Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 30#include <asm/rtc.h>
 31
 32#define DRV_NAME	"sh-rtc"
 33#define DRV_VERSION	"0.2.3"
 34
 35#define RTC_REG(r)	((r) * rtc_reg_size)
 36
 37#define R64CNT		RTC_REG(0)
 38
 39#define RSECCNT		RTC_REG(1)	/* RTC sec */
 40#define RMINCNT		RTC_REG(2)	/* RTC min */
 41#define RHRCNT		RTC_REG(3)	/* RTC hour */
 42#define RWKCNT		RTC_REG(4)	/* RTC week */
 43#define RDAYCNT		RTC_REG(5)	/* RTC day */
 44#define RMONCNT		RTC_REG(6)	/* RTC month */
 45#define RYRCNT		RTC_REG(7)	/* RTC year */
 46#define RSECAR		RTC_REG(8)	/* ALARM sec */
 47#define RMINAR		RTC_REG(9)	/* ALARM min */
 48#define RHRAR		RTC_REG(10)	/* ALARM hour */
 49#define RWKAR		RTC_REG(11)	/* ALARM week */
 50#define RDAYAR		RTC_REG(12)	/* ALARM day */
 51#define RMONAR		RTC_REG(13)	/* ALARM month */
 52#define RCR1		RTC_REG(14)	/* Control */
 53#define RCR2		RTC_REG(15)	/* Control */
 54
 55/*
 56 * Note on RYRAR and RCR3: Up until this point most of the register
 57 * definitions are consistent across all of the available parts. However,
 58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 59 * register used to control RYRCNT/RYRAR compare) varies considerably
 60 * across various parts, occasionally being mapped in to a completely
 61 * unrelated address space. For proper RYRAR support a separate resource
 62 * would have to be handed off, but as this is purely optional in
 63 * practice, we simply opt not to support it, thereby keeping the code
 64 * quite a bit more simplified.
 65 */
 66
 67/* ALARM Bits - or with BCD encoded value */
 68#define AR_ENB		0x80	/* Enable for alarm cmp   */
 69
 70/* Period Bits */
 71#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 72#define PF_COUNT	0x200	/* Half periodic counter */
 73#define PF_OXS		0x400	/* Periodic One x Second */
 74#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 75#define PF_MASK		0xf00
 76
 77/* RCR1 Bits */
 78#define RCR1_CF		0x80	/* Carry Flag             */
 79#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 80#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 81#define RCR1_AF		0x01	/* Alarm Flag             */
 82
 83/* RCR2 Bits */
 84#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 85#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 86#define RCR2_RTCEN	0x08	/* ENable RTC              */
 87#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 88#define RCR2_RESET	0x02	/* Reset bit               */
 89#define RCR2_START	0x01	/* Start bit               */
 90
 91struct sh_rtc {
 92	void __iomem		*regbase;
 93	unsigned long		regsize;
 94	struct resource		*res;
 95	int			alarm_irq;
 96	int			periodic_irq;
 97	int			carry_irq;
 98	struct clk		*clk;
 99	struct rtc_device	*rtc_dev;
100	spinlock_t		lock;
101	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
102	unsigned short		periodic_freq;
103};
104
105static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106{
107	unsigned int tmp, pending;
108
109	tmp = readb(rtc->regbase + RCR1);
110	pending = tmp & RCR1_CF;
111	tmp &= ~RCR1_CF;
112	writeb(tmp, rtc->regbase + RCR1);
113
114	/* Users have requested One x Second IRQ */
115	if (pending && rtc->periodic_freq & PF_OXS)
116		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117
118	return pending;
119}
120
121static int __sh_rtc_alarm(struct sh_rtc *rtc)
122{
123	unsigned int tmp, pending;
124
125	tmp = readb(rtc->regbase + RCR1);
126	pending = tmp & RCR1_AF;
127	tmp &= ~(RCR1_AF | RCR1_AIE);
128	writeb(tmp, rtc->regbase + RCR1);
129
130	if (pending)
131		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132
133	return pending;
134}
135
136static int __sh_rtc_periodic(struct sh_rtc *rtc)
137{
138	struct rtc_device *rtc_dev = rtc->rtc_dev;
139	struct rtc_task *irq_task;
140	unsigned int tmp, pending;
141
142	tmp = readb(rtc->regbase + RCR2);
143	pending = tmp & RCR2_PEF;
144	tmp &= ~RCR2_PEF;
145	writeb(tmp, rtc->regbase + RCR2);
146
147	if (!pending)
148		return 0;
149
150	/* Half period enabled than one skipped and the next notified */
151	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152		rtc->periodic_freq &= ~PF_COUNT;
153	else {
154		if (rtc->periodic_freq & PF_HP)
155			rtc->periodic_freq |= PF_COUNT;
156		if (rtc->periodic_freq & PF_KOU) {
157			spin_lock(&rtc_dev->irq_task_lock);
158			irq_task = rtc_dev->irq_task;
159			if (irq_task)
160				irq_task->func(irq_task->private_data);
161			spin_unlock(&rtc_dev->irq_task_lock);
162		} else
163			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164	}
165
166	return pending;
167}
168
169static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170{
171	struct sh_rtc *rtc = dev_id;
172	int ret;
173
174	spin_lock(&rtc->lock);
175	ret = __sh_rtc_interrupt(rtc);
176	spin_unlock(&rtc->lock);
177
178	return IRQ_RETVAL(ret);
179}
180
181static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182{
183	struct sh_rtc *rtc = dev_id;
184	int ret;
185
186	spin_lock(&rtc->lock);
187	ret = __sh_rtc_alarm(rtc);
188	spin_unlock(&rtc->lock);
189
190	return IRQ_RETVAL(ret);
191}
192
193static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194{
195	struct sh_rtc *rtc = dev_id;
196	int ret;
197
198	spin_lock(&rtc->lock);
199	ret = __sh_rtc_periodic(rtc);
200	spin_unlock(&rtc->lock);
201
202	return IRQ_RETVAL(ret);
203}
204
205static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206{
207	struct sh_rtc *rtc = dev_id;
208	int ret;
209
210	spin_lock(&rtc->lock);
211	ret = __sh_rtc_interrupt(rtc);
212	ret |= __sh_rtc_alarm(rtc);
213	ret |= __sh_rtc_periodic(rtc);
214	spin_unlock(&rtc->lock);
215
216	return IRQ_RETVAL(ret);
217}
218
219static int sh_rtc_irq_set_state(struct device *dev, int enable)
220{
221	struct sh_rtc *rtc = dev_get_drvdata(dev);
222	unsigned int tmp;
223
224	spin_lock_irq(&rtc->lock);
225
226	tmp = readb(rtc->regbase + RCR2);
227
228	if (enable) {
229		rtc->periodic_freq |= PF_KOU;
230		tmp &= ~RCR2_PEF;	/* Clear PES bit */
231		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
232	} else {
233		rtc->periodic_freq &= ~PF_KOU;
234		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235	}
236
237	writeb(tmp, rtc->regbase + RCR2);
238
239	spin_unlock_irq(&rtc->lock);
240
241	return 0;
242}
243
244static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245{
246	struct sh_rtc *rtc = dev_get_drvdata(dev);
247	int tmp, ret = 0;
248
249	spin_lock_irq(&rtc->lock);
250	tmp = rtc->periodic_freq & PF_MASK;
251
252	switch (freq) {
253	case 0:
254		rtc->periodic_freq = 0x00;
255		break;
256	case 1:
257		rtc->periodic_freq = 0x60;
258		break;
259	case 2:
260		rtc->periodic_freq = 0x50;
261		break;
262	case 4:
263		rtc->periodic_freq = 0x40;
264		break;
265	case 8:
266		rtc->periodic_freq = 0x30 | PF_HP;
267		break;
268	case 16:
269		rtc->periodic_freq = 0x30;
270		break;
271	case 32:
272		rtc->periodic_freq = 0x20 | PF_HP;
273		break;
274	case 64:
275		rtc->periodic_freq = 0x20;
276		break;
277	case 128:
278		rtc->periodic_freq = 0x10 | PF_HP;
279		break;
280	case 256:
281		rtc->periodic_freq = 0x10;
282		break;
283	default:
284		ret = -ENOTSUPP;
285	}
286
287	if (ret == 0)
288		rtc->periodic_freq |= tmp;
289
290	spin_unlock_irq(&rtc->lock);
291	return ret;
292}
293
294static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295{
296	struct sh_rtc *rtc = dev_get_drvdata(dev);
297	unsigned int tmp;
298
299	spin_lock_irq(&rtc->lock);
300
301	tmp = readb(rtc->regbase + RCR1);
302
303	if (enable)
304		tmp |= RCR1_AIE;
305	else
306		tmp &= ~RCR1_AIE;
307
308	writeb(tmp, rtc->regbase + RCR1);
309
310	spin_unlock_irq(&rtc->lock);
311}
312
313static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314{
315	struct sh_rtc *rtc = dev_get_drvdata(dev);
316	unsigned int tmp;
317
318	tmp = readb(rtc->regbase + RCR1);
319	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320
321	tmp = readb(rtc->regbase + RCR2);
322	seq_printf(seq, "periodic_IRQ\t: %s\n",
323		   (tmp & RCR2_PESMASK) ? "yes" : "no");
324
325	return 0;
326}
327
328static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329{
330	struct sh_rtc *rtc = dev_get_drvdata(dev);
331	unsigned int tmp;
332
333	spin_lock_irq(&rtc->lock);
334
335	tmp = readb(rtc->regbase + RCR1);
336
337	if (!enable)
338		tmp &= ~RCR1_CIE;
339	else
340		tmp |= RCR1_CIE;
341
342	writeb(tmp, rtc->regbase + RCR1);
343
344	spin_unlock_irq(&rtc->lock);
345}
346
347static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
348{
349	sh_rtc_setaie(dev, enabled);
350	return 0;
351}
352
353static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
354{
355	struct platform_device *pdev = to_platform_device(dev);
356	struct sh_rtc *rtc = platform_get_drvdata(pdev);
357	unsigned int sec128, sec2, yr, yr100, cf_bit;
358
359	do {
360		unsigned int tmp;
361
362		spin_lock_irq(&rtc->lock);
363
364		tmp = readb(rtc->regbase + RCR1);
365		tmp &= ~RCR1_CF; /* Clear CF-bit */
366		tmp |= RCR1_CIE;
367		writeb(tmp, rtc->regbase + RCR1);
368
369		sec128 = readb(rtc->regbase + R64CNT);
370
371		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
372		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
373		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
374		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
375		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
376		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
377
378		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
379			yr  = readw(rtc->regbase + RYRCNT);
380			yr100 = bcd2bin(yr >> 8);
381			yr &= 0xff;
382		} else {
383			yr  = readb(rtc->regbase + RYRCNT);
384			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
385		}
386
387		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
388
389		sec2 = readb(rtc->regbase + R64CNT);
390		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
391
392		spin_unlock_irq(&rtc->lock);
393	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
394
395#if RTC_BIT_INVERTED != 0
396	if ((sec128 & RTC_BIT_INVERTED))
397		tm->tm_sec--;
398#endif
399
400	/* only keep the carry interrupt enabled if UIE is on */
401	if (!(rtc->periodic_freq & PF_OXS))
402		sh_rtc_setcie(dev, 0);
403
404	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
405		"mday=%d, mon=%d, year=%d, wday=%d\n",
406		__func__,
407		tm->tm_sec, tm->tm_min, tm->tm_hour,
408		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct platform_device *pdev = to_platform_device(dev);
416	struct sh_rtc *rtc = platform_get_drvdata(pdev);
417	unsigned int tmp;
418	int year;
419
420	spin_lock_irq(&rtc->lock);
421
422	/* Reset pre-scaler & stop RTC */
423	tmp = readb(rtc->regbase + RCR2);
424	tmp |= RCR2_RESET;
425	tmp &= ~RCR2_START;
426	writeb(tmp, rtc->regbase + RCR2);
427
428	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
429	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
430	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
431	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
432	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
433	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
434
435	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
436		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
437			bin2bcd(tm->tm_year % 100);
438		writew(year, rtc->regbase + RYRCNT);
439	} else {
440		year = tm->tm_year % 100;
441		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
442	}
443
444	/* Start RTC */
445	tmp = readb(rtc->regbase + RCR2);
446	tmp &= ~RCR2_RESET;
447	tmp |= RCR2_RTCEN | RCR2_START;
448	writeb(tmp, rtc->regbase + RCR2);
449
450	spin_unlock_irq(&rtc->lock);
451
452	return 0;
453}
454
455static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
456{
457	unsigned int byte;
458	int value = 0xff;	/* return 0xff for ignored values */
459
460	byte = readb(rtc->regbase + reg_off);
461	if (byte & AR_ENB) {
462		byte &= ~AR_ENB;	/* strip the enable bit */
463		value = bcd2bin(byte);
464	}
465
466	return value;
467}
468
469static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
470{
471	struct platform_device *pdev = to_platform_device(dev);
472	struct sh_rtc *rtc = platform_get_drvdata(pdev);
473	struct rtc_time *tm = &wkalrm->time;
474
475	spin_lock_irq(&rtc->lock);
476
477	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
478	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
479	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
480	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
481	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
482	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
483	if (tm->tm_mon > 0)
484		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
485	tm->tm_year     = 0xffff;
486
487	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
488
489	spin_unlock_irq(&rtc->lock);
490
491	return 0;
492}
493
494static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
495					    int value, int reg_off)
496{
497	/* < 0 for a value that is ignored */
498	if (value < 0)
499		writeb(0, rtc->regbase + reg_off);
500	else
501		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
502}
503
504static int sh_rtc_check_alarm(struct rtc_time *tm)
505{
506	/*
507	 * The original rtc says anything > 0xc0 is "don't care" or "match
508	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
509	 * The original rtc doesn't support years - some things use -1 and
510	 * some 0xffff. We use -1 to make out tests easier.
511	 */
512	if (tm->tm_year == 0xffff)
513		tm->tm_year = -1;
514	if (tm->tm_mon >= 0xff)
515		tm->tm_mon = -1;
516	if (tm->tm_mday >= 0xff)
517		tm->tm_mday = -1;
518	if (tm->tm_wday >= 0xff)
519		tm->tm_wday = -1;
520	if (tm->tm_hour >= 0xff)
521		tm->tm_hour = -1;
522	if (tm->tm_min >= 0xff)
523		tm->tm_min = -1;
524	if (tm->tm_sec >= 0xff)
525		tm->tm_sec = -1;
526
527	if (tm->tm_year > 9999 ||
528		tm->tm_mon >= 12 ||
529		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
530		tm->tm_wday >= 7 ||
531		tm->tm_hour >= 24 ||
532		tm->tm_min >= 60 ||
533		tm->tm_sec >= 60)
534		return -EINVAL;
535
536	return 0;
537}
538
539static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
540{
541	struct platform_device *pdev = to_platform_device(dev);
542	struct sh_rtc *rtc = platform_get_drvdata(pdev);
543	unsigned int rcr1;
544	struct rtc_time *tm = &wkalrm->time;
545	int mon, err;
546
547	err = sh_rtc_check_alarm(tm);
548	if (unlikely(err < 0))
549		return err;
550
551	spin_lock_irq(&rtc->lock);
552
553	/* disable alarm interrupt and clear the alarm flag */
554	rcr1 = readb(rtc->regbase + RCR1);
555	rcr1 &= ~(RCR1_AF | RCR1_AIE);
556	writeb(rcr1, rtc->regbase + RCR1);
557
558	/* set alarm time */
559	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
560	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
561	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
562	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
563	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
564	mon = tm->tm_mon;
565	if (mon >= 0)
566		mon += 1;
567	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
568
569	if (wkalrm->enabled) {
570		rcr1 |= RCR1_AIE;
571		writeb(rcr1, rtc->regbase + RCR1);
572	}
573
574	spin_unlock_irq(&rtc->lock);
575
576	return 0;
577}
578
579static struct rtc_class_ops sh_rtc_ops = {
580	.read_time	= sh_rtc_read_time,
581	.set_time	= sh_rtc_set_time,
582	.read_alarm	= sh_rtc_read_alarm,
583	.set_alarm	= sh_rtc_set_alarm,
584	.proc		= sh_rtc_proc,
585	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
586};
587
588static int __init sh_rtc_probe(struct platform_device *pdev)
589{
590	struct sh_rtc *rtc;
591	struct resource *res;
592	struct rtc_time r;
593	char clk_name[6];
594	int clk_id, ret;
595
596	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
597	if (unlikely(!rtc))
598		return -ENOMEM;
599
600	spin_lock_init(&rtc->lock);
601
602	/* get periodic/carry/alarm irqs */
603	ret = platform_get_irq(pdev, 0);
604	if (unlikely(ret <= 0)) {
605		ret = -ENOENT;
606		dev_err(&pdev->dev, "No IRQ resource\n");
607		goto err_badres;
608	}
609
610	rtc->periodic_irq = ret;
611	rtc->carry_irq = platform_get_irq(pdev, 1);
612	rtc->alarm_irq = platform_get_irq(pdev, 2);
613
614	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
615	if (unlikely(res == NULL)) {
616		ret = -ENOENT;
617		dev_err(&pdev->dev, "No IO resource\n");
618		goto err_badres;
619	}
620
621	rtc->regsize = resource_size(res);
622
623	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
624	if (unlikely(!rtc->res)) {
625		ret = -EBUSY;
626		goto err_badres;
627	}
628
629	rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
630	if (unlikely(!rtc->regbase)) {
631		ret = -EINVAL;
632		goto err_badmap;
633	}
634
635	clk_id = pdev->id;
636	/* With a single device, the clock id is still "rtc0" */
637	if (clk_id < 0)
638		clk_id = 0;
639
640	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
641
642	rtc->clk = clk_get(&pdev->dev, clk_name);
643	if (IS_ERR(rtc->clk)) {
644		/*
645		 * No error handling for rtc->clk intentionally, not all
646		 * platforms will have a unique clock for the RTC, and
647		 * the clk API can handle the struct clk pointer being
648		 * NULL.
649		 */
650		rtc->clk = NULL;
651	}
652
653	clk_enable(rtc->clk);
654
655	rtc->capabilities = RTC_DEF_CAPABILITIES;
656	if (pdev->dev.platform_data) {
657		struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
658
659		/*
660		 * Some CPUs have special capabilities in addition to the
661		 * default set. Add those in here.
662		 */
663		rtc->capabilities |= pinfo->capabilities;
664	}
665
666	if (rtc->carry_irq <= 0) {
667		/* register shared periodic/carry/alarm irq */
668		ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
669				  IRQF_DISABLED, "sh-rtc", rtc);
670		if (unlikely(ret)) {
671			dev_err(&pdev->dev,
672				"request IRQ failed with %d, IRQ %d\n", ret,
673				rtc->periodic_irq);
674			goto err_unmap;
675		}
676	} else {
677		/* register periodic/carry/alarm irqs */
678		ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
679				  IRQF_DISABLED, "sh-rtc period", rtc);
680		if (unlikely(ret)) {
681			dev_err(&pdev->dev,
682				"request period IRQ failed with %d, IRQ %d\n",
683				ret, rtc->periodic_irq);
684			goto err_unmap;
685		}
686
687		ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
688				  IRQF_DISABLED, "sh-rtc carry", rtc);
689		if (unlikely(ret)) {
690			dev_err(&pdev->dev,
691				"request carry IRQ failed with %d, IRQ %d\n",
692				ret, rtc->carry_irq);
693			free_irq(rtc->periodic_irq, rtc);
694			goto err_unmap;
695		}
696
697		ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
698				  IRQF_DISABLED, "sh-rtc alarm", rtc);
699		if (unlikely(ret)) {
700			dev_err(&pdev->dev,
701				"request alarm IRQ failed with %d, IRQ %d\n",
702				ret, rtc->alarm_irq);
703			free_irq(rtc->carry_irq, rtc);
704			free_irq(rtc->periodic_irq, rtc);
705			goto err_unmap;
706		}
707	}
708
709	platform_set_drvdata(pdev, rtc);
710
711	/* everything disabled by default */
712	sh_rtc_irq_set_freq(&pdev->dev, 0);
713	sh_rtc_irq_set_state(&pdev->dev, 0);
714	sh_rtc_setaie(&pdev->dev, 0);
715	sh_rtc_setcie(&pdev->dev, 0);
716
717	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
718					   &sh_rtc_ops, THIS_MODULE);
719	if (IS_ERR(rtc->rtc_dev)) {
720		ret = PTR_ERR(rtc->rtc_dev);
721		free_irq(rtc->periodic_irq, rtc);
722		free_irq(rtc->carry_irq, rtc);
723		free_irq(rtc->alarm_irq, rtc);
724		goto err_unmap;
725	}
726
727	rtc->rtc_dev->max_user_freq = 256;
728
729	/* reset rtc to epoch 0 if time is invalid */
730	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
731		rtc_time_to_tm(0, &r);
732		rtc_set_time(rtc->rtc_dev, &r);
733	}
734
735	device_init_wakeup(&pdev->dev, 1);
736	return 0;
737
738err_unmap:
739	clk_disable(rtc->clk);
740	clk_put(rtc->clk);
741	iounmap(rtc->regbase);
742err_badmap:
743	release_mem_region(rtc->res->start, rtc->regsize);
744err_badres:
745	kfree(rtc);
746
747	return ret;
748}
749
750static int __exit sh_rtc_remove(struct platform_device *pdev)
751{
752	struct sh_rtc *rtc = platform_get_drvdata(pdev);
753
754	rtc_device_unregister(rtc->rtc_dev);
755	sh_rtc_irq_set_state(&pdev->dev, 0);
756
757	sh_rtc_setaie(&pdev->dev, 0);
758	sh_rtc_setcie(&pdev->dev, 0);
759
760	free_irq(rtc->periodic_irq, rtc);
761
762	if (rtc->carry_irq > 0) {
763		free_irq(rtc->carry_irq, rtc);
764		free_irq(rtc->alarm_irq, rtc);
765	}
766
767	iounmap(rtc->regbase);
768	release_mem_region(rtc->res->start, rtc->regsize);
769
770	clk_disable(rtc->clk);
771	clk_put(rtc->clk);
772
773	platform_set_drvdata(pdev, NULL);
774
775	kfree(rtc);
776
777	return 0;
778}
779
780static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
781{
782	struct platform_device *pdev = to_platform_device(dev);
783	struct sh_rtc *rtc = platform_get_drvdata(pdev);
784
785	irq_set_irq_wake(rtc->periodic_irq, enabled);
786
787	if (rtc->carry_irq > 0) {
788		irq_set_irq_wake(rtc->carry_irq, enabled);
789		irq_set_irq_wake(rtc->alarm_irq, enabled);
790	}
791}
792
793static int sh_rtc_suspend(struct device *dev)
794{
795	if (device_may_wakeup(dev))
796		sh_rtc_set_irq_wake(dev, 1);
797
798	return 0;
799}
800
801static int sh_rtc_resume(struct device *dev)
802{
803	if (device_may_wakeup(dev))
804		sh_rtc_set_irq_wake(dev, 0);
805
806	return 0;
807}
808
809static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
810	.suspend = sh_rtc_suspend,
811	.resume = sh_rtc_resume,
812};
813
814static struct platform_driver sh_rtc_platform_driver = {
815	.driver		= {
816		.name	= DRV_NAME,
817		.owner	= THIS_MODULE,
818		.pm	= &sh_rtc_dev_pm_ops,
819	},
820	.remove		= __exit_p(sh_rtc_remove),
821};
822
823static int __init sh_rtc_init(void)
824{
825	return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
826}
827
828static void __exit sh_rtc_exit(void)
829{
830	platform_driver_unregister(&sh_rtc_platform_driver);
831}
832
833module_init(sh_rtc_init);
834module_exit(sh_rtc_exit);
835
836MODULE_DESCRIPTION("SuperH on-chip RTC driver");
837MODULE_VERSION(DRV_VERSION);
838MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
839	      "Jamie Lenehan <lenehan@twibble.org>, "
840	      "Angelo Castello <angelo.castello@st.com>");
841MODULE_LICENSE("GPL");
842MODULE_ALIAS("platform:" DRV_NAME);
v3.5.6
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 30#include <asm/rtc.h>
 31
 32#define DRV_NAME	"sh-rtc"
 33#define DRV_VERSION	"0.2.3"
 34
 35#define RTC_REG(r)	((r) * rtc_reg_size)
 36
 37#define R64CNT		RTC_REG(0)
 38
 39#define RSECCNT		RTC_REG(1)	/* RTC sec */
 40#define RMINCNT		RTC_REG(2)	/* RTC min */
 41#define RHRCNT		RTC_REG(3)	/* RTC hour */
 42#define RWKCNT		RTC_REG(4)	/* RTC week */
 43#define RDAYCNT		RTC_REG(5)	/* RTC day */
 44#define RMONCNT		RTC_REG(6)	/* RTC month */
 45#define RYRCNT		RTC_REG(7)	/* RTC year */
 46#define RSECAR		RTC_REG(8)	/* ALARM sec */
 47#define RMINAR		RTC_REG(9)	/* ALARM min */
 48#define RHRAR		RTC_REG(10)	/* ALARM hour */
 49#define RWKAR		RTC_REG(11)	/* ALARM week */
 50#define RDAYAR		RTC_REG(12)	/* ALARM day */
 51#define RMONAR		RTC_REG(13)	/* ALARM month */
 52#define RCR1		RTC_REG(14)	/* Control */
 53#define RCR2		RTC_REG(15)	/* Control */
 54
 55/*
 56 * Note on RYRAR and RCR3: Up until this point most of the register
 57 * definitions are consistent across all of the available parts. However,
 58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 59 * register used to control RYRCNT/RYRAR compare) varies considerably
 60 * across various parts, occasionally being mapped in to a completely
 61 * unrelated address space. For proper RYRAR support a separate resource
 62 * would have to be handed off, but as this is purely optional in
 63 * practice, we simply opt not to support it, thereby keeping the code
 64 * quite a bit more simplified.
 65 */
 66
 67/* ALARM Bits - or with BCD encoded value */
 68#define AR_ENB		0x80	/* Enable for alarm cmp   */
 69
 70/* Period Bits */
 71#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 72#define PF_COUNT	0x200	/* Half periodic counter */
 73#define PF_OXS		0x400	/* Periodic One x Second */
 74#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 75#define PF_MASK		0xf00
 76
 77/* RCR1 Bits */
 78#define RCR1_CF		0x80	/* Carry Flag             */
 79#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 80#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 81#define RCR1_AF		0x01	/* Alarm Flag             */
 82
 83/* RCR2 Bits */
 84#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 85#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 86#define RCR2_RTCEN	0x08	/* ENable RTC              */
 87#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 88#define RCR2_RESET	0x02	/* Reset bit               */
 89#define RCR2_START	0x01	/* Start bit               */
 90
 91struct sh_rtc {
 92	void __iomem		*regbase;
 93	unsigned long		regsize;
 94	struct resource		*res;
 95	int			alarm_irq;
 96	int			periodic_irq;
 97	int			carry_irq;
 98	struct clk		*clk;
 99	struct rtc_device	*rtc_dev;
100	spinlock_t		lock;
101	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
102	unsigned short		periodic_freq;
103};
104
105static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106{
107	unsigned int tmp, pending;
108
109	tmp = readb(rtc->regbase + RCR1);
110	pending = tmp & RCR1_CF;
111	tmp &= ~RCR1_CF;
112	writeb(tmp, rtc->regbase + RCR1);
113
114	/* Users have requested One x Second IRQ */
115	if (pending && rtc->periodic_freq & PF_OXS)
116		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117
118	return pending;
119}
120
121static int __sh_rtc_alarm(struct sh_rtc *rtc)
122{
123	unsigned int tmp, pending;
124
125	tmp = readb(rtc->regbase + RCR1);
126	pending = tmp & RCR1_AF;
127	tmp &= ~(RCR1_AF | RCR1_AIE);
128	writeb(tmp, rtc->regbase + RCR1);
129
130	if (pending)
131		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132
133	return pending;
134}
135
136static int __sh_rtc_periodic(struct sh_rtc *rtc)
137{
138	struct rtc_device *rtc_dev = rtc->rtc_dev;
139	struct rtc_task *irq_task;
140	unsigned int tmp, pending;
141
142	tmp = readb(rtc->regbase + RCR2);
143	pending = tmp & RCR2_PEF;
144	tmp &= ~RCR2_PEF;
145	writeb(tmp, rtc->regbase + RCR2);
146
147	if (!pending)
148		return 0;
149
150	/* Half period enabled than one skipped and the next notified */
151	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152		rtc->periodic_freq &= ~PF_COUNT;
153	else {
154		if (rtc->periodic_freq & PF_HP)
155			rtc->periodic_freq |= PF_COUNT;
156		if (rtc->periodic_freq & PF_KOU) {
157			spin_lock(&rtc_dev->irq_task_lock);
158			irq_task = rtc_dev->irq_task;
159			if (irq_task)
160				irq_task->func(irq_task->private_data);
161			spin_unlock(&rtc_dev->irq_task_lock);
162		} else
163			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164	}
165
166	return pending;
167}
168
169static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170{
171	struct sh_rtc *rtc = dev_id;
172	int ret;
173
174	spin_lock(&rtc->lock);
175	ret = __sh_rtc_interrupt(rtc);
176	spin_unlock(&rtc->lock);
177
178	return IRQ_RETVAL(ret);
179}
180
181static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182{
183	struct sh_rtc *rtc = dev_id;
184	int ret;
185
186	spin_lock(&rtc->lock);
187	ret = __sh_rtc_alarm(rtc);
188	spin_unlock(&rtc->lock);
189
190	return IRQ_RETVAL(ret);
191}
192
193static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194{
195	struct sh_rtc *rtc = dev_id;
196	int ret;
197
198	spin_lock(&rtc->lock);
199	ret = __sh_rtc_periodic(rtc);
200	spin_unlock(&rtc->lock);
201
202	return IRQ_RETVAL(ret);
203}
204
205static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206{
207	struct sh_rtc *rtc = dev_id;
208	int ret;
209
210	spin_lock(&rtc->lock);
211	ret = __sh_rtc_interrupt(rtc);
212	ret |= __sh_rtc_alarm(rtc);
213	ret |= __sh_rtc_periodic(rtc);
214	spin_unlock(&rtc->lock);
215
216	return IRQ_RETVAL(ret);
217}
218
219static int sh_rtc_irq_set_state(struct device *dev, int enable)
220{
221	struct sh_rtc *rtc = dev_get_drvdata(dev);
222	unsigned int tmp;
223
224	spin_lock_irq(&rtc->lock);
225
226	tmp = readb(rtc->regbase + RCR2);
227
228	if (enable) {
229		rtc->periodic_freq |= PF_KOU;
230		tmp &= ~RCR2_PEF;	/* Clear PES bit */
231		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
232	} else {
233		rtc->periodic_freq &= ~PF_KOU;
234		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235	}
236
237	writeb(tmp, rtc->regbase + RCR2);
238
239	spin_unlock_irq(&rtc->lock);
240
241	return 0;
242}
243
244static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245{
246	struct sh_rtc *rtc = dev_get_drvdata(dev);
247	int tmp, ret = 0;
248
249	spin_lock_irq(&rtc->lock);
250	tmp = rtc->periodic_freq & PF_MASK;
251
252	switch (freq) {
253	case 0:
254		rtc->periodic_freq = 0x00;
255		break;
256	case 1:
257		rtc->periodic_freq = 0x60;
258		break;
259	case 2:
260		rtc->periodic_freq = 0x50;
261		break;
262	case 4:
263		rtc->periodic_freq = 0x40;
264		break;
265	case 8:
266		rtc->periodic_freq = 0x30 | PF_HP;
267		break;
268	case 16:
269		rtc->periodic_freq = 0x30;
270		break;
271	case 32:
272		rtc->periodic_freq = 0x20 | PF_HP;
273		break;
274	case 64:
275		rtc->periodic_freq = 0x20;
276		break;
277	case 128:
278		rtc->periodic_freq = 0x10 | PF_HP;
279		break;
280	case 256:
281		rtc->periodic_freq = 0x10;
282		break;
283	default:
284		ret = -ENOTSUPP;
285	}
286
287	if (ret == 0)
288		rtc->periodic_freq |= tmp;
289
290	spin_unlock_irq(&rtc->lock);
291	return ret;
292}
293
294static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295{
296	struct sh_rtc *rtc = dev_get_drvdata(dev);
297	unsigned int tmp;
298
299	spin_lock_irq(&rtc->lock);
300
301	tmp = readb(rtc->regbase + RCR1);
302
303	if (enable)
304		tmp |= RCR1_AIE;
305	else
306		tmp &= ~RCR1_AIE;
307
308	writeb(tmp, rtc->regbase + RCR1);
309
310	spin_unlock_irq(&rtc->lock);
311}
312
313static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314{
315	struct sh_rtc *rtc = dev_get_drvdata(dev);
316	unsigned int tmp;
317
318	tmp = readb(rtc->regbase + RCR1);
319	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320
321	tmp = readb(rtc->regbase + RCR2);
322	seq_printf(seq, "periodic_IRQ\t: %s\n",
323		   (tmp & RCR2_PESMASK) ? "yes" : "no");
324
325	return 0;
326}
327
328static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329{
330	struct sh_rtc *rtc = dev_get_drvdata(dev);
331	unsigned int tmp;
332
333	spin_lock_irq(&rtc->lock);
334
335	tmp = readb(rtc->regbase + RCR1);
336
337	if (!enable)
338		tmp &= ~RCR1_CIE;
339	else
340		tmp |= RCR1_CIE;
341
342	writeb(tmp, rtc->regbase + RCR1);
343
344	spin_unlock_irq(&rtc->lock);
345}
346
347static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
348{
349	sh_rtc_setaie(dev, enabled);
350	return 0;
351}
352
353static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
354{
355	struct platform_device *pdev = to_platform_device(dev);
356	struct sh_rtc *rtc = platform_get_drvdata(pdev);
357	unsigned int sec128, sec2, yr, yr100, cf_bit;
358
359	do {
360		unsigned int tmp;
361
362		spin_lock_irq(&rtc->lock);
363
364		tmp = readb(rtc->regbase + RCR1);
365		tmp &= ~RCR1_CF; /* Clear CF-bit */
366		tmp |= RCR1_CIE;
367		writeb(tmp, rtc->regbase + RCR1);
368
369		sec128 = readb(rtc->regbase + R64CNT);
370
371		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
372		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
373		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
374		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
375		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
376		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
377
378		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
379			yr  = readw(rtc->regbase + RYRCNT);
380			yr100 = bcd2bin(yr >> 8);
381			yr &= 0xff;
382		} else {
383			yr  = readb(rtc->regbase + RYRCNT);
384			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
385		}
386
387		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
388
389		sec2 = readb(rtc->regbase + R64CNT);
390		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
391
392		spin_unlock_irq(&rtc->lock);
393	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
394
395#if RTC_BIT_INVERTED != 0
396	if ((sec128 & RTC_BIT_INVERTED))
397		tm->tm_sec--;
398#endif
399
400	/* only keep the carry interrupt enabled if UIE is on */
401	if (!(rtc->periodic_freq & PF_OXS))
402		sh_rtc_setcie(dev, 0);
403
404	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
405		"mday=%d, mon=%d, year=%d, wday=%d\n",
406		__func__,
407		tm->tm_sec, tm->tm_min, tm->tm_hour,
408		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct platform_device *pdev = to_platform_device(dev);
416	struct sh_rtc *rtc = platform_get_drvdata(pdev);
417	unsigned int tmp;
418	int year;
419
420	spin_lock_irq(&rtc->lock);
421
422	/* Reset pre-scaler & stop RTC */
423	tmp = readb(rtc->regbase + RCR2);
424	tmp |= RCR2_RESET;
425	tmp &= ~RCR2_START;
426	writeb(tmp, rtc->regbase + RCR2);
427
428	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
429	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
430	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
431	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
432	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
433	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
434
435	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
436		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
437			bin2bcd(tm->tm_year % 100);
438		writew(year, rtc->regbase + RYRCNT);
439	} else {
440		year = tm->tm_year % 100;
441		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
442	}
443
444	/* Start RTC */
445	tmp = readb(rtc->regbase + RCR2);
446	tmp &= ~RCR2_RESET;
447	tmp |= RCR2_RTCEN | RCR2_START;
448	writeb(tmp, rtc->regbase + RCR2);
449
450	spin_unlock_irq(&rtc->lock);
451
452	return 0;
453}
454
455static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
456{
457	unsigned int byte;
458	int value = 0xff;	/* return 0xff for ignored values */
459
460	byte = readb(rtc->regbase + reg_off);
461	if (byte & AR_ENB) {
462		byte &= ~AR_ENB;	/* strip the enable bit */
463		value = bcd2bin(byte);
464	}
465
466	return value;
467}
468
469static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
470{
471	struct platform_device *pdev = to_platform_device(dev);
472	struct sh_rtc *rtc = platform_get_drvdata(pdev);
473	struct rtc_time *tm = &wkalrm->time;
474
475	spin_lock_irq(&rtc->lock);
476
477	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
478	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
479	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
480	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
481	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
482	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
483	if (tm->tm_mon > 0)
484		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
485	tm->tm_year     = 0xffff;
486
487	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
488
489	spin_unlock_irq(&rtc->lock);
490
491	return 0;
492}
493
494static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
495					    int value, int reg_off)
496{
497	/* < 0 for a value that is ignored */
498	if (value < 0)
499		writeb(0, rtc->regbase + reg_off);
500	else
501		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
502}
503
504static int sh_rtc_check_alarm(struct rtc_time *tm)
505{
506	/*
507	 * The original rtc says anything > 0xc0 is "don't care" or "match
508	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
509	 * The original rtc doesn't support years - some things use -1 and
510	 * some 0xffff. We use -1 to make out tests easier.
511	 */
512	if (tm->tm_year == 0xffff)
513		tm->tm_year = -1;
514	if (tm->tm_mon >= 0xff)
515		tm->tm_mon = -1;
516	if (tm->tm_mday >= 0xff)
517		tm->tm_mday = -1;
518	if (tm->tm_wday >= 0xff)
519		tm->tm_wday = -1;
520	if (tm->tm_hour >= 0xff)
521		tm->tm_hour = -1;
522	if (tm->tm_min >= 0xff)
523		tm->tm_min = -1;
524	if (tm->tm_sec >= 0xff)
525		tm->tm_sec = -1;
526
527	if (tm->tm_year > 9999 ||
528		tm->tm_mon >= 12 ||
529		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
530		tm->tm_wday >= 7 ||
531		tm->tm_hour >= 24 ||
532		tm->tm_min >= 60 ||
533		tm->tm_sec >= 60)
534		return -EINVAL;
535
536	return 0;
537}
538
539static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
540{
541	struct platform_device *pdev = to_platform_device(dev);
542	struct sh_rtc *rtc = platform_get_drvdata(pdev);
543	unsigned int rcr1;
544	struct rtc_time *tm = &wkalrm->time;
545	int mon, err;
546
547	err = sh_rtc_check_alarm(tm);
548	if (unlikely(err < 0))
549		return err;
550
551	spin_lock_irq(&rtc->lock);
552
553	/* disable alarm interrupt and clear the alarm flag */
554	rcr1 = readb(rtc->regbase + RCR1);
555	rcr1 &= ~(RCR1_AF | RCR1_AIE);
556	writeb(rcr1, rtc->regbase + RCR1);
557
558	/* set alarm time */
559	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
560	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
561	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
562	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
563	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
564	mon = tm->tm_mon;
565	if (mon >= 0)
566		mon += 1;
567	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
568
569	if (wkalrm->enabled) {
570		rcr1 |= RCR1_AIE;
571		writeb(rcr1, rtc->regbase + RCR1);
572	}
573
574	spin_unlock_irq(&rtc->lock);
575
576	return 0;
577}
578
579static struct rtc_class_ops sh_rtc_ops = {
580	.read_time	= sh_rtc_read_time,
581	.set_time	= sh_rtc_set_time,
582	.read_alarm	= sh_rtc_read_alarm,
583	.set_alarm	= sh_rtc_set_alarm,
584	.proc		= sh_rtc_proc,
585	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
586};
587
588static int __init sh_rtc_probe(struct platform_device *pdev)
589{
590	struct sh_rtc *rtc;
591	struct resource *res;
592	struct rtc_time r;
593	char clk_name[6];
594	int clk_id, ret;
595
596	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
597	if (unlikely(!rtc))
598		return -ENOMEM;
599
600	spin_lock_init(&rtc->lock);
601
602	/* get periodic/carry/alarm irqs */
603	ret = platform_get_irq(pdev, 0);
604	if (unlikely(ret <= 0)) {
605		ret = -ENOENT;
606		dev_err(&pdev->dev, "No IRQ resource\n");
607		goto err_badres;
608	}
609
610	rtc->periodic_irq = ret;
611	rtc->carry_irq = platform_get_irq(pdev, 1);
612	rtc->alarm_irq = platform_get_irq(pdev, 2);
613
614	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
615	if (unlikely(res == NULL)) {
616		ret = -ENOENT;
617		dev_err(&pdev->dev, "No IO resource\n");
618		goto err_badres;
619	}
620
621	rtc->regsize = resource_size(res);
622
623	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
624	if (unlikely(!rtc->res)) {
625		ret = -EBUSY;
626		goto err_badres;
627	}
628
629	rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
630	if (unlikely(!rtc->regbase)) {
631		ret = -EINVAL;
632		goto err_badmap;
633	}
634
635	clk_id = pdev->id;
636	/* With a single device, the clock id is still "rtc0" */
637	if (clk_id < 0)
638		clk_id = 0;
639
640	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
641
642	rtc->clk = clk_get(&pdev->dev, clk_name);
643	if (IS_ERR(rtc->clk)) {
644		/*
645		 * No error handling for rtc->clk intentionally, not all
646		 * platforms will have a unique clock for the RTC, and
647		 * the clk API can handle the struct clk pointer being
648		 * NULL.
649		 */
650		rtc->clk = NULL;
651	}
652
653	clk_enable(rtc->clk);
654
655	rtc->capabilities = RTC_DEF_CAPABILITIES;
656	if (pdev->dev.platform_data) {
657		struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
658
659		/*
660		 * Some CPUs have special capabilities in addition to the
661		 * default set. Add those in here.
662		 */
663		rtc->capabilities |= pinfo->capabilities;
664	}
665
666	if (rtc->carry_irq <= 0) {
667		/* register shared periodic/carry/alarm irq */
668		ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
669				  0, "sh-rtc", rtc);
670		if (unlikely(ret)) {
671			dev_err(&pdev->dev,
672				"request IRQ failed with %d, IRQ %d\n", ret,
673				rtc->periodic_irq);
674			goto err_unmap;
675		}
676	} else {
677		/* register periodic/carry/alarm irqs */
678		ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
679				  0, "sh-rtc period", rtc);
680		if (unlikely(ret)) {
681			dev_err(&pdev->dev,
682				"request period IRQ failed with %d, IRQ %d\n",
683				ret, rtc->periodic_irq);
684			goto err_unmap;
685		}
686
687		ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
688				  0, "sh-rtc carry", rtc);
689		if (unlikely(ret)) {
690			dev_err(&pdev->dev,
691				"request carry IRQ failed with %d, IRQ %d\n",
692				ret, rtc->carry_irq);
693			free_irq(rtc->periodic_irq, rtc);
694			goto err_unmap;
695		}
696
697		ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
698				  0, "sh-rtc alarm", rtc);
699		if (unlikely(ret)) {
700			dev_err(&pdev->dev,
701				"request alarm IRQ failed with %d, IRQ %d\n",
702				ret, rtc->alarm_irq);
703			free_irq(rtc->carry_irq, rtc);
704			free_irq(rtc->periodic_irq, rtc);
705			goto err_unmap;
706		}
707	}
708
709	platform_set_drvdata(pdev, rtc);
710
711	/* everything disabled by default */
712	sh_rtc_irq_set_freq(&pdev->dev, 0);
713	sh_rtc_irq_set_state(&pdev->dev, 0);
714	sh_rtc_setaie(&pdev->dev, 0);
715	sh_rtc_setcie(&pdev->dev, 0);
716
717	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
718					   &sh_rtc_ops, THIS_MODULE);
719	if (IS_ERR(rtc->rtc_dev)) {
720		ret = PTR_ERR(rtc->rtc_dev);
721		free_irq(rtc->periodic_irq, rtc);
722		free_irq(rtc->carry_irq, rtc);
723		free_irq(rtc->alarm_irq, rtc);
724		goto err_unmap;
725	}
726
727	rtc->rtc_dev->max_user_freq = 256;
728
729	/* reset rtc to epoch 0 if time is invalid */
730	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
731		rtc_time_to_tm(0, &r);
732		rtc_set_time(rtc->rtc_dev, &r);
733	}
734
735	device_init_wakeup(&pdev->dev, 1);
736	return 0;
737
738err_unmap:
739	clk_disable(rtc->clk);
740	clk_put(rtc->clk);
741	iounmap(rtc->regbase);
742err_badmap:
743	release_mem_region(rtc->res->start, rtc->regsize);
744err_badres:
745	kfree(rtc);
746
747	return ret;
748}
749
750static int __exit sh_rtc_remove(struct platform_device *pdev)
751{
752	struct sh_rtc *rtc = platform_get_drvdata(pdev);
753
754	rtc_device_unregister(rtc->rtc_dev);
755	sh_rtc_irq_set_state(&pdev->dev, 0);
756
757	sh_rtc_setaie(&pdev->dev, 0);
758	sh_rtc_setcie(&pdev->dev, 0);
759
760	free_irq(rtc->periodic_irq, rtc);
761
762	if (rtc->carry_irq > 0) {
763		free_irq(rtc->carry_irq, rtc);
764		free_irq(rtc->alarm_irq, rtc);
765	}
766
767	iounmap(rtc->regbase);
768	release_mem_region(rtc->res->start, rtc->regsize);
769
770	clk_disable(rtc->clk);
771	clk_put(rtc->clk);
772
773	platform_set_drvdata(pdev, NULL);
774
775	kfree(rtc);
776
777	return 0;
778}
779
780static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
781{
782	struct platform_device *pdev = to_platform_device(dev);
783	struct sh_rtc *rtc = platform_get_drvdata(pdev);
784
785	irq_set_irq_wake(rtc->periodic_irq, enabled);
786
787	if (rtc->carry_irq > 0) {
788		irq_set_irq_wake(rtc->carry_irq, enabled);
789		irq_set_irq_wake(rtc->alarm_irq, enabled);
790	}
791}
792
793static int sh_rtc_suspend(struct device *dev)
794{
795	if (device_may_wakeup(dev))
796		sh_rtc_set_irq_wake(dev, 1);
797
798	return 0;
799}
800
801static int sh_rtc_resume(struct device *dev)
802{
803	if (device_may_wakeup(dev))
804		sh_rtc_set_irq_wake(dev, 0);
805
806	return 0;
807}
808
809static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
810	.suspend = sh_rtc_suspend,
811	.resume = sh_rtc_resume,
812};
813
814static struct platform_driver sh_rtc_platform_driver = {
815	.driver		= {
816		.name	= DRV_NAME,
817		.owner	= THIS_MODULE,
818		.pm	= &sh_rtc_dev_pm_ops,
819	},
820	.remove		= __exit_p(sh_rtc_remove),
821};
822
823static int __init sh_rtc_init(void)
824{
825	return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
826}
827
828static void __exit sh_rtc_exit(void)
829{
830	platform_driver_unregister(&sh_rtc_platform_driver);
831}
832
833module_init(sh_rtc_init);
834module_exit(sh_rtc_exit);
835
836MODULE_DESCRIPTION("SuperH on-chip RTC driver");
837MODULE_VERSION(DRV_VERSION);
838MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
839	      "Jamie Lenehan <lenehan@twibble.org>, "
840	      "Angelo Castello <angelo.castello@st.com>");
841MODULE_LICENSE("GPL");
842MODULE_ALIAS("platform:" DRV_NAME);