Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
  1/* arch/sparc64/mm/tsb.c
  2 *
  3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/preempt.h>
  8#include <linux/slab.h>
  9#include <asm/system.h>
 10#include <asm/page.h>
 11#include <asm/tlbflush.h>
 12#include <asm/tlb.h>
 13#include <asm/mmu_context.h>
 14#include <asm/pgtable.h>
 15#include <asm/tsb.h>
 16#include <asm/oplib.h>
 17
 18extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 19
 20static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
 21{
 22	vaddr >>= hash_shift;
 23	return vaddr & (nentries - 1);
 24}
 25
 26static inline int tag_compare(unsigned long tag, unsigned long vaddr)
 27{
 28	return (tag == (vaddr >> 22));
 29}
 30
 31/* TSB flushes need only occur on the processor initiating the address
 32 * space modification, not on each cpu the address space has run on.
 33 * Only the TLB flush needs that treatment.
 34 */
 35
 36void flush_tsb_kernel_range(unsigned long start, unsigned long end)
 37{
 38	unsigned long v;
 39
 40	for (v = start; v < end; v += PAGE_SIZE) {
 41		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
 42					      KERNEL_TSB_NENTRIES);
 43		struct tsb *ent = &swapper_tsb[hash];
 44
 45		if (tag_compare(ent->tag, v))
 46			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 47	}
 48}
 49
 50static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
 51			    unsigned long tsb, unsigned long nentries)
 52{
 53	unsigned long i;
 54
 55	for (i = 0; i < tb->tlb_nr; i++) {
 56		unsigned long v = tb->vaddrs[i];
 57		unsigned long tag, ent, hash;
 58
 59		v &= ~0x1UL;
 60
 61		hash = tsb_hash(v, hash_shift, nentries);
 62		ent = tsb + (hash * sizeof(struct tsb));
 63		tag = (v >> 22UL);
 64
 65		tsb_flush(ent, tag);
 66	}
 67}
 68
 69void flush_tsb_user(struct tlb_batch *tb)
 70{
 71	struct mm_struct *mm = tb->mm;
 72	unsigned long nentries, base, flags;
 73
 74	spin_lock_irqsave(&mm->context.lock, flags);
 75
 76	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
 77	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
 78	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 79		base = __pa(base);
 80	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
 81
 82#ifdef CONFIG_HUGETLB_PAGE
 83	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
 84		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
 85		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
 86		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 87			base = __pa(base);
 88		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
 89	}
 90#endif
 91	spin_unlock_irqrestore(&mm->context.lock, flags);
 92}
 93
 94#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
 95#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
 96#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
 97#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
 98#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
 99#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
100#else
101#error Broken base page size setting...
102#endif
103
104#ifdef CONFIG_HUGETLB_PAGE
105#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
106#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
107#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
108#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
109#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
110#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
111#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
112#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
113#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
114#else
115#error Broken huge page size setting...
116#endif
117#endif
118
119static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
120{
121	unsigned long tsb_reg, base, tsb_paddr;
122	unsigned long page_sz, tte;
123
124	mm->context.tsb_block[tsb_idx].tsb_nentries =
125		tsb_bytes / sizeof(struct tsb);
126
127	base = TSBMAP_BASE;
128	tte = pgprot_val(PAGE_KERNEL_LOCKED);
129	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
130	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
131
132	/* Use the smallest page size that can map the whole TSB
133	 * in one TLB entry.
134	 */
135	switch (tsb_bytes) {
136	case 8192 << 0:
137		tsb_reg = 0x0UL;
138#ifdef DCACHE_ALIASING_POSSIBLE
139		base += (tsb_paddr & 8192);
140#endif
141		page_sz = 8192;
142		break;
143
144	case 8192 << 1:
145		tsb_reg = 0x1UL;
146		page_sz = 64 * 1024;
147		break;
148
149	case 8192 << 2:
150		tsb_reg = 0x2UL;
151		page_sz = 64 * 1024;
152		break;
153
154	case 8192 << 3:
155		tsb_reg = 0x3UL;
156		page_sz = 64 * 1024;
157		break;
158
159	case 8192 << 4:
160		tsb_reg = 0x4UL;
161		page_sz = 512 * 1024;
162		break;
163
164	case 8192 << 5:
165		tsb_reg = 0x5UL;
166		page_sz = 512 * 1024;
167		break;
168
169	case 8192 << 6:
170		tsb_reg = 0x6UL;
171		page_sz = 512 * 1024;
172		break;
173
174	case 8192 << 7:
175		tsb_reg = 0x7UL;
176		page_sz = 4 * 1024 * 1024;
177		break;
178
179	default:
180		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
181		       current->comm, current->pid, tsb_bytes);
182		do_exit(SIGSEGV);
183	}
184	tte |= pte_sz_bits(page_sz);
185
186	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
187		/* Physical mapping, no locked TLB entry for TSB.  */
188		tsb_reg |= tsb_paddr;
189
190		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
191		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
192		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
193	} else {
194		tsb_reg |= base;
195		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
196		tte |= (tsb_paddr & ~(page_sz - 1UL));
197
198		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
199		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
200		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
201	}
202
203	/* Setup the Hypervisor TSB descriptor.  */
204	if (tlb_type == hypervisor) {
205		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
206
207		switch (tsb_idx) {
208		case MM_TSB_BASE:
209			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
210			break;
211#ifdef CONFIG_HUGETLB_PAGE
212		case MM_TSB_HUGE:
213			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
214			break;
215#endif
216		default:
217			BUG();
218		}
219		hp->assoc = 1;
220		hp->num_ttes = tsb_bytes / 16;
221		hp->ctx_idx = 0;
222		switch (tsb_idx) {
223		case MM_TSB_BASE:
224			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
225			break;
226#ifdef CONFIG_HUGETLB_PAGE
227		case MM_TSB_HUGE:
228			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
229			break;
230#endif
231		default:
232			BUG();
233		}
234		hp->tsb_base = tsb_paddr;
235		hp->resv = 0;
236	}
237}
238
239struct kmem_cache *pgtable_cache __read_mostly;
240
241static struct kmem_cache *tsb_caches[8] __read_mostly;
242
243static const char *tsb_cache_names[8] = {
244	"tsb_8KB",
245	"tsb_16KB",
246	"tsb_32KB",
247	"tsb_64KB",
248	"tsb_128KB",
249	"tsb_256KB",
250	"tsb_512KB",
251	"tsb_1MB",
252};
253
254void __init pgtable_cache_init(void)
255{
256	unsigned long i;
257
258	pgtable_cache = kmem_cache_create("pgtable_cache",
259					  PAGE_SIZE, PAGE_SIZE,
260					  0,
261					  _clear_page);
262	if (!pgtable_cache) {
263		prom_printf("pgtable_cache_init(): Could not create!\n");
264		prom_halt();
265	}
266
267	for (i = 0; i < 8; i++) {
268		unsigned long size = 8192 << i;
269		const char *name = tsb_cache_names[i];
270
271		tsb_caches[i] = kmem_cache_create(name,
272						  size, size,
273						  0, NULL);
274		if (!tsb_caches[i]) {
275			prom_printf("Could not create %s cache\n", name);
276			prom_halt();
277		}
278	}
279}
280
281int sysctl_tsb_ratio = -2;
282
283static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
284{
285	unsigned long num_ents = (new_size / sizeof(struct tsb));
286
287	if (sysctl_tsb_ratio < 0)
288		return num_ents - (num_ents >> -sysctl_tsb_ratio);
289	else
290		return num_ents + (num_ents >> sysctl_tsb_ratio);
291}
292
293/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
294 * do_sparc64_fault() invokes this routine to try and grow it.
295 *
296 * When we reach the maximum TSB size supported, we stick ~0UL into
297 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
298 * will not trigger any longer.
299 *
300 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
301 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
302 * must be 512K aligned.  It also must be physically contiguous, so we
303 * cannot use vmalloc().
304 *
305 * The idea here is to grow the TSB when the RSS of the process approaches
306 * the number of entries that the current TSB can hold at once.  Currently,
307 * we trigger when the RSS hits 3/4 of the TSB capacity.
308 */
309void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
310{
311	unsigned long max_tsb_size = 1 * 1024 * 1024;
312	unsigned long new_size, old_size, flags;
313	struct tsb *old_tsb, *new_tsb;
314	unsigned long new_cache_index, old_cache_index;
315	unsigned long new_rss_limit;
316	gfp_t gfp_flags;
317
318	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
319		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
320
321	new_cache_index = 0;
322	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
323		new_rss_limit = tsb_size_to_rss_limit(new_size);
324		if (new_rss_limit > rss)
325			break;
326		new_cache_index++;
327	}
328
329	if (new_size == max_tsb_size)
330		new_rss_limit = ~0UL;
331
332retry_tsb_alloc:
333	gfp_flags = GFP_KERNEL;
334	if (new_size > (PAGE_SIZE * 2))
335		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
336
337	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
338					gfp_flags, numa_node_id());
339	if (unlikely(!new_tsb)) {
340		/* Not being able to fork due to a high-order TSB
341		 * allocation failure is very bad behavior.  Just back
342		 * down to a 0-order allocation and force no TSB
343		 * growing for this address space.
344		 */
345		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
346		    new_cache_index > 0) {
347			new_cache_index = 0;
348			new_size = 8192;
349			new_rss_limit = ~0UL;
350			goto retry_tsb_alloc;
351		}
352
353		/* If we failed on a TSB grow, we are under serious
354		 * memory pressure so don't try to grow any more.
355		 */
356		if (mm->context.tsb_block[tsb_index].tsb != NULL)
357			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
358		return;
359	}
360
361	/* Mark all tags as invalid.  */
362	tsb_init(new_tsb, new_size);
363
364	/* Ok, we are about to commit the changes.  If we are
365	 * growing an existing TSB the locking is very tricky,
366	 * so WATCH OUT!
367	 *
368	 * We have to hold mm->context.lock while committing to the
369	 * new TSB, this synchronizes us with processors in
370	 * flush_tsb_user() and switch_mm() for this address space.
371	 *
372	 * But even with that lock held, processors run asynchronously
373	 * accessing the old TSB via TLB miss handling.  This is OK
374	 * because those actions are just propagating state from the
375	 * Linux page tables into the TSB, page table mappings are not
376	 * being changed.  If a real fault occurs, the processor will
377	 * synchronize with us when it hits flush_tsb_user(), this is
378	 * also true for the case where vmscan is modifying the page
379	 * tables.  The only thing we need to be careful with is to
380	 * skip any locked TSB entries during copy_tsb().
381	 *
382	 * When we finish committing to the new TSB, we have to drop
383	 * the lock and ask all other cpus running this address space
384	 * to run tsb_context_switch() to see the new TSB table.
385	 */
386	spin_lock_irqsave(&mm->context.lock, flags);
387
388	old_tsb = mm->context.tsb_block[tsb_index].tsb;
389	old_cache_index =
390		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
391	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
392		    sizeof(struct tsb));
393
394
395	/* Handle multiple threads trying to grow the TSB at the same time.
396	 * One will get in here first, and bump the size and the RSS limit.
397	 * The others will get in here next and hit this check.
398	 */
399	if (unlikely(old_tsb &&
400		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
401		spin_unlock_irqrestore(&mm->context.lock, flags);
402
403		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
404		return;
405	}
406
407	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
408
409	if (old_tsb) {
410		extern void copy_tsb(unsigned long old_tsb_base,
411				     unsigned long old_tsb_size,
412				     unsigned long new_tsb_base,
413				     unsigned long new_tsb_size);
414		unsigned long old_tsb_base = (unsigned long) old_tsb;
415		unsigned long new_tsb_base = (unsigned long) new_tsb;
416
417		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
418			old_tsb_base = __pa(old_tsb_base);
419			new_tsb_base = __pa(new_tsb_base);
420		}
421		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
422	}
423
424	mm->context.tsb_block[tsb_index].tsb = new_tsb;
425	setup_tsb_params(mm, tsb_index, new_size);
426
427	spin_unlock_irqrestore(&mm->context.lock, flags);
428
429	/* If old_tsb is NULL, we're being invoked for the first time
430	 * from init_new_context().
431	 */
432	if (old_tsb) {
433		/* Reload it on the local cpu.  */
434		tsb_context_switch(mm);
435
436		/* Now force other processors to do the same.  */
437		preempt_disable();
438		smp_tsb_sync(mm);
439		preempt_enable();
440
441		/* Now it is safe to free the old tsb.  */
442		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
443	}
444}
445
446int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
447{
448#ifdef CONFIG_HUGETLB_PAGE
449	unsigned long huge_pte_count;
450#endif
451	unsigned int i;
452
453	spin_lock_init(&mm->context.lock);
454
455	mm->context.sparc64_ctx_val = 0UL;
456
457#ifdef CONFIG_HUGETLB_PAGE
458	/* We reset it to zero because the fork() page copying
459	 * will re-increment the counters as the parent PTEs are
460	 * copied into the child address space.
461	 */
462	huge_pte_count = mm->context.huge_pte_count;
463	mm->context.huge_pte_count = 0;
464#endif
465
466	/* copy_mm() copies over the parent's mm_struct before calling
467	 * us, so we need to zero out the TSB pointer or else tsb_grow()
468	 * will be confused and think there is an older TSB to free up.
469	 */
470	for (i = 0; i < MM_NUM_TSBS; i++)
471		mm->context.tsb_block[i].tsb = NULL;
472
473	/* If this is fork, inherit the parent's TSB size.  We would
474	 * grow it to that size on the first page fault anyways.
475	 */
476	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
477
478#ifdef CONFIG_HUGETLB_PAGE
479	if (unlikely(huge_pte_count))
480		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
481#endif
482
483	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
484		return -ENOMEM;
485
486	return 0;
487}
488
489static void tsb_destroy_one(struct tsb_config *tp)
490{
491	unsigned long cache_index;
492
493	if (!tp->tsb)
494		return;
495	cache_index = tp->tsb_reg_val & 0x7UL;
496	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
497	tp->tsb = NULL;
498	tp->tsb_reg_val = 0UL;
499}
500
501void destroy_context(struct mm_struct *mm)
502{
503	unsigned long flags, i;
504
505	for (i = 0; i < MM_NUM_TSBS; i++)
506		tsb_destroy_one(&mm->context.tsb_block[i]);
507
508	spin_lock_irqsave(&ctx_alloc_lock, flags);
509
510	if (CTX_VALID(mm->context)) {
511		unsigned long nr = CTX_NRBITS(mm->context);
512		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
513	}
514
515	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
516}
v3.5.6
  1/* arch/sparc64/mm/tsb.c
  2 *
  3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/preempt.h>
  8#include <linux/slab.h>
 
  9#include <asm/page.h>
 10#include <asm/tlbflush.h>
 11#include <asm/tlb.h>
 12#include <asm/mmu_context.h>
 13#include <asm/pgtable.h>
 14#include <asm/tsb.h>
 15#include <asm/oplib.h>
 16
 17extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 18
 19static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
 20{
 21	vaddr >>= hash_shift;
 22	return vaddr & (nentries - 1);
 23}
 24
 25static inline int tag_compare(unsigned long tag, unsigned long vaddr)
 26{
 27	return (tag == (vaddr >> 22));
 28}
 29
 30/* TSB flushes need only occur on the processor initiating the address
 31 * space modification, not on each cpu the address space has run on.
 32 * Only the TLB flush needs that treatment.
 33 */
 34
 35void flush_tsb_kernel_range(unsigned long start, unsigned long end)
 36{
 37	unsigned long v;
 38
 39	for (v = start; v < end; v += PAGE_SIZE) {
 40		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
 41					      KERNEL_TSB_NENTRIES);
 42		struct tsb *ent = &swapper_tsb[hash];
 43
 44		if (tag_compare(ent->tag, v))
 45			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 46	}
 47}
 48
 49static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
 50			    unsigned long tsb, unsigned long nentries)
 51{
 52	unsigned long i;
 53
 54	for (i = 0; i < tb->tlb_nr; i++) {
 55		unsigned long v = tb->vaddrs[i];
 56		unsigned long tag, ent, hash;
 57
 58		v &= ~0x1UL;
 59
 60		hash = tsb_hash(v, hash_shift, nentries);
 61		ent = tsb + (hash * sizeof(struct tsb));
 62		tag = (v >> 22UL);
 63
 64		tsb_flush(ent, tag);
 65	}
 66}
 67
 68void flush_tsb_user(struct tlb_batch *tb)
 69{
 70	struct mm_struct *mm = tb->mm;
 71	unsigned long nentries, base, flags;
 72
 73	spin_lock_irqsave(&mm->context.lock, flags);
 74
 75	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
 76	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
 77	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 78		base = __pa(base);
 79	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
 80
 81#ifdef CONFIG_HUGETLB_PAGE
 82	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
 83		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
 84		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
 85		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 86			base = __pa(base);
 87		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
 88	}
 89#endif
 90	spin_unlock_irqrestore(&mm->context.lock, flags);
 91}
 92
 93#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
 94#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
 95#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
 96#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
 97#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
 98#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
 99#else
100#error Broken base page size setting...
101#endif
102
103#ifdef CONFIG_HUGETLB_PAGE
104#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
105#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
106#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
107#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
108#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
109#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
110#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
111#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
112#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
113#else
114#error Broken huge page size setting...
115#endif
116#endif
117
118static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
119{
120	unsigned long tsb_reg, base, tsb_paddr;
121	unsigned long page_sz, tte;
122
123	mm->context.tsb_block[tsb_idx].tsb_nentries =
124		tsb_bytes / sizeof(struct tsb);
125
126	base = TSBMAP_BASE;
127	tte = pgprot_val(PAGE_KERNEL_LOCKED);
128	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
129	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
130
131	/* Use the smallest page size that can map the whole TSB
132	 * in one TLB entry.
133	 */
134	switch (tsb_bytes) {
135	case 8192 << 0:
136		tsb_reg = 0x0UL;
137#ifdef DCACHE_ALIASING_POSSIBLE
138		base += (tsb_paddr & 8192);
139#endif
140		page_sz = 8192;
141		break;
142
143	case 8192 << 1:
144		tsb_reg = 0x1UL;
145		page_sz = 64 * 1024;
146		break;
147
148	case 8192 << 2:
149		tsb_reg = 0x2UL;
150		page_sz = 64 * 1024;
151		break;
152
153	case 8192 << 3:
154		tsb_reg = 0x3UL;
155		page_sz = 64 * 1024;
156		break;
157
158	case 8192 << 4:
159		tsb_reg = 0x4UL;
160		page_sz = 512 * 1024;
161		break;
162
163	case 8192 << 5:
164		tsb_reg = 0x5UL;
165		page_sz = 512 * 1024;
166		break;
167
168	case 8192 << 6:
169		tsb_reg = 0x6UL;
170		page_sz = 512 * 1024;
171		break;
172
173	case 8192 << 7:
174		tsb_reg = 0x7UL;
175		page_sz = 4 * 1024 * 1024;
176		break;
177
178	default:
179		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
180		       current->comm, current->pid, tsb_bytes);
181		do_exit(SIGSEGV);
182	}
183	tte |= pte_sz_bits(page_sz);
184
185	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
186		/* Physical mapping, no locked TLB entry for TSB.  */
187		tsb_reg |= tsb_paddr;
188
189		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
190		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
191		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
192	} else {
193		tsb_reg |= base;
194		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
195		tte |= (tsb_paddr & ~(page_sz - 1UL));
196
197		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
198		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
199		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
200	}
201
202	/* Setup the Hypervisor TSB descriptor.  */
203	if (tlb_type == hypervisor) {
204		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
205
206		switch (tsb_idx) {
207		case MM_TSB_BASE:
208			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
209			break;
210#ifdef CONFIG_HUGETLB_PAGE
211		case MM_TSB_HUGE:
212			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
213			break;
214#endif
215		default:
216			BUG();
217		}
218		hp->assoc = 1;
219		hp->num_ttes = tsb_bytes / 16;
220		hp->ctx_idx = 0;
221		switch (tsb_idx) {
222		case MM_TSB_BASE:
223			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
224			break;
225#ifdef CONFIG_HUGETLB_PAGE
226		case MM_TSB_HUGE:
227			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
228			break;
229#endif
230		default:
231			BUG();
232		}
233		hp->tsb_base = tsb_paddr;
234		hp->resv = 0;
235	}
236}
237
238struct kmem_cache *pgtable_cache __read_mostly;
239
240static struct kmem_cache *tsb_caches[8] __read_mostly;
241
242static const char *tsb_cache_names[8] = {
243	"tsb_8KB",
244	"tsb_16KB",
245	"tsb_32KB",
246	"tsb_64KB",
247	"tsb_128KB",
248	"tsb_256KB",
249	"tsb_512KB",
250	"tsb_1MB",
251};
252
253void __init pgtable_cache_init(void)
254{
255	unsigned long i;
256
257	pgtable_cache = kmem_cache_create("pgtable_cache",
258					  PAGE_SIZE, PAGE_SIZE,
259					  0,
260					  _clear_page);
261	if (!pgtable_cache) {
262		prom_printf("pgtable_cache_init(): Could not create!\n");
263		prom_halt();
264	}
265
266	for (i = 0; i < 8; i++) {
267		unsigned long size = 8192 << i;
268		const char *name = tsb_cache_names[i];
269
270		tsb_caches[i] = kmem_cache_create(name,
271						  size, size,
272						  0, NULL);
273		if (!tsb_caches[i]) {
274			prom_printf("Could not create %s cache\n", name);
275			prom_halt();
276		}
277	}
278}
279
280int sysctl_tsb_ratio = -2;
281
282static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
283{
284	unsigned long num_ents = (new_size / sizeof(struct tsb));
285
286	if (sysctl_tsb_ratio < 0)
287		return num_ents - (num_ents >> -sysctl_tsb_ratio);
288	else
289		return num_ents + (num_ents >> sysctl_tsb_ratio);
290}
291
292/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
293 * do_sparc64_fault() invokes this routine to try and grow it.
294 *
295 * When we reach the maximum TSB size supported, we stick ~0UL into
296 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
297 * will not trigger any longer.
298 *
299 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
300 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
301 * must be 512K aligned.  It also must be physically contiguous, so we
302 * cannot use vmalloc().
303 *
304 * The idea here is to grow the TSB when the RSS of the process approaches
305 * the number of entries that the current TSB can hold at once.  Currently,
306 * we trigger when the RSS hits 3/4 of the TSB capacity.
307 */
308void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
309{
310	unsigned long max_tsb_size = 1 * 1024 * 1024;
311	unsigned long new_size, old_size, flags;
312	struct tsb *old_tsb, *new_tsb;
313	unsigned long new_cache_index, old_cache_index;
314	unsigned long new_rss_limit;
315	gfp_t gfp_flags;
316
317	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
318		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
319
320	new_cache_index = 0;
321	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
322		new_rss_limit = tsb_size_to_rss_limit(new_size);
323		if (new_rss_limit > rss)
324			break;
325		new_cache_index++;
326	}
327
328	if (new_size == max_tsb_size)
329		new_rss_limit = ~0UL;
330
331retry_tsb_alloc:
332	gfp_flags = GFP_KERNEL;
333	if (new_size > (PAGE_SIZE * 2))
334		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
335
336	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
337					gfp_flags, numa_node_id());
338	if (unlikely(!new_tsb)) {
339		/* Not being able to fork due to a high-order TSB
340		 * allocation failure is very bad behavior.  Just back
341		 * down to a 0-order allocation and force no TSB
342		 * growing for this address space.
343		 */
344		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
345		    new_cache_index > 0) {
346			new_cache_index = 0;
347			new_size = 8192;
348			new_rss_limit = ~0UL;
349			goto retry_tsb_alloc;
350		}
351
352		/* If we failed on a TSB grow, we are under serious
353		 * memory pressure so don't try to grow any more.
354		 */
355		if (mm->context.tsb_block[tsb_index].tsb != NULL)
356			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
357		return;
358	}
359
360	/* Mark all tags as invalid.  */
361	tsb_init(new_tsb, new_size);
362
363	/* Ok, we are about to commit the changes.  If we are
364	 * growing an existing TSB the locking is very tricky,
365	 * so WATCH OUT!
366	 *
367	 * We have to hold mm->context.lock while committing to the
368	 * new TSB, this synchronizes us with processors in
369	 * flush_tsb_user() and switch_mm() for this address space.
370	 *
371	 * But even with that lock held, processors run asynchronously
372	 * accessing the old TSB via TLB miss handling.  This is OK
373	 * because those actions are just propagating state from the
374	 * Linux page tables into the TSB, page table mappings are not
375	 * being changed.  If a real fault occurs, the processor will
376	 * synchronize with us when it hits flush_tsb_user(), this is
377	 * also true for the case where vmscan is modifying the page
378	 * tables.  The only thing we need to be careful with is to
379	 * skip any locked TSB entries during copy_tsb().
380	 *
381	 * When we finish committing to the new TSB, we have to drop
382	 * the lock and ask all other cpus running this address space
383	 * to run tsb_context_switch() to see the new TSB table.
384	 */
385	spin_lock_irqsave(&mm->context.lock, flags);
386
387	old_tsb = mm->context.tsb_block[tsb_index].tsb;
388	old_cache_index =
389		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
390	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
391		    sizeof(struct tsb));
392
393
394	/* Handle multiple threads trying to grow the TSB at the same time.
395	 * One will get in here first, and bump the size and the RSS limit.
396	 * The others will get in here next and hit this check.
397	 */
398	if (unlikely(old_tsb &&
399		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
400		spin_unlock_irqrestore(&mm->context.lock, flags);
401
402		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
403		return;
404	}
405
406	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
407
408	if (old_tsb) {
409		extern void copy_tsb(unsigned long old_tsb_base,
410				     unsigned long old_tsb_size,
411				     unsigned long new_tsb_base,
412				     unsigned long new_tsb_size);
413		unsigned long old_tsb_base = (unsigned long) old_tsb;
414		unsigned long new_tsb_base = (unsigned long) new_tsb;
415
416		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
417			old_tsb_base = __pa(old_tsb_base);
418			new_tsb_base = __pa(new_tsb_base);
419		}
420		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
421	}
422
423	mm->context.tsb_block[tsb_index].tsb = new_tsb;
424	setup_tsb_params(mm, tsb_index, new_size);
425
426	spin_unlock_irqrestore(&mm->context.lock, flags);
427
428	/* If old_tsb is NULL, we're being invoked for the first time
429	 * from init_new_context().
430	 */
431	if (old_tsb) {
432		/* Reload it on the local cpu.  */
433		tsb_context_switch(mm);
434
435		/* Now force other processors to do the same.  */
436		preempt_disable();
437		smp_tsb_sync(mm);
438		preempt_enable();
439
440		/* Now it is safe to free the old tsb.  */
441		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
442	}
443}
444
445int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
446{
447#ifdef CONFIG_HUGETLB_PAGE
448	unsigned long huge_pte_count;
449#endif
450	unsigned int i;
451
452	spin_lock_init(&mm->context.lock);
453
454	mm->context.sparc64_ctx_val = 0UL;
455
456#ifdef CONFIG_HUGETLB_PAGE
457	/* We reset it to zero because the fork() page copying
458	 * will re-increment the counters as the parent PTEs are
459	 * copied into the child address space.
460	 */
461	huge_pte_count = mm->context.huge_pte_count;
462	mm->context.huge_pte_count = 0;
463#endif
464
465	/* copy_mm() copies over the parent's mm_struct before calling
466	 * us, so we need to zero out the TSB pointer or else tsb_grow()
467	 * will be confused and think there is an older TSB to free up.
468	 */
469	for (i = 0; i < MM_NUM_TSBS; i++)
470		mm->context.tsb_block[i].tsb = NULL;
471
472	/* If this is fork, inherit the parent's TSB size.  We would
473	 * grow it to that size on the first page fault anyways.
474	 */
475	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
476
477#ifdef CONFIG_HUGETLB_PAGE
478	if (unlikely(huge_pte_count))
479		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
480#endif
481
482	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
483		return -ENOMEM;
484
485	return 0;
486}
487
488static void tsb_destroy_one(struct tsb_config *tp)
489{
490	unsigned long cache_index;
491
492	if (!tp->tsb)
493		return;
494	cache_index = tp->tsb_reg_val & 0x7UL;
495	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
496	tp->tsb = NULL;
497	tp->tsb_reg_val = 0UL;
498}
499
500void destroy_context(struct mm_struct *mm)
501{
502	unsigned long flags, i;
503
504	for (i = 0; i < MM_NUM_TSBS; i++)
505		tsb_destroy_one(&mm->context.tsb_block[i]);
506
507	spin_lock_irqsave(&ctx_alloc_lock, flags);
508
509	if (CTX_VALID(mm->context)) {
510		unsigned long nr = CTX_NRBITS(mm->context);
511		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
512	}
513
514	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
515}