Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/ioport.h>
  23#include <linux/errno.h>
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/spi/pxa2xx_spi.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/spi/spi.h>
  29#include <linux/workqueue.h>
  30#include <linux/delay.h>
  31#include <linux/gpio.h>
  32#include <linux/slab.h>
  33
  34#include <asm/io.h>
  35#include <asm/irq.h>
  36#include <asm/delay.h>
  37
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define MAX_BUSES 3
  45
  46#define TIMOUT_DFLT		1000
  47
  48#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  49#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
  50#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
  51#define MAX_DMA_LEN		8191
  52#define DMA_ALIGNMENT		8
  53
  54/*
  55 * for testing SSCR1 changes that require SSP restart, basically
  56 * everything except the service and interrupt enables, the pxa270 developer
  57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  58 * list, but the PXA255 dev man says all bits without really meaning the
  59 * service and interrupt enables
  60 */
  61#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  62				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  63				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  64				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  65				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  66				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  67
  68#define DEFINE_SSP_REG(reg, off) \
  69static inline u32 read_##reg(void const __iomem *p) \
  70{ return __raw_readl(p + (off)); } \
  71\
  72static inline void write_##reg(u32 v, void __iomem *p) \
  73{ __raw_writel(v, p + (off)); }
  74
  75DEFINE_SSP_REG(SSCR0, 0x00)
  76DEFINE_SSP_REG(SSCR1, 0x04)
  77DEFINE_SSP_REG(SSSR, 0x08)
  78DEFINE_SSP_REG(SSITR, 0x0c)
  79DEFINE_SSP_REG(SSDR, 0x10)
  80DEFINE_SSP_REG(SSTO, 0x28)
  81DEFINE_SSP_REG(SSPSP, 0x2c)
  82
  83#define START_STATE ((void*)0)
  84#define RUNNING_STATE ((void*)1)
  85#define DONE_STATE ((void*)2)
  86#define ERROR_STATE ((void*)-1)
  87
  88#define QUEUE_RUNNING 0
  89#define QUEUE_STOPPED 1
  90
  91struct driver_data {
  92	/* Driver model hookup */
  93	struct platform_device *pdev;
  94
  95	/* SSP Info */
  96	struct ssp_device *ssp;
  97
  98	/* SPI framework hookup */
  99	enum pxa_ssp_type ssp_type;
 100	struct spi_master *master;
 101
 102	/* PXA hookup */
 103	struct pxa2xx_spi_master *master_info;
 104
 105	/* DMA setup stuff */
 106	int rx_channel;
 107	int tx_channel;
 108	u32 *null_dma_buf;
 109
 110	/* SSP register addresses */
 111	void __iomem *ioaddr;
 112	u32 ssdr_physical;
 113
 114	/* SSP masks*/
 115	u32 dma_cr1;
 116	u32 int_cr1;
 117	u32 clear_sr;
 118	u32 mask_sr;
 119
 120	/* Driver message queue */
 121	struct workqueue_struct	*workqueue;
 122	struct work_struct pump_messages;
 123	spinlock_t lock;
 124	struct list_head queue;
 125	int busy;
 126	int run;
 127
 128	/* Message Transfer pump */
 129	struct tasklet_struct pump_transfers;
 130
 131	/* Current message transfer state info */
 132	struct spi_message* cur_msg;
 133	struct spi_transfer* cur_transfer;
 134	struct chip_data *cur_chip;
 135	size_t len;
 136	void *tx;
 137	void *tx_end;
 138	void *rx;
 139	void *rx_end;
 140	int dma_mapped;
 141	dma_addr_t rx_dma;
 142	dma_addr_t tx_dma;
 143	size_t rx_map_len;
 144	size_t tx_map_len;
 145	u8 n_bytes;
 146	u32 dma_width;
 147	int (*write)(struct driver_data *drv_data);
 148	int (*read)(struct driver_data *drv_data);
 149	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 150	void (*cs_control)(u32 command);
 151};
 152
 153struct chip_data {
 154	u32 cr0;
 155	u32 cr1;
 156	u32 psp;
 157	u32 timeout;
 158	u8 n_bytes;
 159	u32 dma_width;
 160	u32 dma_burst_size;
 161	u32 threshold;
 162	u32 dma_threshold;
 163	u8 enable_dma;
 164	u8 bits_per_word;
 165	u32 speed_hz;
 166	union {
 167		int gpio_cs;
 168		unsigned int frm;
 169	};
 170	int gpio_cs_inverted;
 171	int (*write)(struct driver_data *drv_data);
 172	int (*read)(struct driver_data *drv_data);
 173	void (*cs_control)(u32 command);
 174};
 175
 176static void pump_messages(struct work_struct *work);
 177
 178static void cs_assert(struct driver_data *drv_data)
 179{
 180	struct chip_data *chip = drv_data->cur_chip;
 181
 182	if (drv_data->ssp_type == CE4100_SSP) {
 183		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
 184		return;
 185	}
 186
 187	if (chip->cs_control) {
 188		chip->cs_control(PXA2XX_CS_ASSERT);
 189		return;
 190	}
 191
 192	if (gpio_is_valid(chip->gpio_cs))
 193		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 194}
 195
 196static void cs_deassert(struct driver_data *drv_data)
 197{
 198	struct chip_data *chip = drv_data->cur_chip;
 199
 200	if (drv_data->ssp_type == CE4100_SSP)
 201		return;
 202
 203	if (chip->cs_control) {
 204		chip->cs_control(PXA2XX_CS_DEASSERT);
 205		return;
 206	}
 207
 208	if (gpio_is_valid(chip->gpio_cs))
 209		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 210}
 211
 212static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
 213{
 214	void __iomem *reg = drv_data->ioaddr;
 215
 216	if (drv_data->ssp_type == CE4100_SSP)
 217		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
 218
 219	write_SSSR(val, reg);
 220}
 221
 222static int pxa25x_ssp_comp(struct driver_data *drv_data)
 223{
 224	if (drv_data->ssp_type == PXA25x_SSP)
 225		return 1;
 226	if (drv_data->ssp_type == CE4100_SSP)
 227		return 1;
 228	return 0;
 229}
 230
 231static int flush(struct driver_data *drv_data)
 232{
 233	unsigned long limit = loops_per_jiffy << 1;
 234
 235	void __iomem *reg = drv_data->ioaddr;
 236
 237	do {
 238		while (read_SSSR(reg) & SSSR_RNE) {
 239			read_SSDR(reg);
 240		}
 241	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
 242	write_SSSR_CS(drv_data, SSSR_ROR);
 243
 244	return limit;
 245}
 246
 247static int null_writer(struct driver_data *drv_data)
 248{
 249	void __iomem *reg = drv_data->ioaddr;
 250	u8 n_bytes = drv_data->n_bytes;
 251
 252	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 253		|| (drv_data->tx == drv_data->tx_end))
 254		return 0;
 255
 256	write_SSDR(0, reg);
 257	drv_data->tx += n_bytes;
 258
 259	return 1;
 260}
 261
 262static int null_reader(struct driver_data *drv_data)
 263{
 264	void __iomem *reg = drv_data->ioaddr;
 265	u8 n_bytes = drv_data->n_bytes;
 266
 267	while ((read_SSSR(reg) & SSSR_RNE)
 268		&& (drv_data->rx < drv_data->rx_end)) {
 269		read_SSDR(reg);
 270		drv_data->rx += n_bytes;
 271	}
 272
 273	return drv_data->rx == drv_data->rx_end;
 274}
 275
 276static int u8_writer(struct driver_data *drv_data)
 277{
 278	void __iomem *reg = drv_data->ioaddr;
 279
 280	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 281		|| (drv_data->tx == drv_data->tx_end))
 282		return 0;
 283
 284	write_SSDR(*(u8 *)(drv_data->tx), reg);
 285	++drv_data->tx;
 286
 287	return 1;
 288}
 289
 290static int u8_reader(struct driver_data *drv_data)
 291{
 292	void __iomem *reg = drv_data->ioaddr;
 293
 294	while ((read_SSSR(reg) & SSSR_RNE)
 295		&& (drv_data->rx < drv_data->rx_end)) {
 296		*(u8 *)(drv_data->rx) = read_SSDR(reg);
 297		++drv_data->rx;
 298	}
 299
 300	return drv_data->rx == drv_data->rx_end;
 301}
 302
 303static int u16_writer(struct driver_data *drv_data)
 304{
 305	void __iomem *reg = drv_data->ioaddr;
 306
 307	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 308		|| (drv_data->tx == drv_data->tx_end))
 309		return 0;
 310
 311	write_SSDR(*(u16 *)(drv_data->tx), reg);
 312	drv_data->tx += 2;
 313
 314	return 1;
 315}
 316
 317static int u16_reader(struct driver_data *drv_data)
 318{
 319	void __iomem *reg = drv_data->ioaddr;
 320
 321	while ((read_SSSR(reg) & SSSR_RNE)
 322		&& (drv_data->rx < drv_data->rx_end)) {
 323		*(u16 *)(drv_data->rx) = read_SSDR(reg);
 324		drv_data->rx += 2;
 325	}
 326
 327	return drv_data->rx == drv_data->rx_end;
 328}
 329
 330static int u32_writer(struct driver_data *drv_data)
 331{
 332	void __iomem *reg = drv_data->ioaddr;
 333
 334	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 335		|| (drv_data->tx == drv_data->tx_end))
 336		return 0;
 337
 338	write_SSDR(*(u32 *)(drv_data->tx), reg);
 339	drv_data->tx += 4;
 340
 341	return 1;
 342}
 343
 344static int u32_reader(struct driver_data *drv_data)
 345{
 346	void __iomem *reg = drv_data->ioaddr;
 347
 348	while ((read_SSSR(reg) & SSSR_RNE)
 349		&& (drv_data->rx < drv_data->rx_end)) {
 350		*(u32 *)(drv_data->rx) = read_SSDR(reg);
 351		drv_data->rx += 4;
 352	}
 353
 354	return drv_data->rx == drv_data->rx_end;
 355}
 356
 357static void *next_transfer(struct driver_data *drv_data)
 358{
 359	struct spi_message *msg = drv_data->cur_msg;
 360	struct spi_transfer *trans = drv_data->cur_transfer;
 361
 362	/* Move to next transfer */
 363	if (trans->transfer_list.next != &msg->transfers) {
 364		drv_data->cur_transfer =
 365			list_entry(trans->transfer_list.next,
 366					struct spi_transfer,
 367					transfer_list);
 368		return RUNNING_STATE;
 369	} else
 370		return DONE_STATE;
 371}
 372
 373static int map_dma_buffers(struct driver_data *drv_data)
 374{
 375	struct spi_message *msg = drv_data->cur_msg;
 376	struct device *dev = &msg->spi->dev;
 377
 378	if (!drv_data->cur_chip->enable_dma)
 379		return 0;
 380
 381	if (msg->is_dma_mapped)
 382		return  drv_data->rx_dma && drv_data->tx_dma;
 383
 384	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 385		return 0;
 386
 387	/* Modify setup if rx buffer is null */
 388	if (drv_data->rx == NULL) {
 389		*drv_data->null_dma_buf = 0;
 390		drv_data->rx = drv_data->null_dma_buf;
 391		drv_data->rx_map_len = 4;
 392	} else
 393		drv_data->rx_map_len = drv_data->len;
 394
 395
 396	/* Modify setup if tx buffer is null */
 397	if (drv_data->tx == NULL) {
 398		*drv_data->null_dma_buf = 0;
 399		drv_data->tx = drv_data->null_dma_buf;
 400		drv_data->tx_map_len = 4;
 401	} else
 402		drv_data->tx_map_len = drv_data->len;
 403
 404	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 405	 * so we flush the cache *before* invalidating it, in case
 406	 * the tx and rx buffers overlap.
 407	 */
 408	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 409					drv_data->tx_map_len, DMA_TO_DEVICE);
 410	if (dma_mapping_error(dev, drv_data->tx_dma))
 411		return 0;
 412
 413	/* Stream map the rx buffer */
 414	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 415					drv_data->rx_map_len, DMA_FROM_DEVICE);
 416	if (dma_mapping_error(dev, drv_data->rx_dma)) {
 417		dma_unmap_single(dev, drv_data->tx_dma,
 418					drv_data->tx_map_len, DMA_TO_DEVICE);
 419		return 0;
 420	}
 421
 422	return 1;
 423}
 424
 425static void unmap_dma_buffers(struct driver_data *drv_data)
 426{
 427	struct device *dev;
 428
 429	if (!drv_data->dma_mapped)
 430		return;
 431
 432	if (!drv_data->cur_msg->is_dma_mapped) {
 433		dev = &drv_data->cur_msg->spi->dev;
 434		dma_unmap_single(dev, drv_data->rx_dma,
 435					drv_data->rx_map_len, DMA_FROM_DEVICE);
 436		dma_unmap_single(dev, drv_data->tx_dma,
 437					drv_data->tx_map_len, DMA_TO_DEVICE);
 438	}
 439
 440	drv_data->dma_mapped = 0;
 441}
 442
 443/* caller already set message->status; dma and pio irqs are blocked */
 444static void giveback(struct driver_data *drv_data)
 445{
 446	struct spi_transfer* last_transfer;
 447	unsigned long flags;
 448	struct spi_message *msg;
 449
 450	spin_lock_irqsave(&drv_data->lock, flags);
 451	msg = drv_data->cur_msg;
 452	drv_data->cur_msg = NULL;
 453	drv_data->cur_transfer = NULL;
 454	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 455	spin_unlock_irqrestore(&drv_data->lock, flags);
 456
 457	last_transfer = list_entry(msg->transfers.prev,
 458					struct spi_transfer,
 459					transfer_list);
 460
 461	/* Delay if requested before any change in chip select */
 462	if (last_transfer->delay_usecs)
 463		udelay(last_transfer->delay_usecs);
 464
 465	/* Drop chip select UNLESS cs_change is true or we are returning
 466	 * a message with an error, or next message is for another chip
 467	 */
 468	if (!last_transfer->cs_change)
 469		cs_deassert(drv_data);
 470	else {
 471		struct spi_message *next_msg;
 472
 473		/* Holding of cs was hinted, but we need to make sure
 474		 * the next message is for the same chip.  Don't waste
 475		 * time with the following tests unless this was hinted.
 476		 *
 477		 * We cannot postpone this until pump_messages, because
 478		 * after calling msg->complete (below) the driver that
 479		 * sent the current message could be unloaded, which
 480		 * could invalidate the cs_control() callback...
 481		 */
 482
 483		/* get a pointer to the next message, if any */
 484		spin_lock_irqsave(&drv_data->lock, flags);
 485		if (list_empty(&drv_data->queue))
 486			next_msg = NULL;
 487		else
 488			next_msg = list_entry(drv_data->queue.next,
 489					struct spi_message, queue);
 490		spin_unlock_irqrestore(&drv_data->lock, flags);
 491
 492		/* see if the next and current messages point
 493		 * to the same chip
 494		 */
 495		if (next_msg && next_msg->spi != msg->spi)
 496			next_msg = NULL;
 497		if (!next_msg || msg->state == ERROR_STATE)
 498			cs_deassert(drv_data);
 499	}
 500
 501	msg->state = NULL;
 502	if (msg->complete)
 503		msg->complete(msg->context);
 504
 505	drv_data->cur_chip = NULL;
 506}
 507
 508static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 509{
 510	unsigned long limit = loops_per_jiffy << 1;
 511
 512	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
 513		cpu_relax();
 514
 515	return limit;
 516}
 517
 518static int wait_dma_channel_stop(int channel)
 519{
 520	unsigned long limit = loops_per_jiffy << 1;
 521
 522	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
 523		cpu_relax();
 524
 525	return limit;
 526}
 527
 528static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 529{
 530	void __iomem *reg = drv_data->ioaddr;
 531
 532	/* Stop and reset */
 533	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 534	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 535	write_SSSR_CS(drv_data, drv_data->clear_sr);
 536	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 537	if (!pxa25x_ssp_comp(drv_data))
 538		write_SSTO(0, reg);
 539	flush(drv_data);
 540	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 541
 542	unmap_dma_buffers(drv_data);
 543
 544	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 545
 546	drv_data->cur_msg->state = ERROR_STATE;
 547	tasklet_schedule(&drv_data->pump_transfers);
 548}
 549
 550static void dma_transfer_complete(struct driver_data *drv_data)
 551{
 552	void __iomem *reg = drv_data->ioaddr;
 553	struct spi_message *msg = drv_data->cur_msg;
 554
 555	/* Clear and disable interrupts on SSP and DMA channels*/
 556	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 557	write_SSSR_CS(drv_data, drv_data->clear_sr);
 558	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 559	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 560
 561	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 562		dev_err(&drv_data->pdev->dev,
 563			"dma_handler: dma rx channel stop failed\n");
 564
 565	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 566		dev_err(&drv_data->pdev->dev,
 567			"dma_transfer: ssp rx stall failed\n");
 568
 569	unmap_dma_buffers(drv_data);
 570
 571	/* update the buffer pointer for the amount completed in dma */
 572	drv_data->rx += drv_data->len -
 573			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 574
 575	/* read trailing data from fifo, it does not matter how many
 576	 * bytes are in the fifo just read until buffer is full
 577	 * or fifo is empty, which ever occurs first */
 578	drv_data->read(drv_data);
 579
 580	/* return count of what was actually read */
 581	msg->actual_length += drv_data->len -
 582				(drv_data->rx_end - drv_data->rx);
 583
 584	/* Transfer delays and chip select release are
 585	 * handled in pump_transfers or giveback
 586	 */
 587
 588	/* Move to next transfer */
 589	msg->state = next_transfer(drv_data);
 590
 591	/* Schedule transfer tasklet */
 592	tasklet_schedule(&drv_data->pump_transfers);
 593}
 594
 595static void dma_handler(int channel, void *data)
 596{
 597	struct driver_data *drv_data = data;
 598	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 599
 600	if (irq_status & DCSR_BUSERR) {
 601
 602		if (channel == drv_data->tx_channel)
 603			dma_error_stop(drv_data,
 604					"dma_handler: "
 605					"bad bus address on tx channel");
 606		else
 607			dma_error_stop(drv_data,
 608					"dma_handler: "
 609					"bad bus address on rx channel");
 610		return;
 611	}
 612
 613	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 614	if ((channel == drv_data->tx_channel)
 615		&& (irq_status & DCSR_ENDINTR)
 616		&& (drv_data->ssp_type == PXA25x_SSP)) {
 617
 618		/* Wait for rx to stall */
 619		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 620			dev_err(&drv_data->pdev->dev,
 621				"dma_handler: ssp rx stall failed\n");
 622
 623		/* finish this transfer, start the next */
 624		dma_transfer_complete(drv_data);
 625	}
 626}
 627
 628static irqreturn_t dma_transfer(struct driver_data *drv_data)
 629{
 630	u32 irq_status;
 631	void __iomem *reg = drv_data->ioaddr;
 632
 633	irq_status = read_SSSR(reg) & drv_data->mask_sr;
 634	if (irq_status & SSSR_ROR) {
 635		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 636		return IRQ_HANDLED;
 637	}
 638
 639	/* Check for false positive timeout */
 640	if ((irq_status & SSSR_TINT)
 641		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 642		write_SSSR(SSSR_TINT, reg);
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 647
 648		/* Clear and disable timeout interrupt, do the rest in
 649		 * dma_transfer_complete */
 650		if (!pxa25x_ssp_comp(drv_data))
 651			write_SSTO(0, reg);
 652
 653		/* finish this transfer, start the next */
 654		dma_transfer_complete(drv_data);
 655
 656		return IRQ_HANDLED;
 657	}
 658
 659	/* Opps problem detected */
 660	return IRQ_NONE;
 661}
 662
 663static void reset_sccr1(struct driver_data *drv_data)
 664{
 665	void __iomem *reg = drv_data->ioaddr;
 666	struct chip_data *chip = drv_data->cur_chip;
 667	u32 sccr1_reg;
 668
 669	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
 670	sccr1_reg &= ~SSCR1_RFT;
 671	sccr1_reg |= chip->threshold;
 672	write_SSCR1(sccr1_reg, reg);
 673}
 674
 675static void int_error_stop(struct driver_data *drv_data, const char* msg)
 676{
 677	void __iomem *reg = drv_data->ioaddr;
 678
 679	/* Stop and reset SSP */
 680	write_SSSR_CS(drv_data, drv_data->clear_sr);
 681	reset_sccr1(drv_data);
 682	if (!pxa25x_ssp_comp(drv_data))
 683		write_SSTO(0, reg);
 684	flush(drv_data);
 685	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 686
 687	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 688
 689	drv_data->cur_msg->state = ERROR_STATE;
 690	tasklet_schedule(&drv_data->pump_transfers);
 691}
 692
 693static void int_transfer_complete(struct driver_data *drv_data)
 694{
 695	void __iomem *reg = drv_data->ioaddr;
 696
 697	/* Stop SSP */
 698	write_SSSR_CS(drv_data, drv_data->clear_sr);
 699	reset_sccr1(drv_data);
 700	if (!pxa25x_ssp_comp(drv_data))
 701		write_SSTO(0, reg);
 702
 703	/* Update total byte transferred return count actual bytes read */
 704	drv_data->cur_msg->actual_length += drv_data->len -
 705				(drv_data->rx_end - drv_data->rx);
 706
 707	/* Transfer delays and chip select release are
 708	 * handled in pump_transfers or giveback
 709	 */
 710
 711	/* Move to next transfer */
 712	drv_data->cur_msg->state = next_transfer(drv_data);
 713
 714	/* Schedule transfer tasklet */
 715	tasklet_schedule(&drv_data->pump_transfers);
 716}
 717
 718static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 719{
 720	void __iomem *reg = drv_data->ioaddr;
 721
 722	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 723			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 724
 725	u32 irq_status = read_SSSR(reg) & irq_mask;
 726
 727	if (irq_status & SSSR_ROR) {
 728		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 729		return IRQ_HANDLED;
 730	}
 731
 732	if (irq_status & SSSR_TINT) {
 733		write_SSSR(SSSR_TINT, reg);
 734		if (drv_data->read(drv_data)) {
 735			int_transfer_complete(drv_data);
 736			return IRQ_HANDLED;
 737		}
 738	}
 739
 740	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 741	do {
 742		if (drv_data->read(drv_data)) {
 743			int_transfer_complete(drv_data);
 744			return IRQ_HANDLED;
 745		}
 746	} while (drv_data->write(drv_data));
 747
 748	if (drv_data->read(drv_data)) {
 749		int_transfer_complete(drv_data);
 750		return IRQ_HANDLED;
 751	}
 752
 753	if (drv_data->tx == drv_data->tx_end) {
 754		u32 bytes_left;
 755		u32 sccr1_reg;
 756
 757		sccr1_reg = read_SSCR1(reg);
 758		sccr1_reg &= ~SSCR1_TIE;
 759
 760		/*
 761		 * PXA25x_SSP has no timeout, set up rx threshould for the
 762		 * remaining RX bytes.
 763		 */
 764		if (pxa25x_ssp_comp(drv_data)) {
 765
 766			sccr1_reg &= ~SSCR1_RFT;
 767
 768			bytes_left = drv_data->rx_end - drv_data->rx;
 769			switch (drv_data->n_bytes) {
 770			case 4:
 771				bytes_left >>= 1;
 772			case 2:
 773				bytes_left >>= 1;
 774			}
 775
 776			if (bytes_left > RX_THRESH_DFLT)
 777				bytes_left = RX_THRESH_DFLT;
 778
 779			sccr1_reg |= SSCR1_RxTresh(bytes_left);
 780		}
 781		write_SSCR1(sccr1_reg, reg);
 782	}
 783
 784	/* We did something */
 785	return IRQ_HANDLED;
 786}
 787
 788static irqreturn_t ssp_int(int irq, void *dev_id)
 789{
 790	struct driver_data *drv_data = dev_id;
 791	void __iomem *reg = drv_data->ioaddr;
 792	u32 sccr1_reg = read_SSCR1(reg);
 793	u32 mask = drv_data->mask_sr;
 794	u32 status;
 795
 796	status = read_SSSR(reg);
 797
 798	/* Ignore possible writes if we don't need to write */
 799	if (!(sccr1_reg & SSCR1_TIE))
 800		mask &= ~SSSR_TFS;
 801
 802	if (!(status & mask))
 803		return IRQ_NONE;
 804
 805	if (!drv_data->cur_msg) {
 806
 807		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 808		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 809		if (!pxa25x_ssp_comp(drv_data))
 810			write_SSTO(0, reg);
 811		write_SSSR_CS(drv_data, drv_data->clear_sr);
 812
 813		dev_err(&drv_data->pdev->dev, "bad message state "
 814			"in interrupt handler\n");
 815
 816		/* Never fail */
 817		return IRQ_HANDLED;
 818	}
 819
 820	return drv_data->transfer_handler(drv_data);
 821}
 822
 823static int set_dma_burst_and_threshold(struct chip_data *chip,
 824				struct spi_device *spi,
 825				u8 bits_per_word, u32 *burst_code,
 826				u32 *threshold)
 827{
 828	struct pxa2xx_spi_chip *chip_info =
 829			(struct pxa2xx_spi_chip *)spi->controller_data;
 830	int bytes_per_word;
 831	int burst_bytes;
 832	int thresh_words;
 833	int req_burst_size;
 834	int retval = 0;
 835
 836	/* Set the threshold (in registers) to equal the same amount of data
 837	 * as represented by burst size (in bytes).  The computation below
 838	 * is (burst_size rounded up to nearest 8 byte, word or long word)
 839	 * divided by (bytes/register); the tx threshold is the inverse of
 840	 * the rx, so that there will always be enough data in the rx fifo
 841	 * to satisfy a burst, and there will always be enough space in the
 842	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 843	 * there is not enough space), there must always remain enough empty
 844	 * space in the rx fifo for any data loaded to the tx fifo.
 845	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 846	 * will be 8, or half the fifo;
 847	 * The threshold can only be set to 2, 4 or 8, but not 16, because
 848	 * to burst 16 to the tx fifo, the fifo would have to be empty;
 849	 * however, the minimum fifo trigger level is 1, and the tx will
 850	 * request service when the fifo is at this level, with only 15 spaces.
 851	 */
 852
 853	/* find bytes/word */
 854	if (bits_per_word <= 8)
 855		bytes_per_word = 1;
 856	else if (bits_per_word <= 16)
 857		bytes_per_word = 2;
 858	else
 859		bytes_per_word = 4;
 860
 861	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
 862	if (chip_info)
 863		req_burst_size = chip_info->dma_burst_size;
 864	else {
 865		switch (chip->dma_burst_size) {
 866		default:
 867			/* if the default burst size is not set,
 868			 * do it now */
 869			chip->dma_burst_size = DCMD_BURST8;
 870		case DCMD_BURST8:
 871			req_burst_size = 8;
 872			break;
 873		case DCMD_BURST16:
 874			req_burst_size = 16;
 875			break;
 876		case DCMD_BURST32:
 877			req_burst_size = 32;
 878			break;
 879		}
 880	}
 881	if (req_burst_size <= 8) {
 882		*burst_code = DCMD_BURST8;
 883		burst_bytes = 8;
 884	} else if (req_burst_size <= 16) {
 885		if (bytes_per_word == 1) {
 886			/* don't burst more than 1/2 the fifo */
 887			*burst_code = DCMD_BURST8;
 888			burst_bytes = 8;
 889			retval = 1;
 890		} else {
 891			*burst_code = DCMD_BURST16;
 892			burst_bytes = 16;
 893		}
 894	} else {
 895		if (bytes_per_word == 1) {
 896			/* don't burst more than 1/2 the fifo */
 897			*burst_code = DCMD_BURST8;
 898			burst_bytes = 8;
 899			retval = 1;
 900		} else if (bytes_per_word == 2) {
 901			/* don't burst more than 1/2 the fifo */
 902			*burst_code = DCMD_BURST16;
 903			burst_bytes = 16;
 904			retval = 1;
 905		} else {
 906			*burst_code = DCMD_BURST32;
 907			burst_bytes = 32;
 908		}
 909	}
 910
 911	thresh_words = burst_bytes / bytes_per_word;
 912
 913	/* thresh_words will be between 2 and 8 */
 914	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 915			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 916
 917	return retval;
 918}
 919
 920static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 921{
 922	unsigned long ssp_clk = clk_get_rate(ssp->clk);
 923
 924	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 926	else
 927		return ((ssp_clk / rate - 1) & 0xfff) << 8;
 928}
 929
 930static void pump_transfers(unsigned long data)
 931{
 932	struct driver_data *drv_data = (struct driver_data *)data;
 933	struct spi_message *message = NULL;
 934	struct spi_transfer *transfer = NULL;
 935	struct spi_transfer *previous = NULL;
 936	struct chip_data *chip = NULL;
 937	struct ssp_device *ssp = drv_data->ssp;
 938	void __iomem *reg = drv_data->ioaddr;
 939	u32 clk_div = 0;
 940	u8 bits = 0;
 941	u32 speed = 0;
 942	u32 cr0;
 943	u32 cr1;
 944	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 945	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 946
 947	/* Get current state information */
 948	message = drv_data->cur_msg;
 949	transfer = drv_data->cur_transfer;
 950	chip = drv_data->cur_chip;
 951
 952	/* Handle for abort */
 953	if (message->state == ERROR_STATE) {
 954		message->status = -EIO;
 955		giveback(drv_data);
 956		return;
 957	}
 958
 959	/* Handle end of message */
 960	if (message->state == DONE_STATE) {
 961		message->status = 0;
 962		giveback(drv_data);
 963		return;
 964	}
 965
 966	/* Delay if requested at end of transfer before CS change */
 967	if (message->state == RUNNING_STATE) {
 968		previous = list_entry(transfer->transfer_list.prev,
 969					struct spi_transfer,
 970					transfer_list);
 971		if (previous->delay_usecs)
 972			udelay(previous->delay_usecs);
 973
 974		/* Drop chip select only if cs_change is requested */
 975		if (previous->cs_change)
 976			cs_deassert(drv_data);
 977	}
 978
 979	/* Check for transfers that need multiple DMA segments */
 980	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 981
 982		/* reject already-mapped transfers; PIO won't always work */
 983		if (message->is_dma_mapped
 984				|| transfer->rx_dma || transfer->tx_dma) {
 985			dev_err(&drv_data->pdev->dev,
 986				"pump_transfers: mapped transfer length "
 987				"of %u is greater than %d\n",
 988				transfer->len, MAX_DMA_LEN);
 989			message->status = -EINVAL;
 990			giveback(drv_data);
 991			return;
 992		}
 993
 994		/* warn ... we force this to PIO mode */
 995		if (printk_ratelimit())
 996			dev_warn(&message->spi->dev, "pump_transfers: "
 997				"DMA disabled for transfer length %ld "
 998				"greater than %d\n",
 999				(long)drv_data->len, MAX_DMA_LEN);
1000	}
1001
1002	/* Setup the transfer state based on the type of transfer */
1003	if (flush(drv_data) == 0) {
1004		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005		message->status = -EIO;
1006		giveback(drv_data);
1007		return;
1008	}
1009	drv_data->n_bytes = chip->n_bytes;
1010	drv_data->dma_width = chip->dma_width;
1011	drv_data->tx = (void *)transfer->tx_buf;
1012	drv_data->tx_end = drv_data->tx + transfer->len;
1013	drv_data->rx = transfer->rx_buf;
1014	drv_data->rx_end = drv_data->rx + transfer->len;
1015	drv_data->rx_dma = transfer->rx_dma;
1016	drv_data->tx_dma = transfer->tx_dma;
1017	drv_data->len = transfer->len & DCMD_LENGTH;
1018	drv_data->write = drv_data->tx ? chip->write : null_writer;
1019	drv_data->read = drv_data->rx ? chip->read : null_reader;
1020
1021	/* Change speed and bit per word on a per transfer */
1022	cr0 = chip->cr0;
1023	if (transfer->speed_hz || transfer->bits_per_word) {
1024
1025		bits = chip->bits_per_word;
1026		speed = chip->speed_hz;
1027
1028		if (transfer->speed_hz)
1029			speed = transfer->speed_hz;
1030
1031		if (transfer->bits_per_word)
1032			bits = transfer->bits_per_word;
1033
1034		clk_div = ssp_get_clk_div(ssp, speed);
1035
1036		if (bits <= 8) {
1037			drv_data->n_bytes = 1;
1038			drv_data->dma_width = DCMD_WIDTH1;
1039			drv_data->read = drv_data->read != null_reader ?
1040						u8_reader : null_reader;
1041			drv_data->write = drv_data->write != null_writer ?
1042						u8_writer : null_writer;
1043		} else if (bits <= 16) {
1044			drv_data->n_bytes = 2;
1045			drv_data->dma_width = DCMD_WIDTH2;
1046			drv_data->read = drv_data->read != null_reader ?
1047						u16_reader : null_reader;
1048			drv_data->write = drv_data->write != null_writer ?
1049						u16_writer : null_writer;
1050		} else if (bits <= 32) {
1051			drv_data->n_bytes = 4;
1052			drv_data->dma_width = DCMD_WIDTH4;
1053			drv_data->read = drv_data->read != null_reader ?
1054						u32_reader : null_reader;
1055			drv_data->write = drv_data->write != null_writer ?
1056						u32_writer : null_writer;
1057		}
1058		/* if bits/word is changed in dma mode, then must check the
1059		 * thresholds and burst also */
1060		if (chip->enable_dma) {
1061			if (set_dma_burst_and_threshold(chip, message->spi,
1062							bits, &dma_burst,
1063							&dma_thresh))
1064				if (printk_ratelimit())
1065					dev_warn(&message->spi->dev,
1066						"pump_transfers: "
1067						"DMA burst size reduced to "
1068						"match bits_per_word\n");
1069		}
1070
1071		cr0 = clk_div
1072			| SSCR0_Motorola
1073			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074			| SSCR0_SSE
1075			| (bits > 16 ? SSCR0_EDSS : 0);
1076	}
1077
1078	message->state = RUNNING_STATE;
1079
1080	/* Try to map dma buffer and do a dma transfer if successful, but
1081	 * only if the length is non-zero and less than MAX_DMA_LEN.
1082	 *
1083	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084	 * of PIO instead.  Care is needed above because the transfer may
1085	 * have have been passed with buffers that are already dma mapped.
1086	 * A zero-length transfer in PIO mode will not try to write/read
1087	 * to/from the buffers
1088	 *
1089	 * REVISIT large transfers are exactly where we most want to be
1090	 * using DMA.  If this happens much, split those transfers into
1091	 * multiple DMA segments rather than forcing PIO.
1092	 */
1093	drv_data->dma_mapped = 0;
1094	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095		drv_data->dma_mapped = map_dma_buffers(drv_data);
1096	if (drv_data->dma_mapped) {
1097
1098		/* Ensure we have the correct interrupt handler */
1099		drv_data->transfer_handler = dma_transfer;
1100
1101		/* Setup rx DMA Channel */
1102		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105		if (drv_data->rx == drv_data->null_dma_buf)
1106			/* No target address increment */
1107			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108							| drv_data->dma_width
1109							| dma_burst
1110							| drv_data->len;
1111		else
1112			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113							| DCMD_FLOWSRC
1114							| drv_data->dma_width
1115							| dma_burst
1116							| drv_data->len;
1117
1118		/* Setup tx DMA Channel */
1119		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122		if (drv_data->tx == drv_data->null_dma_buf)
1123			/* No source address increment */
1124			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125							| drv_data->dma_width
1126							| dma_burst
1127							| drv_data->len;
1128		else
1129			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130							| DCMD_FLOWTRG
1131							| drv_data->dma_width
1132							| dma_burst
1133							| drv_data->len;
1134
1135		/* Enable dma end irqs on SSP to detect end of transfer */
1136		if (drv_data->ssp_type == PXA25x_SSP)
1137			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138
1139		/* Clear status and start DMA engine */
1140		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141		write_SSSR(drv_data->clear_sr, reg);
1142		DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143		DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144	} else {
1145		/* Ensure we have the correct interrupt handler	*/
1146		drv_data->transfer_handler = interrupt_transfer;
1147
1148		/* Clear status  */
1149		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150		write_SSSR_CS(drv_data, drv_data->clear_sr);
1151	}
1152
1153	/* see if we need to reload the config registers */
1154	if ((read_SSCR0(reg) != cr0)
1155		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156			(cr1 & SSCR1_CHANGE_MASK)) {
1157
1158		/* stop the SSP, and update the other bits */
1159		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160		if (!pxa25x_ssp_comp(drv_data))
1161			write_SSTO(chip->timeout, reg);
1162		/* first set CR1 without interrupt and service enables */
1163		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164		/* restart the SSP */
1165		write_SSCR0(cr0, reg);
1166
1167	} else {
1168		if (!pxa25x_ssp_comp(drv_data))
1169			write_SSTO(chip->timeout, reg);
1170	}
1171
1172	cs_assert(drv_data);
1173
1174	/* after chip select, release the data by enabling service
1175	 * requests and interrupts, without changing any mode bits */
1176	write_SSCR1(cr1, reg);
1177}
1178
1179static void pump_messages(struct work_struct *work)
1180{
1181	struct driver_data *drv_data =
1182		container_of(work, struct driver_data, pump_messages);
1183	unsigned long flags;
1184
1185	/* Lock queue and check for queue work */
1186	spin_lock_irqsave(&drv_data->lock, flags);
1187	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188		drv_data->busy = 0;
1189		spin_unlock_irqrestore(&drv_data->lock, flags);
1190		return;
1191	}
1192
1193	/* Make sure we are not already running a message */
1194	if (drv_data->cur_msg) {
1195		spin_unlock_irqrestore(&drv_data->lock, flags);
1196		return;
1197	}
1198
1199	/* Extract head of queue */
1200	drv_data->cur_msg = list_entry(drv_data->queue.next,
1201					struct spi_message, queue);
1202	list_del_init(&drv_data->cur_msg->queue);
1203
1204	/* Initial message state*/
1205	drv_data->cur_msg->state = START_STATE;
1206	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207						struct spi_transfer,
1208						transfer_list);
1209
1210	/* prepare to setup the SSP, in pump_transfers, using the per
1211	 * chip configuration */
1212	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213
1214	/* Mark as busy and launch transfers */
1215	tasklet_schedule(&drv_data->pump_transfers);
1216
1217	drv_data->busy = 1;
1218	spin_unlock_irqrestore(&drv_data->lock, flags);
1219}
1220
1221static int transfer(struct spi_device *spi, struct spi_message *msg)
1222{
1223	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224	unsigned long flags;
1225
1226	spin_lock_irqsave(&drv_data->lock, flags);
1227
1228	if (drv_data->run == QUEUE_STOPPED) {
1229		spin_unlock_irqrestore(&drv_data->lock, flags);
1230		return -ESHUTDOWN;
1231	}
1232
1233	msg->actual_length = 0;
1234	msg->status = -EINPROGRESS;
1235	msg->state = START_STATE;
1236
1237	list_add_tail(&msg->queue, &drv_data->queue);
1238
1239	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240		queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241
1242	spin_unlock_irqrestore(&drv_data->lock, flags);
1243
1244	return 0;
1245}
1246
1247static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248		    struct pxa2xx_spi_chip *chip_info)
1249{
1250	int err = 0;
1251
1252	if (chip == NULL || chip_info == NULL)
1253		return 0;
1254
1255	/* NOTE: setup() can be called multiple times, possibly with
1256	 * different chip_info, release previously requested GPIO
1257	 */
1258	if (gpio_is_valid(chip->gpio_cs))
1259		gpio_free(chip->gpio_cs);
1260
1261	/* If (*cs_control) is provided, ignore GPIO chip select */
1262	if (chip_info->cs_control) {
1263		chip->cs_control = chip_info->cs_control;
1264		return 0;
1265	}
1266
1267	if (gpio_is_valid(chip_info->gpio_cs)) {
1268		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269		if (err) {
1270			dev_err(&spi->dev, "failed to request chip select "
1271					"GPIO%d\n", chip_info->gpio_cs);
1272			return err;
1273		}
1274
1275		chip->gpio_cs = chip_info->gpio_cs;
1276		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277
1278		err = gpio_direction_output(chip->gpio_cs,
1279					!chip->gpio_cs_inverted);
1280	}
1281
1282	return err;
1283}
1284
1285static int setup(struct spi_device *spi)
1286{
1287	struct pxa2xx_spi_chip *chip_info = NULL;
1288	struct chip_data *chip;
1289	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290	struct ssp_device *ssp = drv_data->ssp;
1291	unsigned int clk_div;
1292	uint tx_thres = TX_THRESH_DFLT;
1293	uint rx_thres = RX_THRESH_DFLT;
1294
1295	if (!pxa25x_ssp_comp(drv_data)
1296		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298				"b/w not 4-32 for type non-PXA25x_SSP\n",
1299				drv_data->ssp_type, spi->bits_per_word);
1300		return -EINVAL;
1301	} else if (pxa25x_ssp_comp(drv_data)
1302			&& (spi->bits_per_word < 4
1303				|| spi->bits_per_word > 16)) {
1304		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305				"b/w not 4-16 for type PXA25x_SSP\n",
1306				drv_data->ssp_type, spi->bits_per_word);
1307		return -EINVAL;
1308	}
1309
1310	/* Only alloc on first setup */
1311	chip = spi_get_ctldata(spi);
1312	if (!chip) {
1313		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314		if (!chip) {
1315			dev_err(&spi->dev,
1316				"failed setup: can't allocate chip data\n");
1317			return -ENOMEM;
1318		}
1319
1320		if (drv_data->ssp_type == CE4100_SSP) {
1321			if (spi->chip_select > 4) {
1322				dev_err(&spi->dev, "failed setup: "
1323				"cs number must not be > 4.\n");
1324				kfree(chip);
1325				return -EINVAL;
1326			}
1327
1328			chip->frm = spi->chip_select;
1329		} else
1330			chip->gpio_cs = -1;
1331		chip->enable_dma = 0;
1332		chip->timeout = TIMOUT_DFLT;
1333		chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334					DCMD_BURST8 : 0;
1335	}
1336
1337	/* protocol drivers may change the chip settings, so...
1338	 * if chip_info exists, use it */
1339	chip_info = spi->controller_data;
1340
1341	/* chip_info isn't always needed */
1342	chip->cr1 = 0;
1343	if (chip_info) {
1344		if (chip_info->timeout)
1345			chip->timeout = chip_info->timeout;
1346		if (chip_info->tx_threshold)
1347			tx_thres = chip_info->tx_threshold;
1348		if (chip_info->rx_threshold)
1349			rx_thres = chip_info->rx_threshold;
1350		chip->enable_dma = drv_data->master_info->enable_dma;
1351		chip->dma_threshold = 0;
1352		if (chip_info->enable_loopback)
1353			chip->cr1 = SSCR1_LBM;
1354	}
1355
1356	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358
1359	/* set dma burst and threshold outside of chip_info path so that if
1360	 * chip_info goes away after setting chip->enable_dma, the
1361	 * burst and threshold can still respond to changes in bits_per_word */
1362	if (chip->enable_dma) {
1363		/* set up legal burst and threshold for dma */
1364		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1365						&chip->dma_burst_size,
1366						&chip->dma_threshold)) {
1367			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368					"to match bits_per_word\n");
1369		}
1370	}
1371
1372	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373	chip->speed_hz = spi->max_speed_hz;
1374
1375	chip->cr0 = clk_div
1376			| SSCR0_Motorola
1377			| SSCR0_DataSize(spi->bits_per_word > 16 ?
1378				spi->bits_per_word - 16 : spi->bits_per_word)
1379			| SSCR0_SSE
1380			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1386	if (!pxa25x_ssp_comp(drv_data))
1387		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388			clk_get_rate(ssp->clk)
1389				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390			chip->enable_dma ? "DMA" : "PIO");
1391	else
1392		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393			clk_get_rate(ssp->clk) / 2
1394				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395			chip->enable_dma ? "DMA" : "PIO");
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
1399		chip->dma_width = DCMD_WIDTH1;
1400		chip->read = u8_reader;
1401		chip->write = u8_writer;
1402	} else if (spi->bits_per_word <= 16) {
1403		chip->n_bytes = 2;
1404		chip->dma_width = DCMD_WIDTH2;
1405		chip->read = u16_reader;
1406		chip->write = u16_writer;
1407	} else if (spi->bits_per_word <= 32) {
1408		chip->cr0 |= SSCR0_EDSS;
1409		chip->n_bytes = 4;
1410		chip->dma_width = DCMD_WIDTH4;
1411		chip->read = u32_reader;
1412		chip->write = u32_writer;
1413	} else {
1414		dev_err(&spi->dev, "invalid wordsize\n");
1415		return -ENODEV;
1416	}
1417	chip->bits_per_word = spi->bits_per_word;
1418
1419	spi_set_ctldata(spi, chip);
1420
1421	if (drv_data->ssp_type == CE4100_SSP)
1422		return 0;
1423
1424	return setup_cs(spi, chip, chip_info);
1425}
1426
1427static void cleanup(struct spi_device *spi)
1428{
1429	struct chip_data *chip = spi_get_ctldata(spi);
1430	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1431
1432	if (!chip)
1433		return;
1434
1435	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436		gpio_free(chip->gpio_cs);
1437
1438	kfree(chip);
1439}
1440
1441static int __devinit init_queue(struct driver_data *drv_data)
1442{
1443	INIT_LIST_HEAD(&drv_data->queue);
1444	spin_lock_init(&drv_data->lock);
1445
1446	drv_data->run = QUEUE_STOPPED;
1447	drv_data->busy = 0;
1448
1449	tasklet_init(&drv_data->pump_transfers,
1450			pump_transfers,	(unsigned long)drv_data);
1451
1452	INIT_WORK(&drv_data->pump_messages, pump_messages);
1453	drv_data->workqueue = create_singlethread_workqueue(
1454				dev_name(drv_data->master->dev.parent));
1455	if (drv_data->workqueue == NULL)
1456		return -EBUSY;
1457
1458	return 0;
1459}
1460
1461static int start_queue(struct driver_data *drv_data)
1462{
1463	unsigned long flags;
1464
1465	spin_lock_irqsave(&drv_data->lock, flags);
1466
1467	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468		spin_unlock_irqrestore(&drv_data->lock, flags);
1469		return -EBUSY;
1470	}
1471
1472	drv_data->run = QUEUE_RUNNING;
1473	drv_data->cur_msg = NULL;
1474	drv_data->cur_transfer = NULL;
1475	drv_data->cur_chip = NULL;
1476	spin_unlock_irqrestore(&drv_data->lock, flags);
1477
1478	queue_work(drv_data->workqueue, &drv_data->pump_messages);
1479
1480	return 0;
1481}
1482
1483static int stop_queue(struct driver_data *drv_data)
1484{
1485	unsigned long flags;
1486	unsigned limit = 500;
1487	int status = 0;
1488
1489	spin_lock_irqsave(&drv_data->lock, flags);
1490
1491	/* This is a bit lame, but is optimized for the common execution path.
1492	 * A wait_queue on the drv_data->busy could be used, but then the common
1493	 * execution path (pump_messages) would be required to call wake_up or
1494	 * friends on every SPI message. Do this instead */
1495	drv_data->run = QUEUE_STOPPED;
1496	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497		spin_unlock_irqrestore(&drv_data->lock, flags);
1498		msleep(10);
1499		spin_lock_irqsave(&drv_data->lock, flags);
1500	}
1501
1502	if (!list_empty(&drv_data->queue) || drv_data->busy)
1503		status = -EBUSY;
1504
1505	spin_unlock_irqrestore(&drv_data->lock, flags);
1506
1507	return status;
1508}
1509
1510static int destroy_queue(struct driver_data *drv_data)
1511{
1512	int status;
1513
1514	status = stop_queue(drv_data);
1515	/* we are unloading the module or failing to load (only two calls
1516	 * to this routine), and neither call can handle a return value.
1517	 * However, destroy_workqueue calls flush_workqueue, and that will
1518	 * block until all work is done.  If the reason that stop_queue
1519	 * timed out is that the work will never finish, then it does no
1520	 * good to call destroy_workqueue, so return anyway. */
1521	if (status != 0)
1522		return status;
1523
1524	destroy_workqueue(drv_data->workqueue);
1525
1526	return 0;
1527}
1528
1529static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530{
1531	struct device *dev = &pdev->dev;
1532	struct pxa2xx_spi_master *platform_info;
1533	struct spi_master *master;
1534	struct driver_data *drv_data;
1535	struct ssp_device *ssp;
1536	int status;
1537
1538	platform_info = dev->platform_data;
1539
1540	ssp = pxa_ssp_request(pdev->id, pdev->name);
1541	if (ssp == NULL) {
1542		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1543		return -ENODEV;
1544	}
1545
1546	/* Allocate master with space for drv_data and null dma buffer */
1547	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548	if (!master) {
1549		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550		pxa_ssp_free(ssp);
1551		return -ENOMEM;
1552	}
1553	drv_data = spi_master_get_devdata(master);
1554	drv_data->master = master;
1555	drv_data->master_info = platform_info;
1556	drv_data->pdev = pdev;
1557	drv_data->ssp = ssp;
1558
1559	master->dev.parent = &pdev->dev;
1560	master->dev.of_node = pdev->dev.of_node;
1561	/* the spi->mode bits understood by this driver: */
1562	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563
1564	master->bus_num = pdev->id;
1565	master->num_chipselect = platform_info->num_chipselect;
1566	master->dma_alignment = DMA_ALIGNMENT;
1567	master->cleanup = cleanup;
1568	master->setup = setup;
1569	master->transfer = transfer;
1570
1571	drv_data->ssp_type = ssp->type;
1572	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573						sizeof(struct driver_data)), 8);
1574
1575	drv_data->ioaddr = ssp->mmio_base;
1576	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577	if (pxa25x_ssp_comp(drv_data)) {
1578		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579		drv_data->dma_cr1 = 0;
1580		drv_data->clear_sr = SSSR_ROR;
1581		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582	} else {
1583		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587	}
1588
1589	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590			drv_data);
1591	if (status < 0) {
1592		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593		goto out_error_master_alloc;
1594	}
1595
1596	/* Setup DMA if requested */
1597	drv_data->tx_channel = -1;
1598	drv_data->rx_channel = -1;
1599	if (platform_info->enable_dma) {
1600
1601		/* Get two DMA channels	(rx and tx) */
1602		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603							DMA_PRIO_HIGH,
1604							dma_handler,
1605							drv_data);
1606		if (drv_data->rx_channel < 0) {
1607			dev_err(dev, "problem (%d) requesting rx channel\n",
1608				drv_data->rx_channel);
1609			status = -ENODEV;
1610			goto out_error_irq_alloc;
1611		}
1612		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613							DMA_PRIO_MEDIUM,
1614							dma_handler,
1615							drv_data);
1616		if (drv_data->tx_channel < 0) {
1617			dev_err(dev, "problem (%d) requesting tx channel\n",
1618				drv_data->tx_channel);
1619			status = -ENODEV;
1620			goto out_error_dma_alloc;
1621		}
1622
1623		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625	}
1626
1627	/* Enable SOC clock */
1628	clk_enable(ssp->clk);
1629
1630	/* Load default SSP configuration */
1631	write_SSCR0(0, drv_data->ioaddr);
1632	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633				SSCR1_TxTresh(TX_THRESH_DFLT),
1634				drv_data->ioaddr);
1635	write_SSCR0(SSCR0_SCR(2)
1636			| SSCR0_Motorola
1637			| SSCR0_DataSize(8),
1638			drv_data->ioaddr);
1639	if (!pxa25x_ssp_comp(drv_data))
1640		write_SSTO(0, drv_data->ioaddr);
1641	write_SSPSP(0, drv_data->ioaddr);
1642
1643	/* Initial and start queue */
1644	status = init_queue(drv_data);
1645	if (status != 0) {
1646		dev_err(&pdev->dev, "problem initializing queue\n");
1647		goto out_error_clock_enabled;
1648	}
1649	status = start_queue(drv_data);
1650	if (status != 0) {
1651		dev_err(&pdev->dev, "problem starting queue\n");
1652		goto out_error_clock_enabled;
1653	}
1654
1655	/* Register with the SPI framework */
1656	platform_set_drvdata(pdev, drv_data);
1657	status = spi_register_master(master);
1658	if (status != 0) {
1659		dev_err(&pdev->dev, "problem registering spi master\n");
1660		goto out_error_queue_alloc;
1661	}
1662
1663	return status;
1664
1665out_error_queue_alloc:
1666	destroy_queue(drv_data);
1667
1668out_error_clock_enabled:
1669	clk_disable(ssp->clk);
1670
1671out_error_dma_alloc:
1672	if (drv_data->tx_channel != -1)
1673		pxa_free_dma(drv_data->tx_channel);
1674	if (drv_data->rx_channel != -1)
1675		pxa_free_dma(drv_data->rx_channel);
1676
1677out_error_irq_alloc:
1678	free_irq(ssp->irq, drv_data);
1679
1680out_error_master_alloc:
1681	spi_master_put(master);
1682	pxa_ssp_free(ssp);
1683	return status;
1684}
1685
1686static int pxa2xx_spi_remove(struct platform_device *pdev)
1687{
1688	struct driver_data *drv_data = platform_get_drvdata(pdev);
1689	struct ssp_device *ssp;
1690	int status = 0;
1691
1692	if (!drv_data)
1693		return 0;
1694	ssp = drv_data->ssp;
1695
1696	/* Remove the queue */
1697	status = destroy_queue(drv_data);
1698	if (status != 0)
1699		/* the kernel does not check the return status of this
1700		 * this routine (mod->exit, within the kernel).  Therefore
1701		 * nothing is gained by returning from here, the module is
1702		 * going away regardless, and we should not leave any more
1703		 * resources allocated than necessary.  We cannot free the
1704		 * message memory in drv_data->queue, but we can release the
1705		 * resources below.  I think the kernel should honor -EBUSY
1706		 * returns but... */
1707		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708			"complete, message memory not freed\n");
1709
1710	/* Disable the SSP at the peripheral and SOC level */
1711	write_SSCR0(0, drv_data->ioaddr);
1712	clk_disable(ssp->clk);
1713
1714	/* Release DMA */
1715	if (drv_data->master_info->enable_dma) {
1716		DRCMR(ssp->drcmr_rx) = 0;
1717		DRCMR(ssp->drcmr_tx) = 0;
1718		pxa_free_dma(drv_data->tx_channel);
1719		pxa_free_dma(drv_data->rx_channel);
1720	}
1721
1722	/* Release IRQ */
1723	free_irq(ssp->irq, drv_data);
1724
1725	/* Release SSP */
1726	pxa_ssp_free(ssp);
1727
1728	/* Disconnect from the SPI framework */
1729	spi_unregister_master(drv_data->master);
1730
1731	/* Prevent double remove */
1732	platform_set_drvdata(pdev, NULL);
1733
1734	return 0;
1735}
1736
1737static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738{
1739	int status = 0;
1740
1741	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743}
1744
1745#ifdef CONFIG_PM
1746static int pxa2xx_spi_suspend(struct device *dev)
1747{
1748	struct driver_data *drv_data = dev_get_drvdata(dev);
1749	struct ssp_device *ssp = drv_data->ssp;
1750	int status = 0;
1751
1752	status = stop_queue(drv_data);
1753	if (status != 0)
1754		return status;
1755	write_SSCR0(0, drv_data->ioaddr);
1756	clk_disable(ssp->clk);
1757
1758	return 0;
1759}
1760
1761static int pxa2xx_spi_resume(struct device *dev)
1762{
1763	struct driver_data *drv_data = dev_get_drvdata(dev);
1764	struct ssp_device *ssp = drv_data->ssp;
1765	int status = 0;
1766
1767	if (drv_data->rx_channel != -1)
1768		DRCMR(drv_data->ssp->drcmr_rx) =
1769			DRCMR_MAPVLD | drv_data->rx_channel;
1770	if (drv_data->tx_channel != -1)
1771		DRCMR(drv_data->ssp->drcmr_tx) =
1772			DRCMR_MAPVLD | drv_data->tx_channel;
1773
1774	/* Enable the SSP clock */
1775	clk_enable(ssp->clk);
1776
1777	/* Start the queue running */
1778	status = start_queue(drv_data);
1779	if (status != 0) {
1780		dev_err(dev, "problem starting queue (%d)\n", status);
1781		return status;
1782	}
1783
1784	return 0;
1785}
1786
1787static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788	.suspend	= pxa2xx_spi_suspend,
1789	.resume		= pxa2xx_spi_resume,
1790};
1791#endif
1792
1793static struct platform_driver driver = {
1794	.driver = {
1795		.name	= "pxa2xx-spi",
1796		.owner	= THIS_MODULE,
1797#ifdef CONFIG_PM
1798		.pm	= &pxa2xx_spi_pm_ops,
1799#endif
1800	},
1801	.probe = pxa2xx_spi_probe,
1802	.remove = pxa2xx_spi_remove,
1803	.shutdown = pxa2xx_spi_shutdown,
1804};
1805
1806static int __init pxa2xx_spi_init(void)
1807{
1808	return platform_driver_register(&driver);
1809}
1810subsys_initcall(pxa2xx_spi_init);
1811
1812static void __exit pxa2xx_spi_exit(void)
1813{
1814	platform_driver_unregister(&driver);
1815}
1816module_exit(pxa2xx_spi_exit);
v3.5.6
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/ioport.h>
  23#include <linux/errno.h>
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/spi/pxa2xx_spi.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/spi/spi.h>
  29#include <linux/workqueue.h>
  30#include <linux/delay.h>
  31#include <linux/gpio.h>
  32#include <linux/slab.h>
  33
  34#include <asm/io.h>
  35#include <asm/irq.h>
  36#include <asm/delay.h>
  37
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define MAX_BUSES 3
  45
  46#define TIMOUT_DFLT		1000
  47
  48#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  49#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
  50#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
  51#define MAX_DMA_LEN		8191
  52#define DMA_ALIGNMENT		8
  53
  54/*
  55 * for testing SSCR1 changes that require SSP restart, basically
  56 * everything except the service and interrupt enables, the pxa270 developer
  57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  58 * list, but the PXA255 dev man says all bits without really meaning the
  59 * service and interrupt enables
  60 */
  61#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  62				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  63				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  64				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  65				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  66				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  67
  68#define DEFINE_SSP_REG(reg, off) \
  69static inline u32 read_##reg(void const __iomem *p) \
  70{ return __raw_readl(p + (off)); } \
  71\
  72static inline void write_##reg(u32 v, void __iomem *p) \
  73{ __raw_writel(v, p + (off)); }
  74
  75DEFINE_SSP_REG(SSCR0, 0x00)
  76DEFINE_SSP_REG(SSCR1, 0x04)
  77DEFINE_SSP_REG(SSSR, 0x08)
  78DEFINE_SSP_REG(SSITR, 0x0c)
  79DEFINE_SSP_REG(SSDR, 0x10)
  80DEFINE_SSP_REG(SSTO, 0x28)
  81DEFINE_SSP_REG(SSPSP, 0x2c)
  82
  83#define START_STATE ((void*)0)
  84#define RUNNING_STATE ((void*)1)
  85#define DONE_STATE ((void*)2)
  86#define ERROR_STATE ((void*)-1)
  87
  88#define QUEUE_RUNNING 0
  89#define QUEUE_STOPPED 1
  90
  91struct driver_data {
  92	/* Driver model hookup */
  93	struct platform_device *pdev;
  94
  95	/* SSP Info */
  96	struct ssp_device *ssp;
  97
  98	/* SPI framework hookup */
  99	enum pxa_ssp_type ssp_type;
 100	struct spi_master *master;
 101
 102	/* PXA hookup */
 103	struct pxa2xx_spi_master *master_info;
 104
 105	/* DMA setup stuff */
 106	int rx_channel;
 107	int tx_channel;
 108	u32 *null_dma_buf;
 109
 110	/* SSP register addresses */
 111	void __iomem *ioaddr;
 112	u32 ssdr_physical;
 113
 114	/* SSP masks*/
 115	u32 dma_cr1;
 116	u32 int_cr1;
 117	u32 clear_sr;
 118	u32 mask_sr;
 119
 120	/* Driver message queue */
 121	struct workqueue_struct	*workqueue;
 122	struct work_struct pump_messages;
 123	spinlock_t lock;
 124	struct list_head queue;
 125	int busy;
 126	int run;
 127
 128	/* Message Transfer pump */
 129	struct tasklet_struct pump_transfers;
 130
 131	/* Current message transfer state info */
 132	struct spi_message* cur_msg;
 133	struct spi_transfer* cur_transfer;
 134	struct chip_data *cur_chip;
 135	size_t len;
 136	void *tx;
 137	void *tx_end;
 138	void *rx;
 139	void *rx_end;
 140	int dma_mapped;
 141	dma_addr_t rx_dma;
 142	dma_addr_t tx_dma;
 143	size_t rx_map_len;
 144	size_t tx_map_len;
 145	u8 n_bytes;
 146	u32 dma_width;
 147	int (*write)(struct driver_data *drv_data);
 148	int (*read)(struct driver_data *drv_data);
 149	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 150	void (*cs_control)(u32 command);
 151};
 152
 153struct chip_data {
 154	u32 cr0;
 155	u32 cr1;
 156	u32 psp;
 157	u32 timeout;
 158	u8 n_bytes;
 159	u32 dma_width;
 160	u32 dma_burst_size;
 161	u32 threshold;
 162	u32 dma_threshold;
 163	u8 enable_dma;
 164	u8 bits_per_word;
 165	u32 speed_hz;
 166	union {
 167		int gpio_cs;
 168		unsigned int frm;
 169	};
 170	int gpio_cs_inverted;
 171	int (*write)(struct driver_data *drv_data);
 172	int (*read)(struct driver_data *drv_data);
 173	void (*cs_control)(u32 command);
 174};
 175
 176static void pump_messages(struct work_struct *work);
 177
 178static void cs_assert(struct driver_data *drv_data)
 179{
 180	struct chip_data *chip = drv_data->cur_chip;
 181
 182	if (drv_data->ssp_type == CE4100_SSP) {
 183		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
 184		return;
 185	}
 186
 187	if (chip->cs_control) {
 188		chip->cs_control(PXA2XX_CS_ASSERT);
 189		return;
 190	}
 191
 192	if (gpio_is_valid(chip->gpio_cs))
 193		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 194}
 195
 196static void cs_deassert(struct driver_data *drv_data)
 197{
 198	struct chip_data *chip = drv_data->cur_chip;
 199
 200	if (drv_data->ssp_type == CE4100_SSP)
 201		return;
 202
 203	if (chip->cs_control) {
 204		chip->cs_control(PXA2XX_CS_DEASSERT);
 205		return;
 206	}
 207
 208	if (gpio_is_valid(chip->gpio_cs))
 209		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 210}
 211
 212static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
 213{
 214	void __iomem *reg = drv_data->ioaddr;
 215
 216	if (drv_data->ssp_type == CE4100_SSP)
 217		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
 218
 219	write_SSSR(val, reg);
 220}
 221
 222static int pxa25x_ssp_comp(struct driver_data *drv_data)
 223{
 224	if (drv_data->ssp_type == PXA25x_SSP)
 225		return 1;
 226	if (drv_data->ssp_type == CE4100_SSP)
 227		return 1;
 228	return 0;
 229}
 230
 231static int flush(struct driver_data *drv_data)
 232{
 233	unsigned long limit = loops_per_jiffy << 1;
 234
 235	void __iomem *reg = drv_data->ioaddr;
 236
 237	do {
 238		while (read_SSSR(reg) & SSSR_RNE) {
 239			read_SSDR(reg);
 240		}
 241	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
 242	write_SSSR_CS(drv_data, SSSR_ROR);
 243
 244	return limit;
 245}
 246
 247static int null_writer(struct driver_data *drv_data)
 248{
 249	void __iomem *reg = drv_data->ioaddr;
 250	u8 n_bytes = drv_data->n_bytes;
 251
 252	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 253		|| (drv_data->tx == drv_data->tx_end))
 254		return 0;
 255
 256	write_SSDR(0, reg);
 257	drv_data->tx += n_bytes;
 258
 259	return 1;
 260}
 261
 262static int null_reader(struct driver_data *drv_data)
 263{
 264	void __iomem *reg = drv_data->ioaddr;
 265	u8 n_bytes = drv_data->n_bytes;
 266
 267	while ((read_SSSR(reg) & SSSR_RNE)
 268		&& (drv_data->rx < drv_data->rx_end)) {
 269		read_SSDR(reg);
 270		drv_data->rx += n_bytes;
 271	}
 272
 273	return drv_data->rx == drv_data->rx_end;
 274}
 275
 276static int u8_writer(struct driver_data *drv_data)
 277{
 278	void __iomem *reg = drv_data->ioaddr;
 279
 280	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 281		|| (drv_data->tx == drv_data->tx_end))
 282		return 0;
 283
 284	write_SSDR(*(u8 *)(drv_data->tx), reg);
 285	++drv_data->tx;
 286
 287	return 1;
 288}
 289
 290static int u8_reader(struct driver_data *drv_data)
 291{
 292	void __iomem *reg = drv_data->ioaddr;
 293
 294	while ((read_SSSR(reg) & SSSR_RNE)
 295		&& (drv_data->rx < drv_data->rx_end)) {
 296		*(u8 *)(drv_data->rx) = read_SSDR(reg);
 297		++drv_data->rx;
 298	}
 299
 300	return drv_data->rx == drv_data->rx_end;
 301}
 302
 303static int u16_writer(struct driver_data *drv_data)
 304{
 305	void __iomem *reg = drv_data->ioaddr;
 306
 307	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 308		|| (drv_data->tx == drv_data->tx_end))
 309		return 0;
 310
 311	write_SSDR(*(u16 *)(drv_data->tx), reg);
 312	drv_data->tx += 2;
 313
 314	return 1;
 315}
 316
 317static int u16_reader(struct driver_data *drv_data)
 318{
 319	void __iomem *reg = drv_data->ioaddr;
 320
 321	while ((read_SSSR(reg) & SSSR_RNE)
 322		&& (drv_data->rx < drv_data->rx_end)) {
 323		*(u16 *)(drv_data->rx) = read_SSDR(reg);
 324		drv_data->rx += 2;
 325	}
 326
 327	return drv_data->rx == drv_data->rx_end;
 328}
 329
 330static int u32_writer(struct driver_data *drv_data)
 331{
 332	void __iomem *reg = drv_data->ioaddr;
 333
 334	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 335		|| (drv_data->tx == drv_data->tx_end))
 336		return 0;
 337
 338	write_SSDR(*(u32 *)(drv_data->tx), reg);
 339	drv_data->tx += 4;
 340
 341	return 1;
 342}
 343
 344static int u32_reader(struct driver_data *drv_data)
 345{
 346	void __iomem *reg = drv_data->ioaddr;
 347
 348	while ((read_SSSR(reg) & SSSR_RNE)
 349		&& (drv_data->rx < drv_data->rx_end)) {
 350		*(u32 *)(drv_data->rx) = read_SSDR(reg);
 351		drv_data->rx += 4;
 352	}
 353
 354	return drv_data->rx == drv_data->rx_end;
 355}
 356
 357static void *next_transfer(struct driver_data *drv_data)
 358{
 359	struct spi_message *msg = drv_data->cur_msg;
 360	struct spi_transfer *trans = drv_data->cur_transfer;
 361
 362	/* Move to next transfer */
 363	if (trans->transfer_list.next != &msg->transfers) {
 364		drv_data->cur_transfer =
 365			list_entry(trans->transfer_list.next,
 366					struct spi_transfer,
 367					transfer_list);
 368		return RUNNING_STATE;
 369	} else
 370		return DONE_STATE;
 371}
 372
 373static int map_dma_buffers(struct driver_data *drv_data)
 374{
 375	struct spi_message *msg = drv_data->cur_msg;
 376	struct device *dev = &msg->spi->dev;
 377
 378	if (!drv_data->cur_chip->enable_dma)
 379		return 0;
 380
 381	if (msg->is_dma_mapped)
 382		return  drv_data->rx_dma && drv_data->tx_dma;
 383
 384	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 385		return 0;
 386
 387	/* Modify setup if rx buffer is null */
 388	if (drv_data->rx == NULL) {
 389		*drv_data->null_dma_buf = 0;
 390		drv_data->rx = drv_data->null_dma_buf;
 391		drv_data->rx_map_len = 4;
 392	} else
 393		drv_data->rx_map_len = drv_data->len;
 394
 395
 396	/* Modify setup if tx buffer is null */
 397	if (drv_data->tx == NULL) {
 398		*drv_data->null_dma_buf = 0;
 399		drv_data->tx = drv_data->null_dma_buf;
 400		drv_data->tx_map_len = 4;
 401	} else
 402		drv_data->tx_map_len = drv_data->len;
 403
 404	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 405	 * so we flush the cache *before* invalidating it, in case
 406	 * the tx and rx buffers overlap.
 407	 */
 408	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 409					drv_data->tx_map_len, DMA_TO_DEVICE);
 410	if (dma_mapping_error(dev, drv_data->tx_dma))
 411		return 0;
 412
 413	/* Stream map the rx buffer */
 414	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 415					drv_data->rx_map_len, DMA_FROM_DEVICE);
 416	if (dma_mapping_error(dev, drv_data->rx_dma)) {
 417		dma_unmap_single(dev, drv_data->tx_dma,
 418					drv_data->tx_map_len, DMA_TO_DEVICE);
 419		return 0;
 420	}
 421
 422	return 1;
 423}
 424
 425static void unmap_dma_buffers(struct driver_data *drv_data)
 426{
 427	struct device *dev;
 428
 429	if (!drv_data->dma_mapped)
 430		return;
 431
 432	if (!drv_data->cur_msg->is_dma_mapped) {
 433		dev = &drv_data->cur_msg->spi->dev;
 434		dma_unmap_single(dev, drv_data->rx_dma,
 435					drv_data->rx_map_len, DMA_FROM_DEVICE);
 436		dma_unmap_single(dev, drv_data->tx_dma,
 437					drv_data->tx_map_len, DMA_TO_DEVICE);
 438	}
 439
 440	drv_data->dma_mapped = 0;
 441}
 442
 443/* caller already set message->status; dma and pio irqs are blocked */
 444static void giveback(struct driver_data *drv_data)
 445{
 446	struct spi_transfer* last_transfer;
 447	unsigned long flags;
 448	struct spi_message *msg;
 449
 450	spin_lock_irqsave(&drv_data->lock, flags);
 451	msg = drv_data->cur_msg;
 452	drv_data->cur_msg = NULL;
 453	drv_data->cur_transfer = NULL;
 454	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 455	spin_unlock_irqrestore(&drv_data->lock, flags);
 456
 457	last_transfer = list_entry(msg->transfers.prev,
 458					struct spi_transfer,
 459					transfer_list);
 460
 461	/* Delay if requested before any change in chip select */
 462	if (last_transfer->delay_usecs)
 463		udelay(last_transfer->delay_usecs);
 464
 465	/* Drop chip select UNLESS cs_change is true or we are returning
 466	 * a message with an error, or next message is for another chip
 467	 */
 468	if (!last_transfer->cs_change)
 469		cs_deassert(drv_data);
 470	else {
 471		struct spi_message *next_msg;
 472
 473		/* Holding of cs was hinted, but we need to make sure
 474		 * the next message is for the same chip.  Don't waste
 475		 * time with the following tests unless this was hinted.
 476		 *
 477		 * We cannot postpone this until pump_messages, because
 478		 * after calling msg->complete (below) the driver that
 479		 * sent the current message could be unloaded, which
 480		 * could invalidate the cs_control() callback...
 481		 */
 482
 483		/* get a pointer to the next message, if any */
 484		spin_lock_irqsave(&drv_data->lock, flags);
 485		if (list_empty(&drv_data->queue))
 486			next_msg = NULL;
 487		else
 488			next_msg = list_entry(drv_data->queue.next,
 489					struct spi_message, queue);
 490		spin_unlock_irqrestore(&drv_data->lock, flags);
 491
 492		/* see if the next and current messages point
 493		 * to the same chip
 494		 */
 495		if (next_msg && next_msg->spi != msg->spi)
 496			next_msg = NULL;
 497		if (!next_msg || msg->state == ERROR_STATE)
 498			cs_deassert(drv_data);
 499	}
 500
 501	msg->state = NULL;
 502	if (msg->complete)
 503		msg->complete(msg->context);
 504
 505	drv_data->cur_chip = NULL;
 506}
 507
 508static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 509{
 510	unsigned long limit = loops_per_jiffy << 1;
 511
 512	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
 513		cpu_relax();
 514
 515	return limit;
 516}
 517
 518static int wait_dma_channel_stop(int channel)
 519{
 520	unsigned long limit = loops_per_jiffy << 1;
 521
 522	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
 523		cpu_relax();
 524
 525	return limit;
 526}
 527
 528static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 529{
 530	void __iomem *reg = drv_data->ioaddr;
 531
 532	/* Stop and reset */
 533	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 534	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 535	write_SSSR_CS(drv_data, drv_data->clear_sr);
 536	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 537	if (!pxa25x_ssp_comp(drv_data))
 538		write_SSTO(0, reg);
 539	flush(drv_data);
 540	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 541
 542	unmap_dma_buffers(drv_data);
 543
 544	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 545
 546	drv_data->cur_msg->state = ERROR_STATE;
 547	tasklet_schedule(&drv_data->pump_transfers);
 548}
 549
 550static void dma_transfer_complete(struct driver_data *drv_data)
 551{
 552	void __iomem *reg = drv_data->ioaddr;
 553	struct spi_message *msg = drv_data->cur_msg;
 554
 555	/* Clear and disable interrupts on SSP and DMA channels*/
 556	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 557	write_SSSR_CS(drv_data, drv_data->clear_sr);
 558	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 559	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 560
 561	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 562		dev_err(&drv_data->pdev->dev,
 563			"dma_handler: dma rx channel stop failed\n");
 564
 565	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 566		dev_err(&drv_data->pdev->dev,
 567			"dma_transfer: ssp rx stall failed\n");
 568
 569	unmap_dma_buffers(drv_data);
 570
 571	/* update the buffer pointer for the amount completed in dma */
 572	drv_data->rx += drv_data->len -
 573			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 574
 575	/* read trailing data from fifo, it does not matter how many
 576	 * bytes are in the fifo just read until buffer is full
 577	 * or fifo is empty, which ever occurs first */
 578	drv_data->read(drv_data);
 579
 580	/* return count of what was actually read */
 581	msg->actual_length += drv_data->len -
 582				(drv_data->rx_end - drv_data->rx);
 583
 584	/* Transfer delays and chip select release are
 585	 * handled in pump_transfers or giveback
 586	 */
 587
 588	/* Move to next transfer */
 589	msg->state = next_transfer(drv_data);
 590
 591	/* Schedule transfer tasklet */
 592	tasklet_schedule(&drv_data->pump_transfers);
 593}
 594
 595static void dma_handler(int channel, void *data)
 596{
 597	struct driver_data *drv_data = data;
 598	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 599
 600	if (irq_status & DCSR_BUSERR) {
 601
 602		if (channel == drv_data->tx_channel)
 603			dma_error_stop(drv_data,
 604					"dma_handler: "
 605					"bad bus address on tx channel");
 606		else
 607			dma_error_stop(drv_data,
 608					"dma_handler: "
 609					"bad bus address on rx channel");
 610		return;
 611	}
 612
 613	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 614	if ((channel == drv_data->tx_channel)
 615		&& (irq_status & DCSR_ENDINTR)
 616		&& (drv_data->ssp_type == PXA25x_SSP)) {
 617
 618		/* Wait for rx to stall */
 619		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 620			dev_err(&drv_data->pdev->dev,
 621				"dma_handler: ssp rx stall failed\n");
 622
 623		/* finish this transfer, start the next */
 624		dma_transfer_complete(drv_data);
 625	}
 626}
 627
 628static irqreturn_t dma_transfer(struct driver_data *drv_data)
 629{
 630	u32 irq_status;
 631	void __iomem *reg = drv_data->ioaddr;
 632
 633	irq_status = read_SSSR(reg) & drv_data->mask_sr;
 634	if (irq_status & SSSR_ROR) {
 635		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 636		return IRQ_HANDLED;
 637	}
 638
 639	/* Check for false positive timeout */
 640	if ((irq_status & SSSR_TINT)
 641		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 642		write_SSSR(SSSR_TINT, reg);
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 647
 648		/* Clear and disable timeout interrupt, do the rest in
 649		 * dma_transfer_complete */
 650		if (!pxa25x_ssp_comp(drv_data))
 651			write_SSTO(0, reg);
 652
 653		/* finish this transfer, start the next */
 654		dma_transfer_complete(drv_data);
 655
 656		return IRQ_HANDLED;
 657	}
 658
 659	/* Opps problem detected */
 660	return IRQ_NONE;
 661}
 662
 663static void reset_sccr1(struct driver_data *drv_data)
 664{
 665	void __iomem *reg = drv_data->ioaddr;
 666	struct chip_data *chip = drv_data->cur_chip;
 667	u32 sccr1_reg;
 668
 669	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
 670	sccr1_reg &= ~SSCR1_RFT;
 671	sccr1_reg |= chip->threshold;
 672	write_SSCR1(sccr1_reg, reg);
 673}
 674
 675static void int_error_stop(struct driver_data *drv_data, const char* msg)
 676{
 677	void __iomem *reg = drv_data->ioaddr;
 678
 679	/* Stop and reset SSP */
 680	write_SSSR_CS(drv_data, drv_data->clear_sr);
 681	reset_sccr1(drv_data);
 682	if (!pxa25x_ssp_comp(drv_data))
 683		write_SSTO(0, reg);
 684	flush(drv_data);
 685	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 686
 687	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 688
 689	drv_data->cur_msg->state = ERROR_STATE;
 690	tasklet_schedule(&drv_data->pump_transfers);
 691}
 692
 693static void int_transfer_complete(struct driver_data *drv_data)
 694{
 695	void __iomem *reg = drv_data->ioaddr;
 696
 697	/* Stop SSP */
 698	write_SSSR_CS(drv_data, drv_data->clear_sr);
 699	reset_sccr1(drv_data);
 700	if (!pxa25x_ssp_comp(drv_data))
 701		write_SSTO(0, reg);
 702
 703	/* Update total byte transferred return count actual bytes read */
 704	drv_data->cur_msg->actual_length += drv_data->len -
 705				(drv_data->rx_end - drv_data->rx);
 706
 707	/* Transfer delays and chip select release are
 708	 * handled in pump_transfers or giveback
 709	 */
 710
 711	/* Move to next transfer */
 712	drv_data->cur_msg->state = next_transfer(drv_data);
 713
 714	/* Schedule transfer tasklet */
 715	tasklet_schedule(&drv_data->pump_transfers);
 716}
 717
 718static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 719{
 720	void __iomem *reg = drv_data->ioaddr;
 721
 722	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 723			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 724
 725	u32 irq_status = read_SSSR(reg) & irq_mask;
 726
 727	if (irq_status & SSSR_ROR) {
 728		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 729		return IRQ_HANDLED;
 730	}
 731
 732	if (irq_status & SSSR_TINT) {
 733		write_SSSR(SSSR_TINT, reg);
 734		if (drv_data->read(drv_data)) {
 735			int_transfer_complete(drv_data);
 736			return IRQ_HANDLED;
 737		}
 738	}
 739
 740	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 741	do {
 742		if (drv_data->read(drv_data)) {
 743			int_transfer_complete(drv_data);
 744			return IRQ_HANDLED;
 745		}
 746	} while (drv_data->write(drv_data));
 747
 748	if (drv_data->read(drv_data)) {
 749		int_transfer_complete(drv_data);
 750		return IRQ_HANDLED;
 751	}
 752
 753	if (drv_data->tx == drv_data->tx_end) {
 754		u32 bytes_left;
 755		u32 sccr1_reg;
 756
 757		sccr1_reg = read_SSCR1(reg);
 758		sccr1_reg &= ~SSCR1_TIE;
 759
 760		/*
 761		 * PXA25x_SSP has no timeout, set up rx threshould for the
 762		 * remaining RX bytes.
 763		 */
 764		if (pxa25x_ssp_comp(drv_data)) {
 765
 766			sccr1_reg &= ~SSCR1_RFT;
 767
 768			bytes_left = drv_data->rx_end - drv_data->rx;
 769			switch (drv_data->n_bytes) {
 770			case 4:
 771				bytes_left >>= 1;
 772			case 2:
 773				bytes_left >>= 1;
 774			}
 775
 776			if (bytes_left > RX_THRESH_DFLT)
 777				bytes_left = RX_THRESH_DFLT;
 778
 779			sccr1_reg |= SSCR1_RxTresh(bytes_left);
 780		}
 781		write_SSCR1(sccr1_reg, reg);
 782	}
 783
 784	/* We did something */
 785	return IRQ_HANDLED;
 786}
 787
 788static irqreturn_t ssp_int(int irq, void *dev_id)
 789{
 790	struct driver_data *drv_data = dev_id;
 791	void __iomem *reg = drv_data->ioaddr;
 792	u32 sccr1_reg = read_SSCR1(reg);
 793	u32 mask = drv_data->mask_sr;
 794	u32 status;
 795
 796	status = read_SSSR(reg);
 797
 798	/* Ignore possible writes if we don't need to write */
 799	if (!(sccr1_reg & SSCR1_TIE))
 800		mask &= ~SSSR_TFS;
 801
 802	if (!(status & mask))
 803		return IRQ_NONE;
 804
 805	if (!drv_data->cur_msg) {
 806
 807		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 808		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 809		if (!pxa25x_ssp_comp(drv_data))
 810			write_SSTO(0, reg);
 811		write_SSSR_CS(drv_data, drv_data->clear_sr);
 812
 813		dev_err(&drv_data->pdev->dev, "bad message state "
 814			"in interrupt handler\n");
 815
 816		/* Never fail */
 817		return IRQ_HANDLED;
 818	}
 819
 820	return drv_data->transfer_handler(drv_data);
 821}
 822
 823static int set_dma_burst_and_threshold(struct chip_data *chip,
 824				struct spi_device *spi,
 825				u8 bits_per_word, u32 *burst_code,
 826				u32 *threshold)
 827{
 828	struct pxa2xx_spi_chip *chip_info =
 829			(struct pxa2xx_spi_chip *)spi->controller_data;
 830	int bytes_per_word;
 831	int burst_bytes;
 832	int thresh_words;
 833	int req_burst_size;
 834	int retval = 0;
 835
 836	/* Set the threshold (in registers) to equal the same amount of data
 837	 * as represented by burst size (in bytes).  The computation below
 838	 * is (burst_size rounded up to nearest 8 byte, word or long word)
 839	 * divided by (bytes/register); the tx threshold is the inverse of
 840	 * the rx, so that there will always be enough data in the rx fifo
 841	 * to satisfy a burst, and there will always be enough space in the
 842	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 843	 * there is not enough space), there must always remain enough empty
 844	 * space in the rx fifo for any data loaded to the tx fifo.
 845	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 846	 * will be 8, or half the fifo;
 847	 * The threshold can only be set to 2, 4 or 8, but not 16, because
 848	 * to burst 16 to the tx fifo, the fifo would have to be empty;
 849	 * however, the minimum fifo trigger level is 1, and the tx will
 850	 * request service when the fifo is at this level, with only 15 spaces.
 851	 */
 852
 853	/* find bytes/word */
 854	if (bits_per_word <= 8)
 855		bytes_per_word = 1;
 856	else if (bits_per_word <= 16)
 857		bytes_per_word = 2;
 858	else
 859		bytes_per_word = 4;
 860
 861	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
 862	if (chip_info)
 863		req_burst_size = chip_info->dma_burst_size;
 864	else {
 865		switch (chip->dma_burst_size) {
 866		default:
 867			/* if the default burst size is not set,
 868			 * do it now */
 869			chip->dma_burst_size = DCMD_BURST8;
 870		case DCMD_BURST8:
 871			req_burst_size = 8;
 872			break;
 873		case DCMD_BURST16:
 874			req_burst_size = 16;
 875			break;
 876		case DCMD_BURST32:
 877			req_burst_size = 32;
 878			break;
 879		}
 880	}
 881	if (req_burst_size <= 8) {
 882		*burst_code = DCMD_BURST8;
 883		burst_bytes = 8;
 884	} else if (req_burst_size <= 16) {
 885		if (bytes_per_word == 1) {
 886			/* don't burst more than 1/2 the fifo */
 887			*burst_code = DCMD_BURST8;
 888			burst_bytes = 8;
 889			retval = 1;
 890		} else {
 891			*burst_code = DCMD_BURST16;
 892			burst_bytes = 16;
 893		}
 894	} else {
 895		if (bytes_per_word == 1) {
 896			/* don't burst more than 1/2 the fifo */
 897			*burst_code = DCMD_BURST8;
 898			burst_bytes = 8;
 899			retval = 1;
 900		} else if (bytes_per_word == 2) {
 901			/* don't burst more than 1/2 the fifo */
 902			*burst_code = DCMD_BURST16;
 903			burst_bytes = 16;
 904			retval = 1;
 905		} else {
 906			*burst_code = DCMD_BURST32;
 907			burst_bytes = 32;
 908		}
 909	}
 910
 911	thresh_words = burst_bytes / bytes_per_word;
 912
 913	/* thresh_words will be between 2 and 8 */
 914	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 915			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 916
 917	return retval;
 918}
 919
 920static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 921{
 922	unsigned long ssp_clk = clk_get_rate(ssp->clk);
 923
 924	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 926	else
 927		return ((ssp_clk / rate - 1) & 0xfff) << 8;
 928}
 929
 930static void pump_transfers(unsigned long data)
 931{
 932	struct driver_data *drv_data = (struct driver_data *)data;
 933	struct spi_message *message = NULL;
 934	struct spi_transfer *transfer = NULL;
 935	struct spi_transfer *previous = NULL;
 936	struct chip_data *chip = NULL;
 937	struct ssp_device *ssp = drv_data->ssp;
 938	void __iomem *reg = drv_data->ioaddr;
 939	u32 clk_div = 0;
 940	u8 bits = 0;
 941	u32 speed = 0;
 942	u32 cr0;
 943	u32 cr1;
 944	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 945	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 946
 947	/* Get current state information */
 948	message = drv_data->cur_msg;
 949	transfer = drv_data->cur_transfer;
 950	chip = drv_data->cur_chip;
 951
 952	/* Handle for abort */
 953	if (message->state == ERROR_STATE) {
 954		message->status = -EIO;
 955		giveback(drv_data);
 956		return;
 957	}
 958
 959	/* Handle end of message */
 960	if (message->state == DONE_STATE) {
 961		message->status = 0;
 962		giveback(drv_data);
 963		return;
 964	}
 965
 966	/* Delay if requested at end of transfer before CS change */
 967	if (message->state == RUNNING_STATE) {
 968		previous = list_entry(transfer->transfer_list.prev,
 969					struct spi_transfer,
 970					transfer_list);
 971		if (previous->delay_usecs)
 972			udelay(previous->delay_usecs);
 973
 974		/* Drop chip select only if cs_change is requested */
 975		if (previous->cs_change)
 976			cs_deassert(drv_data);
 977	}
 978
 979	/* Check for transfers that need multiple DMA segments */
 980	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 981
 982		/* reject already-mapped transfers; PIO won't always work */
 983		if (message->is_dma_mapped
 984				|| transfer->rx_dma || transfer->tx_dma) {
 985			dev_err(&drv_data->pdev->dev,
 986				"pump_transfers: mapped transfer length "
 987				"of %u is greater than %d\n",
 988				transfer->len, MAX_DMA_LEN);
 989			message->status = -EINVAL;
 990			giveback(drv_data);
 991			return;
 992		}
 993
 994		/* warn ... we force this to PIO mode */
 995		if (printk_ratelimit())
 996			dev_warn(&message->spi->dev, "pump_transfers: "
 997				"DMA disabled for transfer length %ld "
 998				"greater than %d\n",
 999				(long)drv_data->len, MAX_DMA_LEN);
1000	}
1001
1002	/* Setup the transfer state based on the type of transfer */
1003	if (flush(drv_data) == 0) {
1004		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005		message->status = -EIO;
1006		giveback(drv_data);
1007		return;
1008	}
1009	drv_data->n_bytes = chip->n_bytes;
1010	drv_data->dma_width = chip->dma_width;
1011	drv_data->tx = (void *)transfer->tx_buf;
1012	drv_data->tx_end = drv_data->tx + transfer->len;
1013	drv_data->rx = transfer->rx_buf;
1014	drv_data->rx_end = drv_data->rx + transfer->len;
1015	drv_data->rx_dma = transfer->rx_dma;
1016	drv_data->tx_dma = transfer->tx_dma;
1017	drv_data->len = transfer->len & DCMD_LENGTH;
1018	drv_data->write = drv_data->tx ? chip->write : null_writer;
1019	drv_data->read = drv_data->rx ? chip->read : null_reader;
1020
1021	/* Change speed and bit per word on a per transfer */
1022	cr0 = chip->cr0;
1023	if (transfer->speed_hz || transfer->bits_per_word) {
1024
1025		bits = chip->bits_per_word;
1026		speed = chip->speed_hz;
1027
1028		if (transfer->speed_hz)
1029			speed = transfer->speed_hz;
1030
1031		if (transfer->bits_per_word)
1032			bits = transfer->bits_per_word;
1033
1034		clk_div = ssp_get_clk_div(ssp, speed);
1035
1036		if (bits <= 8) {
1037			drv_data->n_bytes = 1;
1038			drv_data->dma_width = DCMD_WIDTH1;
1039			drv_data->read = drv_data->read != null_reader ?
1040						u8_reader : null_reader;
1041			drv_data->write = drv_data->write != null_writer ?
1042						u8_writer : null_writer;
1043		} else if (bits <= 16) {
1044			drv_data->n_bytes = 2;
1045			drv_data->dma_width = DCMD_WIDTH2;
1046			drv_data->read = drv_data->read != null_reader ?
1047						u16_reader : null_reader;
1048			drv_data->write = drv_data->write != null_writer ?
1049						u16_writer : null_writer;
1050		} else if (bits <= 32) {
1051			drv_data->n_bytes = 4;
1052			drv_data->dma_width = DCMD_WIDTH4;
1053			drv_data->read = drv_data->read != null_reader ?
1054						u32_reader : null_reader;
1055			drv_data->write = drv_data->write != null_writer ?
1056						u32_writer : null_writer;
1057		}
1058		/* if bits/word is changed in dma mode, then must check the
1059		 * thresholds and burst also */
1060		if (chip->enable_dma) {
1061			if (set_dma_burst_and_threshold(chip, message->spi,
1062							bits, &dma_burst,
1063							&dma_thresh))
1064				if (printk_ratelimit())
1065					dev_warn(&message->spi->dev,
1066						"pump_transfers: "
1067						"DMA burst size reduced to "
1068						"match bits_per_word\n");
1069		}
1070
1071		cr0 = clk_div
1072			| SSCR0_Motorola
1073			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074			| SSCR0_SSE
1075			| (bits > 16 ? SSCR0_EDSS : 0);
1076	}
1077
1078	message->state = RUNNING_STATE;
1079
1080	/* Try to map dma buffer and do a dma transfer if successful, but
1081	 * only if the length is non-zero and less than MAX_DMA_LEN.
1082	 *
1083	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084	 * of PIO instead.  Care is needed above because the transfer may
1085	 * have have been passed with buffers that are already dma mapped.
1086	 * A zero-length transfer in PIO mode will not try to write/read
1087	 * to/from the buffers
1088	 *
1089	 * REVISIT large transfers are exactly where we most want to be
1090	 * using DMA.  If this happens much, split those transfers into
1091	 * multiple DMA segments rather than forcing PIO.
1092	 */
1093	drv_data->dma_mapped = 0;
1094	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095		drv_data->dma_mapped = map_dma_buffers(drv_data);
1096	if (drv_data->dma_mapped) {
1097
1098		/* Ensure we have the correct interrupt handler */
1099		drv_data->transfer_handler = dma_transfer;
1100
1101		/* Setup rx DMA Channel */
1102		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105		if (drv_data->rx == drv_data->null_dma_buf)
1106			/* No target address increment */
1107			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108							| drv_data->dma_width
1109							| dma_burst
1110							| drv_data->len;
1111		else
1112			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113							| DCMD_FLOWSRC
1114							| drv_data->dma_width
1115							| dma_burst
1116							| drv_data->len;
1117
1118		/* Setup tx DMA Channel */
1119		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122		if (drv_data->tx == drv_data->null_dma_buf)
1123			/* No source address increment */
1124			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125							| drv_data->dma_width
1126							| dma_burst
1127							| drv_data->len;
1128		else
1129			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130							| DCMD_FLOWTRG
1131							| drv_data->dma_width
1132							| dma_burst
1133							| drv_data->len;
1134
1135		/* Enable dma end irqs on SSP to detect end of transfer */
1136		if (drv_data->ssp_type == PXA25x_SSP)
1137			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138
1139		/* Clear status and start DMA engine */
1140		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141		write_SSSR(drv_data->clear_sr, reg);
1142		DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143		DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144	} else {
1145		/* Ensure we have the correct interrupt handler	*/
1146		drv_data->transfer_handler = interrupt_transfer;
1147
1148		/* Clear status  */
1149		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150		write_SSSR_CS(drv_data, drv_data->clear_sr);
1151	}
1152
1153	/* see if we need to reload the config registers */
1154	if ((read_SSCR0(reg) != cr0)
1155		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156			(cr1 & SSCR1_CHANGE_MASK)) {
1157
1158		/* stop the SSP, and update the other bits */
1159		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160		if (!pxa25x_ssp_comp(drv_data))
1161			write_SSTO(chip->timeout, reg);
1162		/* first set CR1 without interrupt and service enables */
1163		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164		/* restart the SSP */
1165		write_SSCR0(cr0, reg);
1166
1167	} else {
1168		if (!pxa25x_ssp_comp(drv_data))
1169			write_SSTO(chip->timeout, reg);
1170	}
1171
1172	cs_assert(drv_data);
1173
1174	/* after chip select, release the data by enabling service
1175	 * requests and interrupts, without changing any mode bits */
1176	write_SSCR1(cr1, reg);
1177}
1178
1179static void pump_messages(struct work_struct *work)
1180{
1181	struct driver_data *drv_data =
1182		container_of(work, struct driver_data, pump_messages);
1183	unsigned long flags;
1184
1185	/* Lock queue and check for queue work */
1186	spin_lock_irqsave(&drv_data->lock, flags);
1187	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188		drv_data->busy = 0;
1189		spin_unlock_irqrestore(&drv_data->lock, flags);
1190		return;
1191	}
1192
1193	/* Make sure we are not already running a message */
1194	if (drv_data->cur_msg) {
1195		spin_unlock_irqrestore(&drv_data->lock, flags);
1196		return;
1197	}
1198
1199	/* Extract head of queue */
1200	drv_data->cur_msg = list_entry(drv_data->queue.next,
1201					struct spi_message, queue);
1202	list_del_init(&drv_data->cur_msg->queue);
1203
1204	/* Initial message state*/
1205	drv_data->cur_msg->state = START_STATE;
1206	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207						struct spi_transfer,
1208						transfer_list);
1209
1210	/* prepare to setup the SSP, in pump_transfers, using the per
1211	 * chip configuration */
1212	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213
1214	/* Mark as busy and launch transfers */
1215	tasklet_schedule(&drv_data->pump_transfers);
1216
1217	drv_data->busy = 1;
1218	spin_unlock_irqrestore(&drv_data->lock, flags);
1219}
1220
1221static int transfer(struct spi_device *spi, struct spi_message *msg)
1222{
1223	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224	unsigned long flags;
1225
1226	spin_lock_irqsave(&drv_data->lock, flags);
1227
1228	if (drv_data->run == QUEUE_STOPPED) {
1229		spin_unlock_irqrestore(&drv_data->lock, flags);
1230		return -ESHUTDOWN;
1231	}
1232
1233	msg->actual_length = 0;
1234	msg->status = -EINPROGRESS;
1235	msg->state = START_STATE;
1236
1237	list_add_tail(&msg->queue, &drv_data->queue);
1238
1239	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240		queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241
1242	spin_unlock_irqrestore(&drv_data->lock, flags);
1243
1244	return 0;
1245}
1246
1247static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248		    struct pxa2xx_spi_chip *chip_info)
1249{
1250	int err = 0;
1251
1252	if (chip == NULL || chip_info == NULL)
1253		return 0;
1254
1255	/* NOTE: setup() can be called multiple times, possibly with
1256	 * different chip_info, release previously requested GPIO
1257	 */
1258	if (gpio_is_valid(chip->gpio_cs))
1259		gpio_free(chip->gpio_cs);
1260
1261	/* If (*cs_control) is provided, ignore GPIO chip select */
1262	if (chip_info->cs_control) {
1263		chip->cs_control = chip_info->cs_control;
1264		return 0;
1265	}
1266
1267	if (gpio_is_valid(chip_info->gpio_cs)) {
1268		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269		if (err) {
1270			dev_err(&spi->dev, "failed to request chip select "
1271					"GPIO%d\n", chip_info->gpio_cs);
1272			return err;
1273		}
1274
1275		chip->gpio_cs = chip_info->gpio_cs;
1276		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277
1278		err = gpio_direction_output(chip->gpio_cs,
1279					!chip->gpio_cs_inverted);
1280	}
1281
1282	return err;
1283}
1284
1285static int setup(struct spi_device *spi)
1286{
1287	struct pxa2xx_spi_chip *chip_info = NULL;
1288	struct chip_data *chip;
1289	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290	struct ssp_device *ssp = drv_data->ssp;
1291	unsigned int clk_div;
1292	uint tx_thres = TX_THRESH_DFLT;
1293	uint rx_thres = RX_THRESH_DFLT;
1294
1295	if (!pxa25x_ssp_comp(drv_data)
1296		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298				"b/w not 4-32 for type non-PXA25x_SSP\n",
1299				drv_data->ssp_type, spi->bits_per_word);
1300		return -EINVAL;
1301	} else if (pxa25x_ssp_comp(drv_data)
1302			&& (spi->bits_per_word < 4
1303				|| spi->bits_per_word > 16)) {
1304		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305				"b/w not 4-16 for type PXA25x_SSP\n",
1306				drv_data->ssp_type, spi->bits_per_word);
1307		return -EINVAL;
1308	}
1309
1310	/* Only alloc on first setup */
1311	chip = spi_get_ctldata(spi);
1312	if (!chip) {
1313		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314		if (!chip) {
1315			dev_err(&spi->dev,
1316				"failed setup: can't allocate chip data\n");
1317			return -ENOMEM;
1318		}
1319
1320		if (drv_data->ssp_type == CE4100_SSP) {
1321			if (spi->chip_select > 4) {
1322				dev_err(&spi->dev, "failed setup: "
1323				"cs number must not be > 4.\n");
1324				kfree(chip);
1325				return -EINVAL;
1326			}
1327
1328			chip->frm = spi->chip_select;
1329		} else
1330			chip->gpio_cs = -1;
1331		chip->enable_dma = 0;
1332		chip->timeout = TIMOUT_DFLT;
1333		chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334					DCMD_BURST8 : 0;
1335	}
1336
1337	/* protocol drivers may change the chip settings, so...
1338	 * if chip_info exists, use it */
1339	chip_info = spi->controller_data;
1340
1341	/* chip_info isn't always needed */
1342	chip->cr1 = 0;
1343	if (chip_info) {
1344		if (chip_info->timeout)
1345			chip->timeout = chip_info->timeout;
1346		if (chip_info->tx_threshold)
1347			tx_thres = chip_info->tx_threshold;
1348		if (chip_info->rx_threshold)
1349			rx_thres = chip_info->rx_threshold;
1350		chip->enable_dma = drv_data->master_info->enable_dma;
1351		chip->dma_threshold = 0;
1352		if (chip_info->enable_loopback)
1353			chip->cr1 = SSCR1_LBM;
1354	}
1355
1356	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358
1359	/* set dma burst and threshold outside of chip_info path so that if
1360	 * chip_info goes away after setting chip->enable_dma, the
1361	 * burst and threshold can still respond to changes in bits_per_word */
1362	if (chip->enable_dma) {
1363		/* set up legal burst and threshold for dma */
1364		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1365						&chip->dma_burst_size,
1366						&chip->dma_threshold)) {
1367			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368					"to match bits_per_word\n");
1369		}
1370	}
1371
1372	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373	chip->speed_hz = spi->max_speed_hz;
1374
1375	chip->cr0 = clk_div
1376			| SSCR0_Motorola
1377			| SSCR0_DataSize(spi->bits_per_word > 16 ?
1378				spi->bits_per_word - 16 : spi->bits_per_word)
1379			| SSCR0_SSE
1380			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1386	if (!pxa25x_ssp_comp(drv_data))
1387		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388			clk_get_rate(ssp->clk)
1389				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390			chip->enable_dma ? "DMA" : "PIO");
1391	else
1392		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393			clk_get_rate(ssp->clk) / 2
1394				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395			chip->enable_dma ? "DMA" : "PIO");
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
1399		chip->dma_width = DCMD_WIDTH1;
1400		chip->read = u8_reader;
1401		chip->write = u8_writer;
1402	} else if (spi->bits_per_word <= 16) {
1403		chip->n_bytes = 2;
1404		chip->dma_width = DCMD_WIDTH2;
1405		chip->read = u16_reader;
1406		chip->write = u16_writer;
1407	} else if (spi->bits_per_word <= 32) {
1408		chip->cr0 |= SSCR0_EDSS;
1409		chip->n_bytes = 4;
1410		chip->dma_width = DCMD_WIDTH4;
1411		chip->read = u32_reader;
1412		chip->write = u32_writer;
1413	} else {
1414		dev_err(&spi->dev, "invalid wordsize\n");
1415		return -ENODEV;
1416	}
1417	chip->bits_per_word = spi->bits_per_word;
1418
1419	spi_set_ctldata(spi, chip);
1420
1421	if (drv_data->ssp_type == CE4100_SSP)
1422		return 0;
1423
1424	return setup_cs(spi, chip, chip_info);
1425}
1426
1427static void cleanup(struct spi_device *spi)
1428{
1429	struct chip_data *chip = spi_get_ctldata(spi);
1430	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1431
1432	if (!chip)
1433		return;
1434
1435	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436		gpio_free(chip->gpio_cs);
1437
1438	kfree(chip);
1439}
1440
1441static int __devinit init_queue(struct driver_data *drv_data)
1442{
1443	INIT_LIST_HEAD(&drv_data->queue);
1444	spin_lock_init(&drv_data->lock);
1445
1446	drv_data->run = QUEUE_STOPPED;
1447	drv_data->busy = 0;
1448
1449	tasklet_init(&drv_data->pump_transfers,
1450			pump_transfers,	(unsigned long)drv_data);
1451
1452	INIT_WORK(&drv_data->pump_messages, pump_messages);
1453	drv_data->workqueue = create_singlethread_workqueue(
1454				dev_name(drv_data->master->dev.parent));
1455	if (drv_data->workqueue == NULL)
1456		return -EBUSY;
1457
1458	return 0;
1459}
1460
1461static int start_queue(struct driver_data *drv_data)
1462{
1463	unsigned long flags;
1464
1465	spin_lock_irqsave(&drv_data->lock, flags);
1466
1467	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468		spin_unlock_irqrestore(&drv_data->lock, flags);
1469		return -EBUSY;
1470	}
1471
1472	drv_data->run = QUEUE_RUNNING;
1473	drv_data->cur_msg = NULL;
1474	drv_data->cur_transfer = NULL;
1475	drv_data->cur_chip = NULL;
1476	spin_unlock_irqrestore(&drv_data->lock, flags);
1477
1478	queue_work(drv_data->workqueue, &drv_data->pump_messages);
1479
1480	return 0;
1481}
1482
1483static int stop_queue(struct driver_data *drv_data)
1484{
1485	unsigned long flags;
1486	unsigned limit = 500;
1487	int status = 0;
1488
1489	spin_lock_irqsave(&drv_data->lock, flags);
1490
1491	/* This is a bit lame, but is optimized for the common execution path.
1492	 * A wait_queue on the drv_data->busy could be used, but then the common
1493	 * execution path (pump_messages) would be required to call wake_up or
1494	 * friends on every SPI message. Do this instead */
1495	drv_data->run = QUEUE_STOPPED;
1496	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497		spin_unlock_irqrestore(&drv_data->lock, flags);
1498		msleep(10);
1499		spin_lock_irqsave(&drv_data->lock, flags);
1500	}
1501
1502	if (!list_empty(&drv_data->queue) || drv_data->busy)
1503		status = -EBUSY;
1504
1505	spin_unlock_irqrestore(&drv_data->lock, flags);
1506
1507	return status;
1508}
1509
1510static int destroy_queue(struct driver_data *drv_data)
1511{
1512	int status;
1513
1514	status = stop_queue(drv_data);
1515	/* we are unloading the module or failing to load (only two calls
1516	 * to this routine), and neither call can handle a return value.
1517	 * However, destroy_workqueue calls flush_workqueue, and that will
1518	 * block until all work is done.  If the reason that stop_queue
1519	 * timed out is that the work will never finish, then it does no
1520	 * good to call destroy_workqueue, so return anyway. */
1521	if (status != 0)
1522		return status;
1523
1524	destroy_workqueue(drv_data->workqueue);
1525
1526	return 0;
1527}
1528
1529static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530{
1531	struct device *dev = &pdev->dev;
1532	struct pxa2xx_spi_master *platform_info;
1533	struct spi_master *master;
1534	struct driver_data *drv_data;
1535	struct ssp_device *ssp;
1536	int status;
1537
1538	platform_info = dev->platform_data;
1539
1540	ssp = pxa_ssp_request(pdev->id, pdev->name);
1541	if (ssp == NULL) {
1542		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1543		return -ENODEV;
1544	}
1545
1546	/* Allocate master with space for drv_data and null dma buffer */
1547	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548	if (!master) {
1549		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550		pxa_ssp_free(ssp);
1551		return -ENOMEM;
1552	}
1553	drv_data = spi_master_get_devdata(master);
1554	drv_data->master = master;
1555	drv_data->master_info = platform_info;
1556	drv_data->pdev = pdev;
1557	drv_data->ssp = ssp;
1558
1559	master->dev.parent = &pdev->dev;
1560	master->dev.of_node = pdev->dev.of_node;
1561	/* the spi->mode bits understood by this driver: */
1562	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563
1564	master->bus_num = pdev->id;
1565	master->num_chipselect = platform_info->num_chipselect;
1566	master->dma_alignment = DMA_ALIGNMENT;
1567	master->cleanup = cleanup;
1568	master->setup = setup;
1569	master->transfer = transfer;
1570
1571	drv_data->ssp_type = ssp->type;
1572	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573						sizeof(struct driver_data)), 8);
1574
1575	drv_data->ioaddr = ssp->mmio_base;
1576	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577	if (pxa25x_ssp_comp(drv_data)) {
1578		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579		drv_data->dma_cr1 = 0;
1580		drv_data->clear_sr = SSSR_ROR;
1581		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582	} else {
1583		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587	}
1588
1589	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590			drv_data);
1591	if (status < 0) {
1592		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593		goto out_error_master_alloc;
1594	}
1595
1596	/* Setup DMA if requested */
1597	drv_data->tx_channel = -1;
1598	drv_data->rx_channel = -1;
1599	if (platform_info->enable_dma) {
1600
1601		/* Get two DMA channels	(rx and tx) */
1602		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603							DMA_PRIO_HIGH,
1604							dma_handler,
1605							drv_data);
1606		if (drv_data->rx_channel < 0) {
1607			dev_err(dev, "problem (%d) requesting rx channel\n",
1608				drv_data->rx_channel);
1609			status = -ENODEV;
1610			goto out_error_irq_alloc;
1611		}
1612		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613							DMA_PRIO_MEDIUM,
1614							dma_handler,
1615							drv_data);
1616		if (drv_data->tx_channel < 0) {
1617			dev_err(dev, "problem (%d) requesting tx channel\n",
1618				drv_data->tx_channel);
1619			status = -ENODEV;
1620			goto out_error_dma_alloc;
1621		}
1622
1623		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625	}
1626
1627	/* Enable SOC clock */
1628	clk_enable(ssp->clk);
1629
1630	/* Load default SSP configuration */
1631	write_SSCR0(0, drv_data->ioaddr);
1632	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633				SSCR1_TxTresh(TX_THRESH_DFLT),
1634				drv_data->ioaddr);
1635	write_SSCR0(SSCR0_SCR(2)
1636			| SSCR0_Motorola
1637			| SSCR0_DataSize(8),
1638			drv_data->ioaddr);
1639	if (!pxa25x_ssp_comp(drv_data))
1640		write_SSTO(0, drv_data->ioaddr);
1641	write_SSPSP(0, drv_data->ioaddr);
1642
1643	/* Initial and start queue */
1644	status = init_queue(drv_data);
1645	if (status != 0) {
1646		dev_err(&pdev->dev, "problem initializing queue\n");
1647		goto out_error_clock_enabled;
1648	}
1649	status = start_queue(drv_data);
1650	if (status != 0) {
1651		dev_err(&pdev->dev, "problem starting queue\n");
1652		goto out_error_clock_enabled;
1653	}
1654
1655	/* Register with the SPI framework */
1656	platform_set_drvdata(pdev, drv_data);
1657	status = spi_register_master(master);
1658	if (status != 0) {
1659		dev_err(&pdev->dev, "problem registering spi master\n");
1660		goto out_error_queue_alloc;
1661	}
1662
1663	return status;
1664
1665out_error_queue_alloc:
1666	destroy_queue(drv_data);
1667
1668out_error_clock_enabled:
1669	clk_disable(ssp->clk);
1670
1671out_error_dma_alloc:
1672	if (drv_data->tx_channel != -1)
1673		pxa_free_dma(drv_data->tx_channel);
1674	if (drv_data->rx_channel != -1)
1675		pxa_free_dma(drv_data->rx_channel);
1676
1677out_error_irq_alloc:
1678	free_irq(ssp->irq, drv_data);
1679
1680out_error_master_alloc:
1681	spi_master_put(master);
1682	pxa_ssp_free(ssp);
1683	return status;
1684}
1685
1686static int pxa2xx_spi_remove(struct platform_device *pdev)
1687{
1688	struct driver_data *drv_data = platform_get_drvdata(pdev);
1689	struct ssp_device *ssp;
1690	int status = 0;
1691
1692	if (!drv_data)
1693		return 0;
1694	ssp = drv_data->ssp;
1695
1696	/* Remove the queue */
1697	status = destroy_queue(drv_data);
1698	if (status != 0)
1699		/* the kernel does not check the return status of this
1700		 * this routine (mod->exit, within the kernel).  Therefore
1701		 * nothing is gained by returning from here, the module is
1702		 * going away regardless, and we should not leave any more
1703		 * resources allocated than necessary.  We cannot free the
1704		 * message memory in drv_data->queue, but we can release the
1705		 * resources below.  I think the kernel should honor -EBUSY
1706		 * returns but... */
1707		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708			"complete, message memory not freed\n");
1709
1710	/* Disable the SSP at the peripheral and SOC level */
1711	write_SSCR0(0, drv_data->ioaddr);
1712	clk_disable(ssp->clk);
1713
1714	/* Release DMA */
1715	if (drv_data->master_info->enable_dma) {
1716		DRCMR(ssp->drcmr_rx) = 0;
1717		DRCMR(ssp->drcmr_tx) = 0;
1718		pxa_free_dma(drv_data->tx_channel);
1719		pxa_free_dma(drv_data->rx_channel);
1720	}
1721
1722	/* Release IRQ */
1723	free_irq(ssp->irq, drv_data);
1724
1725	/* Release SSP */
1726	pxa_ssp_free(ssp);
1727
1728	/* Disconnect from the SPI framework */
1729	spi_unregister_master(drv_data->master);
1730
1731	/* Prevent double remove */
1732	platform_set_drvdata(pdev, NULL);
1733
1734	return 0;
1735}
1736
1737static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738{
1739	int status = 0;
1740
1741	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743}
1744
1745#ifdef CONFIG_PM
1746static int pxa2xx_spi_suspend(struct device *dev)
1747{
1748	struct driver_data *drv_data = dev_get_drvdata(dev);
1749	struct ssp_device *ssp = drv_data->ssp;
1750	int status = 0;
1751
1752	status = stop_queue(drv_data);
1753	if (status != 0)
1754		return status;
1755	write_SSCR0(0, drv_data->ioaddr);
1756	clk_disable(ssp->clk);
1757
1758	return 0;
1759}
1760
1761static int pxa2xx_spi_resume(struct device *dev)
1762{
1763	struct driver_data *drv_data = dev_get_drvdata(dev);
1764	struct ssp_device *ssp = drv_data->ssp;
1765	int status = 0;
1766
1767	if (drv_data->rx_channel != -1)
1768		DRCMR(drv_data->ssp->drcmr_rx) =
1769			DRCMR_MAPVLD | drv_data->rx_channel;
1770	if (drv_data->tx_channel != -1)
1771		DRCMR(drv_data->ssp->drcmr_tx) =
1772			DRCMR_MAPVLD | drv_data->tx_channel;
1773
1774	/* Enable the SSP clock */
1775	clk_enable(ssp->clk);
1776
1777	/* Start the queue running */
1778	status = start_queue(drv_data);
1779	if (status != 0) {
1780		dev_err(dev, "problem starting queue (%d)\n", status);
1781		return status;
1782	}
1783
1784	return 0;
1785}
1786
1787static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788	.suspend	= pxa2xx_spi_suspend,
1789	.resume		= pxa2xx_spi_resume,
1790};
1791#endif
1792
1793static struct platform_driver driver = {
1794	.driver = {
1795		.name	= "pxa2xx-spi",
1796		.owner	= THIS_MODULE,
1797#ifdef CONFIG_PM
1798		.pm	= &pxa2xx_spi_pm_ops,
1799#endif
1800	},
1801	.probe = pxa2xx_spi_probe,
1802	.remove = pxa2xx_spi_remove,
1803	.shutdown = pxa2xx_spi_shutdown,
1804};
1805
1806static int __init pxa2xx_spi_init(void)
1807{
1808	return platform_driver_register(&driver);
1809}
1810subsys_initcall(pxa2xx_spi_init);
1811
1812static void __exit pxa2xx_spi_exit(void)
1813{
1814	platform_driver_unregister(&driver);
1815}
1816module_exit(pxa2xx_spi_exit);