Linux Audio

Check our new training course

Loading...
v3.1
  1/* arch/sparc64/mm/tsb.c
  2 *
  3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/preempt.h>
  8#include <linux/slab.h>
  9#include <asm/system.h>
 10#include <asm/page.h>
 11#include <asm/tlbflush.h>
 12#include <asm/tlb.h>
 13#include <asm/mmu_context.h>
 14#include <asm/pgtable.h>
 
 
 15#include <asm/tsb.h>
 
 16#include <asm/oplib.h>
 17
 18extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 19
 20static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
 21{
 22	vaddr >>= hash_shift;
 23	return vaddr & (nentries - 1);
 24}
 25
 26static inline int tag_compare(unsigned long tag, unsigned long vaddr)
 27{
 28	return (tag == (vaddr >> 22));
 29}
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31/* TSB flushes need only occur on the processor initiating the address
 32 * space modification, not on each cpu the address space has run on.
 33 * Only the TLB flush needs that treatment.
 34 */
 35
 36void flush_tsb_kernel_range(unsigned long start, unsigned long end)
 37{
 38	unsigned long v;
 39
 
 
 
 40	for (v = start; v < end; v += PAGE_SIZE) {
 41		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
 42					      KERNEL_TSB_NENTRIES);
 43		struct tsb *ent = &swapper_tsb[hash];
 44
 45		if (tag_compare(ent->tag, v))
 46			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 47	}
 48}
 49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
 51			    unsigned long tsb, unsigned long nentries)
 52{
 53	unsigned long i;
 54
 55	for (i = 0; i < tb->tlb_nr; i++) {
 56		unsigned long v = tb->vaddrs[i];
 57		unsigned long tag, ent, hash;
 58
 59		v &= ~0x1UL;
 
 
 
 60
 61		hash = tsb_hash(v, hash_shift, nentries);
 62		ent = tsb + (hash * sizeof(struct tsb));
 63		tag = (v >> 22UL);
 64
 65		tsb_flush(ent, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 66	}
 
 
 67}
 68
 69void flush_tsb_user(struct tlb_batch *tb)
 70{
 71	struct mm_struct *mm = tb->mm;
 72	unsigned long nentries, base, flags;
 73
 74	spin_lock_irqsave(&mm->context.lock, flags);
 75
 76	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
 77	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
 78	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 79		base = __pa(base);
 80	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
 81
 82#ifdef CONFIG_HUGETLB_PAGE
 83	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
 
 84		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
 85		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
 86		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 87			base = __pa(base);
 88		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
 89	}
 90#endif
 91	spin_unlock_irqrestore(&mm->context.lock, flags);
 92}
 93
 94#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
 95#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
 96#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
 97#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
 98#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
 99#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
100#else
101#error Broken base page size setting...
102#endif
103
104#ifdef CONFIG_HUGETLB_PAGE
105#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
106#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
107#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
108#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
109#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
110#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
111#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
112#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
113#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
114#else
115#error Broken huge page size setting...
116#endif
117#endif
118
119static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
120{
121	unsigned long tsb_reg, base, tsb_paddr;
122	unsigned long page_sz, tte;
123
124	mm->context.tsb_block[tsb_idx].tsb_nentries =
125		tsb_bytes / sizeof(struct tsb);
126
127	base = TSBMAP_BASE;
 
 
 
 
 
 
 
 
 
 
 
 
128	tte = pgprot_val(PAGE_KERNEL_LOCKED);
129	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
130	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
131
132	/* Use the smallest page size that can map the whole TSB
133	 * in one TLB entry.
134	 */
135	switch (tsb_bytes) {
136	case 8192 << 0:
137		tsb_reg = 0x0UL;
138#ifdef DCACHE_ALIASING_POSSIBLE
139		base += (tsb_paddr & 8192);
140#endif
141		page_sz = 8192;
142		break;
143
144	case 8192 << 1:
145		tsb_reg = 0x1UL;
146		page_sz = 64 * 1024;
147		break;
148
149	case 8192 << 2:
150		tsb_reg = 0x2UL;
151		page_sz = 64 * 1024;
152		break;
153
154	case 8192 << 3:
155		tsb_reg = 0x3UL;
156		page_sz = 64 * 1024;
157		break;
158
159	case 8192 << 4:
160		tsb_reg = 0x4UL;
161		page_sz = 512 * 1024;
162		break;
163
164	case 8192 << 5:
165		tsb_reg = 0x5UL;
166		page_sz = 512 * 1024;
167		break;
168
169	case 8192 << 6:
170		tsb_reg = 0x6UL;
171		page_sz = 512 * 1024;
172		break;
173
174	case 8192 << 7:
175		tsb_reg = 0x7UL;
176		page_sz = 4 * 1024 * 1024;
177		break;
178
179	default:
180		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
181		       current->comm, current->pid, tsb_bytes);
182		do_exit(SIGSEGV);
183	}
184	tte |= pte_sz_bits(page_sz);
185
186	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
187		/* Physical mapping, no locked TLB entry for TSB.  */
188		tsb_reg |= tsb_paddr;
189
190		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
191		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
192		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
193	} else {
194		tsb_reg |= base;
195		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
196		tte |= (tsb_paddr & ~(page_sz - 1UL));
197
198		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
199		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
200		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
201	}
202
203	/* Setup the Hypervisor TSB descriptor.  */
204	if (tlb_type == hypervisor) {
205		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
206
207		switch (tsb_idx) {
208		case MM_TSB_BASE:
209			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
210			break;
211#ifdef CONFIG_HUGETLB_PAGE
212		case MM_TSB_HUGE:
213			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
214			break;
215#endif
216		default:
217			BUG();
218		}
219		hp->assoc = 1;
220		hp->num_ttes = tsb_bytes / 16;
221		hp->ctx_idx = 0;
222		switch (tsb_idx) {
223		case MM_TSB_BASE:
224			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
225			break;
226#ifdef CONFIG_HUGETLB_PAGE
227		case MM_TSB_HUGE:
228			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
229			break;
230#endif
231		default:
232			BUG();
233		}
234		hp->tsb_base = tsb_paddr;
235		hp->resv = 0;
236	}
237}
238
239struct kmem_cache *pgtable_cache __read_mostly;
240
241static struct kmem_cache *tsb_caches[8] __read_mostly;
242
243static const char *tsb_cache_names[8] = {
244	"tsb_8KB",
245	"tsb_16KB",
246	"tsb_32KB",
247	"tsb_64KB",
248	"tsb_128KB",
249	"tsb_256KB",
250	"tsb_512KB",
251	"tsb_1MB",
252};
253
254void __init pgtable_cache_init(void)
255{
256	unsigned long i;
257
258	pgtable_cache = kmem_cache_create("pgtable_cache",
259					  PAGE_SIZE, PAGE_SIZE,
260					  0,
261					  _clear_page);
262	if (!pgtable_cache) {
263		prom_printf("pgtable_cache_init(): Could not create!\n");
264		prom_halt();
265	}
266
267	for (i = 0; i < 8; i++) {
268		unsigned long size = 8192 << i;
269		const char *name = tsb_cache_names[i];
270
271		tsb_caches[i] = kmem_cache_create(name,
272						  size, size,
273						  0, NULL);
274		if (!tsb_caches[i]) {
275			prom_printf("Could not create %s cache\n", name);
276			prom_halt();
277		}
278	}
279}
280
281int sysctl_tsb_ratio = -2;
282
283static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
284{
285	unsigned long num_ents = (new_size / sizeof(struct tsb));
286
287	if (sysctl_tsb_ratio < 0)
288		return num_ents - (num_ents >> -sysctl_tsb_ratio);
289	else
290		return num_ents + (num_ents >> sysctl_tsb_ratio);
291}
292
293/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
294 * do_sparc64_fault() invokes this routine to try and grow it.
295 *
296 * When we reach the maximum TSB size supported, we stick ~0UL into
297 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
298 * will not trigger any longer.
299 *
300 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
301 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
302 * must be 512K aligned.  It also must be physically contiguous, so we
303 * cannot use vmalloc().
304 *
305 * The idea here is to grow the TSB when the RSS of the process approaches
306 * the number of entries that the current TSB can hold at once.  Currently,
307 * we trigger when the RSS hits 3/4 of the TSB capacity.
308 */
309void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
310{
311	unsigned long max_tsb_size = 1 * 1024 * 1024;
312	unsigned long new_size, old_size, flags;
313	struct tsb *old_tsb, *new_tsb;
314	unsigned long new_cache_index, old_cache_index;
315	unsigned long new_rss_limit;
316	gfp_t gfp_flags;
317
318	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
319		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
320
321	new_cache_index = 0;
322	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
323		new_rss_limit = tsb_size_to_rss_limit(new_size);
324		if (new_rss_limit > rss)
325			break;
326		new_cache_index++;
327	}
328
329	if (new_size == max_tsb_size)
330		new_rss_limit = ~0UL;
331
332retry_tsb_alloc:
333	gfp_flags = GFP_KERNEL;
334	if (new_size > (PAGE_SIZE * 2))
335		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
336
337	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
338					gfp_flags, numa_node_id());
339	if (unlikely(!new_tsb)) {
340		/* Not being able to fork due to a high-order TSB
341		 * allocation failure is very bad behavior.  Just back
342		 * down to a 0-order allocation and force no TSB
343		 * growing for this address space.
344		 */
345		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
346		    new_cache_index > 0) {
347			new_cache_index = 0;
348			new_size = 8192;
349			new_rss_limit = ~0UL;
350			goto retry_tsb_alloc;
351		}
352
353		/* If we failed on a TSB grow, we are under serious
354		 * memory pressure so don't try to grow any more.
355		 */
356		if (mm->context.tsb_block[tsb_index].tsb != NULL)
357			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
358		return;
359	}
360
361	/* Mark all tags as invalid.  */
362	tsb_init(new_tsb, new_size);
363
364	/* Ok, we are about to commit the changes.  If we are
365	 * growing an existing TSB the locking is very tricky,
366	 * so WATCH OUT!
367	 *
368	 * We have to hold mm->context.lock while committing to the
369	 * new TSB, this synchronizes us with processors in
370	 * flush_tsb_user() and switch_mm() for this address space.
371	 *
372	 * But even with that lock held, processors run asynchronously
373	 * accessing the old TSB via TLB miss handling.  This is OK
374	 * because those actions are just propagating state from the
375	 * Linux page tables into the TSB, page table mappings are not
376	 * being changed.  If a real fault occurs, the processor will
377	 * synchronize with us when it hits flush_tsb_user(), this is
378	 * also true for the case where vmscan is modifying the page
379	 * tables.  The only thing we need to be careful with is to
380	 * skip any locked TSB entries during copy_tsb().
381	 *
382	 * When we finish committing to the new TSB, we have to drop
383	 * the lock and ask all other cpus running this address space
384	 * to run tsb_context_switch() to see the new TSB table.
385	 */
386	spin_lock_irqsave(&mm->context.lock, flags);
387
388	old_tsb = mm->context.tsb_block[tsb_index].tsb;
389	old_cache_index =
390		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
391	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
392		    sizeof(struct tsb));
393
394
395	/* Handle multiple threads trying to grow the TSB at the same time.
396	 * One will get in here first, and bump the size and the RSS limit.
397	 * The others will get in here next and hit this check.
398	 */
399	if (unlikely(old_tsb &&
400		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
401		spin_unlock_irqrestore(&mm->context.lock, flags);
402
403		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
404		return;
405	}
406
407	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
408
409	if (old_tsb) {
410		extern void copy_tsb(unsigned long old_tsb_base,
411				     unsigned long old_tsb_size,
412				     unsigned long new_tsb_base,
413				     unsigned long new_tsb_size);
414		unsigned long old_tsb_base = (unsigned long) old_tsb;
415		unsigned long new_tsb_base = (unsigned long) new_tsb;
416
417		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
418			old_tsb_base = __pa(old_tsb_base);
419			new_tsb_base = __pa(new_tsb_base);
420		}
421		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
422	}
423
424	mm->context.tsb_block[tsb_index].tsb = new_tsb;
425	setup_tsb_params(mm, tsb_index, new_size);
426
427	spin_unlock_irqrestore(&mm->context.lock, flags);
428
429	/* If old_tsb is NULL, we're being invoked for the first time
430	 * from init_new_context().
431	 */
432	if (old_tsb) {
433		/* Reload it on the local cpu.  */
434		tsb_context_switch(mm);
435
436		/* Now force other processors to do the same.  */
437		preempt_disable();
438		smp_tsb_sync(mm);
439		preempt_enable();
440
441		/* Now it is safe to free the old tsb.  */
442		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
443	}
444}
445
446int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
447{
448#ifdef CONFIG_HUGETLB_PAGE
449	unsigned long huge_pte_count;
 
 
450#endif
451	unsigned int i;
452
453	spin_lock_init(&mm->context.lock);
454
455	mm->context.sparc64_ctx_val = 0UL;
456
457#ifdef CONFIG_HUGETLB_PAGE
458	/* We reset it to zero because the fork() page copying
459	 * will re-increment the counters as the parent PTEs are
460	 * copied into the child address space.
461	 */
462	huge_pte_count = mm->context.huge_pte_count;
463	mm->context.huge_pte_count = 0;
 
 
 
 
464#endif
465
466	/* copy_mm() copies over the parent's mm_struct before calling
467	 * us, so we need to zero out the TSB pointer or else tsb_grow()
468	 * will be confused and think there is an older TSB to free up.
469	 */
470	for (i = 0; i < MM_NUM_TSBS; i++)
471		mm->context.tsb_block[i].tsb = NULL;
472
473	/* If this is fork, inherit the parent's TSB size.  We would
474	 * grow it to that size on the first page fault anyways.
475	 */
476	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
477
478#ifdef CONFIG_HUGETLB_PAGE
479	if (unlikely(huge_pte_count))
480		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
 
 
481#endif
482
483	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
484		return -ENOMEM;
485
486	return 0;
487}
488
489static void tsb_destroy_one(struct tsb_config *tp)
490{
491	unsigned long cache_index;
492
493	if (!tp->tsb)
494		return;
495	cache_index = tp->tsb_reg_val & 0x7UL;
496	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
497	tp->tsb = NULL;
498	tp->tsb_reg_val = 0UL;
499}
500
501void destroy_context(struct mm_struct *mm)
502{
503	unsigned long flags, i;
504
505	for (i = 0; i < MM_NUM_TSBS; i++)
506		tsb_destroy_one(&mm->context.tsb_block[i]);
507
508	spin_lock_irqsave(&ctx_alloc_lock, flags);
509
510	if (CTX_VALID(mm->context)) {
511		unsigned long nr = CTX_NRBITS(mm->context);
512		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
513	}
514
515	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
516}
v4.10.11
  1/* arch/sparc64/mm/tsb.c
  2 *
  3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/preempt.h>
  8#include <linux/slab.h>
 
  9#include <asm/page.h>
 
 
 
 10#include <asm/pgtable.h>
 11#include <asm/mmu_context.h>
 12#include <asm/setup.h>
 13#include <asm/tsb.h>
 14#include <asm/tlb.h>
 15#include <asm/oplib.h>
 16
 17extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 18
 19static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
 20{
 21	vaddr >>= hash_shift;
 22	return vaddr & (nentries - 1);
 23}
 24
 25static inline int tag_compare(unsigned long tag, unsigned long vaddr)
 26{
 27	return (tag == (vaddr >> 22));
 28}
 29
 30static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
 31{
 32	unsigned long idx;
 33
 34	for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
 35		struct tsb *ent = &swapper_tsb[idx];
 36		unsigned long match = idx << 13;
 37
 38		match |= (ent->tag << 22);
 39		if (match >= start && match < end)
 40			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 41	}
 42}
 43
 44/* TSB flushes need only occur on the processor initiating the address
 45 * space modification, not on each cpu the address space has run on.
 46 * Only the TLB flush needs that treatment.
 47 */
 48
 49void flush_tsb_kernel_range(unsigned long start, unsigned long end)
 50{
 51	unsigned long v;
 52
 53	if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
 54		return flush_tsb_kernel_range_scan(start, end);
 55
 56	for (v = start; v < end; v += PAGE_SIZE) {
 57		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
 58					      KERNEL_TSB_NENTRIES);
 59		struct tsb *ent = &swapper_tsb[hash];
 60
 61		if (tag_compare(ent->tag, v))
 62			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 63	}
 64}
 65
 66static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
 67				  unsigned long hash_shift,
 68				  unsigned long nentries)
 69{
 70	unsigned long tag, ent, hash;
 71
 72	v &= ~0x1UL;
 73	hash = tsb_hash(v, hash_shift, nentries);
 74	ent = tsb + (hash * sizeof(struct tsb));
 75	tag = (v >> 22UL);
 76
 77	tsb_flush(ent, tag);
 78}
 79
 80static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
 81			    unsigned long tsb, unsigned long nentries)
 82{
 83	unsigned long i;
 84
 85	for (i = 0; i < tb->tlb_nr; i++)
 86		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
 87}
 88
 89void flush_tsb_user(struct tlb_batch *tb)
 90{
 91	struct mm_struct *mm = tb->mm;
 92	unsigned long nentries, base, flags;
 93
 94	spin_lock_irqsave(&mm->context.lock, flags);
 
 
 95
 96	if (!tb->huge) {
 97		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
 98		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
 99		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
100			base = __pa(base);
101		__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
102	}
103#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
104	if (tb->huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) {
105		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
106		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
107		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
108			base = __pa(base);
109		__flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
110	}
111#endif
112	spin_unlock_irqrestore(&mm->context.lock, flags);
113}
114
115void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr, bool huge)
116{
 
117	unsigned long nentries, base, flags;
118
119	spin_lock_irqsave(&mm->context.lock, flags);
120
121	if (!huge) {
122		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
123		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
124		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
125			base = __pa(base);
126		__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
127	}
128#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
129	if (huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) {
130		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
131		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
132		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
133			base = __pa(base);
134		__flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
135	}
136#endif
137	spin_unlock_irqrestore(&mm->context.lock, flags);
138}
139
 
140#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
141#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
 
 
 
 
 
 
142
143#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 
 
 
 
 
 
 
144#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
145#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
 
 
 
146#endif
147
148static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
149{
150	unsigned long tsb_reg, base, tsb_paddr;
151	unsigned long page_sz, tte;
152
153	mm->context.tsb_block[tsb_idx].tsb_nentries =
154		tsb_bytes / sizeof(struct tsb);
155
156	switch (tsb_idx) {
157	case MM_TSB_BASE:
158		base = TSBMAP_8K_BASE;
159		break;
160#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
161	case MM_TSB_HUGE:
162		base = TSBMAP_4M_BASE;
163		break;
164#endif
165	default:
166		BUG();
167	}
168
169	tte = pgprot_val(PAGE_KERNEL_LOCKED);
170	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
171	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
172
173	/* Use the smallest page size that can map the whole TSB
174	 * in one TLB entry.
175	 */
176	switch (tsb_bytes) {
177	case 8192 << 0:
178		tsb_reg = 0x0UL;
179#ifdef DCACHE_ALIASING_POSSIBLE
180		base += (tsb_paddr & 8192);
181#endif
182		page_sz = 8192;
183		break;
184
185	case 8192 << 1:
186		tsb_reg = 0x1UL;
187		page_sz = 64 * 1024;
188		break;
189
190	case 8192 << 2:
191		tsb_reg = 0x2UL;
192		page_sz = 64 * 1024;
193		break;
194
195	case 8192 << 3:
196		tsb_reg = 0x3UL;
197		page_sz = 64 * 1024;
198		break;
199
200	case 8192 << 4:
201		tsb_reg = 0x4UL;
202		page_sz = 512 * 1024;
203		break;
204
205	case 8192 << 5:
206		tsb_reg = 0x5UL;
207		page_sz = 512 * 1024;
208		break;
209
210	case 8192 << 6:
211		tsb_reg = 0x6UL;
212		page_sz = 512 * 1024;
213		break;
214
215	case 8192 << 7:
216		tsb_reg = 0x7UL;
217		page_sz = 4 * 1024 * 1024;
218		break;
219
220	default:
221		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
222		       current->comm, current->pid, tsb_bytes);
223		do_exit(SIGSEGV);
224	}
225	tte |= pte_sz_bits(page_sz);
226
227	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
228		/* Physical mapping, no locked TLB entry for TSB.  */
229		tsb_reg |= tsb_paddr;
230
231		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
232		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
233		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
234	} else {
235		tsb_reg |= base;
236		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
237		tte |= (tsb_paddr & ~(page_sz - 1UL));
238
239		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
240		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
241		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
242	}
243
244	/* Setup the Hypervisor TSB descriptor.  */
245	if (tlb_type == hypervisor) {
246		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
247
248		switch (tsb_idx) {
249		case MM_TSB_BASE:
250			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
251			break;
252#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
253		case MM_TSB_HUGE:
254			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
255			break;
256#endif
257		default:
258			BUG();
259		}
260		hp->assoc = 1;
261		hp->num_ttes = tsb_bytes / 16;
262		hp->ctx_idx = 0;
263		switch (tsb_idx) {
264		case MM_TSB_BASE:
265			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
266			break;
267#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
268		case MM_TSB_HUGE:
269			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
270			break;
271#endif
272		default:
273			BUG();
274		}
275		hp->tsb_base = tsb_paddr;
276		hp->resv = 0;
277	}
278}
279
280struct kmem_cache *pgtable_cache __read_mostly;
281
282static struct kmem_cache *tsb_caches[8] __read_mostly;
283
284static const char *tsb_cache_names[8] = {
285	"tsb_8KB",
286	"tsb_16KB",
287	"tsb_32KB",
288	"tsb_64KB",
289	"tsb_128KB",
290	"tsb_256KB",
291	"tsb_512KB",
292	"tsb_1MB",
293};
294
295void __init pgtable_cache_init(void)
296{
297	unsigned long i;
298
299	pgtable_cache = kmem_cache_create("pgtable_cache",
300					  PAGE_SIZE, PAGE_SIZE,
301					  0,
302					  _clear_page);
303	if (!pgtable_cache) {
304		prom_printf("pgtable_cache_init(): Could not create!\n");
305		prom_halt();
306	}
307
308	for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
309		unsigned long size = 8192 << i;
310		const char *name = tsb_cache_names[i];
311
312		tsb_caches[i] = kmem_cache_create(name,
313						  size, size,
314						  0, NULL);
315		if (!tsb_caches[i]) {
316			prom_printf("Could not create %s cache\n", name);
317			prom_halt();
318		}
319	}
320}
321
322int sysctl_tsb_ratio = -2;
323
324static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
325{
326	unsigned long num_ents = (new_size / sizeof(struct tsb));
327
328	if (sysctl_tsb_ratio < 0)
329		return num_ents - (num_ents >> -sysctl_tsb_ratio);
330	else
331		return num_ents + (num_ents >> sysctl_tsb_ratio);
332}
333
334/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
335 * do_sparc64_fault() invokes this routine to try and grow it.
336 *
337 * When we reach the maximum TSB size supported, we stick ~0UL into
338 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
339 * will not trigger any longer.
340 *
341 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
342 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
343 * must be 512K aligned.  It also must be physically contiguous, so we
344 * cannot use vmalloc().
345 *
346 * The idea here is to grow the TSB when the RSS of the process approaches
347 * the number of entries that the current TSB can hold at once.  Currently,
348 * we trigger when the RSS hits 3/4 of the TSB capacity.
349 */
350void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
351{
352	unsigned long max_tsb_size = 1 * 1024 * 1024;
353	unsigned long new_size, old_size, flags;
354	struct tsb *old_tsb, *new_tsb;
355	unsigned long new_cache_index, old_cache_index;
356	unsigned long new_rss_limit;
357	gfp_t gfp_flags;
358
359	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
360		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
361
362	new_cache_index = 0;
363	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
364		new_rss_limit = tsb_size_to_rss_limit(new_size);
365		if (new_rss_limit > rss)
366			break;
367		new_cache_index++;
368	}
369
370	if (new_size == max_tsb_size)
371		new_rss_limit = ~0UL;
372
373retry_tsb_alloc:
374	gfp_flags = GFP_KERNEL;
375	if (new_size > (PAGE_SIZE * 2))
376		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
377
378	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
379					gfp_flags, numa_node_id());
380	if (unlikely(!new_tsb)) {
381		/* Not being able to fork due to a high-order TSB
382		 * allocation failure is very bad behavior.  Just back
383		 * down to a 0-order allocation and force no TSB
384		 * growing for this address space.
385		 */
386		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
387		    new_cache_index > 0) {
388			new_cache_index = 0;
389			new_size = 8192;
390			new_rss_limit = ~0UL;
391			goto retry_tsb_alloc;
392		}
393
394		/* If we failed on a TSB grow, we are under serious
395		 * memory pressure so don't try to grow any more.
396		 */
397		if (mm->context.tsb_block[tsb_index].tsb != NULL)
398			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
399		return;
400	}
401
402	/* Mark all tags as invalid.  */
403	tsb_init(new_tsb, new_size);
404
405	/* Ok, we are about to commit the changes.  If we are
406	 * growing an existing TSB the locking is very tricky,
407	 * so WATCH OUT!
408	 *
409	 * We have to hold mm->context.lock while committing to the
410	 * new TSB, this synchronizes us with processors in
411	 * flush_tsb_user() and switch_mm() for this address space.
412	 *
413	 * But even with that lock held, processors run asynchronously
414	 * accessing the old TSB via TLB miss handling.  This is OK
415	 * because those actions are just propagating state from the
416	 * Linux page tables into the TSB, page table mappings are not
417	 * being changed.  If a real fault occurs, the processor will
418	 * synchronize with us when it hits flush_tsb_user(), this is
419	 * also true for the case where vmscan is modifying the page
420	 * tables.  The only thing we need to be careful with is to
421	 * skip any locked TSB entries during copy_tsb().
422	 *
423	 * When we finish committing to the new TSB, we have to drop
424	 * the lock and ask all other cpus running this address space
425	 * to run tsb_context_switch() to see the new TSB table.
426	 */
427	spin_lock_irqsave(&mm->context.lock, flags);
428
429	old_tsb = mm->context.tsb_block[tsb_index].tsb;
430	old_cache_index =
431		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
432	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
433		    sizeof(struct tsb));
434
435
436	/* Handle multiple threads trying to grow the TSB at the same time.
437	 * One will get in here first, and bump the size and the RSS limit.
438	 * The others will get in here next and hit this check.
439	 */
440	if (unlikely(old_tsb &&
441		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
442		spin_unlock_irqrestore(&mm->context.lock, flags);
443
444		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
445		return;
446	}
447
448	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
449
450	if (old_tsb) {
451		extern void copy_tsb(unsigned long old_tsb_base,
452				     unsigned long old_tsb_size,
453				     unsigned long new_tsb_base,
454				     unsigned long new_tsb_size);
455		unsigned long old_tsb_base = (unsigned long) old_tsb;
456		unsigned long new_tsb_base = (unsigned long) new_tsb;
457
458		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
459			old_tsb_base = __pa(old_tsb_base);
460			new_tsb_base = __pa(new_tsb_base);
461		}
462		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
463	}
464
465	mm->context.tsb_block[tsb_index].tsb = new_tsb;
466	setup_tsb_params(mm, tsb_index, new_size);
467
468	spin_unlock_irqrestore(&mm->context.lock, flags);
469
470	/* If old_tsb is NULL, we're being invoked for the first time
471	 * from init_new_context().
472	 */
473	if (old_tsb) {
474		/* Reload it on the local cpu.  */
475		tsb_context_switch(mm);
476
477		/* Now force other processors to do the same.  */
478		preempt_disable();
479		smp_tsb_sync(mm);
480		preempt_enable();
481
482		/* Now it is safe to free the old tsb.  */
483		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
484	}
485}
486
487int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
488{
489	unsigned long mm_rss = get_mm_rss(mm);
490#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
491	unsigned long saved_hugetlb_pte_count;
492	unsigned long saved_thp_pte_count;
493#endif
494	unsigned int i;
495
496	spin_lock_init(&mm->context.lock);
497
498	mm->context.sparc64_ctx_val = 0UL;
499
500#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
501	/* We reset them to zero because the fork() page copying
502	 * will re-increment the counters as the parent PTEs are
503	 * copied into the child address space.
504	 */
505	saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
506	saved_thp_pte_count = mm->context.thp_pte_count;
507	mm->context.hugetlb_pte_count = 0;
508	mm->context.thp_pte_count = 0;
509
510	mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
511#endif
512
513	/* copy_mm() copies over the parent's mm_struct before calling
514	 * us, so we need to zero out the TSB pointer or else tsb_grow()
515	 * will be confused and think there is an older TSB to free up.
516	 */
517	for (i = 0; i < MM_NUM_TSBS; i++)
518		mm->context.tsb_block[i].tsb = NULL;
519
520	/* If this is fork, inherit the parent's TSB size.  We would
521	 * grow it to that size on the first page fault anyways.
522	 */
523	tsb_grow(mm, MM_TSB_BASE, mm_rss);
524
525#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
526	if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
527		tsb_grow(mm, MM_TSB_HUGE,
528			 (saved_hugetlb_pte_count + saved_thp_pte_count) *
529			 REAL_HPAGE_PER_HPAGE);
530#endif
531
532	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
533		return -ENOMEM;
534
535	return 0;
536}
537
538static void tsb_destroy_one(struct tsb_config *tp)
539{
540	unsigned long cache_index;
541
542	if (!tp->tsb)
543		return;
544	cache_index = tp->tsb_reg_val & 0x7UL;
545	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
546	tp->tsb = NULL;
547	tp->tsb_reg_val = 0UL;
548}
549
550void destroy_context(struct mm_struct *mm)
551{
552	unsigned long flags, i;
553
554	for (i = 0; i < MM_NUM_TSBS; i++)
555		tsb_destroy_one(&mm->context.tsb_block[i]);
556
557	spin_lock_irqsave(&ctx_alloc_lock, flags);
558
559	if (CTX_VALID(mm->context)) {
560		unsigned long nr = CTX_NRBITS(mm->context);
561		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
562	}
563
564	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
565}