Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * MMCIF eMMC driver.
   3 *
   4 * Copyright (C) 2010 Renesas Solutions Corp.
   5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License.
  10 *
  11 *
  12 * TODO
  13 *  1. DMA
  14 *  2. Power management
  15 *  3. Handle MMC errors better
  16 *
  17 */
  18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/delay.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/core.h>
  26#include <linux/mmc/host.h>
  27#include <linux/mmc/mmc.h>
  28#include <linux/mmc/sdio.h>
  29#include <linux/mmc/sh_mmcif.h>
  30#include <linux/pagemap.h>
  31#include <linux/platform_device.h>
 
  32#include <linux/pm_runtime.h>
  33#include <linux/spinlock.h>
 
  34
  35#define DRIVER_NAME	"sh_mmcif"
  36#define DRIVER_VERSION	"2010-04-28"
  37
  38/* CE_CMD_SET */
  39#define CMD_MASK		0x3f000000
  40#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  41#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  42#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  43#define CMD_SET_RBSY		(1 << 21) /* R1b */
  44#define CMD_SET_CCSEN		(1 << 20)
  45#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  46#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  47#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  48#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  49#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  50#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  51#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  52#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  53#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  54#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  55#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  56#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  57#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  58#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  59#define CMD_SET_CCSH		(1 << 5)
  60#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  61#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  62#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  63
  64/* CE_CMD_CTRL */
  65#define CMD_CTRL_BREAK		(1 << 0)
  66
  67/* CE_BLOCK_SET */
  68#define BLOCK_SIZE_MASK		0x0000ffff
  69
  70/* CE_INT */
  71#define INT_CCSDE		(1 << 29)
  72#define INT_CMD12DRE		(1 << 26)
  73#define INT_CMD12RBE		(1 << 25)
  74#define INT_CMD12CRE		(1 << 24)
  75#define INT_DTRANE		(1 << 23)
  76#define INT_BUFRE		(1 << 22)
  77#define INT_BUFWEN		(1 << 21)
  78#define INT_BUFREN		(1 << 20)
  79#define INT_CCSRCV		(1 << 19)
  80#define INT_RBSYE		(1 << 17)
  81#define INT_CRSPE		(1 << 16)
  82#define INT_CMDVIO		(1 << 15)
  83#define INT_BUFVIO		(1 << 14)
  84#define INT_WDATERR		(1 << 11)
  85#define INT_RDATERR		(1 << 10)
  86#define INT_RIDXERR		(1 << 9)
  87#define INT_RSPERR		(1 << 8)
  88#define INT_CCSTO		(1 << 5)
  89#define INT_CRCSTO		(1 << 4)
  90#define INT_WDATTO		(1 << 3)
  91#define INT_RDATTO		(1 << 2)
  92#define INT_RBSYTO		(1 << 1)
  93#define INT_RSPTO		(1 << 0)
  94#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
  95				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  96				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
  97				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  98
  99/* CE_INT_MASK */
 100#define MASK_ALL		0x00000000
 101#define MASK_MCCSDE		(1 << 29)
 102#define MASK_MCMD12DRE		(1 << 26)
 103#define MASK_MCMD12RBE		(1 << 25)
 104#define MASK_MCMD12CRE		(1 << 24)
 105#define MASK_MDTRANE		(1 << 23)
 106#define MASK_MBUFRE		(1 << 22)
 107#define MASK_MBUFWEN		(1 << 21)
 108#define MASK_MBUFREN		(1 << 20)
 109#define MASK_MCCSRCV		(1 << 19)
 110#define MASK_MRBSYE		(1 << 17)
 111#define MASK_MCRSPE		(1 << 16)
 112#define MASK_MCMDVIO		(1 << 15)
 113#define MASK_MBUFVIO		(1 << 14)
 114#define MASK_MWDATERR		(1 << 11)
 115#define MASK_MRDATERR		(1 << 10)
 116#define MASK_MRIDXERR		(1 << 9)
 117#define MASK_MRSPERR		(1 << 8)
 118#define MASK_MCCSTO		(1 << 5)
 119#define MASK_MCRCSTO		(1 << 4)
 120#define MASK_MWDATTO		(1 << 3)
 121#define MASK_MRDATTO		(1 << 2)
 122#define MASK_MRBSYTO		(1 << 1)
 123#define MASK_MRSPTO		(1 << 0)
 124
 
 
 
 
 
 125/* CE_HOST_STS1 */
 126#define STS1_CMDSEQ		(1 << 31)
 127
 128/* CE_HOST_STS2 */
 129#define STS2_CRCSTE		(1 << 31)
 130#define STS2_CRC16E		(1 << 30)
 131#define STS2_AC12CRCE		(1 << 29)
 132#define STS2_RSPCRC7E		(1 << 28)
 133#define STS2_CRCSTEBE		(1 << 27)
 134#define STS2_RDATEBE		(1 << 26)
 135#define STS2_AC12REBE		(1 << 25)
 136#define STS2_RSPEBE		(1 << 24)
 137#define STS2_AC12IDXE		(1 << 23)
 138#define STS2_RSPIDXE		(1 << 22)
 139#define STS2_CCSTO		(1 << 15)
 140#define STS2_RDATTO		(1 << 14)
 141#define STS2_DATBSYTO		(1 << 13)
 142#define STS2_CRCSTTO		(1 << 12)
 143#define STS2_AC12BSYTO		(1 << 11)
 144#define STS2_RSPBSYTO		(1 << 10)
 145#define STS2_AC12RSPTO		(1 << 9)
 146#define STS2_RSPTO		(1 << 8)
 147#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 148				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 149#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 150				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 151				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 152				 STS2_AC12RSPTO | STS2_RSPTO)
 153
 154#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 155#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 156#define CLKDEV_INIT		400000   /* 400 KHz */
 157
 158enum mmcif_state {
 159	STATE_IDLE,
 160	STATE_REQUEST,
 161	STATE_IOS,
 162};
 163
 
 
 
 
 
 
 
 
 
 
 
 
 164struct sh_mmcif_host {
 165	struct mmc_host *mmc;
 166	struct mmc_data *data;
 167	struct platform_device *pd;
 
 
 168	struct clk *hclk;
 169	unsigned int clk;
 170	int bus_width;
 171	bool sd_error;
 
 172	long timeout;
 173	void __iomem *addr;
 174	struct completion intr_wait;
 
 175	enum mmcif_state state;
 176	spinlock_t lock;
 
 
 
 
 177	bool power;
 178	bool card_present;
 179
 180	/* DMA support */
 181	struct dma_chan		*chan_rx;
 182	struct dma_chan		*chan_tx;
 183	struct completion	dma_complete;
 184	bool			dma_active;
 185};
 186
 187static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 188					unsigned int reg, u32 val)
 189{
 190	writel(val | readl(host->addr + reg), host->addr + reg);
 191}
 192
 193static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 194					unsigned int reg, u32 val)
 195{
 196	writel(~val & readl(host->addr + reg), host->addr + reg);
 197}
 198
 199static void mmcif_dma_complete(void *arg)
 200{
 201	struct sh_mmcif_host *host = arg;
 
 
 202	dev_dbg(&host->pd->dev, "Command completed\n");
 203
 204	if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
 205		 dev_name(&host->pd->dev)))
 206		return;
 207
 208	if (host->data->flags & MMC_DATA_READ)
 209		dma_unmap_sg(host->chan_rx->device->dev,
 210			     host->data->sg, host->data->sg_len,
 211			     DMA_FROM_DEVICE);
 212	else
 213		dma_unmap_sg(host->chan_tx->device->dev,
 214			     host->data->sg, host->data->sg_len,
 215			     DMA_TO_DEVICE);
 216
 217	complete(&host->dma_complete);
 218}
 219
 220static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 221{
 222	struct scatterlist *sg = host->data->sg;
 
 223	struct dma_async_tx_descriptor *desc = NULL;
 224	struct dma_chan *chan = host->chan_rx;
 225	dma_cookie_t cookie = -EINVAL;
 226	int ret;
 227
 228	ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
 229			 DMA_FROM_DEVICE);
 230	if (ret > 0) {
 231		host->dma_active = true;
 232		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
 233			DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 234	}
 235
 236	if (desc) {
 237		desc->callback = mmcif_dma_complete;
 238		desc->callback_param = host;
 239		cookie = dmaengine_submit(desc);
 240		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 241		dma_async_issue_pending(chan);
 242	}
 243	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 244		__func__, host->data->sg_len, ret, cookie);
 245
 246	if (!desc) {
 247		/* DMA failed, fall back to PIO */
 248		if (ret >= 0)
 249			ret = -EIO;
 250		host->chan_rx = NULL;
 251		host->dma_active = false;
 252		dma_release_channel(chan);
 253		/* Free the Tx channel too */
 254		chan = host->chan_tx;
 255		if (chan) {
 256			host->chan_tx = NULL;
 257			dma_release_channel(chan);
 258		}
 259		dev_warn(&host->pd->dev,
 260			 "DMA failed: %d, falling back to PIO\n", ret);
 261		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 262	}
 263
 264	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 265		desc, cookie, host->data->sg_len);
 266}
 267
 268static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 269{
 270	struct scatterlist *sg = host->data->sg;
 
 271	struct dma_async_tx_descriptor *desc = NULL;
 272	struct dma_chan *chan = host->chan_tx;
 273	dma_cookie_t cookie = -EINVAL;
 274	int ret;
 275
 276	ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
 277			 DMA_TO_DEVICE);
 278	if (ret > 0) {
 279		host->dma_active = true;
 280		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
 281			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 282	}
 283
 284	if (desc) {
 285		desc->callback = mmcif_dma_complete;
 286		desc->callback_param = host;
 287		cookie = dmaengine_submit(desc);
 288		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 289		dma_async_issue_pending(chan);
 290	}
 291	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 292		__func__, host->data->sg_len, ret, cookie);
 293
 294	if (!desc) {
 295		/* DMA failed, fall back to PIO */
 296		if (ret >= 0)
 297			ret = -EIO;
 298		host->chan_tx = NULL;
 299		host->dma_active = false;
 300		dma_release_channel(chan);
 301		/* Free the Rx channel too */
 302		chan = host->chan_rx;
 303		if (chan) {
 304			host->chan_rx = NULL;
 305			dma_release_channel(chan);
 306		}
 307		dev_warn(&host->pd->dev,
 308			 "DMA failed: %d, falling back to PIO\n", ret);
 309		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 310	}
 311
 312	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
 313		desc, cookie);
 314}
 315
 316static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
 317{
 318	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
 319	chan->private = arg;
 320	return true;
 321}
 322
 323static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
 324				 struct sh_mmcif_plat_data *pdata)
 325{
 
 326	host->dma_active = false;
 327
 328	/* We can only either use DMA for both Tx and Rx or not use it at all */
 329	if (pdata->dma) {
 
 
 
 
 
 
 
 
 
 
 
 330		dma_cap_mask_t mask;
 331
 332		dma_cap_zero(mask);
 333		dma_cap_set(DMA_SLAVE, mask);
 334
 335		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
 336						    &pdata->dma->chan_priv_tx);
 337		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
 338			host->chan_tx);
 339
 340		if (!host->chan_tx)
 341			return;
 342
 343		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
 344						    &pdata->dma->chan_priv_rx);
 345		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
 346			host->chan_rx);
 347
 348		if (!host->chan_rx) {
 349			dma_release_channel(host->chan_tx);
 350			host->chan_tx = NULL;
 351			return;
 352		}
 353
 354		init_completion(&host->dma_complete);
 355	}
 356}
 357
 358static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 359{
 360	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 361	/* Descriptors are freed automatically */
 362	if (host->chan_tx) {
 363		struct dma_chan *chan = host->chan_tx;
 364		host->chan_tx = NULL;
 365		dma_release_channel(chan);
 366	}
 367	if (host->chan_rx) {
 368		struct dma_chan *chan = host->chan_rx;
 369		host->chan_rx = NULL;
 370		dma_release_channel(chan);
 371	}
 372
 373	host->dma_active = false;
 374}
 375
 376static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 377{
 378	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 379
 380	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 381	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 382
 383	if (!clk)
 384		return;
 385	if (p->sup_pclk && clk == host->clk)
 386		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
 387	else
 388		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
 389			(ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
 
 390
 391	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 392}
 393
 394static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 395{
 396	u32 tmp;
 397
 398	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 399
 400	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 401	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 402	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 403		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
 404	/* byte swap on */
 405	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 406}
 407
 408static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 409{
 410	u32 state1, state2;
 411	int ret, timeout = 10000000;
 412
 413	host->sd_error = false;
 414
 415	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 416	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 417	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
 418	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
 419
 420	if (state1 & STS1_CMDSEQ) {
 421		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 422		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 423		while (1) {
 424			timeout--;
 425			if (timeout < 0) {
 426				dev_err(&host->pd->dev,
 427					"Forceed end of command sequence timeout err\n");
 428				return -EIO;
 429			}
 430			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 431								& STS1_CMDSEQ))
 432				break;
 433			mdelay(1);
 434		}
 
 
 
 
 
 435		sh_mmcif_sync_reset(host);
 436		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
 437		return -EIO;
 438	}
 439
 440	if (state2 & STS2_CRC_ERR) {
 441		dev_dbg(&host->pd->dev, ": Happened CRC error\n");
 442		ret = -EIO;
 443	} else if (state2 & STS2_TIMEOUT_ERR) {
 444		dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
 445		ret = -ETIMEDOUT;
 446	} else {
 447		dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
 448		ret = -EIO;
 449	}
 450	return ret;
 451}
 452
 453static int sh_mmcif_single_read(struct sh_mmcif_host *host,
 454					struct mmc_request *mrq)
 455{
 456	struct mmc_data *data = mrq->data;
 457	long time;
 458	u32 blocksize, i, *p = sg_virt(data->sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459
 460	/* buf read enable */
 461	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 462	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 463			host->timeout);
 464	if (time <= 0 || host->sd_error)
 465		return sh_mmcif_error_manage(host);
 466
 467	blocksize = (BLOCK_SIZE_MASK &
 468			sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
 469	for (i = 0; i < blocksize / 4; i++)
 
 
 
 
 
 
 470		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 471
 472	/* buffer read end */
 473	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 474	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 475			host->timeout);
 476	if (time <= 0 || host->sd_error)
 477		return sh_mmcif_error_manage(host);
 478
 479	return 0;
 480}
 481
 482static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
 483					struct mmc_request *mrq)
 484{
 485	struct mmc_data *data = mrq->data;
 486	long time;
 487	u32 blocksize, i, j, sec, *p;
 488
 489	blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
 490						     MMCIF_CE_BLOCK_SET);
 491	for (j = 0; j < data->sg_len; j++) {
 492		p = sg_virt(data->sg);
 493		for (sec = 0; sec < data->sg->length / blocksize; sec++) {
 494			sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 495			/* buf read enable */
 496			time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 497				host->timeout);
 498
 499			if (time <= 0 || host->sd_error)
 500				return sh_mmcif_error_manage(host);
 501
 502			for (i = 0; i < blocksize / 4; i++)
 503				*p++ = sh_mmcif_readl(host->addr,
 504						      MMCIF_CE_DATA);
 505		}
 506		if (j < data->sg_len - 1)
 507			data->sg++;
 
 
 
 
 508	}
 509	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 510}
 511
 512static int sh_mmcif_single_write(struct sh_mmcif_host *host,
 513					struct mmc_request *mrq)
 514{
 515	struct mmc_data *data = mrq->data;
 516	long time;
 517	u32 blocksize, i, *p = sg_virt(data->sg);
 518
 519	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 
 520
 521	/* buf write enable */
 522	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 523			host->timeout);
 524	if (time <= 0 || host->sd_error)
 525		return sh_mmcif_error_manage(host);
 526
 527	blocksize = (BLOCK_SIZE_MASK &
 528			sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
 529	for (i = 0; i < blocksize / 4; i++)
 
 
 
 
 
 
 
 530		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 531
 532	/* buffer write end */
 533	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 
 534
 535	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 536			host->timeout);
 537	if (time <= 0 || host->sd_error)
 538		return sh_mmcif_error_manage(host);
 539
 540	return 0;
 541}
 542
 543static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
 544						struct mmc_request *mrq)
 545{
 546	struct mmc_data *data = mrq->data;
 547	long time;
 548	u32 i, sec, j, blocksize, *p;
 549
 550	blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
 551						     MMCIF_CE_BLOCK_SET);
 552
 553	for (j = 0; j < data->sg_len; j++) {
 554		p = sg_virt(data->sg);
 555		for (sec = 0; sec < data->sg->length / blocksize; sec++) {
 556			sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 557			/* buf write enable*/
 558			time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 559				host->timeout);
 560
 561			if (time <= 0 || host->sd_error)
 562				return sh_mmcif_error_manage(host);
 563
 564			for (i = 0; i < blocksize / 4; i++)
 565				sh_mmcif_writel(host->addr,
 566						MMCIF_CE_DATA, *p++);
 567		}
 568		if (j < data->sg_len - 1)
 569			data->sg++;
 
 
 
 570	}
 571	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573
 574static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 575						struct mmc_command *cmd)
 576{
 577	if (cmd->flags & MMC_RSP_136) {
 578		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 579		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 580		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 581		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 582	} else
 583		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 584}
 585
 586static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 587						struct mmc_command *cmd)
 588{
 589	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 590}
 591
 592static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 593		struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
 594{
 
 
 
 595	u32 tmp = 0;
 596
 597	/* Response Type check */
 598	switch (mmc_resp_type(cmd)) {
 599	case MMC_RSP_NONE:
 600		tmp |= CMD_SET_RTYP_NO;
 601		break;
 602	case MMC_RSP_R1:
 603	case MMC_RSP_R1B:
 604	case MMC_RSP_R3:
 605		tmp |= CMD_SET_RTYP_6B;
 606		break;
 607	case MMC_RSP_R2:
 608		tmp |= CMD_SET_RTYP_17B;
 609		break;
 610	default:
 611		dev_err(&host->pd->dev, "Unsupported response type.\n");
 612		break;
 613	}
 614	switch (opc) {
 615	/* RBSY */
 616	case MMC_SWITCH:
 617	case MMC_STOP_TRANSMISSION:
 618	case MMC_SET_WRITE_PROT:
 619	case MMC_CLR_WRITE_PROT:
 620	case MMC_ERASE:
 621	case MMC_GEN_CMD:
 622		tmp |= CMD_SET_RBSY;
 623		break;
 624	}
 625	/* WDAT / DATW */
 626	if (host->data) {
 627		tmp |= CMD_SET_WDAT;
 628		switch (host->bus_width) {
 629		case MMC_BUS_WIDTH_1:
 630			tmp |= CMD_SET_DATW_1;
 631			break;
 632		case MMC_BUS_WIDTH_4:
 633			tmp |= CMD_SET_DATW_4;
 634			break;
 635		case MMC_BUS_WIDTH_8:
 636			tmp |= CMD_SET_DATW_8;
 637			break;
 638		default:
 639			dev_err(&host->pd->dev, "Unsupported bus width.\n");
 640			break;
 641		}
 642	}
 643	/* DWEN */
 644	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 645		tmp |= CMD_SET_DWEN;
 646	/* CMLTE/CMD12EN */
 647	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 648		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 649		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 650					mrq->data->blocks << 16);
 651	}
 652	/* RIDXC[1:0] check bits */
 653	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 654	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 655		tmp |= CMD_SET_RIDXC_BITS;
 656	/* RCRC7C[1:0] check bits */
 657	if (opc == MMC_SEND_OP_COND)
 658		tmp |= CMD_SET_CRC7C_BITS;
 659	/* RCRC7C[1:0] internal CRC7 */
 660	if (opc == MMC_ALL_SEND_CID ||
 661		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 662		tmp |= CMD_SET_CRC7C_INTERNAL;
 663
 664	return opc = ((opc << 24) | tmp);
 665}
 666
 667static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 668				struct mmc_request *mrq, u32 opc)
 669{
 670	int ret;
 671
 672	switch (opc) {
 673	case MMC_READ_MULTIPLE_BLOCK:
 674		ret = sh_mmcif_multi_read(host, mrq);
 675		break;
 676	case MMC_WRITE_MULTIPLE_BLOCK:
 677		ret = sh_mmcif_multi_write(host, mrq);
 678		break;
 679	case MMC_WRITE_BLOCK:
 680		ret = sh_mmcif_single_write(host, mrq);
 681		break;
 682	case MMC_READ_SINGLE_BLOCK:
 683	case MMC_SEND_EXT_CSD:
 684		ret = sh_mmcif_single_read(host, mrq);
 685		break;
 686	default:
 687		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
 688		ret = -EINVAL;
 689		break;
 690	}
 691	return ret;
 692}
 693
 694static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 695			struct mmc_request *mrq, struct mmc_command *cmd)
 696{
 697	long time;
 698	int ret = 0, mask = 0;
 699	u32 opc = cmd->opcode;
 
 700
 701	switch (opc) {
 702	/* respons busy check */
 703	case MMC_SWITCH:
 704	case MMC_STOP_TRANSMISSION:
 705	case MMC_SET_WRITE_PROT:
 706	case MMC_CLR_WRITE_PROT:
 707	case MMC_ERASE:
 708	case MMC_GEN_CMD:
 709		mask = MASK_MRBSYE;
 710		break;
 711	default:
 712		mask = MASK_MCRSPE;
 713		break;
 714	}
 715	mask |=	MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
 716		MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
 717		MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
 718		MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
 719
 720	if (host->data) {
 721		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 722		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 723				mrq->data->blksz);
 724	}
 725	opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
 726
 727	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 728	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 729	/* set arg */
 730	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 731	/* set cmd */
 732	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 733
 734	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 735		host->timeout);
 736	if (time <= 0) {
 737		cmd->error = sh_mmcif_error_manage(host);
 738		return;
 739	}
 740	if (host->sd_error) {
 741		switch (cmd->opcode) {
 742		case MMC_ALL_SEND_CID:
 743		case MMC_SELECT_CARD:
 744		case MMC_APP_CMD:
 745			cmd->error = -ETIMEDOUT;
 746			break;
 747		default:
 748			dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
 749					cmd->opcode);
 750			cmd->error = sh_mmcif_error_manage(host);
 751			break;
 752		}
 753		host->sd_error = false;
 754		return;
 755	}
 756	if (!(cmd->flags & MMC_RSP_PRESENT)) {
 757		cmd->error = 0;
 758		return;
 759	}
 760	sh_mmcif_get_response(host, cmd);
 761	if (host->data) {
 762		if (!host->dma_active) {
 763			ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
 764		} else {
 765			long time =
 766				wait_for_completion_interruptible_timeout(&host->dma_complete,
 767									  host->timeout);
 768			if (!time)
 769				ret = -ETIMEDOUT;
 770			else if (time < 0)
 771				ret = time;
 772			sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
 773					BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 774			host->dma_active = false;
 775		}
 776		if (ret < 0)
 777			mrq->data->bytes_xfered = 0;
 778		else
 779			mrq->data->bytes_xfered =
 780				mrq->data->blocks * mrq->data->blksz;
 781	}
 782	cmd->error = ret;
 783}
 784
 785static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 786		struct mmc_request *mrq, struct mmc_command *cmd)
 787{
 788	long time;
 789
 790	if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
 791		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 792	else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
 
 793		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 794	else {
 
 795		dev_err(&host->pd->dev, "unsupported stop cmd\n");
 796		cmd->error = sh_mmcif_error_manage(host);
 797		return;
 798	}
 799
 800	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
 801			host->timeout);
 802	if (time <= 0 || host->sd_error) {
 803		cmd->error = sh_mmcif_error_manage(host);
 804		return;
 805	}
 806	sh_mmcif_get_cmd12response(host, cmd);
 807	cmd->error = 0;
 808}
 809
 810static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 811{
 812	struct sh_mmcif_host *host = mmc_priv(mmc);
 813	unsigned long flags;
 814
 815	spin_lock_irqsave(&host->lock, flags);
 816	if (host->state != STATE_IDLE) {
 817		spin_unlock_irqrestore(&host->lock, flags);
 818		mrq->cmd->error = -EAGAIN;
 819		mmc_request_done(mmc, mrq);
 820		return;
 821	}
 822
 823	host->state = STATE_REQUEST;
 824	spin_unlock_irqrestore(&host->lock, flags);
 825
 826	switch (mrq->cmd->opcode) {
 827	/* MMCIF does not support SD/SDIO command */
 828	case SD_IO_SEND_OP_COND:
 829	case MMC_APP_CMD:
 830		host->state = STATE_IDLE;
 831		mrq->cmd->error = -ETIMEDOUT;
 832		mmc_request_done(mmc, mrq);
 833		return;
 834	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
 835		if (!mrq->data) {
 836			/* send_if_cond cmd (not support) */
 837			host->state = STATE_IDLE;
 838			mrq->cmd->error = -ETIMEDOUT;
 839			mmc_request_done(mmc, mrq);
 840			return;
 841		}
 842		break;
 843	default:
 844		break;
 845	}
 846	host->data = mrq->data;
 847	if (mrq->data) {
 848		if (mrq->data->flags & MMC_DATA_READ) {
 849			if (host->chan_rx)
 850				sh_mmcif_start_dma_rx(host);
 851		} else {
 852			if (host->chan_tx)
 853				sh_mmcif_start_dma_tx(host);
 854		}
 855	}
 856	sh_mmcif_start_cmd(host, mrq, mrq->cmd);
 857	host->data = NULL;
 858
 859	if (!mrq->cmd->error && mrq->stop)
 860		sh_mmcif_stop_cmd(host, mrq, mrq->stop);
 861	host->state = STATE_IDLE;
 862	mmc_request_done(mmc, mrq);
 863}
 864
 865static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 866{
 867	struct sh_mmcif_host *host = mmc_priv(mmc);
 868	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 869	unsigned long flags;
 870
 871	spin_lock_irqsave(&host->lock, flags);
 872	if (host->state != STATE_IDLE) {
 873		spin_unlock_irqrestore(&host->lock, flags);
 874		return;
 875	}
 876
 877	host->state = STATE_IOS;
 878	spin_unlock_irqrestore(&host->lock, flags);
 879
 880	if (ios->power_mode == MMC_POWER_UP) {
 881		if (!host->card_present) {
 882			/* See if we also get DMA */
 883			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
 884			host->card_present = true;
 885		}
 886	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
 887		/* clock stop */
 888		sh_mmcif_clock_control(host, 0);
 889		if (ios->power_mode == MMC_POWER_OFF) {
 890			if (host->card_present) {
 891				sh_mmcif_release_dma(host);
 892				host->card_present = false;
 893			}
 894		}
 895		if (host->power) {
 896			pm_runtime_put(&host->pd->dev);
 897			host->power = false;
 898			if (p->down_pwr)
 899				p->down_pwr(host->pd);
 900		}
 901		host->state = STATE_IDLE;
 902		return;
 903	}
 904
 905	if (ios->clock) {
 906		if (!host->power) {
 907			if (p->set_pwr)
 908				p->set_pwr(host->pd, ios->power_mode);
 909			pm_runtime_get_sync(&host->pd->dev);
 910			host->power = true;
 911			sh_mmcif_sync_reset(host);
 912		}
 913		sh_mmcif_clock_control(host, ios->clock);
 914	}
 915
 916	host->bus_width = ios->bus_width;
 917	host->state = STATE_IDLE;
 918}
 919
 920static int sh_mmcif_get_cd(struct mmc_host *mmc)
 921{
 922	struct sh_mmcif_host *host = mmc_priv(mmc);
 923	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 924
 925	if (!p->get_cd)
 926		return -ENOSYS;
 927	else
 928		return p->get_cd(host->pd);
 929}
 930
 931static struct mmc_host_ops sh_mmcif_ops = {
 932	.request	= sh_mmcif_request,
 933	.set_ios	= sh_mmcif_set_ios,
 934	.get_cd		= sh_mmcif_get_cd,
 935};
 936
 937static void sh_mmcif_detect(struct mmc_host *mmc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938{
 939	mmc_detect_change(mmc, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940}
 941
 942static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
 943{
 944	struct sh_mmcif_host *host = dev_id;
 945	u32 state;
 946	int err = 0;
 947
 948	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
 949
 950	if (state & INT_RBSYE) {
 
 
 
 
 
 951		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
 952				~(INT_RBSYE | INT_CRSPE));
 953		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
 954	} else if (state & INT_CRSPE) {
 955		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
 956		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
 957	} else if (state & INT_BUFREN) {
 958		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
 959		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 960	} else if (state & INT_BUFWEN) {
 961		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
 962		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 963	} else if (state & INT_CMD12DRE) {
 964		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
 965			~(INT_CMD12DRE | INT_CMD12RBE |
 966			  INT_CMD12CRE | INT_BUFRE));
 967		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 968	} else if (state & INT_BUFRE) {
 969		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
 970		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 971	} else if (state & INT_DTRANE) {
 972		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
 973		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 974	} else if (state & INT_CMD12RBE) {
 975		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
 976				~(INT_CMD12RBE | INT_CMD12CRE));
 977		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 978	} else if (state & INT_ERR_STS) {
 979		/* err interrupts */
 980		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
 981		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
 982		err = 1;
 983	} else {
 984		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
 985		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
 986		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
 987		err = 1;
 988	}
 989	if (err) {
 990		host->sd_error = true;
 991		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
 992	}
 993	if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
 994		complete(&host->intr_wait);
 995	else
 
 
 
 996		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
 
 997
 998	return IRQ_HANDLED;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1002{
1003	int ret = 0, irq[2];
1004	struct mmc_host *mmc;
1005	struct sh_mmcif_host *host;
1006	struct sh_mmcif_plat_data *pd;
1007	struct resource *res;
1008	void __iomem *reg;
1009	char clk_name[8];
1010
1011	irq[0] = platform_get_irq(pdev, 0);
1012	irq[1] = platform_get_irq(pdev, 1);
1013	if (irq[0] < 0 || irq[1] < 0) {
1014		dev_err(&pdev->dev, "Get irq error\n");
1015		return -ENXIO;
1016	}
1017	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1018	if (!res) {
1019		dev_err(&pdev->dev, "platform_get_resource error.\n");
1020		return -ENXIO;
1021	}
1022	reg = ioremap(res->start, resource_size(res));
1023	if (!reg) {
1024		dev_err(&pdev->dev, "ioremap error.\n");
1025		return -ENOMEM;
1026	}
1027	pd = pdev->dev.platform_data;
1028	if (!pd) {
1029		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1030		ret = -ENXIO;
1031		goto clean_up;
1032	}
1033	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1034	if (!mmc) {
1035		ret = -ENOMEM;
1036		goto clean_up;
1037	}
1038	host		= mmc_priv(mmc);
1039	host->mmc	= mmc;
1040	host->addr	= reg;
1041	host->timeout	= 1000;
1042
1043	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1044	host->hclk = clk_get(&pdev->dev, clk_name);
1045	if (IS_ERR(host->hclk)) {
1046		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1047		ret = PTR_ERR(host->hclk);
1048		goto clean_up1;
1049	}
1050	clk_enable(host->hclk);
1051	host->clk = clk_get_rate(host->hclk);
1052	host->pd = pdev;
1053
1054	init_completion(&host->intr_wait);
1055	spin_lock_init(&host->lock);
1056
1057	mmc->ops = &sh_mmcif_ops;
1058	mmc->f_max = host->clk;
1059	/* close to 400KHz */
1060	if (mmc->f_max < 51200000)
1061		mmc->f_min = mmc->f_max / 128;
1062	else if (mmc->f_max < 102400000)
1063		mmc->f_min = mmc->f_max / 256;
1064	else
1065		mmc->f_min = mmc->f_max / 512;
1066	if (pd->ocr)
1067		mmc->ocr_avail = pd->ocr;
1068	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1069	if (pd->caps)
1070		mmc->caps |= pd->caps;
1071	mmc->max_segs = 32;
1072	mmc->max_blk_size = 512;
1073	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1074	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1075	mmc->max_seg_size = mmc->max_req_size;
1076
1077	sh_mmcif_sync_reset(host);
1078	platform_set_drvdata(pdev, host);
1079
1080	pm_runtime_enable(&pdev->dev);
1081	host->power = false;
1082
1083	ret = pm_runtime_resume(&pdev->dev);
1084	if (ret < 0)
1085		goto clean_up2;
1086
1087	mmc_add_host(mmc);
1088
1089	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1090
1091	ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1092	if (ret) {
1093		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1094		goto clean_up3;
1095	}
1096	ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1097	if (ret) {
1098		free_irq(irq[0], host);
1099		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1100		goto clean_up3;
1101	}
1102
1103	sh_mmcif_detect(host->mmc);
 
 
 
 
1104
1105	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1106	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1107		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1108	return ret;
1109
 
 
 
 
1110clean_up3:
1111	mmc_remove_host(mmc);
1112	pm_runtime_suspend(&pdev->dev);
1113clean_up2:
1114	pm_runtime_disable(&pdev->dev);
1115	clk_disable(host->hclk);
1116clean_up1:
1117	mmc_free_host(mmc);
1118clean_up:
1119	if (reg)
1120		iounmap(reg);
1121	return ret;
1122}
1123
1124static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1125{
1126	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1127	int irq[2];
1128
 
1129	pm_runtime_get_sync(&pdev->dev);
1130
 
 
1131	mmc_remove_host(host->mmc);
1132	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1133
 
 
 
 
 
 
 
1134	if (host->addr)
1135		iounmap(host->addr);
1136
1137	irq[0] = platform_get_irq(pdev, 0);
1138	irq[1] = platform_get_irq(pdev, 1);
1139
1140	free_irq(irq[0], host);
1141	free_irq(irq[1], host);
1142
1143	platform_set_drvdata(pdev, NULL);
1144
1145	clk_disable(host->hclk);
1146	mmc_free_host(host->mmc);
1147	pm_runtime_put_sync(&pdev->dev);
1148	pm_runtime_disable(&pdev->dev);
1149
1150	return 0;
1151}
1152
1153#ifdef CONFIG_PM
1154static int sh_mmcif_suspend(struct device *dev)
1155{
1156	struct platform_device *pdev = to_platform_device(dev);
1157	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1158	int ret = mmc_suspend_host(host->mmc);
1159
1160	if (!ret) {
1161		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1162		clk_disable(host->hclk);
1163	}
1164
1165	return ret;
1166}
1167
1168static int sh_mmcif_resume(struct device *dev)
1169{
1170	struct platform_device *pdev = to_platform_device(dev);
1171	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1172
1173	clk_enable(host->hclk);
1174
1175	return mmc_resume_host(host->mmc);
1176}
1177#else
1178#define sh_mmcif_suspend	NULL
1179#define sh_mmcif_resume		NULL
1180#endif	/* CONFIG_PM */
1181
1182static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1183	.suspend = sh_mmcif_suspend,
1184	.resume = sh_mmcif_resume,
1185};
1186
1187static struct platform_driver sh_mmcif_driver = {
1188	.probe		= sh_mmcif_probe,
1189	.remove		= sh_mmcif_remove,
1190	.driver		= {
1191		.name	= DRIVER_NAME,
1192		.pm	= &sh_mmcif_dev_pm_ops,
1193	},
1194};
1195
1196static int __init sh_mmcif_init(void)
1197{
1198	return platform_driver_register(&sh_mmcif_driver);
1199}
1200
1201static void __exit sh_mmcif_exit(void)
1202{
1203	platform_driver_unregister(&sh_mmcif_driver);
1204}
1205
1206module_init(sh_mmcif_init);
1207module_exit(sh_mmcif_exit);
1208
1209
1210MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1211MODULE_LICENSE("GPL");
1212MODULE_ALIAS("platform:" DRIVER_NAME);
1213MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v3.5.6
   1/*
   2 * MMCIF eMMC driver.
   3 *
   4 * Copyright (C) 2010 Renesas Solutions Corp.
   5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License.
  10 *
  11 *
  12 * TODO
  13 *  1. DMA
  14 *  2. Power management
  15 *  3. Handle MMC errors better
  16 *
  17 */
  18
  19/*
  20 * The MMCIF driver is now processing MMC requests asynchronously, according
  21 * to the Linux MMC API requirement.
  22 *
  23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  24 * data, and optional stop. To achieve asynchronous processing each of these
  25 * stages is split into two halves: a top and a bottom half. The top half
  26 * initialises the hardware, installs a timeout handler to handle completion
  27 * timeouts, and returns. In case of the command stage this immediately returns
  28 * control to the caller, leaving all further processing to run asynchronously.
  29 * All further request processing is performed by the bottom halves.
  30 *
  31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  33 * request- and stage-specific handler methods.
  34 *
  35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  36 * invocation, or a timeout work run. In case of an error or a successful
  37 * processing completion, the MMC core is informed and the request processing is
  38 * finished. In case processing has to continue, i.e., if data has to be read
  39 * from or written to the card, or if a stop command has to be sent, the next
  40 * top half is called, which performs the necessary hardware handling and
  41 * reschedules the timeout work. This returns the driver state machine into the
  42 * bottom half waiting state.
  43 */
  44
  45#include <linux/bitops.h>
  46#include <linux/clk.h>
  47#include <linux/completion.h>
  48#include <linux/delay.h>
  49#include <linux/dma-mapping.h>
  50#include <linux/dmaengine.h>
  51#include <linux/mmc/card.h>
  52#include <linux/mmc/core.h>
  53#include <linux/mmc/host.h>
  54#include <linux/mmc/mmc.h>
  55#include <linux/mmc/sdio.h>
  56#include <linux/mmc/sh_mmcif.h>
  57#include <linux/pagemap.h>
  58#include <linux/platform_device.h>
  59#include <linux/pm_qos.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spinlock.h>
  62#include <linux/module.h>
  63
  64#define DRIVER_NAME	"sh_mmcif"
  65#define DRIVER_VERSION	"2010-04-28"
  66
  67/* CE_CMD_SET */
  68#define CMD_MASK		0x3f000000
  69#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  70#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  71#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  72#define CMD_SET_RBSY		(1 << 21) /* R1b */
  73#define CMD_SET_CCSEN		(1 << 20)
  74#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  75#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  76#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  77#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  78#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  79#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  80#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  81#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  82#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  83#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  84#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  85#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  86#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  87#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  88#define CMD_SET_CCSH		(1 << 5)
  89#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  90#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  91#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  92
  93/* CE_CMD_CTRL */
  94#define CMD_CTRL_BREAK		(1 << 0)
  95
  96/* CE_BLOCK_SET */
  97#define BLOCK_SIZE_MASK		0x0000ffff
  98
  99/* CE_INT */
 100#define INT_CCSDE		(1 << 29)
 101#define INT_CMD12DRE		(1 << 26)
 102#define INT_CMD12RBE		(1 << 25)
 103#define INT_CMD12CRE		(1 << 24)
 104#define INT_DTRANE		(1 << 23)
 105#define INT_BUFRE		(1 << 22)
 106#define INT_BUFWEN		(1 << 21)
 107#define INT_BUFREN		(1 << 20)
 108#define INT_CCSRCV		(1 << 19)
 109#define INT_RBSYE		(1 << 17)
 110#define INT_CRSPE		(1 << 16)
 111#define INT_CMDVIO		(1 << 15)
 112#define INT_BUFVIO		(1 << 14)
 113#define INT_WDATERR		(1 << 11)
 114#define INT_RDATERR		(1 << 10)
 115#define INT_RIDXERR		(1 << 9)
 116#define INT_RSPERR		(1 << 8)
 117#define INT_CCSTO		(1 << 5)
 118#define INT_CRCSTO		(1 << 4)
 119#define INT_WDATTO		(1 << 3)
 120#define INT_RDATTO		(1 << 2)
 121#define INT_RBSYTO		(1 << 1)
 122#define INT_RSPTO		(1 << 0)
 123#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 124				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 125				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 126				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 127
 128/* CE_INT_MASK */
 129#define MASK_ALL		0x00000000
 130#define MASK_MCCSDE		(1 << 29)
 131#define MASK_MCMD12DRE		(1 << 26)
 132#define MASK_MCMD12RBE		(1 << 25)
 133#define MASK_MCMD12CRE		(1 << 24)
 134#define MASK_MDTRANE		(1 << 23)
 135#define MASK_MBUFRE		(1 << 22)
 136#define MASK_MBUFWEN		(1 << 21)
 137#define MASK_MBUFREN		(1 << 20)
 138#define MASK_MCCSRCV		(1 << 19)
 139#define MASK_MRBSYE		(1 << 17)
 140#define MASK_MCRSPE		(1 << 16)
 141#define MASK_MCMDVIO		(1 << 15)
 142#define MASK_MBUFVIO		(1 << 14)
 143#define MASK_MWDATERR		(1 << 11)
 144#define MASK_MRDATERR		(1 << 10)
 145#define MASK_MRIDXERR		(1 << 9)
 146#define MASK_MRSPERR		(1 << 8)
 147#define MASK_MCCSTO		(1 << 5)
 148#define MASK_MCRCSTO		(1 << 4)
 149#define MASK_MWDATTO		(1 << 3)
 150#define MASK_MRDATTO		(1 << 2)
 151#define MASK_MRBSYTO		(1 << 1)
 152#define MASK_MRSPTO		(1 << 0)
 153
 154#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 155				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 156				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
 157				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 158
 159/* CE_HOST_STS1 */
 160#define STS1_CMDSEQ		(1 << 31)
 161
 162/* CE_HOST_STS2 */
 163#define STS2_CRCSTE		(1 << 31)
 164#define STS2_CRC16E		(1 << 30)
 165#define STS2_AC12CRCE		(1 << 29)
 166#define STS2_RSPCRC7E		(1 << 28)
 167#define STS2_CRCSTEBE		(1 << 27)
 168#define STS2_RDATEBE		(1 << 26)
 169#define STS2_AC12REBE		(1 << 25)
 170#define STS2_RSPEBE		(1 << 24)
 171#define STS2_AC12IDXE		(1 << 23)
 172#define STS2_RSPIDXE		(1 << 22)
 173#define STS2_CCSTO		(1 << 15)
 174#define STS2_RDATTO		(1 << 14)
 175#define STS2_DATBSYTO		(1 << 13)
 176#define STS2_CRCSTTO		(1 << 12)
 177#define STS2_AC12BSYTO		(1 << 11)
 178#define STS2_RSPBSYTO		(1 << 10)
 179#define STS2_AC12RSPTO		(1 << 9)
 180#define STS2_RSPTO		(1 << 8)
 181#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 182				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 183#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 184				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 185				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 186				 STS2_AC12RSPTO | STS2_RSPTO)
 187
 188#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 189#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 190#define CLKDEV_INIT		400000   /* 400 KHz */
 191
 192enum mmcif_state {
 193	STATE_IDLE,
 194	STATE_REQUEST,
 195	STATE_IOS,
 196};
 197
 198enum mmcif_wait_for {
 199	MMCIF_WAIT_FOR_REQUEST,
 200	MMCIF_WAIT_FOR_CMD,
 201	MMCIF_WAIT_FOR_MREAD,
 202	MMCIF_WAIT_FOR_MWRITE,
 203	MMCIF_WAIT_FOR_READ,
 204	MMCIF_WAIT_FOR_WRITE,
 205	MMCIF_WAIT_FOR_READ_END,
 206	MMCIF_WAIT_FOR_WRITE_END,
 207	MMCIF_WAIT_FOR_STOP,
 208};
 209
 210struct sh_mmcif_host {
 211	struct mmc_host *mmc;
 212	struct mmc_request *mrq;
 213	struct platform_device *pd;
 214	struct sh_dmae_slave dma_slave_tx;
 215	struct sh_dmae_slave dma_slave_rx;
 216	struct clk *hclk;
 217	unsigned int clk;
 218	int bus_width;
 219	bool sd_error;
 220	bool dying;
 221	long timeout;
 222	void __iomem *addr;
 223	u32 *pio_ptr;
 224	spinlock_t lock;		/* protect sh_mmcif_host::state */
 225	enum mmcif_state state;
 226	enum mmcif_wait_for wait_for;
 227	struct delayed_work timeout_work;
 228	size_t blocksize;
 229	int sg_idx;
 230	int sg_blkidx;
 231	bool power;
 232	bool card_present;
 233
 234	/* DMA support */
 235	struct dma_chan		*chan_rx;
 236	struct dma_chan		*chan_tx;
 237	struct completion	dma_complete;
 238	bool			dma_active;
 239};
 240
 241static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 242					unsigned int reg, u32 val)
 243{
 244	writel(val | readl(host->addr + reg), host->addr + reg);
 245}
 246
 247static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 248					unsigned int reg, u32 val)
 249{
 250	writel(~val & readl(host->addr + reg), host->addr + reg);
 251}
 252
 253static void mmcif_dma_complete(void *arg)
 254{
 255	struct sh_mmcif_host *host = arg;
 256	struct mmc_data *data = host->mrq->data;
 257
 258	dev_dbg(&host->pd->dev, "Command completed\n");
 259
 260	if (WARN(!data, "%s: NULL data in DMA completion!\n",
 261		 dev_name(&host->pd->dev)))
 262		return;
 263
 264	if (data->flags & MMC_DATA_READ)
 265		dma_unmap_sg(host->chan_rx->device->dev,
 266			     data->sg, data->sg_len,
 267			     DMA_FROM_DEVICE);
 268	else
 269		dma_unmap_sg(host->chan_tx->device->dev,
 270			     data->sg, data->sg_len,
 271			     DMA_TO_DEVICE);
 272
 273	complete(&host->dma_complete);
 274}
 275
 276static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 277{
 278	struct mmc_data *data = host->mrq->data;
 279	struct scatterlist *sg = data->sg;
 280	struct dma_async_tx_descriptor *desc = NULL;
 281	struct dma_chan *chan = host->chan_rx;
 282	dma_cookie_t cookie = -EINVAL;
 283	int ret;
 284
 285	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 286			 DMA_FROM_DEVICE);
 287	if (ret > 0) {
 288		host->dma_active = true;
 289		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 290			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 291	}
 292
 293	if (desc) {
 294		desc->callback = mmcif_dma_complete;
 295		desc->callback_param = host;
 296		cookie = dmaengine_submit(desc);
 297		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 298		dma_async_issue_pending(chan);
 299	}
 300	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 301		__func__, data->sg_len, ret, cookie);
 302
 303	if (!desc) {
 304		/* DMA failed, fall back to PIO */
 305		if (ret >= 0)
 306			ret = -EIO;
 307		host->chan_rx = NULL;
 308		host->dma_active = false;
 309		dma_release_channel(chan);
 310		/* Free the Tx channel too */
 311		chan = host->chan_tx;
 312		if (chan) {
 313			host->chan_tx = NULL;
 314			dma_release_channel(chan);
 315		}
 316		dev_warn(&host->pd->dev,
 317			 "DMA failed: %d, falling back to PIO\n", ret);
 318		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 319	}
 320
 321	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 322		desc, cookie, data->sg_len);
 323}
 324
 325static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 326{
 327	struct mmc_data *data = host->mrq->data;
 328	struct scatterlist *sg = data->sg;
 329	struct dma_async_tx_descriptor *desc = NULL;
 330	struct dma_chan *chan = host->chan_tx;
 331	dma_cookie_t cookie = -EINVAL;
 332	int ret;
 333
 334	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 335			 DMA_TO_DEVICE);
 336	if (ret > 0) {
 337		host->dma_active = true;
 338		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 339			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 340	}
 341
 342	if (desc) {
 343		desc->callback = mmcif_dma_complete;
 344		desc->callback_param = host;
 345		cookie = dmaengine_submit(desc);
 346		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 347		dma_async_issue_pending(chan);
 348	}
 349	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
 350		__func__, data->sg_len, ret, cookie);
 351
 352	if (!desc) {
 353		/* DMA failed, fall back to PIO */
 354		if (ret >= 0)
 355			ret = -EIO;
 356		host->chan_tx = NULL;
 357		host->dma_active = false;
 358		dma_release_channel(chan);
 359		/* Free the Rx channel too */
 360		chan = host->chan_rx;
 361		if (chan) {
 362			host->chan_rx = NULL;
 363			dma_release_channel(chan);
 364		}
 365		dev_warn(&host->pd->dev,
 366			 "DMA failed: %d, falling back to PIO\n", ret);
 367		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 368	}
 369
 370	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
 371		desc, cookie);
 372}
 373
 374static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
 375{
 376	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
 377	chan->private = arg;
 378	return true;
 379}
 380
 381static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
 382				 struct sh_mmcif_plat_data *pdata)
 383{
 384	struct sh_dmae_slave *tx, *rx;
 385	host->dma_active = false;
 386
 387	/* We can only either use DMA for both Tx and Rx or not use it at all */
 388	if (pdata->dma) {
 389		dev_warn(&host->pd->dev,
 390			 "Update your platform to use embedded DMA slave IDs\n");
 391		tx = &pdata->dma->chan_priv_tx;
 392		rx = &pdata->dma->chan_priv_rx;
 393	} else {
 394		tx = &host->dma_slave_tx;
 395		tx->slave_id = pdata->slave_id_tx;
 396		rx = &host->dma_slave_rx;
 397		rx->slave_id = pdata->slave_id_rx;
 398	}
 399	if (tx->slave_id > 0 && rx->slave_id > 0) {
 400		dma_cap_mask_t mask;
 401
 402		dma_cap_zero(mask);
 403		dma_cap_set(DMA_SLAVE, mask);
 404
 405		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
 
 406		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
 407			host->chan_tx);
 408
 409		if (!host->chan_tx)
 410			return;
 411
 412		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
 
 413		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
 414			host->chan_rx);
 415
 416		if (!host->chan_rx) {
 417			dma_release_channel(host->chan_tx);
 418			host->chan_tx = NULL;
 419			return;
 420		}
 421
 422		init_completion(&host->dma_complete);
 423	}
 424}
 425
 426static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 427{
 428	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 429	/* Descriptors are freed automatically */
 430	if (host->chan_tx) {
 431		struct dma_chan *chan = host->chan_tx;
 432		host->chan_tx = NULL;
 433		dma_release_channel(chan);
 434	}
 435	if (host->chan_rx) {
 436		struct dma_chan *chan = host->chan_rx;
 437		host->chan_rx = NULL;
 438		dma_release_channel(chan);
 439	}
 440
 441	host->dma_active = false;
 442}
 443
 444static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 445{
 446	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 447
 448	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 449	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 450
 451	if (!clk)
 452		return;
 453	if (p->sup_pclk && clk == host->clk)
 454		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
 455	else
 456		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
 457				((fls(DIV_ROUND_UP(host->clk,
 458						   clk) - 1) - 1) << 16));
 459
 460	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 461}
 462
 463static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 464{
 465	u32 tmp;
 466
 467	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 468
 469	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 470	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 471	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 472		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
 473	/* byte swap on */
 474	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 475}
 476
 477static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 478{
 479	u32 state1, state2;
 480	int ret, timeout;
 481
 482	host->sd_error = false;
 483
 484	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 485	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 486	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
 487	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
 488
 489	if (state1 & STS1_CMDSEQ) {
 490		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 491		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 492		for (timeout = 10000000; timeout; timeout--) {
 
 
 
 
 
 
 493			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 494			      & STS1_CMDSEQ))
 495				break;
 496			mdelay(1);
 497		}
 498		if (!timeout) {
 499			dev_err(&host->pd->dev,
 500				"Forced end of command sequence timeout err\n");
 501			return -EIO;
 502		}
 503		sh_mmcif_sync_reset(host);
 504		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
 505		return -EIO;
 506	}
 507
 508	if (state2 & STS2_CRC_ERR) {
 509		dev_dbg(&host->pd->dev, ": CRC error\n");
 510		ret = -EIO;
 511	} else if (state2 & STS2_TIMEOUT_ERR) {
 512		dev_dbg(&host->pd->dev, ": Timeout\n");
 513		ret = -ETIMEDOUT;
 514	} else {
 515		dev_dbg(&host->pd->dev, ": End/Index error\n");
 516		ret = -EIO;
 517	}
 518	return ret;
 519}
 520
 521static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 
 522{
 523	struct mmc_data *data = host->mrq->data;
 524
 525	host->sg_blkidx += host->blocksize;
 526
 527	/* data->sg->length must be a multiple of host->blocksize? */
 528	BUG_ON(host->sg_blkidx > data->sg->length);
 529
 530	if (host->sg_blkidx == data->sg->length) {
 531		host->sg_blkidx = 0;
 532		if (++host->sg_idx < data->sg_len)
 533			host->pio_ptr = sg_virt(++data->sg);
 534	} else {
 535		host->pio_ptr = p;
 536	}
 537
 538	if (host->sg_idx == data->sg_len)
 539		return false;
 540
 541	return true;
 542}
 543
 544static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 545				 struct mmc_request *mrq)
 546{
 547	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 548			   BLOCK_SIZE_MASK) + 3;
 549
 550	host->wait_for = MMCIF_WAIT_FOR_READ;
 551	schedule_delayed_work(&host->timeout_work, host->timeout);
 552
 553	/* buf read enable */
 554	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 555}
 556
 557static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 558{
 559	struct mmc_data *data = host->mrq->data;
 560	u32 *p = sg_virt(data->sg);
 561	int i;
 562
 563	if (host->sd_error) {
 564		data->error = sh_mmcif_error_manage(host);
 565		return false;
 566	}
 567
 568	for (i = 0; i < host->blocksize / 4; i++)
 569		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 570
 571	/* buffer read end */
 572	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 573	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 
 
 
 574
 575	return true;
 576}
 577
 578static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 579				struct mmc_request *mrq)
 580{
 581	struct mmc_data *data = mrq->data;
 
 
 582
 583	if (!data->sg_len || !data->sg->length)
 584		return;
 585
 586	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 587		BLOCK_SIZE_MASK;
 588
 589	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 590	host->sg_idx = 0;
 591	host->sg_blkidx = 0;
 592	host->pio_ptr = sg_virt(data->sg);
 593	schedule_delayed_work(&host->timeout_work, host->timeout);
 594	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 595}
 596
 597static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 598{
 599	struct mmc_data *data = host->mrq->data;
 600	u32 *p = host->pio_ptr;
 601	int i;
 602
 603	if (host->sd_error) {
 604		data->error = sh_mmcif_error_manage(host);
 605		return false;
 606	}
 607
 608	BUG_ON(!data->sg->length);
 609
 610	for (i = 0; i < host->blocksize / 4; i++)
 611		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 612
 613	if (!sh_mmcif_next_block(host, p))
 614		return false;
 615
 616	schedule_delayed_work(&host->timeout_work, host->timeout);
 617	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 618
 619	return true;
 620}
 621
 622static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 623					struct mmc_request *mrq)
 624{
 625	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 626			   BLOCK_SIZE_MASK) + 3;
 
 627
 628	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 629	schedule_delayed_work(&host->timeout_work, host->timeout);
 630
 631	/* buf write enable */
 632	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 633}
 634
 635static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 636{
 637	struct mmc_data *data = host->mrq->data;
 638	u32 *p = sg_virt(data->sg);
 639	int i;
 640
 641	if (host->sd_error) {
 642		data->error = sh_mmcif_error_manage(host);
 643		return false;
 644	}
 645
 646	for (i = 0; i < host->blocksize / 4; i++)
 647		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 648
 649	/* buffer write end */
 650	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 651	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 652
 653	return true;
 
 
 
 
 
 654}
 655
 656static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 657				struct mmc_request *mrq)
 658{
 659	struct mmc_data *data = mrq->data;
 
 
 660
 661	if (!data->sg_len || !data->sg->length)
 662		return;
 663
 664	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 665		BLOCK_SIZE_MASK;
 666
 667	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 668	host->sg_idx = 0;
 669	host->sg_blkidx = 0;
 670	host->pio_ptr = sg_virt(data->sg);
 671	schedule_delayed_work(&host->timeout_work, host->timeout);
 672	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 673}
 674
 675static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 676{
 677	struct mmc_data *data = host->mrq->data;
 678	u32 *p = host->pio_ptr;
 679	int i;
 680
 681	if (host->sd_error) {
 682		data->error = sh_mmcif_error_manage(host);
 683		return false;
 684	}
 685
 686	BUG_ON(!data->sg->length);
 687
 688	for (i = 0; i < host->blocksize / 4; i++)
 689		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 690
 691	if (!sh_mmcif_next_block(host, p))
 692		return false;
 693
 694	schedule_delayed_work(&host->timeout_work, host->timeout);
 695	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 696
 697	return true;
 698}
 699
 700static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 701						struct mmc_command *cmd)
 702{
 703	if (cmd->flags & MMC_RSP_136) {
 704		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 705		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 706		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 707		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 708	} else
 709		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 710}
 711
 712static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 713						struct mmc_command *cmd)
 714{
 715	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 716}
 717
 718static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 719			    struct mmc_request *mrq)
 720{
 721	struct mmc_data *data = mrq->data;
 722	struct mmc_command *cmd = mrq->cmd;
 723	u32 opc = cmd->opcode;
 724	u32 tmp = 0;
 725
 726	/* Response Type check */
 727	switch (mmc_resp_type(cmd)) {
 728	case MMC_RSP_NONE:
 729		tmp |= CMD_SET_RTYP_NO;
 730		break;
 731	case MMC_RSP_R1:
 732	case MMC_RSP_R1B:
 733	case MMC_RSP_R3:
 734		tmp |= CMD_SET_RTYP_6B;
 735		break;
 736	case MMC_RSP_R2:
 737		tmp |= CMD_SET_RTYP_17B;
 738		break;
 739	default:
 740		dev_err(&host->pd->dev, "Unsupported response type.\n");
 741		break;
 742	}
 743	switch (opc) {
 744	/* RBSY */
 745	case MMC_SWITCH:
 746	case MMC_STOP_TRANSMISSION:
 747	case MMC_SET_WRITE_PROT:
 748	case MMC_CLR_WRITE_PROT:
 749	case MMC_ERASE:
 
 750		tmp |= CMD_SET_RBSY;
 751		break;
 752	}
 753	/* WDAT / DATW */
 754	if (data) {
 755		tmp |= CMD_SET_WDAT;
 756		switch (host->bus_width) {
 757		case MMC_BUS_WIDTH_1:
 758			tmp |= CMD_SET_DATW_1;
 759			break;
 760		case MMC_BUS_WIDTH_4:
 761			tmp |= CMD_SET_DATW_4;
 762			break;
 763		case MMC_BUS_WIDTH_8:
 764			tmp |= CMD_SET_DATW_8;
 765			break;
 766		default:
 767			dev_err(&host->pd->dev, "Unsupported bus width.\n");
 768			break;
 769		}
 770	}
 771	/* DWEN */
 772	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 773		tmp |= CMD_SET_DWEN;
 774	/* CMLTE/CMD12EN */
 775	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 776		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 777		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 778				data->blocks << 16);
 779	}
 780	/* RIDXC[1:0] check bits */
 781	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 782	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 783		tmp |= CMD_SET_RIDXC_BITS;
 784	/* RCRC7C[1:0] check bits */
 785	if (opc == MMC_SEND_OP_COND)
 786		tmp |= CMD_SET_CRC7C_BITS;
 787	/* RCRC7C[1:0] internal CRC7 */
 788	if (opc == MMC_ALL_SEND_CID ||
 789		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 790		tmp |= CMD_SET_CRC7C_INTERNAL;
 791
 792	return (opc << 24) | tmp;
 793}
 794
 795static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 796			       struct mmc_request *mrq, u32 opc)
 797{
 
 
 798	switch (opc) {
 799	case MMC_READ_MULTIPLE_BLOCK:
 800		sh_mmcif_multi_read(host, mrq);
 801		return 0;
 802	case MMC_WRITE_MULTIPLE_BLOCK:
 803		sh_mmcif_multi_write(host, mrq);
 804		return 0;
 805	case MMC_WRITE_BLOCK:
 806		sh_mmcif_single_write(host, mrq);
 807		return 0;
 808	case MMC_READ_SINGLE_BLOCK:
 809	case MMC_SEND_EXT_CSD:
 810		sh_mmcif_single_read(host, mrq);
 811		return 0;
 812	default:
 813		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
 814		return -EINVAL;
 
 815	}
 
 816}
 817
 818static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 819			       struct mmc_request *mrq)
 820{
 821	struct mmc_command *cmd = mrq->cmd;
 
 822	u32 opc = cmd->opcode;
 823	u32 mask;
 824
 825	switch (opc) {
 826	/* response busy check */
 827	case MMC_SWITCH:
 828	case MMC_STOP_TRANSMISSION:
 829	case MMC_SET_WRITE_PROT:
 830	case MMC_CLR_WRITE_PROT:
 831	case MMC_ERASE:
 832		mask = MASK_START_CMD | MASK_MRBSYE;
 
 833		break;
 834	default:
 835		mask = MASK_START_CMD | MASK_MCRSPE;
 836		break;
 837	}
 
 
 
 
 838
 839	if (mrq->data) {
 840		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 841		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 842				mrq->data->blksz);
 843	}
 844	opc = sh_mmcif_set_cmd(host, mrq);
 845
 846	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 847	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 848	/* set arg */
 849	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 850	/* set cmd */
 851	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 852
 853	host->wait_for = MMCIF_WAIT_FOR_CMD;
 854	schedule_delayed_work(&host->timeout_work, host->timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855}
 856
 857static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 858			      struct mmc_request *mrq)
 859{
 860	switch (mrq->cmd->opcode) {
 861	case MMC_READ_MULTIPLE_BLOCK:
 
 862		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 863		break;
 864	case MMC_WRITE_MULTIPLE_BLOCK:
 865		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 866		break;
 867	default:
 868		dev_err(&host->pd->dev, "unsupported stop cmd\n");
 869		mrq->stop->error = sh_mmcif_error_manage(host);
 870		return;
 871	}
 872
 873	host->wait_for = MMCIF_WAIT_FOR_STOP;
 874	schedule_delayed_work(&host->timeout_work, host->timeout);
 
 
 
 
 
 
 875}
 876
 877static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 878{
 879	struct sh_mmcif_host *host = mmc_priv(mmc);
 880	unsigned long flags;
 881
 882	spin_lock_irqsave(&host->lock, flags);
 883	if (host->state != STATE_IDLE) {
 884		spin_unlock_irqrestore(&host->lock, flags);
 885		mrq->cmd->error = -EAGAIN;
 886		mmc_request_done(mmc, mrq);
 887		return;
 888	}
 889
 890	host->state = STATE_REQUEST;
 891	spin_unlock_irqrestore(&host->lock, flags);
 892
 893	switch (mrq->cmd->opcode) {
 894	/* MMCIF does not support SD/SDIO command */
 895	case SD_IO_SEND_OP_COND:
 896	case MMC_APP_CMD:
 897		host->state = STATE_IDLE;
 898		mrq->cmd->error = -ETIMEDOUT;
 899		mmc_request_done(mmc, mrq);
 900		return;
 901	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
 902		if (!mrq->data) {
 903			/* send_if_cond cmd (not support) */
 904			host->state = STATE_IDLE;
 905			mrq->cmd->error = -ETIMEDOUT;
 906			mmc_request_done(mmc, mrq);
 907			return;
 908		}
 909		break;
 910	default:
 911		break;
 912	}
 
 
 
 
 
 
 
 
 
 
 
 
 913
 914	host->mrq = mrq;
 915
 916	sh_mmcif_start_cmd(host, mrq);
 
 917}
 918
 919static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 920{
 921	struct sh_mmcif_host *host = mmc_priv(mmc);
 922	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 923	unsigned long flags;
 924
 925	spin_lock_irqsave(&host->lock, flags);
 926	if (host->state != STATE_IDLE) {
 927		spin_unlock_irqrestore(&host->lock, flags);
 928		return;
 929	}
 930
 931	host->state = STATE_IOS;
 932	spin_unlock_irqrestore(&host->lock, flags);
 933
 934	if (ios->power_mode == MMC_POWER_UP) {
 935		if (!host->card_present) {
 936			/* See if we also get DMA */
 937			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
 938			host->card_present = true;
 939		}
 940	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
 941		/* clock stop */
 942		sh_mmcif_clock_control(host, 0);
 943		if (ios->power_mode == MMC_POWER_OFF) {
 944			if (host->card_present) {
 945				sh_mmcif_release_dma(host);
 946				host->card_present = false;
 947			}
 948		}
 949		if (host->power) {
 950			pm_runtime_put(&host->pd->dev);
 951			host->power = false;
 952			if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
 953				p->down_pwr(host->pd);
 954		}
 955		host->state = STATE_IDLE;
 956		return;
 957	}
 958
 959	if (ios->clock) {
 960		if (!host->power) {
 961			if (p->set_pwr)
 962				p->set_pwr(host->pd, ios->power_mode);
 963			pm_runtime_get_sync(&host->pd->dev);
 964			host->power = true;
 965			sh_mmcif_sync_reset(host);
 966		}
 967		sh_mmcif_clock_control(host, ios->clock);
 968	}
 969
 970	host->bus_width = ios->bus_width;
 971	host->state = STATE_IDLE;
 972}
 973
 974static int sh_mmcif_get_cd(struct mmc_host *mmc)
 975{
 976	struct sh_mmcif_host *host = mmc_priv(mmc);
 977	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
 978
 979	if (!p->get_cd)
 980		return -ENOSYS;
 981	else
 982		return p->get_cd(host->pd);
 983}
 984
 985static struct mmc_host_ops sh_mmcif_ops = {
 986	.request	= sh_mmcif_request,
 987	.set_ios	= sh_mmcif_set_ios,
 988	.get_cd		= sh_mmcif_get_cd,
 989};
 990
 991static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
 992{
 993	struct mmc_command *cmd = host->mrq->cmd;
 994	struct mmc_data *data = host->mrq->data;
 995	long time;
 996
 997	if (host->sd_error) {
 998		switch (cmd->opcode) {
 999		case MMC_ALL_SEND_CID:
1000		case MMC_SELECT_CARD:
1001		case MMC_APP_CMD:
1002			cmd->error = -ETIMEDOUT;
1003			host->sd_error = false;
1004			break;
1005		default:
1006			cmd->error = sh_mmcif_error_manage(host);
1007			dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1008				cmd->opcode, cmd->error);
1009			break;
1010		}
1011		return false;
1012	}
1013	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1014		cmd->error = 0;
1015		return false;
1016	}
1017
1018	sh_mmcif_get_response(host, cmd);
1019
1020	if (!data)
1021		return false;
1022
1023	if (data->flags & MMC_DATA_READ) {
1024		if (host->chan_rx)
1025			sh_mmcif_start_dma_rx(host);
1026	} else {
1027		if (host->chan_tx)
1028			sh_mmcif_start_dma_tx(host);
1029	}
1030
1031	if (!host->dma_active) {
1032		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1033		if (!data->error)
1034			return true;
1035		return false;
1036	}
1037
1038	/* Running in the IRQ thread, can sleep */
1039	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1040							 host->timeout);
1041	if (host->sd_error) {
1042		dev_err(host->mmc->parent,
1043			"Error IRQ while waiting for DMA completion!\n");
1044		/* Woken up by an error IRQ: abort DMA */
1045		if (data->flags & MMC_DATA_READ)
1046			dmaengine_terminate_all(host->chan_rx);
1047		else
1048			dmaengine_terminate_all(host->chan_tx);
1049		data->error = sh_mmcif_error_manage(host);
1050	} else if (!time) {
1051		data->error = -ETIMEDOUT;
1052	} else if (time < 0) {
1053		data->error = time;
1054	}
1055	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1056			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1057	host->dma_active = false;
1058
1059	if (data->error)
1060		data->bytes_xfered = 0;
1061
1062	return false;
1063}
1064
1065static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1066{
1067	struct sh_mmcif_host *host = dev_id;
1068	struct mmc_request *mrq = host->mrq;
1069	struct mmc_data *data = mrq->data;
1070
1071	cancel_delayed_work_sync(&host->timeout_work);
1072
1073	/*
1074	 * All handlers return true, if processing continues, and false, if the
1075	 * request has to be completed - successfully or not
1076	 */
1077	switch (host->wait_for) {
1078	case MMCIF_WAIT_FOR_REQUEST:
1079		/* We're too late, the timeout has already kicked in */
1080		return IRQ_HANDLED;
1081	case MMCIF_WAIT_FOR_CMD:
1082		if (sh_mmcif_end_cmd(host))
1083			/* Wait for data */
1084			return IRQ_HANDLED;
1085		break;
1086	case MMCIF_WAIT_FOR_MREAD:
1087		if (sh_mmcif_mread_block(host))
1088			/* Wait for more data */
1089			return IRQ_HANDLED;
1090		break;
1091	case MMCIF_WAIT_FOR_READ:
1092		if (sh_mmcif_read_block(host))
1093			/* Wait for data end */
1094			return IRQ_HANDLED;
1095		break;
1096	case MMCIF_WAIT_FOR_MWRITE:
1097		if (sh_mmcif_mwrite_block(host))
1098			/* Wait data to write */
1099			return IRQ_HANDLED;
1100		break;
1101	case MMCIF_WAIT_FOR_WRITE:
1102		if (sh_mmcif_write_block(host))
1103			/* Wait for data end */
1104			return IRQ_HANDLED;
1105		break;
1106	case MMCIF_WAIT_FOR_STOP:
1107		if (host->sd_error) {
1108			mrq->stop->error = sh_mmcif_error_manage(host);
1109			break;
1110		}
1111		sh_mmcif_get_cmd12response(host, mrq->stop);
1112		mrq->stop->error = 0;
1113		break;
1114	case MMCIF_WAIT_FOR_READ_END:
1115	case MMCIF_WAIT_FOR_WRITE_END:
1116		if (host->sd_error)
1117			data->error = sh_mmcif_error_manage(host);
1118		break;
1119	default:
1120		BUG();
1121	}
1122
1123	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1124		if (!mrq->cmd->error && data && !data->error)
1125			data->bytes_xfered =
1126				data->blocks * data->blksz;
1127
1128		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1129			sh_mmcif_stop_cmd(host, mrq);
1130			if (!mrq->stop->error)
1131				return IRQ_HANDLED;
1132		}
1133	}
1134
1135	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1136	host->state = STATE_IDLE;
1137	host->mrq = NULL;
1138	mmc_request_done(host->mmc, mrq);
1139
1140	return IRQ_HANDLED;
1141}
1142
1143static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1144{
1145	struct sh_mmcif_host *host = dev_id;
1146	u32 state;
1147	int err = 0;
1148
1149	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1150
1151	if (state & INT_ERR_STS) {
1152		/* error interrupts - process first */
1153		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1154		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1155		err = 1;
1156	} else if (state & INT_RBSYE) {
1157		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1158				~(INT_RBSYE | INT_CRSPE));
1159		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1160	} else if (state & INT_CRSPE) {
1161		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1162		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1163	} else if (state & INT_BUFREN) {
1164		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1165		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1166	} else if (state & INT_BUFWEN) {
1167		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1168		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1169	} else if (state & INT_CMD12DRE) {
1170		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1171			~(INT_CMD12DRE | INT_CMD12RBE |
1172			  INT_CMD12CRE | INT_BUFRE));
1173		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1174	} else if (state & INT_BUFRE) {
1175		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1176		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1177	} else if (state & INT_DTRANE) {
1178		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1179		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1180	} else if (state & INT_CMD12RBE) {
1181		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1182				~(INT_CMD12RBE | INT_CMD12CRE));
1183		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 
 
 
 
 
1184	} else {
1185		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1186		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1187		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1188		err = 1;
1189	}
1190	if (err) {
1191		host->sd_error = true;
1192		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1193	}
1194	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1195		if (!host->dma_active)
1196			return IRQ_WAKE_THREAD;
1197		else if (host->sd_error)
1198			mmcif_dma_complete(host);
1199	} else {
1200		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1201	}
1202
1203	return IRQ_HANDLED;
1204}
1205
1206static void mmcif_timeout_work(struct work_struct *work)
1207{
1208	struct delayed_work *d = container_of(work, struct delayed_work, work);
1209	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1210	struct mmc_request *mrq = host->mrq;
1211
1212	if (host->dying)
1213		/* Don't run after mmc_remove_host() */
1214		return;
1215
1216	/*
1217	 * Handle races with cancel_delayed_work(), unless
1218	 * cancel_delayed_work_sync() is used
1219	 */
1220	switch (host->wait_for) {
1221	case MMCIF_WAIT_FOR_CMD:
1222		mrq->cmd->error = sh_mmcif_error_manage(host);
1223		break;
1224	case MMCIF_WAIT_FOR_STOP:
1225		mrq->stop->error = sh_mmcif_error_manage(host);
1226		break;
1227	case MMCIF_WAIT_FOR_MREAD:
1228	case MMCIF_WAIT_FOR_MWRITE:
1229	case MMCIF_WAIT_FOR_READ:
1230	case MMCIF_WAIT_FOR_WRITE:
1231	case MMCIF_WAIT_FOR_READ_END:
1232	case MMCIF_WAIT_FOR_WRITE_END:
1233		mrq->data->error = sh_mmcif_error_manage(host);
1234		break;
1235	default:
1236		BUG();
1237	}
1238
1239	host->state = STATE_IDLE;
1240	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1241	host->mrq = NULL;
1242	mmc_request_done(host->mmc, mrq);
1243}
1244
1245static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1246{
1247	int ret = 0, irq[2];
1248	struct mmc_host *mmc;
1249	struct sh_mmcif_host *host;
1250	struct sh_mmcif_plat_data *pd;
1251	struct resource *res;
1252	void __iomem *reg;
1253	char clk_name[8];
1254
1255	irq[0] = platform_get_irq(pdev, 0);
1256	irq[1] = platform_get_irq(pdev, 1);
1257	if (irq[0] < 0 || irq[1] < 0) {
1258		dev_err(&pdev->dev, "Get irq error\n");
1259		return -ENXIO;
1260	}
1261	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1262	if (!res) {
1263		dev_err(&pdev->dev, "platform_get_resource error.\n");
1264		return -ENXIO;
1265	}
1266	reg = ioremap(res->start, resource_size(res));
1267	if (!reg) {
1268		dev_err(&pdev->dev, "ioremap error.\n");
1269		return -ENOMEM;
1270	}
1271	pd = pdev->dev.platform_data;
1272	if (!pd) {
1273		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1274		ret = -ENXIO;
1275		goto clean_up;
1276	}
1277	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1278	if (!mmc) {
1279		ret = -ENOMEM;
1280		goto clean_up;
1281	}
1282	host		= mmc_priv(mmc);
1283	host->mmc	= mmc;
1284	host->addr	= reg;
1285	host->timeout	= 1000;
1286
1287	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1288	host->hclk = clk_get(&pdev->dev, clk_name);
1289	if (IS_ERR(host->hclk)) {
1290		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1291		ret = PTR_ERR(host->hclk);
1292		goto clean_up1;
1293	}
1294	clk_enable(host->hclk);
1295	host->clk = clk_get_rate(host->hclk);
1296	host->pd = pdev;
1297
 
1298	spin_lock_init(&host->lock);
1299
1300	mmc->ops = &sh_mmcif_ops;
1301	mmc->f_max = host->clk / 2;
1302	mmc->f_min = host->clk / 512;
 
 
 
 
 
 
1303	if (pd->ocr)
1304		mmc->ocr_avail = pd->ocr;
1305	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1306	if (pd->caps)
1307		mmc->caps |= pd->caps;
1308	mmc->max_segs = 32;
1309	mmc->max_blk_size = 512;
1310	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1311	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1312	mmc->max_seg_size = mmc->max_req_size;
1313
1314	sh_mmcif_sync_reset(host);
1315	platform_set_drvdata(pdev, host);
1316
1317	pm_runtime_enable(&pdev->dev);
1318	host->power = false;
1319
1320	ret = pm_runtime_resume(&pdev->dev);
1321	if (ret < 0)
1322		goto clean_up2;
1323
1324	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1325
1326	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1327
1328	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1329	if (ret) {
1330		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1331		goto clean_up3;
1332	}
1333	ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1334	if (ret) {
 
1335		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1336		goto clean_up4;
1337	}
1338
1339	ret = mmc_add_host(mmc);
1340	if (ret < 0)
1341		goto clean_up5;
1342
1343	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1344
1345	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1346	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1347		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1348	return ret;
1349
1350clean_up5:
1351	free_irq(irq[1], host);
1352clean_up4:
1353	free_irq(irq[0], host);
1354clean_up3:
 
1355	pm_runtime_suspend(&pdev->dev);
1356clean_up2:
1357	pm_runtime_disable(&pdev->dev);
1358	clk_disable(host->hclk);
1359clean_up1:
1360	mmc_free_host(mmc);
1361clean_up:
1362	if (reg)
1363		iounmap(reg);
1364	return ret;
1365}
1366
1367static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1368{
1369	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1370	int irq[2];
1371
1372	host->dying = true;
1373	pm_runtime_get_sync(&pdev->dev);
1374
1375	dev_pm_qos_hide_latency_limit(&pdev->dev);
1376
1377	mmc_remove_host(host->mmc);
1378	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1379
1380	/*
1381	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1382	 * mmc_remove_host() call above. But swapping order doesn't help either
1383	 * (a query on the linux-mmc mailing list didn't bring any replies).
1384	 */
1385	cancel_delayed_work_sync(&host->timeout_work);
1386
1387	if (host->addr)
1388		iounmap(host->addr);
1389
1390	irq[0] = platform_get_irq(pdev, 0);
1391	irq[1] = platform_get_irq(pdev, 1);
1392
1393	free_irq(irq[0], host);
1394	free_irq(irq[1], host);
1395
1396	platform_set_drvdata(pdev, NULL);
1397
1398	clk_disable(host->hclk);
1399	mmc_free_host(host->mmc);
1400	pm_runtime_put_sync(&pdev->dev);
1401	pm_runtime_disable(&pdev->dev);
1402
1403	return 0;
1404}
1405
1406#ifdef CONFIG_PM
1407static int sh_mmcif_suspend(struct device *dev)
1408{
1409	struct platform_device *pdev = to_platform_device(dev);
1410	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1411	int ret = mmc_suspend_host(host->mmc);
1412
1413	if (!ret) {
1414		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1415		clk_disable(host->hclk);
1416	}
1417
1418	return ret;
1419}
1420
1421static int sh_mmcif_resume(struct device *dev)
1422{
1423	struct platform_device *pdev = to_platform_device(dev);
1424	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1425
1426	clk_enable(host->hclk);
1427
1428	return mmc_resume_host(host->mmc);
1429}
1430#else
1431#define sh_mmcif_suspend	NULL
1432#define sh_mmcif_resume		NULL
1433#endif	/* CONFIG_PM */
1434
1435static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1436	.suspend = sh_mmcif_suspend,
1437	.resume = sh_mmcif_resume,
1438};
1439
1440static struct platform_driver sh_mmcif_driver = {
1441	.probe		= sh_mmcif_probe,
1442	.remove		= sh_mmcif_remove,
1443	.driver		= {
1444		.name	= DRIVER_NAME,
1445		.pm	= &sh_mmcif_dev_pm_ops,
1446	},
1447};
1448
1449module_platform_driver(sh_mmcif_driver);
 
 
 
 
 
 
 
 
 
 
 
 
1450
1451MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1452MODULE_LICENSE("GPL");
1453MODULE_ALIAS("platform:" DRIVER_NAME);
1454MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");