ehci);
1158
1159 // qh->hw_next = cpu_to_hc32(qh->qh_dma);
1160 qh->qh_state = QH_STATE_IDLE;
1161 qh->qh_next.qh = NULL;
1162 qh_put (qh); // refcount from reclaim
1163
1164 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1165 next = qh->reclaim;
1166 ehci->reclaim = next;
1167 qh->reclaim = NULL;
1168
1169 qh_completions (ehci, qh);
1170
1171 if (!list_empty (&qh->qtd_list)
1172 && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
1173 qh_link_async (ehci, qh);
1174 else {
1175 /* it's not free to turn the async schedule on/off; leave it
1176 * active but idle for a while once it empties.
1177 */
1178 if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
1179 && ehci->async->qh_next.qh == NULL)
1180 timer_action (ehci, TIMER_ASYNC_OFF);
1181 }
1182 qh_put(qh); /* refcount from async list */
1183
1184 if (next) {
1185 ehci->reclaim = NULL;
1186 start_unlink_async (ehci, next);
1187 }
1188
1189 if (ehci->has_synopsys_hc_bug)
1190 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1191 &ehci->regs->async_next);
1192}
1193
1194/* makes sure the async qh will become idle */
1195/* caller must own ehci->lock */
1196
1197static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
1198{
1199 int cmd = ehci_readl(ehci, &ehci->regs->command);
1200 struct ehci_qh *prev;
1201
1202#ifdef DEBUG
1203 assert_spin_locked(&ehci->lock);
1204 if (ehci->reclaim
1205 || (qh->qh_state != QH_STATE_LINKED
1206 && qh->qh_state != QH_STATE_UNLINK_WAIT)
1207 )
1208 BUG ();
1209#endif
1210
1211 /* stop async schedule right now? */
1212 if (unlikely (qh == ehci->async)) {
1213 /* can't get here without STS_ASS set */
1214 if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
1215 && !ehci->reclaim) {
1216 /* ... and CMD_IAAD clear */
1217 ehci_writel(ehci, cmd & ~CMD_ASE,
1218 &ehci->regs->command);
1219 wmb ();
1220 // handshake later, if we need to
1221 timer_action_done (ehci, TIMER_ASYNC_OFF);
1222 }
1223 return;
1224 }
1225
1226 qh->qh_state = QH_STATE_UNLINK;
1227 ehci->reclaim = qh = qh_get (qh);
1228
1229 prev = ehci->async;
1230 while (prev->qh_next.qh != qh)
1231 prev = prev->qh_next.qh;
1232
1233 prev->hw->hw_next = qh->hw->hw_next;
1234 prev->qh_next = qh->qh_next;
1235 if (ehci->qh_scan_next == qh)
1236 ehci->qh_scan_next = qh->qh_next.qh;
1237 wmb ();
1238
1239 /* If the controller isn't running, we don't have to wait for it */
1240 if (unlikely(!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))) {
1241 /* if (unlikely (qh->reclaim != 0))
1242 * this will recurse, probably not much
1243 */
1244 end_unlink_async (ehci);
1245 return;
1246 }
1247
1248 cmd |= CMD_IAAD;
1249 ehci_writel(ehci, cmd, &ehci->regs->command);
1250 (void)ehci_readl(ehci, &ehci->regs->command);
1251 iaa_watchdog_start(ehci);
1252}
1253
1254/*-------------------------------------------------------------------------*/
1255
1256static void scan_async (struct ehci_hcd *ehci)
1257{
1258 bool stopped;
1259 struct ehci_qh *qh;
1260 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1261
1262 timer_action_done (ehci, TIMER_ASYNC_SHRINK);
1263 stopped = !HC_IS_RUNNING(ehci_to_hcd(ehci)->state);
1264
1265 ehci->qh_scan_next = ehci->async->qh_next.qh;
1266 while (ehci->qh_scan_next) {
1267 qh = ehci->qh_scan_next;
1268 ehci->qh_scan_next = qh->qh_next.qh;
1269 rescan:
1270 /* clean any finished work for this qh */
1271 if (!list_empty(&qh->qtd_list)) {
1272 int temp;
1273
1274 /*
1275 * Unlinks could happen here; completion reporting
1276 * drops the lock. That's why ehci->qh_scan_next
1277 * always holds the next qh to scan; if the next qh
1278 * gets unlinked then ehci->qh_scan_next is adjusted
1279 * in start_unlink_async().
1280 */
1281 qh = qh_get(qh);
1282 temp = qh_completions(ehci, qh);
1283 if (qh->needs_rescan)
1284 unlink_async(ehci, qh);
1285 qh->unlink_time = jiffies + EHCI_SHRINK_JIFFIES;
1286 qh_put(qh);
1287 if (temp != 0)
1288 goto rescan;
1289 }
1290
1291 /* unlink idle entries, reducing DMA usage as well
1292 * as HCD schedule-scanning costs. delay for any qh
1293 * we just scanned, there's a not-unusual case that it
1294 * doesn't stay idle for long.
1295 * (plus, avoids some kind of re-activation race.)
1296 */
1297 if (list_empty(&qh->qtd_list)
1298 && qh->qh_state == QH_STATE_LINKED) {
1299 if (!ehci->reclaim && (stopped ||
1300 time_after_eq(jiffies, qh->unlink_time)))
1301 start_unlink_async(ehci, qh);
1302 else
1303 action = TIMER_ASYNC_SHRINK;
1304 }
1305 }
1306 if (action == TIMER_ASYNC_SHRINK)
1307 timer_action (ehci, TIMER_ASYNC_SHRINK);
1308}
1/*
2 * Copyright (C) 2001-2004 by David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/* this file is part of ehci-hcd.c */
20
21/*-------------------------------------------------------------------------*/
22
23/*
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
25 *
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
30 *
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
34 *
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
39 */
40
41/*-------------------------------------------------------------------------*/
42
43/* fill a qtd, returning how much of the buffer we were able to queue up */
44
45static int
46qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 size_t len, int token, int maxpacket)
48{
49 int i, count;
50 u64 addr = buf;
51
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56 if (likely (len < count)) /* ... iff needed */
57 count = len;
58 else {
59 buf += 0x1000;
60 buf &= ~0x0fff;
61
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i = 1; count < len && i < 5; i++) {
64 addr = buf;
65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 (u32)(addr >> 32));
68 buf += 0x1000;
69 if ((count + 0x1000) < len)
70 count += 0x1000;
71 else
72 count = len;
73 }
74
75 /* short packets may only terminate transfers */
76 if (count != len)
77 count -= (count % maxpacket);
78 }
79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 qtd->length = count;
81
82 return count;
83}
84
85/*-------------------------------------------------------------------------*/
86
87static inline void
88qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89{
90 struct ehci_qh_hw *hw = qh->hw;
91
92 /* writes to an active overlay are unsafe */
93 WARN_ON(qh->qh_state != QH_STATE_IDLE);
94
95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 hw->hw_alt_next = EHCI_LIST_END(ehci);
97
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 * ever clear it.
102 */
103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 unsigned is_out, epnum;
105
106 is_out = qh->is_out;
107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 usb_settoggle(qh->ps.udev, epnum, is_out, 1);
111 }
112 }
113
114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115}
116
117/* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
120 */
121static void
122qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123{
124 struct ehci_qtd *qtd;
125
126 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
127
128 /*
129 * first qtd may already be partially processed.
130 * If we come here during unlink, the QH overlay region
131 * might have reference to the just unlinked qtd. The
132 * qtd is updated in qh_completions(). Update the QH
133 * overlay here.
134 */
135 if (qh->hw->hw_token & ACTIVE_BIT(ehci))
136 qh->hw->hw_qtd_next = qtd->hw_next;
137 else
138 qh_update(ehci, qh, qtd);
139}
140
141/*-------------------------------------------------------------------------*/
142
143static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
144
145static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
146 struct usb_host_endpoint *ep)
147{
148 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
149 struct ehci_qh *qh = ep->hcpriv;
150 unsigned long flags;
151
152 spin_lock_irqsave(&ehci->lock, flags);
153 qh->clearing_tt = 0;
154 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
155 && ehci->rh_state == EHCI_RH_RUNNING)
156 qh_link_async(ehci, qh);
157 spin_unlock_irqrestore(&ehci->lock, flags);
158}
159
160static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
161 struct urb *urb, u32 token)
162{
163
164 /* If an async split transaction gets an error or is unlinked,
165 * the TT buffer may be left in an indeterminate state. We
166 * have to clear the TT buffer.
167 *
168 * Note: this routine is never called for Isochronous transfers.
169 */
170 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
171#ifdef CONFIG_DYNAMIC_DEBUG
172 struct usb_device *tt = urb->dev->tt->hub;
173 dev_dbg(&tt->dev,
174 "clear tt buffer port %d, a%d ep%d t%08x\n",
175 urb->dev->ttport, urb->dev->devnum,
176 usb_pipeendpoint(urb->pipe), token);
177#endif /* CONFIG_DYNAMIC_DEBUG */
178 if (!ehci_is_TDI(ehci)
179 || urb->dev->tt->hub !=
180 ehci_to_hcd(ehci)->self.root_hub) {
181 if (usb_hub_clear_tt_buffer(urb) == 0)
182 qh->clearing_tt = 1;
183 } else {
184
185 /* REVISIT ARC-derived cores don't clear the root
186 * hub TT buffer in this way...
187 */
188 }
189 }
190}
191
192static int qtd_copy_status (
193 struct ehci_hcd *ehci,
194 struct urb *urb,
195 size_t length,
196 u32 token
197)
198{
199 int status = -EINPROGRESS;
200
201 /* count IN/OUT bytes, not SETUP (even short packets) */
202 if (likely (QTD_PID (token) != 2))
203 urb->actual_length += length - QTD_LENGTH (token);
204
205 /* don't modify error codes */
206 if (unlikely(urb->unlinked))
207 return status;
208
209 /* force cleanup after short read; not always an error */
210 if (unlikely (IS_SHORT_READ (token)))
211 status = -EREMOTEIO;
212
213 /* serious "can't proceed" faults reported by the hardware */
214 if (token & QTD_STS_HALT) {
215 if (token & QTD_STS_BABBLE) {
216 /* FIXME "must" disable babbling device's port too */
217 status = -EOVERFLOW;
218 /* CERR nonzero + halt --> stall */
219 } else if (QTD_CERR(token)) {
220 status = -EPIPE;
221
222 /* In theory, more than one of the following bits can be set
223 * since they are sticky and the transaction is retried.
224 * Which to test first is rather arbitrary.
225 */
226 } else if (token & QTD_STS_MMF) {
227 /* fs/ls interrupt xfer missed the complete-split */
228 status = -EPROTO;
229 } else if (token & QTD_STS_DBE) {
230 status = (QTD_PID (token) == 1) /* IN ? */
231 ? -ENOSR /* hc couldn't read data */
232 : -ECOMM; /* hc couldn't write data */
233 } else if (token & QTD_STS_XACT) {
234 /* timeout, bad CRC, wrong PID, etc */
235 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
236 urb->dev->devpath,
237 usb_pipeendpoint(urb->pipe),
238 usb_pipein(urb->pipe) ? "in" : "out");
239 status = -EPROTO;
240 } else { /* unknown */
241 status = -EPROTO;
242 }
243 }
244
245 return status;
246}
247
248static void
249ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
250{
251 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
252 /* ... update hc-wide periodic stats */
253 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
254 }
255
256 if (unlikely(urb->unlinked)) {
257 COUNT(ehci->stats.unlink);
258 } else {
259 /* report non-error and short read status as zero */
260 if (status == -EINPROGRESS || status == -EREMOTEIO)
261 status = 0;
262 COUNT(ehci->stats.complete);
263 }
264
265#ifdef EHCI_URB_TRACE
266 ehci_dbg (ehci,
267 "%s %s urb %p ep%d%s status %d len %d/%d\n",
268 __func__, urb->dev->devpath, urb,
269 usb_pipeendpoint (urb->pipe),
270 usb_pipein (urb->pipe) ? "in" : "out",
271 status,
272 urb->actual_length, urb->transfer_buffer_length);
273#endif
274
275 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
276 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
277}
278
279static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
280
281/*
282 * Process and free completed qtds for a qh, returning URBs to drivers.
283 * Chases up to qh->hw_current. Returns nonzero if the caller should
284 * unlink qh.
285 */
286static unsigned
287qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
288{
289 struct ehci_qtd *last, *end = qh->dummy;
290 struct list_head *entry, *tmp;
291 int last_status;
292 int stopped;
293 u8 state;
294 struct ehci_qh_hw *hw = qh->hw;
295
296 /* completions (or tasks on other cpus) must never clobber HALT
297 * till we've gone through and cleaned everything up, even when
298 * they add urbs to this qh's queue or mark them for unlinking.
299 *
300 * NOTE: unlinking expects to be done in queue order.
301 *
302 * It's a bug for qh->qh_state to be anything other than
303 * QH_STATE_IDLE, unless our caller is scan_async() or
304 * scan_intr().
305 */
306 state = qh->qh_state;
307 qh->qh_state = QH_STATE_COMPLETING;
308 stopped = (state == QH_STATE_IDLE);
309
310 rescan:
311 last = NULL;
312 last_status = -EINPROGRESS;
313 qh->dequeue_during_giveback = 0;
314
315 /* remove de-activated QTDs from front of queue.
316 * after faults (including short reads), cleanup this urb
317 * then let the queue advance.
318 * if queue is stopped, handles unlinks.
319 */
320 list_for_each_safe (entry, tmp, &qh->qtd_list) {
321 struct ehci_qtd *qtd;
322 struct urb *urb;
323 u32 token = 0;
324
325 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
326 urb = qtd->urb;
327
328 /* clean up any state from previous QTD ...*/
329 if (last) {
330 if (likely (last->urb != urb)) {
331 ehci_urb_done(ehci, last->urb, last_status);
332 last_status = -EINPROGRESS;
333 }
334 ehci_qtd_free (ehci, last);
335 last = NULL;
336 }
337
338 /* ignore urbs submitted during completions we reported */
339 if (qtd == end)
340 break;
341
342 /* hardware copies qtd out of qh overlay */
343 rmb ();
344 token = hc32_to_cpu(ehci, qtd->hw_token);
345
346 /* always clean up qtds the hc de-activated */
347 retry_xacterr:
348 if ((token & QTD_STS_ACTIVE) == 0) {
349
350 /* Report Data Buffer Error: non-fatal but useful */
351 if (token & QTD_STS_DBE)
352 ehci_dbg(ehci,
353 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
354 urb,
355 usb_endpoint_num(&urb->ep->desc),
356 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
357 urb->transfer_buffer_length,
358 qtd,
359 qh);
360
361 /* on STALL, error, and short reads this urb must
362 * complete and all its qtds must be recycled.
363 */
364 if ((token & QTD_STS_HALT) != 0) {
365
366 /* retry transaction errors until we
367 * reach the software xacterr limit
368 */
369 if ((token & QTD_STS_XACT) &&
370 QTD_CERR(token) == 0 &&
371 ++qh->xacterrs < QH_XACTERR_MAX &&
372 !urb->unlinked) {
373 ehci_dbg(ehci,
374 "detected XactErr len %zu/%zu retry %d\n",
375 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
376
377 /* reset the token in the qtd and the
378 * qh overlay (which still contains
379 * the qtd) so that we pick up from
380 * where we left off
381 */
382 token &= ~QTD_STS_HALT;
383 token |= QTD_STS_ACTIVE |
384 (EHCI_TUNE_CERR << 10);
385 qtd->hw_token = cpu_to_hc32(ehci,
386 token);
387 wmb();
388 hw->hw_token = cpu_to_hc32(ehci,
389 token);
390 goto retry_xacterr;
391 }
392 stopped = 1;
393
394 /* magic dummy for some short reads; qh won't advance.
395 * that silicon quirk can kick in with this dummy too.
396 *
397 * other short reads won't stop the queue, including
398 * control transfers (status stage handles that) or
399 * most other single-qtd reads ... the queue stops if
400 * URB_SHORT_NOT_OK was set so the driver submitting
401 * the urbs could clean it up.
402 */
403 } else if (IS_SHORT_READ (token)
404 && !(qtd->hw_alt_next
405 & EHCI_LIST_END(ehci))) {
406 stopped = 1;
407 }
408
409 /* stop scanning when we reach qtds the hc is using */
410 } else if (likely (!stopped
411 && ehci->rh_state >= EHCI_RH_RUNNING)) {
412 break;
413
414 /* scan the whole queue for unlinks whenever it stops */
415 } else {
416 stopped = 1;
417
418 /* cancel everything if we halt, suspend, etc */
419 if (ehci->rh_state < EHCI_RH_RUNNING)
420 last_status = -ESHUTDOWN;
421
422 /* this qtd is active; skip it unless a previous qtd
423 * for its urb faulted, or its urb was canceled.
424 */
425 else if (last_status == -EINPROGRESS && !urb->unlinked)
426 continue;
427
428 /*
429 * If this was the active qtd when the qh was unlinked
430 * and the overlay's token is active, then the overlay
431 * hasn't been written back to the qtd yet so use its
432 * token instead of the qtd's. After the qtd is
433 * processed and removed, the overlay won't be valid
434 * any more.
435 */
436 if (state == QH_STATE_IDLE &&
437 qh->qtd_list.next == &qtd->qtd_list &&
438 (hw->hw_token & ACTIVE_BIT(ehci))) {
439 token = hc32_to_cpu(ehci, hw->hw_token);
440 hw->hw_token &= ~ACTIVE_BIT(ehci);
441
442 /* An unlink may leave an incomplete
443 * async transaction in the TT buffer.
444 * We have to clear it.
445 */
446 ehci_clear_tt_buffer(ehci, qh, urb, token);
447 }
448 }
449
450 /* unless we already know the urb's status, collect qtd status
451 * and update count of bytes transferred. in common short read
452 * cases with only one data qtd (including control transfers),
453 * queue processing won't halt. but with two or more qtds (for
454 * example, with a 32 KB transfer), when the first qtd gets a
455 * short read the second must be removed by hand.
456 */
457 if (last_status == -EINPROGRESS) {
458 last_status = qtd_copy_status(ehci, urb,
459 qtd->length, token);
460 if (last_status == -EREMOTEIO
461 && (qtd->hw_alt_next
462 & EHCI_LIST_END(ehci)))
463 last_status = -EINPROGRESS;
464
465 /* As part of low/full-speed endpoint-halt processing
466 * we must clear the TT buffer (11.17.5).
467 */
468 if (unlikely(last_status != -EINPROGRESS &&
469 last_status != -EREMOTEIO)) {
470 /* The TT's in some hubs malfunction when they
471 * receive this request following a STALL (they
472 * stop sending isochronous packets). Since a
473 * STALL can't leave the TT buffer in a busy
474 * state (if you believe Figures 11-48 - 11-51
475 * in the USB 2.0 spec), we won't clear the TT
476 * buffer in this case. Strictly speaking this
477 * is a violation of the spec.
478 */
479 if (last_status != -EPIPE)
480 ehci_clear_tt_buffer(ehci, qh, urb,
481 token);
482 }
483 }
484
485 /* if we're removing something not at the queue head,
486 * patch the hardware queue pointer.
487 */
488 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
489 last = list_entry (qtd->qtd_list.prev,
490 struct ehci_qtd, qtd_list);
491 last->hw_next = qtd->hw_next;
492 }
493
494 /* remove qtd; it's recycled after possible urb completion */
495 list_del (&qtd->qtd_list);
496 last = qtd;
497
498 /* reinit the xacterr counter for the next qtd */
499 qh->xacterrs = 0;
500 }
501
502 /* last urb's completion might still need calling */
503 if (likely (last != NULL)) {
504 ehci_urb_done(ehci, last->urb, last_status);
505 ehci_qtd_free (ehci, last);
506 }
507
508 /* Do we need to rescan for URBs dequeued during a giveback? */
509 if (unlikely(qh->dequeue_during_giveback)) {
510 /* If the QH is already unlinked, do the rescan now. */
511 if (state == QH_STATE_IDLE)
512 goto rescan;
513
514 /* Otherwise the caller must unlink the QH. */
515 }
516
517 /* restore original state; caller must unlink or relink */
518 qh->qh_state = state;
519
520 /* be sure the hardware's done with the qh before refreshing
521 * it after fault cleanup, or recovering from silicon wrongly
522 * overlaying the dummy qtd (which reduces DMA chatter).
523 *
524 * We won't refresh a QH that's linked (after the HC
525 * stopped the queue). That avoids a race:
526 * - HC reads first part of QH;
527 * - CPU updates that first part and the token;
528 * - HC reads rest of that QH, including token
529 * Result: HC gets an inconsistent image, and then
530 * DMAs to/from the wrong memory (corrupting it).
531 *
532 * That should be rare for interrupt transfers,
533 * except maybe high bandwidth ...
534 */
535 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
536 qh->exception = 1;
537
538 /* Let the caller know if the QH needs to be unlinked. */
539 return qh->exception;
540}
541
542/*-------------------------------------------------------------------------*/
543
544// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
545#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
546// ... and packet size, for any kind of endpoint descriptor
547#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
548
549/*
550 * reverse of qh_urb_transaction: free a list of TDs.
551 * used for cleanup after errors, before HC sees an URB's TDs.
552 */
553static void qtd_list_free (
554 struct ehci_hcd *ehci,
555 struct urb *urb,
556 struct list_head *qtd_list
557) {
558 struct list_head *entry, *temp;
559
560 list_for_each_safe (entry, temp, qtd_list) {
561 struct ehci_qtd *qtd;
562
563 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
564 list_del (&qtd->qtd_list);
565 ehci_qtd_free (ehci, qtd);
566 }
567}
568
569/*
570 * create a list of filled qtds for this URB; won't link into qh.
571 */
572static struct list_head *
573qh_urb_transaction (
574 struct ehci_hcd *ehci,
575 struct urb *urb,
576 struct list_head *head,
577 gfp_t flags
578) {
579 struct ehci_qtd *qtd, *qtd_prev;
580 dma_addr_t buf;
581 int len, this_sg_len, maxpacket;
582 int is_input;
583 u32 token;
584 int i;
585 struct scatterlist *sg;
586
587 /*
588 * URBs map to sequences of QTDs: one logical transaction
589 */
590 qtd = ehci_qtd_alloc (ehci, flags);
591 if (unlikely (!qtd))
592 return NULL;
593 list_add_tail (&qtd->qtd_list, head);
594 qtd->urb = urb;
595
596 token = QTD_STS_ACTIVE;
597 token |= (EHCI_TUNE_CERR << 10);
598 /* for split transactions, SplitXState initialized to zero */
599
600 len = urb->transfer_buffer_length;
601 is_input = usb_pipein (urb->pipe);
602 if (usb_pipecontrol (urb->pipe)) {
603 /* SETUP pid */
604 qtd_fill(ehci, qtd, urb->setup_dma,
605 sizeof (struct usb_ctrlrequest),
606 token | (2 /* "setup" */ << 8), 8);
607
608 /* ... and always at least one more pid */
609 token ^= QTD_TOGGLE;
610 qtd_prev = qtd;
611 qtd = ehci_qtd_alloc (ehci, flags);
612 if (unlikely (!qtd))
613 goto cleanup;
614 qtd->urb = urb;
615 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
616 list_add_tail (&qtd->qtd_list, head);
617
618 /* for zero length DATA stages, STATUS is always IN */
619 if (len == 0)
620 token |= (1 /* "in" */ << 8);
621 }
622
623 /*
624 * data transfer stage: buffer setup
625 */
626 i = urb->num_mapped_sgs;
627 if (len > 0 && i > 0) {
628 sg = urb->sg;
629 buf = sg_dma_address(sg);
630
631 /* urb->transfer_buffer_length may be smaller than the
632 * size of the scatterlist (or vice versa)
633 */
634 this_sg_len = min_t(int, sg_dma_len(sg), len);
635 } else {
636 sg = NULL;
637 buf = urb->transfer_dma;
638 this_sg_len = len;
639 }
640
641 if (is_input)
642 token |= (1 /* "in" */ << 8);
643 /* else it's already initted to "out" pid (0 << 8) */
644
645 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
646
647 /*
648 * buffer gets wrapped in one or more qtds;
649 * last one may be "short" (including zero len)
650 * and may serve as a control status ack
651 */
652 for (;;) {
653 int this_qtd_len;
654
655 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
656 maxpacket);
657 this_sg_len -= this_qtd_len;
658 len -= this_qtd_len;
659 buf += this_qtd_len;
660
661 /*
662 * short reads advance to a "magic" dummy instead of the next
663 * qtd ... that forces the queue to stop, for manual cleanup.
664 * (this will usually be overridden later.)
665 */
666 if (is_input)
667 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
668
669 /* qh makes control packets use qtd toggle; maybe switch it */
670 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
671 token ^= QTD_TOGGLE;
672
673 if (likely(this_sg_len <= 0)) {
674 if (--i <= 0 || len <= 0)
675 break;
676 sg = sg_next(sg);
677 buf = sg_dma_address(sg);
678 this_sg_len = min_t(int, sg_dma_len(sg), len);
679 }
680
681 qtd_prev = qtd;
682 qtd = ehci_qtd_alloc (ehci, flags);
683 if (unlikely (!qtd))
684 goto cleanup;
685 qtd->urb = urb;
686 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
687 list_add_tail (&qtd->qtd_list, head);
688 }
689
690 /*
691 * unless the caller requires manual cleanup after short reads,
692 * have the alt_next mechanism keep the queue running after the
693 * last data qtd (the only one, for control and most other cases).
694 */
695 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
696 || usb_pipecontrol (urb->pipe)))
697 qtd->hw_alt_next = EHCI_LIST_END(ehci);
698
699 /*
700 * control requests may need a terminating data "status" ack;
701 * other OUT ones may need a terminating short packet
702 * (zero length).
703 */
704 if (likely (urb->transfer_buffer_length != 0)) {
705 int one_more = 0;
706
707 if (usb_pipecontrol (urb->pipe)) {
708 one_more = 1;
709 token ^= 0x0100; /* "in" <--> "out" */
710 token |= QTD_TOGGLE; /* force DATA1 */
711 } else if (usb_pipeout(urb->pipe)
712 && (urb->transfer_flags & URB_ZERO_PACKET)
713 && !(urb->transfer_buffer_length % maxpacket)) {
714 one_more = 1;
715 }
716 if (one_more) {
717 qtd_prev = qtd;
718 qtd = ehci_qtd_alloc (ehci, flags);
719 if (unlikely (!qtd))
720 goto cleanup;
721 qtd->urb = urb;
722 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
723 list_add_tail (&qtd->qtd_list, head);
724
725 /* never any data in such packets */
726 qtd_fill(ehci, qtd, 0, 0, token, 0);
727 }
728 }
729
730 /* by default, enable interrupt on urb completion */
731 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
732 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
733 return head;
734
735cleanup:
736 qtd_list_free (ehci, urb, head);
737 return NULL;
738}
739
740/*-------------------------------------------------------------------------*/
741
742// Would be best to create all qh's from config descriptors,
743// when each interface/altsetting is established. Unlink
744// any previous qh and cancel its urbs first; endpoints are
745// implicitly reset then (data toggle too).
746// That'd mean updating how usbcore talks to HCDs. (2.7?)
747
748
749/*
750 * Each QH holds a qtd list; a QH is used for everything except iso.
751 *
752 * For interrupt urbs, the scheduler must set the microframe scheduling
753 * mask(s) each time the QH gets scheduled. For highspeed, that's
754 * just one microframe in the s-mask. For split interrupt transactions
755 * there are additional complications: c-mask, maybe FSTNs.
756 */
757static struct ehci_qh *
758qh_make (
759 struct ehci_hcd *ehci,
760 struct urb *urb,
761 gfp_t flags
762) {
763 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
764 u32 info1 = 0, info2 = 0;
765 int is_input, type;
766 int maxp = 0;
767 struct usb_tt *tt = urb->dev->tt;
768 struct ehci_qh_hw *hw;
769
770 if (!qh)
771 return qh;
772
773 /*
774 * init endpoint/device data for this QH
775 */
776 info1 |= usb_pipeendpoint (urb->pipe) << 8;
777 info1 |= usb_pipedevice (urb->pipe) << 0;
778
779 is_input = usb_pipein (urb->pipe);
780 type = usb_pipetype (urb->pipe);
781 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
782
783 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
784 * acts like up to 3KB, but is built from smaller packets.
785 */
786 if (max_packet(maxp) > 1024) {
787 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
788 goto done;
789 }
790
791 /* Compute interrupt scheduling parameters just once, and save.
792 * - allowing for high bandwidth, how many nsec/uframe are used?
793 * - split transactions need a second CSPLIT uframe; same question
794 * - splits also need a schedule gap (for full/low speed I/O)
795 * - qh has a polling interval
796 *
797 * For control/bulk requests, the HC or TT handles these.
798 */
799 if (type == PIPE_INTERRUPT) {
800 unsigned tmp;
801
802 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
803 is_input, 0,
804 hb_mult(maxp) * max_packet(maxp)));
805 qh->ps.phase = NO_FRAME;
806
807 if (urb->dev->speed == USB_SPEED_HIGH) {
808 qh->ps.c_usecs = 0;
809 qh->gap_uf = 0;
810
811 if (urb->interval > 1 && urb->interval < 8) {
812 /* NOTE interval 2 or 4 uframes could work.
813 * But interval 1 scheduling is simpler, and
814 * includes high bandwidth.
815 */
816 urb->interval = 1;
817 } else if (urb->interval > ehci->periodic_size << 3) {
818 urb->interval = ehci->periodic_size << 3;
819 }
820 qh->ps.period = urb->interval >> 3;
821
822 /* period for bandwidth allocation */
823 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
824 1 << (urb->ep->desc.bInterval - 1));
825
826 /* Allow urb->interval to override */
827 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
828 qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
829 } else {
830 int think_time;
831
832 /* gap is f(FS/LS transfer times) */
833 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
834 is_input, 0, maxp) / (125 * 1000);
835
836 /* FIXME this just approximates SPLIT/CSPLIT times */
837 if (is_input) { // SPLIT, gap, CSPLIT+DATA
838 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
839 qh->ps.usecs = HS_USECS(1);
840 } else { // SPLIT+DATA, gap, CSPLIT
841 qh->ps.usecs += HS_USECS(1);
842 qh->ps.c_usecs = HS_USECS(0);
843 }
844
845 think_time = tt ? tt->think_time : 0;
846 qh->ps.tt_usecs = NS_TO_US(think_time +
847 usb_calc_bus_time (urb->dev->speed,
848 is_input, 0, max_packet (maxp)));
849 if (urb->interval > ehci->periodic_size)
850 urb->interval = ehci->periodic_size;
851 qh->ps.period = urb->interval;
852
853 /* period for bandwidth allocation */
854 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
855 urb->ep->desc.bInterval);
856 tmp = rounddown_pow_of_two(tmp);
857
858 /* Allow urb->interval to override */
859 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
860 qh->ps.bw_uperiod = qh->ps.bw_period << 3;
861 }
862 }
863
864 /* support for tt scheduling, and access to toggles */
865 qh->ps.udev = urb->dev;
866 qh->ps.ep = urb->ep;
867
868 /* using TT? */
869 switch (urb->dev->speed) {
870 case USB_SPEED_LOW:
871 info1 |= QH_LOW_SPEED;
872 /* FALL THROUGH */
873
874 case USB_SPEED_FULL:
875 /* EPS 0 means "full" */
876 if (type != PIPE_INTERRUPT)
877 info1 |= (EHCI_TUNE_RL_TT << 28);
878 if (type == PIPE_CONTROL) {
879 info1 |= QH_CONTROL_EP; /* for TT */
880 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
881 }
882 info1 |= maxp << 16;
883
884 info2 |= (EHCI_TUNE_MULT_TT << 30);
885
886 /* Some Freescale processors have an erratum in which the
887 * port number in the queue head was 0..N-1 instead of 1..N.
888 */
889 if (ehci_has_fsl_portno_bug(ehci))
890 info2 |= (urb->dev->ttport-1) << 23;
891 else
892 info2 |= urb->dev->ttport << 23;
893
894 /* set the address of the TT; for TDI's integrated
895 * root hub tt, leave it zeroed.
896 */
897 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
898 info2 |= tt->hub->devnum << 16;
899
900 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
901
902 break;
903
904 case USB_SPEED_HIGH: /* no TT involved */
905 info1 |= QH_HIGH_SPEED;
906 if (type == PIPE_CONTROL) {
907 info1 |= (EHCI_TUNE_RL_HS << 28);
908 info1 |= 64 << 16; /* usb2 fixed maxpacket */
909 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
910 info2 |= (EHCI_TUNE_MULT_HS << 30);
911 } else if (type == PIPE_BULK) {
912 info1 |= (EHCI_TUNE_RL_HS << 28);
913 /* The USB spec says that high speed bulk endpoints
914 * always use 512 byte maxpacket. But some device
915 * vendors decided to ignore that, and MSFT is happy
916 * to help them do so. So now people expect to use
917 * such nonconformant devices with Linux too; sigh.
918 */
919 info1 |= max_packet(maxp) << 16;
920 info2 |= (EHCI_TUNE_MULT_HS << 30);
921 } else { /* PIPE_INTERRUPT */
922 info1 |= max_packet (maxp) << 16;
923 info2 |= hb_mult (maxp) << 30;
924 }
925 break;
926 default:
927 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
928 urb->dev->speed);
929done:
930 qh_destroy(ehci, qh);
931 return NULL;
932 }
933
934 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
935
936 /* init as live, toggle clear */
937 qh->qh_state = QH_STATE_IDLE;
938 hw = qh->hw;
939 hw->hw_info1 = cpu_to_hc32(ehci, info1);
940 hw->hw_info2 = cpu_to_hc32(ehci, info2);
941 qh->is_out = !is_input;
942 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
943 return qh;
944}
945
946/*-------------------------------------------------------------------------*/
947
948static void enable_async(struct ehci_hcd *ehci)
949{
950 if (ehci->async_count++)
951 return;
952
953 /* Stop waiting to turn off the async schedule */
954 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
955
956 /* Don't start the schedule until ASS is 0 */
957 ehci_poll_ASS(ehci);
958 turn_on_io_watchdog(ehci);
959}
960
961static void disable_async(struct ehci_hcd *ehci)
962{
963 if (--ehci->async_count)
964 return;
965
966 /* The async schedule and unlink lists are supposed to be empty */
967 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
968 !list_empty(&ehci->async_idle));
969
970 /* Don't turn off the schedule until ASS is 1 */
971 ehci_poll_ASS(ehci);
972}
973
974/* move qh (and its qtds) onto async queue; maybe enable queue. */
975
976static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
977{
978 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
979 struct ehci_qh *head;
980
981 /* Don't link a QH if there's a Clear-TT-Buffer pending */
982 if (unlikely(qh->clearing_tt))
983 return;
984
985 WARN_ON(qh->qh_state != QH_STATE_IDLE);
986
987 /* clear halt and/or toggle; and maybe recover from silicon quirk */
988 qh_refresh(ehci, qh);
989
990 /* splice right after start */
991 head = ehci->async;
992 qh->qh_next = head->qh_next;
993 qh->hw->hw_next = head->hw->hw_next;
994 wmb ();
995
996 head->qh_next.qh = qh;
997 head->hw->hw_next = dma;
998
999 qh->qh_state = QH_STATE_LINKED;
1000 qh->xacterrs = 0;
1001 qh->exception = 0;
1002 /* qtd completions reported later by interrupt */
1003
1004 enable_async(ehci);
1005}
1006
1007/*-------------------------------------------------------------------------*/
1008
1009/*
1010 * For control/bulk/interrupt, return QH with these TDs appended.
1011 * Allocates and initializes the QH if necessary.
1012 * Returns null if it can't allocate a QH it needs to.
1013 * If the QH has TDs (urbs) already, that's great.
1014 */
1015static struct ehci_qh *qh_append_tds (
1016 struct ehci_hcd *ehci,
1017 struct urb *urb,
1018 struct list_head *qtd_list,
1019 int epnum,
1020 void **ptr
1021)
1022{
1023 struct ehci_qh *qh = NULL;
1024 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1025
1026 qh = (struct ehci_qh *) *ptr;
1027 if (unlikely (qh == NULL)) {
1028 /* can't sleep here, we have ehci->lock... */
1029 qh = qh_make (ehci, urb, GFP_ATOMIC);
1030 *ptr = qh;
1031 }
1032 if (likely (qh != NULL)) {
1033 struct ehci_qtd *qtd;
1034
1035 if (unlikely (list_empty (qtd_list)))
1036 qtd = NULL;
1037 else
1038 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1039 qtd_list);
1040
1041 /* control qh may need patching ... */
1042 if (unlikely (epnum == 0)) {
1043
1044 /* usb_reset_device() briefly reverts to address 0 */
1045 if (usb_pipedevice (urb->pipe) == 0)
1046 qh->hw->hw_info1 &= ~qh_addr_mask;
1047 }
1048
1049 /* just one way to queue requests: swap with the dummy qtd.
1050 * only hc or qh_refresh() ever modify the overlay.
1051 */
1052 if (likely (qtd != NULL)) {
1053 struct ehci_qtd *dummy;
1054 dma_addr_t dma;
1055 __hc32 token;
1056
1057 /* to avoid racing the HC, use the dummy td instead of
1058 * the first td of our list (becomes new dummy). both
1059 * tds stay deactivated until we're done, when the
1060 * HC is allowed to fetch the old dummy (4.10.2).
1061 */
1062 token = qtd->hw_token;
1063 qtd->hw_token = HALT_BIT(ehci);
1064
1065 dummy = qh->dummy;
1066
1067 dma = dummy->qtd_dma;
1068 *dummy = *qtd;
1069 dummy->qtd_dma = dma;
1070
1071 list_del (&qtd->qtd_list);
1072 list_add (&dummy->qtd_list, qtd_list);
1073 list_splice_tail(qtd_list, &qh->qtd_list);
1074
1075 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1076 qh->dummy = qtd;
1077
1078 /* hc must see the new dummy at list end */
1079 dma = qtd->qtd_dma;
1080 qtd = list_entry (qh->qtd_list.prev,
1081 struct ehci_qtd, qtd_list);
1082 qtd->hw_next = QTD_NEXT(ehci, dma);
1083
1084 /* let the hc process these next qtds */
1085 wmb ();
1086 dummy->hw_token = token;
1087
1088 urb->hcpriv = qh;
1089 }
1090 }
1091 return qh;
1092}
1093
1094/*-------------------------------------------------------------------------*/
1095
1096static int
1097submit_async (
1098 struct ehci_hcd *ehci,
1099 struct urb *urb,
1100 struct list_head *qtd_list,
1101 gfp_t mem_flags
1102) {
1103 int epnum;
1104 unsigned long flags;
1105 struct ehci_qh *qh = NULL;
1106 int rc;
1107
1108 epnum = urb->ep->desc.bEndpointAddress;
1109
1110#ifdef EHCI_URB_TRACE
1111 {
1112 struct ehci_qtd *qtd;
1113 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1114 ehci_dbg(ehci,
1115 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1116 __func__, urb->dev->devpath, urb,
1117 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1118 urb->transfer_buffer_length,
1119 qtd, urb->ep->hcpriv);
1120 }
1121#endif
1122
1123 spin_lock_irqsave (&ehci->lock, flags);
1124 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1125 rc = -ESHUTDOWN;
1126 goto done;
1127 }
1128 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1129 if (unlikely(rc))
1130 goto done;
1131
1132 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1133 if (unlikely(qh == NULL)) {
1134 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1135 rc = -ENOMEM;
1136 goto done;
1137 }
1138
1139 /* Control/bulk operations through TTs don't need scheduling,
1140 * the HC and TT handle it when the TT has a buffer ready.
1141 */
1142 if (likely (qh->qh_state == QH_STATE_IDLE))
1143 qh_link_async(ehci, qh);
1144 done:
1145 spin_unlock_irqrestore (&ehci->lock, flags);
1146 if (unlikely (qh == NULL))
1147 qtd_list_free (ehci, urb, qtd_list);
1148 return rc;
1149}
1150
1151/*-------------------------------------------------------------------------*/
1152#ifdef CONFIG_USB_HCD_TEST_MODE
1153/*
1154 * This function creates the qtds and submits them for the
1155 * SINGLE_STEP_SET_FEATURE Test.
1156 * This is done in two parts: first SETUP req for GetDesc is sent then
1157 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1158 *
1159 * is_setup : i/p arguement decides which of the two stage needs to be
1160 * performed; TRUE - SETUP and FALSE - IN+STATUS
1161 * Returns 0 if success
1162 */
1163static int submit_single_step_set_feature(
1164 struct usb_hcd *hcd,
1165 struct urb *urb,
1166 int is_setup
1167) {
1168 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
1169 struct list_head qtd_list;
1170 struct list_head *head;
1171
1172 struct ehci_qtd *qtd, *qtd_prev;
1173 dma_addr_t buf;
1174 int len, maxpacket;
1175 u32 token;
1176
1177 INIT_LIST_HEAD(&qtd_list);
1178 head = &qtd_list;
1179
1180 /* URBs map to sequences of QTDs: one logical transaction */
1181 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1182 if (unlikely(!qtd))
1183 return -1;
1184 list_add_tail(&qtd->qtd_list, head);
1185 qtd->urb = urb;
1186
1187 token = QTD_STS_ACTIVE;
1188 token |= (EHCI_TUNE_CERR << 10);
1189
1190 len = urb->transfer_buffer_length;
1191 /*
1192 * Check if the request is to perform just the SETUP stage (getDesc)
1193 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1194 * 15 secs after the setup
1195 */
1196 if (is_setup) {
1197 /* SETUP pid */
1198 qtd_fill(ehci, qtd, urb->setup_dma,
1199 sizeof(struct usb_ctrlrequest),
1200 token | (2 /* "setup" */ << 8), 8);
1201
1202 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1203 return 0; /*Return now; we shall come back after 15 seconds*/
1204 }
1205
1206 /*
1207 * IN: data transfer stage: buffer setup : start the IN txn phase for
1208 * the get_Desc SETUP which was sent 15seconds back
1209 */
1210 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
1211 buf = urb->transfer_dma;
1212
1213 token |= (1 /* "in" */ << 8); /*This is IN stage*/
1214
1215 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
1216
1217 qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1218
1219 /*
1220 * Our IN phase shall always be a short read; so keep the queue running
1221 * and let it advance to the next qtd which zero length OUT status
1222 */
1223 qtd->hw_alt_next = EHCI_LIST_END(ehci);
1224
1225 /* STATUS stage for GetDesc control request */
1226 token ^= 0x0100; /* "in" <--> "out" */
1227 token |= QTD_TOGGLE; /* force DATA1 */
1228
1229 qtd_prev = qtd;
1230 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1231 if (unlikely(!qtd))
1232 goto cleanup;
1233 qtd->urb = urb;
1234 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1235 list_add_tail(&qtd->qtd_list, head);
1236
1237 /* dont fill any data in such packets */
1238 qtd_fill(ehci, qtd, 0, 0, token, 0);
1239
1240 /* by default, enable interrupt on urb completion */
1241 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1242 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1243
1244 submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1245
1246 return 0;
1247
1248cleanup:
1249 qtd_list_free(ehci, urb, head);
1250 return -1;
1251}
1252#endif /* CONFIG_USB_HCD_TEST_MODE */
1253
1254/*-------------------------------------------------------------------------*/
1255
1256static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1257{
1258 struct ehci_qh *prev;
1259
1260 /* Add to the end of the list of QHs waiting for the next IAAD */
1261 qh->qh_state = QH_STATE_UNLINK_WAIT;
1262 list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1263
1264 /* Unlink it from the schedule */
1265 prev = ehci->async;
1266 while (prev->qh_next.qh != qh)
1267 prev = prev->qh_next.qh;
1268
1269 prev->hw->hw_next = qh->hw->hw_next;
1270 prev->qh_next = qh->qh_next;
1271 if (ehci->qh_scan_next == qh)
1272 ehci->qh_scan_next = qh->qh_next.qh;
1273}
1274
1275static void start_iaa_cycle(struct ehci_hcd *ehci)
1276{
1277 /* Do nothing if an IAA cycle is already running */
1278 if (ehci->iaa_in_progress)
1279 return;
1280 ehci->iaa_in_progress = true;
1281
1282 /* If the controller isn't running, we don't have to wait for it */
1283 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1284 end_unlink_async(ehci);
1285
1286 /* Otherwise start a new IAA cycle */
1287 } else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1288
1289 /* Make sure the unlinks are all visible to the hardware */
1290 wmb();
1291
1292 ehci_writel(ehci, ehci->command | CMD_IAAD,
1293 &ehci->regs->command);
1294 ehci_readl(ehci, &ehci->regs->command);
1295 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1296 }
1297}
1298
1299/* the async qh for the qtds being unlinked are now gone from the HC */
1300
1301static void end_unlink_async(struct ehci_hcd *ehci)
1302{
1303 struct ehci_qh *qh;
1304 bool early_exit;
1305
1306 if (ehci->has_synopsys_hc_bug)
1307 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1308 &ehci->regs->async_next);
1309
1310 /* The current IAA cycle has ended */
1311 ehci->iaa_in_progress = false;
1312
1313 if (list_empty(&ehci->async_unlink))
1314 return;
1315 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1316 unlink_node); /* QH whose IAA cycle just ended */
1317
1318 /*
1319 * If async_unlinking is set then this routine is already running,
1320 * either on the stack or on another CPU.
1321 */
1322 early_exit = ehci->async_unlinking;
1323
1324 /* If the controller isn't running, process all the waiting QHs */
1325 if (ehci->rh_state < EHCI_RH_RUNNING)
1326 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1327
1328 /*
1329 * Intel (?) bug: The HC can write back the overlay region even
1330 * after the IAA interrupt occurs. In self-defense, always go
1331 * through two IAA cycles for each QH.
1332 */
1333 else if (qh->qh_state == QH_STATE_UNLINK_WAIT) {
1334 qh->qh_state = QH_STATE_UNLINK;
1335 early_exit = true;
1336 }
1337
1338 /* Otherwise process only the first waiting QH (NVIDIA bug?) */
1339 else
1340 list_move_tail(&qh->unlink_node, &ehci->async_idle);
1341
1342 /* Start a new IAA cycle if any QHs are waiting for it */
1343 if (!list_empty(&ehci->async_unlink))
1344 start_iaa_cycle(ehci);
1345
1346 /*
1347 * Don't allow nesting or concurrent calls,
1348 * or wait for the second IAA cycle for the next QH.
1349 */
1350 if (early_exit)
1351 return;
1352
1353 /* Process the idle QHs */
1354 ehci->async_unlinking = true;
1355 while (!list_empty(&ehci->async_idle)) {
1356 qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1357 unlink_node);
1358 list_del(&qh->unlink_node);
1359
1360 qh->qh_state = QH_STATE_IDLE;
1361 qh->qh_next.qh = NULL;
1362
1363 if (!list_empty(&qh->qtd_list))
1364 qh_completions(ehci, qh);
1365 if (!list_empty(&qh->qtd_list) &&
1366 ehci->rh_state == EHCI_RH_RUNNING)
1367 qh_link_async(ehci, qh);
1368 disable_async(ehci);
1369 }
1370 ehci->async_unlinking = false;
1371}
1372
1373static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1374
1375static void unlink_empty_async(struct ehci_hcd *ehci)
1376{
1377 struct ehci_qh *qh;
1378 struct ehci_qh *qh_to_unlink = NULL;
1379 int count = 0;
1380
1381 /* Find the last async QH which has been empty for a timer cycle */
1382 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1383 if (list_empty(&qh->qtd_list) &&
1384 qh->qh_state == QH_STATE_LINKED) {
1385 ++count;
1386 if (qh->unlink_cycle != ehci->async_unlink_cycle)
1387 qh_to_unlink = qh;
1388 }
1389 }
1390
1391 /* If nothing else is being unlinked, unlink the last empty QH */
1392 if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1393 start_unlink_async(ehci, qh_to_unlink);
1394 --count;
1395 }
1396
1397 /* Other QHs will be handled later */
1398 if (count > 0) {
1399 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1400 ++ehci->async_unlink_cycle;
1401 }
1402}
1403
1404/* The root hub is suspended; unlink all the async QHs */
1405static void __maybe_unused unlink_empty_async_suspended(struct ehci_hcd *ehci)
1406{
1407 struct ehci_qh *qh;
1408
1409 while (ehci->async->qh_next.qh) {
1410 qh = ehci->async->qh_next.qh;
1411 WARN_ON(!list_empty(&qh->qtd_list));
1412 single_unlink_async(ehci, qh);
1413 }
1414 start_iaa_cycle(ehci);
1415}
1416
1417/* makes sure the async qh will become idle */
1418/* caller must own ehci->lock */
1419
1420static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1421{
1422 /* If the QH isn't linked then there's nothing we can do. */
1423 if (qh->qh_state != QH_STATE_LINKED)
1424 return;
1425
1426 single_unlink_async(ehci, qh);
1427 start_iaa_cycle(ehci);
1428}
1429
1430/*-------------------------------------------------------------------------*/
1431
1432static void scan_async (struct ehci_hcd *ehci)
1433{
1434 struct ehci_qh *qh;
1435 bool check_unlinks_later = false;
1436
1437 ehci->qh_scan_next = ehci->async->qh_next.qh;
1438 while (ehci->qh_scan_next) {
1439 qh = ehci->qh_scan_next;
1440 ehci->qh_scan_next = qh->qh_next.qh;
1441
1442 /* clean any finished work for this qh */
1443 if (!list_empty(&qh->qtd_list)) {
1444 int temp;
1445
1446 /*
1447 * Unlinks could happen here; completion reporting
1448 * drops the lock. That's why ehci->qh_scan_next
1449 * always holds the next qh to scan; if the next qh
1450 * gets unlinked then ehci->qh_scan_next is adjusted
1451 * in single_unlink_async().
1452 */
1453 temp = qh_completions(ehci, qh);
1454 if (unlikely(temp)) {
1455 start_unlink_async(ehci, qh);
1456 } else if (list_empty(&qh->qtd_list)
1457 && qh->qh_state == QH_STATE_LINKED) {
1458 qh->unlink_cycle = ehci->async_unlink_cycle;
1459 check_unlinks_later = true;
1460 }
1461 }
1462 }
1463
1464 /*
1465 * Unlink empty entries, reducing DMA usage as well
1466 * as HCD schedule-scanning costs. Delay for any qh
1467 * we just scanned, there's a not-unusual case that it
1468 * doesn't stay idle for long.
1469 */
1470 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1471 !(ehci->enabled_hrtimer_events &
1472 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1473 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1474 ++ehci->async_unlink_cycle;
1475 }
1476}