Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
 
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
 
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/ioport.h>
  23#include <linux/errno.h>
 
  24#include <linux/interrupt.h>
 
 
  25#include <linux/platform_device.h>
  26#include <linux/spi/pxa2xx_spi.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/spi/spi.h>
  29#include <linux/workqueue.h>
  30#include <linux/delay.h>
  31#include <linux/gpio.h>
  32#include <linux/slab.h>
 
 
 
  33
  34#include <asm/io.h>
  35#include <asm/irq.h>
  36#include <asm/delay.h>
  37
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define MAX_BUSES 3
  45
  46#define TIMOUT_DFLT		1000
  47
  48#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  49#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
  50#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
  51#define MAX_DMA_LEN		8191
  52#define DMA_ALIGNMENT		8
  53
  54/*
  55 * for testing SSCR1 changes that require SSP restart, basically
  56 * everything except the service and interrupt enables, the pxa270 developer
  57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  58 * list, but the PXA255 dev man says all bits without really meaning the
  59 * service and interrupt enables
  60 */
  61#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  62				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  63				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  64				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  65				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  66				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  67
  68#define DEFINE_SSP_REG(reg, off) \
  69static inline u32 read_##reg(void const __iomem *p) \
  70{ return __raw_readl(p + (off)); } \
  71\
  72static inline void write_##reg(u32 v, void __iomem *p) \
  73{ __raw_writel(v, p + (off)); }
  74
  75DEFINE_SSP_REG(SSCR0, 0x00)
  76DEFINE_SSP_REG(SSCR1, 0x04)
  77DEFINE_SSP_REG(SSSR, 0x08)
  78DEFINE_SSP_REG(SSITR, 0x0c)
  79DEFINE_SSP_REG(SSDR, 0x10)
  80DEFINE_SSP_REG(SSTO, 0x28)
  81DEFINE_SSP_REG(SSPSP, 0x2c)
  82
  83#define START_STATE ((void*)0)
  84#define RUNNING_STATE ((void*)1)
  85#define DONE_STATE ((void*)2)
  86#define ERROR_STATE ((void*)-1)
  87
  88#define QUEUE_RUNNING 0
  89#define QUEUE_STOPPED 1
  90
  91struct driver_data {
  92	/* Driver model hookup */
  93	struct platform_device *pdev;
  94
  95	/* SSP Info */
  96	struct ssp_device *ssp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98	/* SPI framework hookup */
  99	enum pxa_ssp_type ssp_type;
 100	struct spi_master *master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101
 102	/* PXA hookup */
 103	struct pxa2xx_spi_master *master_info;
 
 
 
 104
 105	/* DMA setup stuff */
 106	int rx_channel;
 107	int tx_channel;
 108	u32 *null_dma_buf;
 109
 110	/* SSP register addresses */
 111	void __iomem *ioaddr;
 112	u32 ssdr_physical;
 113
 114	/* SSP masks*/
 115	u32 dma_cr1;
 116	u32 int_cr1;
 117	u32 clear_sr;
 118	u32 mask_sr;
 119
 120	/* Driver message queue */
 121	struct workqueue_struct	*workqueue;
 122	struct work_struct pump_messages;
 123	spinlock_t lock;
 124	struct list_head queue;
 125	int busy;
 126	int run;
 127
 128	/* Message Transfer pump */
 129	struct tasklet_struct pump_transfers;
 130
 131	/* Current message transfer state info */
 132	struct spi_message* cur_msg;
 133	struct spi_transfer* cur_transfer;
 134	struct chip_data *cur_chip;
 135	size_t len;
 136	void *tx;
 137	void *tx_end;
 138	void *rx;
 139	void *rx_end;
 140	int dma_mapped;
 141	dma_addr_t rx_dma;
 142	dma_addr_t tx_dma;
 143	size_t rx_map_len;
 144	size_t tx_map_len;
 145	u8 n_bytes;
 146	u32 dma_width;
 147	int (*write)(struct driver_data *drv_data);
 148	int (*read)(struct driver_data *drv_data);
 149	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 150	void (*cs_control)(u32 command);
 151};
 152
 153struct chip_data {
 154	u32 cr0;
 155	u32 cr1;
 156	u32 psp;
 157	u32 timeout;
 158	u8 n_bytes;
 159	u32 dma_width;
 160	u32 dma_burst_size;
 161	u32 threshold;
 162	u32 dma_threshold;
 163	u8 enable_dma;
 164	u8 bits_per_word;
 165	u32 speed_hz;
 166	union {
 167		int gpio_cs;
 168		unsigned int frm;
 169	};
 170	int gpio_cs_inverted;
 171	int (*write)(struct driver_data *drv_data);
 172	int (*read)(struct driver_data *drv_data);
 173	void (*cs_control)(u32 command);
 174};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176static void pump_messages(struct work_struct *work);
 
 
 
 
 
 
 
 
 
 177
 178static void cs_assert(struct driver_data *drv_data)
 179{
 180	struct chip_data *chip = drv_data->cur_chip;
 181
 182	if (drv_data->ssp_type == CE4100_SSP) {
 183		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
 184		return;
 185	}
 186
 187	if (chip->cs_control) {
 188		chip->cs_control(PXA2XX_CS_ASSERT);
 189		return;
 190	}
 191
 192	if (gpio_is_valid(chip->gpio_cs))
 193		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 
 
 
 
 
 194}
 195
 196static void cs_deassert(struct driver_data *drv_data)
 197{
 198	struct chip_data *chip = drv_data->cur_chip;
 199
 200	if (drv_data->ssp_type == CE4100_SSP)
 201		return;
 202
 203	if (chip->cs_control) {
 204		chip->cs_control(PXA2XX_CS_DEASSERT);
 205		return;
 206	}
 207
 208	if (gpio_is_valid(chip->gpio_cs))
 209		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 210}
 211
 212static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
 213{
 214	void __iomem *reg = drv_data->ioaddr;
 215
 216	if (drv_data->ssp_type == CE4100_SSP)
 217		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
 218
 219	write_SSSR(val, reg);
 
 220}
 221
 222static int pxa25x_ssp_comp(struct driver_data *drv_data)
 223{
 224	if (drv_data->ssp_type == PXA25x_SSP)
 225		return 1;
 226	if (drv_data->ssp_type == CE4100_SSP)
 227		return 1;
 228	return 0;
 229}
 230
 231static int flush(struct driver_data *drv_data)
 232{
 233	unsigned long limit = loops_per_jiffy << 1;
 234
 235	void __iomem *reg = drv_data->ioaddr;
 236
 237	do {
 238		while (read_SSSR(reg) & SSSR_RNE) {
 239			read_SSDR(reg);
 240		}
 241	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
 242	write_SSSR_CS(drv_data, SSSR_ROR);
 243
 244	return limit;
 245}
 246
 247static int null_writer(struct driver_data *drv_data)
 248{
 249	void __iomem *reg = drv_data->ioaddr;
 250	u8 n_bytes = drv_data->n_bytes;
 251
 252	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 253		|| (drv_data->tx == drv_data->tx_end))
 254		return 0;
 255
 256	write_SSDR(0, reg);
 257	drv_data->tx += n_bytes;
 258
 259	return 1;
 260}
 261
 262static int null_reader(struct driver_data *drv_data)
 263{
 264	void __iomem *reg = drv_data->ioaddr;
 265	u8 n_bytes = drv_data->n_bytes;
 266
 267	while ((read_SSSR(reg) & SSSR_RNE)
 268		&& (drv_data->rx < drv_data->rx_end)) {
 269		read_SSDR(reg);
 270		drv_data->rx += n_bytes;
 271	}
 272
 273	return drv_data->rx == drv_data->rx_end;
 274}
 275
 276static int u8_writer(struct driver_data *drv_data)
 277{
 278	void __iomem *reg = drv_data->ioaddr;
 279
 280	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 281		|| (drv_data->tx == drv_data->tx_end))
 282		return 0;
 283
 284	write_SSDR(*(u8 *)(drv_data->tx), reg);
 285	++drv_data->tx;
 286
 287	return 1;
 288}
 289
 290static int u8_reader(struct driver_data *drv_data)
 291{
 292	void __iomem *reg = drv_data->ioaddr;
 293
 294	while ((read_SSSR(reg) & SSSR_RNE)
 295		&& (drv_data->rx < drv_data->rx_end)) {
 296		*(u8 *)(drv_data->rx) = read_SSDR(reg);
 297		++drv_data->rx;
 298	}
 299
 300	return drv_data->rx == drv_data->rx_end;
 301}
 302
 303static int u16_writer(struct driver_data *drv_data)
 304{
 305	void __iomem *reg = drv_data->ioaddr;
 306
 307	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 308		|| (drv_data->tx == drv_data->tx_end))
 309		return 0;
 310
 311	write_SSDR(*(u16 *)(drv_data->tx), reg);
 312	drv_data->tx += 2;
 313
 314	return 1;
 315}
 316
 317static int u16_reader(struct driver_data *drv_data)
 318{
 319	void __iomem *reg = drv_data->ioaddr;
 320
 321	while ((read_SSSR(reg) & SSSR_RNE)
 322		&& (drv_data->rx < drv_data->rx_end)) {
 323		*(u16 *)(drv_data->rx) = read_SSDR(reg);
 324		drv_data->rx += 2;
 325	}
 326
 327	return drv_data->rx == drv_data->rx_end;
 328}
 329
 330static int u32_writer(struct driver_data *drv_data)
 331{
 332	void __iomem *reg = drv_data->ioaddr;
 333
 334	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 335		|| (drv_data->tx == drv_data->tx_end))
 336		return 0;
 337
 338	write_SSDR(*(u32 *)(drv_data->tx), reg);
 339	drv_data->tx += 4;
 340
 341	return 1;
 342}
 343
 344static int u32_reader(struct driver_data *drv_data)
 345{
 346	void __iomem *reg = drv_data->ioaddr;
 347
 348	while ((read_SSSR(reg) & SSSR_RNE)
 349		&& (drv_data->rx < drv_data->rx_end)) {
 350		*(u32 *)(drv_data->rx) = read_SSDR(reg);
 351		drv_data->rx += 4;
 352	}
 353
 354	return drv_data->rx == drv_data->rx_end;
 355}
 356
 357static void *next_transfer(struct driver_data *drv_data)
 358{
 359	struct spi_message *msg = drv_data->cur_msg;
 360	struct spi_transfer *trans = drv_data->cur_transfer;
 361
 362	/* Move to next transfer */
 363	if (trans->transfer_list.next != &msg->transfers) {
 364		drv_data->cur_transfer =
 365			list_entry(trans->transfer_list.next,
 366					struct spi_transfer,
 367					transfer_list);
 368		return RUNNING_STATE;
 369	} else
 370		return DONE_STATE;
 371}
 372
 373static int map_dma_buffers(struct driver_data *drv_data)
 374{
 375	struct spi_message *msg = drv_data->cur_msg;
 376	struct device *dev = &msg->spi->dev;
 377
 378	if (!drv_data->cur_chip->enable_dma)
 379		return 0;
 380
 381	if (msg->is_dma_mapped)
 382		return  drv_data->rx_dma && drv_data->tx_dma;
 383
 384	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 385		return 0;
 386
 387	/* Modify setup if rx buffer is null */
 388	if (drv_data->rx == NULL) {
 389		*drv_data->null_dma_buf = 0;
 390		drv_data->rx = drv_data->null_dma_buf;
 391		drv_data->rx_map_len = 4;
 392	} else
 393		drv_data->rx_map_len = drv_data->len;
 394
 395
 396	/* Modify setup if tx buffer is null */
 397	if (drv_data->tx == NULL) {
 398		*drv_data->null_dma_buf = 0;
 399		drv_data->tx = drv_data->null_dma_buf;
 400		drv_data->tx_map_len = 4;
 401	} else
 402		drv_data->tx_map_len = drv_data->len;
 403
 404	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 405	 * so we flush the cache *before* invalidating it, in case
 406	 * the tx and rx buffers overlap.
 407	 */
 408	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 409					drv_data->tx_map_len, DMA_TO_DEVICE);
 410	if (dma_mapping_error(dev, drv_data->tx_dma))
 411		return 0;
 412
 413	/* Stream map the rx buffer */
 414	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 415					drv_data->rx_map_len, DMA_FROM_DEVICE);
 416	if (dma_mapping_error(dev, drv_data->rx_dma)) {
 417		dma_unmap_single(dev, drv_data->tx_dma,
 418					drv_data->tx_map_len, DMA_TO_DEVICE);
 419		return 0;
 420	}
 421
 422	return 1;
 423}
 424
 425static void unmap_dma_buffers(struct driver_data *drv_data)
 426{
 427	struct device *dev;
 428
 429	if (!drv_data->dma_mapped)
 430		return;
 431
 432	if (!drv_data->cur_msg->is_dma_mapped) {
 433		dev = &drv_data->cur_msg->spi->dev;
 434		dma_unmap_single(dev, drv_data->rx_dma,
 435					drv_data->rx_map_len, DMA_FROM_DEVICE);
 436		dma_unmap_single(dev, drv_data->tx_dma,
 437					drv_data->tx_map_len, DMA_TO_DEVICE);
 438	}
 439
 440	drv_data->dma_mapped = 0;
 441}
 442
 443/* caller already set message->status; dma and pio irqs are blocked */
 444static void giveback(struct driver_data *drv_data)
 445{
 446	struct spi_transfer* last_transfer;
 447	unsigned long flags;
 448	struct spi_message *msg;
 
 449
 450	spin_lock_irqsave(&drv_data->lock, flags);
 451	msg = drv_data->cur_msg;
 452	drv_data->cur_msg = NULL;
 453	drv_data->cur_transfer = NULL;
 454	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 455	spin_unlock_irqrestore(&drv_data->lock, flags);
 456
 457	last_transfer = list_entry(msg->transfers.prev,
 458					struct spi_transfer,
 459					transfer_list);
 460
 461	/* Delay if requested before any change in chip select */
 462	if (last_transfer->delay_usecs)
 463		udelay(last_transfer->delay_usecs);
 464
 
 
 
 
 
 
 465	/* Drop chip select UNLESS cs_change is true or we are returning
 466	 * a message with an error, or next message is for another chip
 467	 */
 468	if (!last_transfer->cs_change)
 469		cs_deassert(drv_data);
 470	else {
 471		struct spi_message *next_msg;
 472
 473		/* Holding of cs was hinted, but we need to make sure
 474		 * the next message is for the same chip.  Don't waste
 475		 * time with the following tests unless this was hinted.
 476		 *
 477		 * We cannot postpone this until pump_messages, because
 478		 * after calling msg->complete (below) the driver that
 479		 * sent the current message could be unloaded, which
 480		 * could invalidate the cs_control() callback...
 481		 */
 482
 483		/* get a pointer to the next message, if any */
 484		spin_lock_irqsave(&drv_data->lock, flags);
 485		if (list_empty(&drv_data->queue))
 486			next_msg = NULL;
 487		else
 488			next_msg = list_entry(drv_data->queue.next,
 489					struct spi_message, queue);
 490		spin_unlock_irqrestore(&drv_data->lock, flags);
 491
 492		/* see if the next and current messages point
 493		 * to the same chip
 494		 */
 495		if (next_msg && next_msg->spi != msg->spi)
 496			next_msg = NULL;
 497		if (!next_msg || msg->state == ERROR_STATE)
 498			cs_deassert(drv_data);
 499	}
 500
 501	msg->state = NULL;
 502	if (msg->complete)
 503		msg->complete(msg->context);
 504
 505	drv_data->cur_chip = NULL;
 506}
 507
 508static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 509{
 510	unsigned long limit = loops_per_jiffy << 1;
 511
 512	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
 513		cpu_relax();
 514
 515	return limit;
 516}
 517
 518static int wait_dma_channel_stop(int channel)
 519{
 520	unsigned long limit = loops_per_jiffy << 1;
 521
 522	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
 523		cpu_relax();
 524
 525	return limit;
 526}
 527
 528static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 529{
 530	void __iomem *reg = drv_data->ioaddr;
 531
 532	/* Stop and reset */
 533	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 534	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 535	write_SSSR_CS(drv_data, drv_data->clear_sr);
 536	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 537	if (!pxa25x_ssp_comp(drv_data))
 538		write_SSTO(0, reg);
 539	flush(drv_data);
 540	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 541
 542	unmap_dma_buffers(drv_data);
 543
 544	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 545
 546	drv_data->cur_msg->state = ERROR_STATE;
 547	tasklet_schedule(&drv_data->pump_transfers);
 548}
 549
 550static void dma_transfer_complete(struct driver_data *drv_data)
 551{
 552	void __iomem *reg = drv_data->ioaddr;
 553	struct spi_message *msg = drv_data->cur_msg;
 554
 555	/* Clear and disable interrupts on SSP and DMA channels*/
 556	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 557	write_SSSR_CS(drv_data, drv_data->clear_sr);
 558	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 559	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 560
 561	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 562		dev_err(&drv_data->pdev->dev,
 563			"dma_handler: dma rx channel stop failed\n");
 564
 565	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 566		dev_err(&drv_data->pdev->dev,
 567			"dma_transfer: ssp rx stall failed\n");
 568
 569	unmap_dma_buffers(drv_data);
 570
 571	/* update the buffer pointer for the amount completed in dma */
 572	drv_data->rx += drv_data->len -
 573			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 574
 575	/* read trailing data from fifo, it does not matter how many
 576	 * bytes are in the fifo just read until buffer is full
 577	 * or fifo is empty, which ever occurs first */
 578	drv_data->read(drv_data);
 579
 580	/* return count of what was actually read */
 581	msg->actual_length += drv_data->len -
 582				(drv_data->rx_end - drv_data->rx);
 583
 584	/* Transfer delays and chip select release are
 585	 * handled in pump_transfers or giveback
 586	 */
 587
 588	/* Move to next transfer */
 589	msg->state = next_transfer(drv_data);
 590
 591	/* Schedule transfer tasklet */
 592	tasklet_schedule(&drv_data->pump_transfers);
 593}
 594
 595static void dma_handler(int channel, void *data)
 596{
 597	struct driver_data *drv_data = data;
 598	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 599
 600	if (irq_status & DCSR_BUSERR) {
 601
 602		if (channel == drv_data->tx_channel)
 603			dma_error_stop(drv_data,
 604					"dma_handler: "
 605					"bad bus address on tx channel");
 606		else
 607			dma_error_stop(drv_data,
 608					"dma_handler: "
 609					"bad bus address on rx channel");
 610		return;
 611	}
 612
 613	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 614	if ((channel == drv_data->tx_channel)
 615		&& (irq_status & DCSR_ENDINTR)
 616		&& (drv_data->ssp_type == PXA25x_SSP)) {
 617
 618		/* Wait for rx to stall */
 619		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 620			dev_err(&drv_data->pdev->dev,
 621				"dma_handler: ssp rx stall failed\n");
 622
 623		/* finish this transfer, start the next */
 624		dma_transfer_complete(drv_data);
 625	}
 626}
 627
 628static irqreturn_t dma_transfer(struct driver_data *drv_data)
 629{
 630	u32 irq_status;
 631	void __iomem *reg = drv_data->ioaddr;
 632
 633	irq_status = read_SSSR(reg) & drv_data->mask_sr;
 634	if (irq_status & SSSR_ROR) {
 635		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 636		return IRQ_HANDLED;
 637	}
 638
 639	/* Check for false positive timeout */
 640	if ((irq_status & SSSR_TINT)
 641		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 642		write_SSSR(SSSR_TINT, reg);
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 647
 648		/* Clear and disable timeout interrupt, do the rest in
 649		 * dma_transfer_complete */
 650		if (!pxa25x_ssp_comp(drv_data))
 651			write_SSTO(0, reg);
 652
 653		/* finish this transfer, start the next */
 654		dma_transfer_complete(drv_data);
 655
 656		return IRQ_HANDLED;
 657	}
 658
 659	/* Opps problem detected */
 660	return IRQ_NONE;
 661}
 662
 663static void reset_sccr1(struct driver_data *drv_data)
 664{
 665	void __iomem *reg = drv_data->ioaddr;
 666	struct chip_data *chip = drv_data->cur_chip;
 667	u32 sccr1_reg;
 668
 669	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
 670	sccr1_reg &= ~SSCR1_RFT;
 671	sccr1_reg |= chip->threshold;
 672	write_SSCR1(sccr1_reg, reg);
 673}
 674
 675static void int_error_stop(struct driver_data *drv_data, const char* msg)
 676{
 677	void __iomem *reg = drv_data->ioaddr;
 678
 679	/* Stop and reset SSP */
 680	write_SSSR_CS(drv_data, drv_data->clear_sr);
 681	reset_sccr1(drv_data);
 682	if (!pxa25x_ssp_comp(drv_data))
 683		write_SSTO(0, reg);
 684	flush(drv_data);
 685	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 
 686
 687	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 688
 689	drv_data->cur_msg->state = ERROR_STATE;
 690	tasklet_schedule(&drv_data->pump_transfers);
 691}
 692
 693static void int_transfer_complete(struct driver_data *drv_data)
 694{
 695	void __iomem *reg = drv_data->ioaddr;
 696
 697	/* Stop SSP */
 698	write_SSSR_CS(drv_data, drv_data->clear_sr);
 699	reset_sccr1(drv_data);
 700	if (!pxa25x_ssp_comp(drv_data))
 701		write_SSTO(0, reg);
 702
 703	/* Update total byte transferred return count actual bytes read */
 704	drv_data->cur_msg->actual_length += drv_data->len -
 705				(drv_data->rx_end - drv_data->rx);
 706
 707	/* Transfer delays and chip select release are
 708	 * handled in pump_transfers or giveback
 709	 */
 710
 711	/* Move to next transfer */
 712	drv_data->cur_msg->state = next_transfer(drv_data);
 713
 714	/* Schedule transfer tasklet */
 715	tasklet_schedule(&drv_data->pump_transfers);
 716}
 717
 718static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 719{
 720	void __iomem *reg = drv_data->ioaddr;
 
 721
 722	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 723			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 724
 725	u32 irq_status = read_SSSR(reg) & irq_mask;
 726
 727	if (irq_status & SSSR_ROR) {
 728		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 729		return IRQ_HANDLED;
 730	}
 731
 732	if (irq_status & SSSR_TINT) {
 733		write_SSSR(SSSR_TINT, reg);
 734		if (drv_data->read(drv_data)) {
 735			int_transfer_complete(drv_data);
 736			return IRQ_HANDLED;
 737		}
 738	}
 739
 740	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 741	do {
 742		if (drv_data->read(drv_data)) {
 743			int_transfer_complete(drv_data);
 744			return IRQ_HANDLED;
 745		}
 746	} while (drv_data->write(drv_data));
 747
 748	if (drv_data->read(drv_data)) {
 749		int_transfer_complete(drv_data);
 750		return IRQ_HANDLED;
 751	}
 752
 753	if (drv_data->tx == drv_data->tx_end) {
 754		u32 bytes_left;
 755		u32 sccr1_reg;
 756
 757		sccr1_reg = read_SSCR1(reg);
 758		sccr1_reg &= ~SSCR1_TIE;
 759
 760		/*
 761		 * PXA25x_SSP has no timeout, set up rx threshould for the
 762		 * remaining RX bytes.
 763		 */
 764		if (pxa25x_ssp_comp(drv_data)) {
 
 765
 766			sccr1_reg &= ~SSCR1_RFT;
 767
 768			bytes_left = drv_data->rx_end - drv_data->rx;
 769			switch (drv_data->n_bytes) {
 770			case 4:
 771				bytes_left >>= 1;
 772			case 2:
 773				bytes_left >>= 1;
 774			}
 775
 776			if (bytes_left > RX_THRESH_DFLT)
 777				bytes_left = RX_THRESH_DFLT;
 
 778
 779			sccr1_reg |= SSCR1_RxTresh(bytes_left);
 780		}
 781		write_SSCR1(sccr1_reg, reg);
 782	}
 783
 784	/* We did something */
 785	return IRQ_HANDLED;
 786}
 787
 788static irqreturn_t ssp_int(int irq, void *dev_id)
 789{
 790	struct driver_data *drv_data = dev_id;
 791	void __iomem *reg = drv_data->ioaddr;
 792	u32 sccr1_reg = read_SSCR1(reg);
 793	u32 mask = drv_data->mask_sr;
 794	u32 status;
 795
 796	status = read_SSSR(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798	/* Ignore possible writes if we don't need to write */
 799	if (!(sccr1_reg & SSCR1_TIE))
 800		mask &= ~SSSR_TFS;
 801
 
 
 
 
 802	if (!(status & mask))
 803		return IRQ_NONE;
 804
 805	if (!drv_data->cur_msg) {
 806
 807		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 808		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 
 
 
 
 809		if (!pxa25x_ssp_comp(drv_data))
 810			write_SSTO(0, reg);
 811		write_SSSR_CS(drv_data, drv_data->clear_sr);
 812
 813		dev_err(&drv_data->pdev->dev, "bad message state "
 814			"in interrupt handler\n");
 815
 816		/* Never fail */
 817		return IRQ_HANDLED;
 818	}
 819
 820	return drv_data->transfer_handler(drv_data);
 821}
 822
 823static int set_dma_burst_and_threshold(struct chip_data *chip,
 824				struct spi_device *spi,
 825				u8 bits_per_word, u32 *burst_code,
 826				u32 *threshold)
 827{
 828	struct pxa2xx_spi_chip *chip_info =
 829			(struct pxa2xx_spi_chip *)spi->controller_data;
 830	int bytes_per_word;
 831	int burst_bytes;
 832	int thresh_words;
 833	int req_burst_size;
 834	int retval = 0;
 835
 836	/* Set the threshold (in registers) to equal the same amount of data
 837	 * as represented by burst size (in bytes).  The computation below
 838	 * is (burst_size rounded up to nearest 8 byte, word or long word)
 839	 * divided by (bytes/register); the tx threshold is the inverse of
 840	 * the rx, so that there will always be enough data in the rx fifo
 841	 * to satisfy a burst, and there will always be enough space in the
 842	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 843	 * there is not enough space), there must always remain enough empty
 844	 * space in the rx fifo for any data loaded to the tx fifo.
 845	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 846	 * will be 8, or half the fifo;
 847	 * The threshold can only be set to 2, 4 or 8, but not 16, because
 848	 * to burst 16 to the tx fifo, the fifo would have to be empty;
 849	 * however, the minimum fifo trigger level is 1, and the tx will
 850	 * request service when the fifo is at this level, with only 15 spaces.
 851	 */
 852
 853	/* find bytes/word */
 854	if (bits_per_word <= 8)
 855		bytes_per_word = 1;
 856	else if (bits_per_word <= 16)
 857		bytes_per_word = 2;
 858	else
 859		bytes_per_word = 4;
 860
 861	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
 862	if (chip_info)
 863		req_burst_size = chip_info->dma_burst_size;
 864	else {
 865		switch (chip->dma_burst_size) {
 866		default:
 867			/* if the default burst size is not set,
 868			 * do it now */
 869			chip->dma_burst_size = DCMD_BURST8;
 870		case DCMD_BURST8:
 871			req_burst_size = 8;
 872			break;
 873		case DCMD_BURST16:
 874			req_burst_size = 16;
 875			break;
 876		case DCMD_BURST32:
 877			req_burst_size = 32;
 878			break;
 
 
 
 
 879		}
 
 
 
 880	}
 881	if (req_burst_size <= 8) {
 882		*burst_code = DCMD_BURST8;
 883		burst_bytes = 8;
 884	} else if (req_burst_size <= 16) {
 885		if (bytes_per_word == 1) {
 886			/* don't burst more than 1/2 the fifo */
 887			*burst_code = DCMD_BURST8;
 888			burst_bytes = 8;
 889			retval = 1;
 890		} else {
 891			*burst_code = DCMD_BURST16;
 892			burst_bytes = 16;
 893		}
 
 
 
 
 
 
 
 
 
 
 894	} else {
 895		if (bytes_per_word == 1) {
 896			/* don't burst more than 1/2 the fifo */
 897			*burst_code = DCMD_BURST8;
 898			burst_bytes = 8;
 899			retval = 1;
 900		} else if (bytes_per_word == 2) {
 901			/* don't burst more than 1/2 the fifo */
 902			*burst_code = DCMD_BURST16;
 903			burst_bytes = 16;
 904			retval = 1;
 905		} else {
 906			*burst_code = DCMD_BURST32;
 907			burst_bytes = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 908		}
 909	}
 910
 911	thresh_words = burst_bytes / bytes_per_word;
 912
 913	/* thresh_words will be between 2 and 8 */
 914	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 915			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 916
 917	return retval;
 918}
 919
 920static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 921{
 922	unsigned long ssp_clk = clk_get_rate(ssp->clk);
 
 
 
 923
 924	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 926	else
 927		return ((ssp_clk / rate - 1) & 0xfff) << 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929
 930static void pump_transfers(unsigned long data)
 931{
 932	struct driver_data *drv_data = (struct driver_data *)data;
 933	struct spi_message *message = NULL;
 934	struct spi_transfer *transfer = NULL;
 935	struct spi_transfer *previous = NULL;
 936	struct chip_data *chip = NULL;
 937	struct ssp_device *ssp = drv_data->ssp;
 938	void __iomem *reg = drv_data->ioaddr;
 939	u32 clk_div = 0;
 940	u8 bits = 0;
 941	u32 speed = 0;
 942	u32 cr0;
 943	u32 cr1;
 944	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 945	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 
 946
 947	/* Get current state information */
 948	message = drv_data->cur_msg;
 949	transfer = drv_data->cur_transfer;
 950	chip = drv_data->cur_chip;
 951
 952	/* Handle for abort */
 953	if (message->state == ERROR_STATE) {
 954		message->status = -EIO;
 955		giveback(drv_data);
 956		return;
 957	}
 958
 959	/* Handle end of message */
 960	if (message->state == DONE_STATE) {
 961		message->status = 0;
 962		giveback(drv_data);
 963		return;
 964	}
 965
 966	/* Delay if requested at end of transfer before CS change */
 967	if (message->state == RUNNING_STATE) {
 968		previous = list_entry(transfer->transfer_list.prev,
 969					struct spi_transfer,
 970					transfer_list);
 971		if (previous->delay_usecs)
 972			udelay(previous->delay_usecs);
 973
 974		/* Drop chip select only if cs_change is requested */
 975		if (previous->cs_change)
 976			cs_deassert(drv_data);
 977	}
 978
 979	/* Check for transfers that need multiple DMA segments */
 980	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 981
 982		/* reject already-mapped transfers; PIO won't always work */
 983		if (message->is_dma_mapped
 984				|| transfer->rx_dma || transfer->tx_dma) {
 985			dev_err(&drv_data->pdev->dev,
 986				"pump_transfers: mapped transfer length "
 987				"of %u is greater than %d\n",
 988				transfer->len, MAX_DMA_LEN);
 989			message->status = -EINVAL;
 990			giveback(drv_data);
 991			return;
 992		}
 993
 994		/* warn ... we force this to PIO mode */
 995		if (printk_ratelimit())
 996			dev_warn(&message->spi->dev, "pump_transfers: "
 997				"DMA disabled for transfer length %ld "
 998				"greater than %d\n",
 999				(long)drv_data->len, MAX_DMA_LEN);
1000	}
1001
1002	/* Setup the transfer state based on the type of transfer */
1003	if (flush(drv_data) == 0) {
1004		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005		message->status = -EIO;
1006		giveback(drv_data);
1007		return;
1008	}
1009	drv_data->n_bytes = chip->n_bytes;
1010	drv_data->dma_width = chip->dma_width;
1011	drv_data->tx = (void *)transfer->tx_buf;
1012	drv_data->tx_end = drv_data->tx + transfer->len;
1013	drv_data->rx = transfer->rx_buf;
1014	drv_data->rx_end = drv_data->rx + transfer->len;
1015	drv_data->rx_dma = transfer->rx_dma;
1016	drv_data->tx_dma = transfer->tx_dma;
1017	drv_data->len = transfer->len & DCMD_LENGTH;
1018	drv_data->write = drv_data->tx ? chip->write : null_writer;
1019	drv_data->read = drv_data->rx ? chip->read : null_reader;
1020
1021	/* Change speed and bit per word on a per transfer */
1022	cr0 = chip->cr0;
1023	if (transfer->speed_hz || transfer->bits_per_word) {
1024
1025		bits = chip->bits_per_word;
1026		speed = chip->speed_hz;
1027
1028		if (transfer->speed_hz)
1029			speed = transfer->speed_hz;
1030
1031		if (transfer->bits_per_word)
1032			bits = transfer->bits_per_word;
1033
1034		clk_div = ssp_get_clk_div(ssp, speed);
1035
1036		if (bits <= 8) {
1037			drv_data->n_bytes = 1;
1038			drv_data->dma_width = DCMD_WIDTH1;
1039			drv_data->read = drv_data->read != null_reader ?
1040						u8_reader : null_reader;
1041			drv_data->write = drv_data->write != null_writer ?
1042						u8_writer : null_writer;
1043		} else if (bits <= 16) {
1044			drv_data->n_bytes = 2;
1045			drv_data->dma_width = DCMD_WIDTH2;
1046			drv_data->read = drv_data->read != null_reader ?
1047						u16_reader : null_reader;
1048			drv_data->write = drv_data->write != null_writer ?
1049						u16_writer : null_writer;
1050		} else if (bits <= 32) {
1051			drv_data->n_bytes = 4;
1052			drv_data->dma_width = DCMD_WIDTH4;
1053			drv_data->read = drv_data->read != null_reader ?
1054						u32_reader : null_reader;
1055			drv_data->write = drv_data->write != null_writer ?
1056						u32_writer : null_writer;
1057		}
1058		/* if bits/word is changed in dma mode, then must check the
1059		 * thresholds and burst also */
1060		if (chip->enable_dma) {
1061			if (set_dma_burst_and_threshold(chip, message->spi,
1062							bits, &dma_burst,
1063							&dma_thresh))
1064				if (printk_ratelimit())
1065					dev_warn(&message->spi->dev,
1066						"pump_transfers: "
1067						"DMA burst size reduced to "
1068						"match bits_per_word\n");
1069		}
1070
1071		cr0 = clk_div
1072			| SSCR0_Motorola
1073			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074			| SSCR0_SSE
1075			| (bits > 16 ? SSCR0_EDSS : 0);
1076	}
1077
1078	message->state = RUNNING_STATE;
1079
1080	/* Try to map dma buffer and do a dma transfer if successful, but
1081	 * only if the length is non-zero and less than MAX_DMA_LEN.
1082	 *
1083	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084	 * of PIO instead.  Care is needed above because the transfer may
1085	 * have have been passed with buffers that are already dma mapped.
1086	 * A zero-length transfer in PIO mode will not try to write/read
1087	 * to/from the buffers
1088	 *
1089	 * REVISIT large transfers are exactly where we most want to be
1090	 * using DMA.  If this happens much, split those transfers into
1091	 * multiple DMA segments rather than forcing PIO.
1092	 */
1093	drv_data->dma_mapped = 0;
1094	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095		drv_data->dma_mapped = map_dma_buffers(drv_data);
1096	if (drv_data->dma_mapped) {
1097
1098		/* Ensure we have the correct interrupt handler */
1099		drv_data->transfer_handler = dma_transfer;
1100
1101		/* Setup rx DMA Channel */
1102		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105		if (drv_data->rx == drv_data->null_dma_buf)
1106			/* No target address increment */
1107			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108							| drv_data->dma_width
1109							| dma_burst
1110							| drv_data->len;
1111		else
1112			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113							| DCMD_FLOWSRC
1114							| drv_data->dma_width
1115							| dma_burst
1116							| drv_data->len;
1117
1118		/* Setup tx DMA Channel */
1119		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122		if (drv_data->tx == drv_data->null_dma_buf)
1123			/* No source address increment */
1124			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125							| drv_data->dma_width
1126							| dma_burst
1127							| drv_data->len;
1128		else
1129			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130							| DCMD_FLOWTRG
1131							| drv_data->dma_width
1132							| dma_burst
1133							| drv_data->len;
1134
1135		/* Enable dma end irqs on SSP to detect end of transfer */
1136		if (drv_data->ssp_type == PXA25x_SSP)
1137			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138
1139		/* Clear status and start DMA engine */
1140		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141		write_SSSR(drv_data->clear_sr, reg);
1142		DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143		DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144	} else {
1145		/* Ensure we have the correct interrupt handler	*/
1146		drv_data->transfer_handler = interrupt_transfer;
1147
1148		/* Clear status  */
1149		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150		write_SSSR_CS(drv_data, drv_data->clear_sr);
1151	}
1152
1153	/* see if we need to reload the config registers */
1154	if ((read_SSCR0(reg) != cr0)
1155		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156			(cr1 & SSCR1_CHANGE_MASK)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
 
 
 
 
1158		/* stop the SSP, and update the other bits */
1159		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160		if (!pxa25x_ssp_comp(drv_data))
1161			write_SSTO(chip->timeout, reg);
1162		/* first set CR1 without interrupt and service enables */
1163		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164		/* restart the SSP */
1165		write_SSCR0(cr0, reg);
1166
1167	} else {
1168		if (!pxa25x_ssp_comp(drv_data))
1169			write_SSTO(chip->timeout, reg);
1170	}
1171
1172	cs_assert(drv_data);
1173
1174	/* after chip select, release the data by enabling service
1175	 * requests and interrupts, without changing any mode bits */
1176	write_SSCR1(cr1, reg);
1177}
1178
1179static void pump_messages(struct work_struct *work)
 
1180{
1181	struct driver_data *drv_data =
1182		container_of(work, struct driver_data, pump_messages);
1183	unsigned long flags;
1184
1185	/* Lock queue and check for queue work */
1186	spin_lock_irqsave(&drv_data->lock, flags);
1187	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188		drv_data->busy = 0;
1189		spin_unlock_irqrestore(&drv_data->lock, flags);
1190		return;
1191	}
1192
1193	/* Make sure we are not already running a message */
1194	if (drv_data->cur_msg) {
1195		spin_unlock_irqrestore(&drv_data->lock, flags);
1196		return;
1197	}
1198
1199	/* Extract head of queue */
1200	drv_data->cur_msg = list_entry(drv_data->queue.next,
1201					struct spi_message, queue);
1202	list_del_init(&drv_data->cur_msg->queue);
1203
 
1204	/* Initial message state*/
1205	drv_data->cur_msg->state = START_STATE;
1206	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207						struct spi_transfer,
1208						transfer_list);
1209
1210	/* prepare to setup the SSP, in pump_transfers, using the per
1211	 * chip configuration */
1212	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213
1214	/* Mark as busy and launch transfers */
1215	tasklet_schedule(&drv_data->pump_transfers);
1216
1217	drv_data->busy = 1;
1218	spin_unlock_irqrestore(&drv_data->lock, flags);
1219}
1220
1221static int transfer(struct spi_device *spi, struct spi_message *msg)
1222{
1223	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224	unsigned long flags;
1225
1226	spin_lock_irqsave(&drv_data->lock, flags);
1227
1228	if (drv_data->run == QUEUE_STOPPED) {
1229		spin_unlock_irqrestore(&drv_data->lock, flags);
1230		return -ESHUTDOWN;
1231	}
1232
1233	msg->actual_length = 0;
1234	msg->status = -EINPROGRESS;
1235	msg->state = START_STATE;
1236
1237	list_add_tail(&msg->queue, &drv_data->queue);
1238
1239	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240		queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241
1242	spin_unlock_irqrestore(&drv_data->lock, flags);
1243
1244	return 0;
1245}
1246
1247static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248		    struct pxa2xx_spi_chip *chip_info)
1249{
1250	int err = 0;
1251
1252	if (chip == NULL || chip_info == NULL)
1253		return 0;
1254
1255	/* NOTE: setup() can be called multiple times, possibly with
1256	 * different chip_info, release previously requested GPIO
1257	 */
1258	if (gpio_is_valid(chip->gpio_cs))
1259		gpio_free(chip->gpio_cs);
1260
1261	/* If (*cs_control) is provided, ignore GPIO chip select */
1262	if (chip_info->cs_control) {
1263		chip->cs_control = chip_info->cs_control;
1264		return 0;
1265	}
1266
1267	if (gpio_is_valid(chip_info->gpio_cs)) {
1268		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269		if (err) {
1270			dev_err(&spi->dev, "failed to request chip select "
1271					"GPIO%d\n", chip_info->gpio_cs);
1272			return err;
1273		}
1274
1275		chip->gpio_cs = chip_info->gpio_cs;
1276		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277
1278		err = gpio_direction_output(chip->gpio_cs,
1279					!chip->gpio_cs_inverted);
1280	}
1281
1282	return err;
1283}
1284
1285static int setup(struct spi_device *spi)
1286{
1287	struct pxa2xx_spi_chip *chip_info = NULL;
1288	struct chip_data *chip;
 
1289	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290	struct ssp_device *ssp = drv_data->ssp;
1291	unsigned int clk_div;
1292	uint tx_thres = TX_THRESH_DFLT;
1293	uint rx_thres = RX_THRESH_DFLT;
1294
1295	if (!pxa25x_ssp_comp(drv_data)
1296		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298				"b/w not 4-32 for type non-PXA25x_SSP\n",
1299				drv_data->ssp_type, spi->bits_per_word);
1300		return -EINVAL;
1301	} else if (pxa25x_ssp_comp(drv_data)
1302			&& (spi->bits_per_word < 4
1303				|| spi->bits_per_word > 16)) {
1304		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305				"b/w not 4-16 for type PXA25x_SSP\n",
1306				drv_data->ssp_type, spi->bits_per_word);
1307		return -EINVAL;
 
 
 
 
 
 
 
 
1308	}
1309
1310	/* Only alloc on first setup */
1311	chip = spi_get_ctldata(spi);
1312	if (!chip) {
1313		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314		if (!chip) {
1315			dev_err(&spi->dev,
1316				"failed setup: can't allocate chip data\n");
1317			return -ENOMEM;
1318		}
1319
1320		if (drv_data->ssp_type == CE4100_SSP) {
1321			if (spi->chip_select > 4) {
1322				dev_err(&spi->dev, "failed setup: "
1323				"cs number must not be > 4.\n");
1324				kfree(chip);
1325				return -EINVAL;
1326			}
1327
1328			chip->frm = spi->chip_select;
1329		} else
1330			chip->gpio_cs = -1;
1331		chip->enable_dma = 0;
1332		chip->timeout = TIMOUT_DFLT;
1333		chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334					DCMD_BURST8 : 0;
1335	}
1336
1337	/* protocol drivers may change the chip settings, so...
1338	 * if chip_info exists, use it */
1339	chip_info = spi->controller_data;
1340
1341	/* chip_info isn't always needed */
1342	chip->cr1 = 0;
1343	if (chip_info) {
1344		if (chip_info->timeout)
1345			chip->timeout = chip_info->timeout;
1346		if (chip_info->tx_threshold)
1347			tx_thres = chip_info->tx_threshold;
 
 
1348		if (chip_info->rx_threshold)
1349			rx_thres = chip_info->rx_threshold;
1350		chip->enable_dma = drv_data->master_info->enable_dma;
1351		chip->dma_threshold = 0;
1352		if (chip_info->enable_loopback)
1353			chip->cr1 = SSCR1_LBM;
 
 
 
 
 
 
 
1354	}
1355
1356	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
 
1358
1359	/* set dma burst and threshold outside of chip_info path so that if
1360	 * chip_info goes away after setting chip->enable_dma, the
1361	 * burst and threshold can still respond to changes in bits_per_word */
1362	if (chip->enable_dma) {
1363		/* set up legal burst and threshold for dma */
1364		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
 
1365						&chip->dma_burst_size,
1366						&chip->dma_threshold)) {
1367			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368					"to match bits_per_word\n");
1369		}
1370	}
1371
1372	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373	chip->speed_hz = spi->max_speed_hz;
 
 
 
 
 
 
 
 
 
 
1374
1375	chip->cr0 = clk_div
1376			| SSCR0_Motorola
1377			| SSCR0_DataSize(spi->bits_per_word > 16 ?
1378				spi->bits_per_word - 16 : spi->bits_per_word)
1379			| SSCR0_SSE
1380			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1386	if (!pxa25x_ssp_comp(drv_data))
1387		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388			clk_get_rate(ssp->clk)
1389				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390			chip->enable_dma ? "DMA" : "PIO");
1391	else
1392		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393			clk_get_rate(ssp->clk) / 2
1394				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395			chip->enable_dma ? "DMA" : "PIO");
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
1399		chip->dma_width = DCMD_WIDTH1;
1400		chip->read = u8_reader;
1401		chip->write = u8_writer;
1402	} else if (spi->bits_per_word <= 16) {
1403		chip->n_bytes = 2;
1404		chip->dma_width = DCMD_WIDTH2;
1405		chip->read = u16_reader;
1406		chip->write = u16_writer;
1407	} else if (spi->bits_per_word <= 32) {
1408		chip->cr0 |= SSCR0_EDSS;
1409		chip->n_bytes = 4;
1410		chip->dma_width = DCMD_WIDTH4;
1411		chip->read = u32_reader;
1412		chip->write = u32_writer;
1413	} else {
1414		dev_err(&spi->dev, "invalid wordsize\n");
1415		return -ENODEV;
1416	}
1417	chip->bits_per_word = spi->bits_per_word;
1418
1419	spi_set_ctldata(spi, chip);
1420
1421	if (drv_data->ssp_type == CE4100_SSP)
1422		return 0;
1423
1424	return setup_cs(spi, chip, chip_info);
1425}
1426
1427static void cleanup(struct spi_device *spi)
1428{
1429	struct chip_data *chip = spi_get_ctldata(spi);
1430	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1431
1432	if (!chip)
1433		return;
1434
1435	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436		gpio_free(chip->gpio_cs);
1437
1438	kfree(chip);
1439}
1440
1441static int __devinit init_queue(struct driver_data *drv_data)
1442{
1443	INIT_LIST_HEAD(&drv_data->queue);
1444	spin_lock_init(&drv_data->lock);
1445
1446	drv_data->run = QUEUE_STOPPED;
1447	drv_data->busy = 0;
 
 
 
 
 
 
 
 
1448
1449	tasklet_init(&drv_data->pump_transfers,
1450			pump_transfers,	(unsigned long)drv_data);
1451
1452	INIT_WORK(&drv_data->pump_messages, pump_messages);
1453	drv_data->workqueue = create_singlethread_workqueue(
1454				dev_name(drv_data->master->dev.parent));
1455	if (drv_data->workqueue == NULL)
1456		return -EBUSY;
1457
1458	return 0;
 
 
 
1459}
1460
1461static int start_queue(struct driver_data *drv_data)
1462{
1463	unsigned long flags;
1464
1465	spin_lock_irqsave(&drv_data->lock, flags);
1466
1467	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468		spin_unlock_irqrestore(&drv_data->lock, flags);
1469		return -EBUSY;
1470	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471
1472	drv_data->run = QUEUE_RUNNING;
1473	drv_data->cur_msg = NULL;
1474	drv_data->cur_transfer = NULL;
1475	drv_data->cur_chip = NULL;
1476	spin_unlock_irqrestore(&drv_data->lock, flags);
1477
1478	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 
1479
1480	return 0;
1481}
1482
1483static int stop_queue(struct driver_data *drv_data)
 
1484{
1485	unsigned long flags;
1486	unsigned limit = 500;
1487	int status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488
1489	spin_lock_irqsave(&drv_data->lock, flags);
 
 
1490
1491	/* This is a bit lame, but is optimized for the common execution path.
1492	 * A wait_queue on the drv_data->busy could be used, but then the common
1493	 * execution path (pump_messages) would be required to call wake_up or
1494	 * friends on every SPI message. Do this instead */
1495	drv_data->run = QUEUE_STOPPED;
1496	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497		spin_unlock_irqrestore(&drv_data->lock, flags);
1498		msleep(10);
1499		spin_lock_irqsave(&drv_data->lock, flags);
 
 
1500	}
1501
1502	if (!list_empty(&drv_data->queue) || drv_data->busy)
1503		status = -EBUSY;
 
 
 
1504
1505	spin_unlock_irqrestore(&drv_data->lock, flags);
 
1506
1507	return status;
1508}
1509
1510static int destroy_queue(struct driver_data *drv_data)
 
 
1511{
1512	int status;
 
 
1513
1514	status = stop_queue(drv_data);
1515	/* we are unloading the module or failing to load (only two calls
1516	 * to this routine), and neither call can handle a return value.
1517	 * However, destroy_workqueue calls flush_workqueue, and that will
1518	 * block until all work is done.  If the reason that stop_queue
1519	 * timed out is that the work will never finish, then it does no
1520	 * good to call destroy_workqueue, so return anyway. */
1521	if (status != 0)
1522		return status;
1523
1524	destroy_workqueue(drv_data->workqueue);
 
 
 
 
 
 
 
 
 
1525
1526	return 0;
 
 
 
 
 
1527}
1528
1529static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530{
1531	struct device *dev = &pdev->dev;
1532	struct pxa2xx_spi_master *platform_info;
1533	struct spi_master *master;
1534	struct driver_data *drv_data;
1535	struct ssp_device *ssp;
 
1536	int status;
 
1537
1538	platform_info = dev->platform_data;
 
 
 
 
 
 
 
1539
1540	ssp = pxa_ssp_request(pdev->id, pdev->name);
1541	if (ssp == NULL) {
1542		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
 
 
 
1543		return -ENODEV;
1544	}
1545
1546	/* Allocate master with space for drv_data and null dma buffer */
1547	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548	if (!master) {
1549		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550		pxa_ssp_free(ssp);
1551		return -ENOMEM;
1552	}
1553	drv_data = spi_master_get_devdata(master);
1554	drv_data->master = master;
1555	drv_data->master_info = platform_info;
1556	drv_data->pdev = pdev;
1557	drv_data->ssp = ssp;
1558
1559	master->dev.parent = &pdev->dev;
1560	master->dev.of_node = pdev->dev.of_node;
1561	/* the spi->mode bits understood by this driver: */
1562	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563
1564	master->bus_num = pdev->id;
1565	master->num_chipselect = platform_info->num_chipselect;
1566	master->dma_alignment = DMA_ALIGNMENT;
1567	master->cleanup = cleanup;
1568	master->setup = setup;
1569	master->transfer = transfer;
 
 
 
1570
1571	drv_data->ssp_type = ssp->type;
1572	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573						sizeof(struct driver_data)), 8);
1574
1575	drv_data->ioaddr = ssp->mmio_base;
1576	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577	if (pxa25x_ssp_comp(drv_data)) {
 
 
 
 
 
 
 
 
 
1578		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579		drv_data->dma_cr1 = 0;
1580		drv_data->clear_sr = SSSR_ROR;
1581		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582	} else {
 
1583		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587	}
1588
1589	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590			drv_data);
1591	if (status < 0) {
1592		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593		goto out_error_master_alloc;
1594	}
1595
1596	/* Setup DMA if requested */
1597	drv_data->tx_channel = -1;
1598	drv_data->rx_channel = -1;
1599	if (platform_info->enable_dma) {
1600
1601		/* Get two DMA channels	(rx and tx) */
1602		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603							DMA_PRIO_HIGH,
1604							dma_handler,
1605							drv_data);
1606		if (drv_data->rx_channel < 0) {
1607			dev_err(dev, "problem (%d) requesting rx channel\n",
1608				drv_data->rx_channel);
1609			status = -ENODEV;
1610			goto out_error_irq_alloc;
1611		}
1612		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613							DMA_PRIO_MEDIUM,
1614							dma_handler,
1615							drv_data);
1616		if (drv_data->tx_channel < 0) {
1617			dev_err(dev, "problem (%d) requesting tx channel\n",
1618				drv_data->tx_channel);
1619			status = -ENODEV;
1620			goto out_error_dma_alloc;
1621		}
1622
1623		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625	}
1626
1627	/* Enable SOC clock */
1628	clk_enable(ssp->clk);
 
 
1629
1630	/* Load default SSP configuration */
1631	write_SSCR0(0, drv_data->ioaddr);
1632	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633				SSCR1_TxTresh(TX_THRESH_DFLT),
1634				drv_data->ioaddr);
1635	write_SSCR0(SSCR0_SCR(2)
1636			| SSCR0_Motorola
1637			| SSCR0_DataSize(8),
1638			drv_data->ioaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
1639	if (!pxa25x_ssp_comp(drv_data))
1640		write_SSTO(0, drv_data->ioaddr);
1641	write_SSPSP(0, drv_data->ioaddr);
1642
1643	/* Initial and start queue */
1644	status = init_queue(drv_data);
1645	if (status != 0) {
1646		dev_err(&pdev->dev, "problem initializing queue\n");
1647		goto out_error_clock_enabled;
1648	}
1649	status = start_queue(drv_data);
1650	if (status != 0) {
1651		dev_err(&pdev->dev, "problem starting queue\n");
1652		goto out_error_clock_enabled;
 
 
 
 
 
1653	}
 
 
 
 
 
 
 
 
 
1654
1655	/* Register with the SPI framework */
1656	platform_set_drvdata(pdev, drv_data);
1657	status = spi_register_master(master);
1658	if (status != 0) {
1659		dev_err(&pdev->dev, "problem registering spi master\n");
1660		goto out_error_queue_alloc;
1661	}
1662
1663	return status;
1664
1665out_error_queue_alloc:
1666	destroy_queue(drv_data);
1667
1668out_error_clock_enabled:
1669	clk_disable(ssp->clk);
1670
1671out_error_dma_alloc:
1672	if (drv_data->tx_channel != -1)
1673		pxa_free_dma(drv_data->tx_channel);
1674	if (drv_data->rx_channel != -1)
1675		pxa_free_dma(drv_data->rx_channel);
1676
1677out_error_irq_alloc:
1678	free_irq(ssp->irq, drv_data);
1679
1680out_error_master_alloc:
1681	spi_master_put(master);
1682	pxa_ssp_free(ssp);
1683	return status;
1684}
1685
1686static int pxa2xx_spi_remove(struct platform_device *pdev)
1687{
1688	struct driver_data *drv_data = platform_get_drvdata(pdev);
1689	struct ssp_device *ssp;
1690	int status = 0;
1691
1692	if (!drv_data)
1693		return 0;
1694	ssp = drv_data->ssp;
1695
1696	/* Remove the queue */
1697	status = destroy_queue(drv_data);
1698	if (status != 0)
1699		/* the kernel does not check the return status of this
1700		 * this routine (mod->exit, within the kernel).  Therefore
1701		 * nothing is gained by returning from here, the module is
1702		 * going away regardless, and we should not leave any more
1703		 * resources allocated than necessary.  We cannot free the
1704		 * message memory in drv_data->queue, but we can release the
1705		 * resources below.  I think the kernel should honor -EBUSY
1706		 * returns but... */
1707		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708			"complete, message memory not freed\n");
1709
1710	/* Disable the SSP at the peripheral and SOC level */
1711	write_SSCR0(0, drv_data->ioaddr);
1712	clk_disable(ssp->clk);
1713
1714	/* Release DMA */
1715	if (drv_data->master_info->enable_dma) {
1716		DRCMR(ssp->drcmr_rx) = 0;
1717		DRCMR(ssp->drcmr_tx) = 0;
1718		pxa_free_dma(drv_data->tx_channel);
1719		pxa_free_dma(drv_data->rx_channel);
1720	}
1721
1722	/* Release IRQ */
1723	free_irq(ssp->irq, drv_data);
1724
1725	/* Release SSP */
1726	pxa_ssp_free(ssp);
1727
1728	/* Disconnect from the SPI framework */
1729	spi_unregister_master(drv_data->master);
1730
1731	/* Prevent double remove */
1732	platform_set_drvdata(pdev, NULL);
1733
1734	return 0;
1735}
1736
1737static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738{
1739	int status = 0;
1740
1741	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743}
1744
1745#ifdef CONFIG_PM
1746static int pxa2xx_spi_suspend(struct device *dev)
1747{
1748	struct driver_data *drv_data = dev_get_drvdata(dev);
1749	struct ssp_device *ssp = drv_data->ssp;
1750	int status = 0;
1751
1752	status = stop_queue(drv_data);
1753	if (status != 0)
1754		return status;
1755	write_SSCR0(0, drv_data->ioaddr);
1756	clk_disable(ssp->clk);
 
 
1757
1758	return 0;
1759}
1760
1761static int pxa2xx_spi_resume(struct device *dev)
1762{
1763	struct driver_data *drv_data = dev_get_drvdata(dev);
1764	struct ssp_device *ssp = drv_data->ssp;
1765	int status = 0;
1766
1767	if (drv_data->rx_channel != -1)
1768		DRCMR(drv_data->ssp->drcmr_rx) =
1769			DRCMR_MAPVLD | drv_data->rx_channel;
1770	if (drv_data->tx_channel != -1)
1771		DRCMR(drv_data->ssp->drcmr_tx) =
1772			DRCMR_MAPVLD | drv_data->tx_channel;
1773
1774	/* Enable the SSP clock */
1775	clk_enable(ssp->clk);
 
 
 
 
 
1776
1777	/* Start the queue running */
1778	status = start_queue(drv_data);
1779	if (status != 0) {
1780		dev_err(dev, "problem starting queue (%d)\n", status);
1781		return status;
1782	}
1783
1784	return 0;
1785}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786
1787static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788	.suspend	= pxa2xx_spi_suspend,
1789	.resume		= pxa2xx_spi_resume,
 
1790};
1791#endif
1792
1793static struct platform_driver driver = {
1794	.driver = {
1795		.name	= "pxa2xx-spi",
1796		.owner	= THIS_MODULE,
1797#ifdef CONFIG_PM
1798		.pm	= &pxa2xx_spi_pm_ops,
1799#endif
1800	},
1801	.probe = pxa2xx_spi_probe,
1802	.remove = pxa2xx_spi_remove,
1803	.shutdown = pxa2xx_spi_shutdown,
1804};
1805
1806static int __init pxa2xx_spi_init(void)
1807{
1808	return platform_driver_register(&driver);
1809}
1810subsys_initcall(pxa2xx_spi_init);
1811
1812static void __exit pxa2xx_spi_exit(void)
1813{
1814	platform_driver_unregister(&driver);
1815}
1816module_exit(pxa2xx_spi_exit);
v4.6
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
 
 
 
 
  14 */
  15
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/platform_device.h>
  27#include <linux/spi/pxa2xx_spi.h>
 
  28#include <linux/spi/spi.h>
 
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/slab.h>
  32#include <linux/clk.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/acpi.h>
  35
  36#include "spi-pxa2xx.h"
 
 
 
  37
  38MODULE_AUTHOR("Stephen Street");
  39MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  40MODULE_LICENSE("GPL");
  41MODULE_ALIAS("platform:pxa2xx-spi");
  42
 
 
  43#define TIMOUT_DFLT		1000
  44
 
 
 
 
 
 
  45/*
  46 * for testing SSCR1 changes that require SSP restart, basically
  47 * everything except the service and interrupt enables, the pxa270 developer
  48 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  49 * list, but the PXA255 dev man says all bits without really meaning the
  50 * service and interrupt enables
  51 */
  52#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  53				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  54				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  55				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  56				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  57				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  58
  59#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  60				| QUARK_X1000_SSCR1_EFWR	\
  61				| QUARK_X1000_SSCR1_RFT		\
  62				| QUARK_X1000_SSCR1_TFT		\
  63				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  66#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  67#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  68#define LPSS_CAPS_CS_EN_SHIFT			9
  69#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  70
  71struct lpss_config {
  72	/* LPSS offset from drv_data->ioaddr */
  73	unsigned offset;
  74	/* Register offsets from drv_data->lpss_base or -1 */
  75	int reg_general;
  76	int reg_ssp;
  77	int reg_cs_ctrl;
  78	int reg_capabilities;
  79	/* FIFO thresholds */
  80	u32 rx_threshold;
  81	u32 tx_threshold_lo;
  82	u32 tx_threshold_hi;
  83	/* Chip select control */
  84	unsigned cs_sel_shift;
  85	unsigned cs_sel_mask;
  86	unsigned cs_num;
  87};
  88
  89/* Keep these sorted with enum pxa_ssp_type */
  90static const struct lpss_config lpss_platforms[] = {
  91	{	/* LPSS_LPT_SSP */
  92		.offset = 0x800,
  93		.reg_general = 0x08,
  94		.reg_ssp = 0x0c,
  95		.reg_cs_ctrl = 0x18,
  96		.reg_capabilities = -1,
  97		.rx_threshold = 64,
  98		.tx_threshold_lo = 160,
  99		.tx_threshold_hi = 224,
 100	},
 101	{	/* LPSS_BYT_SSP */
 102		.offset = 0x400,
 103		.reg_general = 0x08,
 104		.reg_ssp = 0x0c,
 105		.reg_cs_ctrl = 0x18,
 106		.reg_capabilities = -1,
 107		.rx_threshold = 64,
 108		.tx_threshold_lo = 160,
 109		.tx_threshold_hi = 224,
 110	},
 111	{	/* LPSS_BSW_SSP */
 112		.offset = 0x400,
 113		.reg_general = 0x08,
 114		.reg_ssp = 0x0c,
 115		.reg_cs_ctrl = 0x18,
 116		.reg_capabilities = -1,
 117		.rx_threshold = 64,
 118		.tx_threshold_lo = 160,
 119		.tx_threshold_hi = 224,
 120		.cs_sel_shift = 2,
 121		.cs_sel_mask = 1 << 2,
 122		.cs_num = 2,
 123	},
 124	{	/* LPSS_SPT_SSP */
 125		.offset = 0x200,
 126		.reg_general = -1,
 127		.reg_ssp = 0x20,
 128		.reg_cs_ctrl = 0x24,
 129		.reg_capabilities = -1,
 130		.rx_threshold = 1,
 131		.tx_threshold_lo = 32,
 132		.tx_threshold_hi = 56,
 133	},
 134	{	/* LPSS_BXT_SSP */
 135		.offset = 0x200,
 136		.reg_general = -1,
 137		.reg_ssp = 0x20,
 138		.reg_cs_ctrl = 0x24,
 139		.reg_capabilities = 0xfc,
 140		.rx_threshold = 1,
 141		.tx_threshold_lo = 16,
 142		.tx_threshold_hi = 48,
 143		.cs_sel_shift = 8,
 144		.cs_sel_mask = 3 << 8,
 145	},
 146};
 147
 148static inline const struct lpss_config
 149*lpss_get_config(const struct driver_data *drv_data)
 150{
 151	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 152}
 153
 154static bool is_lpss_ssp(const struct driver_data *drv_data)
 155{
 156	switch (drv_data->ssp_type) {
 157	case LPSS_LPT_SSP:
 158	case LPSS_BYT_SSP:
 159	case LPSS_BSW_SSP:
 160	case LPSS_SPT_SSP:
 161	case LPSS_BXT_SSP:
 162		return true;
 163	default:
 164		return false;
 165	}
 166}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167
 168static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 169{
 170	return drv_data->ssp_type == QUARK_X1000_SSP;
 171}
 172
 173static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 174{
 175	switch (drv_data->ssp_type) {
 176	case QUARK_X1000_SSP:
 177		return QUARK_X1000_SSCR1_CHANGE_MASK;
 178	default:
 179		return SSCR1_CHANGE_MASK;
 180	}
 181}
 182
 183static u32
 184pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 185{
 186	switch (drv_data->ssp_type) {
 187	case QUARK_X1000_SSP:
 188		return RX_THRESH_QUARK_X1000_DFLT;
 189	default:
 190		return RX_THRESH_DFLT;
 191	}
 192}
 193
 194static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 195{
 196	u32 mask;
 197
 198	switch (drv_data->ssp_type) {
 199	case QUARK_X1000_SSP:
 200		mask = QUARK_X1000_SSSR_TFL_MASK;
 201		break;
 202	default:
 203		mask = SSSR_TFL_MASK;
 204		break;
 205	}
 206
 207	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 208}
 209
 210static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 211				     u32 *sccr1_reg)
 212{
 213	u32 mask;
 214
 215	switch (drv_data->ssp_type) {
 216	case QUARK_X1000_SSP:
 217		mask = QUARK_X1000_SSCR1_RFT;
 218		break;
 219	default:
 220		mask = SSCR1_RFT;
 221		break;
 222	}
 223	*sccr1_reg &= ~mask;
 224}
 225
 226static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 227				   u32 *sccr1_reg, u32 threshold)
 228{
 229	switch (drv_data->ssp_type) {
 230	case QUARK_X1000_SSP:
 231		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 232		break;
 233	default:
 234		*sccr1_reg |= SSCR1_RxTresh(threshold);
 235		break;
 236	}
 237}
 238
 239static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 240				  u32 clk_div, u8 bits)
 241{
 242	switch (drv_data->ssp_type) {
 243	case QUARK_X1000_SSP:
 244		return clk_div
 245			| QUARK_X1000_SSCR0_Motorola
 246			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 247			| SSCR0_SSE;
 248	default:
 249		return clk_div
 250			| SSCR0_Motorola
 251			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 252			| SSCR0_SSE
 253			| (bits > 16 ? SSCR0_EDSS : 0);
 254	}
 255}
 256
 257/*
 258 * Read and write LPSS SSP private registers. Caller must first check that
 259 * is_lpss_ssp() returns true before these can be called.
 260 */
 261static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 262{
 263	WARN_ON(!drv_data->lpss_base);
 264	return readl(drv_data->lpss_base + offset);
 265}
 266
 267static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 268				  unsigned offset, u32 value)
 269{
 270	WARN_ON(!drv_data->lpss_base);
 271	writel(value, drv_data->lpss_base + offset);
 272}
 273
 274/*
 275 * lpss_ssp_setup - perform LPSS SSP specific setup
 276 * @drv_data: pointer to the driver private data
 277 *
 278 * Perform LPSS SSP specific setup. This function must be called first if
 279 * one is going to use LPSS SSP private registers.
 280 */
 281static void lpss_ssp_setup(struct driver_data *drv_data)
 282{
 283	const struct lpss_config *config;
 284	u32 value;
 285
 286	config = lpss_get_config(drv_data);
 287	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 288
 289	/* Enable software chip select control */
 290	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 291	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 292	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 293	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 294
 295	/* Enable multiblock DMA transfers */
 296	if (drv_data->master_info->enable_dma) {
 297		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 298
 299		if (config->reg_general >= 0) {
 300			value = __lpss_ssp_read_priv(drv_data,
 301						     config->reg_general);
 302			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 303			__lpss_ssp_write_priv(drv_data,
 304					      config->reg_general, value);
 305		}
 306	}
 307}
 308
 309static void lpss_ssp_select_cs(struct driver_data *drv_data,
 310			       const struct lpss_config *config)
 311{
 312	u32 value, cs;
 313
 314	if (!config->cs_sel_mask)
 315		return;
 316
 317	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 318
 319	cs = drv_data->cur_msg->spi->chip_select;
 320	cs <<= config->cs_sel_shift;
 321	if (cs != (value & config->cs_sel_mask)) {
 322		/*
 323		 * When switching another chip select output active the
 324		 * output must be selected first and wait 2 ssp_clk cycles
 325		 * before changing state to active. Otherwise a short
 326		 * glitch will occur on the previous chip select since
 327		 * output select is latched but state control is not.
 328		 */
 329		value &= ~config->cs_sel_mask;
 330		value |= cs;
 331		__lpss_ssp_write_priv(drv_data,
 332				      config->reg_cs_ctrl, value);
 333		ndelay(1000000000 /
 334		       (drv_data->master->max_speed_hz / 2));
 335	}
 336}
 337
 338static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 339{
 340	const struct lpss_config *config;
 341	u32 value;
 342
 343	config = lpss_get_config(drv_data);
 344
 345	if (enable)
 346		lpss_ssp_select_cs(drv_data, config);
 347
 348	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 349	if (enable)
 350		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 351	else
 352		value |= LPSS_CS_CONTROL_CS_HIGH;
 353	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 354}
 355
 356static void cs_assert(struct driver_data *drv_data)
 357{
 358	struct chip_data *chip = drv_data->cur_chip;
 359
 360	if (drv_data->ssp_type == CE4100_SSP) {
 361		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
 362		return;
 363	}
 364
 365	if (chip->cs_control) {
 366		chip->cs_control(PXA2XX_CS_ASSERT);
 367		return;
 368	}
 369
 370	if (gpio_is_valid(chip->gpio_cs)) {
 371		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 372		return;
 373	}
 374
 375	if (is_lpss_ssp(drv_data))
 376		lpss_ssp_cs_control(drv_data, true);
 377}
 378
 379static void cs_deassert(struct driver_data *drv_data)
 380{
 381	struct chip_data *chip = drv_data->cur_chip;
 382
 383	if (drv_data->ssp_type == CE4100_SSP)
 384		return;
 385
 386	if (chip->cs_control) {
 387		chip->cs_control(PXA2XX_CS_DEASSERT);
 388		return;
 389	}
 390
 391	if (gpio_is_valid(chip->gpio_cs)) {
 392		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 393		return;
 394	}
 
 
 
 
 
 
 395
 396	if (is_lpss_ssp(drv_data))
 397		lpss_ssp_cs_control(drv_data, false);
 398}
 399
 400int pxa2xx_spi_flush(struct driver_data *drv_data)
 
 
 
 
 
 
 
 
 
 401{
 402	unsigned long limit = loops_per_jiffy << 1;
 403
 
 
 404	do {
 405		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 406			pxa2xx_spi_read(drv_data, SSDR);
 407	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 
 408	write_SSSR_CS(drv_data, SSSR_ROR);
 409
 410	return limit;
 411}
 412
 413static int null_writer(struct driver_data *drv_data)
 414{
 
 415	u8 n_bytes = drv_data->n_bytes;
 416
 417	if (pxa2xx_spi_txfifo_full(drv_data)
 418		|| (drv_data->tx == drv_data->tx_end))
 419		return 0;
 420
 421	pxa2xx_spi_write(drv_data, SSDR, 0);
 422	drv_data->tx += n_bytes;
 423
 424	return 1;
 425}
 426
 427static int null_reader(struct driver_data *drv_data)
 428{
 
 429	u8 n_bytes = drv_data->n_bytes;
 430
 431	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 432	       && (drv_data->rx < drv_data->rx_end)) {
 433		pxa2xx_spi_read(drv_data, SSDR);
 434		drv_data->rx += n_bytes;
 435	}
 436
 437	return drv_data->rx == drv_data->rx_end;
 438}
 439
 440static int u8_writer(struct driver_data *drv_data)
 441{
 442	if (pxa2xx_spi_txfifo_full(drv_data)
 
 
 443		|| (drv_data->tx == drv_data->tx_end))
 444		return 0;
 445
 446	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 447	++drv_data->tx;
 448
 449	return 1;
 450}
 451
 452static int u8_reader(struct driver_data *drv_data)
 453{
 454	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 455	       && (drv_data->rx < drv_data->rx_end)) {
 456		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 
 
 457		++drv_data->rx;
 458	}
 459
 460	return drv_data->rx == drv_data->rx_end;
 461}
 462
 463static int u16_writer(struct driver_data *drv_data)
 464{
 465	if (pxa2xx_spi_txfifo_full(drv_data)
 
 
 466		|| (drv_data->tx == drv_data->tx_end))
 467		return 0;
 468
 469	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 470	drv_data->tx += 2;
 471
 472	return 1;
 473}
 474
 475static int u16_reader(struct driver_data *drv_data)
 476{
 477	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 478	       && (drv_data->rx < drv_data->rx_end)) {
 479		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 
 
 480		drv_data->rx += 2;
 481	}
 482
 483	return drv_data->rx == drv_data->rx_end;
 484}
 485
 486static int u32_writer(struct driver_data *drv_data)
 487{
 488	if (pxa2xx_spi_txfifo_full(drv_data)
 
 
 489		|| (drv_data->tx == drv_data->tx_end))
 490		return 0;
 491
 492	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 493	drv_data->tx += 4;
 494
 495	return 1;
 496}
 497
 498static int u32_reader(struct driver_data *drv_data)
 499{
 500	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 501	       && (drv_data->rx < drv_data->rx_end)) {
 502		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 
 
 503		drv_data->rx += 4;
 504	}
 505
 506	return drv_data->rx == drv_data->rx_end;
 507}
 508
 509void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 510{
 511	struct spi_message *msg = drv_data->cur_msg;
 512	struct spi_transfer *trans = drv_data->cur_transfer;
 513
 514	/* Move to next transfer */
 515	if (trans->transfer_list.next != &msg->transfers) {
 516		drv_data->cur_transfer =
 517			list_entry(trans->transfer_list.next,
 518					struct spi_transfer,
 519					transfer_list);
 520		return RUNNING_STATE;
 521	} else
 522		return DONE_STATE;
 523}
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525/* caller already set message->status; dma and pio irqs are blocked */
 526static void giveback(struct driver_data *drv_data)
 527{
 528	struct spi_transfer* last_transfer;
 
 529	struct spi_message *msg;
 530	unsigned long timeout;
 531
 
 532	msg = drv_data->cur_msg;
 533	drv_data->cur_msg = NULL;
 534	drv_data->cur_transfer = NULL;
 
 
 535
 536	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 
 537					transfer_list);
 538
 539	/* Delay if requested before any change in chip select */
 540	if (last_transfer->delay_usecs)
 541		udelay(last_transfer->delay_usecs);
 542
 543	/* Wait until SSP becomes idle before deasserting the CS */
 544	timeout = jiffies + msecs_to_jiffies(10);
 545	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 546	       !time_after(jiffies, timeout))
 547		cpu_relax();
 548
 549	/* Drop chip select UNLESS cs_change is true or we are returning
 550	 * a message with an error, or next message is for another chip
 551	 */
 552	if (!last_transfer->cs_change)
 553		cs_deassert(drv_data);
 554	else {
 555		struct spi_message *next_msg;
 556
 557		/* Holding of cs was hinted, but we need to make sure
 558		 * the next message is for the same chip.  Don't waste
 559		 * time with the following tests unless this was hinted.
 560		 *
 561		 * We cannot postpone this until pump_messages, because
 562		 * after calling msg->complete (below) the driver that
 563		 * sent the current message could be unloaded, which
 564		 * could invalidate the cs_control() callback...
 565		 */
 566
 567		/* get a pointer to the next message, if any */
 568		next_msg = spi_get_next_queued_message(drv_data->master);
 
 
 
 
 
 
 569
 570		/* see if the next and current messages point
 571		 * to the same chip
 572		 */
 573		if (next_msg && next_msg->spi != msg->spi)
 574			next_msg = NULL;
 575		if (!next_msg || msg->state == ERROR_STATE)
 576			cs_deassert(drv_data);
 577	}
 578
 
 
 
 
 579	drv_data->cur_chip = NULL;
 580	spi_finalize_current_message(drv_data->master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 582
 583static void reset_sccr1(struct driver_data *drv_data)
 584{
 
 585	struct chip_data *chip = drv_data->cur_chip;
 586	u32 sccr1_reg;
 587
 588	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 589	sccr1_reg &= ~SSCR1_RFT;
 590	sccr1_reg |= chip->threshold;
 591	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 592}
 593
 594static void int_error_stop(struct driver_data *drv_data, const char* msg)
 595{
 
 
 596	/* Stop and reset SSP */
 597	write_SSSR_CS(drv_data, drv_data->clear_sr);
 598	reset_sccr1(drv_data);
 599	if (!pxa25x_ssp_comp(drv_data))
 600		pxa2xx_spi_write(drv_data, SSTO, 0);
 601	pxa2xx_spi_flush(drv_data);
 602	pxa2xx_spi_write(drv_data, SSCR0,
 603			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 604
 605	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 606
 607	drv_data->cur_msg->state = ERROR_STATE;
 608	tasklet_schedule(&drv_data->pump_transfers);
 609}
 610
 611static void int_transfer_complete(struct driver_data *drv_data)
 612{
 613	/* Clear and disable interrupts */
 
 
 614	write_SSSR_CS(drv_data, drv_data->clear_sr);
 615	reset_sccr1(drv_data);
 616	if (!pxa25x_ssp_comp(drv_data))
 617		pxa2xx_spi_write(drv_data, SSTO, 0);
 618
 619	/* Update total byte transferred return count actual bytes read */
 620	drv_data->cur_msg->actual_length += drv_data->len -
 621				(drv_data->rx_end - drv_data->rx);
 622
 623	/* Transfer delays and chip select release are
 624	 * handled in pump_transfers or giveback
 625	 */
 626
 627	/* Move to next transfer */
 628	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 629
 630	/* Schedule transfer tasklet */
 631	tasklet_schedule(&drv_data->pump_transfers);
 632}
 633
 634static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 635{
 636	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 637		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 638
 639	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 
 
 
 640
 641	if (irq_status & SSSR_ROR) {
 642		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT) {
 647		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 648		if (drv_data->read(drv_data)) {
 649			int_transfer_complete(drv_data);
 650			return IRQ_HANDLED;
 651		}
 652	}
 653
 654	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 655	do {
 656		if (drv_data->read(drv_data)) {
 657			int_transfer_complete(drv_data);
 658			return IRQ_HANDLED;
 659		}
 660	} while (drv_data->write(drv_data));
 661
 662	if (drv_data->read(drv_data)) {
 663		int_transfer_complete(drv_data);
 664		return IRQ_HANDLED;
 665	}
 666
 667	if (drv_data->tx == drv_data->tx_end) {
 668		u32 bytes_left;
 669		u32 sccr1_reg;
 670
 671		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 672		sccr1_reg &= ~SSCR1_TIE;
 673
 674		/*
 675		 * PXA25x_SSP has no timeout, set up rx threshould for the
 676		 * remaining RX bytes.
 677		 */
 678		if (pxa25x_ssp_comp(drv_data)) {
 679			u32 rx_thre;
 680
 681			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 682
 683			bytes_left = drv_data->rx_end - drv_data->rx;
 684			switch (drv_data->n_bytes) {
 685			case 4:
 686				bytes_left >>= 1;
 687			case 2:
 688				bytes_left >>= 1;
 689			}
 690
 691			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 692			if (rx_thre > bytes_left)
 693				rx_thre = bytes_left;
 694
 695			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 696		}
 697		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 698	}
 699
 700	/* We did something */
 701	return IRQ_HANDLED;
 702}
 703
 704static irqreturn_t ssp_int(int irq, void *dev_id)
 705{
 706	struct driver_data *drv_data = dev_id;
 707	u32 sccr1_reg;
 
 708	u32 mask = drv_data->mask_sr;
 709	u32 status;
 710
 711	/*
 712	 * The IRQ might be shared with other peripherals so we must first
 713	 * check that are we RPM suspended or not. If we are we assume that
 714	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 715	 * interrupt is enabled).
 716	 */
 717	if (pm_runtime_suspended(&drv_data->pdev->dev))
 718		return IRQ_NONE;
 719
 720	/*
 721	 * If the device is not yet in RPM suspended state and we get an
 722	 * interrupt that is meant for another device, check if status bits
 723	 * are all set to one. That means that the device is already
 724	 * powered off.
 725	 */
 726	status = pxa2xx_spi_read(drv_data, SSSR);
 727	if (status == ~0)
 728		return IRQ_NONE;
 729
 730	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 731
 732	/* Ignore possible writes if we don't need to write */
 733	if (!(sccr1_reg & SSCR1_TIE))
 734		mask &= ~SSSR_TFS;
 735
 736	/* Ignore RX timeout interrupt if it is disabled */
 737	if (!(sccr1_reg & SSCR1_TINTE))
 738		mask &= ~SSSR_TINT;
 739
 740	if (!(status & mask))
 741		return IRQ_NONE;
 742
 743	if (!drv_data->cur_msg) {
 744
 745		pxa2xx_spi_write(drv_data, SSCR0,
 746				 pxa2xx_spi_read(drv_data, SSCR0)
 747				 & ~SSCR0_SSE);
 748		pxa2xx_spi_write(drv_data, SSCR1,
 749				 pxa2xx_spi_read(drv_data, SSCR1)
 750				 & ~drv_data->int_cr1);
 751		if (!pxa25x_ssp_comp(drv_data))
 752			pxa2xx_spi_write(drv_data, SSTO, 0);
 753		write_SSSR_CS(drv_data, drv_data->clear_sr);
 754
 755		dev_err(&drv_data->pdev->dev,
 756			"bad message state in interrupt handler\n");
 757
 758		/* Never fail */
 759		return IRQ_HANDLED;
 760	}
 761
 762	return drv_data->transfer_handler(drv_data);
 763}
 764
 765/*
 766 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 767 * input frequency by fractions of 2^24. It also has a divider by 5.
 768 *
 769 * There are formulas to get baud rate value for given input frequency and
 770 * divider parameters, such as DDS_CLK_RATE and SCR:
 771 *
 772 * Fsys = 200MHz
 773 *
 774 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 775 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 776 *
 777 * DDS_CLK_RATE either 2^n or 2^n / 5.
 778 * SCR is in range 0 .. 255
 779 *
 780 * Divisor = 5^i * 2^j * 2 * k
 781 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 782 *       j = [0, 23]     j = 0 iff i = 1
 783 *       k = [1, 256]
 784 * Special case: j = 0, i = 1: Divisor = 2 / 5
 785 *
 786 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 787 * are:
 788 *	Case 1:		2^n, n = [0, 23]
 789 *	Case 2:		2^24 * 2 / 5 (0x666666)
 790 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 791 *
 792 * In all cases the lowest possible value is better.
 793 *
 794 * The function calculates parameters for all cases and chooses the one closest
 795 * to the asked baud rate.
 796 */
 797static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 798{
 799	unsigned long xtal = 200000000;
 800	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 801						   see (2) */
 802						/* case 3 */
 803	unsigned long fref1 = fref / 2;		/* case 1 */
 804	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 805	unsigned long scale;
 806	unsigned long q, q1, q2;
 807	long r, r1, r2;
 808	u32 mul;
 809
 810	/* Case 1 */
 811
 812	/* Set initial value for DDS_CLK_RATE */
 813	mul = (1 << 24) >> 1;
 814
 815	/* Calculate initial quot */
 816	q1 = DIV_ROUND_UP(fref1, rate);
 817
 818	/* Scale q1 if it's too big */
 819	if (q1 > 256) {
 820		/* Scale q1 to range [1, 512] */
 821		scale = fls_long(q1 - 1);
 822		if (scale > 9) {
 823			q1 >>= scale - 9;
 824			mul >>= scale - 9;
 825		}
 826
 827		/* Round the result if we have a remainder */
 828		q1 += q1 & 1;
 829	}
 830
 831	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 832	scale = __ffs(q1);
 833	q1 >>= scale;
 834	mul >>= scale;
 835
 836	/* Get the remainder */
 837	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 838
 839	/* Case 2 */
 840
 841	q2 = DIV_ROUND_UP(fref2, rate);
 842	r2 = abs(fref2 / q2 - rate);
 843
 844	/*
 845	 * Choose the best between two: less remainder we have the better. We
 846	 * can't go case 2 if q2 is greater than 256 since SCR register can
 847	 * hold only values 0 .. 255.
 848	 */
 849	if (r2 >= r1 || q2 > 256) {
 850		/* case 1 is better */
 851		r = r1;
 852		q = q1;
 853	} else {
 854		/* case 2 is better */
 855		r = r2;
 856		q = q2;
 857		mul = (1 << 24) * 2 / 5;
 858	}
 859
 860	/* Check case 3 only if the divisor is big enough */
 861	if (fref / rate >= 80) {
 862		u64 fssp;
 863		u32 m;
 864
 865		/* Calculate initial quot */
 866		q1 = DIV_ROUND_UP(fref, rate);
 867		m = (1 << 24) / q1;
 868
 869		/* Get the remainder */
 870		fssp = (u64)fref * m;
 871		do_div(fssp, 1 << 24);
 872		r1 = abs(fssp - rate);
 873
 874		/* Choose this one if it suits better */
 875		if (r1 < r) {
 876			/* case 3 is better */
 877			q = 1;
 878			mul = m;
 879		}
 880	}
 881
 882	*dds = mul;
 883	return q - 1;
 
 
 
 
 
 884}
 885
 886static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 887{
 888	unsigned long ssp_clk = drv_data->master->max_speed_hz;
 889	const struct ssp_device *ssp = drv_data->ssp;
 890
 891	rate = min_t(int, ssp_clk, rate);
 892
 893	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 894		return (ssp_clk / (2 * rate) - 1) & 0xff;
 895	else
 896		return (ssp_clk / rate - 1) & 0xfff;
 897}
 898
 899static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 900					   int rate)
 901{
 902	struct chip_data *chip = drv_data->cur_chip;
 903	unsigned int clk_div;
 904
 905	switch (drv_data->ssp_type) {
 906	case QUARK_X1000_SSP:
 907		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 908		break;
 909	default:
 910		clk_div = ssp_get_clk_div(drv_data, rate);
 911		break;
 912	}
 913	return clk_div << 8;
 914}
 915
 916static void pump_transfers(unsigned long data)
 917{
 918	struct driver_data *drv_data = (struct driver_data *)data;
 919	struct spi_message *message = NULL;
 920	struct spi_transfer *transfer = NULL;
 921	struct spi_transfer *previous = NULL;
 922	struct chip_data *chip = NULL;
 
 
 923	u32 clk_div = 0;
 924	u8 bits = 0;
 925	u32 speed = 0;
 926	u32 cr0;
 927	u32 cr1;
 928	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 929	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 930	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 931
 932	/* Get current state information */
 933	message = drv_data->cur_msg;
 934	transfer = drv_data->cur_transfer;
 935	chip = drv_data->cur_chip;
 936
 937	/* Handle for abort */
 938	if (message->state == ERROR_STATE) {
 939		message->status = -EIO;
 940		giveback(drv_data);
 941		return;
 942	}
 943
 944	/* Handle end of message */
 945	if (message->state == DONE_STATE) {
 946		message->status = 0;
 947		giveback(drv_data);
 948		return;
 949	}
 950
 951	/* Delay if requested at end of transfer before CS change */
 952	if (message->state == RUNNING_STATE) {
 953		previous = list_entry(transfer->transfer_list.prev,
 954					struct spi_transfer,
 955					transfer_list);
 956		if (previous->delay_usecs)
 957			udelay(previous->delay_usecs);
 958
 959		/* Drop chip select only if cs_change is requested */
 960		if (previous->cs_change)
 961			cs_deassert(drv_data);
 962	}
 963
 964	/* Check if we can DMA this transfer */
 965	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
 966
 967		/* reject already-mapped transfers; PIO won't always work */
 968		if (message->is_dma_mapped
 969				|| transfer->rx_dma || transfer->tx_dma) {
 970			dev_err(&drv_data->pdev->dev,
 971				"pump_transfers: mapped transfer length of "
 972				"%u is greater than %d\n",
 973				transfer->len, MAX_DMA_LEN);
 974			message->status = -EINVAL;
 975			giveback(drv_data);
 976			return;
 977		}
 978
 979		/* warn ... we force this to PIO mode */
 980		dev_warn_ratelimited(&message->spi->dev,
 981				     "pump_transfers: DMA disabled for transfer length %ld "
 982				     "greater than %d\n",
 983				     (long)drv_data->len, MAX_DMA_LEN);
 
 984	}
 985
 986	/* Setup the transfer state based on the type of transfer */
 987	if (pxa2xx_spi_flush(drv_data) == 0) {
 988		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
 989		message->status = -EIO;
 990		giveback(drv_data);
 991		return;
 992	}
 993	drv_data->n_bytes = chip->n_bytes;
 
 994	drv_data->tx = (void *)transfer->tx_buf;
 995	drv_data->tx_end = drv_data->tx + transfer->len;
 996	drv_data->rx = transfer->rx_buf;
 997	drv_data->rx_end = drv_data->rx + transfer->len;
 998	drv_data->len = transfer->len;
 
 
 999	drv_data->write = drv_data->tx ? chip->write : null_writer;
1000	drv_data->read = drv_data->rx ? chip->read : null_reader;
1001
1002	/* Change speed and bit per word on a per transfer */
1003	bits = transfer->bits_per_word;
1004	speed = transfer->speed_hz;
 
 
 
1005
1006	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 
1007
1008	if (bits <= 8) {
1009		drv_data->n_bytes = 1;
1010		drv_data->read = drv_data->read != null_reader ?
1011					u8_reader : null_reader;
1012		drv_data->write = drv_data->write != null_writer ?
1013					u8_writer : null_writer;
1014	} else if (bits <= 16) {
1015		drv_data->n_bytes = 2;
1016		drv_data->read = drv_data->read != null_reader ?
1017					u16_reader : null_reader;
1018		drv_data->write = drv_data->write != null_writer ?
1019					u16_writer : null_writer;
1020	} else if (bits <= 32) {
1021		drv_data->n_bytes = 4;
1022		drv_data->read = drv_data->read != null_reader ?
1023					u32_reader : null_reader;
1024		drv_data->write = drv_data->write != null_writer ?
1025					u32_writer : null_writer;
1026	}
1027	/*
1028	 * if bits/word is changed in dma mode, then must check the
1029	 * thresholds and burst also
1030	 */
1031	if (chip->enable_dma) {
1032		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1033						message->spi,
1034						bits, &dma_burst,
1035						&dma_thresh))
1036			dev_warn_ratelimited(&message->spi->dev,
1037					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038	}
1039
1040	message->state = RUNNING_STATE;
1041
 
 
 
 
 
 
 
 
 
 
 
 
 
1042	drv_data->dma_mapped = 0;
1043	if (pxa2xx_spi_dma_is_possible(drv_data->len))
1044		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
1045	if (drv_data->dma_mapped) {
1046
1047		/* Ensure we have the correct interrupt handler */
1048		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1049
1050		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051
1052		/* Clear status and start DMA engine */
1053		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1054		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1055
1056		pxa2xx_spi_dma_start(drv_data);
1057	} else {
1058		/* Ensure we have the correct interrupt handler	*/
1059		drv_data->transfer_handler = interrupt_transfer;
1060
1061		/* Clear status  */
1062		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1063		write_SSSR_CS(drv_data, drv_data->clear_sr);
1064	}
1065
1066	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1067	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1068	if (!pxa25x_ssp_comp(drv_data))
1069		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1070			drv_data->master->max_speed_hz
1071				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1072			drv_data->dma_mapped ? "DMA" : "PIO");
1073	else
1074		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1075			drv_data->master->max_speed_hz / 2
1076				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1077			drv_data->dma_mapped ? "DMA" : "PIO");
1078
1079	if (is_lpss_ssp(drv_data)) {
1080		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1081		    != chip->lpss_rx_threshold)
1082			pxa2xx_spi_write(drv_data, SSIRF,
1083					 chip->lpss_rx_threshold);
1084		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1085		    != chip->lpss_tx_threshold)
1086			pxa2xx_spi_write(drv_data, SSITF,
1087					 chip->lpss_tx_threshold);
1088	}
1089
1090	if (is_quark_x1000_ssp(drv_data) &&
1091	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1092		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1093
1094	/* see if we need to reload the config registers */
1095	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1096	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1097	    != (cr1 & change_mask)) {
1098		/* stop the SSP, and update the other bits */
1099		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1100		if (!pxa25x_ssp_comp(drv_data))
1101			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1102		/* first set CR1 without interrupt and service enables */
1103		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1104		/* restart the SSP */
1105		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1106
1107	} else {
1108		if (!pxa25x_ssp_comp(drv_data))
1109			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1110	}
1111
1112	cs_assert(drv_data);
1113
1114	/* after chip select, release the data by enabling service
1115	 * requests and interrupts, without changing any mode bits */
1116	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1117}
1118
1119static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1120					   struct spi_message *msg)
1121{
1122	struct driver_data *drv_data = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123
1124	drv_data->cur_msg = msg;
1125	/* Initial message state*/
1126	drv_data->cur_msg->state = START_STATE;
1127	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1128						struct spi_transfer,
1129						transfer_list);
1130
1131	/* prepare to setup the SSP, in pump_transfers, using the per
1132	 * chip configuration */
1133	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1134
1135	/* Mark as busy and launch transfers */
1136	tasklet_schedule(&drv_data->pump_transfers);
1137	return 0;
 
 
1138}
1139
1140static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1141{
1142	struct driver_data *drv_data = spi_master_get_devdata(master);
 
1143
1144	/* Disable the SSP now */
1145	pxa2xx_spi_write(drv_data, SSCR0,
1146			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	return 0;
1149}
1150
1151static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1152		    struct pxa2xx_spi_chip *chip_info)
1153{
1154	int err = 0;
1155
1156	if (chip == NULL || chip_info == NULL)
1157		return 0;
1158
1159	/* NOTE: setup() can be called multiple times, possibly with
1160	 * different chip_info, release previously requested GPIO
1161	 */
1162	if (gpio_is_valid(chip->gpio_cs))
1163		gpio_free(chip->gpio_cs);
1164
1165	/* If (*cs_control) is provided, ignore GPIO chip select */
1166	if (chip_info->cs_control) {
1167		chip->cs_control = chip_info->cs_control;
1168		return 0;
1169	}
1170
1171	if (gpio_is_valid(chip_info->gpio_cs)) {
1172		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1173		if (err) {
1174			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1175				chip_info->gpio_cs);
1176			return err;
1177		}
1178
1179		chip->gpio_cs = chip_info->gpio_cs;
1180		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1181
1182		err = gpio_direction_output(chip->gpio_cs,
1183					!chip->gpio_cs_inverted);
1184	}
1185
1186	return err;
1187}
1188
1189static int setup(struct spi_device *spi)
1190{
1191	struct pxa2xx_spi_chip *chip_info = NULL;
1192	struct chip_data *chip;
1193	const struct lpss_config *config;
1194	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1195	uint tx_thres, tx_hi_thres, rx_thres;
 
 
 
1196
1197	switch (drv_data->ssp_type) {
1198	case QUARK_X1000_SSP:
1199		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1200		tx_hi_thres = 0;
1201		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1202		break;
1203	case LPSS_LPT_SSP:
1204	case LPSS_BYT_SSP:
1205	case LPSS_BSW_SSP:
1206	case LPSS_SPT_SSP:
1207	case LPSS_BXT_SSP:
1208		config = lpss_get_config(drv_data);
1209		tx_thres = config->tx_threshold_lo;
1210		tx_hi_thres = config->tx_threshold_hi;
1211		rx_thres = config->rx_threshold;
1212		break;
1213	default:
1214		tx_thres = TX_THRESH_DFLT;
1215		tx_hi_thres = 0;
1216		rx_thres = RX_THRESH_DFLT;
1217		break;
1218	}
1219
1220	/* Only alloc on first setup */
1221	chip = spi_get_ctldata(spi);
1222	if (!chip) {
1223		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1224		if (!chip)
 
 
1225			return -ENOMEM;
 
1226
1227		if (drv_data->ssp_type == CE4100_SSP) {
1228			if (spi->chip_select > 4) {
1229				dev_err(&spi->dev,
1230					"failed setup: cs number must not be > 4.\n");
1231				kfree(chip);
1232				return -EINVAL;
1233			}
1234
1235			chip->frm = spi->chip_select;
1236		} else
1237			chip->gpio_cs = -1;
1238		chip->enable_dma = 0;
1239		chip->timeout = TIMOUT_DFLT;
 
 
1240	}
1241
1242	/* protocol drivers may change the chip settings, so...
1243	 * if chip_info exists, use it */
1244	chip_info = spi->controller_data;
1245
1246	/* chip_info isn't always needed */
1247	chip->cr1 = 0;
1248	if (chip_info) {
1249		if (chip_info->timeout)
1250			chip->timeout = chip_info->timeout;
1251		if (chip_info->tx_threshold)
1252			tx_thres = chip_info->tx_threshold;
1253		if (chip_info->tx_hi_threshold)
1254			tx_hi_thres = chip_info->tx_hi_threshold;
1255		if (chip_info->rx_threshold)
1256			rx_thres = chip_info->rx_threshold;
1257		chip->enable_dma = drv_data->master_info->enable_dma;
1258		chip->dma_threshold = 0;
1259		if (chip_info->enable_loopback)
1260			chip->cr1 = SSCR1_LBM;
1261	} else if (ACPI_HANDLE(&spi->dev)) {
1262		/*
1263		 * Slave devices enumerated from ACPI namespace don't
1264		 * usually have chip_info but we still might want to use
1265		 * DMA with them.
1266		 */
1267		chip->enable_dma = drv_data->master_info->enable_dma;
1268	}
1269
1270	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1271	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1272				| SSITF_TxHiThresh(tx_hi_thres);
1273
1274	/* set dma burst and threshold outside of chip_info path so that if
1275	 * chip_info goes away after setting chip->enable_dma, the
1276	 * burst and threshold can still respond to changes in bits_per_word */
1277	if (chip->enable_dma) {
1278		/* set up legal burst and threshold for dma */
1279		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1280						spi->bits_per_word,
1281						&chip->dma_burst_size,
1282						&chip->dma_threshold)) {
1283			dev_warn(&spi->dev,
1284				 "in setup: DMA burst size reduced to match bits_per_word\n");
1285		}
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
1295	default:
1296		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1297			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1298		break;
1299	}
1300
 
 
 
 
 
 
1301	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1302	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1303			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1304
1305	if (spi->mode & SPI_LOOP)
1306		chip->cr1 |= SSCR1_LBM;
 
 
 
 
 
 
 
 
 
1307
1308	if (spi->bits_per_word <= 8) {
1309		chip->n_bytes = 1;
 
1310		chip->read = u8_reader;
1311		chip->write = u8_writer;
1312	} else if (spi->bits_per_word <= 16) {
1313		chip->n_bytes = 2;
 
1314		chip->read = u16_reader;
1315		chip->write = u16_writer;
1316	} else if (spi->bits_per_word <= 32) {
 
1317		chip->n_bytes = 4;
 
1318		chip->read = u32_reader;
1319		chip->write = u32_writer;
 
 
 
1320	}
 
1321
1322	spi_set_ctldata(spi, chip);
1323
1324	if (drv_data->ssp_type == CE4100_SSP)
1325		return 0;
1326
1327	return setup_cs(spi, chip, chip_info);
1328}
1329
1330static void cleanup(struct spi_device *spi)
1331{
1332	struct chip_data *chip = spi_get_ctldata(spi);
1333	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1334
1335	if (!chip)
1336		return;
1337
1338	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1339		gpio_free(chip->gpio_cs);
1340
1341	kfree(chip);
1342}
1343
1344#ifdef CONFIG_PCI
1345#ifdef CONFIG_ACPI
 
 
1346
1347static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1348	{ "INT33C0", LPSS_LPT_SSP },
1349	{ "INT33C1", LPSS_LPT_SSP },
1350	{ "INT3430", LPSS_LPT_SSP },
1351	{ "INT3431", LPSS_LPT_SSP },
1352	{ "80860F0E", LPSS_BYT_SSP },
1353	{ "8086228E", LPSS_BSW_SSP },
1354	{ },
1355};
1356MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1357
1358static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1359{
1360	unsigned int devid;
1361	int port_id = -1;
 
 
 
 
1362
1363	if (adev && adev->pnp.unique_id &&
1364	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1365		port_id = devid;
1366	return port_id;
1367}
1368#else /* !CONFIG_ACPI */
1369static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1370{
1371	return -1;
1372}
1373#endif
1374
1375/*
1376 * PCI IDs of compound devices that integrate both host controller and private
1377 * integrated DMA engine. Please note these are not used in module
1378 * autoloading and probing in this module but matching the LPSS SSP type.
1379 */
1380static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1381	/* SPT-LP */
1382	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1383	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1384	/* SPT-H */
1385	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1386	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1387	/* BXT A-Step */
1388	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1389	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1390	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1391	/* BXT B-Step */
1392	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1393	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1394	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1395	/* APL */
1396	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1397	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1398	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1399	{ },
1400};
1401
1402static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1403{
1404	struct device *dev = param;
 
 
1405
1406	if (dev != chan->device->dev->parent)
1407		return false;
1408
1409	return true;
1410}
1411
1412static struct pxa2xx_spi_master *
1413pxa2xx_spi_init_pdata(struct platform_device *pdev)
1414{
1415	struct pxa2xx_spi_master *pdata;
1416	struct acpi_device *adev;
1417	struct ssp_device *ssp;
1418	struct resource *res;
1419	const struct acpi_device_id *adev_id = NULL;
1420	const struct pci_device_id *pcidev_id = NULL;
1421	int type;
1422
1423	adev = ACPI_COMPANION(&pdev->dev);
1424
1425	if (dev_is_pci(pdev->dev.parent))
1426		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1427					 to_pci_dev(pdev->dev.parent));
1428	else if (adev)
1429		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1430					    &pdev->dev);
1431	else
1432		return NULL;
1433
1434	if (adev_id)
1435		type = (int)adev_id->driver_data;
1436	else if (pcidev_id)
1437		type = (int)pcidev_id->driver_data;
1438	else
1439		return NULL;
1440
1441	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1442	if (!pdata)
1443		return NULL;
1444
1445	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1446	if (!res)
1447		return NULL;
1448
1449	ssp = &pdata->ssp;
1450
1451	ssp->phys_base = res->start;
1452	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1453	if (IS_ERR(ssp->mmio_base))
1454		return NULL;
1455
1456	if (pcidev_id) {
1457		pdata->tx_param = pdev->dev.parent;
1458		pdata->rx_param = pdev->dev.parent;
1459		pdata->dma_filter = pxa2xx_spi_idma_filter;
1460	}
1461
1462	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1463	ssp->irq = platform_get_irq(pdev, 0);
1464	ssp->type = type;
1465	ssp->pdev = pdev;
1466	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1467
1468	pdata->num_chipselect = 1;
1469	pdata->enable_dma = true;
1470
1471	return pdata;
1472}
1473
1474#else /* !CONFIG_PCI */
1475static inline struct pxa2xx_spi_master *
1476pxa2xx_spi_init_pdata(struct platform_device *pdev)
1477{
1478	return NULL;
1479}
1480#endif
1481
1482static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1483{
1484	struct driver_data *drv_data = spi_master_get_devdata(master);
 
 
 
 
 
 
1485
1486	if (has_acpi_companion(&drv_data->pdev->dev)) {
1487		switch (drv_data->ssp_type) {
1488		/*
1489		 * For Atoms the ACPI DeviceSelection used by the Windows
1490		 * driver starts from 1 instead of 0 so translate it here
1491		 * to match what Linux expects.
1492		 */
1493		case LPSS_BYT_SSP:
1494		case LPSS_BSW_SSP:
1495			return cs - 1;
1496
1497		default:
1498			break;
1499		}
1500	}
1501
1502	return cs;
1503}
1504
1505static int pxa2xx_spi_probe(struct platform_device *pdev)
1506{
1507	struct device *dev = &pdev->dev;
1508	struct pxa2xx_spi_master *platform_info;
1509	struct spi_master *master;
1510	struct driver_data *drv_data;
1511	struct ssp_device *ssp;
1512	const struct lpss_config *config;
1513	int status;
1514	u32 tmp;
1515
1516	platform_info = dev_get_platdata(dev);
1517	if (!platform_info) {
1518		platform_info = pxa2xx_spi_init_pdata(pdev);
1519		if (!platform_info) {
1520			dev_err(&pdev->dev, "missing platform data\n");
1521			return -ENODEV;
1522		}
1523	}
1524
1525	ssp = pxa_ssp_request(pdev->id, pdev->name);
1526	if (!ssp)
1527		ssp = &platform_info->ssp;
1528
1529	if (!ssp->mmio_base) {
1530		dev_err(&pdev->dev, "failed to get ssp\n");
1531		return -ENODEV;
1532	}
1533
1534	master = spi_alloc_master(dev, sizeof(struct driver_data));
 
1535	if (!master) {
1536		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1537		pxa_ssp_free(ssp);
1538		return -ENOMEM;
1539	}
1540	drv_data = spi_master_get_devdata(master);
1541	drv_data->master = master;
1542	drv_data->master_info = platform_info;
1543	drv_data->pdev = pdev;
1544	drv_data->ssp = ssp;
1545
1546	master->dev.parent = &pdev->dev;
1547	master->dev.of_node = pdev->dev.of_node;
1548	/* the spi->mode bits understood by this driver: */
1549	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1550
1551	master->bus_num = ssp->port_id;
 
1552	master->dma_alignment = DMA_ALIGNMENT;
1553	master->cleanup = cleanup;
1554	master->setup = setup;
1555	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1556	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1557	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1558	master->auto_runtime_pm = true;
1559
1560	drv_data->ssp_type = ssp->type;
 
 
1561
1562	drv_data->ioaddr = ssp->mmio_base;
1563	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1564	if (pxa25x_ssp_comp(drv_data)) {
1565		switch (drv_data->ssp_type) {
1566		case QUARK_X1000_SSP:
1567			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1568			break;
1569		default:
1570			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1571			break;
1572		}
1573
1574		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1575		drv_data->dma_cr1 = 0;
1576		drv_data->clear_sr = SSSR_ROR;
1577		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1578	} else {
1579		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1580		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1581		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1582		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1583		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1584	}
1585
1586	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1587			drv_data);
1588	if (status < 0) {
1589		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1590		goto out_error_master_alloc;
1591	}
1592
1593	/* Setup DMA if requested */
 
 
1594	if (platform_info->enable_dma) {
1595		status = pxa2xx_spi_dma_setup(drv_data);
1596		if (status) {
1597			dev_dbg(dev, "no DMA channels available, using PIO\n");
1598			platform_info->enable_dma = false;
 
 
 
 
 
 
 
1599		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	}
1601
1602	/* Enable SOC clock */
1603	clk_prepare_enable(ssp->clk);
1604
1605	master->max_speed_hz = clk_get_rate(ssp->clk);
1606
1607	/* Load default SSP configuration */
1608	pxa2xx_spi_write(drv_data, SSCR0, 0);
1609	switch (drv_data->ssp_type) {
1610	case QUARK_X1000_SSP:
1611		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1612		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1613		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1614
1615		/* using the Motorola SPI protocol and use 8 bit frame */
1616		pxa2xx_spi_write(drv_data, SSCR0,
1617				 QUARK_X1000_SSCR0_Motorola
1618				 | QUARK_X1000_SSCR0_DataSize(8));
1619		break;
1620	default:
1621		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1622		      SSCR1_TxTresh(TX_THRESH_DFLT);
1623		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1624		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1625		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1626		break;
1627	}
1628
1629	if (!pxa25x_ssp_comp(drv_data))
1630		pxa2xx_spi_write(drv_data, SSTO, 0);
 
1631
1632	if (!is_quark_x1000_ssp(drv_data))
1633		pxa2xx_spi_write(drv_data, SSPSP, 0);
1634
1635	if (is_lpss_ssp(drv_data)) {
1636		lpss_ssp_setup(drv_data);
1637		config = lpss_get_config(drv_data);
1638		if (config->reg_capabilities >= 0) {
1639			tmp = __lpss_ssp_read_priv(drv_data,
1640						   config->reg_capabilities);
1641			tmp &= LPSS_CAPS_CS_EN_MASK;
1642			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1643			platform_info->num_chipselect = ffz(tmp);
1644		} else if (config->cs_num) {
1645			platform_info->num_chipselect = config->cs_num;
1646		}
1647	}
1648	master->num_chipselect = platform_info->num_chipselect;
1649
1650	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1651		     (unsigned long)drv_data);
1652
1653	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1654	pm_runtime_use_autosuspend(&pdev->dev);
1655	pm_runtime_set_active(&pdev->dev);
1656	pm_runtime_enable(&pdev->dev);
1657
1658	/* Register with the SPI framework */
1659	platform_set_drvdata(pdev, drv_data);
1660	status = devm_spi_register_master(&pdev->dev, master);
1661	if (status != 0) {
1662		dev_err(&pdev->dev, "problem registering spi master\n");
1663		goto out_error_clock_enabled;
1664	}
1665
1666	return status;
1667
 
 
 
1668out_error_clock_enabled:
1669	clk_disable_unprepare(ssp->clk);
1670	pxa2xx_spi_dma_release(drv_data);
 
 
 
 
 
 
 
1671	free_irq(ssp->irq, drv_data);
1672
1673out_error_master_alloc:
1674	spi_master_put(master);
1675	pxa_ssp_free(ssp);
1676	return status;
1677}
1678
1679static int pxa2xx_spi_remove(struct platform_device *pdev)
1680{
1681	struct driver_data *drv_data = platform_get_drvdata(pdev);
1682	struct ssp_device *ssp;
 
1683
1684	if (!drv_data)
1685		return 0;
1686	ssp = drv_data->ssp;
1687
1688	pm_runtime_get_sync(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
1689
1690	/* Disable the SSP at the peripheral and SOC level */
1691	pxa2xx_spi_write(drv_data, SSCR0, 0);
1692	clk_disable_unprepare(ssp->clk);
1693
1694	/* Release DMA */
1695	if (drv_data->master_info->enable_dma)
1696		pxa2xx_spi_dma_release(drv_data);
1697
1698	pm_runtime_put_noidle(&pdev->dev);
1699	pm_runtime_disable(&pdev->dev);
 
1700
1701	/* Release IRQ */
1702	free_irq(ssp->irq, drv_data);
1703
1704	/* Release SSP */
1705	pxa_ssp_free(ssp);
1706
 
 
 
 
 
 
1707	return 0;
1708}
1709
1710static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1711{
1712	int status = 0;
1713
1714	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1715		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1716}
1717
1718#ifdef CONFIG_PM_SLEEP
1719static int pxa2xx_spi_suspend(struct device *dev)
1720{
1721	struct driver_data *drv_data = dev_get_drvdata(dev);
1722	struct ssp_device *ssp = drv_data->ssp;
1723	int status = 0;
1724
1725	status = spi_master_suspend(drv_data->master);
1726	if (status != 0)
1727		return status;
1728	pxa2xx_spi_write(drv_data, SSCR0, 0);
1729
1730	if (!pm_runtime_suspended(dev))
1731		clk_disable_unprepare(ssp->clk);
1732
1733	return 0;
1734}
1735
1736static int pxa2xx_spi_resume(struct device *dev)
1737{
1738	struct driver_data *drv_data = dev_get_drvdata(dev);
1739	struct ssp_device *ssp = drv_data->ssp;
1740	int status = 0;
1741
 
 
 
 
 
 
 
1742	/* Enable the SSP clock */
1743	if (!pm_runtime_suspended(dev))
1744		clk_prepare_enable(ssp->clk);
1745
1746	/* Restore LPSS private register bits */
1747	if (is_lpss_ssp(drv_data))
1748		lpss_ssp_setup(drv_data);
1749
1750	/* Start the queue running */
1751	status = spi_master_resume(drv_data->master);
1752	if (status != 0) {
1753		dev_err(dev, "problem starting queue (%d)\n", status);
1754		return status;
1755	}
1756
1757	return 0;
1758}
1759#endif
1760
1761#ifdef CONFIG_PM
1762static int pxa2xx_spi_runtime_suspend(struct device *dev)
1763{
1764	struct driver_data *drv_data = dev_get_drvdata(dev);
1765
1766	clk_disable_unprepare(drv_data->ssp->clk);
1767	return 0;
1768}
1769
1770static int pxa2xx_spi_runtime_resume(struct device *dev)
1771{
1772	struct driver_data *drv_data = dev_get_drvdata(dev);
1773
1774	clk_prepare_enable(drv_data->ssp->clk);
1775	return 0;
1776}
1777#endif
1778
1779static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1780	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1781	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1782			   pxa2xx_spi_runtime_resume, NULL)
1783};
 
1784
1785static struct platform_driver driver = {
1786	.driver = {
1787		.name	= "pxa2xx-spi",
 
 
1788		.pm	= &pxa2xx_spi_pm_ops,
1789		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1790	},
1791	.probe = pxa2xx_spi_probe,
1792	.remove = pxa2xx_spi_remove,
1793	.shutdown = pxa2xx_spi_shutdown,
1794};
1795
1796static int __init pxa2xx_spi_init(void)
1797{
1798	return platform_driver_register(&driver);
1799}
1800subsys_initcall(pxa2xx_spi_init);
1801
1802static void __exit pxa2xx_spi_exit(void)
1803{
1804	platform_driver_unregister(&driver);
1805}
1806module_exit(pxa2xx_spi_exit);