Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2016 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28#include "ixgbe.h"
  29#include <linux/ptp_classify.h>
  30#include <linux/clocksource.h>
  31
  32/*
  33 * The 82599 and the X540 do not have true 64bit nanosecond scale
  34 * counter registers. Instead, SYSTIME is defined by a fixed point
  35 * system which allows the user to define the scale counter increment
  36 * value at every level change of the oscillator driving the SYSTIME
  37 * value. For both devices the TIMINCA:IV field defines this
  38 * increment. On the X540 device, 31 bits are provided. However on the
  39 * 82599 only provides 24 bits. The time unit is determined by the
  40 * clock frequency of the oscillator in combination with the TIMINCA
  41 * register. When these devices link at 10Gb the oscillator has a
  42 * period of 6.4ns. In order to convert the scale counter into
  43 * nanoseconds the cyclecounter and timecounter structures are
  44 * used. The SYSTIME registers need to be converted to ns values by use
  45 * of only a right shift (division by power of 2). The following math
  46 * determines the largest incvalue that will fit into the available
  47 * bits in the TIMINCA register.
  48 *
  49 * PeriodWidth: Number of bits to store the clock period
  50 * MaxWidth: The maximum width value of the TIMINCA register
  51 * Period: The clock period for the oscillator
  52 * round(): discard the fractional portion of the calculation
  53 *
  54 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
  55 *
  56 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
  57 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
  58 *
  59 * The period also changes based on the link speed:
  60 * At 10Gb link or no link, the period remains the same.
  61 * At 1Gb link, the period is multiplied by 10. (64ns)
  62 * At 100Mb link, the period is multiplied by 100. (640ns)
  63 *
  64 * The calculated value allows us to right shift the SYSTIME register
  65 * value in order to quickly convert it into a nanosecond clock,
  66 * while allowing for the maximum possible adjustment value.
  67 *
  68 * These diagrams are only for the 10Gb link period
  69 *
  70 *           SYSTIMEH            SYSTIMEL
  71 *       +--------------+  +--------------+
  72 * X540  |      32      |  | 1 | 3 |  28  |
  73 *       *--------------+  +--------------+
  74 *        \________ 36 bits ______/  fract
  75 *
  76 *       +--------------+  +--------------+
  77 * 82599 |      32      |  | 8 | 3 |  21  |
  78 *       *--------------+  +--------------+
  79 *        \________ 43 bits ______/  fract
  80 *
  81 * The 36 bit X540 SYSTIME overflows every
  82 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
  83 *
  84 * The 43 bit 82599 SYSTIME overflows every
  85 *   2^43 * 10^-9 / 3600 = 2.4 hours
  86 */
  87#define IXGBE_INCVAL_10GB 0x66666666
  88#define IXGBE_INCVAL_1GB  0x40000000
  89#define IXGBE_INCVAL_100  0x50000000
  90
  91#define IXGBE_INCVAL_SHIFT_10GB  28
  92#define IXGBE_INCVAL_SHIFT_1GB   24
  93#define IXGBE_INCVAL_SHIFT_100   21
  94
  95#define IXGBE_INCVAL_SHIFT_82599 7
  96#define IXGBE_INCPER_SHIFT_82599 24
  97
  98#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
  99#define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
 100
 101/* half of a one second clock period, for use with PPS signal. We have to use
 102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
 103 * order to force at least 64bits of precision for shifting
 104 */
 105#define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
 106
 107/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
 108 * which contain measurements of seconds and nanoseconds respectively. This
 109 * matches the standard linux representation of time in the kernel. In addition,
 110 * the X550 also has a SYSTIMER register which represents residue, or
 111 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
 112 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
 113 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
 114 * high bit representing whether the adjustent is positive or negative. Every
 115 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
 116 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
 117 * X550's clock for purposes of SYSTIME generation is constant and not dependent
 118 * on the link speed.
 119 *
 120 *           SYSTIMEH           SYSTIMEL        SYSTIMER
 121 *       +--------------+  +--------------+  +-------------+
 122 * X550  |      32      |  |      32      |  |     32      |
 123 *       *--------------+  +--------------+  +-------------+
 124 *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
 125 *
 126 * This results in a full 96 bits to represent the clock, with 32 bits for
 127 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
 128 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
 129 * underflow of adjustments.
 130 *
 131 * The 32 bits of seconds for the X550 overflows every
 132 *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
 133 *
 134 * In order to adjust the clock frequency for the X550, the TIMINCA register is
 135 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
 136 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
 137 * the sign bit. This register enables software to calculate frequency
 138 * adjustments and apply them directly to the clock rate.
 139 *
 140 * The math for converting ppb into TIMINCA values is fairly straightforward.
 141 *   TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
 142 *
 143 * This assumes that ppb is never high enough to create a value bigger than
 144 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
 145 * value is also simple.
 146 *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
 147 *
 148 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
 149 * 12.5 nanoseconds. This means that the Max ppb is 39999999
 150 *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
 151 *         register can only hold slightly under 0.5 nanoseconds.
 152 *
 153 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
 154 * into 2^-32 units, which is
 155 *
 156 *  12.5 * 2^32 = C80000000
 157 *
 158 * Some revisions of hardware have a faster base frequency than the registers
 159 * were defined for. To fix this, we use a timecounter structure with the
 160 * proper mult and shift to convert the cycles into nanoseconds of time.
 161 */
 162#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
 163#define INCVALUE_MASK	0x7FFFFFFF
 164#define ISGN		0x80000000
 165#define MAX_TIMADJ	0x7FFFFFFF
 166
 167/**
 168 * ixgbe_ptp_setup_sdp_x540
 169 * @hw: the hardware private structure
 170 *
 171 * this function enables or disables the clock out feature on SDP0 for
 172 * the X540 device. It will create a 1second periodic output that can
 173 * be used as the PPS (via an interrupt).
 174 *
 175 * It calculates when the systime will be on an exact second, and then
 176 * aligns the start of the PPS signal to that value. The shift is
 177 * necessary because it can change based on the link speed.
 178 */
 179static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter)
 180{
 181	struct ixgbe_hw *hw = &adapter->hw;
 182	int shift = adapter->hw_cc.shift;
 183	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
 184	u64 ns = 0, clock_edge = 0;
 185
 186	/* disable the pin first */
 187	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
 188	IXGBE_WRITE_FLUSH(hw);
 189
 190	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
 191		return;
 192
 193	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
 194
 195	/* enable the SDP0 pin as output, and connected to the
 196	 * native function for Timesync (ClockOut)
 197	 */
 198	esdp |= IXGBE_ESDP_SDP0_DIR |
 199		IXGBE_ESDP_SDP0_NATIVE;
 200
 201	/* enable the Clock Out feature on SDP0, and allow
 202	 * interrupts to occur when the pin changes
 203	 */
 204	tsauxc = IXGBE_TSAUXC_EN_CLK |
 205		 IXGBE_TSAUXC_SYNCLK |
 206		 IXGBE_TSAUXC_SDP0_INT;
 207
 208	/* clock period (or pulse length) */
 209	clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
 210	clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
 211
 212	/* Account for the cyclecounter wrap-around value by
 213	 * using the converted ns value of the current time to
 214	 * check for when the next aligned second would occur.
 215	 */
 216	clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
 217	clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
 218	ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
 219
 220	div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
 221	clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
 222
 223	/* specify the initial clock start time */
 224	trgttiml = (u32)clock_edge;
 225	trgttimh = (u32)(clock_edge >> 32);
 226
 227	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
 228	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
 229	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
 230	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
 231
 232	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
 233	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
 234
 235	IXGBE_WRITE_FLUSH(hw);
 236}
 237
 238/**
 239 * ixgbe_ptp_read_X550 - read cycle counter value
 240 * @hw_cc: cyclecounter structure
 241 *
 242 * This function reads SYSTIME registers. It is called by the cyclecounter
 243 * structure to convert from internal representation into nanoseconds. We need
 244 * this for X550 since some skews do not have expected clock frequency and
 245 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
 246 * "cycles", rather than seconds and nanoseconds.
 247 */
 248static u64 ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc)
 249{
 250	struct ixgbe_adapter *adapter =
 251			container_of(hw_cc, struct ixgbe_adapter, hw_cc);
 252	struct ixgbe_hw *hw = &adapter->hw;
 253	struct timespec64 ts;
 254
 255	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
 256	 * Some revisions of hardware run at a higher frequency and so the
 257	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
 258	 * here is used for its math/conversions but does not necessarily
 259	 * represent nominal time.
 260	 *
 261	 * It should be noted that this cyclecounter will overflow at a
 262	 * non-bitmask field since we have to convert our billions of cycles
 263	 * into an actual cycles count. This results in some possible weird
 264	 * situations at high cycle counter stamps. However given that 32 bits
 265	 * of "seconds" is ~138 years this isn't a problem. Even at the
 266	 * increased frequency of some revisions, this is still ~103 years.
 267	 * Since the SYSTIME values start at 0 and we never write them, it is
 268	 * highly unlikely for the cyclecounter to overflow in practice.
 269	 */
 270	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
 271	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
 272	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
 273
 274	return (u64)timespec64_to_ns(&ts);
 275}
 276
 277/**
 278 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
 279 * @cc: the cyclecounter structure
 280 *
 281 * this function reads the cyclecounter registers and is called by the
 282 * cyclecounter structure used to construct a ns counter from the
 283 * arbitrary fixed point registers
 284 */
 285static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
 286{
 287	struct ixgbe_adapter *adapter =
 288		container_of(cc, struct ixgbe_adapter, hw_cc);
 289	struct ixgbe_hw *hw = &adapter->hw;
 290	u64 stamp = 0;
 291
 292	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
 293	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
 294
 295	return stamp;
 296}
 297
 298/**
 299 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
 300 * @adapter: private adapter structure
 301 * @hwtstamp: stack timestamp structure
 302 * @systim: unsigned 64bit system time value
 303 *
 304 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
 305 * which can be used by the stack's ptp functions.
 306 *
 307 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
 308 * registers. However, it does not need to protect against the Rx or Tx
 309 * timestamp registers, as there can't be a new timestamp until the old one is
 310 * unlatched by reading.
 311 *
 312 * In addition to the timestamp in hardware, some controllers need a software
 313 * overflow cyclecounter, and this function takes this into account as well.
 314 **/
 315static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
 316					  struct skb_shared_hwtstamps *hwtstamp,
 317					  u64 timestamp)
 318{
 319	unsigned long flags;
 320	struct timespec64 systime;
 321	u64 ns;
 322
 323	memset(hwtstamp, 0, sizeof(*hwtstamp));
 324
 325	switch (adapter->hw.mac.type) {
 326	/* X550 and later hardware supposedly represent time using a seconds
 327	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
 328	 * to convert the timestamp into cycles before it can be fed to the
 329	 * cyclecounter. We need an actual cyclecounter because some revisions
 330	 * of hardware run at a higher frequency and thus the counter does
 331	 * not represent seconds/nanoseconds. Instead it can be thought of as
 332	 * cycles and billions of cycles.
 333	 */
 334	case ixgbe_mac_X550:
 335	case ixgbe_mac_X550EM_x:
 336	case ixgbe_mac_x550em_a:
 337		/* Upper 32 bits represent billions of cycles, lower 32 bits
 338		 * represent cycles. However, we use timespec64_to_ns for the
 339		 * correct math even though the units haven't been corrected
 340		 * yet.
 341		 */
 342		systime.tv_sec = timestamp >> 32;
 343		systime.tv_nsec = timestamp & 0xFFFFFFFF;
 344
 345		timestamp = timespec64_to_ns(&systime);
 346		break;
 347	default:
 348		break;
 349	}
 350
 351	spin_lock_irqsave(&adapter->tmreg_lock, flags);
 352	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
 353	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 354
 355	hwtstamp->hwtstamp = ns_to_ktime(ns);
 356}
 357
 358/**
 359 * ixgbe_ptp_adjfreq_82599
 360 * @ptp: the ptp clock structure
 361 * @ppb: parts per billion adjustment from base
 362 *
 363 * adjust the frequency of the ptp cycle counter by the
 364 * indicated ppb from the base frequency.
 365 */
 366static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
 367{
 368	struct ixgbe_adapter *adapter =
 369		container_of(ptp, struct ixgbe_adapter, ptp_caps);
 370	struct ixgbe_hw *hw = &adapter->hw;
 371	u64 freq, incval;
 372	u32 diff;
 373	int neg_adj = 0;
 374
 375	if (ppb < 0) {
 376		neg_adj = 1;
 377		ppb = -ppb;
 378	}
 379
 380	smp_mb();
 381	incval = ACCESS_ONCE(adapter->base_incval);
 382
 383	freq = incval;
 384	freq *= ppb;
 385	diff = div_u64(freq, 1000000000ULL);
 386
 387	incval = neg_adj ? (incval - diff) : (incval + diff);
 388
 389	switch (hw->mac.type) {
 390	case ixgbe_mac_X540:
 391		if (incval > 0xFFFFFFFFULL)
 392			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
 393		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
 394		break;
 395	case ixgbe_mac_82599EB:
 396		if (incval > 0x00FFFFFFULL)
 397			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
 398		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
 399				BIT(IXGBE_INCPER_SHIFT_82599) |
 400				((u32)incval & 0x00FFFFFFUL));
 401		break;
 402	default:
 403		break;
 404	}
 405
 406	return 0;
 407}
 408
 409/**
 410 * ixgbe_ptp_adjfreq_X550
 411 * @ptp: the ptp clock structure
 412 * @ppb: parts per billion adjustment from base
 413 *
 414 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
 415 * frequency
 416 */
 417static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
 418{
 419	struct ixgbe_adapter *adapter =
 420			container_of(ptp, struct ixgbe_adapter, ptp_caps);
 421	struct ixgbe_hw *hw = &adapter->hw;
 422	int neg_adj = 0;
 423	u64 rate = IXGBE_X550_BASE_PERIOD;
 424	u32 inca;
 425
 426	if (ppb < 0) {
 427		neg_adj = 1;
 428		ppb = -ppb;
 429	}
 430	rate *= ppb;
 431	rate = div_u64(rate, 1000000000ULL);
 432
 433	/* warn if rate is too large */
 434	if (rate >= INCVALUE_MASK)
 435		e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
 436
 437	inca = rate & INCVALUE_MASK;
 438	if (neg_adj)
 439		inca |= ISGN;
 440
 441	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
 442
 443	return 0;
 444}
 445
 446/**
 447 * ixgbe_ptp_adjtime
 448 * @ptp: the ptp clock structure
 449 * @delta: offset to adjust the cycle counter by
 450 *
 451 * adjust the timer by resetting the timecounter structure.
 452 */
 453static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 454{
 455	struct ixgbe_adapter *adapter =
 456		container_of(ptp, struct ixgbe_adapter, ptp_caps);
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&adapter->tmreg_lock, flags);
 460	timecounter_adjtime(&adapter->hw_tc, delta);
 461	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 462
 463	if (adapter->ptp_setup_sdp)
 464		adapter->ptp_setup_sdp(adapter);
 465
 466	return 0;
 467}
 468
 469/**
 470 * ixgbe_ptp_gettime
 471 * @ptp: the ptp clock structure
 472 * @ts: timespec structure to hold the current time value
 473 *
 474 * read the timecounter and return the correct value on ns,
 475 * after converting it into a struct timespec.
 476 */
 477static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
 478{
 479	struct ixgbe_adapter *adapter =
 480		container_of(ptp, struct ixgbe_adapter, ptp_caps);
 481	unsigned long flags;
 482	u64 ns;
 483
 484	spin_lock_irqsave(&adapter->tmreg_lock, flags);
 485	ns = timecounter_read(&adapter->hw_tc);
 486	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 487
 488	*ts = ns_to_timespec64(ns);
 489
 490	return 0;
 491}
 492
 493/**
 494 * ixgbe_ptp_settime
 495 * @ptp: the ptp clock structure
 496 * @ts: the timespec containing the new time for the cycle counter
 497 *
 498 * reset the timecounter to use a new base value instead of the kernel
 499 * wall timer value.
 500 */
 501static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
 502			     const struct timespec64 *ts)
 503{
 504	struct ixgbe_adapter *adapter =
 505		container_of(ptp, struct ixgbe_adapter, ptp_caps);
 506	unsigned long flags;
 507	u64 ns = timespec64_to_ns(ts);
 508
 509	/* reset the timecounter */
 510	spin_lock_irqsave(&adapter->tmreg_lock, flags);
 511	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
 512	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 513
 514	if (adapter->ptp_setup_sdp)
 515		adapter->ptp_setup_sdp(adapter);
 516	return 0;
 517}
 518
 519/**
 520 * ixgbe_ptp_feature_enable
 521 * @ptp: the ptp clock structure
 522 * @rq: the requested feature to change
 523 * @on: whether to enable or disable the feature
 524 *
 525 * enable (or disable) ancillary features of the phc subsystem.
 526 * our driver only supports the PPS feature on the X540
 527 */
 528static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
 529				    struct ptp_clock_request *rq, int on)
 530{
 531	struct ixgbe_adapter *adapter =
 532		container_of(ptp, struct ixgbe_adapter, ptp_caps);
 533
 534	/**
 535	 * When PPS is enabled, unmask the interrupt for the ClockOut
 536	 * feature, so that the interrupt handler can send the PPS
 537	 * event when the clock SDP triggers. Clear mask when PPS is
 538	 * disabled
 539	 */
 540	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
 541		return -ENOTSUPP;
 542
 543	if (on)
 544		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
 545	else
 546		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
 547
 548	adapter->ptp_setup_sdp(adapter);
 549	return 0;
 550}
 551
 552/**
 553 * ixgbe_ptp_check_pps_event
 554 * @adapter: the private adapter structure
 555 *
 556 * This function is called by the interrupt routine when checking for
 557 * interrupts. It will check and handle a pps event.
 558 */
 559void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
 560{
 561	struct ixgbe_hw *hw = &adapter->hw;
 562	struct ptp_clock_event event;
 563
 564	event.type = PTP_CLOCK_PPS;
 565
 566	/* this check is necessary in case the interrupt was enabled via some
 567	 * alternative means (ex. debug_fs). Better to check here than
 568	 * everywhere that calls this function.
 569	 */
 570	if (!adapter->ptp_clock)
 571		return;
 572
 573	switch (hw->mac.type) {
 574	case ixgbe_mac_X540:
 575		ptp_clock_event(adapter->ptp_clock, &event);
 576		break;
 577	default:
 578		break;
 579	}
 580}
 581
 582/**
 583 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
 584 * @adapter: private adapter struct
 585 *
 586 * this watchdog task periodically reads the timecounter
 587 * in order to prevent missing when the system time registers wrap
 588 * around. This needs to be run approximately twice a minute.
 589 */
 590void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
 591{
 592	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
 593					     IXGBE_OVERFLOW_PERIOD);
 594	struct timespec64 ts;
 595
 596	if (timeout) {
 597		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
 598		adapter->last_overflow_check = jiffies;
 599	}
 600}
 601
 602/**
 603 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
 604 * @adapter: private network adapter structure
 605 *
 606 * this watchdog task is scheduled to detect error case where hardware has
 607 * dropped an Rx packet that was timestamped when the ring is full. The
 608 * particular error is rare but leaves the device in a state unable to timestamp
 609 * any future packets.
 610 */
 611void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
 612{
 613	struct ixgbe_hw *hw = &adapter->hw;
 614	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
 615	struct ixgbe_ring *rx_ring;
 616	unsigned long rx_event;
 617	int n;
 618
 619	/* if we don't have a valid timestamp in the registers, just update the
 620	 * timeout counter and exit
 621	 */
 622	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
 623		adapter->last_rx_ptp_check = jiffies;
 624		return;
 625	}
 626
 627	/* determine the most recent watchdog or rx_timestamp event */
 628	rx_event = adapter->last_rx_ptp_check;
 629	for (n = 0; n < adapter->num_rx_queues; n++) {
 630		rx_ring = adapter->rx_ring[n];
 631		if (time_after(rx_ring->last_rx_timestamp, rx_event))
 632			rx_event = rx_ring->last_rx_timestamp;
 633	}
 634
 635	/* only need to read the high RXSTMP register to clear the lock */
 636	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 637		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
 638		adapter->last_rx_ptp_check = jiffies;
 639
 640		adapter->rx_hwtstamp_cleared++;
 641		e_warn(drv, "clearing RX Timestamp hang\n");
 642	}
 643}
 644
 645/**
 646 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
 647 * @adapter: the private adapter structure
 648 *
 649 * This function should be called whenever the state related to a Tx timestamp
 650 * needs to be cleared. This helps ensure that all related bits are reset for
 651 * the next Tx timestamp event.
 652 */
 653static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
 654{
 655	struct ixgbe_hw *hw = &adapter->hw;
 656
 657	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
 658	if (adapter->ptp_tx_skb) {
 659		dev_kfree_skb_any(adapter->ptp_tx_skb);
 660		adapter->ptp_tx_skb = NULL;
 661	}
 662	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
 663}
 664
 665/**
 666 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 667 * @adapter: the private adapter struct
 668 *
 669 * if the timestamp is valid, we convert it into the timecounter ns
 670 * value, then store that result into the shhwtstamps structure which
 671 * is passed up the network stack
 672 */
 673static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
 674{
 675	struct ixgbe_hw *hw = &adapter->hw;
 676	struct skb_shared_hwtstamps shhwtstamps;
 677	u64 regval = 0;
 678
 679	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
 680	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
 681
 682	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
 683	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
 684
 685	ixgbe_ptp_clear_tx_timestamp(adapter);
 686}
 687
 688/**
 689 * ixgbe_ptp_tx_hwtstamp_work
 690 * @work: pointer to the work struct
 691 *
 692 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
 693 * timestamp has been taken for the current skb. It is necessary, because the
 694 * descriptor's "done" bit does not correlate with the timestamp event.
 695 */
 696static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
 697{
 698	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
 699						     ptp_tx_work);
 700	struct ixgbe_hw *hw = &adapter->hw;
 701	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 702					      IXGBE_PTP_TX_TIMEOUT);
 703	u32 tsynctxctl;
 704
 705	/* we have to have a valid skb to poll for a timestamp */
 706	if (!adapter->ptp_tx_skb) {
 707		ixgbe_ptp_clear_tx_timestamp(adapter);
 708		return;
 709	}
 710
 711	/* stop polling once we have a valid timestamp */
 712	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
 713	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
 714		ixgbe_ptp_tx_hwtstamp(adapter);
 715		return;
 716	}
 717
 718	if (timeout) {
 719		ixgbe_ptp_clear_tx_timestamp(adapter);
 720		adapter->tx_hwtstamp_timeouts++;
 721		e_warn(drv, "clearing Tx Timestamp hang\n");
 722	} else {
 723		/* reschedule to keep checking if it's not available yet */
 724		schedule_work(&adapter->ptp_tx_work);
 725	}
 726}
 727
 728/**
 729 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
 730 * @q_vector: structure containing interrupt and ring information
 731 * @skb: the packet
 732 *
 733 * This function will be called by the Rx routine of the timestamp for this
 734 * packet is stored in the buffer. The value is stored in little endian format
 735 * starting at the end of the packet data.
 736 */
 737void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
 738			   struct sk_buff *skb)
 739{
 740	__le64 regval;
 741
 742	/* copy the bits out of the skb, and then trim the skb length */
 743	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
 744		      IXGBE_TS_HDR_LEN);
 745	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
 746
 747	/* The timestamp is recorded in little endian format, and is stored at
 748	 * the end of the packet.
 749	 *
 750	 * DWORD: N              N + 1      N + 2
 751	 * Field: End of Packet  SYSTIMH    SYSTIML
 752	 */
 753	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
 754				      le64_to_cpu(regval));
 755}
 756
 757/**
 758 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
 759 * @q_vector: structure containing interrupt and ring information
 760 * @skb: particular skb to send timestamp with
 761 *
 762 * if the timestamp is valid, we convert it into the timecounter ns
 763 * value, then store that result into the shhwtstamps structure which
 764 * is passed up the network stack
 765 */
 766void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
 767			   struct sk_buff *skb)
 768{
 769	struct ixgbe_adapter *adapter;
 770	struct ixgbe_hw *hw;
 771	u64 regval = 0;
 772	u32 tsyncrxctl;
 773
 774	/* we cannot process timestamps on a ring without a q_vector */
 775	if (!q_vector || !q_vector->adapter)
 776		return;
 777
 778	adapter = q_vector->adapter;
 779	hw = &adapter->hw;
 780
 781	/* Read the tsyncrxctl register afterwards in order to prevent taking an
 782	 * I/O hit on every packet.
 783	 */
 784
 785	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
 786	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
 787		return;
 788
 789	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
 790	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
 791
 792	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 793}
 794
 795int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
 796{
 797	struct hwtstamp_config *config = &adapter->tstamp_config;
 798
 799	return copy_to_user(ifr->ifr_data, config,
 800			    sizeof(*config)) ? -EFAULT : 0;
 801}
 802
 803/**
 804 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
 805 * @adapter: the private ixgbe adapter structure
 806 * @config: the hwtstamp configuration requested
 807 *
 808 * Outgoing time stamping can be enabled and disabled. Play nice and
 809 * disable it when requested, although it shouldn't cause any overhead
 810 * when no packet needs it. At most one packet in the queue may be
 811 * marked for time stamping, otherwise it would be impossible to tell
 812 * for sure to which packet the hardware time stamp belongs.
 813 *
 814 * Incoming time stamping has to be configured via the hardware
 815 * filters. Not all combinations are supported, in particular event
 816 * type has to be specified. Matching the kind of event packet is
 817 * not supported, with the exception of "all V2 events regardless of
 818 * level 2 or 4".
 819 *
 820 * Since hardware always timestamps Path delay packets when timestamping V2
 821 * packets, regardless of the type specified in the register, only use V2
 822 * Event mode. This more accurately tells the user what the hardware is going
 823 * to do anyways.
 824 *
 825 * Note: this may modify the hwtstamp configuration towards a more general
 826 * mode, if required to support the specifically requested mode.
 827 */
 828static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
 829				 struct hwtstamp_config *config)
 830{
 831	struct ixgbe_hw *hw = &adapter->hw;
 832	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
 833	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
 834	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
 835	bool is_l2 = false;
 836	u32 regval;
 837
 838	/* reserved for future extensions */
 839	if (config->flags)
 840		return -EINVAL;
 841
 842	switch (config->tx_type) {
 843	case HWTSTAMP_TX_OFF:
 844		tsync_tx_ctl = 0;
 845	case HWTSTAMP_TX_ON:
 846		break;
 847	default:
 848		return -ERANGE;
 849	}
 850
 851	switch (config->rx_filter) {
 852	case HWTSTAMP_FILTER_NONE:
 853		tsync_rx_ctl = 0;
 854		tsync_rx_mtrl = 0;
 855		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
 856				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
 857		break;
 858	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 859		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
 860		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
 861		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
 862				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
 863		break;
 864	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 865		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
 866		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
 867		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
 868				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
 869		break;
 870	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 871	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 872	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 873	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 874	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 875	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 876	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 877	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 878	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 879		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
 880		is_l2 = true;
 881		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 882		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
 883				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
 884		break;
 885	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 886	case HWTSTAMP_FILTER_ALL:
 887		/* The X550 controller is capable of timestamping all packets,
 888		 * which allows it to accept any filter.
 889		 */
 890		if (hw->mac.type >= ixgbe_mac_X550) {
 891			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
 892			config->rx_filter = HWTSTAMP_FILTER_ALL;
 893			adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
 894			break;
 895		}
 896		/* fall through */
 897	default:
 898		/*
 899		 * register RXMTRL must be set in order to do V1 packets,
 900		 * therefore it is not possible to time stamp both V1 Sync and
 901		 * Delay_Req messages and hardware does not support
 902		 * timestamping all packets => return error
 903		 */
 904		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
 905				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
 906		config->rx_filter = HWTSTAMP_FILTER_NONE;
 907		return -ERANGE;
 908	}
 909
 910	if (hw->mac.type == ixgbe_mac_82598EB) {
 911		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
 912				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
 913		if (tsync_rx_ctl | tsync_tx_ctl)
 914			return -ERANGE;
 915		return 0;
 916	}
 917
 918	/* Per-packet timestamping only works if the filter is set to all
 919	 * packets. Since this is desired, always timestamp all packets as long
 920	 * as any Rx filter was configured.
 921	 */
 922	switch (hw->mac.type) {
 923	case ixgbe_mac_X550:
 924	case ixgbe_mac_X550EM_x:
 925	case ixgbe_mac_x550em_a:
 926		/* enable timestamping all packets only if at least some
 927		 * packets were requested. Otherwise, play nice and disable
 928		 * timestamping
 929		 */
 930		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
 931			break;
 932
 933		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
 934			       IXGBE_TSYNCRXCTL_TYPE_ALL |
 935			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
 936		config->rx_filter = HWTSTAMP_FILTER_ALL;
 937		adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
 938		adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
 939		is_l2 = true;
 940		break;
 941	default:
 942		break;
 943	}
 944
 945	/* define ethertype filter for timestamping L2 packets */
 946	if (is_l2)
 947		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
 948				(IXGBE_ETQF_FILTER_EN | /* enable filter */
 949				 IXGBE_ETQF_1588 | /* enable timestamping */
 950				 ETH_P_1588));     /* 1588 eth protocol type */
 951	else
 952		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
 953
 954	/* enable/disable TX */
 955	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
 956	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
 957	regval |= tsync_tx_ctl;
 958	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
 959
 960	/* enable/disable RX */
 961	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
 962	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
 963	regval |= tsync_rx_ctl;
 964	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
 965
 966	/* define which PTP packets are time stamped */
 967	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
 968
 969	IXGBE_WRITE_FLUSH(hw);
 970
 971	/* clear TX/RX time stamp registers, just to be sure */
 972	ixgbe_ptp_clear_tx_timestamp(adapter);
 973	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
 974
 975	return 0;
 976}
 977
 978/**
 979 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
 980 * @adapter: pointer to adapter struct
 981 * @ifreq: ioctl data
 982 *
 983 * Set hardware to requested mode. If unsupported, return an error with no
 984 * changes. Otherwise, store the mode for future reference.
 985 */
 986int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
 987{
 988	struct hwtstamp_config config;
 989	int err;
 990
 991	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 992		return -EFAULT;
 993
 994	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
 995	if (err)
 996		return err;
 997
 998	/* save these settings for future reference */
 999	memcpy(&adapter->tstamp_config, &config,
1000	       sizeof(adapter->tstamp_config));
1001
1002	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1003		-EFAULT : 0;
1004}
1005
1006static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1007					u32 *shift, u32 *incval)
1008{
1009	/**
1010	 * Scale the NIC cycle counter by a large factor so that
1011	 * relatively small corrections to the frequency can be added
1012	 * or subtracted. The drawbacks of a large factor include
1013	 * (a) the clock register overflows more quickly, (b) the cycle
1014	 * counter structure must be able to convert the systime value
1015	 * to nanoseconds using only a multiplier and a right-shift,
1016	 * and (c) the value must fit within the timinca register space
1017	 * => math based on internal DMA clock rate and available bits
1018	 *
1019	 * Note that when there is no link, internal DMA clock is same as when
1020	 * link speed is 10Gb. Set the registers correctly even when link is
1021	 * down to preserve the clock setting
1022	 */
1023	switch (adapter->link_speed) {
1024	case IXGBE_LINK_SPEED_100_FULL:
1025		*shift = IXGBE_INCVAL_SHIFT_100;
1026		*incval = IXGBE_INCVAL_100;
1027		break;
1028	case IXGBE_LINK_SPEED_1GB_FULL:
1029		*shift = IXGBE_INCVAL_SHIFT_1GB;
1030		*incval = IXGBE_INCVAL_1GB;
1031		break;
1032	case IXGBE_LINK_SPEED_10GB_FULL:
1033	default:
1034		*shift = IXGBE_INCVAL_SHIFT_10GB;
1035		*incval = IXGBE_INCVAL_10GB;
1036		break;
1037	}
1038}
1039
1040/**
1041 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1042 * @adapter: pointer to the adapter structure
1043 *
1044 * This function should be called to set the proper values for the TIMINCA
1045 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1046 * is. It does not directly modify SYSTIME registers or the timecounter
1047 * structure. It should be called whenever a new TIMINCA value is necessary,
1048 * such as during initialization or when the link speed changes.
1049 */
1050void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1051{
1052	struct ixgbe_hw *hw = &adapter->hw;
1053	struct cyclecounter cc;
1054	unsigned long flags;
1055	u32 incval = 0;
1056	u32 tsauxc = 0;
1057	u32 fuse0 = 0;
1058
1059	/* For some of the boards below this mask is technically incorrect.
1060	 * The timestamp mask overflows at approximately 61bits. However the
1061	 * particular hardware does not overflow on an even bitmask value.
1062	 * Instead, it overflows due to conversion of upper 32bits billions of
1063	 * cycles. Timecounters are not really intended for this purpose so
1064	 * they do not properly function if the overflow point isn't 2^N-1.
1065	 * However, the actual SYSTIME values in question take ~138 years to
1066	 * overflow. In practice this means they won't actually overflow. A
1067	 * proper fix to this problem would require modification of the
1068	 * timecounter delta calculations.
1069	 */
1070	cc.mask = CLOCKSOURCE_MASK(64);
1071	cc.mult = 1;
1072	cc.shift = 0;
1073
1074	switch (hw->mac.type) {
1075	case ixgbe_mac_X550EM_x:
1076		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1077		 * designed to represent seconds and nanoseconds when this is
1078		 * the case. However, some revisions of hardware have a 400Mhz
1079		 * clock and we have to compensate for this frequency
1080		 * variation using corrected mult and shift values.
1081		 */
1082		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1083		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1084			cc.mult = 3;
1085			cc.shift = 2;
1086		}
1087		/* fallthrough */
1088	case ixgbe_mac_x550em_a:
1089	case ixgbe_mac_X550:
1090		cc.read = ixgbe_ptp_read_X550;
1091
1092		/* enable SYSTIME counter */
1093		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1094		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1095		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1096		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1097		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1098				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1099		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1100		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1101
1102		IXGBE_WRITE_FLUSH(hw);
1103		break;
1104	case ixgbe_mac_X540:
1105		cc.read = ixgbe_ptp_read_82599;
1106
1107		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1108		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1109		break;
1110	case ixgbe_mac_82599EB:
1111		cc.read = ixgbe_ptp_read_82599;
1112
1113		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1114		incval >>= IXGBE_INCVAL_SHIFT_82599;
1115		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1116		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1117				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1118		break;
1119	default:
1120		/* other devices aren't supported */
1121		return;
1122	}
1123
1124	/* update the base incval used to calculate frequency adjustment */
1125	ACCESS_ONCE(adapter->base_incval) = incval;
1126	smp_mb();
1127
1128	/* need lock to prevent incorrect read while modifying cyclecounter */
1129	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1130	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1131	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1132}
1133
1134/**
1135 * ixgbe_ptp_reset
1136 * @adapter: the ixgbe private board structure
1137 *
1138 * When the MAC resets, all the hardware bits for timesync are reset. This
1139 * function is used to re-enable the device for PTP based on current settings.
1140 * We do lose the current clock time, so just reset the cyclecounter to the
1141 * system real clock time.
1142 *
1143 * This function will maintain hwtstamp_config settings, and resets the SDP
1144 * output if it was enabled.
1145 */
1146void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1147{
1148	struct ixgbe_hw *hw = &adapter->hw;
1149	unsigned long flags;
1150
1151	/* reset the hardware timestamping mode */
1152	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1153
1154	/* 82598 does not support PTP */
1155	if (hw->mac.type == ixgbe_mac_82598EB)
1156		return;
1157
1158	ixgbe_ptp_start_cyclecounter(adapter);
1159
1160	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1161	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1162			 ktime_to_ns(ktime_get_real()));
1163	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1164
1165	adapter->last_overflow_check = jiffies;
1166
1167	/* Now that the shift has been calculated and the systime
1168	 * registers reset, (re-)enable the Clock out feature
1169	 */
1170	if (adapter->ptp_setup_sdp)
1171		adapter->ptp_setup_sdp(adapter);
1172}
1173
1174/**
1175 * ixgbe_ptp_create_clock
1176 * @adapter: the ixgbe private adapter structure
1177 *
1178 * This function performs setup of the user entry point function table and
1179 * initializes the PTP clock device, which is used to access the clock-like
1180 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1181 * reuse a previously initialized clock (such as during a suspend/resume
1182 * cycle).
1183 */
1184static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1185{
1186	struct net_device *netdev = adapter->netdev;
1187	long err;
1188
1189	/* do nothing if we already have a clock device */
1190	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1191		return 0;
1192
1193	switch (adapter->hw.mac.type) {
1194	case ixgbe_mac_X540:
1195		snprintf(adapter->ptp_caps.name,
1196			 sizeof(adapter->ptp_caps.name),
1197			 "%s", netdev->name);
1198		adapter->ptp_caps.owner = THIS_MODULE;
1199		adapter->ptp_caps.max_adj = 250000000;
1200		adapter->ptp_caps.n_alarm = 0;
1201		adapter->ptp_caps.n_ext_ts = 0;
1202		adapter->ptp_caps.n_per_out = 0;
1203		adapter->ptp_caps.pps = 1;
1204		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1205		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1206		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1207		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1208		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1209		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540;
1210		break;
1211	case ixgbe_mac_82599EB:
1212		snprintf(adapter->ptp_caps.name,
1213			 sizeof(adapter->ptp_caps.name),
1214			 "%s", netdev->name);
1215		adapter->ptp_caps.owner = THIS_MODULE;
1216		adapter->ptp_caps.max_adj = 250000000;
1217		adapter->ptp_caps.n_alarm = 0;
1218		adapter->ptp_caps.n_ext_ts = 0;
1219		adapter->ptp_caps.n_per_out = 0;
1220		adapter->ptp_caps.pps = 0;
1221		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1222		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1223		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1224		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1225		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1226		break;
1227	case ixgbe_mac_X550:
1228	case ixgbe_mac_X550EM_x:
1229	case ixgbe_mac_x550em_a:
1230		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1231		adapter->ptp_caps.owner = THIS_MODULE;
1232		adapter->ptp_caps.max_adj = 30000000;
1233		adapter->ptp_caps.n_alarm = 0;
1234		adapter->ptp_caps.n_ext_ts = 0;
1235		adapter->ptp_caps.n_per_out = 0;
1236		adapter->ptp_caps.pps = 0;
1237		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1238		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1239		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1240		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1241		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1242		adapter->ptp_setup_sdp = NULL;
1243		break;
1244	default:
1245		adapter->ptp_clock = NULL;
1246		adapter->ptp_setup_sdp = NULL;
1247		return -EOPNOTSUPP;
1248	}
1249
1250	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1251						&adapter->pdev->dev);
1252	if (IS_ERR(adapter->ptp_clock)) {
1253		err = PTR_ERR(adapter->ptp_clock);
1254		adapter->ptp_clock = NULL;
1255		e_dev_err("ptp_clock_register failed\n");
1256		return err;
1257	} else if (adapter->ptp_clock)
1258		e_dev_info("registered PHC device on %s\n", netdev->name);
1259
1260	/* set default timestamp mode to disabled here. We do this in
1261	 * create_clock instead of init, because we don't want to override the
1262	 * previous settings during a resume cycle.
1263	 */
1264	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1265	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1266
1267	return 0;
1268}
1269
1270/**
1271 * ixgbe_ptp_init
1272 * @adapter: the ixgbe private adapter structure
1273 *
1274 * This function performs the required steps for enabling PTP
1275 * support. If PTP support has already been loaded it simply calls the
1276 * cyclecounter init routine and exits.
1277 */
1278void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1279{
1280	/* initialize the spin lock first since we can't control when a user
1281	 * will call the entry functions once we have initialized the clock
1282	 * device
1283	 */
1284	spin_lock_init(&adapter->tmreg_lock);
1285
1286	/* obtain a PTP device, or re-use an existing device */
1287	if (ixgbe_ptp_create_clock(adapter))
1288		return;
1289
1290	/* we have a clock so we can initialize work now */
1291	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1292
1293	/* reset the PTP related hardware bits */
1294	ixgbe_ptp_reset(adapter);
1295
1296	/* enter the IXGBE_PTP_RUNNING state */
1297	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1298
1299	return;
1300}
1301
1302/**
1303 * ixgbe_ptp_suspend - stop PTP work items
1304 * @ adapter: pointer to adapter struct
1305 *
1306 * this function suspends PTP activity, and prevents more PTP work from being
1307 * generated, but does not destroy the PTP clock device.
1308 */
1309void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1310{
1311	/* Leave the IXGBE_PTP_RUNNING state. */
1312	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1313		return;
1314
1315	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1316	if (adapter->ptp_setup_sdp)
1317		adapter->ptp_setup_sdp(adapter);
1318
1319	/* ensure that we cancel any pending PTP Tx work item in progress */
1320	cancel_work_sync(&adapter->ptp_tx_work);
1321	ixgbe_ptp_clear_tx_timestamp(adapter);
1322}
1323
1324/**
1325 * ixgbe_ptp_stop - close the PTP device
1326 * @adapter: pointer to adapter struct
1327 *
1328 * completely destroy the PTP device, should only be called when the device is
1329 * being fully closed.
1330 */
1331void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1332{
1333	/* first, suspend PTP activity */
1334	ixgbe_ptp_suspend(adapter);
1335
1336	/* disable the PTP clock device */
1337	if (adapter->ptp_clock) {
1338		ptp_clock_unregister(adapter->ptp_clock);
1339		adapter->ptp_clock = NULL;
1340		e_dev_info("removed PHC on %s\n",
1341			   adapter->netdev->name);
1342	}
1343}