Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of version 2 of the GNU General Public License as
  6 * published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful, but
  9 * WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 */
 13#include <linux/scatterlist.h>
 14#include <linux/highmem.h>
 15#include <linux/sched.h>
 16#include <linux/slab.h>
 17#include <linux/hash.h>
 18#include <linux/pmem.h>
 19#include <linux/sort.h>
 20#include <linux/io.h>
 21#include <linux/nd.h>
 22#include "nd-core.h"
 23#include "nd.h"
 24
 25/*
 26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
 27 * irrelevant.
 28 */
 29#include <linux/io-64-nonatomic-hi-lo.h>
 30
 31static DEFINE_IDA(region_ida);
 32static DEFINE_PER_CPU(int, flush_idx);
 33
 34static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
 35		struct nd_region_data *ndrd)
 36{
 37	int i, j;
 38
 39	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
 40			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
 41	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
 42		struct resource *res = &nvdimm->flush_wpq[i];
 43		unsigned long pfn = PHYS_PFN(res->start);
 44		void __iomem *flush_page;
 45
 46		/* check if flush hints share a page */
 47		for (j = 0; j < i; j++) {
 48			struct resource *res_j = &nvdimm->flush_wpq[j];
 49			unsigned long pfn_j = PHYS_PFN(res_j->start);
 50
 51			if (pfn == pfn_j)
 52				break;
 53		}
 54
 55		if (j < i)
 56			flush_page = (void __iomem *) ((unsigned long)
 57					ndrd_get_flush_wpq(ndrd, dimm, j)
 58					& PAGE_MASK);
 59		else
 60			flush_page = devm_nvdimm_ioremap(dev,
 61					PFN_PHYS(pfn), PAGE_SIZE);
 62		if (!flush_page)
 63			return -ENXIO;
 64		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
 65				+ (res->start & ~PAGE_MASK));
 66	}
 67
 68	return 0;
 69}
 70
 71int nd_region_activate(struct nd_region *nd_region)
 72{
 73	int i, j, num_flush = 0;
 74	struct nd_region_data *ndrd;
 75	struct device *dev = &nd_region->dev;
 76	size_t flush_data_size = sizeof(void *);
 77
 78	nvdimm_bus_lock(&nd_region->dev);
 79	for (i = 0; i < nd_region->ndr_mappings; i++) {
 80		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 81		struct nvdimm *nvdimm = nd_mapping->nvdimm;
 82
 83		/* at least one null hint slot per-dimm for the "no-hint" case */
 84		flush_data_size += sizeof(void *);
 85		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
 86		if (!nvdimm->num_flush)
 87			continue;
 88		flush_data_size += nvdimm->num_flush * sizeof(void *);
 89	}
 90	nvdimm_bus_unlock(&nd_region->dev);
 91
 92	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
 93	if (!ndrd)
 94		return -ENOMEM;
 95	dev_set_drvdata(dev, ndrd);
 96
 97	if (!num_flush)
 98		return 0;
 99
100	ndrd->hints_shift = ilog2(num_flush);
101	for (i = 0; i < nd_region->ndr_mappings; i++) {
102		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103		struct nvdimm *nvdimm = nd_mapping->nvdimm;
104		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105
106		if (rc)
107			return rc;
108	}
109
110	/*
111	 * Clear out entries that are duplicates. This should prevent the
112	 * extra flushings.
113	 */
114	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115		/* ignore if NULL already */
116		if (!ndrd_get_flush_wpq(ndrd, i, 0))
117			continue;
118
119		for (j = i + 1; j < nd_region->ndr_mappings; j++)
120			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121			    ndrd_get_flush_wpq(ndrd, j, 0))
122				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
123	}
124
125	return 0;
126}
127
128static void nd_region_release(struct device *dev)
129{
130	struct nd_region *nd_region = to_nd_region(dev);
131	u16 i;
132
133	for (i = 0; i < nd_region->ndr_mappings; i++) {
134		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135		struct nvdimm *nvdimm = nd_mapping->nvdimm;
136
137		put_device(&nvdimm->dev);
138	}
139	free_percpu(nd_region->lane);
140	ida_simple_remove(&region_ida, nd_region->id);
141	if (is_nd_blk(dev))
142		kfree(to_nd_blk_region(dev));
143	else
144		kfree(nd_region);
145}
146
147static struct device_type nd_blk_device_type = {
148	.name = "nd_blk",
149	.release = nd_region_release,
150};
151
152static struct device_type nd_pmem_device_type = {
153	.name = "nd_pmem",
154	.release = nd_region_release,
155};
156
157static struct device_type nd_volatile_device_type = {
158	.name = "nd_volatile",
159	.release = nd_region_release,
160};
161
162bool is_nd_pmem(struct device *dev)
163{
164	return dev ? dev->type == &nd_pmem_device_type : false;
165}
166
167bool is_nd_blk(struct device *dev)
168{
169	return dev ? dev->type == &nd_blk_device_type : false;
170}
171
172struct nd_region *to_nd_region(struct device *dev)
173{
174	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
175
176	WARN_ON(dev->type->release != nd_region_release);
177	return nd_region;
178}
179EXPORT_SYMBOL_GPL(to_nd_region);
180
181struct nd_blk_region *to_nd_blk_region(struct device *dev)
182{
183	struct nd_region *nd_region = to_nd_region(dev);
184
185	WARN_ON(!is_nd_blk(dev));
186	return container_of(nd_region, struct nd_blk_region, nd_region);
187}
188EXPORT_SYMBOL_GPL(to_nd_blk_region);
189
190void *nd_region_provider_data(struct nd_region *nd_region)
191{
192	return nd_region->provider_data;
193}
194EXPORT_SYMBOL_GPL(nd_region_provider_data);
195
196void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
197{
198	return ndbr->blk_provider_data;
199}
200EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
201
202void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
203{
204	ndbr->blk_provider_data = data;
205}
206EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
207
208/**
209 * nd_region_to_nstype() - region to an integer namespace type
210 * @nd_region: region-device to interrogate
211 *
212 * This is the 'nstype' attribute of a region as well, an input to the
213 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214 * namespace devices with namespace drivers.
215 */
216int nd_region_to_nstype(struct nd_region *nd_region)
217{
218	if (is_nd_pmem(&nd_region->dev)) {
219		u16 i, alias;
220
221		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223			struct nvdimm *nvdimm = nd_mapping->nvdimm;
224
225			if (nvdimm->flags & NDD_ALIASING)
226				alias++;
227		}
228		if (alias)
229			return ND_DEVICE_NAMESPACE_PMEM;
230		else
231			return ND_DEVICE_NAMESPACE_IO;
232	} else if (is_nd_blk(&nd_region->dev)) {
233		return ND_DEVICE_NAMESPACE_BLK;
234	}
235
236	return 0;
237}
238EXPORT_SYMBOL(nd_region_to_nstype);
239
240static ssize_t size_show(struct device *dev,
241		struct device_attribute *attr, char *buf)
242{
243	struct nd_region *nd_region = to_nd_region(dev);
244	unsigned long long size = 0;
245
246	if (is_nd_pmem(dev)) {
247		size = nd_region->ndr_size;
248	} else if (nd_region->ndr_mappings == 1) {
249		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
250
251		size = nd_mapping->size;
252	}
253
254	return sprintf(buf, "%llu\n", size);
255}
256static DEVICE_ATTR_RO(size);
257
258static ssize_t mappings_show(struct device *dev,
259		struct device_attribute *attr, char *buf)
260{
261	struct nd_region *nd_region = to_nd_region(dev);
262
263	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
264}
265static DEVICE_ATTR_RO(mappings);
266
267static ssize_t nstype_show(struct device *dev,
268		struct device_attribute *attr, char *buf)
269{
270	struct nd_region *nd_region = to_nd_region(dev);
271
272	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
273}
274static DEVICE_ATTR_RO(nstype);
275
276static ssize_t set_cookie_show(struct device *dev,
277		struct device_attribute *attr, char *buf)
278{
279	struct nd_region *nd_region = to_nd_region(dev);
280	struct nd_interleave_set *nd_set = nd_region->nd_set;
281
282	if (is_nd_pmem(dev) && nd_set)
283		/* pass, should be precluded by region_visible */;
284	else
285		return -ENXIO;
286
287	return sprintf(buf, "%#llx\n", nd_set->cookie);
288}
289static DEVICE_ATTR_RO(set_cookie);
290
291resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
292{
293	resource_size_t blk_max_overlap = 0, available, overlap;
294	int i;
295
296	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
297
298 retry:
299	available = 0;
300	overlap = blk_max_overlap;
301	for (i = 0; i < nd_region->ndr_mappings; i++) {
302		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
303		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
304
305		/* if a dimm is disabled the available capacity is zero */
306		if (!ndd)
307			return 0;
308
309		if (is_nd_pmem(&nd_region->dev)) {
310			available += nd_pmem_available_dpa(nd_region,
311					nd_mapping, &overlap);
312			if (overlap > blk_max_overlap) {
313				blk_max_overlap = overlap;
314				goto retry;
315			}
316		} else if (is_nd_blk(&nd_region->dev))
317			available += nd_blk_available_dpa(nd_region);
318	}
319
320	return available;
321}
322
323static ssize_t available_size_show(struct device *dev,
324		struct device_attribute *attr, char *buf)
325{
326	struct nd_region *nd_region = to_nd_region(dev);
327	unsigned long long available = 0;
328
329	/*
330	 * Flush in-flight updates and grab a snapshot of the available
331	 * size.  Of course, this value is potentially invalidated the
332	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
333	 * problem to not race itself.
334	 */
335	nvdimm_bus_lock(dev);
336	wait_nvdimm_bus_probe_idle(dev);
337	available = nd_region_available_dpa(nd_region);
338	nvdimm_bus_unlock(dev);
339
340	return sprintf(buf, "%llu\n", available);
341}
342static DEVICE_ATTR_RO(available_size);
343
344static ssize_t init_namespaces_show(struct device *dev,
345		struct device_attribute *attr, char *buf)
346{
347	struct nd_region_data *ndrd = dev_get_drvdata(dev);
348	ssize_t rc;
349
350	nvdimm_bus_lock(dev);
351	if (ndrd)
352		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
353	else
354		rc = -ENXIO;
355	nvdimm_bus_unlock(dev);
356
357	return rc;
358}
359static DEVICE_ATTR_RO(init_namespaces);
360
361static ssize_t namespace_seed_show(struct device *dev,
362		struct device_attribute *attr, char *buf)
363{
364	struct nd_region *nd_region = to_nd_region(dev);
365	ssize_t rc;
366
367	nvdimm_bus_lock(dev);
368	if (nd_region->ns_seed)
369		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
370	else
371		rc = sprintf(buf, "\n");
372	nvdimm_bus_unlock(dev);
373	return rc;
374}
375static DEVICE_ATTR_RO(namespace_seed);
376
377static ssize_t btt_seed_show(struct device *dev,
378		struct device_attribute *attr, char *buf)
379{
380	struct nd_region *nd_region = to_nd_region(dev);
381	ssize_t rc;
382
383	nvdimm_bus_lock(dev);
384	if (nd_region->btt_seed)
385		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
386	else
387		rc = sprintf(buf, "\n");
388	nvdimm_bus_unlock(dev);
389
390	return rc;
391}
392static DEVICE_ATTR_RO(btt_seed);
393
394static ssize_t pfn_seed_show(struct device *dev,
395		struct device_attribute *attr, char *buf)
396{
397	struct nd_region *nd_region = to_nd_region(dev);
398	ssize_t rc;
399
400	nvdimm_bus_lock(dev);
401	if (nd_region->pfn_seed)
402		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
403	else
404		rc = sprintf(buf, "\n");
405	nvdimm_bus_unlock(dev);
406
407	return rc;
408}
409static DEVICE_ATTR_RO(pfn_seed);
410
411static ssize_t dax_seed_show(struct device *dev,
412		struct device_attribute *attr, char *buf)
413{
414	struct nd_region *nd_region = to_nd_region(dev);
415	ssize_t rc;
416
417	nvdimm_bus_lock(dev);
418	if (nd_region->dax_seed)
419		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
420	else
421		rc = sprintf(buf, "\n");
422	nvdimm_bus_unlock(dev);
423
424	return rc;
425}
426static DEVICE_ATTR_RO(dax_seed);
427
428static ssize_t read_only_show(struct device *dev,
429		struct device_attribute *attr, char *buf)
430{
431	struct nd_region *nd_region = to_nd_region(dev);
432
433	return sprintf(buf, "%d\n", nd_region->ro);
434}
435
436static ssize_t read_only_store(struct device *dev,
437		struct device_attribute *attr, const char *buf, size_t len)
438{
439	bool ro;
440	int rc = strtobool(buf, &ro);
441	struct nd_region *nd_region = to_nd_region(dev);
442
443	if (rc)
444		return rc;
445
446	nd_region->ro = ro;
447	return len;
448}
449static DEVICE_ATTR_RW(read_only);
450
451static struct attribute *nd_region_attributes[] = {
452	&dev_attr_size.attr,
453	&dev_attr_nstype.attr,
454	&dev_attr_mappings.attr,
455	&dev_attr_btt_seed.attr,
456	&dev_attr_pfn_seed.attr,
457	&dev_attr_dax_seed.attr,
458	&dev_attr_read_only.attr,
459	&dev_attr_set_cookie.attr,
460	&dev_attr_available_size.attr,
461	&dev_attr_namespace_seed.attr,
462	&dev_attr_init_namespaces.attr,
463	NULL,
464};
465
466static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
467{
468	struct device *dev = container_of(kobj, typeof(*dev), kobj);
469	struct nd_region *nd_region = to_nd_region(dev);
470	struct nd_interleave_set *nd_set = nd_region->nd_set;
471	int type = nd_region_to_nstype(nd_region);
472
473	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
474		return 0;
475
476	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
477		return 0;
478
479	if (a != &dev_attr_set_cookie.attr
480			&& a != &dev_attr_available_size.attr)
481		return a->mode;
482
483	if ((type == ND_DEVICE_NAMESPACE_PMEM
484				|| type == ND_DEVICE_NAMESPACE_BLK)
485			&& a == &dev_attr_available_size.attr)
486		return a->mode;
487	else if (is_nd_pmem(dev) && nd_set)
488		return a->mode;
489
490	return 0;
491}
492
493struct attribute_group nd_region_attribute_group = {
494	.attrs = nd_region_attributes,
495	.is_visible = region_visible,
496};
497EXPORT_SYMBOL_GPL(nd_region_attribute_group);
498
499u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
500{
501	struct nd_interleave_set *nd_set = nd_region->nd_set;
502
503	if (nd_set)
504		return nd_set->cookie;
505	return 0;
506}
507
508u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
509{
510	struct nd_interleave_set *nd_set = nd_region->nd_set;
511
512	if (nd_set)
513		return nd_set->altcookie;
514	return 0;
515}
516
517void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
518{
519	struct nd_label_ent *label_ent, *e;
520
521	lockdep_assert_held(&nd_mapping->lock);
522	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
523		list_del(&label_ent->list);
524		kfree(label_ent);
525	}
526}
527
528/*
529 * Upon successful probe/remove, take/release a reference on the
530 * associated interleave set (if present), and plant new btt + namespace
531 * seeds.  Also, on the removal of a BLK region, notify the provider to
532 * disable the region.
533 */
534static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
535		struct device *dev, bool probe)
536{
537	struct nd_region *nd_region;
538
539	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
540		int i;
541
542		nd_region = to_nd_region(dev);
543		for (i = 0; i < nd_region->ndr_mappings; i++) {
544			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
545			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
546			struct nvdimm *nvdimm = nd_mapping->nvdimm;
547
548			mutex_lock(&nd_mapping->lock);
549			nd_mapping_free_labels(nd_mapping);
550			mutex_unlock(&nd_mapping->lock);
551
552			put_ndd(ndd);
553			nd_mapping->ndd = NULL;
554			if (ndd)
555				atomic_dec(&nvdimm->busy);
556		}
557
558		if (is_nd_pmem(dev))
559			return;
560	}
561	if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
562			&& probe) {
563		nd_region = to_nd_region(dev->parent);
564		nvdimm_bus_lock(dev);
565		if (nd_region->ns_seed == dev)
566			nd_region_create_ns_seed(nd_region);
567		nvdimm_bus_unlock(dev);
568	}
569	if (is_nd_btt(dev) && probe) {
570		struct nd_btt *nd_btt = to_nd_btt(dev);
571
572		nd_region = to_nd_region(dev->parent);
573		nvdimm_bus_lock(dev);
574		if (nd_region->btt_seed == dev)
575			nd_region_create_btt_seed(nd_region);
576		if (nd_region->ns_seed == &nd_btt->ndns->dev)
577			nd_region_create_ns_seed(nd_region);
578		nvdimm_bus_unlock(dev);
579	}
580	if (is_nd_pfn(dev) && probe) {
581		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
582
583		nd_region = to_nd_region(dev->parent);
584		nvdimm_bus_lock(dev);
585		if (nd_region->pfn_seed == dev)
586			nd_region_create_pfn_seed(nd_region);
587		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
588			nd_region_create_ns_seed(nd_region);
589		nvdimm_bus_unlock(dev);
590	}
591	if (is_nd_dax(dev) && probe) {
592		struct nd_dax *nd_dax = to_nd_dax(dev);
593
594		nd_region = to_nd_region(dev->parent);
595		nvdimm_bus_lock(dev);
596		if (nd_region->dax_seed == dev)
597			nd_region_create_dax_seed(nd_region);
598		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
599			nd_region_create_ns_seed(nd_region);
600		nvdimm_bus_unlock(dev);
601	}
602}
603
604void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
605{
606	nd_region_notify_driver_action(nvdimm_bus, dev, true);
607}
608
609void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
610{
611	nd_region_notify_driver_action(nvdimm_bus, dev, false);
612}
613
614static ssize_t mappingN(struct device *dev, char *buf, int n)
615{
616	struct nd_region *nd_region = to_nd_region(dev);
617	struct nd_mapping *nd_mapping;
618	struct nvdimm *nvdimm;
619
620	if (n >= nd_region->ndr_mappings)
621		return -ENXIO;
622	nd_mapping = &nd_region->mapping[n];
623	nvdimm = nd_mapping->nvdimm;
624
625	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
626			nd_mapping->start, nd_mapping->size);
627}
628
629#define REGION_MAPPING(idx) \
630static ssize_t mapping##idx##_show(struct device *dev,		\
631		struct device_attribute *attr, char *buf)	\
632{								\
633	return mappingN(dev, buf, idx);				\
634}								\
635static DEVICE_ATTR_RO(mapping##idx)
636
637/*
638 * 32 should be enough for a while, even in the presence of socket
639 * interleave a 32-way interleave set is a degenerate case.
640 */
641REGION_MAPPING(0);
642REGION_MAPPING(1);
643REGION_MAPPING(2);
644REGION_MAPPING(3);
645REGION_MAPPING(4);
646REGION_MAPPING(5);
647REGION_MAPPING(6);
648REGION_MAPPING(7);
649REGION_MAPPING(8);
650REGION_MAPPING(9);
651REGION_MAPPING(10);
652REGION_MAPPING(11);
653REGION_MAPPING(12);
654REGION_MAPPING(13);
655REGION_MAPPING(14);
656REGION_MAPPING(15);
657REGION_MAPPING(16);
658REGION_MAPPING(17);
659REGION_MAPPING(18);
660REGION_MAPPING(19);
661REGION_MAPPING(20);
662REGION_MAPPING(21);
663REGION_MAPPING(22);
664REGION_MAPPING(23);
665REGION_MAPPING(24);
666REGION_MAPPING(25);
667REGION_MAPPING(26);
668REGION_MAPPING(27);
669REGION_MAPPING(28);
670REGION_MAPPING(29);
671REGION_MAPPING(30);
672REGION_MAPPING(31);
673
674static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
675{
676	struct device *dev = container_of(kobj, struct device, kobj);
677	struct nd_region *nd_region = to_nd_region(dev);
678
679	if (n < nd_region->ndr_mappings)
680		return a->mode;
681	return 0;
682}
683
684static struct attribute *mapping_attributes[] = {
685	&dev_attr_mapping0.attr,
686	&dev_attr_mapping1.attr,
687	&dev_attr_mapping2.attr,
688	&dev_attr_mapping3.attr,
689	&dev_attr_mapping4.attr,
690	&dev_attr_mapping5.attr,
691	&dev_attr_mapping6.attr,
692	&dev_attr_mapping7.attr,
693	&dev_attr_mapping8.attr,
694	&dev_attr_mapping9.attr,
695	&dev_attr_mapping10.attr,
696	&dev_attr_mapping11.attr,
697	&dev_attr_mapping12.attr,
698	&dev_attr_mapping13.attr,
699	&dev_attr_mapping14.attr,
700	&dev_attr_mapping15.attr,
701	&dev_attr_mapping16.attr,
702	&dev_attr_mapping17.attr,
703	&dev_attr_mapping18.attr,
704	&dev_attr_mapping19.attr,
705	&dev_attr_mapping20.attr,
706	&dev_attr_mapping21.attr,
707	&dev_attr_mapping22.attr,
708	&dev_attr_mapping23.attr,
709	&dev_attr_mapping24.attr,
710	&dev_attr_mapping25.attr,
711	&dev_attr_mapping26.attr,
712	&dev_attr_mapping27.attr,
713	&dev_attr_mapping28.attr,
714	&dev_attr_mapping29.attr,
715	&dev_attr_mapping30.attr,
716	&dev_attr_mapping31.attr,
717	NULL,
718};
719
720struct attribute_group nd_mapping_attribute_group = {
721	.is_visible = mapping_visible,
722	.attrs = mapping_attributes,
723};
724EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
725
726int nd_blk_region_init(struct nd_region *nd_region)
727{
728	struct device *dev = &nd_region->dev;
729	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
730
731	if (!is_nd_blk(dev))
732		return 0;
733
734	if (nd_region->ndr_mappings < 1) {
735		dev_err(dev, "invalid BLK region\n");
736		return -ENXIO;
737	}
738
739	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
740}
741
742/**
743 * nd_region_acquire_lane - allocate and lock a lane
744 * @nd_region: region id and number of lanes possible
745 *
746 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
747 * We optimize for the common case where there are 256 lanes, one
748 * per-cpu.  For larger systems we need to lock to share lanes.  For now
749 * this implementation assumes the cost of maintaining an allocator for
750 * free lanes is on the order of the lock hold time, so it implements a
751 * static lane = cpu % num_lanes mapping.
752 *
753 * In the case of a BTT instance on top of a BLK namespace a lane may be
754 * acquired recursively.  We lock on the first instance.
755 *
756 * In the case of a BTT instance on top of PMEM, we only acquire a lane
757 * for the BTT metadata updates.
758 */
759unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
760{
761	unsigned int cpu, lane;
762
763	cpu = get_cpu();
764	if (nd_region->num_lanes < nr_cpu_ids) {
765		struct nd_percpu_lane *ndl_lock, *ndl_count;
766
767		lane = cpu % nd_region->num_lanes;
768		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
769		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
770		if (ndl_count->count++ == 0)
771			spin_lock(&ndl_lock->lock);
772	} else
773		lane = cpu;
774
775	return lane;
776}
777EXPORT_SYMBOL(nd_region_acquire_lane);
778
779void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
780{
781	if (nd_region->num_lanes < nr_cpu_ids) {
782		unsigned int cpu = get_cpu();
783		struct nd_percpu_lane *ndl_lock, *ndl_count;
784
785		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
786		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
787		if (--ndl_count->count == 0)
788			spin_unlock(&ndl_lock->lock);
789		put_cpu();
790	}
791	put_cpu();
792}
793EXPORT_SYMBOL(nd_region_release_lane);
794
795static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
796		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
797		const char *caller)
798{
799	struct nd_region *nd_region;
800	struct device *dev;
801	void *region_buf;
802	unsigned int i;
803	int ro = 0;
804
805	for (i = 0; i < ndr_desc->num_mappings; i++) {
806		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
807		struct nvdimm *nvdimm = mapping->nvdimm;
808
809		if ((mapping->start | mapping->size) % SZ_4K) {
810			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
811					caller, dev_name(&nvdimm->dev), i);
812
813			return NULL;
814		}
815
816		if (nvdimm->flags & NDD_UNARMED)
817			ro = 1;
818	}
819
820	if (dev_type == &nd_blk_device_type) {
821		struct nd_blk_region_desc *ndbr_desc;
822		struct nd_blk_region *ndbr;
823
824		ndbr_desc = to_blk_region_desc(ndr_desc);
825		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
826				* ndr_desc->num_mappings,
827				GFP_KERNEL);
828		if (ndbr) {
829			nd_region = &ndbr->nd_region;
830			ndbr->enable = ndbr_desc->enable;
831			ndbr->do_io = ndbr_desc->do_io;
832		}
833		region_buf = ndbr;
834	} else {
835		nd_region = kzalloc(sizeof(struct nd_region)
836				+ sizeof(struct nd_mapping)
837				* ndr_desc->num_mappings,
838				GFP_KERNEL);
839		region_buf = nd_region;
840	}
841
842	if (!region_buf)
843		return NULL;
844	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
845	if (nd_region->id < 0)
846		goto err_id;
847
848	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
849	if (!nd_region->lane)
850		goto err_percpu;
851
852        for (i = 0; i < nr_cpu_ids; i++) {
853		struct nd_percpu_lane *ndl;
854
855		ndl = per_cpu_ptr(nd_region->lane, i);
856		spin_lock_init(&ndl->lock);
857		ndl->count = 0;
858	}
859
860	for (i = 0; i < ndr_desc->num_mappings; i++) {
861		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
862		struct nvdimm *nvdimm = mapping->nvdimm;
863
864		nd_region->mapping[i].nvdimm = nvdimm;
865		nd_region->mapping[i].start = mapping->start;
866		nd_region->mapping[i].size = mapping->size;
867		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
868		mutex_init(&nd_region->mapping[i].lock);
869
870		get_device(&nvdimm->dev);
871	}
872	nd_region->ndr_mappings = ndr_desc->num_mappings;
873	nd_region->provider_data = ndr_desc->provider_data;
874	nd_region->nd_set = ndr_desc->nd_set;
875	nd_region->num_lanes = ndr_desc->num_lanes;
876	nd_region->flags = ndr_desc->flags;
877	nd_region->ro = ro;
878	nd_region->numa_node = ndr_desc->numa_node;
879	ida_init(&nd_region->ns_ida);
880	ida_init(&nd_region->btt_ida);
881	ida_init(&nd_region->pfn_ida);
882	ida_init(&nd_region->dax_ida);
883	dev = &nd_region->dev;
884	dev_set_name(dev, "region%d", nd_region->id);
885	dev->parent = &nvdimm_bus->dev;
886	dev->type = dev_type;
887	dev->groups = ndr_desc->attr_groups;
888	nd_region->ndr_size = resource_size(ndr_desc->res);
889	nd_region->ndr_start = ndr_desc->res->start;
890	nd_device_register(dev);
891
892	return nd_region;
893
894 err_percpu:
895	ida_simple_remove(&region_ida, nd_region->id);
896 err_id:
897	kfree(region_buf);
898	return NULL;
899}
900
901struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
902		struct nd_region_desc *ndr_desc)
903{
904	ndr_desc->num_lanes = ND_MAX_LANES;
905	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
906			__func__);
907}
908EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
909
910struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
911		struct nd_region_desc *ndr_desc)
912{
913	if (ndr_desc->num_mappings > 1)
914		return NULL;
915	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
916	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
917			__func__);
918}
919EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
920
921struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
922		struct nd_region_desc *ndr_desc)
923{
924	ndr_desc->num_lanes = ND_MAX_LANES;
925	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
926			__func__);
927}
928EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
929
930/**
931 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
932 * @nd_region: blk or interleaved pmem region
933 */
934void nvdimm_flush(struct nd_region *nd_region)
935{
936	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
937	int i, idx;
938
939	/*
940	 * Try to encourage some diversity in flush hint addresses
941	 * across cpus assuming a limited number of flush hints.
942	 */
943	idx = this_cpu_read(flush_idx);
944	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
945
946	/*
947	 * The first wmb() is needed to 'sfence' all previous writes
948	 * such that they are architecturally visible for the platform
949	 * buffer flush.  Note that we've already arranged for pmem
950	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
951	 * final wmb() ensures ordering for the NVDIMM flush write.
952	 */
953	wmb();
954	for (i = 0; i < nd_region->ndr_mappings; i++)
955		if (ndrd_get_flush_wpq(ndrd, i, 0))
956			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
957	wmb();
958}
959EXPORT_SYMBOL_GPL(nvdimm_flush);
960
961/**
962 * nvdimm_has_flush - determine write flushing requirements
963 * @nd_region: blk or interleaved pmem region
964 *
965 * Returns 1 if writes require flushing
966 * Returns 0 if writes do not require flushing
967 * Returns -ENXIO if flushing capability can not be determined
968 */
969int nvdimm_has_flush(struct nd_region *nd_region)
970{
971	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
972	int i;
973
974	/* no nvdimm == flushing capability unknown */
975	if (nd_region->ndr_mappings == 0)
976		return -ENXIO;
977
978	for (i = 0; i < nd_region->ndr_mappings; i++)
979		/* flush hints present, flushing required */
980		if (ndrd_get_flush_wpq(ndrd, i, 0))
981			return 1;
982
983	/*
984	 * The platform defines dimm devices without hints, assume
985	 * platform persistence mechanism like ADR
986	 */
987	return 0;
988}
989EXPORT_SYMBOL_GPL(nvdimm_has_flush);
990
991void __exit nd_region_devs_exit(void)
992{
993	ida_destroy(&region_ida);
994}