Loading...
1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29
30#include <scsi/fc/fc_fc2.h>
31
32#include <scsi/libfc.h>
33#include <scsi/fc_encode.h>
34
35#include "fc_libfc.h"
36
37u16 fc_cpu_mask; /* cpu mask for possible cpus */
38EXPORT_SYMBOL(fc_cpu_mask);
39static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41static struct workqueue_struct *fc_exch_workqueue;
42
43/*
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
46 *
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48 *
49 * fc_exch_mgr holds the exchange state for an N port
50 *
51 * fc_exch holds state for one exchange and links to its active sequence.
52 *
53 * fc_seq holds the state for an individual sequence.
54 */
55
56/**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
62 *
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
66 */
67struct fc_exch_pool {
68 u16 next_index;
69 u16 total_exches;
70
71 /* two cache of free slot in exch array */
72 u16 left;
73 u16 right;
74
75 spinlock_t lock;
76 struct list_head ex_list;
77};
78
79/**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93struct fc_exch_mgr {
94 enum fc_class class;
95 struct kref kref;
96 u16 min_xid;
97 u16 max_xid;
98 mempool_t *ep_pool;
99 u16 pool_max_index;
100 struct fc_exch_pool *pool;
101
102 /*
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
106 */
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
115};
116
117/**
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
122 *
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
128 */
129struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
133};
134
135static void fc_exch_rrq(struct fc_exch *);
136static void fc_seq_ls_acc(struct fc_frame *);
137static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139static void fc_exch_els_rec(struct fc_frame *);
140static void fc_exch_els_rrq(struct fc_frame *);
141
142/*
143 * Internal implementation notes.
144 *
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
148 *
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
155 *
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
159 *
160 * Notes on reference counts:
161 *
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
164 *
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
167 *
168 * Sequence event handling:
169 *
170 * The following events may occur on initiator sequences:
171 *
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
191 *
192 * The following events may occur on recipient sequences:
193 *
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
203 *
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
206 */
207
208/*
209 * Locking notes:
210 *
211 * The EM code run in a per-CPU worker thread.
212 *
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
219 */
220
221/*
222 * opcode names for debugging.
223 */
224static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225
226/**
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
231 *
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
234 */
235static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
237{
238 const char *name = NULL;
239
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
245}
246
247/**
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
250 */
251static const char *fc_exch_rctl_name(unsigned int op)
252{
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
255}
256
257/**
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
260 */
261static inline void fc_exch_hold(struct fc_exch *ep)
262{
263 atomic_inc(&ep->ex_refcnt);
264}
265
266/**
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
272 *
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 */
276static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
278{
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
281
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
285
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
290 /*
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
298 */
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
305 }
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
309 }
310
311 /*
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
314 */
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
319}
320
321/**
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
324 *
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
327 */
328static void fc_exch_release(struct fc_exch *ep)
329{
330 struct fc_exch_mgr *mp;
331
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
338 }
339}
340
341/**
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
344 */
345static int fc_exch_done_locked(struct fc_exch *ep)
346{
347 int rc = 1;
348
349 /*
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
354 */
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
359
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
365 }
366 return rc;
367}
368
369/**
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
373 *
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
377 */
378static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
380{
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
383}
384
385/**
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
390 */
391static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
393{
394 ((struct fc_exch **)(pool + 1))[index] = ep;
395}
396
397/**
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
400 */
401static void fc_exch_delete(struct fc_exch *ep)
402{
403 struct fc_exch_pool *pool;
404 u16 index;
405
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
410
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
419
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
424}
425
426/**
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
431 *
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
434 */
435static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
437{
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
440
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
442
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
446}
447
448/**
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
452 */
453static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454{
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
458}
459
460/**
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
465 */
466static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468{
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
473
474 ep = fc_seq_exch(sp);
475 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
476
477 f_ctl = ntoh24(fh->fh_f_ctl);
478 fc_exch_setup_hdr(ep, fp, f_ctl);
479 fr_encaps(fp) = ep->encaps;
480
481 /*
482 * update sequence count if this frame is carrying
483 * multiple FC frames when sequence offload is enabled
484 * by LLD.
485 */
486 if (fr_max_payload(fp))
487 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 fr_max_payload(fp));
489 else
490 sp->cnt++;
491
492 /*
493 * Send the frame.
494 */
495 error = lport->tt.frame_send(lport, fp);
496
497 if (fh->fh_type == FC_TYPE_BLS)
498 return error;
499
500 /*
501 * Update the exchange and sequence flags,
502 * assuming all frames for the sequence have been sent.
503 * We can only be called to send once for each sequence.
504 */
505 spin_lock_bh(&ep->ex_lock);
506 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
507 if (f_ctl & FC_FC_SEQ_INIT)
508 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
509 spin_unlock_bh(&ep->ex_lock);
510 return error;
511}
512
513/**
514 * fc_seq_alloc() - Allocate a sequence for a given exchange
515 * @ep: The exchange to allocate a new sequence for
516 * @seq_id: The sequence ID to be used
517 *
518 * We don't support multiple originated sequences on the same exchange.
519 * By implication, any previously originated sequence on this exchange
520 * is complete, and we reallocate the same sequence.
521 */
522static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
523{
524 struct fc_seq *sp;
525
526 sp = &ep->seq;
527 sp->ssb_stat = 0;
528 sp->cnt = 0;
529 sp->id = seq_id;
530 return sp;
531}
532
533/**
534 * fc_seq_start_next_locked() - Allocate a new sequence on the same
535 * exchange as the supplied sequence
536 * @sp: The sequence/exchange to get a new sequence for
537 */
538static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
539{
540 struct fc_exch *ep = fc_seq_exch(sp);
541
542 sp = fc_seq_alloc(ep, ep->seq_id++);
543 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
544 ep->f_ctl, sp->id);
545 return sp;
546}
547
548/**
549 * fc_seq_start_next() - Lock the exchange and get a new sequence
550 * for a given sequence/exchange pair
551 * @sp: The sequence/exchange to get a new exchange for
552 */
553static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
554{
555 struct fc_exch *ep = fc_seq_exch(sp);
556
557 spin_lock_bh(&ep->ex_lock);
558 sp = fc_seq_start_next_locked(sp);
559 spin_unlock_bh(&ep->ex_lock);
560
561 return sp;
562}
563
564/*
565 * Set the response handler for the exchange associated with a sequence.
566 */
567static void fc_seq_set_resp(struct fc_seq *sp,
568 void (*resp)(struct fc_seq *, struct fc_frame *,
569 void *),
570 void *arg)
571{
572 struct fc_exch *ep = fc_seq_exch(sp);
573
574 spin_lock_bh(&ep->ex_lock);
575 ep->resp = resp;
576 ep->arg = arg;
577 spin_unlock_bh(&ep->ex_lock);
578}
579
580/**
581 * fc_exch_abort_locked() - Abort an exchange
582 * @ep: The exchange to be aborted
583 * @timer_msec: The period of time to wait before aborting
584 *
585 * Locking notes: Called with exch lock held
586 *
587 * Return value: 0 on success else error code
588 */
589static int fc_exch_abort_locked(struct fc_exch *ep,
590 unsigned int timer_msec)
591{
592 struct fc_seq *sp;
593 struct fc_frame *fp;
594 int error;
595
596 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
597 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
598 return -ENXIO;
599
600 /*
601 * Send the abort on a new sequence if possible.
602 */
603 sp = fc_seq_start_next_locked(&ep->seq);
604 if (!sp)
605 return -ENOMEM;
606
607 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
608 if (timer_msec)
609 fc_exch_timer_set_locked(ep, timer_msec);
610
611 /*
612 * If not logged into the fabric, don't send ABTS but leave
613 * sequence active until next timeout.
614 */
615 if (!ep->sid)
616 return 0;
617
618 /*
619 * Send an abort for the sequence that timed out.
620 */
621 fp = fc_frame_alloc(ep->lp, 0);
622 if (fp) {
623 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
624 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
625 error = fc_seq_send(ep->lp, sp, fp);
626 } else
627 error = -ENOBUFS;
628 return error;
629}
630
631/**
632 * fc_seq_exch_abort() - Abort an exchange and sequence
633 * @req_sp: The sequence to be aborted
634 * @timer_msec: The period of time to wait before aborting
635 *
636 * Generally called because of a timeout or an abort from the upper layer.
637 *
638 * Return value: 0 on success else error code
639 */
640static int fc_seq_exch_abort(const struct fc_seq *req_sp,
641 unsigned int timer_msec)
642{
643 struct fc_exch *ep;
644 int error;
645
646 ep = fc_seq_exch(req_sp);
647 spin_lock_bh(&ep->ex_lock);
648 error = fc_exch_abort_locked(ep, timer_msec);
649 spin_unlock_bh(&ep->ex_lock);
650 return error;
651}
652
653/**
654 * fc_exch_timeout() - Handle exchange timer expiration
655 * @work: The work_struct identifying the exchange that timed out
656 */
657static void fc_exch_timeout(struct work_struct *work)
658{
659 struct fc_exch *ep = container_of(work, struct fc_exch,
660 timeout_work.work);
661 struct fc_seq *sp = &ep->seq;
662 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
663 void *arg;
664 u32 e_stat;
665 int rc = 1;
666
667 FC_EXCH_DBG(ep, "Exchange timed out\n");
668
669 spin_lock_bh(&ep->ex_lock);
670 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
671 goto unlock;
672
673 e_stat = ep->esb_stat;
674 if (e_stat & ESB_ST_COMPLETE) {
675 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
676 spin_unlock_bh(&ep->ex_lock);
677 if (e_stat & ESB_ST_REC_QUAL)
678 fc_exch_rrq(ep);
679 goto done;
680 } else {
681 resp = ep->resp;
682 arg = ep->arg;
683 ep->resp = NULL;
684 if (e_stat & ESB_ST_ABNORMAL)
685 rc = fc_exch_done_locked(ep);
686 spin_unlock_bh(&ep->ex_lock);
687 if (!rc)
688 fc_exch_delete(ep);
689 if (resp)
690 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
691 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
692 goto done;
693 }
694unlock:
695 spin_unlock_bh(&ep->ex_lock);
696done:
697 /*
698 * This release matches the hold taken when the timer was set.
699 */
700 fc_exch_release(ep);
701}
702
703/**
704 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
705 * @lport: The local port that the exchange is for
706 * @mp: The exchange manager that will allocate the exchange
707 *
708 * Returns pointer to allocated fc_exch with exch lock held.
709 */
710static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
711 struct fc_exch_mgr *mp)
712{
713 struct fc_exch *ep;
714 unsigned int cpu;
715 u16 index;
716 struct fc_exch_pool *pool;
717
718 /* allocate memory for exchange */
719 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
720 if (!ep) {
721 atomic_inc(&mp->stats.no_free_exch);
722 goto out;
723 }
724 memset(ep, 0, sizeof(*ep));
725
726 cpu = get_cpu();
727 pool = per_cpu_ptr(mp->pool, cpu);
728 spin_lock_bh(&pool->lock);
729 put_cpu();
730
731 /* peek cache of free slot */
732 if (pool->left != FC_XID_UNKNOWN) {
733 index = pool->left;
734 pool->left = FC_XID_UNKNOWN;
735 goto hit;
736 }
737 if (pool->right != FC_XID_UNKNOWN) {
738 index = pool->right;
739 pool->right = FC_XID_UNKNOWN;
740 goto hit;
741 }
742
743 index = pool->next_index;
744 /* allocate new exch from pool */
745 while (fc_exch_ptr_get(pool, index)) {
746 index = index == mp->pool_max_index ? 0 : index + 1;
747 if (index == pool->next_index)
748 goto err;
749 }
750 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
751hit:
752 fc_exch_hold(ep); /* hold for exch in mp */
753 spin_lock_init(&ep->ex_lock);
754 /*
755 * Hold exch lock for caller to prevent fc_exch_reset()
756 * from releasing exch while fc_exch_alloc() caller is
757 * still working on exch.
758 */
759 spin_lock_bh(&ep->ex_lock);
760
761 fc_exch_ptr_set(pool, index, ep);
762 list_add_tail(&ep->ex_list, &pool->ex_list);
763 fc_seq_alloc(ep, ep->seq_id++);
764 pool->total_exches++;
765 spin_unlock_bh(&pool->lock);
766
767 /*
768 * update exchange
769 */
770 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
771 ep->em = mp;
772 ep->pool = pool;
773 ep->lp = lport;
774 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
775 ep->rxid = FC_XID_UNKNOWN;
776 ep->class = mp->class;
777 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
778out:
779 return ep;
780err:
781 spin_unlock_bh(&pool->lock);
782 atomic_inc(&mp->stats.no_free_exch_xid);
783 mempool_free(ep, mp->ep_pool);
784 return NULL;
785}
786
787/**
788 * fc_exch_alloc() - Allocate an exchange from an EM on a
789 * local port's list of EMs.
790 * @lport: The local port that will own the exchange
791 * @fp: The FC frame that the exchange will be for
792 *
793 * This function walks the list of exchange manager(EM)
794 * anchors to select an EM for a new exchange allocation. The
795 * EM is selected when a NULL match function pointer is encountered
796 * or when a call to a match function returns true.
797 */
798static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
799 struct fc_frame *fp)
800{
801 struct fc_exch_mgr_anchor *ema;
802
803 list_for_each_entry(ema, &lport->ema_list, ema_list)
804 if (!ema->match || ema->match(fp))
805 return fc_exch_em_alloc(lport, ema->mp);
806 return NULL;
807}
808
809/**
810 * fc_exch_find() - Lookup and hold an exchange
811 * @mp: The exchange manager to lookup the exchange from
812 * @xid: The XID of the exchange to look up
813 */
814static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
815{
816 struct fc_exch_pool *pool;
817 struct fc_exch *ep = NULL;
818
819 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
820 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
821 spin_lock_bh(&pool->lock);
822 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
823 if (ep && ep->xid == xid)
824 fc_exch_hold(ep);
825 spin_unlock_bh(&pool->lock);
826 }
827 return ep;
828}
829
830
831/**
832 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
833 * the memory allocated for the related objects may be freed.
834 * @sp: The sequence that has completed
835 */
836static void fc_exch_done(struct fc_seq *sp)
837{
838 struct fc_exch *ep = fc_seq_exch(sp);
839 int rc;
840
841 spin_lock_bh(&ep->ex_lock);
842 rc = fc_exch_done_locked(ep);
843 spin_unlock_bh(&ep->ex_lock);
844 if (!rc)
845 fc_exch_delete(ep);
846}
847
848/**
849 * fc_exch_resp() - Allocate a new exchange for a response frame
850 * @lport: The local port that the exchange was for
851 * @mp: The exchange manager to allocate the exchange from
852 * @fp: The response frame
853 *
854 * Sets the responder ID in the frame header.
855 */
856static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
857 struct fc_exch_mgr *mp,
858 struct fc_frame *fp)
859{
860 struct fc_exch *ep;
861 struct fc_frame_header *fh;
862
863 ep = fc_exch_alloc(lport, fp);
864 if (ep) {
865 ep->class = fc_frame_class(fp);
866
867 /*
868 * Set EX_CTX indicating we're responding on this exchange.
869 */
870 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
871 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
872 fh = fc_frame_header_get(fp);
873 ep->sid = ntoh24(fh->fh_d_id);
874 ep->did = ntoh24(fh->fh_s_id);
875 ep->oid = ep->did;
876
877 /*
878 * Allocated exchange has placed the XID in the
879 * originator field. Move it to the responder field,
880 * and set the originator XID from the frame.
881 */
882 ep->rxid = ep->xid;
883 ep->oxid = ntohs(fh->fh_ox_id);
884 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
885 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
886 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
887
888 fc_exch_hold(ep); /* hold for caller */
889 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
890 }
891 return ep;
892}
893
894/**
895 * fc_seq_lookup_recip() - Find a sequence where the other end
896 * originated the sequence
897 * @lport: The local port that the frame was sent to
898 * @mp: The Exchange Manager to lookup the exchange from
899 * @fp: The frame associated with the sequence we're looking for
900 *
901 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
902 * on the ep that should be released by the caller.
903 */
904static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
905 struct fc_exch_mgr *mp,
906 struct fc_frame *fp)
907{
908 struct fc_frame_header *fh = fc_frame_header_get(fp);
909 struct fc_exch *ep = NULL;
910 struct fc_seq *sp = NULL;
911 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
912 u32 f_ctl;
913 u16 xid;
914
915 f_ctl = ntoh24(fh->fh_f_ctl);
916 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
917
918 /*
919 * Lookup or create the exchange if we will be creating the sequence.
920 */
921 if (f_ctl & FC_FC_EX_CTX) {
922 xid = ntohs(fh->fh_ox_id); /* we originated exch */
923 ep = fc_exch_find(mp, xid);
924 if (!ep) {
925 atomic_inc(&mp->stats.xid_not_found);
926 reject = FC_RJT_OX_ID;
927 goto out;
928 }
929 if (ep->rxid == FC_XID_UNKNOWN)
930 ep->rxid = ntohs(fh->fh_rx_id);
931 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
932 reject = FC_RJT_OX_ID;
933 goto rel;
934 }
935 } else {
936 xid = ntohs(fh->fh_rx_id); /* we are the responder */
937
938 /*
939 * Special case for MDS issuing an ELS TEST with a
940 * bad rxid of 0.
941 * XXX take this out once we do the proper reject.
942 */
943 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
944 fc_frame_payload_op(fp) == ELS_TEST) {
945 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
946 xid = FC_XID_UNKNOWN;
947 }
948
949 /*
950 * new sequence - find the exchange
951 */
952 ep = fc_exch_find(mp, xid);
953 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
954 if (ep) {
955 atomic_inc(&mp->stats.xid_busy);
956 reject = FC_RJT_RX_ID;
957 goto rel;
958 }
959 ep = fc_exch_resp(lport, mp, fp);
960 if (!ep) {
961 reject = FC_RJT_EXCH_EST; /* XXX */
962 goto out;
963 }
964 xid = ep->xid; /* get our XID */
965 } else if (!ep) {
966 atomic_inc(&mp->stats.xid_not_found);
967 reject = FC_RJT_RX_ID; /* XID not found */
968 goto out;
969 }
970 }
971
972 /*
973 * At this point, we have the exchange held.
974 * Find or create the sequence.
975 */
976 if (fc_sof_is_init(fr_sof(fp))) {
977 sp = &ep->seq;
978 sp->ssb_stat |= SSB_ST_RESP;
979 sp->id = fh->fh_seq_id;
980 } else {
981 sp = &ep->seq;
982 if (sp->id != fh->fh_seq_id) {
983 atomic_inc(&mp->stats.seq_not_found);
984 if (f_ctl & FC_FC_END_SEQ) {
985 /*
986 * Update sequence_id based on incoming last
987 * frame of sequence exchange. This is needed
988 * for FCoE target where DDP has been used
989 * on target where, stack is indicated only
990 * about last frame's (payload _header) header.
991 * Whereas "seq_id" which is part of
992 * frame_header is allocated by initiator
993 * which is totally different from "seq_id"
994 * allocated when XFER_RDY was sent by target.
995 * To avoid false -ve which results into not
996 * sending RSP, hence write request on other
997 * end never finishes.
998 */
999 spin_lock_bh(&ep->ex_lock);
1000 sp->ssb_stat |= SSB_ST_RESP;
1001 sp->id = fh->fh_seq_id;
1002 spin_unlock_bh(&ep->ex_lock);
1003 } else {
1004 /* sequence/exch should exist */
1005 reject = FC_RJT_SEQ_ID;
1006 goto rel;
1007 }
1008 }
1009 }
1010 WARN_ON(ep != fc_seq_exch(sp));
1011
1012 if (f_ctl & FC_FC_SEQ_INIT)
1013 ep->esb_stat |= ESB_ST_SEQ_INIT;
1014
1015 fr_seq(fp) = sp;
1016out:
1017 return reject;
1018rel:
1019 fc_exch_done(&ep->seq);
1020 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1021 return reject;
1022}
1023
1024/**
1025 * fc_seq_lookup_orig() - Find a sequence where this end
1026 * originated the sequence
1027 * @mp: The Exchange Manager to lookup the exchange from
1028 * @fp: The frame associated with the sequence we're looking for
1029 *
1030 * Does not hold the sequence for the caller.
1031 */
1032static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1033 struct fc_frame *fp)
1034{
1035 struct fc_frame_header *fh = fc_frame_header_get(fp);
1036 struct fc_exch *ep;
1037 struct fc_seq *sp = NULL;
1038 u32 f_ctl;
1039 u16 xid;
1040
1041 f_ctl = ntoh24(fh->fh_f_ctl);
1042 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1043 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1044 ep = fc_exch_find(mp, xid);
1045 if (!ep)
1046 return NULL;
1047 if (ep->seq.id == fh->fh_seq_id) {
1048 /*
1049 * Save the RX_ID if we didn't previously know it.
1050 */
1051 sp = &ep->seq;
1052 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1053 ep->rxid == FC_XID_UNKNOWN) {
1054 ep->rxid = ntohs(fh->fh_rx_id);
1055 }
1056 }
1057 fc_exch_release(ep);
1058 return sp;
1059}
1060
1061/**
1062 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1063 * @ep: The exchange to set the addresses for
1064 * @orig_id: The originator's ID
1065 * @resp_id: The responder's ID
1066 *
1067 * Note this must be done before the first sequence of the exchange is sent.
1068 */
1069static void fc_exch_set_addr(struct fc_exch *ep,
1070 u32 orig_id, u32 resp_id)
1071{
1072 ep->oid = orig_id;
1073 if (ep->esb_stat & ESB_ST_RESP) {
1074 ep->sid = resp_id;
1075 ep->did = orig_id;
1076 } else {
1077 ep->sid = orig_id;
1078 ep->did = resp_id;
1079 }
1080}
1081
1082/**
1083 * fc_seq_els_rsp_send() - Send an ELS response using information from
1084 * the existing sequence/exchange.
1085 * @fp: The received frame
1086 * @els_cmd: The ELS command to be sent
1087 * @els_data: The ELS data to be sent
1088 *
1089 * The received frame is not freed.
1090 */
1091static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1092 struct fc_seq_els_data *els_data)
1093{
1094 switch (els_cmd) {
1095 case ELS_LS_RJT:
1096 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1097 break;
1098 case ELS_LS_ACC:
1099 fc_seq_ls_acc(fp);
1100 break;
1101 case ELS_RRQ:
1102 fc_exch_els_rrq(fp);
1103 break;
1104 case ELS_REC:
1105 fc_exch_els_rec(fp);
1106 break;
1107 default:
1108 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1109 }
1110}
1111
1112/**
1113 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1114 * @sp: The sequence that is to be sent
1115 * @fp: The frame that will be sent on the sequence
1116 * @rctl: The R_CTL information to be sent
1117 * @fh_type: The frame header type
1118 */
1119static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1120 enum fc_rctl rctl, enum fc_fh_type fh_type)
1121{
1122 u32 f_ctl;
1123 struct fc_exch *ep = fc_seq_exch(sp);
1124
1125 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1126 f_ctl |= ep->f_ctl;
1127 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1128 fc_seq_send(ep->lp, sp, fp);
1129}
1130
1131/**
1132 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1133 * @sp: The sequence to send the ACK on
1134 * @rx_fp: The received frame that is being acknoledged
1135 *
1136 * Send ACK_1 (or equiv.) indicating we received something.
1137 */
1138static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1139{
1140 struct fc_frame *fp;
1141 struct fc_frame_header *rx_fh;
1142 struct fc_frame_header *fh;
1143 struct fc_exch *ep = fc_seq_exch(sp);
1144 struct fc_lport *lport = ep->lp;
1145 unsigned int f_ctl;
1146
1147 /*
1148 * Don't send ACKs for class 3.
1149 */
1150 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1151 fp = fc_frame_alloc(lport, 0);
1152 if (!fp)
1153 return;
1154
1155 fh = fc_frame_header_get(fp);
1156 fh->fh_r_ctl = FC_RCTL_ACK_1;
1157 fh->fh_type = FC_TYPE_BLS;
1158
1159 /*
1160 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1161 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1162 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1163 * Last ACK uses bits 7-6 (continue sequence),
1164 * bits 5-4 are meaningful (what kind of ACK to use).
1165 */
1166 rx_fh = fc_frame_header_get(rx_fp);
1167 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1168 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1169 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1170 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1171 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1172 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1173 hton24(fh->fh_f_ctl, f_ctl);
1174
1175 fc_exch_setup_hdr(ep, fp, f_ctl);
1176 fh->fh_seq_id = rx_fh->fh_seq_id;
1177 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1178 fh->fh_parm_offset = htonl(1); /* ack single frame */
1179
1180 fr_sof(fp) = fr_sof(rx_fp);
1181 if (f_ctl & FC_FC_END_SEQ)
1182 fr_eof(fp) = FC_EOF_T;
1183 else
1184 fr_eof(fp) = FC_EOF_N;
1185
1186 lport->tt.frame_send(lport, fp);
1187 }
1188}
1189
1190/**
1191 * fc_exch_send_ba_rjt() - Send BLS Reject
1192 * @rx_fp: The frame being rejected
1193 * @reason: The reason the frame is being rejected
1194 * @explan: The explanation for the rejection
1195 *
1196 * This is for rejecting BA_ABTS only.
1197 */
1198static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1199 enum fc_ba_rjt_reason reason,
1200 enum fc_ba_rjt_explan explan)
1201{
1202 struct fc_frame *fp;
1203 struct fc_frame_header *rx_fh;
1204 struct fc_frame_header *fh;
1205 struct fc_ba_rjt *rp;
1206 struct fc_lport *lport;
1207 unsigned int f_ctl;
1208
1209 lport = fr_dev(rx_fp);
1210 fp = fc_frame_alloc(lport, sizeof(*rp));
1211 if (!fp)
1212 return;
1213 fh = fc_frame_header_get(fp);
1214 rx_fh = fc_frame_header_get(rx_fp);
1215
1216 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1217
1218 rp = fc_frame_payload_get(fp, sizeof(*rp));
1219 rp->br_reason = reason;
1220 rp->br_explan = explan;
1221
1222 /*
1223 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1224 */
1225 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1226 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1227 fh->fh_ox_id = rx_fh->fh_ox_id;
1228 fh->fh_rx_id = rx_fh->fh_rx_id;
1229 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1230 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1231 fh->fh_type = FC_TYPE_BLS;
1232
1233 /*
1234 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1235 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1236 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1237 * Last ACK uses bits 7-6 (continue sequence),
1238 * bits 5-4 are meaningful (what kind of ACK to use).
1239 * Always set LAST_SEQ, END_SEQ.
1240 */
1241 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1242 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1243 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1244 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1245 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1246 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1247 f_ctl &= ~FC_FC_FIRST_SEQ;
1248 hton24(fh->fh_f_ctl, f_ctl);
1249
1250 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1251 fr_eof(fp) = FC_EOF_T;
1252 if (fc_sof_needs_ack(fr_sof(fp)))
1253 fr_eof(fp) = FC_EOF_N;
1254
1255 lport->tt.frame_send(lport, fp);
1256}
1257
1258/**
1259 * fc_exch_recv_abts() - Handle an incoming ABTS
1260 * @ep: The exchange the abort was on
1261 * @rx_fp: The ABTS frame
1262 *
1263 * This would be for target mode usually, but could be due to lost
1264 * FCP transfer ready, confirm or RRQ. We always handle this as an
1265 * exchange abort, ignoring the parameter.
1266 */
1267static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1268{
1269 struct fc_frame *fp;
1270 struct fc_ba_acc *ap;
1271 struct fc_frame_header *fh;
1272 struct fc_seq *sp;
1273
1274 if (!ep)
1275 goto reject;
1276 spin_lock_bh(&ep->ex_lock);
1277 if (ep->esb_stat & ESB_ST_COMPLETE) {
1278 spin_unlock_bh(&ep->ex_lock);
1279 goto reject;
1280 }
1281 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1282 fc_exch_hold(ep); /* hold for REC_QUAL */
1283 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1284 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1285
1286 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1287 if (!fp) {
1288 spin_unlock_bh(&ep->ex_lock);
1289 goto free;
1290 }
1291 fh = fc_frame_header_get(fp);
1292 ap = fc_frame_payload_get(fp, sizeof(*ap));
1293 memset(ap, 0, sizeof(*ap));
1294 sp = &ep->seq;
1295 ap->ba_high_seq_cnt = htons(0xffff);
1296 if (sp->ssb_stat & SSB_ST_RESP) {
1297 ap->ba_seq_id = sp->id;
1298 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1299 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1300 ap->ba_low_seq_cnt = htons(sp->cnt);
1301 }
1302 sp = fc_seq_start_next_locked(sp);
1303 spin_unlock_bh(&ep->ex_lock);
1304 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1305 fc_frame_free(rx_fp);
1306 return;
1307
1308reject:
1309 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1310free:
1311 fc_frame_free(rx_fp);
1312}
1313
1314/**
1315 * fc_seq_assign() - Assign exchange and sequence for incoming request
1316 * @lport: The local port that received the request
1317 * @fp: The request frame
1318 *
1319 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1320 * A reference will be held on the exchange/sequence for the caller, which
1321 * must call fc_seq_release().
1322 */
1323static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1324{
1325 struct fc_exch_mgr_anchor *ema;
1326
1327 WARN_ON(lport != fr_dev(fp));
1328 WARN_ON(fr_seq(fp));
1329 fr_seq(fp) = NULL;
1330
1331 list_for_each_entry(ema, &lport->ema_list, ema_list)
1332 if ((!ema->match || ema->match(fp)) &&
1333 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1334 break;
1335 return fr_seq(fp);
1336}
1337
1338/**
1339 * fc_seq_release() - Release the hold
1340 * @sp: The sequence.
1341 */
1342static void fc_seq_release(struct fc_seq *sp)
1343{
1344 fc_exch_release(fc_seq_exch(sp));
1345}
1346
1347/**
1348 * fc_exch_recv_req() - Handler for an incoming request
1349 * @lport: The local port that received the request
1350 * @mp: The EM that the exchange is on
1351 * @fp: The request frame
1352 *
1353 * This is used when the other end is originating the exchange
1354 * and the sequence.
1355 */
1356static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1357 struct fc_frame *fp)
1358{
1359 struct fc_frame_header *fh = fc_frame_header_get(fp);
1360 struct fc_seq *sp = NULL;
1361 struct fc_exch *ep = NULL;
1362 enum fc_pf_rjt_reason reject;
1363
1364 /* We can have the wrong fc_lport at this point with NPIV, which is a
1365 * problem now that we know a new exchange needs to be allocated
1366 */
1367 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1368 if (!lport) {
1369 fc_frame_free(fp);
1370 return;
1371 }
1372 fr_dev(fp) = lport;
1373
1374 BUG_ON(fr_seq(fp)); /* XXX remove later */
1375
1376 /*
1377 * If the RX_ID is 0xffff, don't allocate an exchange.
1378 * The upper-level protocol may request one later, if needed.
1379 */
1380 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1381 return lport->tt.lport_recv(lport, fp);
1382
1383 reject = fc_seq_lookup_recip(lport, mp, fp);
1384 if (reject == FC_RJT_NONE) {
1385 sp = fr_seq(fp); /* sequence will be held */
1386 ep = fc_seq_exch(sp);
1387 fc_seq_send_ack(sp, fp);
1388 ep->encaps = fr_encaps(fp);
1389
1390 /*
1391 * Call the receive function.
1392 *
1393 * The receive function may allocate a new sequence
1394 * over the old one, so we shouldn't change the
1395 * sequence after this.
1396 *
1397 * The frame will be freed by the receive function.
1398 * If new exch resp handler is valid then call that
1399 * first.
1400 */
1401 if (ep->resp)
1402 ep->resp(sp, fp, ep->arg);
1403 else
1404 lport->tt.lport_recv(lport, fp);
1405 fc_exch_release(ep); /* release from lookup */
1406 } else {
1407 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1408 reject);
1409 fc_frame_free(fp);
1410 }
1411}
1412
1413/**
1414 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1415 * end is the originator of the sequence that is a
1416 * response to our initial exchange
1417 * @mp: The EM that the exchange is on
1418 * @fp: The response frame
1419 */
1420static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1421{
1422 struct fc_frame_header *fh = fc_frame_header_get(fp);
1423 struct fc_seq *sp;
1424 struct fc_exch *ep;
1425 enum fc_sof sof;
1426 u32 f_ctl;
1427 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1428 void *ex_resp_arg;
1429 int rc;
1430
1431 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1432 if (!ep) {
1433 atomic_inc(&mp->stats.xid_not_found);
1434 goto out;
1435 }
1436 if (ep->esb_stat & ESB_ST_COMPLETE) {
1437 atomic_inc(&mp->stats.xid_not_found);
1438 goto rel;
1439 }
1440 if (ep->rxid == FC_XID_UNKNOWN)
1441 ep->rxid = ntohs(fh->fh_rx_id);
1442 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1443 atomic_inc(&mp->stats.xid_not_found);
1444 goto rel;
1445 }
1446 if (ep->did != ntoh24(fh->fh_s_id) &&
1447 ep->did != FC_FID_FLOGI) {
1448 atomic_inc(&mp->stats.xid_not_found);
1449 goto rel;
1450 }
1451 sof = fr_sof(fp);
1452 sp = &ep->seq;
1453 if (fc_sof_is_init(sof)) {
1454 sp->ssb_stat |= SSB_ST_RESP;
1455 sp->id = fh->fh_seq_id;
1456 } else if (sp->id != fh->fh_seq_id) {
1457 atomic_inc(&mp->stats.seq_not_found);
1458 goto rel;
1459 }
1460
1461 f_ctl = ntoh24(fh->fh_f_ctl);
1462 fr_seq(fp) = sp;
1463 if (f_ctl & FC_FC_SEQ_INIT)
1464 ep->esb_stat |= ESB_ST_SEQ_INIT;
1465
1466 if (fc_sof_needs_ack(sof))
1467 fc_seq_send_ack(sp, fp);
1468 resp = ep->resp;
1469 ex_resp_arg = ep->arg;
1470
1471 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1472 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1473 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1474 spin_lock_bh(&ep->ex_lock);
1475 resp = ep->resp;
1476 rc = fc_exch_done_locked(ep);
1477 WARN_ON(fc_seq_exch(sp) != ep);
1478 spin_unlock_bh(&ep->ex_lock);
1479 if (!rc)
1480 fc_exch_delete(ep);
1481 }
1482
1483 /*
1484 * Call the receive function.
1485 * The sequence is held (has a refcnt) for us,
1486 * but not for the receive function.
1487 *
1488 * The receive function may allocate a new sequence
1489 * over the old one, so we shouldn't change the
1490 * sequence after this.
1491 *
1492 * The frame will be freed by the receive function.
1493 * If new exch resp handler is valid then call that
1494 * first.
1495 */
1496 if (resp)
1497 resp(sp, fp, ex_resp_arg);
1498 else
1499 fc_frame_free(fp);
1500 fc_exch_release(ep);
1501 return;
1502rel:
1503 fc_exch_release(ep);
1504out:
1505 fc_frame_free(fp);
1506}
1507
1508/**
1509 * fc_exch_recv_resp() - Handler for a sequence where other end is
1510 * responding to our sequence
1511 * @mp: The EM that the exchange is on
1512 * @fp: The response frame
1513 */
1514static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1515{
1516 struct fc_seq *sp;
1517
1518 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1519
1520 if (!sp)
1521 atomic_inc(&mp->stats.xid_not_found);
1522 else
1523 atomic_inc(&mp->stats.non_bls_resp);
1524
1525 fc_frame_free(fp);
1526}
1527
1528/**
1529 * fc_exch_abts_resp() - Handler for a response to an ABT
1530 * @ep: The exchange that the frame is on
1531 * @fp: The response frame
1532 *
1533 * This response would be to an ABTS cancelling an exchange or sequence.
1534 * The response can be either BA_ACC or BA_RJT
1535 */
1536static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1537{
1538 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1539 void *ex_resp_arg;
1540 struct fc_frame_header *fh;
1541 struct fc_ba_acc *ap;
1542 struct fc_seq *sp;
1543 u16 low;
1544 u16 high;
1545 int rc = 1, has_rec = 0;
1546
1547 fh = fc_frame_header_get(fp);
1548 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1549 fc_exch_rctl_name(fh->fh_r_ctl));
1550
1551 if (cancel_delayed_work_sync(&ep->timeout_work))
1552 fc_exch_release(ep); /* release from pending timer hold */
1553
1554 spin_lock_bh(&ep->ex_lock);
1555 switch (fh->fh_r_ctl) {
1556 case FC_RCTL_BA_ACC:
1557 ap = fc_frame_payload_get(fp, sizeof(*ap));
1558 if (!ap)
1559 break;
1560
1561 /*
1562 * Decide whether to establish a Recovery Qualifier.
1563 * We do this if there is a non-empty SEQ_CNT range and
1564 * SEQ_ID is the same as the one we aborted.
1565 */
1566 low = ntohs(ap->ba_low_seq_cnt);
1567 high = ntohs(ap->ba_high_seq_cnt);
1568 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1569 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1570 ap->ba_seq_id == ep->seq_id) && low != high) {
1571 ep->esb_stat |= ESB_ST_REC_QUAL;
1572 fc_exch_hold(ep); /* hold for recovery qualifier */
1573 has_rec = 1;
1574 }
1575 break;
1576 case FC_RCTL_BA_RJT:
1577 break;
1578 default:
1579 break;
1580 }
1581
1582 resp = ep->resp;
1583 ex_resp_arg = ep->arg;
1584
1585 /* do we need to do some other checks here. Can we reuse more of
1586 * fc_exch_recv_seq_resp
1587 */
1588 sp = &ep->seq;
1589 /*
1590 * do we want to check END_SEQ as well as LAST_SEQ here?
1591 */
1592 if (ep->fh_type != FC_TYPE_FCP &&
1593 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1594 rc = fc_exch_done_locked(ep);
1595 spin_unlock_bh(&ep->ex_lock);
1596 if (!rc)
1597 fc_exch_delete(ep);
1598
1599 if (resp)
1600 resp(sp, fp, ex_resp_arg);
1601 else
1602 fc_frame_free(fp);
1603
1604 if (has_rec)
1605 fc_exch_timer_set(ep, ep->r_a_tov);
1606
1607}
1608
1609/**
1610 * fc_exch_recv_bls() - Handler for a BLS sequence
1611 * @mp: The EM that the exchange is on
1612 * @fp: The request frame
1613 *
1614 * The BLS frame is always a sequence initiated by the remote side.
1615 * We may be either the originator or recipient of the exchange.
1616 */
1617static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1618{
1619 struct fc_frame_header *fh;
1620 struct fc_exch *ep;
1621 u32 f_ctl;
1622
1623 fh = fc_frame_header_get(fp);
1624 f_ctl = ntoh24(fh->fh_f_ctl);
1625 fr_seq(fp) = NULL;
1626
1627 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1628 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1629 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1630 spin_lock_bh(&ep->ex_lock);
1631 ep->esb_stat |= ESB_ST_SEQ_INIT;
1632 spin_unlock_bh(&ep->ex_lock);
1633 }
1634 if (f_ctl & FC_FC_SEQ_CTX) {
1635 /*
1636 * A response to a sequence we initiated.
1637 * This should only be ACKs for class 2 or F.
1638 */
1639 switch (fh->fh_r_ctl) {
1640 case FC_RCTL_ACK_1:
1641 case FC_RCTL_ACK_0:
1642 break;
1643 default:
1644 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1645 fh->fh_r_ctl,
1646 fc_exch_rctl_name(fh->fh_r_ctl));
1647 break;
1648 }
1649 fc_frame_free(fp);
1650 } else {
1651 switch (fh->fh_r_ctl) {
1652 case FC_RCTL_BA_RJT:
1653 case FC_RCTL_BA_ACC:
1654 if (ep)
1655 fc_exch_abts_resp(ep, fp);
1656 else
1657 fc_frame_free(fp);
1658 break;
1659 case FC_RCTL_BA_ABTS:
1660 fc_exch_recv_abts(ep, fp);
1661 break;
1662 default: /* ignore junk */
1663 fc_frame_free(fp);
1664 break;
1665 }
1666 }
1667 if (ep)
1668 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1669}
1670
1671/**
1672 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1673 * @rx_fp: The received frame, not freed here.
1674 *
1675 * If this fails due to allocation or transmit congestion, assume the
1676 * originator will repeat the sequence.
1677 */
1678static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1679{
1680 struct fc_lport *lport;
1681 struct fc_els_ls_acc *acc;
1682 struct fc_frame *fp;
1683
1684 lport = fr_dev(rx_fp);
1685 fp = fc_frame_alloc(lport, sizeof(*acc));
1686 if (!fp)
1687 return;
1688 acc = fc_frame_payload_get(fp, sizeof(*acc));
1689 memset(acc, 0, sizeof(*acc));
1690 acc->la_cmd = ELS_LS_ACC;
1691 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1692 lport->tt.frame_send(lport, fp);
1693}
1694
1695/**
1696 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1697 * @rx_fp: The received frame, not freed here.
1698 * @reason: The reason the sequence is being rejected
1699 * @explan: The explanation for the rejection
1700 *
1701 * If this fails due to allocation or transmit congestion, assume the
1702 * originator will repeat the sequence.
1703 */
1704static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1705 enum fc_els_rjt_explan explan)
1706{
1707 struct fc_lport *lport;
1708 struct fc_els_ls_rjt *rjt;
1709 struct fc_frame *fp;
1710
1711 lport = fr_dev(rx_fp);
1712 fp = fc_frame_alloc(lport, sizeof(*rjt));
1713 if (!fp)
1714 return;
1715 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1716 memset(rjt, 0, sizeof(*rjt));
1717 rjt->er_cmd = ELS_LS_RJT;
1718 rjt->er_reason = reason;
1719 rjt->er_explan = explan;
1720 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1721 lport->tt.frame_send(lport, fp);
1722}
1723
1724/**
1725 * fc_exch_reset() - Reset an exchange
1726 * @ep: The exchange to be reset
1727 */
1728static void fc_exch_reset(struct fc_exch *ep)
1729{
1730 struct fc_seq *sp;
1731 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1732 void *arg;
1733 int rc = 1;
1734
1735 spin_lock_bh(&ep->ex_lock);
1736 fc_exch_abort_locked(ep, 0);
1737 ep->state |= FC_EX_RST_CLEANUP;
1738 if (cancel_delayed_work(&ep->timeout_work))
1739 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1740 resp = ep->resp;
1741 ep->resp = NULL;
1742 if (ep->esb_stat & ESB_ST_REC_QUAL)
1743 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1744 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1745 arg = ep->arg;
1746 sp = &ep->seq;
1747 rc = fc_exch_done_locked(ep);
1748 spin_unlock_bh(&ep->ex_lock);
1749 if (!rc)
1750 fc_exch_delete(ep);
1751
1752 if (resp)
1753 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1754}
1755
1756/**
1757 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1758 * @lport: The local port that the exchange pool is on
1759 * @pool: The exchange pool to be reset
1760 * @sid: The source ID
1761 * @did: The destination ID
1762 *
1763 * Resets a per cpu exches pool, releasing all of its sequences
1764 * and exchanges. If sid is non-zero then reset only exchanges
1765 * we sourced from the local port's FID. If did is non-zero then
1766 * only reset exchanges destined for the local port's FID.
1767 */
1768static void fc_exch_pool_reset(struct fc_lport *lport,
1769 struct fc_exch_pool *pool,
1770 u32 sid, u32 did)
1771{
1772 struct fc_exch *ep;
1773 struct fc_exch *next;
1774
1775 spin_lock_bh(&pool->lock);
1776restart:
1777 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1778 if ((lport == ep->lp) &&
1779 (sid == 0 || sid == ep->sid) &&
1780 (did == 0 || did == ep->did)) {
1781 fc_exch_hold(ep);
1782 spin_unlock_bh(&pool->lock);
1783
1784 fc_exch_reset(ep);
1785
1786 fc_exch_release(ep);
1787 spin_lock_bh(&pool->lock);
1788
1789 /*
1790 * must restart loop incase while lock
1791 * was down multiple eps were released.
1792 */
1793 goto restart;
1794 }
1795 }
1796 spin_unlock_bh(&pool->lock);
1797}
1798
1799/**
1800 * fc_exch_mgr_reset() - Reset all EMs of a local port
1801 * @lport: The local port whose EMs are to be reset
1802 * @sid: The source ID
1803 * @did: The destination ID
1804 *
1805 * Reset all EMs associated with a given local port. Release all
1806 * sequences and exchanges. If sid is non-zero then reset only the
1807 * exchanges sent from the local port's FID. If did is non-zero then
1808 * reset only exchanges destined for the local port's FID.
1809 */
1810void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1811{
1812 struct fc_exch_mgr_anchor *ema;
1813 unsigned int cpu;
1814
1815 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1816 for_each_possible_cpu(cpu)
1817 fc_exch_pool_reset(lport,
1818 per_cpu_ptr(ema->mp->pool, cpu),
1819 sid, did);
1820 }
1821}
1822EXPORT_SYMBOL(fc_exch_mgr_reset);
1823
1824/**
1825 * fc_exch_lookup() - find an exchange
1826 * @lport: The local port
1827 * @xid: The exchange ID
1828 *
1829 * Returns exchange pointer with hold for caller, or NULL if not found.
1830 */
1831static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1832{
1833 struct fc_exch_mgr_anchor *ema;
1834
1835 list_for_each_entry(ema, &lport->ema_list, ema_list)
1836 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1837 return fc_exch_find(ema->mp, xid);
1838 return NULL;
1839}
1840
1841/**
1842 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1843 * @rfp: The REC frame, not freed here.
1844 *
1845 * Note that the requesting port may be different than the S_ID in the request.
1846 */
1847static void fc_exch_els_rec(struct fc_frame *rfp)
1848{
1849 struct fc_lport *lport;
1850 struct fc_frame *fp;
1851 struct fc_exch *ep;
1852 struct fc_els_rec *rp;
1853 struct fc_els_rec_acc *acc;
1854 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1855 enum fc_els_rjt_explan explan;
1856 u32 sid;
1857 u16 rxid;
1858 u16 oxid;
1859
1860 lport = fr_dev(rfp);
1861 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1862 explan = ELS_EXPL_INV_LEN;
1863 if (!rp)
1864 goto reject;
1865 sid = ntoh24(rp->rec_s_id);
1866 rxid = ntohs(rp->rec_rx_id);
1867 oxid = ntohs(rp->rec_ox_id);
1868
1869 ep = fc_exch_lookup(lport,
1870 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1871 explan = ELS_EXPL_OXID_RXID;
1872 if (!ep)
1873 goto reject;
1874 if (ep->oid != sid || oxid != ep->oxid)
1875 goto rel;
1876 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1877 goto rel;
1878 fp = fc_frame_alloc(lport, sizeof(*acc));
1879 if (!fp)
1880 goto out;
1881
1882 acc = fc_frame_payload_get(fp, sizeof(*acc));
1883 memset(acc, 0, sizeof(*acc));
1884 acc->reca_cmd = ELS_LS_ACC;
1885 acc->reca_ox_id = rp->rec_ox_id;
1886 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1887 acc->reca_rx_id = htons(ep->rxid);
1888 if (ep->sid == ep->oid)
1889 hton24(acc->reca_rfid, ep->did);
1890 else
1891 hton24(acc->reca_rfid, ep->sid);
1892 acc->reca_fc4value = htonl(ep->seq.rec_data);
1893 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1894 ESB_ST_SEQ_INIT |
1895 ESB_ST_COMPLETE));
1896 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1897 lport->tt.frame_send(lport, fp);
1898out:
1899 fc_exch_release(ep);
1900 return;
1901
1902rel:
1903 fc_exch_release(ep);
1904reject:
1905 fc_seq_ls_rjt(rfp, reason, explan);
1906}
1907
1908/**
1909 * fc_exch_rrq_resp() - Handler for RRQ responses
1910 * @sp: The sequence that the RRQ is on
1911 * @fp: The RRQ frame
1912 * @arg: The exchange that the RRQ is on
1913 *
1914 * TODO: fix error handler.
1915 */
1916static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1917{
1918 struct fc_exch *aborted_ep = arg;
1919 unsigned int op;
1920
1921 if (IS_ERR(fp)) {
1922 int err = PTR_ERR(fp);
1923
1924 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1925 goto cleanup;
1926 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1927 "frame error %d\n", err);
1928 return;
1929 }
1930
1931 op = fc_frame_payload_op(fp);
1932 fc_frame_free(fp);
1933
1934 switch (op) {
1935 case ELS_LS_RJT:
1936 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1937 /* fall through */
1938 case ELS_LS_ACC:
1939 goto cleanup;
1940 default:
1941 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1942 "for RRQ", op);
1943 return;
1944 }
1945
1946cleanup:
1947 fc_exch_done(&aborted_ep->seq);
1948 /* drop hold for rec qual */
1949 fc_exch_release(aborted_ep);
1950}
1951
1952
1953/**
1954 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1955 * @lport: The local port to send the frame on
1956 * @fp: The frame to be sent
1957 * @resp: The response handler for this request
1958 * @destructor: The destructor for the exchange
1959 * @arg: The argument to be passed to the response handler
1960 * @timer_msec: The timeout period for the exchange
1961 *
1962 * The frame pointer with some of the header's fields must be
1963 * filled before calling this routine, those fields are:
1964 *
1965 * - routing control
1966 * - FC port did
1967 * - FC port sid
1968 * - FC header type
1969 * - frame control
1970 * - parameter or relative offset
1971 */
1972static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1973 struct fc_frame *fp,
1974 void (*resp)(struct fc_seq *,
1975 struct fc_frame *fp,
1976 void *arg),
1977 void (*destructor)(struct fc_seq *,
1978 void *),
1979 void *arg, u32 timer_msec)
1980{
1981 struct fc_exch *ep;
1982 struct fc_seq *sp = NULL;
1983 struct fc_frame_header *fh;
1984 struct fc_fcp_pkt *fsp = NULL;
1985 int rc = 1;
1986
1987 ep = fc_exch_alloc(lport, fp);
1988 if (!ep) {
1989 fc_frame_free(fp);
1990 return NULL;
1991 }
1992 ep->esb_stat |= ESB_ST_SEQ_INIT;
1993 fh = fc_frame_header_get(fp);
1994 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1995 ep->resp = resp;
1996 ep->destructor = destructor;
1997 ep->arg = arg;
1998 ep->r_a_tov = FC_DEF_R_A_TOV;
1999 ep->lp = lport;
2000 sp = &ep->seq;
2001
2002 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2003 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2004 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2005 sp->cnt++;
2006
2007 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2008 fsp = fr_fsp(fp);
2009 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2010 }
2011
2012 if (unlikely(lport->tt.frame_send(lport, fp)))
2013 goto err;
2014
2015 if (timer_msec)
2016 fc_exch_timer_set_locked(ep, timer_msec);
2017 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2018
2019 if (ep->f_ctl & FC_FC_SEQ_INIT)
2020 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2021 spin_unlock_bh(&ep->ex_lock);
2022 return sp;
2023err:
2024 if (fsp)
2025 fc_fcp_ddp_done(fsp);
2026 rc = fc_exch_done_locked(ep);
2027 spin_unlock_bh(&ep->ex_lock);
2028 if (!rc)
2029 fc_exch_delete(ep);
2030 return NULL;
2031}
2032
2033/**
2034 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2035 * @ep: The exchange to send the RRQ on
2036 *
2037 * This tells the remote port to stop blocking the use of
2038 * the exchange and the seq_cnt range.
2039 */
2040static void fc_exch_rrq(struct fc_exch *ep)
2041{
2042 struct fc_lport *lport;
2043 struct fc_els_rrq *rrq;
2044 struct fc_frame *fp;
2045 u32 did;
2046
2047 lport = ep->lp;
2048
2049 fp = fc_frame_alloc(lport, sizeof(*rrq));
2050 if (!fp)
2051 goto retry;
2052
2053 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2054 memset(rrq, 0, sizeof(*rrq));
2055 rrq->rrq_cmd = ELS_RRQ;
2056 hton24(rrq->rrq_s_id, ep->sid);
2057 rrq->rrq_ox_id = htons(ep->oxid);
2058 rrq->rrq_rx_id = htons(ep->rxid);
2059
2060 did = ep->did;
2061 if (ep->esb_stat & ESB_ST_RESP)
2062 did = ep->sid;
2063
2064 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2065 lport->port_id, FC_TYPE_ELS,
2066 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2067
2068 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2069 lport->e_d_tov))
2070 return;
2071
2072retry:
2073 spin_lock_bh(&ep->ex_lock);
2074 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2075 spin_unlock_bh(&ep->ex_lock);
2076 /* drop hold for rec qual */
2077 fc_exch_release(ep);
2078 return;
2079 }
2080 ep->esb_stat |= ESB_ST_REC_QUAL;
2081 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2082 spin_unlock_bh(&ep->ex_lock);
2083}
2084
2085/**
2086 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2087 * @fp: The RRQ frame, not freed here.
2088 */
2089static void fc_exch_els_rrq(struct fc_frame *fp)
2090{
2091 struct fc_lport *lport;
2092 struct fc_exch *ep = NULL; /* request or subject exchange */
2093 struct fc_els_rrq *rp;
2094 u32 sid;
2095 u16 xid;
2096 enum fc_els_rjt_explan explan;
2097
2098 lport = fr_dev(fp);
2099 rp = fc_frame_payload_get(fp, sizeof(*rp));
2100 explan = ELS_EXPL_INV_LEN;
2101 if (!rp)
2102 goto reject;
2103
2104 /*
2105 * lookup subject exchange.
2106 */
2107 sid = ntoh24(rp->rrq_s_id); /* subject source */
2108 xid = fc_host_port_id(lport->host) == sid ?
2109 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2110 ep = fc_exch_lookup(lport, xid);
2111 explan = ELS_EXPL_OXID_RXID;
2112 if (!ep)
2113 goto reject;
2114 spin_lock_bh(&ep->ex_lock);
2115 if (ep->oxid != ntohs(rp->rrq_ox_id))
2116 goto unlock_reject;
2117 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2118 ep->rxid != FC_XID_UNKNOWN)
2119 goto unlock_reject;
2120 explan = ELS_EXPL_SID;
2121 if (ep->sid != sid)
2122 goto unlock_reject;
2123
2124 /*
2125 * Clear Recovery Qualifier state, and cancel timer if complete.
2126 */
2127 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2128 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2129 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2130 }
2131 if (ep->esb_stat & ESB_ST_COMPLETE) {
2132 if (cancel_delayed_work(&ep->timeout_work))
2133 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2134 }
2135
2136 spin_unlock_bh(&ep->ex_lock);
2137
2138 /*
2139 * Send LS_ACC.
2140 */
2141 fc_seq_ls_acc(fp);
2142 goto out;
2143
2144unlock_reject:
2145 spin_unlock_bh(&ep->ex_lock);
2146reject:
2147 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2148out:
2149 if (ep)
2150 fc_exch_release(ep); /* drop hold from fc_exch_find */
2151}
2152
2153/**
2154 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2155 * @lport: The local port to add the exchange manager to
2156 * @mp: The exchange manager to be added to the local port
2157 * @match: The match routine that indicates when this EM should be used
2158 */
2159struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2160 struct fc_exch_mgr *mp,
2161 bool (*match)(struct fc_frame *))
2162{
2163 struct fc_exch_mgr_anchor *ema;
2164
2165 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2166 if (!ema)
2167 return ema;
2168
2169 ema->mp = mp;
2170 ema->match = match;
2171 /* add EM anchor to EM anchors list */
2172 list_add_tail(&ema->ema_list, &lport->ema_list);
2173 kref_get(&mp->kref);
2174 return ema;
2175}
2176EXPORT_SYMBOL(fc_exch_mgr_add);
2177
2178/**
2179 * fc_exch_mgr_destroy() - Destroy an exchange manager
2180 * @kref: The reference to the EM to be destroyed
2181 */
2182static void fc_exch_mgr_destroy(struct kref *kref)
2183{
2184 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2185
2186 mempool_destroy(mp->ep_pool);
2187 free_percpu(mp->pool);
2188 kfree(mp);
2189}
2190
2191/**
2192 * fc_exch_mgr_del() - Delete an EM from a local port's list
2193 * @ema: The exchange manager anchor identifying the EM to be deleted
2194 */
2195void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2196{
2197 /* remove EM anchor from EM anchors list */
2198 list_del(&ema->ema_list);
2199 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2200 kfree(ema);
2201}
2202EXPORT_SYMBOL(fc_exch_mgr_del);
2203
2204/**
2205 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2206 * @src: Source lport to clone exchange managers from
2207 * @dst: New lport that takes references to all the exchange managers
2208 */
2209int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2210{
2211 struct fc_exch_mgr_anchor *ema, *tmp;
2212
2213 list_for_each_entry(ema, &src->ema_list, ema_list) {
2214 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2215 goto err;
2216 }
2217 return 0;
2218err:
2219 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2220 fc_exch_mgr_del(ema);
2221 return -ENOMEM;
2222}
2223EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2224
2225/**
2226 * fc_exch_mgr_alloc() - Allocate an exchange manager
2227 * @lport: The local port that the new EM will be associated with
2228 * @class: The default FC class for new exchanges
2229 * @min_xid: The minimum XID for exchanges from the new EM
2230 * @max_xid: The maximum XID for exchanges from the new EM
2231 * @match: The match routine for the new EM
2232 */
2233struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2234 enum fc_class class,
2235 u16 min_xid, u16 max_xid,
2236 bool (*match)(struct fc_frame *))
2237{
2238 struct fc_exch_mgr *mp;
2239 u16 pool_exch_range;
2240 size_t pool_size;
2241 unsigned int cpu;
2242 struct fc_exch_pool *pool;
2243
2244 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2245 (min_xid & fc_cpu_mask) != 0) {
2246 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2247 min_xid, max_xid);
2248 return NULL;
2249 }
2250
2251 /*
2252 * allocate memory for EM
2253 */
2254 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2255 if (!mp)
2256 return NULL;
2257
2258 mp->class = class;
2259 /* adjust em exch xid range for offload */
2260 mp->min_xid = min_xid;
2261 mp->max_xid = max_xid;
2262
2263 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2264 if (!mp->ep_pool)
2265 goto free_mp;
2266
2267 /*
2268 * Setup per cpu exch pool with entire exchange id range equally
2269 * divided across all cpus. The exch pointers array memory is
2270 * allocated for exch range per pool.
2271 */
2272 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2273 mp->pool_max_index = pool_exch_range - 1;
2274
2275 /*
2276 * Allocate and initialize per cpu exch pool
2277 */
2278 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2279 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2280 if (!mp->pool)
2281 goto free_mempool;
2282 for_each_possible_cpu(cpu) {
2283 pool = per_cpu_ptr(mp->pool, cpu);
2284 pool->left = FC_XID_UNKNOWN;
2285 pool->right = FC_XID_UNKNOWN;
2286 spin_lock_init(&pool->lock);
2287 INIT_LIST_HEAD(&pool->ex_list);
2288 }
2289
2290 kref_init(&mp->kref);
2291 if (!fc_exch_mgr_add(lport, mp, match)) {
2292 free_percpu(mp->pool);
2293 goto free_mempool;
2294 }
2295
2296 /*
2297 * Above kref_init() sets mp->kref to 1 and then
2298 * call to fc_exch_mgr_add incremented mp->kref again,
2299 * so adjust that extra increment.
2300 */
2301 kref_put(&mp->kref, fc_exch_mgr_destroy);
2302 return mp;
2303
2304free_mempool:
2305 mempool_destroy(mp->ep_pool);
2306free_mp:
2307 kfree(mp);
2308 return NULL;
2309}
2310EXPORT_SYMBOL(fc_exch_mgr_alloc);
2311
2312/**
2313 * fc_exch_mgr_free() - Free all exchange managers on a local port
2314 * @lport: The local port whose EMs are to be freed
2315 */
2316void fc_exch_mgr_free(struct fc_lport *lport)
2317{
2318 struct fc_exch_mgr_anchor *ema, *next;
2319
2320 flush_workqueue(fc_exch_workqueue);
2321 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2322 fc_exch_mgr_del(ema);
2323}
2324EXPORT_SYMBOL(fc_exch_mgr_free);
2325
2326/**
2327 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2328 * upon 'xid'.
2329 * @f_ctl: f_ctl
2330 * @lport: The local port the frame was received on
2331 * @fh: The received frame header
2332 */
2333static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2334 struct fc_lport *lport,
2335 struct fc_frame_header *fh)
2336{
2337 struct fc_exch_mgr_anchor *ema;
2338 u16 xid;
2339
2340 if (f_ctl & FC_FC_EX_CTX)
2341 xid = ntohs(fh->fh_ox_id);
2342 else {
2343 xid = ntohs(fh->fh_rx_id);
2344 if (xid == FC_XID_UNKNOWN)
2345 return list_entry(lport->ema_list.prev,
2346 typeof(*ema), ema_list);
2347 }
2348
2349 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2350 if ((xid >= ema->mp->min_xid) &&
2351 (xid <= ema->mp->max_xid))
2352 return ema;
2353 }
2354 return NULL;
2355}
2356/**
2357 * fc_exch_recv() - Handler for received frames
2358 * @lport: The local port the frame was received on
2359 * @fp: The received frame
2360 */
2361void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2362{
2363 struct fc_frame_header *fh = fc_frame_header_get(fp);
2364 struct fc_exch_mgr_anchor *ema;
2365 u32 f_ctl;
2366
2367 /* lport lock ? */
2368 if (!lport || lport->state == LPORT_ST_DISABLED) {
2369 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2370 "has not been initialized correctly\n");
2371 fc_frame_free(fp);
2372 return;
2373 }
2374
2375 f_ctl = ntoh24(fh->fh_f_ctl);
2376 ema = fc_find_ema(f_ctl, lport, fh);
2377 if (!ema) {
2378 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2379 "fc_ctl <0x%x>, xid <0x%x>\n",
2380 f_ctl,
2381 (f_ctl & FC_FC_EX_CTX) ?
2382 ntohs(fh->fh_ox_id) :
2383 ntohs(fh->fh_rx_id));
2384 fc_frame_free(fp);
2385 return;
2386 }
2387
2388 /*
2389 * If frame is marked invalid, just drop it.
2390 */
2391 switch (fr_eof(fp)) {
2392 case FC_EOF_T:
2393 if (f_ctl & FC_FC_END_SEQ)
2394 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2395 /* fall through */
2396 case FC_EOF_N:
2397 if (fh->fh_type == FC_TYPE_BLS)
2398 fc_exch_recv_bls(ema->mp, fp);
2399 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2400 FC_FC_EX_CTX)
2401 fc_exch_recv_seq_resp(ema->mp, fp);
2402 else if (f_ctl & FC_FC_SEQ_CTX)
2403 fc_exch_recv_resp(ema->mp, fp);
2404 else /* no EX_CTX and no SEQ_CTX */
2405 fc_exch_recv_req(lport, ema->mp, fp);
2406 break;
2407 default:
2408 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2409 fr_eof(fp));
2410 fc_frame_free(fp);
2411 }
2412}
2413EXPORT_SYMBOL(fc_exch_recv);
2414
2415/**
2416 * fc_exch_init() - Initialize the exchange layer for a local port
2417 * @lport: The local port to initialize the exchange layer for
2418 */
2419int fc_exch_init(struct fc_lport *lport)
2420{
2421 if (!lport->tt.seq_start_next)
2422 lport->tt.seq_start_next = fc_seq_start_next;
2423
2424 if (!lport->tt.seq_set_resp)
2425 lport->tt.seq_set_resp = fc_seq_set_resp;
2426
2427 if (!lport->tt.exch_seq_send)
2428 lport->tt.exch_seq_send = fc_exch_seq_send;
2429
2430 if (!lport->tt.seq_send)
2431 lport->tt.seq_send = fc_seq_send;
2432
2433 if (!lport->tt.seq_els_rsp_send)
2434 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2435
2436 if (!lport->tt.exch_done)
2437 lport->tt.exch_done = fc_exch_done;
2438
2439 if (!lport->tt.exch_mgr_reset)
2440 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2441
2442 if (!lport->tt.seq_exch_abort)
2443 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2444
2445 if (!lport->tt.seq_assign)
2446 lport->tt.seq_assign = fc_seq_assign;
2447
2448 if (!lport->tt.seq_release)
2449 lport->tt.seq_release = fc_seq_release;
2450
2451 return 0;
2452}
2453EXPORT_SYMBOL(fc_exch_init);
2454
2455/**
2456 * fc_setup_exch_mgr() - Setup an exchange manager
2457 */
2458int fc_setup_exch_mgr(void)
2459{
2460 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2461 0, SLAB_HWCACHE_ALIGN, NULL);
2462 if (!fc_em_cachep)
2463 return -ENOMEM;
2464
2465 /*
2466 * Initialize fc_cpu_mask and fc_cpu_order. The
2467 * fc_cpu_mask is set for nr_cpu_ids rounded up
2468 * to order of 2's * power and order is stored
2469 * in fc_cpu_order as this is later required in
2470 * mapping between an exch id and exch array index
2471 * in per cpu exch pool.
2472 *
2473 * This round up is required to align fc_cpu_mask
2474 * to exchange id's lower bits such that all incoming
2475 * frames of an exchange gets delivered to the same
2476 * cpu on which exchange originated by simple bitwise
2477 * AND operation between fc_cpu_mask and exchange id.
2478 */
2479 fc_cpu_mask = 1;
2480 fc_cpu_order = 0;
2481 while (fc_cpu_mask < nr_cpu_ids) {
2482 fc_cpu_mask <<= 1;
2483 fc_cpu_order++;
2484 }
2485 fc_cpu_mask--;
2486
2487 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2488 if (!fc_exch_workqueue)
2489 goto err;
2490 return 0;
2491err:
2492 kmem_cache_destroy(fc_em_cachep);
2493 return -ENOMEM;
2494}
2495
2496/**
2497 * fc_destroy_exch_mgr() - Destroy an exchange manager
2498 */
2499void fc_destroy_exch_mgr(void)
2500{
2501 destroy_workqueue(fc_exch_workqueue);
2502 kmem_cache_destroy(fc_em_cachep);
2503}
1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29#include <linux/export.h>
30
31#include <scsi/fc/fc_fc2.h>
32
33#include <scsi/libfc.h>
34#include <scsi/fc_encode.h>
35
36#include "fc_libfc.h"
37
38u16 fc_cpu_mask; /* cpu mask for possible cpus */
39EXPORT_SYMBOL(fc_cpu_mask);
40static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
41static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
42static struct workqueue_struct *fc_exch_workqueue;
43
44/*
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
47 *
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 *
50 * fc_exch_mgr holds the exchange state for an N port
51 *
52 * fc_exch holds state for one exchange and links to its active sequence.
53 *
54 * fc_seq holds the state for an individual sequence.
55 */
56
57/**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index: Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock: Exch pool lock
62 * @ex_list: List of exchanges
63 *
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
67 */
68struct fc_exch_pool {
69 spinlock_t lock;
70 struct list_head ex_list;
71 u16 next_index;
72 u16 total_exches;
73
74 /* two cache of free slot in exch array */
75 u16 left;
76 u16 right;
77} ____cacheline_aligned_in_smp;
78
79/**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93struct fc_exch_mgr {
94 struct fc_exch_pool __percpu *pool;
95 mempool_t *ep_pool;
96 enum fc_class class;
97 struct kref kref;
98 u16 min_xid;
99 u16 max_xid;
100 u16 pool_max_index;
101
102 /*
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
106 */
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
115};
116
117/**
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
122 *
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
128 */
129struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
133};
134
135static void fc_exch_rrq(struct fc_exch *);
136static void fc_seq_ls_acc(struct fc_frame *);
137static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139static void fc_exch_els_rec(struct fc_frame *);
140static void fc_exch_els_rrq(struct fc_frame *);
141
142/*
143 * Internal implementation notes.
144 *
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
148 *
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
155 *
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
159 *
160 * Notes on reference counts:
161 *
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
164 *
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
167 *
168 * Sequence event handling:
169 *
170 * The following events may occur on initiator sequences:
171 *
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
191 *
192 * The following events may occur on recipient sequences:
193 *
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
203 *
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
206 */
207
208/*
209 * Locking notes:
210 *
211 * The EM code run in a per-CPU worker thread.
212 *
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
219 */
220
221/*
222 * opcode names for debugging.
223 */
224static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225
226/**
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
231 *
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
234 */
235static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
237{
238 const char *name = NULL;
239
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
245}
246
247/**
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
250 */
251static const char *fc_exch_rctl_name(unsigned int op)
252{
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
255}
256
257/**
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
260 */
261static inline void fc_exch_hold(struct fc_exch *ep)
262{
263 atomic_inc(&ep->ex_refcnt);
264}
265
266/**
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
272 *
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 */
276static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
278{
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
281
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
285
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
290 /*
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
298 */
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
305 }
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
309 }
310
311 /*
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
314 */
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
319}
320
321/**
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
324 *
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
327 */
328static void fc_exch_release(struct fc_exch *ep)
329{
330 struct fc_exch_mgr *mp;
331
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
338 }
339}
340
341/**
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
344 */
345static int fc_exch_done_locked(struct fc_exch *ep)
346{
347 int rc = 1;
348
349 /*
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
354 */
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
359
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
365 }
366 return rc;
367}
368
369/**
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
373 *
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
377 */
378static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
380{
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
383}
384
385/**
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
390 */
391static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
393{
394 ((struct fc_exch **)(pool + 1))[index] = ep;
395}
396
397/**
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
400 */
401static void fc_exch_delete(struct fc_exch *ep)
402{
403 struct fc_exch_pool *pool;
404 u16 index;
405
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
410
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
419
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
424}
425
426/**
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
431 *
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
434 */
435static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
437{
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
440
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
442
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
446}
447
448/**
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
452 */
453static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454{
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
458}
459
460/**
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
465 */
466static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468{
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
473 u8 fh_type = fh->fh_type;
474
475 ep = fc_seq_exch(sp);
476 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
477
478 f_ctl = ntoh24(fh->fh_f_ctl);
479 fc_exch_setup_hdr(ep, fp, f_ctl);
480 fr_encaps(fp) = ep->encaps;
481
482 /*
483 * update sequence count if this frame is carrying
484 * multiple FC frames when sequence offload is enabled
485 * by LLD.
486 */
487 if (fr_max_payload(fp))
488 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 fr_max_payload(fp));
490 else
491 sp->cnt++;
492
493 /*
494 * Send the frame.
495 */
496 error = lport->tt.frame_send(lport, fp);
497
498 if (fh_type == FC_TYPE_BLS)
499 return error;
500
501 /*
502 * Update the exchange and sequence flags,
503 * assuming all frames for the sequence have been sent.
504 * We can only be called to send once for each sequence.
505 */
506 spin_lock_bh(&ep->ex_lock);
507 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
508 if (f_ctl & FC_FC_SEQ_INIT)
509 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
510 spin_unlock_bh(&ep->ex_lock);
511 return error;
512}
513
514/**
515 * fc_seq_alloc() - Allocate a sequence for a given exchange
516 * @ep: The exchange to allocate a new sequence for
517 * @seq_id: The sequence ID to be used
518 *
519 * We don't support multiple originated sequences on the same exchange.
520 * By implication, any previously originated sequence on this exchange
521 * is complete, and we reallocate the same sequence.
522 */
523static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
524{
525 struct fc_seq *sp;
526
527 sp = &ep->seq;
528 sp->ssb_stat = 0;
529 sp->cnt = 0;
530 sp->id = seq_id;
531 return sp;
532}
533
534/**
535 * fc_seq_start_next_locked() - Allocate a new sequence on the same
536 * exchange as the supplied sequence
537 * @sp: The sequence/exchange to get a new sequence for
538 */
539static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
540{
541 struct fc_exch *ep = fc_seq_exch(sp);
542
543 sp = fc_seq_alloc(ep, ep->seq_id++);
544 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
545 ep->f_ctl, sp->id);
546 return sp;
547}
548
549/**
550 * fc_seq_start_next() - Lock the exchange and get a new sequence
551 * for a given sequence/exchange pair
552 * @sp: The sequence/exchange to get a new exchange for
553 */
554static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
555{
556 struct fc_exch *ep = fc_seq_exch(sp);
557
558 spin_lock_bh(&ep->ex_lock);
559 sp = fc_seq_start_next_locked(sp);
560 spin_unlock_bh(&ep->ex_lock);
561
562 return sp;
563}
564
565/*
566 * Set the response handler for the exchange associated with a sequence.
567 */
568static void fc_seq_set_resp(struct fc_seq *sp,
569 void (*resp)(struct fc_seq *, struct fc_frame *,
570 void *),
571 void *arg)
572{
573 struct fc_exch *ep = fc_seq_exch(sp);
574
575 spin_lock_bh(&ep->ex_lock);
576 ep->resp = resp;
577 ep->arg = arg;
578 spin_unlock_bh(&ep->ex_lock);
579}
580
581/**
582 * fc_exch_abort_locked() - Abort an exchange
583 * @ep: The exchange to be aborted
584 * @timer_msec: The period of time to wait before aborting
585 *
586 * Locking notes: Called with exch lock held
587 *
588 * Return value: 0 on success else error code
589 */
590static int fc_exch_abort_locked(struct fc_exch *ep,
591 unsigned int timer_msec)
592{
593 struct fc_seq *sp;
594 struct fc_frame *fp;
595 int error;
596
597 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
598 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
599 return -ENXIO;
600
601 /*
602 * Send the abort on a new sequence if possible.
603 */
604 sp = fc_seq_start_next_locked(&ep->seq);
605 if (!sp)
606 return -ENOMEM;
607
608 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
609 if (timer_msec)
610 fc_exch_timer_set_locked(ep, timer_msec);
611
612 /*
613 * If not logged into the fabric, don't send ABTS but leave
614 * sequence active until next timeout.
615 */
616 if (!ep->sid)
617 return 0;
618
619 /*
620 * Send an abort for the sequence that timed out.
621 */
622 fp = fc_frame_alloc(ep->lp, 0);
623 if (fp) {
624 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
625 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
626 error = fc_seq_send(ep->lp, sp, fp);
627 } else
628 error = -ENOBUFS;
629 return error;
630}
631
632/**
633 * fc_seq_exch_abort() - Abort an exchange and sequence
634 * @req_sp: The sequence to be aborted
635 * @timer_msec: The period of time to wait before aborting
636 *
637 * Generally called because of a timeout or an abort from the upper layer.
638 *
639 * Return value: 0 on success else error code
640 */
641static int fc_seq_exch_abort(const struct fc_seq *req_sp,
642 unsigned int timer_msec)
643{
644 struct fc_exch *ep;
645 int error;
646
647 ep = fc_seq_exch(req_sp);
648 spin_lock_bh(&ep->ex_lock);
649 error = fc_exch_abort_locked(ep, timer_msec);
650 spin_unlock_bh(&ep->ex_lock);
651 return error;
652}
653
654/**
655 * fc_exch_timeout() - Handle exchange timer expiration
656 * @work: The work_struct identifying the exchange that timed out
657 */
658static void fc_exch_timeout(struct work_struct *work)
659{
660 struct fc_exch *ep = container_of(work, struct fc_exch,
661 timeout_work.work);
662 struct fc_seq *sp = &ep->seq;
663 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
664 void *arg;
665 u32 e_stat;
666 int rc = 1;
667
668 FC_EXCH_DBG(ep, "Exchange timed out\n");
669
670 spin_lock_bh(&ep->ex_lock);
671 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
672 goto unlock;
673
674 e_stat = ep->esb_stat;
675 if (e_stat & ESB_ST_COMPLETE) {
676 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
677 spin_unlock_bh(&ep->ex_lock);
678 if (e_stat & ESB_ST_REC_QUAL)
679 fc_exch_rrq(ep);
680 goto done;
681 } else {
682 resp = ep->resp;
683 arg = ep->arg;
684 ep->resp = NULL;
685 if (e_stat & ESB_ST_ABNORMAL)
686 rc = fc_exch_done_locked(ep);
687 spin_unlock_bh(&ep->ex_lock);
688 if (!rc)
689 fc_exch_delete(ep);
690 if (resp)
691 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
692 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
693 goto done;
694 }
695unlock:
696 spin_unlock_bh(&ep->ex_lock);
697done:
698 /*
699 * This release matches the hold taken when the timer was set.
700 */
701 fc_exch_release(ep);
702}
703
704/**
705 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
706 * @lport: The local port that the exchange is for
707 * @mp: The exchange manager that will allocate the exchange
708 *
709 * Returns pointer to allocated fc_exch with exch lock held.
710 */
711static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
712 struct fc_exch_mgr *mp)
713{
714 struct fc_exch *ep;
715 unsigned int cpu;
716 u16 index;
717 struct fc_exch_pool *pool;
718
719 /* allocate memory for exchange */
720 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
721 if (!ep) {
722 atomic_inc(&mp->stats.no_free_exch);
723 goto out;
724 }
725 memset(ep, 0, sizeof(*ep));
726
727 cpu = get_cpu();
728 pool = per_cpu_ptr(mp->pool, cpu);
729 spin_lock_bh(&pool->lock);
730 put_cpu();
731
732 /* peek cache of free slot */
733 if (pool->left != FC_XID_UNKNOWN) {
734 index = pool->left;
735 pool->left = FC_XID_UNKNOWN;
736 goto hit;
737 }
738 if (pool->right != FC_XID_UNKNOWN) {
739 index = pool->right;
740 pool->right = FC_XID_UNKNOWN;
741 goto hit;
742 }
743
744 index = pool->next_index;
745 /* allocate new exch from pool */
746 while (fc_exch_ptr_get(pool, index)) {
747 index = index == mp->pool_max_index ? 0 : index + 1;
748 if (index == pool->next_index)
749 goto err;
750 }
751 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
752hit:
753 fc_exch_hold(ep); /* hold for exch in mp */
754 spin_lock_init(&ep->ex_lock);
755 /*
756 * Hold exch lock for caller to prevent fc_exch_reset()
757 * from releasing exch while fc_exch_alloc() caller is
758 * still working on exch.
759 */
760 spin_lock_bh(&ep->ex_lock);
761
762 fc_exch_ptr_set(pool, index, ep);
763 list_add_tail(&ep->ex_list, &pool->ex_list);
764 fc_seq_alloc(ep, ep->seq_id++);
765 pool->total_exches++;
766 spin_unlock_bh(&pool->lock);
767
768 /*
769 * update exchange
770 */
771 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
772 ep->em = mp;
773 ep->pool = pool;
774 ep->lp = lport;
775 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
776 ep->rxid = FC_XID_UNKNOWN;
777 ep->class = mp->class;
778 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
779out:
780 return ep;
781err:
782 spin_unlock_bh(&pool->lock);
783 atomic_inc(&mp->stats.no_free_exch_xid);
784 mempool_free(ep, mp->ep_pool);
785 return NULL;
786}
787
788/**
789 * fc_exch_alloc() - Allocate an exchange from an EM on a
790 * local port's list of EMs.
791 * @lport: The local port that will own the exchange
792 * @fp: The FC frame that the exchange will be for
793 *
794 * This function walks the list of exchange manager(EM)
795 * anchors to select an EM for a new exchange allocation. The
796 * EM is selected when a NULL match function pointer is encountered
797 * or when a call to a match function returns true.
798 */
799static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
800 struct fc_frame *fp)
801{
802 struct fc_exch_mgr_anchor *ema;
803
804 list_for_each_entry(ema, &lport->ema_list, ema_list)
805 if (!ema->match || ema->match(fp))
806 return fc_exch_em_alloc(lport, ema->mp);
807 return NULL;
808}
809
810/**
811 * fc_exch_find() - Lookup and hold an exchange
812 * @mp: The exchange manager to lookup the exchange from
813 * @xid: The XID of the exchange to look up
814 */
815static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
816{
817 struct fc_exch_pool *pool;
818 struct fc_exch *ep = NULL;
819
820 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
821 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
822 spin_lock_bh(&pool->lock);
823 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
824 if (ep && ep->xid == xid)
825 fc_exch_hold(ep);
826 spin_unlock_bh(&pool->lock);
827 }
828 return ep;
829}
830
831
832/**
833 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
834 * the memory allocated for the related objects may be freed.
835 * @sp: The sequence that has completed
836 */
837static void fc_exch_done(struct fc_seq *sp)
838{
839 struct fc_exch *ep = fc_seq_exch(sp);
840 int rc;
841
842 spin_lock_bh(&ep->ex_lock);
843 rc = fc_exch_done_locked(ep);
844 spin_unlock_bh(&ep->ex_lock);
845 if (!rc)
846 fc_exch_delete(ep);
847}
848
849/**
850 * fc_exch_resp() - Allocate a new exchange for a response frame
851 * @lport: The local port that the exchange was for
852 * @mp: The exchange manager to allocate the exchange from
853 * @fp: The response frame
854 *
855 * Sets the responder ID in the frame header.
856 */
857static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
858 struct fc_exch_mgr *mp,
859 struct fc_frame *fp)
860{
861 struct fc_exch *ep;
862 struct fc_frame_header *fh;
863
864 ep = fc_exch_alloc(lport, fp);
865 if (ep) {
866 ep->class = fc_frame_class(fp);
867
868 /*
869 * Set EX_CTX indicating we're responding on this exchange.
870 */
871 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
872 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
873 fh = fc_frame_header_get(fp);
874 ep->sid = ntoh24(fh->fh_d_id);
875 ep->did = ntoh24(fh->fh_s_id);
876 ep->oid = ep->did;
877
878 /*
879 * Allocated exchange has placed the XID in the
880 * originator field. Move it to the responder field,
881 * and set the originator XID from the frame.
882 */
883 ep->rxid = ep->xid;
884 ep->oxid = ntohs(fh->fh_ox_id);
885 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
886 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
887 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
888
889 fc_exch_hold(ep); /* hold for caller */
890 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
891 }
892 return ep;
893}
894
895/**
896 * fc_seq_lookup_recip() - Find a sequence where the other end
897 * originated the sequence
898 * @lport: The local port that the frame was sent to
899 * @mp: The Exchange Manager to lookup the exchange from
900 * @fp: The frame associated with the sequence we're looking for
901 *
902 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
903 * on the ep that should be released by the caller.
904 */
905static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
906 struct fc_exch_mgr *mp,
907 struct fc_frame *fp)
908{
909 struct fc_frame_header *fh = fc_frame_header_get(fp);
910 struct fc_exch *ep = NULL;
911 struct fc_seq *sp = NULL;
912 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
913 u32 f_ctl;
914 u16 xid;
915
916 f_ctl = ntoh24(fh->fh_f_ctl);
917 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
918
919 /*
920 * Lookup or create the exchange if we will be creating the sequence.
921 */
922 if (f_ctl & FC_FC_EX_CTX) {
923 xid = ntohs(fh->fh_ox_id); /* we originated exch */
924 ep = fc_exch_find(mp, xid);
925 if (!ep) {
926 atomic_inc(&mp->stats.xid_not_found);
927 reject = FC_RJT_OX_ID;
928 goto out;
929 }
930 if (ep->rxid == FC_XID_UNKNOWN)
931 ep->rxid = ntohs(fh->fh_rx_id);
932 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
933 reject = FC_RJT_OX_ID;
934 goto rel;
935 }
936 } else {
937 xid = ntohs(fh->fh_rx_id); /* we are the responder */
938
939 /*
940 * Special case for MDS issuing an ELS TEST with a
941 * bad rxid of 0.
942 * XXX take this out once we do the proper reject.
943 */
944 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
945 fc_frame_payload_op(fp) == ELS_TEST) {
946 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
947 xid = FC_XID_UNKNOWN;
948 }
949
950 /*
951 * new sequence - find the exchange
952 */
953 ep = fc_exch_find(mp, xid);
954 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
955 if (ep) {
956 atomic_inc(&mp->stats.xid_busy);
957 reject = FC_RJT_RX_ID;
958 goto rel;
959 }
960 ep = fc_exch_resp(lport, mp, fp);
961 if (!ep) {
962 reject = FC_RJT_EXCH_EST; /* XXX */
963 goto out;
964 }
965 xid = ep->xid; /* get our XID */
966 } else if (!ep) {
967 atomic_inc(&mp->stats.xid_not_found);
968 reject = FC_RJT_RX_ID; /* XID not found */
969 goto out;
970 }
971 }
972
973 /*
974 * At this point, we have the exchange held.
975 * Find or create the sequence.
976 */
977 if (fc_sof_is_init(fr_sof(fp))) {
978 sp = &ep->seq;
979 sp->ssb_stat |= SSB_ST_RESP;
980 sp->id = fh->fh_seq_id;
981 } else {
982 sp = &ep->seq;
983 if (sp->id != fh->fh_seq_id) {
984 atomic_inc(&mp->stats.seq_not_found);
985 if (f_ctl & FC_FC_END_SEQ) {
986 /*
987 * Update sequence_id based on incoming last
988 * frame of sequence exchange. This is needed
989 * for FCoE target where DDP has been used
990 * on target where, stack is indicated only
991 * about last frame's (payload _header) header.
992 * Whereas "seq_id" which is part of
993 * frame_header is allocated by initiator
994 * which is totally different from "seq_id"
995 * allocated when XFER_RDY was sent by target.
996 * To avoid false -ve which results into not
997 * sending RSP, hence write request on other
998 * end never finishes.
999 */
1000 spin_lock_bh(&ep->ex_lock);
1001 sp->ssb_stat |= SSB_ST_RESP;
1002 sp->id = fh->fh_seq_id;
1003 spin_unlock_bh(&ep->ex_lock);
1004 } else {
1005 /* sequence/exch should exist */
1006 reject = FC_RJT_SEQ_ID;
1007 goto rel;
1008 }
1009 }
1010 }
1011 WARN_ON(ep != fc_seq_exch(sp));
1012
1013 if (f_ctl & FC_FC_SEQ_INIT)
1014 ep->esb_stat |= ESB_ST_SEQ_INIT;
1015
1016 fr_seq(fp) = sp;
1017out:
1018 return reject;
1019rel:
1020 fc_exch_done(&ep->seq);
1021 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1022 return reject;
1023}
1024
1025/**
1026 * fc_seq_lookup_orig() - Find a sequence where this end
1027 * originated the sequence
1028 * @mp: The Exchange Manager to lookup the exchange from
1029 * @fp: The frame associated with the sequence we're looking for
1030 *
1031 * Does not hold the sequence for the caller.
1032 */
1033static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1034 struct fc_frame *fp)
1035{
1036 struct fc_frame_header *fh = fc_frame_header_get(fp);
1037 struct fc_exch *ep;
1038 struct fc_seq *sp = NULL;
1039 u32 f_ctl;
1040 u16 xid;
1041
1042 f_ctl = ntoh24(fh->fh_f_ctl);
1043 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1044 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1045 ep = fc_exch_find(mp, xid);
1046 if (!ep)
1047 return NULL;
1048 if (ep->seq.id == fh->fh_seq_id) {
1049 /*
1050 * Save the RX_ID if we didn't previously know it.
1051 */
1052 sp = &ep->seq;
1053 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1054 ep->rxid == FC_XID_UNKNOWN) {
1055 ep->rxid = ntohs(fh->fh_rx_id);
1056 }
1057 }
1058 fc_exch_release(ep);
1059 return sp;
1060}
1061
1062/**
1063 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1064 * @ep: The exchange to set the addresses for
1065 * @orig_id: The originator's ID
1066 * @resp_id: The responder's ID
1067 *
1068 * Note this must be done before the first sequence of the exchange is sent.
1069 */
1070static void fc_exch_set_addr(struct fc_exch *ep,
1071 u32 orig_id, u32 resp_id)
1072{
1073 ep->oid = orig_id;
1074 if (ep->esb_stat & ESB_ST_RESP) {
1075 ep->sid = resp_id;
1076 ep->did = orig_id;
1077 } else {
1078 ep->sid = orig_id;
1079 ep->did = resp_id;
1080 }
1081}
1082
1083/**
1084 * fc_seq_els_rsp_send() - Send an ELS response using information from
1085 * the existing sequence/exchange.
1086 * @fp: The received frame
1087 * @els_cmd: The ELS command to be sent
1088 * @els_data: The ELS data to be sent
1089 *
1090 * The received frame is not freed.
1091 */
1092static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1093 struct fc_seq_els_data *els_data)
1094{
1095 switch (els_cmd) {
1096 case ELS_LS_RJT:
1097 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1098 break;
1099 case ELS_LS_ACC:
1100 fc_seq_ls_acc(fp);
1101 break;
1102 case ELS_RRQ:
1103 fc_exch_els_rrq(fp);
1104 break;
1105 case ELS_REC:
1106 fc_exch_els_rec(fp);
1107 break;
1108 default:
1109 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1110 }
1111}
1112
1113/**
1114 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1115 * @sp: The sequence that is to be sent
1116 * @fp: The frame that will be sent on the sequence
1117 * @rctl: The R_CTL information to be sent
1118 * @fh_type: The frame header type
1119 */
1120static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1121 enum fc_rctl rctl, enum fc_fh_type fh_type)
1122{
1123 u32 f_ctl;
1124 struct fc_exch *ep = fc_seq_exch(sp);
1125
1126 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1127 f_ctl |= ep->f_ctl;
1128 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1129 fc_seq_send(ep->lp, sp, fp);
1130}
1131
1132/**
1133 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1134 * @sp: The sequence to send the ACK on
1135 * @rx_fp: The received frame that is being acknoledged
1136 *
1137 * Send ACK_1 (or equiv.) indicating we received something.
1138 */
1139static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1140{
1141 struct fc_frame *fp;
1142 struct fc_frame_header *rx_fh;
1143 struct fc_frame_header *fh;
1144 struct fc_exch *ep = fc_seq_exch(sp);
1145 struct fc_lport *lport = ep->lp;
1146 unsigned int f_ctl;
1147
1148 /*
1149 * Don't send ACKs for class 3.
1150 */
1151 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1152 fp = fc_frame_alloc(lport, 0);
1153 if (!fp)
1154 return;
1155
1156 fh = fc_frame_header_get(fp);
1157 fh->fh_r_ctl = FC_RCTL_ACK_1;
1158 fh->fh_type = FC_TYPE_BLS;
1159
1160 /*
1161 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1162 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1163 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1164 * Last ACK uses bits 7-6 (continue sequence),
1165 * bits 5-4 are meaningful (what kind of ACK to use).
1166 */
1167 rx_fh = fc_frame_header_get(rx_fp);
1168 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1169 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1170 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1171 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1172 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1173 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1174 hton24(fh->fh_f_ctl, f_ctl);
1175
1176 fc_exch_setup_hdr(ep, fp, f_ctl);
1177 fh->fh_seq_id = rx_fh->fh_seq_id;
1178 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179 fh->fh_parm_offset = htonl(1); /* ack single frame */
1180
1181 fr_sof(fp) = fr_sof(rx_fp);
1182 if (f_ctl & FC_FC_END_SEQ)
1183 fr_eof(fp) = FC_EOF_T;
1184 else
1185 fr_eof(fp) = FC_EOF_N;
1186
1187 lport->tt.frame_send(lport, fp);
1188 }
1189}
1190
1191/**
1192 * fc_exch_send_ba_rjt() - Send BLS Reject
1193 * @rx_fp: The frame being rejected
1194 * @reason: The reason the frame is being rejected
1195 * @explan: The explanation for the rejection
1196 *
1197 * This is for rejecting BA_ABTS only.
1198 */
1199static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1200 enum fc_ba_rjt_reason reason,
1201 enum fc_ba_rjt_explan explan)
1202{
1203 struct fc_frame *fp;
1204 struct fc_frame_header *rx_fh;
1205 struct fc_frame_header *fh;
1206 struct fc_ba_rjt *rp;
1207 struct fc_lport *lport;
1208 unsigned int f_ctl;
1209
1210 lport = fr_dev(rx_fp);
1211 fp = fc_frame_alloc(lport, sizeof(*rp));
1212 if (!fp)
1213 return;
1214 fh = fc_frame_header_get(fp);
1215 rx_fh = fc_frame_header_get(rx_fp);
1216
1217 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1218
1219 rp = fc_frame_payload_get(fp, sizeof(*rp));
1220 rp->br_reason = reason;
1221 rp->br_explan = explan;
1222
1223 /*
1224 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1225 */
1226 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1227 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1228 fh->fh_ox_id = rx_fh->fh_ox_id;
1229 fh->fh_rx_id = rx_fh->fh_rx_id;
1230 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1231 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1232 fh->fh_type = FC_TYPE_BLS;
1233
1234 /*
1235 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1236 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1237 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1238 * Last ACK uses bits 7-6 (continue sequence),
1239 * bits 5-4 are meaningful (what kind of ACK to use).
1240 * Always set LAST_SEQ, END_SEQ.
1241 */
1242 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1243 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1244 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1245 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1246 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1247 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1248 f_ctl &= ~FC_FC_FIRST_SEQ;
1249 hton24(fh->fh_f_ctl, f_ctl);
1250
1251 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1252 fr_eof(fp) = FC_EOF_T;
1253 if (fc_sof_needs_ack(fr_sof(fp)))
1254 fr_eof(fp) = FC_EOF_N;
1255
1256 lport->tt.frame_send(lport, fp);
1257}
1258
1259/**
1260 * fc_exch_recv_abts() - Handle an incoming ABTS
1261 * @ep: The exchange the abort was on
1262 * @rx_fp: The ABTS frame
1263 *
1264 * This would be for target mode usually, but could be due to lost
1265 * FCP transfer ready, confirm or RRQ. We always handle this as an
1266 * exchange abort, ignoring the parameter.
1267 */
1268static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1269{
1270 struct fc_frame *fp;
1271 struct fc_ba_acc *ap;
1272 struct fc_frame_header *fh;
1273 struct fc_seq *sp;
1274
1275 if (!ep)
1276 goto reject;
1277 spin_lock_bh(&ep->ex_lock);
1278 if (ep->esb_stat & ESB_ST_COMPLETE) {
1279 spin_unlock_bh(&ep->ex_lock);
1280 goto reject;
1281 }
1282 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1283 fc_exch_hold(ep); /* hold for REC_QUAL */
1284 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1285 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1286
1287 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1288 if (!fp) {
1289 spin_unlock_bh(&ep->ex_lock);
1290 goto free;
1291 }
1292 fh = fc_frame_header_get(fp);
1293 ap = fc_frame_payload_get(fp, sizeof(*ap));
1294 memset(ap, 0, sizeof(*ap));
1295 sp = &ep->seq;
1296 ap->ba_high_seq_cnt = htons(0xffff);
1297 if (sp->ssb_stat & SSB_ST_RESP) {
1298 ap->ba_seq_id = sp->id;
1299 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1300 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1301 ap->ba_low_seq_cnt = htons(sp->cnt);
1302 }
1303 sp = fc_seq_start_next_locked(sp);
1304 spin_unlock_bh(&ep->ex_lock);
1305 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1306 fc_frame_free(rx_fp);
1307 return;
1308
1309reject:
1310 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1311free:
1312 fc_frame_free(rx_fp);
1313}
1314
1315/**
1316 * fc_seq_assign() - Assign exchange and sequence for incoming request
1317 * @lport: The local port that received the request
1318 * @fp: The request frame
1319 *
1320 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1321 * A reference will be held on the exchange/sequence for the caller, which
1322 * must call fc_seq_release().
1323 */
1324static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1325{
1326 struct fc_exch_mgr_anchor *ema;
1327
1328 WARN_ON(lport != fr_dev(fp));
1329 WARN_ON(fr_seq(fp));
1330 fr_seq(fp) = NULL;
1331
1332 list_for_each_entry(ema, &lport->ema_list, ema_list)
1333 if ((!ema->match || ema->match(fp)) &&
1334 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1335 break;
1336 return fr_seq(fp);
1337}
1338
1339/**
1340 * fc_seq_release() - Release the hold
1341 * @sp: The sequence.
1342 */
1343static void fc_seq_release(struct fc_seq *sp)
1344{
1345 fc_exch_release(fc_seq_exch(sp));
1346}
1347
1348/**
1349 * fc_exch_recv_req() - Handler for an incoming request
1350 * @lport: The local port that received the request
1351 * @mp: The EM that the exchange is on
1352 * @fp: The request frame
1353 *
1354 * This is used when the other end is originating the exchange
1355 * and the sequence.
1356 */
1357static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1358 struct fc_frame *fp)
1359{
1360 struct fc_frame_header *fh = fc_frame_header_get(fp);
1361 struct fc_seq *sp = NULL;
1362 struct fc_exch *ep = NULL;
1363 enum fc_pf_rjt_reason reject;
1364
1365 /* We can have the wrong fc_lport at this point with NPIV, which is a
1366 * problem now that we know a new exchange needs to be allocated
1367 */
1368 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1369 if (!lport) {
1370 fc_frame_free(fp);
1371 return;
1372 }
1373 fr_dev(fp) = lport;
1374
1375 BUG_ON(fr_seq(fp)); /* XXX remove later */
1376
1377 /*
1378 * If the RX_ID is 0xffff, don't allocate an exchange.
1379 * The upper-level protocol may request one later, if needed.
1380 */
1381 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1382 return lport->tt.lport_recv(lport, fp);
1383
1384 reject = fc_seq_lookup_recip(lport, mp, fp);
1385 if (reject == FC_RJT_NONE) {
1386 sp = fr_seq(fp); /* sequence will be held */
1387 ep = fc_seq_exch(sp);
1388 fc_seq_send_ack(sp, fp);
1389 ep->encaps = fr_encaps(fp);
1390
1391 /*
1392 * Call the receive function.
1393 *
1394 * The receive function may allocate a new sequence
1395 * over the old one, so we shouldn't change the
1396 * sequence after this.
1397 *
1398 * The frame will be freed by the receive function.
1399 * If new exch resp handler is valid then call that
1400 * first.
1401 */
1402 if (ep->resp)
1403 ep->resp(sp, fp, ep->arg);
1404 else
1405 lport->tt.lport_recv(lport, fp);
1406 fc_exch_release(ep); /* release from lookup */
1407 } else {
1408 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1409 reject);
1410 fc_frame_free(fp);
1411 }
1412}
1413
1414/**
1415 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1416 * end is the originator of the sequence that is a
1417 * response to our initial exchange
1418 * @mp: The EM that the exchange is on
1419 * @fp: The response frame
1420 */
1421static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1422{
1423 struct fc_frame_header *fh = fc_frame_header_get(fp);
1424 struct fc_seq *sp;
1425 struct fc_exch *ep;
1426 enum fc_sof sof;
1427 u32 f_ctl;
1428 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1429 void *ex_resp_arg;
1430 int rc;
1431
1432 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1433 if (!ep) {
1434 atomic_inc(&mp->stats.xid_not_found);
1435 goto out;
1436 }
1437 if (ep->esb_stat & ESB_ST_COMPLETE) {
1438 atomic_inc(&mp->stats.xid_not_found);
1439 goto rel;
1440 }
1441 if (ep->rxid == FC_XID_UNKNOWN)
1442 ep->rxid = ntohs(fh->fh_rx_id);
1443 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1444 atomic_inc(&mp->stats.xid_not_found);
1445 goto rel;
1446 }
1447 if (ep->did != ntoh24(fh->fh_s_id) &&
1448 ep->did != FC_FID_FLOGI) {
1449 atomic_inc(&mp->stats.xid_not_found);
1450 goto rel;
1451 }
1452 sof = fr_sof(fp);
1453 sp = &ep->seq;
1454 if (fc_sof_is_init(sof)) {
1455 sp->ssb_stat |= SSB_ST_RESP;
1456 sp->id = fh->fh_seq_id;
1457 } else if (sp->id != fh->fh_seq_id) {
1458 atomic_inc(&mp->stats.seq_not_found);
1459 goto rel;
1460 }
1461
1462 f_ctl = ntoh24(fh->fh_f_ctl);
1463 fr_seq(fp) = sp;
1464 if (f_ctl & FC_FC_SEQ_INIT)
1465 ep->esb_stat |= ESB_ST_SEQ_INIT;
1466
1467 if (fc_sof_needs_ack(sof))
1468 fc_seq_send_ack(sp, fp);
1469 resp = ep->resp;
1470 ex_resp_arg = ep->arg;
1471
1472 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1473 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1474 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1475 spin_lock_bh(&ep->ex_lock);
1476 resp = ep->resp;
1477 rc = fc_exch_done_locked(ep);
1478 WARN_ON(fc_seq_exch(sp) != ep);
1479 spin_unlock_bh(&ep->ex_lock);
1480 if (!rc)
1481 fc_exch_delete(ep);
1482 }
1483
1484 /*
1485 * Call the receive function.
1486 * The sequence is held (has a refcnt) for us,
1487 * but not for the receive function.
1488 *
1489 * The receive function may allocate a new sequence
1490 * over the old one, so we shouldn't change the
1491 * sequence after this.
1492 *
1493 * The frame will be freed by the receive function.
1494 * If new exch resp handler is valid then call that
1495 * first.
1496 */
1497 if (resp)
1498 resp(sp, fp, ex_resp_arg);
1499 else
1500 fc_frame_free(fp);
1501 fc_exch_release(ep);
1502 return;
1503rel:
1504 fc_exch_release(ep);
1505out:
1506 fc_frame_free(fp);
1507}
1508
1509/**
1510 * fc_exch_recv_resp() - Handler for a sequence where other end is
1511 * responding to our sequence
1512 * @mp: The EM that the exchange is on
1513 * @fp: The response frame
1514 */
1515static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1516{
1517 struct fc_seq *sp;
1518
1519 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1520
1521 if (!sp)
1522 atomic_inc(&mp->stats.xid_not_found);
1523 else
1524 atomic_inc(&mp->stats.non_bls_resp);
1525
1526 fc_frame_free(fp);
1527}
1528
1529/**
1530 * fc_exch_abts_resp() - Handler for a response to an ABT
1531 * @ep: The exchange that the frame is on
1532 * @fp: The response frame
1533 *
1534 * This response would be to an ABTS cancelling an exchange or sequence.
1535 * The response can be either BA_ACC or BA_RJT
1536 */
1537static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1538{
1539 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1540 void *ex_resp_arg;
1541 struct fc_frame_header *fh;
1542 struct fc_ba_acc *ap;
1543 struct fc_seq *sp;
1544 u16 low;
1545 u16 high;
1546 int rc = 1, has_rec = 0;
1547
1548 fh = fc_frame_header_get(fp);
1549 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1550 fc_exch_rctl_name(fh->fh_r_ctl));
1551
1552 if (cancel_delayed_work_sync(&ep->timeout_work))
1553 fc_exch_release(ep); /* release from pending timer hold */
1554
1555 spin_lock_bh(&ep->ex_lock);
1556 switch (fh->fh_r_ctl) {
1557 case FC_RCTL_BA_ACC:
1558 ap = fc_frame_payload_get(fp, sizeof(*ap));
1559 if (!ap)
1560 break;
1561
1562 /*
1563 * Decide whether to establish a Recovery Qualifier.
1564 * We do this if there is a non-empty SEQ_CNT range and
1565 * SEQ_ID is the same as the one we aborted.
1566 */
1567 low = ntohs(ap->ba_low_seq_cnt);
1568 high = ntohs(ap->ba_high_seq_cnt);
1569 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1570 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1571 ap->ba_seq_id == ep->seq_id) && low != high) {
1572 ep->esb_stat |= ESB_ST_REC_QUAL;
1573 fc_exch_hold(ep); /* hold for recovery qualifier */
1574 has_rec = 1;
1575 }
1576 break;
1577 case FC_RCTL_BA_RJT:
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 resp = ep->resp;
1584 ex_resp_arg = ep->arg;
1585
1586 /* do we need to do some other checks here. Can we reuse more of
1587 * fc_exch_recv_seq_resp
1588 */
1589 sp = &ep->seq;
1590 /*
1591 * do we want to check END_SEQ as well as LAST_SEQ here?
1592 */
1593 if (ep->fh_type != FC_TYPE_FCP &&
1594 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1595 rc = fc_exch_done_locked(ep);
1596 spin_unlock_bh(&ep->ex_lock);
1597 if (!rc)
1598 fc_exch_delete(ep);
1599
1600 if (resp)
1601 resp(sp, fp, ex_resp_arg);
1602 else
1603 fc_frame_free(fp);
1604
1605 if (has_rec)
1606 fc_exch_timer_set(ep, ep->r_a_tov);
1607
1608}
1609
1610/**
1611 * fc_exch_recv_bls() - Handler for a BLS sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The request frame
1614 *
1615 * The BLS frame is always a sequence initiated by the remote side.
1616 * We may be either the originator or recipient of the exchange.
1617 */
1618static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1619{
1620 struct fc_frame_header *fh;
1621 struct fc_exch *ep;
1622 u32 f_ctl;
1623
1624 fh = fc_frame_header_get(fp);
1625 f_ctl = ntoh24(fh->fh_f_ctl);
1626 fr_seq(fp) = NULL;
1627
1628 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1629 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1630 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1631 spin_lock_bh(&ep->ex_lock);
1632 ep->esb_stat |= ESB_ST_SEQ_INIT;
1633 spin_unlock_bh(&ep->ex_lock);
1634 }
1635 if (f_ctl & FC_FC_SEQ_CTX) {
1636 /*
1637 * A response to a sequence we initiated.
1638 * This should only be ACKs for class 2 or F.
1639 */
1640 switch (fh->fh_r_ctl) {
1641 case FC_RCTL_ACK_1:
1642 case FC_RCTL_ACK_0:
1643 break;
1644 default:
1645 if (ep)
1646 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1647 fh->fh_r_ctl,
1648 fc_exch_rctl_name(fh->fh_r_ctl));
1649 break;
1650 }
1651 fc_frame_free(fp);
1652 } else {
1653 switch (fh->fh_r_ctl) {
1654 case FC_RCTL_BA_RJT:
1655 case FC_RCTL_BA_ACC:
1656 if (ep)
1657 fc_exch_abts_resp(ep, fp);
1658 else
1659 fc_frame_free(fp);
1660 break;
1661 case FC_RCTL_BA_ABTS:
1662 fc_exch_recv_abts(ep, fp);
1663 break;
1664 default: /* ignore junk */
1665 fc_frame_free(fp);
1666 break;
1667 }
1668 }
1669 if (ep)
1670 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1671}
1672
1673/**
1674 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1675 * @rx_fp: The received frame, not freed here.
1676 *
1677 * If this fails due to allocation or transmit congestion, assume the
1678 * originator will repeat the sequence.
1679 */
1680static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1681{
1682 struct fc_lport *lport;
1683 struct fc_els_ls_acc *acc;
1684 struct fc_frame *fp;
1685
1686 lport = fr_dev(rx_fp);
1687 fp = fc_frame_alloc(lport, sizeof(*acc));
1688 if (!fp)
1689 return;
1690 acc = fc_frame_payload_get(fp, sizeof(*acc));
1691 memset(acc, 0, sizeof(*acc));
1692 acc->la_cmd = ELS_LS_ACC;
1693 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1694 lport->tt.frame_send(lport, fp);
1695}
1696
1697/**
1698 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1699 * @rx_fp: The received frame, not freed here.
1700 * @reason: The reason the sequence is being rejected
1701 * @explan: The explanation for the rejection
1702 *
1703 * If this fails due to allocation or transmit congestion, assume the
1704 * originator will repeat the sequence.
1705 */
1706static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1707 enum fc_els_rjt_explan explan)
1708{
1709 struct fc_lport *lport;
1710 struct fc_els_ls_rjt *rjt;
1711 struct fc_frame *fp;
1712
1713 lport = fr_dev(rx_fp);
1714 fp = fc_frame_alloc(lport, sizeof(*rjt));
1715 if (!fp)
1716 return;
1717 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1718 memset(rjt, 0, sizeof(*rjt));
1719 rjt->er_cmd = ELS_LS_RJT;
1720 rjt->er_reason = reason;
1721 rjt->er_explan = explan;
1722 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1723 lport->tt.frame_send(lport, fp);
1724}
1725
1726/**
1727 * fc_exch_reset() - Reset an exchange
1728 * @ep: The exchange to be reset
1729 */
1730static void fc_exch_reset(struct fc_exch *ep)
1731{
1732 struct fc_seq *sp;
1733 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1734 void *arg;
1735 int rc = 1;
1736
1737 spin_lock_bh(&ep->ex_lock);
1738 fc_exch_abort_locked(ep, 0);
1739 ep->state |= FC_EX_RST_CLEANUP;
1740 if (cancel_delayed_work(&ep->timeout_work))
1741 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1742 resp = ep->resp;
1743 ep->resp = NULL;
1744 if (ep->esb_stat & ESB_ST_REC_QUAL)
1745 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1746 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1747 arg = ep->arg;
1748 sp = &ep->seq;
1749 rc = fc_exch_done_locked(ep);
1750 spin_unlock_bh(&ep->ex_lock);
1751 if (!rc)
1752 fc_exch_delete(ep);
1753
1754 if (resp)
1755 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1756}
1757
1758/**
1759 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1760 * @lport: The local port that the exchange pool is on
1761 * @pool: The exchange pool to be reset
1762 * @sid: The source ID
1763 * @did: The destination ID
1764 *
1765 * Resets a per cpu exches pool, releasing all of its sequences
1766 * and exchanges. If sid is non-zero then reset only exchanges
1767 * we sourced from the local port's FID. If did is non-zero then
1768 * only reset exchanges destined for the local port's FID.
1769 */
1770static void fc_exch_pool_reset(struct fc_lport *lport,
1771 struct fc_exch_pool *pool,
1772 u32 sid, u32 did)
1773{
1774 struct fc_exch *ep;
1775 struct fc_exch *next;
1776
1777 spin_lock_bh(&pool->lock);
1778restart:
1779 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1780 if ((lport == ep->lp) &&
1781 (sid == 0 || sid == ep->sid) &&
1782 (did == 0 || did == ep->did)) {
1783 fc_exch_hold(ep);
1784 spin_unlock_bh(&pool->lock);
1785
1786 fc_exch_reset(ep);
1787
1788 fc_exch_release(ep);
1789 spin_lock_bh(&pool->lock);
1790
1791 /*
1792 * must restart loop incase while lock
1793 * was down multiple eps were released.
1794 */
1795 goto restart;
1796 }
1797 }
1798 pool->next_index = 0;
1799 pool->left = FC_XID_UNKNOWN;
1800 pool->right = FC_XID_UNKNOWN;
1801 spin_unlock_bh(&pool->lock);
1802}
1803
1804/**
1805 * fc_exch_mgr_reset() - Reset all EMs of a local port
1806 * @lport: The local port whose EMs are to be reset
1807 * @sid: The source ID
1808 * @did: The destination ID
1809 *
1810 * Reset all EMs associated with a given local port. Release all
1811 * sequences and exchanges. If sid is non-zero then reset only the
1812 * exchanges sent from the local port's FID. If did is non-zero then
1813 * reset only exchanges destined for the local port's FID.
1814 */
1815void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1816{
1817 struct fc_exch_mgr_anchor *ema;
1818 unsigned int cpu;
1819
1820 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1821 for_each_possible_cpu(cpu)
1822 fc_exch_pool_reset(lport,
1823 per_cpu_ptr(ema->mp->pool, cpu),
1824 sid, did);
1825 }
1826}
1827EXPORT_SYMBOL(fc_exch_mgr_reset);
1828
1829/**
1830 * fc_exch_lookup() - find an exchange
1831 * @lport: The local port
1832 * @xid: The exchange ID
1833 *
1834 * Returns exchange pointer with hold for caller, or NULL if not found.
1835 */
1836static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1837{
1838 struct fc_exch_mgr_anchor *ema;
1839
1840 list_for_each_entry(ema, &lport->ema_list, ema_list)
1841 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1842 return fc_exch_find(ema->mp, xid);
1843 return NULL;
1844}
1845
1846/**
1847 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1848 * @rfp: The REC frame, not freed here.
1849 *
1850 * Note that the requesting port may be different than the S_ID in the request.
1851 */
1852static void fc_exch_els_rec(struct fc_frame *rfp)
1853{
1854 struct fc_lport *lport;
1855 struct fc_frame *fp;
1856 struct fc_exch *ep;
1857 struct fc_els_rec *rp;
1858 struct fc_els_rec_acc *acc;
1859 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1860 enum fc_els_rjt_explan explan;
1861 u32 sid;
1862 u16 rxid;
1863 u16 oxid;
1864
1865 lport = fr_dev(rfp);
1866 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1867 explan = ELS_EXPL_INV_LEN;
1868 if (!rp)
1869 goto reject;
1870 sid = ntoh24(rp->rec_s_id);
1871 rxid = ntohs(rp->rec_rx_id);
1872 oxid = ntohs(rp->rec_ox_id);
1873
1874 ep = fc_exch_lookup(lport,
1875 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1876 explan = ELS_EXPL_OXID_RXID;
1877 if (!ep)
1878 goto reject;
1879 if (ep->oid != sid || oxid != ep->oxid)
1880 goto rel;
1881 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1882 goto rel;
1883 fp = fc_frame_alloc(lport, sizeof(*acc));
1884 if (!fp)
1885 goto out;
1886
1887 acc = fc_frame_payload_get(fp, sizeof(*acc));
1888 memset(acc, 0, sizeof(*acc));
1889 acc->reca_cmd = ELS_LS_ACC;
1890 acc->reca_ox_id = rp->rec_ox_id;
1891 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1892 acc->reca_rx_id = htons(ep->rxid);
1893 if (ep->sid == ep->oid)
1894 hton24(acc->reca_rfid, ep->did);
1895 else
1896 hton24(acc->reca_rfid, ep->sid);
1897 acc->reca_fc4value = htonl(ep->seq.rec_data);
1898 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1899 ESB_ST_SEQ_INIT |
1900 ESB_ST_COMPLETE));
1901 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1902 lport->tt.frame_send(lport, fp);
1903out:
1904 fc_exch_release(ep);
1905 return;
1906
1907rel:
1908 fc_exch_release(ep);
1909reject:
1910 fc_seq_ls_rjt(rfp, reason, explan);
1911}
1912
1913/**
1914 * fc_exch_rrq_resp() - Handler for RRQ responses
1915 * @sp: The sequence that the RRQ is on
1916 * @fp: The RRQ frame
1917 * @arg: The exchange that the RRQ is on
1918 *
1919 * TODO: fix error handler.
1920 */
1921static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1922{
1923 struct fc_exch *aborted_ep = arg;
1924 unsigned int op;
1925
1926 if (IS_ERR(fp)) {
1927 int err = PTR_ERR(fp);
1928
1929 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1930 goto cleanup;
1931 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1932 "frame error %d\n", err);
1933 return;
1934 }
1935
1936 op = fc_frame_payload_op(fp);
1937 fc_frame_free(fp);
1938
1939 switch (op) {
1940 case ELS_LS_RJT:
1941 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1942 /* fall through */
1943 case ELS_LS_ACC:
1944 goto cleanup;
1945 default:
1946 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1947 "for RRQ", op);
1948 return;
1949 }
1950
1951cleanup:
1952 fc_exch_done(&aborted_ep->seq);
1953 /* drop hold for rec qual */
1954 fc_exch_release(aborted_ep);
1955}
1956
1957
1958/**
1959 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1960 * @lport: The local port to send the frame on
1961 * @fp: The frame to be sent
1962 * @resp: The response handler for this request
1963 * @destructor: The destructor for the exchange
1964 * @arg: The argument to be passed to the response handler
1965 * @timer_msec: The timeout period for the exchange
1966 *
1967 * The frame pointer with some of the header's fields must be
1968 * filled before calling this routine, those fields are:
1969 *
1970 * - routing control
1971 * - FC port did
1972 * - FC port sid
1973 * - FC header type
1974 * - frame control
1975 * - parameter or relative offset
1976 */
1977static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1978 struct fc_frame *fp,
1979 void (*resp)(struct fc_seq *,
1980 struct fc_frame *fp,
1981 void *arg),
1982 void (*destructor)(struct fc_seq *,
1983 void *),
1984 void *arg, u32 timer_msec)
1985{
1986 struct fc_exch *ep;
1987 struct fc_seq *sp = NULL;
1988 struct fc_frame_header *fh;
1989 struct fc_fcp_pkt *fsp = NULL;
1990 int rc = 1;
1991
1992 ep = fc_exch_alloc(lport, fp);
1993 if (!ep) {
1994 fc_frame_free(fp);
1995 return NULL;
1996 }
1997 ep->esb_stat |= ESB_ST_SEQ_INIT;
1998 fh = fc_frame_header_get(fp);
1999 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2000 ep->resp = resp;
2001 ep->destructor = destructor;
2002 ep->arg = arg;
2003 ep->r_a_tov = FC_DEF_R_A_TOV;
2004 ep->lp = lport;
2005 sp = &ep->seq;
2006
2007 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2008 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2009 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2010 sp->cnt++;
2011
2012 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2013 fsp = fr_fsp(fp);
2014 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2015 }
2016
2017 if (unlikely(lport->tt.frame_send(lport, fp)))
2018 goto err;
2019
2020 if (timer_msec)
2021 fc_exch_timer_set_locked(ep, timer_msec);
2022 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2023
2024 if (ep->f_ctl & FC_FC_SEQ_INIT)
2025 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2026 spin_unlock_bh(&ep->ex_lock);
2027 return sp;
2028err:
2029 if (fsp)
2030 fc_fcp_ddp_done(fsp);
2031 rc = fc_exch_done_locked(ep);
2032 spin_unlock_bh(&ep->ex_lock);
2033 if (!rc)
2034 fc_exch_delete(ep);
2035 return NULL;
2036}
2037
2038/**
2039 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2040 * @ep: The exchange to send the RRQ on
2041 *
2042 * This tells the remote port to stop blocking the use of
2043 * the exchange and the seq_cnt range.
2044 */
2045static void fc_exch_rrq(struct fc_exch *ep)
2046{
2047 struct fc_lport *lport;
2048 struct fc_els_rrq *rrq;
2049 struct fc_frame *fp;
2050 u32 did;
2051
2052 lport = ep->lp;
2053
2054 fp = fc_frame_alloc(lport, sizeof(*rrq));
2055 if (!fp)
2056 goto retry;
2057
2058 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2059 memset(rrq, 0, sizeof(*rrq));
2060 rrq->rrq_cmd = ELS_RRQ;
2061 hton24(rrq->rrq_s_id, ep->sid);
2062 rrq->rrq_ox_id = htons(ep->oxid);
2063 rrq->rrq_rx_id = htons(ep->rxid);
2064
2065 did = ep->did;
2066 if (ep->esb_stat & ESB_ST_RESP)
2067 did = ep->sid;
2068
2069 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2070 lport->port_id, FC_TYPE_ELS,
2071 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2072
2073 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2074 lport->e_d_tov))
2075 return;
2076
2077retry:
2078 spin_lock_bh(&ep->ex_lock);
2079 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2080 spin_unlock_bh(&ep->ex_lock);
2081 /* drop hold for rec qual */
2082 fc_exch_release(ep);
2083 return;
2084 }
2085 ep->esb_stat |= ESB_ST_REC_QUAL;
2086 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2087 spin_unlock_bh(&ep->ex_lock);
2088}
2089
2090/**
2091 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2092 * @fp: The RRQ frame, not freed here.
2093 */
2094static void fc_exch_els_rrq(struct fc_frame *fp)
2095{
2096 struct fc_lport *lport;
2097 struct fc_exch *ep = NULL; /* request or subject exchange */
2098 struct fc_els_rrq *rp;
2099 u32 sid;
2100 u16 xid;
2101 enum fc_els_rjt_explan explan;
2102
2103 lport = fr_dev(fp);
2104 rp = fc_frame_payload_get(fp, sizeof(*rp));
2105 explan = ELS_EXPL_INV_LEN;
2106 if (!rp)
2107 goto reject;
2108
2109 /*
2110 * lookup subject exchange.
2111 */
2112 sid = ntoh24(rp->rrq_s_id); /* subject source */
2113 xid = fc_host_port_id(lport->host) == sid ?
2114 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2115 ep = fc_exch_lookup(lport, xid);
2116 explan = ELS_EXPL_OXID_RXID;
2117 if (!ep)
2118 goto reject;
2119 spin_lock_bh(&ep->ex_lock);
2120 if (ep->oxid != ntohs(rp->rrq_ox_id))
2121 goto unlock_reject;
2122 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2123 ep->rxid != FC_XID_UNKNOWN)
2124 goto unlock_reject;
2125 explan = ELS_EXPL_SID;
2126 if (ep->sid != sid)
2127 goto unlock_reject;
2128
2129 /*
2130 * Clear Recovery Qualifier state, and cancel timer if complete.
2131 */
2132 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2133 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2134 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2135 }
2136 if (ep->esb_stat & ESB_ST_COMPLETE) {
2137 if (cancel_delayed_work(&ep->timeout_work))
2138 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2139 }
2140
2141 spin_unlock_bh(&ep->ex_lock);
2142
2143 /*
2144 * Send LS_ACC.
2145 */
2146 fc_seq_ls_acc(fp);
2147 goto out;
2148
2149unlock_reject:
2150 spin_unlock_bh(&ep->ex_lock);
2151reject:
2152 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2153out:
2154 if (ep)
2155 fc_exch_release(ep); /* drop hold from fc_exch_find */
2156}
2157
2158/**
2159 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2160 * @lport: The local port to add the exchange manager to
2161 * @mp: The exchange manager to be added to the local port
2162 * @match: The match routine that indicates when this EM should be used
2163 */
2164struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2165 struct fc_exch_mgr *mp,
2166 bool (*match)(struct fc_frame *))
2167{
2168 struct fc_exch_mgr_anchor *ema;
2169
2170 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2171 if (!ema)
2172 return ema;
2173
2174 ema->mp = mp;
2175 ema->match = match;
2176 /* add EM anchor to EM anchors list */
2177 list_add_tail(&ema->ema_list, &lport->ema_list);
2178 kref_get(&mp->kref);
2179 return ema;
2180}
2181EXPORT_SYMBOL(fc_exch_mgr_add);
2182
2183/**
2184 * fc_exch_mgr_destroy() - Destroy an exchange manager
2185 * @kref: The reference to the EM to be destroyed
2186 */
2187static void fc_exch_mgr_destroy(struct kref *kref)
2188{
2189 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2190
2191 mempool_destroy(mp->ep_pool);
2192 free_percpu(mp->pool);
2193 kfree(mp);
2194}
2195
2196/**
2197 * fc_exch_mgr_del() - Delete an EM from a local port's list
2198 * @ema: The exchange manager anchor identifying the EM to be deleted
2199 */
2200void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2201{
2202 /* remove EM anchor from EM anchors list */
2203 list_del(&ema->ema_list);
2204 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2205 kfree(ema);
2206}
2207EXPORT_SYMBOL(fc_exch_mgr_del);
2208
2209/**
2210 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2211 * @src: Source lport to clone exchange managers from
2212 * @dst: New lport that takes references to all the exchange managers
2213 */
2214int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2215{
2216 struct fc_exch_mgr_anchor *ema, *tmp;
2217
2218 list_for_each_entry(ema, &src->ema_list, ema_list) {
2219 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2220 goto err;
2221 }
2222 return 0;
2223err:
2224 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2225 fc_exch_mgr_del(ema);
2226 return -ENOMEM;
2227}
2228EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2229
2230/**
2231 * fc_exch_mgr_alloc() - Allocate an exchange manager
2232 * @lport: The local port that the new EM will be associated with
2233 * @class: The default FC class for new exchanges
2234 * @min_xid: The minimum XID for exchanges from the new EM
2235 * @max_xid: The maximum XID for exchanges from the new EM
2236 * @match: The match routine for the new EM
2237 */
2238struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2239 enum fc_class class,
2240 u16 min_xid, u16 max_xid,
2241 bool (*match)(struct fc_frame *))
2242{
2243 struct fc_exch_mgr *mp;
2244 u16 pool_exch_range;
2245 size_t pool_size;
2246 unsigned int cpu;
2247 struct fc_exch_pool *pool;
2248
2249 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2250 (min_xid & fc_cpu_mask) != 0) {
2251 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2252 min_xid, max_xid);
2253 return NULL;
2254 }
2255
2256 /*
2257 * allocate memory for EM
2258 */
2259 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2260 if (!mp)
2261 return NULL;
2262
2263 mp->class = class;
2264 /* adjust em exch xid range for offload */
2265 mp->min_xid = min_xid;
2266
2267 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2268 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2269 sizeof(struct fc_exch *);
2270 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2271 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2272 min_xid - 1;
2273 } else {
2274 mp->max_xid = max_xid;
2275 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2276 (fc_cpu_mask + 1);
2277 }
2278
2279 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2280 if (!mp->ep_pool)
2281 goto free_mp;
2282
2283 /*
2284 * Setup per cpu exch pool with entire exchange id range equally
2285 * divided across all cpus. The exch pointers array memory is
2286 * allocated for exch range per pool.
2287 */
2288 mp->pool_max_index = pool_exch_range - 1;
2289
2290 /*
2291 * Allocate and initialize per cpu exch pool
2292 */
2293 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2294 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2295 if (!mp->pool)
2296 goto free_mempool;
2297 for_each_possible_cpu(cpu) {
2298 pool = per_cpu_ptr(mp->pool, cpu);
2299 pool->next_index = 0;
2300 pool->left = FC_XID_UNKNOWN;
2301 pool->right = FC_XID_UNKNOWN;
2302 spin_lock_init(&pool->lock);
2303 INIT_LIST_HEAD(&pool->ex_list);
2304 }
2305
2306 kref_init(&mp->kref);
2307 if (!fc_exch_mgr_add(lport, mp, match)) {
2308 free_percpu(mp->pool);
2309 goto free_mempool;
2310 }
2311
2312 /*
2313 * Above kref_init() sets mp->kref to 1 and then
2314 * call to fc_exch_mgr_add incremented mp->kref again,
2315 * so adjust that extra increment.
2316 */
2317 kref_put(&mp->kref, fc_exch_mgr_destroy);
2318 return mp;
2319
2320free_mempool:
2321 mempool_destroy(mp->ep_pool);
2322free_mp:
2323 kfree(mp);
2324 return NULL;
2325}
2326EXPORT_SYMBOL(fc_exch_mgr_alloc);
2327
2328/**
2329 * fc_exch_mgr_free() - Free all exchange managers on a local port
2330 * @lport: The local port whose EMs are to be freed
2331 */
2332void fc_exch_mgr_free(struct fc_lport *lport)
2333{
2334 struct fc_exch_mgr_anchor *ema, *next;
2335
2336 flush_workqueue(fc_exch_workqueue);
2337 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2338 fc_exch_mgr_del(ema);
2339}
2340EXPORT_SYMBOL(fc_exch_mgr_free);
2341
2342/**
2343 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2344 * upon 'xid'.
2345 * @f_ctl: f_ctl
2346 * @lport: The local port the frame was received on
2347 * @fh: The received frame header
2348 */
2349static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2350 struct fc_lport *lport,
2351 struct fc_frame_header *fh)
2352{
2353 struct fc_exch_mgr_anchor *ema;
2354 u16 xid;
2355
2356 if (f_ctl & FC_FC_EX_CTX)
2357 xid = ntohs(fh->fh_ox_id);
2358 else {
2359 xid = ntohs(fh->fh_rx_id);
2360 if (xid == FC_XID_UNKNOWN)
2361 return list_entry(lport->ema_list.prev,
2362 typeof(*ema), ema_list);
2363 }
2364
2365 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2366 if ((xid >= ema->mp->min_xid) &&
2367 (xid <= ema->mp->max_xid))
2368 return ema;
2369 }
2370 return NULL;
2371}
2372/**
2373 * fc_exch_recv() - Handler for received frames
2374 * @lport: The local port the frame was received on
2375 * @fp: The received frame
2376 */
2377void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2378{
2379 struct fc_frame_header *fh = fc_frame_header_get(fp);
2380 struct fc_exch_mgr_anchor *ema;
2381 u32 f_ctl;
2382
2383 /* lport lock ? */
2384 if (!lport || lport->state == LPORT_ST_DISABLED) {
2385 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2386 "has not been initialized correctly\n");
2387 fc_frame_free(fp);
2388 return;
2389 }
2390
2391 f_ctl = ntoh24(fh->fh_f_ctl);
2392 ema = fc_find_ema(f_ctl, lport, fh);
2393 if (!ema) {
2394 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2395 "fc_ctl <0x%x>, xid <0x%x>\n",
2396 f_ctl,
2397 (f_ctl & FC_FC_EX_CTX) ?
2398 ntohs(fh->fh_ox_id) :
2399 ntohs(fh->fh_rx_id));
2400 fc_frame_free(fp);
2401 return;
2402 }
2403
2404 /*
2405 * If frame is marked invalid, just drop it.
2406 */
2407 switch (fr_eof(fp)) {
2408 case FC_EOF_T:
2409 if (f_ctl & FC_FC_END_SEQ)
2410 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2411 /* fall through */
2412 case FC_EOF_N:
2413 if (fh->fh_type == FC_TYPE_BLS)
2414 fc_exch_recv_bls(ema->mp, fp);
2415 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2416 FC_FC_EX_CTX)
2417 fc_exch_recv_seq_resp(ema->mp, fp);
2418 else if (f_ctl & FC_FC_SEQ_CTX)
2419 fc_exch_recv_resp(ema->mp, fp);
2420 else /* no EX_CTX and no SEQ_CTX */
2421 fc_exch_recv_req(lport, ema->mp, fp);
2422 break;
2423 default:
2424 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2425 fr_eof(fp));
2426 fc_frame_free(fp);
2427 }
2428}
2429EXPORT_SYMBOL(fc_exch_recv);
2430
2431/**
2432 * fc_exch_init() - Initialize the exchange layer for a local port
2433 * @lport: The local port to initialize the exchange layer for
2434 */
2435int fc_exch_init(struct fc_lport *lport)
2436{
2437 if (!lport->tt.seq_start_next)
2438 lport->tt.seq_start_next = fc_seq_start_next;
2439
2440 if (!lport->tt.seq_set_resp)
2441 lport->tt.seq_set_resp = fc_seq_set_resp;
2442
2443 if (!lport->tt.exch_seq_send)
2444 lport->tt.exch_seq_send = fc_exch_seq_send;
2445
2446 if (!lport->tt.seq_send)
2447 lport->tt.seq_send = fc_seq_send;
2448
2449 if (!lport->tt.seq_els_rsp_send)
2450 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2451
2452 if (!lport->tt.exch_done)
2453 lport->tt.exch_done = fc_exch_done;
2454
2455 if (!lport->tt.exch_mgr_reset)
2456 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2457
2458 if (!lport->tt.seq_exch_abort)
2459 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2460
2461 if (!lport->tt.seq_assign)
2462 lport->tt.seq_assign = fc_seq_assign;
2463
2464 if (!lport->tt.seq_release)
2465 lport->tt.seq_release = fc_seq_release;
2466
2467 return 0;
2468}
2469EXPORT_SYMBOL(fc_exch_init);
2470
2471/**
2472 * fc_setup_exch_mgr() - Setup an exchange manager
2473 */
2474int fc_setup_exch_mgr(void)
2475{
2476 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2477 0, SLAB_HWCACHE_ALIGN, NULL);
2478 if (!fc_em_cachep)
2479 return -ENOMEM;
2480
2481 /*
2482 * Initialize fc_cpu_mask and fc_cpu_order. The
2483 * fc_cpu_mask is set for nr_cpu_ids rounded up
2484 * to order of 2's * power and order is stored
2485 * in fc_cpu_order as this is later required in
2486 * mapping between an exch id and exch array index
2487 * in per cpu exch pool.
2488 *
2489 * This round up is required to align fc_cpu_mask
2490 * to exchange id's lower bits such that all incoming
2491 * frames of an exchange gets delivered to the same
2492 * cpu on which exchange originated by simple bitwise
2493 * AND operation between fc_cpu_mask and exchange id.
2494 */
2495 fc_cpu_mask = 1;
2496 fc_cpu_order = 0;
2497 while (fc_cpu_mask < nr_cpu_ids) {
2498 fc_cpu_mask <<= 1;
2499 fc_cpu_order++;
2500 }
2501 fc_cpu_mask--;
2502
2503 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2504 if (!fc_exch_workqueue)
2505 goto err;
2506 return 0;
2507err:
2508 kmem_cache_destroy(fc_em_cachep);
2509 return -ENOMEM;
2510}
2511
2512/**
2513 * fc_destroy_exch_mgr() - Destroy an exchange manager
2514 */
2515void fc_destroy_exch_mgr(void)
2516{
2517 destroy_workqueue(fc_exch_workqueue);
2518 kmem_cache_destroy(fc_em_cachep);
2519}