Loading...
1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/delay.h>
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
24#include <linux/mmc/card.h>
25#include <linux/mmc/core.h>
26#include <linux/mmc/host.h>
27#include <linux/mmc/mmc.h>
28#include <linux/mmc/sdio.h>
29#include <linux/mmc/sh_mmcif.h>
30#include <linux/pagemap.h>
31#include <linux/platform_device.h>
32#include <linux/pm_runtime.h>
33#include <linux/spinlock.h>
34
35#define DRIVER_NAME "sh_mmcif"
36#define DRIVER_VERSION "2010-04-28"
37
38/* CE_CMD_SET */
39#define CMD_MASK 0x3f000000
40#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
41#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
42#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
43#define CMD_SET_RBSY (1 << 21) /* R1b */
44#define CMD_SET_CCSEN (1 << 20)
45#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
46#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
47#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
48#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
49#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
50#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
51#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
52#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
53#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
54#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
55#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
56#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
57#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
58#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
59#define CMD_SET_CCSH (1 << 5)
60#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
61#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
62#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
63
64/* CE_CMD_CTRL */
65#define CMD_CTRL_BREAK (1 << 0)
66
67/* CE_BLOCK_SET */
68#define BLOCK_SIZE_MASK 0x0000ffff
69
70/* CE_INT */
71#define INT_CCSDE (1 << 29)
72#define INT_CMD12DRE (1 << 26)
73#define INT_CMD12RBE (1 << 25)
74#define INT_CMD12CRE (1 << 24)
75#define INT_DTRANE (1 << 23)
76#define INT_BUFRE (1 << 22)
77#define INT_BUFWEN (1 << 21)
78#define INT_BUFREN (1 << 20)
79#define INT_CCSRCV (1 << 19)
80#define INT_RBSYE (1 << 17)
81#define INT_CRSPE (1 << 16)
82#define INT_CMDVIO (1 << 15)
83#define INT_BUFVIO (1 << 14)
84#define INT_WDATERR (1 << 11)
85#define INT_RDATERR (1 << 10)
86#define INT_RIDXERR (1 << 9)
87#define INT_RSPERR (1 << 8)
88#define INT_CCSTO (1 << 5)
89#define INT_CRCSTO (1 << 4)
90#define INT_WDATTO (1 << 3)
91#define INT_RDATTO (1 << 2)
92#define INT_RBSYTO (1 << 1)
93#define INT_RSPTO (1 << 0)
94#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
95 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
96 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
97 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
98
99/* CE_INT_MASK */
100#define MASK_ALL 0x00000000
101#define MASK_MCCSDE (1 << 29)
102#define MASK_MCMD12DRE (1 << 26)
103#define MASK_MCMD12RBE (1 << 25)
104#define MASK_MCMD12CRE (1 << 24)
105#define MASK_MDTRANE (1 << 23)
106#define MASK_MBUFRE (1 << 22)
107#define MASK_MBUFWEN (1 << 21)
108#define MASK_MBUFREN (1 << 20)
109#define MASK_MCCSRCV (1 << 19)
110#define MASK_MRBSYE (1 << 17)
111#define MASK_MCRSPE (1 << 16)
112#define MASK_MCMDVIO (1 << 15)
113#define MASK_MBUFVIO (1 << 14)
114#define MASK_MWDATERR (1 << 11)
115#define MASK_MRDATERR (1 << 10)
116#define MASK_MRIDXERR (1 << 9)
117#define MASK_MRSPERR (1 << 8)
118#define MASK_MCCSTO (1 << 5)
119#define MASK_MCRCSTO (1 << 4)
120#define MASK_MWDATTO (1 << 3)
121#define MASK_MRDATTO (1 << 2)
122#define MASK_MRBSYTO (1 << 1)
123#define MASK_MRSPTO (1 << 0)
124
125/* CE_HOST_STS1 */
126#define STS1_CMDSEQ (1 << 31)
127
128/* CE_HOST_STS2 */
129#define STS2_CRCSTE (1 << 31)
130#define STS2_CRC16E (1 << 30)
131#define STS2_AC12CRCE (1 << 29)
132#define STS2_RSPCRC7E (1 << 28)
133#define STS2_CRCSTEBE (1 << 27)
134#define STS2_RDATEBE (1 << 26)
135#define STS2_AC12REBE (1 << 25)
136#define STS2_RSPEBE (1 << 24)
137#define STS2_AC12IDXE (1 << 23)
138#define STS2_RSPIDXE (1 << 22)
139#define STS2_CCSTO (1 << 15)
140#define STS2_RDATTO (1 << 14)
141#define STS2_DATBSYTO (1 << 13)
142#define STS2_CRCSTTO (1 << 12)
143#define STS2_AC12BSYTO (1 << 11)
144#define STS2_RSPBSYTO (1 << 10)
145#define STS2_AC12RSPTO (1 << 9)
146#define STS2_RSPTO (1 << 8)
147#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
148 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
149#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
150 STS2_DATBSYTO | STS2_CRCSTTO | \
151 STS2_AC12BSYTO | STS2_RSPBSYTO | \
152 STS2_AC12RSPTO | STS2_RSPTO)
153
154#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
155#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
156#define CLKDEV_INIT 400000 /* 400 KHz */
157
158enum mmcif_state {
159 STATE_IDLE,
160 STATE_REQUEST,
161 STATE_IOS,
162};
163
164struct sh_mmcif_host {
165 struct mmc_host *mmc;
166 struct mmc_data *data;
167 struct platform_device *pd;
168 struct clk *hclk;
169 unsigned int clk;
170 int bus_width;
171 bool sd_error;
172 long timeout;
173 void __iomem *addr;
174 struct completion intr_wait;
175 enum mmcif_state state;
176 spinlock_t lock;
177 bool power;
178 bool card_present;
179
180 /* DMA support */
181 struct dma_chan *chan_rx;
182 struct dma_chan *chan_tx;
183 struct completion dma_complete;
184 bool dma_active;
185};
186
187static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
188 unsigned int reg, u32 val)
189{
190 writel(val | readl(host->addr + reg), host->addr + reg);
191}
192
193static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
194 unsigned int reg, u32 val)
195{
196 writel(~val & readl(host->addr + reg), host->addr + reg);
197}
198
199static void mmcif_dma_complete(void *arg)
200{
201 struct sh_mmcif_host *host = arg;
202 dev_dbg(&host->pd->dev, "Command completed\n");
203
204 if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
205 dev_name(&host->pd->dev)))
206 return;
207
208 if (host->data->flags & MMC_DATA_READ)
209 dma_unmap_sg(host->chan_rx->device->dev,
210 host->data->sg, host->data->sg_len,
211 DMA_FROM_DEVICE);
212 else
213 dma_unmap_sg(host->chan_tx->device->dev,
214 host->data->sg, host->data->sg_len,
215 DMA_TO_DEVICE);
216
217 complete(&host->dma_complete);
218}
219
220static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
221{
222 struct scatterlist *sg = host->data->sg;
223 struct dma_async_tx_descriptor *desc = NULL;
224 struct dma_chan *chan = host->chan_rx;
225 dma_cookie_t cookie = -EINVAL;
226 int ret;
227
228 ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
229 DMA_FROM_DEVICE);
230 if (ret > 0) {
231 host->dma_active = true;
232 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
233 DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
234 }
235
236 if (desc) {
237 desc->callback = mmcif_dma_complete;
238 desc->callback_param = host;
239 cookie = dmaengine_submit(desc);
240 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
241 dma_async_issue_pending(chan);
242 }
243 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
244 __func__, host->data->sg_len, ret, cookie);
245
246 if (!desc) {
247 /* DMA failed, fall back to PIO */
248 if (ret >= 0)
249 ret = -EIO;
250 host->chan_rx = NULL;
251 host->dma_active = false;
252 dma_release_channel(chan);
253 /* Free the Tx channel too */
254 chan = host->chan_tx;
255 if (chan) {
256 host->chan_tx = NULL;
257 dma_release_channel(chan);
258 }
259 dev_warn(&host->pd->dev,
260 "DMA failed: %d, falling back to PIO\n", ret);
261 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
262 }
263
264 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
265 desc, cookie, host->data->sg_len);
266}
267
268static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
269{
270 struct scatterlist *sg = host->data->sg;
271 struct dma_async_tx_descriptor *desc = NULL;
272 struct dma_chan *chan = host->chan_tx;
273 dma_cookie_t cookie = -EINVAL;
274 int ret;
275
276 ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
277 DMA_TO_DEVICE);
278 if (ret > 0) {
279 host->dma_active = true;
280 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
281 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
282 }
283
284 if (desc) {
285 desc->callback = mmcif_dma_complete;
286 desc->callback_param = host;
287 cookie = dmaengine_submit(desc);
288 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
289 dma_async_issue_pending(chan);
290 }
291 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
292 __func__, host->data->sg_len, ret, cookie);
293
294 if (!desc) {
295 /* DMA failed, fall back to PIO */
296 if (ret >= 0)
297 ret = -EIO;
298 host->chan_tx = NULL;
299 host->dma_active = false;
300 dma_release_channel(chan);
301 /* Free the Rx channel too */
302 chan = host->chan_rx;
303 if (chan) {
304 host->chan_rx = NULL;
305 dma_release_channel(chan);
306 }
307 dev_warn(&host->pd->dev,
308 "DMA failed: %d, falling back to PIO\n", ret);
309 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
310 }
311
312 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
313 desc, cookie);
314}
315
316static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
317{
318 dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
319 chan->private = arg;
320 return true;
321}
322
323static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
324 struct sh_mmcif_plat_data *pdata)
325{
326 host->dma_active = false;
327
328 /* We can only either use DMA for both Tx and Rx or not use it at all */
329 if (pdata->dma) {
330 dma_cap_mask_t mask;
331
332 dma_cap_zero(mask);
333 dma_cap_set(DMA_SLAVE, mask);
334
335 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
336 &pdata->dma->chan_priv_tx);
337 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
338 host->chan_tx);
339
340 if (!host->chan_tx)
341 return;
342
343 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
344 &pdata->dma->chan_priv_rx);
345 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
346 host->chan_rx);
347
348 if (!host->chan_rx) {
349 dma_release_channel(host->chan_tx);
350 host->chan_tx = NULL;
351 return;
352 }
353
354 init_completion(&host->dma_complete);
355 }
356}
357
358static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
359{
360 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
361 /* Descriptors are freed automatically */
362 if (host->chan_tx) {
363 struct dma_chan *chan = host->chan_tx;
364 host->chan_tx = NULL;
365 dma_release_channel(chan);
366 }
367 if (host->chan_rx) {
368 struct dma_chan *chan = host->chan_rx;
369 host->chan_rx = NULL;
370 dma_release_channel(chan);
371 }
372
373 host->dma_active = false;
374}
375
376static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
377{
378 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
379
380 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
381 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
382
383 if (!clk)
384 return;
385 if (p->sup_pclk && clk == host->clk)
386 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
387 else
388 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
389 (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
390
391 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
392}
393
394static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
395{
396 u32 tmp;
397
398 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
399
400 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
401 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
402 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
403 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
404 /* byte swap on */
405 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
406}
407
408static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
409{
410 u32 state1, state2;
411 int ret, timeout = 10000000;
412
413 host->sd_error = false;
414
415 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
416 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
417 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
418 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
419
420 if (state1 & STS1_CMDSEQ) {
421 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
422 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
423 while (1) {
424 timeout--;
425 if (timeout < 0) {
426 dev_err(&host->pd->dev,
427 "Forceed end of command sequence timeout err\n");
428 return -EIO;
429 }
430 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
431 & STS1_CMDSEQ))
432 break;
433 mdelay(1);
434 }
435 sh_mmcif_sync_reset(host);
436 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
437 return -EIO;
438 }
439
440 if (state2 & STS2_CRC_ERR) {
441 dev_dbg(&host->pd->dev, ": Happened CRC error\n");
442 ret = -EIO;
443 } else if (state2 & STS2_TIMEOUT_ERR) {
444 dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
445 ret = -ETIMEDOUT;
446 } else {
447 dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
448 ret = -EIO;
449 }
450 return ret;
451}
452
453static int sh_mmcif_single_read(struct sh_mmcif_host *host,
454 struct mmc_request *mrq)
455{
456 struct mmc_data *data = mrq->data;
457 long time;
458 u32 blocksize, i, *p = sg_virt(data->sg);
459
460 /* buf read enable */
461 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
462 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
463 host->timeout);
464 if (time <= 0 || host->sd_error)
465 return sh_mmcif_error_manage(host);
466
467 blocksize = (BLOCK_SIZE_MASK &
468 sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
469 for (i = 0; i < blocksize / 4; i++)
470 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
471
472 /* buffer read end */
473 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
474 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
475 host->timeout);
476 if (time <= 0 || host->sd_error)
477 return sh_mmcif_error_manage(host);
478
479 return 0;
480}
481
482static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
483 struct mmc_request *mrq)
484{
485 struct mmc_data *data = mrq->data;
486 long time;
487 u32 blocksize, i, j, sec, *p;
488
489 blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
490 MMCIF_CE_BLOCK_SET);
491 for (j = 0; j < data->sg_len; j++) {
492 p = sg_virt(data->sg);
493 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
494 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
495 /* buf read enable */
496 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
497 host->timeout);
498
499 if (time <= 0 || host->sd_error)
500 return sh_mmcif_error_manage(host);
501
502 for (i = 0; i < blocksize / 4; i++)
503 *p++ = sh_mmcif_readl(host->addr,
504 MMCIF_CE_DATA);
505 }
506 if (j < data->sg_len - 1)
507 data->sg++;
508 }
509 return 0;
510}
511
512static int sh_mmcif_single_write(struct sh_mmcif_host *host,
513 struct mmc_request *mrq)
514{
515 struct mmc_data *data = mrq->data;
516 long time;
517 u32 blocksize, i, *p = sg_virt(data->sg);
518
519 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
520
521 /* buf write enable */
522 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
523 host->timeout);
524 if (time <= 0 || host->sd_error)
525 return sh_mmcif_error_manage(host);
526
527 blocksize = (BLOCK_SIZE_MASK &
528 sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
529 for (i = 0; i < blocksize / 4; i++)
530 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
531
532 /* buffer write end */
533 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
534
535 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
536 host->timeout);
537 if (time <= 0 || host->sd_error)
538 return sh_mmcif_error_manage(host);
539
540 return 0;
541}
542
543static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
544 struct mmc_request *mrq)
545{
546 struct mmc_data *data = mrq->data;
547 long time;
548 u32 i, sec, j, blocksize, *p;
549
550 blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
551 MMCIF_CE_BLOCK_SET);
552
553 for (j = 0; j < data->sg_len; j++) {
554 p = sg_virt(data->sg);
555 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
556 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
557 /* buf write enable*/
558 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
559 host->timeout);
560
561 if (time <= 0 || host->sd_error)
562 return sh_mmcif_error_manage(host);
563
564 for (i = 0; i < blocksize / 4; i++)
565 sh_mmcif_writel(host->addr,
566 MMCIF_CE_DATA, *p++);
567 }
568 if (j < data->sg_len - 1)
569 data->sg++;
570 }
571 return 0;
572}
573
574static void sh_mmcif_get_response(struct sh_mmcif_host *host,
575 struct mmc_command *cmd)
576{
577 if (cmd->flags & MMC_RSP_136) {
578 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
579 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
580 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
581 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
582 } else
583 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
584}
585
586static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
587 struct mmc_command *cmd)
588{
589 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
590}
591
592static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
593 struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
594{
595 u32 tmp = 0;
596
597 /* Response Type check */
598 switch (mmc_resp_type(cmd)) {
599 case MMC_RSP_NONE:
600 tmp |= CMD_SET_RTYP_NO;
601 break;
602 case MMC_RSP_R1:
603 case MMC_RSP_R1B:
604 case MMC_RSP_R3:
605 tmp |= CMD_SET_RTYP_6B;
606 break;
607 case MMC_RSP_R2:
608 tmp |= CMD_SET_RTYP_17B;
609 break;
610 default:
611 dev_err(&host->pd->dev, "Unsupported response type.\n");
612 break;
613 }
614 switch (opc) {
615 /* RBSY */
616 case MMC_SWITCH:
617 case MMC_STOP_TRANSMISSION:
618 case MMC_SET_WRITE_PROT:
619 case MMC_CLR_WRITE_PROT:
620 case MMC_ERASE:
621 case MMC_GEN_CMD:
622 tmp |= CMD_SET_RBSY;
623 break;
624 }
625 /* WDAT / DATW */
626 if (host->data) {
627 tmp |= CMD_SET_WDAT;
628 switch (host->bus_width) {
629 case MMC_BUS_WIDTH_1:
630 tmp |= CMD_SET_DATW_1;
631 break;
632 case MMC_BUS_WIDTH_4:
633 tmp |= CMD_SET_DATW_4;
634 break;
635 case MMC_BUS_WIDTH_8:
636 tmp |= CMD_SET_DATW_8;
637 break;
638 default:
639 dev_err(&host->pd->dev, "Unsupported bus width.\n");
640 break;
641 }
642 }
643 /* DWEN */
644 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
645 tmp |= CMD_SET_DWEN;
646 /* CMLTE/CMD12EN */
647 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
648 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
649 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
650 mrq->data->blocks << 16);
651 }
652 /* RIDXC[1:0] check bits */
653 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
654 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
655 tmp |= CMD_SET_RIDXC_BITS;
656 /* RCRC7C[1:0] check bits */
657 if (opc == MMC_SEND_OP_COND)
658 tmp |= CMD_SET_CRC7C_BITS;
659 /* RCRC7C[1:0] internal CRC7 */
660 if (opc == MMC_ALL_SEND_CID ||
661 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
662 tmp |= CMD_SET_CRC7C_INTERNAL;
663
664 return opc = ((opc << 24) | tmp);
665}
666
667static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
668 struct mmc_request *mrq, u32 opc)
669{
670 int ret;
671
672 switch (opc) {
673 case MMC_READ_MULTIPLE_BLOCK:
674 ret = sh_mmcif_multi_read(host, mrq);
675 break;
676 case MMC_WRITE_MULTIPLE_BLOCK:
677 ret = sh_mmcif_multi_write(host, mrq);
678 break;
679 case MMC_WRITE_BLOCK:
680 ret = sh_mmcif_single_write(host, mrq);
681 break;
682 case MMC_READ_SINGLE_BLOCK:
683 case MMC_SEND_EXT_CSD:
684 ret = sh_mmcif_single_read(host, mrq);
685 break;
686 default:
687 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
688 ret = -EINVAL;
689 break;
690 }
691 return ret;
692}
693
694static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
695 struct mmc_request *mrq, struct mmc_command *cmd)
696{
697 long time;
698 int ret = 0, mask = 0;
699 u32 opc = cmd->opcode;
700
701 switch (opc) {
702 /* respons busy check */
703 case MMC_SWITCH:
704 case MMC_STOP_TRANSMISSION:
705 case MMC_SET_WRITE_PROT:
706 case MMC_CLR_WRITE_PROT:
707 case MMC_ERASE:
708 case MMC_GEN_CMD:
709 mask = MASK_MRBSYE;
710 break;
711 default:
712 mask = MASK_MCRSPE;
713 break;
714 }
715 mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
716 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
717 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
718 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
719
720 if (host->data) {
721 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
722 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
723 mrq->data->blksz);
724 }
725 opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
726
727 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
728 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
729 /* set arg */
730 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
731 /* set cmd */
732 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
733
734 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
735 host->timeout);
736 if (time <= 0) {
737 cmd->error = sh_mmcif_error_manage(host);
738 return;
739 }
740 if (host->sd_error) {
741 switch (cmd->opcode) {
742 case MMC_ALL_SEND_CID:
743 case MMC_SELECT_CARD:
744 case MMC_APP_CMD:
745 cmd->error = -ETIMEDOUT;
746 break;
747 default:
748 dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
749 cmd->opcode);
750 cmd->error = sh_mmcif_error_manage(host);
751 break;
752 }
753 host->sd_error = false;
754 return;
755 }
756 if (!(cmd->flags & MMC_RSP_PRESENT)) {
757 cmd->error = 0;
758 return;
759 }
760 sh_mmcif_get_response(host, cmd);
761 if (host->data) {
762 if (!host->dma_active) {
763 ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
764 } else {
765 long time =
766 wait_for_completion_interruptible_timeout(&host->dma_complete,
767 host->timeout);
768 if (!time)
769 ret = -ETIMEDOUT;
770 else if (time < 0)
771 ret = time;
772 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
773 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
774 host->dma_active = false;
775 }
776 if (ret < 0)
777 mrq->data->bytes_xfered = 0;
778 else
779 mrq->data->bytes_xfered =
780 mrq->data->blocks * mrq->data->blksz;
781 }
782 cmd->error = ret;
783}
784
785static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
786 struct mmc_request *mrq, struct mmc_command *cmd)
787{
788 long time;
789
790 if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
791 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
792 else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
793 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
794 else {
795 dev_err(&host->pd->dev, "unsupported stop cmd\n");
796 cmd->error = sh_mmcif_error_manage(host);
797 return;
798 }
799
800 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
801 host->timeout);
802 if (time <= 0 || host->sd_error) {
803 cmd->error = sh_mmcif_error_manage(host);
804 return;
805 }
806 sh_mmcif_get_cmd12response(host, cmd);
807 cmd->error = 0;
808}
809
810static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
811{
812 struct sh_mmcif_host *host = mmc_priv(mmc);
813 unsigned long flags;
814
815 spin_lock_irqsave(&host->lock, flags);
816 if (host->state != STATE_IDLE) {
817 spin_unlock_irqrestore(&host->lock, flags);
818 mrq->cmd->error = -EAGAIN;
819 mmc_request_done(mmc, mrq);
820 return;
821 }
822
823 host->state = STATE_REQUEST;
824 spin_unlock_irqrestore(&host->lock, flags);
825
826 switch (mrq->cmd->opcode) {
827 /* MMCIF does not support SD/SDIO command */
828 case SD_IO_SEND_OP_COND:
829 case MMC_APP_CMD:
830 host->state = STATE_IDLE;
831 mrq->cmd->error = -ETIMEDOUT;
832 mmc_request_done(mmc, mrq);
833 return;
834 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
835 if (!mrq->data) {
836 /* send_if_cond cmd (not support) */
837 host->state = STATE_IDLE;
838 mrq->cmd->error = -ETIMEDOUT;
839 mmc_request_done(mmc, mrq);
840 return;
841 }
842 break;
843 default:
844 break;
845 }
846 host->data = mrq->data;
847 if (mrq->data) {
848 if (mrq->data->flags & MMC_DATA_READ) {
849 if (host->chan_rx)
850 sh_mmcif_start_dma_rx(host);
851 } else {
852 if (host->chan_tx)
853 sh_mmcif_start_dma_tx(host);
854 }
855 }
856 sh_mmcif_start_cmd(host, mrq, mrq->cmd);
857 host->data = NULL;
858
859 if (!mrq->cmd->error && mrq->stop)
860 sh_mmcif_stop_cmd(host, mrq, mrq->stop);
861 host->state = STATE_IDLE;
862 mmc_request_done(mmc, mrq);
863}
864
865static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
866{
867 struct sh_mmcif_host *host = mmc_priv(mmc);
868 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
869 unsigned long flags;
870
871 spin_lock_irqsave(&host->lock, flags);
872 if (host->state != STATE_IDLE) {
873 spin_unlock_irqrestore(&host->lock, flags);
874 return;
875 }
876
877 host->state = STATE_IOS;
878 spin_unlock_irqrestore(&host->lock, flags);
879
880 if (ios->power_mode == MMC_POWER_UP) {
881 if (!host->card_present) {
882 /* See if we also get DMA */
883 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
884 host->card_present = true;
885 }
886 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
887 /* clock stop */
888 sh_mmcif_clock_control(host, 0);
889 if (ios->power_mode == MMC_POWER_OFF) {
890 if (host->card_present) {
891 sh_mmcif_release_dma(host);
892 host->card_present = false;
893 }
894 }
895 if (host->power) {
896 pm_runtime_put(&host->pd->dev);
897 host->power = false;
898 if (p->down_pwr)
899 p->down_pwr(host->pd);
900 }
901 host->state = STATE_IDLE;
902 return;
903 }
904
905 if (ios->clock) {
906 if (!host->power) {
907 if (p->set_pwr)
908 p->set_pwr(host->pd, ios->power_mode);
909 pm_runtime_get_sync(&host->pd->dev);
910 host->power = true;
911 sh_mmcif_sync_reset(host);
912 }
913 sh_mmcif_clock_control(host, ios->clock);
914 }
915
916 host->bus_width = ios->bus_width;
917 host->state = STATE_IDLE;
918}
919
920static int sh_mmcif_get_cd(struct mmc_host *mmc)
921{
922 struct sh_mmcif_host *host = mmc_priv(mmc);
923 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
924
925 if (!p->get_cd)
926 return -ENOSYS;
927 else
928 return p->get_cd(host->pd);
929}
930
931static struct mmc_host_ops sh_mmcif_ops = {
932 .request = sh_mmcif_request,
933 .set_ios = sh_mmcif_set_ios,
934 .get_cd = sh_mmcif_get_cd,
935};
936
937static void sh_mmcif_detect(struct mmc_host *mmc)
938{
939 mmc_detect_change(mmc, 0);
940}
941
942static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
943{
944 struct sh_mmcif_host *host = dev_id;
945 u32 state;
946 int err = 0;
947
948 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
949
950 if (state & INT_RBSYE) {
951 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
952 ~(INT_RBSYE | INT_CRSPE));
953 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
954 } else if (state & INT_CRSPE) {
955 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
956 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
957 } else if (state & INT_BUFREN) {
958 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
959 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
960 } else if (state & INT_BUFWEN) {
961 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
962 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
963 } else if (state & INT_CMD12DRE) {
964 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
965 ~(INT_CMD12DRE | INT_CMD12RBE |
966 INT_CMD12CRE | INT_BUFRE));
967 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
968 } else if (state & INT_BUFRE) {
969 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
970 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
971 } else if (state & INT_DTRANE) {
972 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
973 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
974 } else if (state & INT_CMD12RBE) {
975 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
976 ~(INT_CMD12RBE | INT_CMD12CRE));
977 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
978 } else if (state & INT_ERR_STS) {
979 /* err interrupts */
980 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
981 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
982 err = 1;
983 } else {
984 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
985 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
986 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
987 err = 1;
988 }
989 if (err) {
990 host->sd_error = true;
991 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
992 }
993 if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
994 complete(&host->intr_wait);
995 else
996 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
997
998 return IRQ_HANDLED;
999}
1000
1001static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1002{
1003 int ret = 0, irq[2];
1004 struct mmc_host *mmc;
1005 struct sh_mmcif_host *host;
1006 struct sh_mmcif_plat_data *pd;
1007 struct resource *res;
1008 void __iomem *reg;
1009 char clk_name[8];
1010
1011 irq[0] = platform_get_irq(pdev, 0);
1012 irq[1] = platform_get_irq(pdev, 1);
1013 if (irq[0] < 0 || irq[1] < 0) {
1014 dev_err(&pdev->dev, "Get irq error\n");
1015 return -ENXIO;
1016 }
1017 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1018 if (!res) {
1019 dev_err(&pdev->dev, "platform_get_resource error.\n");
1020 return -ENXIO;
1021 }
1022 reg = ioremap(res->start, resource_size(res));
1023 if (!reg) {
1024 dev_err(&pdev->dev, "ioremap error.\n");
1025 return -ENOMEM;
1026 }
1027 pd = pdev->dev.platform_data;
1028 if (!pd) {
1029 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1030 ret = -ENXIO;
1031 goto clean_up;
1032 }
1033 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1034 if (!mmc) {
1035 ret = -ENOMEM;
1036 goto clean_up;
1037 }
1038 host = mmc_priv(mmc);
1039 host->mmc = mmc;
1040 host->addr = reg;
1041 host->timeout = 1000;
1042
1043 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1044 host->hclk = clk_get(&pdev->dev, clk_name);
1045 if (IS_ERR(host->hclk)) {
1046 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1047 ret = PTR_ERR(host->hclk);
1048 goto clean_up1;
1049 }
1050 clk_enable(host->hclk);
1051 host->clk = clk_get_rate(host->hclk);
1052 host->pd = pdev;
1053
1054 init_completion(&host->intr_wait);
1055 spin_lock_init(&host->lock);
1056
1057 mmc->ops = &sh_mmcif_ops;
1058 mmc->f_max = host->clk;
1059 /* close to 400KHz */
1060 if (mmc->f_max < 51200000)
1061 mmc->f_min = mmc->f_max / 128;
1062 else if (mmc->f_max < 102400000)
1063 mmc->f_min = mmc->f_max / 256;
1064 else
1065 mmc->f_min = mmc->f_max / 512;
1066 if (pd->ocr)
1067 mmc->ocr_avail = pd->ocr;
1068 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1069 if (pd->caps)
1070 mmc->caps |= pd->caps;
1071 mmc->max_segs = 32;
1072 mmc->max_blk_size = 512;
1073 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1074 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1075 mmc->max_seg_size = mmc->max_req_size;
1076
1077 sh_mmcif_sync_reset(host);
1078 platform_set_drvdata(pdev, host);
1079
1080 pm_runtime_enable(&pdev->dev);
1081 host->power = false;
1082
1083 ret = pm_runtime_resume(&pdev->dev);
1084 if (ret < 0)
1085 goto clean_up2;
1086
1087 mmc_add_host(mmc);
1088
1089 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1090
1091 ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1092 if (ret) {
1093 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1094 goto clean_up3;
1095 }
1096 ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1097 if (ret) {
1098 free_irq(irq[0], host);
1099 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1100 goto clean_up3;
1101 }
1102
1103 sh_mmcif_detect(host->mmc);
1104
1105 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1106 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1107 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1108 return ret;
1109
1110clean_up3:
1111 mmc_remove_host(mmc);
1112 pm_runtime_suspend(&pdev->dev);
1113clean_up2:
1114 pm_runtime_disable(&pdev->dev);
1115 clk_disable(host->hclk);
1116clean_up1:
1117 mmc_free_host(mmc);
1118clean_up:
1119 if (reg)
1120 iounmap(reg);
1121 return ret;
1122}
1123
1124static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1125{
1126 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1127 int irq[2];
1128
1129 pm_runtime_get_sync(&pdev->dev);
1130
1131 mmc_remove_host(host->mmc);
1132 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1133
1134 if (host->addr)
1135 iounmap(host->addr);
1136
1137 irq[0] = platform_get_irq(pdev, 0);
1138 irq[1] = platform_get_irq(pdev, 1);
1139
1140 free_irq(irq[0], host);
1141 free_irq(irq[1], host);
1142
1143 platform_set_drvdata(pdev, NULL);
1144
1145 clk_disable(host->hclk);
1146 mmc_free_host(host->mmc);
1147 pm_runtime_put_sync(&pdev->dev);
1148 pm_runtime_disable(&pdev->dev);
1149
1150 return 0;
1151}
1152
1153#ifdef CONFIG_PM
1154static int sh_mmcif_suspend(struct device *dev)
1155{
1156 struct platform_device *pdev = to_platform_device(dev);
1157 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1158 int ret = mmc_suspend_host(host->mmc);
1159
1160 if (!ret) {
1161 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1162 clk_disable(host->hclk);
1163 }
1164
1165 return ret;
1166}
1167
1168static int sh_mmcif_resume(struct device *dev)
1169{
1170 struct platform_device *pdev = to_platform_device(dev);
1171 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1172
1173 clk_enable(host->hclk);
1174
1175 return mmc_resume_host(host->mmc);
1176}
1177#else
1178#define sh_mmcif_suspend NULL
1179#define sh_mmcif_resume NULL
1180#endif /* CONFIG_PM */
1181
1182static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1183 .suspend = sh_mmcif_suspend,
1184 .resume = sh_mmcif_resume,
1185};
1186
1187static struct platform_driver sh_mmcif_driver = {
1188 .probe = sh_mmcif_probe,
1189 .remove = sh_mmcif_remove,
1190 .driver = {
1191 .name = DRIVER_NAME,
1192 .pm = &sh_mmcif_dev_pm_ops,
1193 },
1194};
1195
1196static int __init sh_mmcif_init(void)
1197{
1198 return platform_driver_register(&sh_mmcif_driver);
1199}
1200
1201static void __exit sh_mmcif_exit(void)
1202{
1203 platform_driver_unregister(&sh_mmcif_driver);
1204}
1205
1206module_init(sh_mmcif_init);
1207module_exit(sh_mmcif_exit);
1208
1209
1210MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1211MODULE_LICENSE("GPL");
1212MODULE_ALIAS("platform:" DRIVER_NAME);
1213MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19/*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45#include <linux/bitops.h>
46#include <linux/clk.h>
47#include <linux/completion.h>
48#include <linux/delay.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/mmc/card.h>
52#include <linux/mmc/core.h>
53#include <linux/mmc/host.h>
54#include <linux/mmc/mmc.h>
55#include <linux/mmc/sdio.h>
56#include <linux/mmc/sh_mmcif.h>
57#include <linux/mmc/slot-gpio.h>
58#include <linux/mod_devicetable.h>
59#include <linux/mutex.h>
60#include <linux/of_device.h>
61#include <linux/pagemap.h>
62#include <linux/platform_device.h>
63#include <linux/pm_qos.h>
64#include <linux/pm_runtime.h>
65#include <linux/sh_dma.h>
66#include <linux/spinlock.h>
67#include <linux/module.h>
68
69#define DRIVER_NAME "sh_mmcif"
70#define DRIVER_VERSION "2010-04-28"
71
72/* CE_CMD_SET */
73#define CMD_MASK 0x3f000000
74#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77#define CMD_SET_RBSY (1 << 21) /* R1b */
78#define CMD_SET_CCSEN (1 << 20)
79#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93#define CMD_SET_CCSH (1 << 5)
94#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
98
99/* CE_CMD_CTRL */
100#define CMD_CTRL_BREAK (1 << 0)
101
102/* CE_BLOCK_SET */
103#define BLOCK_SIZE_MASK 0x0000ffff
104
105/* CE_INT */
106#define INT_CCSDE (1 << 29)
107#define INT_CMD12DRE (1 << 26)
108#define INT_CMD12RBE (1 << 25)
109#define INT_CMD12CRE (1 << 24)
110#define INT_DTRANE (1 << 23)
111#define INT_BUFRE (1 << 22)
112#define INT_BUFWEN (1 << 21)
113#define INT_BUFREN (1 << 20)
114#define INT_CCSRCV (1 << 19)
115#define INT_RBSYE (1 << 17)
116#define INT_CRSPE (1 << 16)
117#define INT_CMDVIO (1 << 15)
118#define INT_BUFVIO (1 << 14)
119#define INT_WDATERR (1 << 11)
120#define INT_RDATERR (1 << 10)
121#define INT_RIDXERR (1 << 9)
122#define INT_RSPERR (1 << 8)
123#define INT_CCSTO (1 << 5)
124#define INT_CRCSTO (1 << 4)
125#define INT_WDATTO (1 << 3)
126#define INT_RDATTO (1 << 2)
127#define INT_RBSYTO (1 << 1)
128#define INT_RSPTO (1 << 0)
129#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140/* CE_INT_MASK */
141#define MASK_ALL 0x00000000
142#define MASK_MCCSDE (1 << 29)
143#define MASK_MCMD12DRE (1 << 26)
144#define MASK_MCMD12RBE (1 << 25)
145#define MASK_MCMD12CRE (1 << 24)
146#define MASK_MDTRANE (1 << 23)
147#define MASK_MBUFRE (1 << 22)
148#define MASK_MBUFWEN (1 << 21)
149#define MASK_MBUFREN (1 << 20)
150#define MASK_MCCSRCV (1 << 19)
151#define MASK_MRBSYE (1 << 17)
152#define MASK_MCRSPE (1 << 16)
153#define MASK_MCMDVIO (1 << 15)
154#define MASK_MBUFVIO (1 << 14)
155#define MASK_MWDATERR (1 << 11)
156#define MASK_MRDATERR (1 << 10)
157#define MASK_MRIDXERR (1 << 9)
158#define MASK_MRSPERR (1 << 8)
159#define MASK_MCCSTO (1 << 5)
160#define MASK_MCRCSTO (1 << 4)
161#define MASK_MWDATTO (1 << 3)
162#define MASK_MRDATTO (1 << 2)
163#define MASK_MRBSYTO (1 << 1)
164#define MASK_MRSPTO (1 << 0)
165
166#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176/* CE_HOST_STS1 */
177#define STS1_CMDSEQ (1 << 31)
178
179/* CE_HOST_STS2 */
180#define STS2_CRCSTE (1 << 31)
181#define STS2_CRC16E (1 << 30)
182#define STS2_AC12CRCE (1 << 29)
183#define STS2_RSPCRC7E (1 << 28)
184#define STS2_CRCSTEBE (1 << 27)
185#define STS2_RDATEBE (1 << 26)
186#define STS2_AC12REBE (1 << 25)
187#define STS2_RSPEBE (1 << 24)
188#define STS2_AC12IDXE (1 << 23)
189#define STS2_RSPIDXE (1 << 22)
190#define STS2_CCSTO (1 << 15)
191#define STS2_RDATTO (1 << 14)
192#define STS2_DATBSYTO (1 << 13)
193#define STS2_CRCSTTO (1 << 12)
194#define STS2_AC12BSYTO (1 << 11)
195#define STS2_RSPBSYTO (1 << 10)
196#define STS2_AC12RSPTO (1 << 9)
197#define STS2_RSPTO (1 << 8)
198#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
204
205#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207#define CLKDEV_INIT 400000 /* 400 KHz */
208
209enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
214};
215
216enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
226};
227
228/*
229 * difference for each SoC
230 */
231struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool ccs_enable; /* Command Completion Signal support */
252 bool clk_ctrl2_enable;
253 struct mutex thread_lock;
254 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
255
256 /* DMA support */
257 struct dma_chan *chan_rx;
258 struct dma_chan *chan_tx;
259 struct completion dma_complete;
260 bool dma_active;
261};
262
263static const struct of_device_id sh_mmcif_of_match[] = {
264 { .compatible = "renesas,sh-mmcif" },
265 { }
266};
267MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
268
269#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
270
271static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
272 unsigned int reg, u32 val)
273{
274 writel(val | readl(host->addr + reg), host->addr + reg);
275}
276
277static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
278 unsigned int reg, u32 val)
279{
280 writel(~val & readl(host->addr + reg), host->addr + reg);
281}
282
283static void sh_mmcif_dma_complete(void *arg)
284{
285 struct sh_mmcif_host *host = arg;
286 struct mmc_request *mrq = host->mrq;
287 struct device *dev = sh_mmcif_host_to_dev(host);
288
289 dev_dbg(dev, "Command completed\n");
290
291 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
292 dev_name(dev)))
293 return;
294
295 complete(&host->dma_complete);
296}
297
298static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
299{
300 struct mmc_data *data = host->mrq->data;
301 struct scatterlist *sg = data->sg;
302 struct dma_async_tx_descriptor *desc = NULL;
303 struct dma_chan *chan = host->chan_rx;
304 struct device *dev = sh_mmcif_host_to_dev(host);
305 dma_cookie_t cookie = -EINVAL;
306 int ret;
307
308 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
309 DMA_FROM_DEVICE);
310 if (ret > 0) {
311 host->dma_active = true;
312 desc = dmaengine_prep_slave_sg(chan, sg, ret,
313 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
314 }
315
316 if (desc) {
317 desc->callback = sh_mmcif_dma_complete;
318 desc->callback_param = host;
319 cookie = dmaengine_submit(desc);
320 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
321 dma_async_issue_pending(chan);
322 }
323 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
324 __func__, data->sg_len, ret, cookie);
325
326 if (!desc) {
327 /* DMA failed, fall back to PIO */
328 if (ret >= 0)
329 ret = -EIO;
330 host->chan_rx = NULL;
331 host->dma_active = false;
332 dma_release_channel(chan);
333 /* Free the Tx channel too */
334 chan = host->chan_tx;
335 if (chan) {
336 host->chan_tx = NULL;
337 dma_release_channel(chan);
338 }
339 dev_warn(dev,
340 "DMA failed: %d, falling back to PIO\n", ret);
341 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
342 }
343
344 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
345 desc, cookie, data->sg_len);
346}
347
348static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
349{
350 struct mmc_data *data = host->mrq->data;
351 struct scatterlist *sg = data->sg;
352 struct dma_async_tx_descriptor *desc = NULL;
353 struct dma_chan *chan = host->chan_tx;
354 struct device *dev = sh_mmcif_host_to_dev(host);
355 dma_cookie_t cookie = -EINVAL;
356 int ret;
357
358 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
359 DMA_TO_DEVICE);
360 if (ret > 0) {
361 host->dma_active = true;
362 desc = dmaengine_prep_slave_sg(chan, sg, ret,
363 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
364 }
365
366 if (desc) {
367 desc->callback = sh_mmcif_dma_complete;
368 desc->callback_param = host;
369 cookie = dmaengine_submit(desc);
370 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
371 dma_async_issue_pending(chan);
372 }
373 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
374 __func__, data->sg_len, ret, cookie);
375
376 if (!desc) {
377 /* DMA failed, fall back to PIO */
378 if (ret >= 0)
379 ret = -EIO;
380 host->chan_tx = NULL;
381 host->dma_active = false;
382 dma_release_channel(chan);
383 /* Free the Rx channel too */
384 chan = host->chan_rx;
385 if (chan) {
386 host->chan_rx = NULL;
387 dma_release_channel(chan);
388 }
389 dev_warn(dev,
390 "DMA failed: %d, falling back to PIO\n", ret);
391 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
392 }
393
394 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
395 desc, cookie);
396}
397
398static struct dma_chan *
399sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
400{
401 dma_cap_mask_t mask;
402
403 dma_cap_zero(mask);
404 dma_cap_set(DMA_SLAVE, mask);
405 if (slave_id <= 0)
406 return NULL;
407
408 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
409}
410
411static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
412 struct dma_chan *chan,
413 enum dma_transfer_direction direction)
414{
415 struct resource *res;
416 struct dma_slave_config cfg = { 0, };
417
418 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
419 cfg.direction = direction;
420
421 if (direction == DMA_DEV_TO_MEM) {
422 cfg.src_addr = res->start + MMCIF_CE_DATA;
423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424 } else {
425 cfg.dst_addr = res->start + MMCIF_CE_DATA;
426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427 }
428
429 return dmaengine_slave_config(chan, &cfg);
430}
431
432static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
433{
434 struct device *dev = sh_mmcif_host_to_dev(host);
435 host->dma_active = false;
436
437 /* We can only either use DMA for both Tx and Rx or not use it at all */
438 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
439 struct sh_mmcif_plat_data *pdata = dev->platform_data;
440
441 host->chan_tx = sh_mmcif_request_dma_pdata(host,
442 pdata->slave_id_tx);
443 host->chan_rx = sh_mmcif_request_dma_pdata(host,
444 pdata->slave_id_rx);
445 } else {
446 host->chan_tx = dma_request_slave_channel(dev, "tx");
447 host->chan_rx = dma_request_slave_channel(dev, "rx");
448 }
449 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
450 host->chan_rx);
451
452 if (!host->chan_tx || !host->chan_rx ||
453 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
454 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
455 goto error;
456
457 return;
458
459error:
460 if (host->chan_tx)
461 dma_release_channel(host->chan_tx);
462 if (host->chan_rx)
463 dma_release_channel(host->chan_rx);
464 host->chan_tx = host->chan_rx = NULL;
465}
466
467static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
468{
469 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
470 /* Descriptors are freed automatically */
471 if (host->chan_tx) {
472 struct dma_chan *chan = host->chan_tx;
473 host->chan_tx = NULL;
474 dma_release_channel(chan);
475 }
476 if (host->chan_rx) {
477 struct dma_chan *chan = host->chan_rx;
478 host->chan_rx = NULL;
479 dma_release_channel(chan);
480 }
481
482 host->dma_active = false;
483}
484
485static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
486{
487 struct device *dev = sh_mmcif_host_to_dev(host);
488 struct sh_mmcif_plat_data *p = dev->platform_data;
489 bool sup_pclk = p ? p->sup_pclk : false;
490 unsigned int current_clk = clk_get_rate(host->clk);
491 unsigned int clkdiv;
492
493 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
495
496 if (!clk)
497 return;
498
499 if (host->clkdiv_map) {
500 unsigned int freq, best_freq, myclk, div, diff_min, diff;
501 int i;
502
503 clkdiv = 0;
504 diff_min = ~0;
505 best_freq = 0;
506 for (i = 31; i >= 0; i--) {
507 if (!((1 << i) & host->clkdiv_map))
508 continue;
509
510 /*
511 * clk = parent_freq / div
512 * -> parent_freq = clk x div
513 */
514
515 div = 1 << (i + 1);
516 freq = clk_round_rate(host->clk, clk * div);
517 myclk = freq / div;
518 diff = (myclk > clk) ? myclk - clk : clk - myclk;
519
520 if (diff <= diff_min) {
521 best_freq = freq;
522 clkdiv = i;
523 diff_min = diff;
524 }
525 }
526
527 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
528 (best_freq / (1 << (clkdiv + 1))), clk,
529 best_freq, clkdiv);
530
531 clk_set_rate(host->clk, best_freq);
532 clkdiv = clkdiv << 16;
533 } else if (sup_pclk && clk == current_clk) {
534 clkdiv = CLK_SUP_PCLK;
535 } else {
536 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
537 }
538
539 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
541}
542
543static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
544{
545 u32 tmp;
546
547 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
548
549 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
551 if (host->ccs_enable)
552 tmp |= SCCSTO_29;
553 if (host->clk_ctrl2_enable)
554 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
555 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
556 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
557 /* byte swap on */
558 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
559}
560
561static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
562{
563 struct device *dev = sh_mmcif_host_to_dev(host);
564 u32 state1, state2;
565 int ret, timeout;
566
567 host->sd_error = false;
568
569 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
570 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
571 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
572 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
573
574 if (state1 & STS1_CMDSEQ) {
575 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
577 for (timeout = 10000; timeout; timeout--) {
578 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
579 & STS1_CMDSEQ))
580 break;
581 mdelay(1);
582 }
583 if (!timeout) {
584 dev_err(dev,
585 "Forced end of command sequence timeout err\n");
586 return -EIO;
587 }
588 sh_mmcif_sync_reset(host);
589 dev_dbg(dev, "Forced end of command sequence\n");
590 return -EIO;
591 }
592
593 if (state2 & STS2_CRC_ERR) {
594 dev_err(dev, " CRC error: state %u, wait %u\n",
595 host->state, host->wait_for);
596 ret = -EIO;
597 } else if (state2 & STS2_TIMEOUT_ERR) {
598 dev_err(dev, " Timeout: state %u, wait %u\n",
599 host->state, host->wait_for);
600 ret = -ETIMEDOUT;
601 } else {
602 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
603 host->state, host->wait_for);
604 ret = -EIO;
605 }
606 return ret;
607}
608
609static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
610{
611 struct mmc_data *data = host->mrq->data;
612
613 host->sg_blkidx += host->blocksize;
614
615 /* data->sg->length must be a multiple of host->blocksize? */
616 BUG_ON(host->sg_blkidx > data->sg->length);
617
618 if (host->sg_blkidx == data->sg->length) {
619 host->sg_blkidx = 0;
620 if (++host->sg_idx < data->sg_len)
621 host->pio_ptr = sg_virt(++data->sg);
622 } else {
623 host->pio_ptr = p;
624 }
625
626 return host->sg_idx != data->sg_len;
627}
628
629static void sh_mmcif_single_read(struct sh_mmcif_host *host,
630 struct mmc_request *mrq)
631{
632 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
633 BLOCK_SIZE_MASK) + 3;
634
635 host->wait_for = MMCIF_WAIT_FOR_READ;
636
637 /* buf read enable */
638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
639}
640
641static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
642{
643 struct device *dev = sh_mmcif_host_to_dev(host);
644 struct mmc_data *data = host->mrq->data;
645 u32 *p = sg_virt(data->sg);
646 int i;
647
648 if (host->sd_error) {
649 data->error = sh_mmcif_error_manage(host);
650 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
651 return false;
652 }
653
654 for (i = 0; i < host->blocksize / 4; i++)
655 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
656
657 /* buffer read end */
658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
659 host->wait_for = MMCIF_WAIT_FOR_READ_END;
660
661 return true;
662}
663
664static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
665 struct mmc_request *mrq)
666{
667 struct mmc_data *data = mrq->data;
668
669 if (!data->sg_len || !data->sg->length)
670 return;
671
672 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
673 BLOCK_SIZE_MASK;
674
675 host->wait_for = MMCIF_WAIT_FOR_MREAD;
676 host->sg_idx = 0;
677 host->sg_blkidx = 0;
678 host->pio_ptr = sg_virt(data->sg);
679
680 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
681}
682
683static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
684{
685 struct device *dev = sh_mmcif_host_to_dev(host);
686 struct mmc_data *data = host->mrq->data;
687 u32 *p = host->pio_ptr;
688 int i;
689
690 if (host->sd_error) {
691 data->error = sh_mmcif_error_manage(host);
692 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
693 return false;
694 }
695
696 BUG_ON(!data->sg->length);
697
698 for (i = 0; i < host->blocksize / 4; i++)
699 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
700
701 if (!sh_mmcif_next_block(host, p))
702 return false;
703
704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
705
706 return true;
707}
708
709static void sh_mmcif_single_write(struct sh_mmcif_host *host,
710 struct mmc_request *mrq)
711{
712 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
713 BLOCK_SIZE_MASK) + 3;
714
715 host->wait_for = MMCIF_WAIT_FOR_WRITE;
716
717 /* buf write enable */
718 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
719}
720
721static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
722{
723 struct device *dev = sh_mmcif_host_to_dev(host);
724 struct mmc_data *data = host->mrq->data;
725 u32 *p = sg_virt(data->sg);
726 int i;
727
728 if (host->sd_error) {
729 data->error = sh_mmcif_error_manage(host);
730 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
731 return false;
732 }
733
734 for (i = 0; i < host->blocksize / 4; i++)
735 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
736
737 /* buffer write end */
738 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
739 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
740
741 return true;
742}
743
744static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
745 struct mmc_request *mrq)
746{
747 struct mmc_data *data = mrq->data;
748
749 if (!data->sg_len || !data->sg->length)
750 return;
751
752 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
753 BLOCK_SIZE_MASK;
754
755 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
756 host->sg_idx = 0;
757 host->sg_blkidx = 0;
758 host->pio_ptr = sg_virt(data->sg);
759
760 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
761}
762
763static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
764{
765 struct device *dev = sh_mmcif_host_to_dev(host);
766 struct mmc_data *data = host->mrq->data;
767 u32 *p = host->pio_ptr;
768 int i;
769
770 if (host->sd_error) {
771 data->error = sh_mmcif_error_manage(host);
772 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
773 return false;
774 }
775
776 BUG_ON(!data->sg->length);
777
778 for (i = 0; i < host->blocksize / 4; i++)
779 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
780
781 if (!sh_mmcif_next_block(host, p))
782 return false;
783
784 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
785
786 return true;
787}
788
789static void sh_mmcif_get_response(struct sh_mmcif_host *host,
790 struct mmc_command *cmd)
791{
792 if (cmd->flags & MMC_RSP_136) {
793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
794 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
795 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
796 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
797 } else
798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
799}
800
801static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
802 struct mmc_command *cmd)
803{
804 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
805}
806
807static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
808 struct mmc_request *mrq)
809{
810 struct device *dev = sh_mmcif_host_to_dev(host);
811 struct mmc_data *data = mrq->data;
812 struct mmc_command *cmd = mrq->cmd;
813 u32 opc = cmd->opcode;
814 u32 tmp = 0;
815
816 /* Response Type check */
817 switch (mmc_resp_type(cmd)) {
818 case MMC_RSP_NONE:
819 tmp |= CMD_SET_RTYP_NO;
820 break;
821 case MMC_RSP_R1:
822 case MMC_RSP_R3:
823 tmp |= CMD_SET_RTYP_6B;
824 break;
825 case MMC_RSP_R1B:
826 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
827 break;
828 case MMC_RSP_R2:
829 tmp |= CMD_SET_RTYP_17B;
830 break;
831 default:
832 dev_err(dev, "Unsupported response type.\n");
833 break;
834 }
835
836 /* WDAT / DATW */
837 if (data) {
838 tmp |= CMD_SET_WDAT;
839 switch (host->bus_width) {
840 case MMC_BUS_WIDTH_1:
841 tmp |= CMD_SET_DATW_1;
842 break;
843 case MMC_BUS_WIDTH_4:
844 tmp |= CMD_SET_DATW_4;
845 break;
846 case MMC_BUS_WIDTH_8:
847 tmp |= CMD_SET_DATW_8;
848 break;
849 default:
850 dev_err(dev, "Unsupported bus width.\n");
851 break;
852 }
853 switch (host->timing) {
854 case MMC_TIMING_MMC_DDR52:
855 /*
856 * MMC core will only set this timing, if the host
857 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
858 * capability. MMCIF implementations with this
859 * capability, e.g. sh73a0, will have to set it
860 * in their platform data.
861 */
862 tmp |= CMD_SET_DARS;
863 break;
864 }
865 }
866 /* DWEN */
867 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
868 tmp |= CMD_SET_DWEN;
869 /* CMLTE/CMD12EN */
870 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
871 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
872 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
873 data->blocks << 16);
874 }
875 /* RIDXC[1:0] check bits */
876 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
877 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878 tmp |= CMD_SET_RIDXC_BITS;
879 /* RCRC7C[1:0] check bits */
880 if (opc == MMC_SEND_OP_COND)
881 tmp |= CMD_SET_CRC7C_BITS;
882 /* RCRC7C[1:0] internal CRC7 */
883 if (opc == MMC_ALL_SEND_CID ||
884 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
885 tmp |= CMD_SET_CRC7C_INTERNAL;
886
887 return (opc << 24) | tmp;
888}
889
890static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
891 struct mmc_request *mrq, u32 opc)
892{
893 struct device *dev = sh_mmcif_host_to_dev(host);
894
895 switch (opc) {
896 case MMC_READ_MULTIPLE_BLOCK:
897 sh_mmcif_multi_read(host, mrq);
898 return 0;
899 case MMC_WRITE_MULTIPLE_BLOCK:
900 sh_mmcif_multi_write(host, mrq);
901 return 0;
902 case MMC_WRITE_BLOCK:
903 sh_mmcif_single_write(host, mrq);
904 return 0;
905 case MMC_READ_SINGLE_BLOCK:
906 case MMC_SEND_EXT_CSD:
907 sh_mmcif_single_read(host, mrq);
908 return 0;
909 default:
910 dev_err(dev, "Unsupported CMD%d\n", opc);
911 return -EINVAL;
912 }
913}
914
915static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
916 struct mmc_request *mrq)
917{
918 struct mmc_command *cmd = mrq->cmd;
919 u32 opc = cmd->opcode;
920 u32 mask = 0;
921 unsigned long flags;
922
923 if (cmd->flags & MMC_RSP_BUSY)
924 mask = MASK_START_CMD | MASK_MRBSYE;
925 else
926 mask = MASK_START_CMD | MASK_MCRSPE;
927
928 if (host->ccs_enable)
929 mask |= MASK_MCCSTO;
930
931 if (mrq->data) {
932 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
933 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
934 mrq->data->blksz);
935 }
936 opc = sh_mmcif_set_cmd(host, mrq);
937
938 if (host->ccs_enable)
939 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
940 else
941 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
942 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
943 /* set arg */
944 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
945 /* set cmd */
946 spin_lock_irqsave(&host->lock, flags);
947 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
948
949 host->wait_for = MMCIF_WAIT_FOR_CMD;
950 schedule_delayed_work(&host->timeout_work, host->timeout);
951 spin_unlock_irqrestore(&host->lock, flags);
952}
953
954static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
955 struct mmc_request *mrq)
956{
957 struct device *dev = sh_mmcif_host_to_dev(host);
958
959 switch (mrq->cmd->opcode) {
960 case MMC_READ_MULTIPLE_BLOCK:
961 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
962 break;
963 case MMC_WRITE_MULTIPLE_BLOCK:
964 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
965 break;
966 default:
967 dev_err(dev, "unsupported stop cmd\n");
968 mrq->stop->error = sh_mmcif_error_manage(host);
969 return;
970 }
971
972 host->wait_for = MMCIF_WAIT_FOR_STOP;
973}
974
975static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
976{
977 struct sh_mmcif_host *host = mmc_priv(mmc);
978 struct device *dev = sh_mmcif_host_to_dev(host);
979 unsigned long flags;
980
981 spin_lock_irqsave(&host->lock, flags);
982 if (host->state != STATE_IDLE) {
983 dev_dbg(dev, "%s() rejected, state %u\n",
984 __func__, host->state);
985 spin_unlock_irqrestore(&host->lock, flags);
986 mrq->cmd->error = -EAGAIN;
987 mmc_request_done(mmc, mrq);
988 return;
989 }
990
991 host->state = STATE_REQUEST;
992 spin_unlock_irqrestore(&host->lock, flags);
993
994 host->mrq = mrq;
995
996 sh_mmcif_start_cmd(host, mrq);
997}
998
999static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1000{
1001 struct device *dev = sh_mmcif_host_to_dev(host);
1002
1003 if (host->mmc->f_max) {
1004 unsigned int f_max, f_min = 0, f_min_old;
1005
1006 f_max = host->mmc->f_max;
1007 for (f_min_old = f_max; f_min_old > 2;) {
1008 f_min = clk_round_rate(host->clk, f_min_old / 2);
1009 if (f_min == f_min_old)
1010 break;
1011 f_min_old = f_min;
1012 }
1013
1014 /*
1015 * This driver assumes this SoC is R-Car Gen2 or later
1016 */
1017 host->clkdiv_map = 0x3ff;
1018
1019 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1020 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1021 } else {
1022 unsigned int clk = clk_get_rate(host->clk);
1023
1024 host->mmc->f_max = clk / 2;
1025 host->mmc->f_min = clk / 512;
1026 }
1027
1028 dev_dbg(dev, "clk max/min = %d/%d\n",
1029 host->mmc->f_max, host->mmc->f_min);
1030}
1031
1032static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1033{
1034 struct sh_mmcif_host *host = mmc_priv(mmc);
1035 struct device *dev = sh_mmcif_host_to_dev(host);
1036 unsigned long flags;
1037
1038 spin_lock_irqsave(&host->lock, flags);
1039 if (host->state != STATE_IDLE) {
1040 dev_dbg(dev, "%s() rejected, state %u\n",
1041 __func__, host->state);
1042 spin_unlock_irqrestore(&host->lock, flags);
1043 return;
1044 }
1045
1046 host->state = STATE_IOS;
1047 spin_unlock_irqrestore(&host->lock, flags);
1048
1049 switch (ios->power_mode) {
1050 case MMC_POWER_UP:
1051 if (!IS_ERR(mmc->supply.vmmc))
1052 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1053 if (!host->power) {
1054 clk_prepare_enable(host->clk);
1055 pm_runtime_get_sync(dev);
1056 sh_mmcif_sync_reset(host);
1057 sh_mmcif_request_dma(host);
1058 host->power = true;
1059 }
1060 break;
1061 case MMC_POWER_OFF:
1062 if (!IS_ERR(mmc->supply.vmmc))
1063 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1064 if (host->power) {
1065 sh_mmcif_clock_control(host, 0);
1066 sh_mmcif_release_dma(host);
1067 pm_runtime_put(dev);
1068 clk_disable_unprepare(host->clk);
1069 host->power = false;
1070 }
1071 break;
1072 case MMC_POWER_ON:
1073 sh_mmcif_clock_control(host, ios->clock);
1074 break;
1075 }
1076
1077 host->timing = ios->timing;
1078 host->bus_width = ios->bus_width;
1079 host->state = STATE_IDLE;
1080}
1081
1082static int sh_mmcif_get_cd(struct mmc_host *mmc)
1083{
1084 struct sh_mmcif_host *host = mmc_priv(mmc);
1085 struct device *dev = sh_mmcif_host_to_dev(host);
1086 struct sh_mmcif_plat_data *p = dev->platform_data;
1087 int ret = mmc_gpio_get_cd(mmc);
1088
1089 if (ret >= 0)
1090 return ret;
1091
1092 if (!p || !p->get_cd)
1093 return -ENOSYS;
1094 else
1095 return p->get_cd(host->pd);
1096}
1097
1098static struct mmc_host_ops sh_mmcif_ops = {
1099 .request = sh_mmcif_request,
1100 .set_ios = sh_mmcif_set_ios,
1101 .get_cd = sh_mmcif_get_cd,
1102};
1103
1104static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1105{
1106 struct mmc_command *cmd = host->mrq->cmd;
1107 struct mmc_data *data = host->mrq->data;
1108 struct device *dev = sh_mmcif_host_to_dev(host);
1109 long time;
1110
1111 if (host->sd_error) {
1112 switch (cmd->opcode) {
1113 case MMC_ALL_SEND_CID:
1114 case MMC_SELECT_CARD:
1115 case MMC_APP_CMD:
1116 cmd->error = -ETIMEDOUT;
1117 break;
1118 default:
1119 cmd->error = sh_mmcif_error_manage(host);
1120 break;
1121 }
1122 dev_dbg(dev, "CMD%d error %d\n",
1123 cmd->opcode, cmd->error);
1124 host->sd_error = false;
1125 return false;
1126 }
1127 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1128 cmd->error = 0;
1129 return false;
1130 }
1131
1132 sh_mmcif_get_response(host, cmd);
1133
1134 if (!data)
1135 return false;
1136
1137 /*
1138 * Completion can be signalled from DMA callback and error, so, have to
1139 * reset here, before setting .dma_active
1140 */
1141 init_completion(&host->dma_complete);
1142
1143 if (data->flags & MMC_DATA_READ) {
1144 if (host->chan_rx)
1145 sh_mmcif_start_dma_rx(host);
1146 } else {
1147 if (host->chan_tx)
1148 sh_mmcif_start_dma_tx(host);
1149 }
1150
1151 if (!host->dma_active) {
1152 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1153 return !data->error;
1154 }
1155
1156 /* Running in the IRQ thread, can sleep */
1157 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1158 host->timeout);
1159
1160 if (data->flags & MMC_DATA_READ)
1161 dma_unmap_sg(host->chan_rx->device->dev,
1162 data->sg, data->sg_len,
1163 DMA_FROM_DEVICE);
1164 else
1165 dma_unmap_sg(host->chan_tx->device->dev,
1166 data->sg, data->sg_len,
1167 DMA_TO_DEVICE);
1168
1169 if (host->sd_error) {
1170 dev_err(host->mmc->parent,
1171 "Error IRQ while waiting for DMA completion!\n");
1172 /* Woken up by an error IRQ: abort DMA */
1173 data->error = sh_mmcif_error_manage(host);
1174 } else if (!time) {
1175 dev_err(host->mmc->parent, "DMA timeout!\n");
1176 data->error = -ETIMEDOUT;
1177 } else if (time < 0) {
1178 dev_err(host->mmc->parent,
1179 "wait_for_completion_...() error %ld!\n", time);
1180 data->error = time;
1181 }
1182 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1183 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1184 host->dma_active = false;
1185
1186 if (data->error) {
1187 data->bytes_xfered = 0;
1188 /* Abort DMA */
1189 if (data->flags & MMC_DATA_READ)
1190 dmaengine_terminate_all(host->chan_rx);
1191 else
1192 dmaengine_terminate_all(host->chan_tx);
1193 }
1194
1195 return false;
1196}
1197
1198static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1199{
1200 struct sh_mmcif_host *host = dev_id;
1201 struct mmc_request *mrq;
1202 struct device *dev = sh_mmcif_host_to_dev(host);
1203 bool wait = false;
1204 unsigned long flags;
1205 int wait_work;
1206
1207 spin_lock_irqsave(&host->lock, flags);
1208 wait_work = host->wait_for;
1209 spin_unlock_irqrestore(&host->lock, flags);
1210
1211 cancel_delayed_work_sync(&host->timeout_work);
1212
1213 mutex_lock(&host->thread_lock);
1214
1215 mrq = host->mrq;
1216 if (!mrq) {
1217 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1218 host->state, host->wait_for);
1219 mutex_unlock(&host->thread_lock);
1220 return IRQ_HANDLED;
1221 }
1222
1223 /*
1224 * All handlers return true, if processing continues, and false, if the
1225 * request has to be completed - successfully or not
1226 */
1227 switch (wait_work) {
1228 case MMCIF_WAIT_FOR_REQUEST:
1229 /* We're too late, the timeout has already kicked in */
1230 mutex_unlock(&host->thread_lock);
1231 return IRQ_HANDLED;
1232 case MMCIF_WAIT_FOR_CMD:
1233 /* Wait for data? */
1234 wait = sh_mmcif_end_cmd(host);
1235 break;
1236 case MMCIF_WAIT_FOR_MREAD:
1237 /* Wait for more data? */
1238 wait = sh_mmcif_mread_block(host);
1239 break;
1240 case MMCIF_WAIT_FOR_READ:
1241 /* Wait for data end? */
1242 wait = sh_mmcif_read_block(host);
1243 break;
1244 case MMCIF_WAIT_FOR_MWRITE:
1245 /* Wait data to write? */
1246 wait = sh_mmcif_mwrite_block(host);
1247 break;
1248 case MMCIF_WAIT_FOR_WRITE:
1249 /* Wait for data end? */
1250 wait = sh_mmcif_write_block(host);
1251 break;
1252 case MMCIF_WAIT_FOR_STOP:
1253 if (host->sd_error) {
1254 mrq->stop->error = sh_mmcif_error_manage(host);
1255 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1256 break;
1257 }
1258 sh_mmcif_get_cmd12response(host, mrq->stop);
1259 mrq->stop->error = 0;
1260 break;
1261 case MMCIF_WAIT_FOR_READ_END:
1262 case MMCIF_WAIT_FOR_WRITE_END:
1263 if (host->sd_error) {
1264 mrq->data->error = sh_mmcif_error_manage(host);
1265 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1266 }
1267 break;
1268 default:
1269 BUG();
1270 }
1271
1272 if (wait) {
1273 schedule_delayed_work(&host->timeout_work, host->timeout);
1274 /* Wait for more data */
1275 mutex_unlock(&host->thread_lock);
1276 return IRQ_HANDLED;
1277 }
1278
1279 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1280 struct mmc_data *data = mrq->data;
1281 if (!mrq->cmd->error && data && !data->error)
1282 data->bytes_xfered =
1283 data->blocks * data->blksz;
1284
1285 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1286 sh_mmcif_stop_cmd(host, mrq);
1287 if (!mrq->stop->error) {
1288 schedule_delayed_work(&host->timeout_work, host->timeout);
1289 mutex_unlock(&host->thread_lock);
1290 return IRQ_HANDLED;
1291 }
1292 }
1293 }
1294
1295 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1296 host->state = STATE_IDLE;
1297 host->mrq = NULL;
1298 mmc_request_done(host->mmc, mrq);
1299
1300 mutex_unlock(&host->thread_lock);
1301
1302 return IRQ_HANDLED;
1303}
1304
1305static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1306{
1307 struct sh_mmcif_host *host = dev_id;
1308 struct device *dev = sh_mmcif_host_to_dev(host);
1309 u32 state, mask;
1310
1311 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1312 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1313 if (host->ccs_enable)
1314 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1315 else
1316 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1317 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1318
1319 if (state & ~MASK_CLEAN)
1320 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1321 state);
1322
1323 if (state & INT_ERR_STS || state & ~INT_ALL) {
1324 host->sd_error = true;
1325 dev_dbg(dev, "int err state = 0x%08x\n", state);
1326 }
1327 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1328 if (!host->mrq)
1329 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1330 if (!host->dma_active)
1331 return IRQ_WAKE_THREAD;
1332 else if (host->sd_error)
1333 sh_mmcif_dma_complete(host);
1334 } else {
1335 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1336 }
1337
1338 return IRQ_HANDLED;
1339}
1340
1341static void sh_mmcif_timeout_work(struct work_struct *work)
1342{
1343 struct delayed_work *d = to_delayed_work(work);
1344 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1345 struct mmc_request *mrq = host->mrq;
1346 struct device *dev = sh_mmcif_host_to_dev(host);
1347 unsigned long flags;
1348
1349 if (host->dying)
1350 /* Don't run after mmc_remove_host() */
1351 return;
1352
1353 spin_lock_irqsave(&host->lock, flags);
1354 if (host->state == STATE_IDLE) {
1355 spin_unlock_irqrestore(&host->lock, flags);
1356 return;
1357 }
1358
1359 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1360 host->wait_for, mrq->cmd->opcode);
1361
1362 host->state = STATE_TIMEOUT;
1363 spin_unlock_irqrestore(&host->lock, flags);
1364
1365 /*
1366 * Handle races with cancel_delayed_work(), unless
1367 * cancel_delayed_work_sync() is used
1368 */
1369 switch (host->wait_for) {
1370 case MMCIF_WAIT_FOR_CMD:
1371 mrq->cmd->error = sh_mmcif_error_manage(host);
1372 break;
1373 case MMCIF_WAIT_FOR_STOP:
1374 mrq->stop->error = sh_mmcif_error_manage(host);
1375 break;
1376 case MMCIF_WAIT_FOR_MREAD:
1377 case MMCIF_WAIT_FOR_MWRITE:
1378 case MMCIF_WAIT_FOR_READ:
1379 case MMCIF_WAIT_FOR_WRITE:
1380 case MMCIF_WAIT_FOR_READ_END:
1381 case MMCIF_WAIT_FOR_WRITE_END:
1382 mrq->data->error = sh_mmcif_error_manage(host);
1383 break;
1384 default:
1385 BUG();
1386 }
1387
1388 host->state = STATE_IDLE;
1389 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1390 host->mrq = NULL;
1391 mmc_request_done(host->mmc, mrq);
1392}
1393
1394static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1395{
1396 struct device *dev = sh_mmcif_host_to_dev(host);
1397 struct sh_mmcif_plat_data *pd = dev->platform_data;
1398 struct mmc_host *mmc = host->mmc;
1399
1400 mmc_regulator_get_supply(mmc);
1401
1402 if (!pd)
1403 return;
1404
1405 if (!mmc->ocr_avail)
1406 mmc->ocr_avail = pd->ocr;
1407 else if (pd->ocr)
1408 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1409}
1410
1411static int sh_mmcif_probe(struct platform_device *pdev)
1412{
1413 int ret = 0, irq[2];
1414 struct mmc_host *mmc;
1415 struct sh_mmcif_host *host;
1416 struct device *dev = &pdev->dev;
1417 struct sh_mmcif_plat_data *pd = dev->platform_data;
1418 struct resource *res;
1419 void __iomem *reg;
1420 const char *name;
1421
1422 irq[0] = platform_get_irq(pdev, 0);
1423 irq[1] = platform_get_irq(pdev, 1);
1424 if (irq[0] < 0) {
1425 dev_err(dev, "Get irq error\n");
1426 return -ENXIO;
1427 }
1428
1429 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1430 reg = devm_ioremap_resource(dev, res);
1431 if (IS_ERR(reg))
1432 return PTR_ERR(reg);
1433
1434 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1435 if (!mmc)
1436 return -ENOMEM;
1437
1438 ret = mmc_of_parse(mmc);
1439 if (ret < 0)
1440 goto err_host;
1441
1442 host = mmc_priv(mmc);
1443 host->mmc = mmc;
1444 host->addr = reg;
1445 host->timeout = msecs_to_jiffies(10000);
1446 host->ccs_enable = !pd || !pd->ccs_unsupported;
1447 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1448
1449 host->pd = pdev;
1450
1451 spin_lock_init(&host->lock);
1452
1453 mmc->ops = &sh_mmcif_ops;
1454 sh_mmcif_init_ocr(host);
1455
1456 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1457 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1458 mmc->max_busy_timeout = 10000;
1459
1460 if (pd && pd->caps)
1461 mmc->caps |= pd->caps;
1462 mmc->max_segs = 32;
1463 mmc->max_blk_size = 512;
1464 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1465 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1466 mmc->max_seg_size = mmc->max_req_size;
1467
1468 platform_set_drvdata(pdev, host);
1469
1470 host->clk = devm_clk_get(dev, NULL);
1471 if (IS_ERR(host->clk)) {
1472 ret = PTR_ERR(host->clk);
1473 dev_err(dev, "cannot get clock: %d\n", ret);
1474 goto err_host;
1475 }
1476
1477 ret = clk_prepare_enable(host->clk);
1478 if (ret < 0)
1479 goto err_host;
1480
1481 sh_mmcif_clk_setup(host);
1482
1483 pm_runtime_enable(dev);
1484 host->power = false;
1485
1486 ret = pm_runtime_get_sync(dev);
1487 if (ret < 0)
1488 goto err_clk;
1489
1490 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1491
1492 sh_mmcif_sync_reset(host);
1493 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1494
1495 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1496 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1497 sh_mmcif_irqt, 0, name, host);
1498 if (ret) {
1499 dev_err(dev, "request_irq error (%s)\n", name);
1500 goto err_clk;
1501 }
1502 if (irq[1] >= 0) {
1503 ret = devm_request_threaded_irq(dev, irq[1],
1504 sh_mmcif_intr, sh_mmcif_irqt,
1505 0, "sh_mmc:int", host);
1506 if (ret) {
1507 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1508 goto err_clk;
1509 }
1510 }
1511
1512 if (pd && pd->use_cd_gpio) {
1513 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1514 if (ret < 0)
1515 goto err_clk;
1516 }
1517
1518 mutex_init(&host->thread_lock);
1519
1520 ret = mmc_add_host(mmc);
1521 if (ret < 0)
1522 goto err_clk;
1523
1524 dev_pm_qos_expose_latency_limit(dev, 100);
1525
1526 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1527 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1528 clk_get_rate(host->clk) / 1000000UL);
1529
1530 pm_runtime_put(dev);
1531 clk_disable_unprepare(host->clk);
1532 return ret;
1533
1534err_clk:
1535 clk_disable_unprepare(host->clk);
1536 pm_runtime_put_sync(dev);
1537 pm_runtime_disable(dev);
1538err_host:
1539 mmc_free_host(mmc);
1540 return ret;
1541}
1542
1543static int sh_mmcif_remove(struct platform_device *pdev)
1544{
1545 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1546
1547 host->dying = true;
1548 clk_prepare_enable(host->clk);
1549 pm_runtime_get_sync(&pdev->dev);
1550
1551 dev_pm_qos_hide_latency_limit(&pdev->dev);
1552
1553 mmc_remove_host(host->mmc);
1554 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1555
1556 /*
1557 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1558 * mmc_remove_host() call above. But swapping order doesn't help either
1559 * (a query on the linux-mmc mailing list didn't bring any replies).
1560 */
1561 cancel_delayed_work_sync(&host->timeout_work);
1562
1563 clk_disable_unprepare(host->clk);
1564 mmc_free_host(host->mmc);
1565 pm_runtime_put_sync(&pdev->dev);
1566 pm_runtime_disable(&pdev->dev);
1567
1568 return 0;
1569}
1570
1571#ifdef CONFIG_PM_SLEEP
1572static int sh_mmcif_suspend(struct device *dev)
1573{
1574 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1575
1576 pm_runtime_get_sync(dev);
1577 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1578 pm_runtime_put(dev);
1579
1580 return 0;
1581}
1582
1583static int sh_mmcif_resume(struct device *dev)
1584{
1585 return 0;
1586}
1587#endif
1588
1589static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1590 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1591};
1592
1593static struct platform_driver sh_mmcif_driver = {
1594 .probe = sh_mmcif_probe,
1595 .remove = sh_mmcif_remove,
1596 .driver = {
1597 .name = DRIVER_NAME,
1598 .pm = &sh_mmcif_dev_pm_ops,
1599 .of_match_table = sh_mmcif_of_match,
1600 },
1601};
1602
1603module_platform_driver(sh_mmcif_driver);
1604
1605MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1606MODULE_LICENSE("GPL");
1607MODULE_ALIAS("platform:" DRIVER_NAME);
1608MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");