Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*******************************************************************************
  2
  3  Intel 10 Gigabit PCI Express Linux driver
  4  Copyright(c) 1999 - 2013 Intel Corporation.
  5
  6  This program is free software; you can redistribute it and/or modify it
  7  under the terms and conditions of the GNU General Public License,
  8  version 2, as published by the Free Software Foundation.
  9
 10  This program is distributed in the hope it will be useful, but WITHOUT
 11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  more details.
 14
 15  You should have received a copy of the GNU General Public License along with
 16  this program; if not, write to the Free Software Foundation, Inc.,
 17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18
 19  The full GNU General Public License is included in this distribution in
 20  the file called "COPYING".
 21
 22  Contact Information:
 23  Linux NICS <linux.nics@intel.com>
 24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 26
 27*******************************************************************************/
 28#include "ixgbe.h"
 29#include <linux/export.h>
 30#include <linux/ptp_classify.h>
 31
 32/*
 33 * The 82599 and the X540 do not have true 64bit nanosecond scale
 34 * counter registers. Instead, SYSTIME is defined by a fixed point
 35 * system which allows the user to define the scale counter increment
 36 * value at every level change of the oscillator driving the SYSTIME
 37 * value. For both devices the TIMINCA:IV field defines this
 38 * increment. On the X540 device, 31 bits are provided. However on the
 39 * 82599 only provides 24 bits. The time unit is determined by the
 40 * clock frequency of the oscillator in combination with the TIMINCA
 41 * register. When these devices link at 10Gb the oscillator has a
 42 * period of 6.4ns. In order to convert the scale counter into
 43 * nanoseconds the cyclecounter and timecounter structures are
 44 * used. The SYSTIME registers need to be converted to ns values by use
 45 * of only a right shift (division by power of 2). The following math
 46 * determines the largest incvalue that will fit into the available
 47 * bits in the TIMINCA register.
 48 *
 49 * PeriodWidth: Number of bits to store the clock period
 50 * MaxWidth: The maximum width value of the TIMINCA register
 51 * Period: The clock period for the oscillator
 52 * round(): discard the fractional portion of the calculation
 53 *
 54 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
 55 *
 56 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
 57 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
 58 *
 59 * The period also changes based on the link speed:
 60 * At 10Gb link or no link, the period remains the same.
 61 * At 1Gb link, the period is multiplied by 10. (64ns)
 62 * At 100Mb link, the period is multiplied by 100. (640ns)
 63 *
 64 * The calculated value allows us to right shift the SYSTIME register
 65 * value in order to quickly convert it into a nanosecond clock,
 66 * while allowing for the maximum possible adjustment value.
 67 *
 68 * These diagrams are only for the 10Gb link period
 69 *
 70 *           SYSTIMEH            SYSTIMEL
 71 *       +--------------+  +--------------+
 72 * X540  |      32      |  | 1 | 3 |  28  |
 73 *       *--------------+  +--------------+
 74 *        \________ 36 bits ______/  fract
 75 *
 76 *       +--------------+  +--------------+
 77 * 82599 |      32      |  | 8 | 3 |  21  |
 78 *       *--------------+  +--------------+
 79 *        \________ 43 bits ______/  fract
 80 *
 81 * The 36 bit X540 SYSTIME overflows every
 82 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
 83 *
 84 * The 43 bit 82599 SYSTIME overflows every
 85 *   2^43 * 10^-9 / 3600 = 2.4 hours
 86 */
 87#define IXGBE_INCVAL_10GB 0x66666666
 88#define IXGBE_INCVAL_1GB  0x40000000
 89#define IXGBE_INCVAL_100  0x50000000
 90
 91#define IXGBE_INCVAL_SHIFT_10GB  28
 92#define IXGBE_INCVAL_SHIFT_1GB   24
 93#define IXGBE_INCVAL_SHIFT_100   21
 94
 95#define IXGBE_INCVAL_SHIFT_82599 7
 96#define IXGBE_INCPER_SHIFT_82599 24
 97#define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
 98
 99#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
100#define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
101
102#ifndef NSECS_PER_SEC
103#define NSECS_PER_SEC 1000000000ULL
104#endif
105
106/**
107 * ixgbe_ptp_setup_sdp
108 * @hw: the hardware private structure
109 *
110 * this function enables or disables the clock out feature on SDP0 for
111 * the X540 device. It will create a 1second periodic output that can
112 * be used as the PPS (via an interrupt).
113 *
114 * It calculates when the systime will be on an exact second, and then
115 * aligns the start of the PPS signal to that value. The shift is
116 * necessary because it can change based on the link speed.
117 */
118static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
119{
120	struct ixgbe_hw *hw = &adapter->hw;
121	int shift = adapter->cc.shift;
122	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
123	u64 ns = 0, clock_edge = 0;
124
125	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
126	    (hw->mac.type == ixgbe_mac_X540)) {
127
128		/* disable the pin first */
129		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
130		IXGBE_WRITE_FLUSH(hw);
131
132		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
133
134		/*
135		 * enable the SDP0 pin as output, and connected to the
136		 * native function for Timesync (ClockOut)
137		 */
138		esdp |= (IXGBE_ESDP_SDP0_DIR |
139			 IXGBE_ESDP_SDP0_NATIVE);
140
141		/*
142		 * enable the Clock Out feature on SDP0, and allow
143		 * interrupts to occur when the pin changes
144		 */
145		tsauxc = (IXGBE_TSAUXC_EN_CLK |
146			  IXGBE_TSAUXC_SYNCLK |
147			  IXGBE_TSAUXC_SDP0_INT);
148
149		/* clock period (or pulse length) */
150		clktiml = (u32)(NSECS_PER_SEC << shift);
151		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
152
153		/*
154		 * Account for the cyclecounter wrap-around value by
155		 * using the converted ns value of the current time to
156		 * check for when the next aligned second would occur.
157		 */
158		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
159		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
160		ns = timecounter_cyc2time(&adapter->tc, clock_edge);
161
162		div_u64_rem(ns, NSECS_PER_SEC, &rem);
163		clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
164
165		/* specify the initial clock start time */
166		trgttiml = (u32)clock_edge;
167		trgttimh = (u32)(clock_edge >> 32);
168
169		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
170		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
171		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
172		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
173
174		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
175		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
176	} else {
177		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
178	}
179
180	IXGBE_WRITE_FLUSH(hw);
181}
182
183/**
184 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
185 * @cc: the cyclecounter structure
186 *
187 * this function reads the cyclecounter registers and is called by the
188 * cyclecounter structure used to construct a ns counter from the
189 * arbitrary fixed point registers
190 */
191static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
192{
193	struct ixgbe_adapter *adapter =
194		container_of(cc, struct ixgbe_adapter, cc);
195	struct ixgbe_hw *hw = &adapter->hw;
196	u64 stamp = 0;
197
198	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
199	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
200
201	return stamp;
202}
203
204/**
205 * ixgbe_ptp_adjfreq
206 * @ptp: the ptp clock structure
207 * @ppb: parts per billion adjustment from base
208 *
209 * adjust the frequency of the ptp cycle counter by the
210 * indicated ppb from the base frequency.
211 */
212static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
213{
214	struct ixgbe_adapter *adapter =
215		container_of(ptp, struct ixgbe_adapter, ptp_caps);
216	struct ixgbe_hw *hw = &adapter->hw;
217	u64 freq;
218	u32 diff, incval;
219	int neg_adj = 0;
220
221	if (ppb < 0) {
222		neg_adj = 1;
223		ppb = -ppb;
224	}
225
226	smp_mb();
227	incval = ACCESS_ONCE(adapter->base_incval);
228
229	freq = incval;
230	freq *= ppb;
231	diff = div_u64(freq, 1000000000ULL);
232
233	incval = neg_adj ? (incval - diff) : (incval + diff);
234
235	switch (hw->mac.type) {
236	case ixgbe_mac_X540:
237		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
238		break;
239	case ixgbe_mac_82599EB:
240		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
241				(1 << IXGBE_INCPER_SHIFT_82599) |
242				incval);
243		break;
244	default:
245		break;
246	}
247
248	return 0;
249}
250
251/**
252 * ixgbe_ptp_adjtime
253 * @ptp: the ptp clock structure
254 * @delta: offset to adjust the cycle counter by
255 *
256 * adjust the timer by resetting the timecounter structure.
257 */
258static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
259{
260	struct ixgbe_adapter *adapter =
261		container_of(ptp, struct ixgbe_adapter, ptp_caps);
262	unsigned long flags;
263	u64 now;
264
265	spin_lock_irqsave(&adapter->tmreg_lock, flags);
266
267	now = timecounter_read(&adapter->tc);
268	now += delta;
269
270	/* reset the timecounter */
271	timecounter_init(&adapter->tc,
272			 &adapter->cc,
273			 now);
274
275	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
276
277	ixgbe_ptp_setup_sdp(adapter);
278
279	return 0;
280}
281
282/**
283 * ixgbe_ptp_gettime
284 * @ptp: the ptp clock structure
285 * @ts: timespec structure to hold the current time value
286 *
287 * read the timecounter and return the correct value on ns,
288 * after converting it into a struct timespec.
289 */
290static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
291{
292	struct ixgbe_adapter *adapter =
293		container_of(ptp, struct ixgbe_adapter, ptp_caps);
294	u64 ns;
295	u32 remainder;
296	unsigned long flags;
297
298	spin_lock_irqsave(&adapter->tmreg_lock, flags);
299	ns = timecounter_read(&adapter->tc);
300	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
301
302	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
303	ts->tv_nsec = remainder;
304
305	return 0;
306}
307
308/**
309 * ixgbe_ptp_settime
310 * @ptp: the ptp clock structure
311 * @ts: the timespec containing the new time for the cycle counter
312 *
313 * reset the timecounter to use a new base value instead of the kernel
314 * wall timer value.
315 */
316static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
317			     const struct timespec *ts)
318{
319	struct ixgbe_adapter *adapter =
320		container_of(ptp, struct ixgbe_adapter, ptp_caps);
321	u64 ns;
322	unsigned long flags;
323
324	ns = ts->tv_sec * 1000000000ULL;
325	ns += ts->tv_nsec;
326
327	/* reset the timecounter */
328	spin_lock_irqsave(&adapter->tmreg_lock, flags);
329	timecounter_init(&adapter->tc, &adapter->cc, ns);
330	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
331
332	ixgbe_ptp_setup_sdp(adapter);
333	return 0;
334}
335
336/**
337 * ixgbe_ptp_enable
338 * @ptp: the ptp clock structure
339 * @rq: the requested feature to change
340 * @on: whether to enable or disable the feature
341 *
342 * enable (or disable) ancillary features of the phc subsystem.
343 * our driver only supports the PPS feature on the X540
344 */
345static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
346			    struct ptp_clock_request *rq, int on)
347{
348	struct ixgbe_adapter *adapter =
349		container_of(ptp, struct ixgbe_adapter, ptp_caps);
350
351	/**
352	 * When PPS is enabled, unmask the interrupt for the ClockOut
353	 * feature, so that the interrupt handler can send the PPS
354	 * event when the clock SDP triggers. Clear mask when PPS is
355	 * disabled
356	 */
357	if (rq->type == PTP_CLK_REQ_PPS) {
358		switch (adapter->hw.mac.type) {
359		case ixgbe_mac_X540:
360			if (on)
361				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
362			else
363				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
364
365			ixgbe_ptp_setup_sdp(adapter);
366			return 0;
367		default:
368			break;
369		}
370	}
371
372	return -ENOTSUPP;
373}
374
375/**
376 * ixgbe_ptp_check_pps_event
377 * @adapter: the private adapter structure
378 * @eicr: the interrupt cause register value
379 *
380 * This function is called by the interrupt routine when checking for
381 * interrupts. It will check and handle a pps event.
382 */
383void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
384{
385	struct ixgbe_hw *hw = &adapter->hw;
386	struct ptp_clock_event event;
387
388	event.type = PTP_CLOCK_PPS;
389
390	/* this check is necessary in case the interrupt was enabled via some
391	 * alternative means (ex. debug_fs). Better to check here than
392	 * everywhere that calls this function.
393	 */
394	if (!adapter->ptp_clock)
395		return;
396
397	switch (hw->mac.type) {
398	case ixgbe_mac_X540:
399		ptp_clock_event(adapter->ptp_clock, &event);
400		break;
401	default:
402		break;
403	}
404}
405
406/**
407 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
408 * @adapter: private adapter struct
409 *
410 * this watchdog task periodically reads the timecounter
411 * in order to prevent missing when the system time registers wrap
412 * around. This needs to be run approximately twice a minute.
413 */
414void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
415{
416	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
417					     IXGBE_OVERFLOW_PERIOD);
418	struct timespec ts;
419
420	if (timeout) {
421		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
422		adapter->last_overflow_check = jiffies;
423	}
424}
425
426/**
427 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
428 * @adapter: private network adapter structure
429 *
430 * this watchdog task is scheduled to detect error case where hardware has
431 * dropped an Rx packet that was timestamped when the ring is full. The
432 * particular error is rare but leaves the device in a state unable to timestamp
433 * any future packets.
434 */
435void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
436{
437	struct ixgbe_hw *hw = &adapter->hw;
438	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
439	unsigned long rx_event;
440
441	/* if we don't have a valid timestamp in the registers, just update the
442	 * timeout counter and exit
443	 */
444	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
445		adapter->last_rx_ptp_check = jiffies;
446		return;
447	}
448
449	/* determine the most recent watchdog or rx_timestamp event */
450	rx_event = adapter->last_rx_ptp_check;
451	if (time_after(adapter->last_rx_timestamp, rx_event))
452		rx_event = adapter->last_rx_timestamp;
453
454	/* only need to read the high RXSTMP register to clear the lock */
455	if (time_is_before_jiffies(rx_event + 5*HZ)) {
456		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
457		adapter->last_rx_ptp_check = jiffies;
458
459		e_warn(drv, "clearing RX Timestamp hang\n");
460	}
461}
462
463/**
464 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
465 * @adapter: the private adapter struct
466 *
467 * if the timestamp is valid, we convert it into the timecounter ns
468 * value, then store that result into the shhwtstamps structure which
469 * is passed up the network stack
470 */
471static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
472{
473	struct ixgbe_hw *hw = &adapter->hw;
474	struct skb_shared_hwtstamps shhwtstamps;
475	u64 regval = 0, ns;
476	unsigned long flags;
477
478	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
479	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
480
481	spin_lock_irqsave(&adapter->tmreg_lock, flags);
482	ns = timecounter_cyc2time(&adapter->tc, regval);
483	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
484
485	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
486	shhwtstamps.hwtstamp = ns_to_ktime(ns);
487	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
488
489	dev_kfree_skb_any(adapter->ptp_tx_skb);
490	adapter->ptp_tx_skb = NULL;
491	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
492}
493
494/**
495 * ixgbe_ptp_tx_hwtstamp_work
496 * @work: pointer to the work struct
497 *
498 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
499 * timestamp has been taken for the current skb. It is necesary, because the
500 * descriptor's "done" bit does not correlate with the timestamp event.
501 */
502static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
503{
504	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
505						     ptp_tx_work);
506	struct ixgbe_hw *hw = &adapter->hw;
507	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
508					      IXGBE_PTP_TX_TIMEOUT);
509	u32 tsynctxctl;
510
511	if (timeout) {
512		dev_kfree_skb_any(adapter->ptp_tx_skb);
513		adapter->ptp_tx_skb = NULL;
514		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
515		e_warn(drv, "clearing Tx Timestamp hang\n");
516		return;
517	}
518
519	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
520	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
521		ixgbe_ptp_tx_hwtstamp(adapter);
522	else
523		/* reschedule to keep checking if it's not available yet */
524		schedule_work(&adapter->ptp_tx_work);
525}
526
527/**
528 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
529 * @adapter: pointer to adapter struct
530 * @skb: particular skb to send timestamp with
531 *
532 * if the timestamp is valid, we convert it into the timecounter ns
533 * value, then store that result into the shhwtstamps structure which
534 * is passed up the network stack
535 */
536void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb)
537{
538	struct ixgbe_hw *hw = &adapter->hw;
539	struct skb_shared_hwtstamps *shhwtstamps;
540	u64 regval = 0, ns;
541	u32 tsyncrxctl;
542	unsigned long flags;
543
544	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
545	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
546		return;
547
548	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
549	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
550
551	spin_lock_irqsave(&adapter->tmreg_lock, flags);
552	ns = timecounter_cyc2time(&adapter->tc, regval);
553	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
554
555	shhwtstamps = skb_hwtstamps(skb);
556	shhwtstamps->hwtstamp = ns_to_ktime(ns);
557
558	/* Update the last_rx_timestamp timer in order to enable watchdog check
559	 * for error case of latched timestamp on a dropped packet.
560	 */
561	adapter->last_rx_timestamp = jiffies;
562}
563
564int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
565{
566	struct hwtstamp_config *config = &adapter->tstamp_config;
567
568	return copy_to_user(ifr->ifr_data, config,
569			    sizeof(*config)) ? -EFAULT : 0;
570}
571
572/**
573 * ixgbe_ptp_set_ts_config - control hardware time stamping
574 * @adapter: pointer to adapter struct
575 * @ifreq: ioctl data
576 *
577 * Outgoing time stamping can be enabled and disabled. Play nice and
578 * disable it when requested, although it shouldn't cause any overhead
579 * when no packet needs it. At most one packet in the queue may be
580 * marked for time stamping, otherwise it would be impossible to tell
581 * for sure to which packet the hardware time stamp belongs.
582 *
583 * Incoming time stamping has to be configured via the hardware
584 * filters. Not all combinations are supported, in particular event
585 * type has to be specified. Matching the kind of event packet is
586 * not supported, with the exception of "all V2 events regardless of
587 * level 2 or 4".
588 *
589 * Since hardware always timestamps Path delay packets when timestamping V2
590 * packets, regardless of the type specified in the register, only use V2
591 * Event mode. This more accurately tells the user what the hardware is going
592 * to do anyways.
593 */
594int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
595{
596	struct ixgbe_hw *hw = &adapter->hw;
597	struct hwtstamp_config config;
598	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
599	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
600	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
601	bool is_l2 = false;
602	u32 regval;
603
604	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
605		return -EFAULT;
606
607	/* reserved for future extensions */
608	if (config.flags)
609		return -EINVAL;
610
611	switch (config.tx_type) {
612	case HWTSTAMP_TX_OFF:
613		tsync_tx_ctl = 0;
614	case HWTSTAMP_TX_ON:
615		break;
616	default:
617		return -ERANGE;
618	}
619
620	switch (config.rx_filter) {
621	case HWTSTAMP_FILTER_NONE:
622		tsync_rx_ctl = 0;
623		tsync_rx_mtrl = 0;
624		break;
625	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
626		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
627		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
628		break;
629	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
630		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
631		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
632		break;
633	case HWTSTAMP_FILTER_PTP_V2_EVENT:
634	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
635	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
636	case HWTSTAMP_FILTER_PTP_V2_SYNC:
637	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
638	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
639	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
640	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
641	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
642		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
643		is_l2 = true;
644		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
645		break;
646	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
647	case HWTSTAMP_FILTER_ALL:
648	default:
649		/*
650		 * register RXMTRL must be set in order to do V1 packets,
651		 * therefore it is not possible to time stamp both V1 Sync and
652		 * Delay_Req messages and hardware does not support
653		 * timestamping all packets => return error
654		 */
655		config.rx_filter = HWTSTAMP_FILTER_NONE;
656		return -ERANGE;
657	}
658
659	if (hw->mac.type == ixgbe_mac_82598EB) {
660		if (tsync_rx_ctl | tsync_tx_ctl)
661			return -ERANGE;
662		return 0;
663	}
664
665	/* define ethertype filter for timestamping L2 packets */
666	if (is_l2)
667		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
668				(IXGBE_ETQF_FILTER_EN | /* enable filter */
669				 IXGBE_ETQF_1588 | /* enable timestamping */
670				 ETH_P_1588));     /* 1588 eth protocol type */
671	else
672		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
673
674
675	/* enable/disable TX */
676	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
677	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
678	regval |= tsync_tx_ctl;
679	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
680
681	/* enable/disable RX */
682	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
683	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
684	regval |= tsync_rx_ctl;
685	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
686
687	/* define which PTP packets are time stamped */
688	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
689
690	IXGBE_WRITE_FLUSH(hw);
691
692	/* clear TX/RX time stamp registers, just to be sure */
693	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
694	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
695
696	/* save these settings for future reference */
697	memcpy(&adapter->tstamp_config, &config,
698	       sizeof(adapter->tstamp_config));
699
700	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
701		-EFAULT : 0;
702}
703
704/**
705 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
706 * @adapter: pointer to the adapter structure
707 *
708 * This function should be called to set the proper values for the TIMINCA
709 * register and tell the cyclecounter structure what the tick rate of SYSTIME
710 * is. It does not directly modify SYSTIME registers or the timecounter
711 * structure. It should be called whenever a new TIMINCA value is necessary,
712 * such as during initialization or when the link speed changes.
713 */
714void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
715{
716	struct ixgbe_hw *hw = &adapter->hw;
717	u32 incval = 0;
718	u32 shift = 0;
719	unsigned long flags;
720
721	/**
722	 * Scale the NIC cycle counter by a large factor so that
723	 * relatively small corrections to the frequency can be added
724	 * or subtracted. The drawbacks of a large factor include
725	 * (a) the clock register overflows more quickly, (b) the cycle
726	 * counter structure must be able to convert the systime value
727	 * to nanoseconds using only a multiplier and a right-shift,
728	 * and (c) the value must fit within the timinca register space
729	 * => math based on internal DMA clock rate and available bits
730	 *
731	 * Note that when there is no link, internal DMA clock is same as when
732	 * link speed is 10Gb. Set the registers correctly even when link is
733	 * down to preserve the clock setting
734	 */
735	switch (adapter->link_speed) {
736	case IXGBE_LINK_SPEED_100_FULL:
737		incval = IXGBE_INCVAL_100;
738		shift = IXGBE_INCVAL_SHIFT_100;
739		break;
740	case IXGBE_LINK_SPEED_1GB_FULL:
741		incval = IXGBE_INCVAL_1GB;
742		shift = IXGBE_INCVAL_SHIFT_1GB;
743		break;
744	case IXGBE_LINK_SPEED_10GB_FULL:
745	default:
746		incval = IXGBE_INCVAL_10GB;
747		shift = IXGBE_INCVAL_SHIFT_10GB;
748		break;
749	}
750
751	/**
752	 * Modify the calculated values to fit within the correct
753	 * number of bits specified by the hardware. The 82599 doesn't
754	 * have the same space as the X540, so bitshift the calculated
755	 * values to fit.
756	 */
757	switch (hw->mac.type) {
758	case ixgbe_mac_X540:
759		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
760		break;
761	case ixgbe_mac_82599EB:
762		incval >>= IXGBE_INCVAL_SHIFT_82599;
763		shift -= IXGBE_INCVAL_SHIFT_82599;
764		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
765				(1 << IXGBE_INCPER_SHIFT_82599) |
766				incval);
767		break;
768	default:
769		/* other devices aren't supported */
770		return;
771	}
772
773	/* update the base incval used to calculate frequency adjustment */
774	ACCESS_ONCE(adapter->base_incval) = incval;
775	smp_mb();
776
777	/* need lock to prevent incorrect read while modifying cyclecounter */
778	spin_lock_irqsave(&adapter->tmreg_lock, flags);
779
780	memset(&adapter->cc, 0, sizeof(adapter->cc));
781	adapter->cc.read = ixgbe_ptp_read;
782	adapter->cc.mask = CLOCKSOURCE_MASK(64);
783	adapter->cc.shift = shift;
784	adapter->cc.mult = 1;
785
786	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
787}
788
789/**
790 * ixgbe_ptp_reset
791 * @adapter: the ixgbe private board structure
792 *
793 * When the MAC resets, all timesync features are reset. This function should be
794 * called to re-enable the PTP clock structure. It will re-init the timecounter
795 * structure based on the kernel time as well as setup the cycle counter data.
796 */
797void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
798{
799	struct ixgbe_hw *hw = &adapter->hw;
800	unsigned long flags;
801
802	/* set SYSTIME registers to 0 just in case */
803	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
804	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
805	IXGBE_WRITE_FLUSH(hw);
806
807	/* Reset the saved tstamp_config */
808	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
809
810	ixgbe_ptp_start_cyclecounter(adapter);
811
812	spin_lock_irqsave(&adapter->tmreg_lock, flags);
813
814	/* reset the ns time counter */
815	timecounter_init(&adapter->tc, &adapter->cc,
816			 ktime_to_ns(ktime_get_real()));
817
818	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
819
820	/*
821	 * Now that the shift has been calculated and the systime
822	 * registers reset, (re-)enable the Clock out feature
823	 */
824	ixgbe_ptp_setup_sdp(adapter);
825}
826
827/**
828 * ixgbe_ptp_init
829 * @adapter: the ixgbe private adapter structure
830 *
831 * This function performs the required steps for enabling ptp
832 * support. If ptp support has already been loaded it simply calls the
833 * cyclecounter init routine and exits.
834 */
835void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
836{
837	struct net_device *netdev = adapter->netdev;
838
839	switch (adapter->hw.mac.type) {
840	case ixgbe_mac_X540:
841		snprintf(adapter->ptp_caps.name,
842			 sizeof(adapter->ptp_caps.name),
843			 "%s", netdev->name);
844		adapter->ptp_caps.owner = THIS_MODULE;
845		adapter->ptp_caps.max_adj = 250000000;
846		adapter->ptp_caps.n_alarm = 0;
847		adapter->ptp_caps.n_ext_ts = 0;
848		adapter->ptp_caps.n_per_out = 0;
849		adapter->ptp_caps.pps = 1;
850		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
851		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
852		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
853		adapter->ptp_caps.settime = ixgbe_ptp_settime;
854		adapter->ptp_caps.enable = ixgbe_ptp_enable;
855		break;
856	case ixgbe_mac_82599EB:
857		snprintf(adapter->ptp_caps.name,
858			 sizeof(adapter->ptp_caps.name),
859			 "%s", netdev->name);
860		adapter->ptp_caps.owner = THIS_MODULE;
861		adapter->ptp_caps.max_adj = 250000000;
862		adapter->ptp_caps.n_alarm = 0;
863		adapter->ptp_caps.n_ext_ts = 0;
864		adapter->ptp_caps.n_per_out = 0;
865		adapter->ptp_caps.pps = 0;
866		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
867		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
868		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
869		adapter->ptp_caps.settime = ixgbe_ptp_settime;
870		adapter->ptp_caps.enable = ixgbe_ptp_enable;
871		break;
872	default:
873		adapter->ptp_clock = NULL;
874		return;
875	}
876
877	spin_lock_init(&adapter->tmreg_lock);
878	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
879
880	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
881						&adapter->pdev->dev);
882	if (IS_ERR(adapter->ptp_clock)) {
883		adapter->ptp_clock = NULL;
884		e_dev_err("ptp_clock_register failed\n");
885	} else
886		e_dev_info("registered PHC device on %s\n", netdev->name);
887
888	ixgbe_ptp_reset(adapter);
889
890	/* enter the IXGBE_PTP_RUNNING state */
891	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
892
893	return;
894}
895
896/**
897 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
898 * @adapter: pointer to adapter struct
899 *
900 * this function stops the ptp support, and cancels the delayed work.
901 */
902void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
903{
904	/* Leave the IXGBE_PTP_RUNNING state. */
905	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
906		return;
907
908	/* stop the PPS signal */
909	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
910	ixgbe_ptp_setup_sdp(adapter);
911
912	cancel_work_sync(&adapter->ptp_tx_work);
913	if (adapter->ptp_tx_skb) {
914		dev_kfree_skb_any(adapter->ptp_tx_skb);
915		adapter->ptp_tx_skb = NULL;
916		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
917	}
918
919	if (adapter->ptp_clock) {
920		ptp_clock_unregister(adapter->ptp_clock);
921		adapter->ptp_clock = NULL;
922		e_dev_info("removed PHC on %s\n",
923			   adapter->netdev->name);
924	}
925}