Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.1
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 30#include <asm/rtc.h>
 31
 32#define DRV_NAME	"sh-rtc"
 33#define DRV_VERSION	"0.2.3"
 34
 35#define RTC_REG(r)	((r) * rtc_reg_size)
 36
 37#define R64CNT		RTC_REG(0)
 38
 39#define RSECCNT		RTC_REG(1)	/* RTC sec */
 40#define RMINCNT		RTC_REG(2)	/* RTC min */
 41#define RHRCNT		RTC_REG(3)	/* RTC hour */
 42#define RWKCNT		RTC_REG(4)	/* RTC week */
 43#define RDAYCNT		RTC_REG(5)	/* RTC day */
 44#define RMONCNT		RTC_REG(6)	/* RTC month */
 45#define RYRCNT		RTC_REG(7)	/* RTC year */
 46#define RSECAR		RTC_REG(8)	/* ALARM sec */
 47#define RMINAR		RTC_REG(9)	/* ALARM min */
 48#define RHRAR		RTC_REG(10)	/* ALARM hour */
 49#define RWKAR		RTC_REG(11)	/* ALARM week */
 50#define RDAYAR		RTC_REG(12)	/* ALARM day */
 51#define RMONAR		RTC_REG(13)	/* ALARM month */
 52#define RCR1		RTC_REG(14)	/* Control */
 53#define RCR2		RTC_REG(15)	/* Control */
 54
 55/*
 56 * Note on RYRAR and RCR3: Up until this point most of the register
 57 * definitions are consistent across all of the available parts. However,
 58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 59 * register used to control RYRCNT/RYRAR compare) varies considerably
 60 * across various parts, occasionally being mapped in to a completely
 61 * unrelated address space. For proper RYRAR support a separate resource
 62 * would have to be handed off, but as this is purely optional in
 63 * practice, we simply opt not to support it, thereby keeping the code
 64 * quite a bit more simplified.
 65 */
 66
 67/* ALARM Bits - or with BCD encoded value */
 68#define AR_ENB		0x80	/* Enable for alarm cmp   */
 69
 70/* Period Bits */
 71#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 72#define PF_COUNT	0x200	/* Half periodic counter */
 73#define PF_OXS		0x400	/* Periodic One x Second */
 74#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 75#define PF_MASK		0xf00
 76
 77/* RCR1 Bits */
 78#define RCR1_CF		0x80	/* Carry Flag             */
 79#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 80#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 81#define RCR1_AF		0x01	/* Alarm Flag             */
 82
 83/* RCR2 Bits */
 84#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 85#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 86#define RCR2_RTCEN	0x08	/* ENable RTC              */
 87#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 88#define RCR2_RESET	0x02	/* Reset bit               */
 89#define RCR2_START	0x01	/* Start bit               */
 90
 91struct sh_rtc {
 92	void __iomem		*regbase;
 93	unsigned long		regsize;
 94	struct resource		*res;
 95	int			alarm_irq;
 96	int			periodic_irq;
 97	int			carry_irq;
 98	struct clk		*clk;
 99	struct rtc_device	*rtc_dev;
100	spinlock_t		lock;
101	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
102	unsigned short		periodic_freq;
103};
104
105static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106{
107	unsigned int tmp, pending;
108
109	tmp = readb(rtc->regbase + RCR1);
110	pending = tmp & RCR1_CF;
111	tmp &= ~RCR1_CF;
112	writeb(tmp, rtc->regbase + RCR1);
113
114	/* Users have requested One x Second IRQ */
115	if (pending && rtc->periodic_freq & PF_OXS)
116		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117
118	return pending;
119}
120
121static int __sh_rtc_alarm(struct sh_rtc *rtc)
122{
123	unsigned int tmp, pending;
124
125	tmp = readb(rtc->regbase + RCR1);
126	pending = tmp & RCR1_AF;
127	tmp &= ~(RCR1_AF | RCR1_AIE);
128	writeb(tmp, rtc->regbase + RCR1);
129
130	if (pending)
131		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132
133	return pending;
134}
135
136static int __sh_rtc_periodic(struct sh_rtc *rtc)
137{
138	struct rtc_device *rtc_dev = rtc->rtc_dev;
139	struct rtc_task *irq_task;
140	unsigned int tmp, pending;
141
142	tmp = readb(rtc->regbase + RCR2);
143	pending = tmp & RCR2_PEF;
144	tmp &= ~RCR2_PEF;
145	writeb(tmp, rtc->regbase + RCR2);
146
147	if (!pending)
148		return 0;
149
150	/* Half period enabled than one skipped and the next notified */
151	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152		rtc->periodic_freq &= ~PF_COUNT;
153	else {
154		if (rtc->periodic_freq & PF_HP)
155			rtc->periodic_freq |= PF_COUNT;
156		if (rtc->periodic_freq & PF_KOU) {
157			spin_lock(&rtc_dev->irq_task_lock);
158			irq_task = rtc_dev->irq_task;
159			if (irq_task)
160				irq_task->func(irq_task->private_data);
161			spin_unlock(&rtc_dev->irq_task_lock);
162		} else
163			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164	}
165
166	return pending;
167}
168
169static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170{
171	struct sh_rtc *rtc = dev_id;
172	int ret;
173
174	spin_lock(&rtc->lock);
175	ret = __sh_rtc_interrupt(rtc);
176	spin_unlock(&rtc->lock);
177
178	return IRQ_RETVAL(ret);
179}
180
181static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182{
183	struct sh_rtc *rtc = dev_id;
184	int ret;
185
186	spin_lock(&rtc->lock);
187	ret = __sh_rtc_alarm(rtc);
188	spin_unlock(&rtc->lock);
189
190	return IRQ_RETVAL(ret);
191}
192
193static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194{
195	struct sh_rtc *rtc = dev_id;
196	int ret;
197
198	spin_lock(&rtc->lock);
199	ret = __sh_rtc_periodic(rtc);
200	spin_unlock(&rtc->lock);
201
202	return IRQ_RETVAL(ret);
203}
204
205static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206{
207	struct sh_rtc *rtc = dev_id;
208	int ret;
209
210	spin_lock(&rtc->lock);
211	ret = __sh_rtc_interrupt(rtc);
212	ret |= __sh_rtc_alarm(rtc);
213	ret |= __sh_rtc_periodic(rtc);
214	spin_unlock(&rtc->lock);
215
216	return IRQ_RETVAL(ret);
217}
218
219static int sh_rtc_irq_set_state(struct device *dev, int enable)
220{
221	struct sh_rtc *rtc = dev_get_drvdata(dev);
222	unsigned int tmp;
223
224	spin_lock_irq(&rtc->lock);
225
226	tmp = readb(rtc->regbase + RCR2);
227
228	if (enable) {
229		rtc->periodic_freq |= PF_KOU;
230		tmp &= ~RCR2_PEF;	/* Clear PES bit */
231		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
232	} else {
233		rtc->periodic_freq &= ~PF_KOU;
234		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235	}
236
237	writeb(tmp, rtc->regbase + RCR2);
238
239	spin_unlock_irq(&rtc->lock);
240
241	return 0;
242}
243
244static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245{
246	struct sh_rtc *rtc = dev_get_drvdata(dev);
247	int tmp, ret = 0;
248
249	spin_lock_irq(&rtc->lock);
250	tmp = rtc->periodic_freq & PF_MASK;
251
252	switch (freq) {
253	case 0:
254		rtc->periodic_freq = 0x00;
255		break;
256	case 1:
257		rtc->periodic_freq = 0x60;
258		break;
259	case 2:
260		rtc->periodic_freq = 0x50;
261		break;
262	case 4:
263		rtc->periodic_freq = 0x40;
264		break;
265	case 8:
266		rtc->periodic_freq = 0x30 | PF_HP;
267		break;
268	case 16:
269		rtc->periodic_freq = 0x30;
270		break;
271	case 32:
272		rtc->periodic_freq = 0x20 | PF_HP;
273		break;
274	case 64:
275		rtc->periodic_freq = 0x20;
276		break;
277	case 128:
278		rtc->periodic_freq = 0x10 | PF_HP;
279		break;
280	case 256:
281		rtc->periodic_freq = 0x10;
282		break;
283	default:
284		ret = -ENOTSUPP;
285	}
286
287	if (ret == 0)
288		rtc->periodic_freq |= tmp;
289
290	spin_unlock_irq(&rtc->lock);
291	return ret;
292}
293
294static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295{
296	struct sh_rtc *rtc = dev_get_drvdata(dev);
297	unsigned int tmp;
298
299	spin_lock_irq(&rtc->lock);
300
301	tmp = readb(rtc->regbase + RCR1);
302
303	if (enable)
304		tmp |= RCR1_AIE;
305	else
306		tmp &= ~RCR1_AIE;
307
308	writeb(tmp, rtc->regbase + RCR1);
309
310	spin_unlock_irq(&rtc->lock);
311}
312
313static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314{
315	struct sh_rtc *rtc = dev_get_drvdata(dev);
316	unsigned int tmp;
317
318	tmp = readb(rtc->regbase + RCR1);
319	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320
321	tmp = readb(rtc->regbase + RCR2);
322	seq_printf(seq, "periodic_IRQ\t: %s\n",
323		   (tmp & RCR2_PESMASK) ? "yes" : "no");
324
325	return 0;
326}
327
328static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329{
330	struct sh_rtc *rtc = dev_get_drvdata(dev);
331	unsigned int tmp;
332
333	spin_lock_irq(&rtc->lock);
334
335	tmp = readb(rtc->regbase + RCR1);
336
337	if (!enable)
338		tmp &= ~RCR1_CIE;
339	else
340		tmp |= RCR1_CIE;
341
342	writeb(tmp, rtc->regbase + RCR1);
343
344	spin_unlock_irq(&rtc->lock);
345}
346
347static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
348{
349	sh_rtc_setaie(dev, enabled);
350	return 0;
351}
352
353static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
354{
355	struct platform_device *pdev = to_platform_device(dev);
356	struct sh_rtc *rtc = platform_get_drvdata(pdev);
357	unsigned int sec128, sec2, yr, yr100, cf_bit;
358
359	do {
360		unsigned int tmp;
361
362		spin_lock_irq(&rtc->lock);
363
364		tmp = readb(rtc->regbase + RCR1);
365		tmp &= ~RCR1_CF; /* Clear CF-bit */
366		tmp |= RCR1_CIE;
367		writeb(tmp, rtc->regbase + RCR1);
368
369		sec128 = readb(rtc->regbase + R64CNT);
370
371		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
372		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
373		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
374		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
375		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
376		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
377
378		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
379			yr  = readw(rtc->regbase + RYRCNT);
380			yr100 = bcd2bin(yr >> 8);
381			yr &= 0xff;
382		} else {
383			yr  = readb(rtc->regbase + RYRCNT);
384			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
385		}
386
387		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
388
389		sec2 = readb(rtc->regbase + R64CNT);
390		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
391
392		spin_unlock_irq(&rtc->lock);
393	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
394
395#if RTC_BIT_INVERTED != 0
396	if ((sec128 & RTC_BIT_INVERTED))
397		tm->tm_sec--;
398#endif
399
400	/* only keep the carry interrupt enabled if UIE is on */
401	if (!(rtc->periodic_freq & PF_OXS))
402		sh_rtc_setcie(dev, 0);
403
404	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
405		"mday=%d, mon=%d, year=%d, wday=%d\n",
406		__func__,
407		tm->tm_sec, tm->tm_min, tm->tm_hour,
408		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct platform_device *pdev = to_platform_device(dev);
416	struct sh_rtc *rtc = platform_get_drvdata(pdev);
417	unsigned int tmp;
418	int year;
419
420	spin_lock_irq(&rtc->lock);
421
422	/* Reset pre-scaler & stop RTC */
423	tmp = readb(rtc->regbase + RCR2);
424	tmp |= RCR2_RESET;
425	tmp &= ~RCR2_START;
426	writeb(tmp, rtc->regbase + RCR2);
427
428	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
429	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
430	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
431	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
432	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
433	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
434
435	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
436		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
437			bin2bcd(tm->tm_year % 100);
438		writew(year, rtc->regbase + RYRCNT);
439	} else {
440		year = tm->tm_year % 100;
441		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
442	}
443
444	/* Start RTC */
445	tmp = readb(rtc->regbase + RCR2);
446	tmp &= ~RCR2_RESET;
447	tmp |= RCR2_RTCEN | RCR2_START;
448	writeb(tmp, rtc->regbase + RCR2);
449
450	spin_unlock_irq(&rtc->lock);
451
452	return 0;
453}
454
455static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
456{
457	unsigned int byte;
458	int value = 0xff;	/* return 0xff for ignored values */
459
460	byte = readb(rtc->regbase + reg_off);
461	if (byte & AR_ENB) {
462		byte &= ~AR_ENB;	/* strip the enable bit */
463		value = bcd2bin(byte);
464	}
465
466	return value;
467}
468
469static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
470{
471	struct platform_device *pdev = to_platform_device(dev);
472	struct sh_rtc *rtc = platform_get_drvdata(pdev);
473	struct rtc_time *tm = &wkalrm->time;
474
475	spin_lock_irq(&rtc->lock);
476
477	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
478	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
479	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
480	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
481	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
482	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
483	if (tm->tm_mon > 0)
484		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
485	tm->tm_year     = 0xffff;
486
487	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
488
489	spin_unlock_irq(&rtc->lock);
490
491	return 0;
492}
493
494static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
495					    int value, int reg_off)
496{
497	/* < 0 for a value that is ignored */
498	if (value < 0)
499		writeb(0, rtc->regbase + reg_off);
500	else
501		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
502}
503
504static int sh_rtc_check_alarm(struct rtc_time *tm)
505{
506	/*
507	 * The original rtc says anything > 0xc0 is "don't care" or "match
508	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
509	 * The original rtc doesn't support years - some things use -1 and
510	 * some 0xffff. We use -1 to make out tests easier.
511	 */
512	if (tm->tm_year == 0xffff)
513		tm->tm_year = -1;
514	if (tm->tm_mon >= 0xff)
515		tm->tm_mon = -1;
516	if (tm->tm_mday >= 0xff)
517		tm->tm_mday = -1;
518	if (tm->tm_wday >= 0xff)
519		tm->tm_wday = -1;
520	if (tm->tm_hour >= 0xff)
521		tm->tm_hour = -1;
522	if (tm->tm_min >= 0xff)
523		tm->tm_min = -1;
524	if (tm->tm_sec >= 0xff)
525		tm->tm_sec = -1;
526
527	if (tm->tm_year > 9999 ||
528		tm->tm_mon >= 12 ||
529		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
530		tm->tm_wday >= 7 ||
531		tm->tm_hour >= 24 ||
532		tm->tm_min >= 60 ||
533		tm->tm_sec >= 60)
534		return -EINVAL;
535
536	return 0;
537}
538
539static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
540{
541	struct platform_device *pdev = to_platform_device(dev);
542	struct sh_rtc *rtc = platform_get_drvdata(pdev);
543	unsigned int rcr1;
544	struct rtc_time *tm = &wkalrm->time;
545	int mon, err;
546
547	err = sh_rtc_check_alarm(tm);
548	if (unlikely(err < 0))
549		return err;
550
551	spin_lock_irq(&rtc->lock);
552
553	/* disable alarm interrupt and clear the alarm flag */
554	rcr1 = readb(rtc->regbase + RCR1);
555	rcr1 &= ~(RCR1_AF | RCR1_AIE);
556	writeb(rcr1, rtc->regbase + RCR1);
557
558	/* set alarm time */
559	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
560	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
561	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
562	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
563	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
564	mon = tm->tm_mon;
565	if (mon >= 0)
566		mon += 1;
567	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
568
569	if (wkalrm->enabled) {
570		rcr1 |= RCR1_AIE;
571		writeb(rcr1, rtc->regbase + RCR1);
572	}
573
574	spin_unlock_irq(&rtc->lock);
575
576	return 0;
577}
578
579static struct rtc_class_ops sh_rtc_ops = {
580	.read_time	= sh_rtc_read_time,
581	.set_time	= sh_rtc_set_time,
582	.read_alarm	= sh_rtc_read_alarm,
583	.set_alarm	= sh_rtc_set_alarm,
584	.proc		= sh_rtc_proc,
585	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
586};
587
588static int __init sh_rtc_probe(struct platform_device *pdev)
589{
590	struct sh_rtc *rtc;
591	struct resource *res;
592	struct rtc_time r;
593	char clk_name[6];
594	int clk_id, ret;
595
596	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
597	if (unlikely(!rtc))
598		return -ENOMEM;
599
600	spin_lock_init(&rtc->lock);
601
602	/* get periodic/carry/alarm irqs */
603	ret = platform_get_irq(pdev, 0);
604	if (unlikely(ret <= 0)) {
605		ret = -ENOENT;
606		dev_err(&pdev->dev, "No IRQ resource\n");
607		goto err_badres;
608	}
609
610	rtc->periodic_irq = ret;
611	rtc->carry_irq = platform_get_irq(pdev, 1);
612	rtc->alarm_irq = platform_get_irq(pdev, 2);
613
614	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
615	if (unlikely(res == NULL)) {
616		ret = -ENOENT;
617		dev_err(&pdev->dev, "No IO resource\n");
618		goto err_badres;
619	}
620
621	rtc->regsize = resource_size(res);
622
623	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
624	if (unlikely(!rtc->res)) {
625		ret = -EBUSY;
626		goto err_badres;
627	}
628
629	rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
630	if (unlikely(!rtc->regbase)) {
631		ret = -EINVAL;
632		goto err_badmap;
633	}
634
635	clk_id = pdev->id;
636	/* With a single device, the clock id is still "rtc0" */
637	if (clk_id < 0)
638		clk_id = 0;
639
640	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
641
642	rtc->clk = clk_get(&pdev->dev, clk_name);
643	if (IS_ERR(rtc->clk)) {
644		/*
645		 * No error handling for rtc->clk intentionally, not all
646		 * platforms will have a unique clock for the RTC, and
647		 * the clk API can handle the struct clk pointer being
648		 * NULL.
649		 */
650		rtc->clk = NULL;
651	}
652
653	clk_enable(rtc->clk);
654
655	rtc->capabilities = RTC_DEF_CAPABILITIES;
656	if (pdev->dev.platform_data) {
657		struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
 
658
659		/*
660		 * Some CPUs have special capabilities in addition to the
661		 * default set. Add those in here.
662		 */
663		rtc->capabilities |= pinfo->capabilities;
664	}
665
666	if (rtc->carry_irq <= 0) {
667		/* register shared periodic/carry/alarm irq */
668		ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
669				  IRQF_DISABLED, "sh-rtc", rtc);
670		if (unlikely(ret)) {
671			dev_err(&pdev->dev,
672				"request IRQ failed with %d, IRQ %d\n", ret,
673				rtc->periodic_irq);
674			goto err_unmap;
675		}
676	} else {
677		/* register periodic/carry/alarm irqs */
678		ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
679				  IRQF_DISABLED, "sh-rtc period", rtc);
680		if (unlikely(ret)) {
681			dev_err(&pdev->dev,
682				"request period IRQ failed with %d, IRQ %d\n",
683				ret, rtc->periodic_irq);
684			goto err_unmap;
685		}
686
687		ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
688				  IRQF_DISABLED, "sh-rtc carry", rtc);
689		if (unlikely(ret)) {
690			dev_err(&pdev->dev,
691				"request carry IRQ failed with %d, IRQ %d\n",
692				ret, rtc->carry_irq);
693			free_irq(rtc->periodic_irq, rtc);
694			goto err_unmap;
695		}
696
697		ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
698				  IRQF_DISABLED, "sh-rtc alarm", rtc);
699		if (unlikely(ret)) {
700			dev_err(&pdev->dev,
701				"request alarm IRQ failed with %d, IRQ %d\n",
702				ret, rtc->alarm_irq);
703			free_irq(rtc->carry_irq, rtc);
704			free_irq(rtc->periodic_irq, rtc);
705			goto err_unmap;
706		}
707	}
708
709	platform_set_drvdata(pdev, rtc);
710
711	/* everything disabled by default */
712	sh_rtc_irq_set_freq(&pdev->dev, 0);
713	sh_rtc_irq_set_state(&pdev->dev, 0);
714	sh_rtc_setaie(&pdev->dev, 0);
715	sh_rtc_setcie(&pdev->dev, 0);
716
717	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
718					   &sh_rtc_ops, THIS_MODULE);
719	if (IS_ERR(rtc->rtc_dev)) {
720		ret = PTR_ERR(rtc->rtc_dev);
721		free_irq(rtc->periodic_irq, rtc);
722		free_irq(rtc->carry_irq, rtc);
723		free_irq(rtc->alarm_irq, rtc);
724		goto err_unmap;
725	}
726
727	rtc->rtc_dev->max_user_freq = 256;
728
729	/* reset rtc to epoch 0 if time is invalid */
730	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
731		rtc_time_to_tm(0, &r);
732		rtc_set_time(rtc->rtc_dev, &r);
733	}
734
735	device_init_wakeup(&pdev->dev, 1);
736	return 0;
737
738err_unmap:
739	clk_disable(rtc->clk);
740	clk_put(rtc->clk);
741	iounmap(rtc->regbase);
742err_badmap:
743	release_mem_region(rtc->res->start, rtc->regsize);
744err_badres:
745	kfree(rtc);
746
747	return ret;
748}
749
750static int __exit sh_rtc_remove(struct platform_device *pdev)
751{
752	struct sh_rtc *rtc = platform_get_drvdata(pdev);
753
754	rtc_device_unregister(rtc->rtc_dev);
755	sh_rtc_irq_set_state(&pdev->dev, 0);
756
757	sh_rtc_setaie(&pdev->dev, 0);
758	sh_rtc_setcie(&pdev->dev, 0);
759
760	free_irq(rtc->periodic_irq, rtc);
761
762	if (rtc->carry_irq > 0) {
763		free_irq(rtc->carry_irq, rtc);
764		free_irq(rtc->alarm_irq, rtc);
765	}
766
767	iounmap(rtc->regbase);
768	release_mem_region(rtc->res->start, rtc->regsize);
769
770	clk_disable(rtc->clk);
771	clk_put(rtc->clk);
772
773	platform_set_drvdata(pdev, NULL);
774
775	kfree(rtc);
776
777	return 0;
778}
779
780static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
781{
782	struct platform_device *pdev = to_platform_device(dev);
783	struct sh_rtc *rtc = platform_get_drvdata(pdev);
784
785	irq_set_irq_wake(rtc->periodic_irq, enabled);
786
787	if (rtc->carry_irq > 0) {
788		irq_set_irq_wake(rtc->carry_irq, enabled);
789		irq_set_irq_wake(rtc->alarm_irq, enabled);
790	}
791}
792
 
793static int sh_rtc_suspend(struct device *dev)
794{
795	if (device_may_wakeup(dev))
796		sh_rtc_set_irq_wake(dev, 1);
797
798	return 0;
799}
800
801static int sh_rtc_resume(struct device *dev)
802{
803	if (device_may_wakeup(dev))
804		sh_rtc_set_irq_wake(dev, 0);
805
806	return 0;
807}
 
808
809static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
810	.suspend = sh_rtc_suspend,
811	.resume = sh_rtc_resume,
812};
813
814static struct platform_driver sh_rtc_platform_driver = {
815	.driver		= {
816		.name	= DRV_NAME,
817		.owner	= THIS_MODULE,
818		.pm	= &sh_rtc_dev_pm_ops,
819	},
820	.remove		= __exit_p(sh_rtc_remove),
821};
822
823static int __init sh_rtc_init(void)
824{
825	return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
826}
827
828static void __exit sh_rtc_exit(void)
829{
830	platform_driver_unregister(&sh_rtc_platform_driver);
831}
832
833module_init(sh_rtc_init);
834module_exit(sh_rtc_exit);
835
836MODULE_DESCRIPTION("SuperH on-chip RTC driver");
837MODULE_VERSION(DRV_VERSION);
838MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
839	      "Jamie Lenehan <lenehan@twibble.org>, "
840	      "Angelo Castello <angelo.castello@st.com>");
841MODULE_LICENSE("GPL");
842MODULE_ALIAS("platform:" DRV_NAME);
v4.10.11
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 30#include <asm/rtc.h>
 31
 32#define DRV_NAME	"sh-rtc"
 
 33
 34#define RTC_REG(r)	((r) * rtc_reg_size)
 35
 36#define R64CNT		RTC_REG(0)
 37
 38#define RSECCNT		RTC_REG(1)	/* RTC sec */
 39#define RMINCNT		RTC_REG(2)	/* RTC min */
 40#define RHRCNT		RTC_REG(3)	/* RTC hour */
 41#define RWKCNT		RTC_REG(4)	/* RTC week */
 42#define RDAYCNT		RTC_REG(5)	/* RTC day */
 43#define RMONCNT		RTC_REG(6)	/* RTC month */
 44#define RYRCNT		RTC_REG(7)	/* RTC year */
 45#define RSECAR		RTC_REG(8)	/* ALARM sec */
 46#define RMINAR		RTC_REG(9)	/* ALARM min */
 47#define RHRAR		RTC_REG(10)	/* ALARM hour */
 48#define RWKAR		RTC_REG(11)	/* ALARM week */
 49#define RDAYAR		RTC_REG(12)	/* ALARM day */
 50#define RMONAR		RTC_REG(13)	/* ALARM month */
 51#define RCR1		RTC_REG(14)	/* Control */
 52#define RCR2		RTC_REG(15)	/* Control */
 53
 54/*
 55 * Note on RYRAR and RCR3: Up until this point most of the register
 56 * definitions are consistent across all of the available parts. However,
 57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 58 * register used to control RYRCNT/RYRAR compare) varies considerably
 59 * across various parts, occasionally being mapped in to a completely
 60 * unrelated address space. For proper RYRAR support a separate resource
 61 * would have to be handed off, but as this is purely optional in
 62 * practice, we simply opt not to support it, thereby keeping the code
 63 * quite a bit more simplified.
 64 */
 65
 66/* ALARM Bits - or with BCD encoded value */
 67#define AR_ENB		0x80	/* Enable for alarm cmp   */
 68
 69/* Period Bits */
 70#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 71#define PF_COUNT	0x200	/* Half periodic counter */
 72#define PF_OXS		0x400	/* Periodic One x Second */
 73#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 74#define PF_MASK		0xf00
 75
 76/* RCR1 Bits */
 77#define RCR1_CF		0x80	/* Carry Flag             */
 78#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 79#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 80#define RCR1_AF		0x01	/* Alarm Flag             */
 81
 82/* RCR2 Bits */
 83#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 84#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 85#define RCR2_RTCEN	0x08	/* ENable RTC              */
 86#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 87#define RCR2_RESET	0x02	/* Reset bit               */
 88#define RCR2_START	0x01	/* Start bit               */
 89
 90struct sh_rtc {
 91	void __iomem		*regbase;
 92	unsigned long		regsize;
 93	struct resource		*res;
 94	int			alarm_irq;
 95	int			periodic_irq;
 96	int			carry_irq;
 97	struct clk		*clk;
 98	struct rtc_device	*rtc_dev;
 99	spinlock_t		lock;
100	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
101	unsigned short		periodic_freq;
102};
103
104static int __sh_rtc_interrupt(struct sh_rtc *rtc)
105{
106	unsigned int tmp, pending;
107
108	tmp = readb(rtc->regbase + RCR1);
109	pending = tmp & RCR1_CF;
110	tmp &= ~RCR1_CF;
111	writeb(tmp, rtc->regbase + RCR1);
112
113	/* Users have requested One x Second IRQ */
114	if (pending && rtc->periodic_freq & PF_OXS)
115		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
116
117	return pending;
118}
119
120static int __sh_rtc_alarm(struct sh_rtc *rtc)
121{
122	unsigned int tmp, pending;
123
124	tmp = readb(rtc->regbase + RCR1);
125	pending = tmp & RCR1_AF;
126	tmp &= ~(RCR1_AF | RCR1_AIE);
127	writeb(tmp, rtc->regbase + RCR1);
128
129	if (pending)
130		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131
132	return pending;
133}
134
135static int __sh_rtc_periodic(struct sh_rtc *rtc)
136{
137	struct rtc_device *rtc_dev = rtc->rtc_dev;
138	struct rtc_task *irq_task;
139	unsigned int tmp, pending;
140
141	tmp = readb(rtc->regbase + RCR2);
142	pending = tmp & RCR2_PEF;
143	tmp &= ~RCR2_PEF;
144	writeb(tmp, rtc->regbase + RCR2);
145
146	if (!pending)
147		return 0;
148
149	/* Half period enabled than one skipped and the next notified */
150	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151		rtc->periodic_freq &= ~PF_COUNT;
152	else {
153		if (rtc->periodic_freq & PF_HP)
154			rtc->periodic_freq |= PF_COUNT;
155		if (rtc->periodic_freq & PF_KOU) {
156			spin_lock(&rtc_dev->irq_task_lock);
157			irq_task = rtc_dev->irq_task;
158			if (irq_task)
159				irq_task->func(irq_task->private_data);
160			spin_unlock(&rtc_dev->irq_task_lock);
161		} else
162			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163	}
164
165	return pending;
166}
167
168static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169{
170	struct sh_rtc *rtc = dev_id;
171	int ret;
172
173	spin_lock(&rtc->lock);
174	ret = __sh_rtc_interrupt(rtc);
175	spin_unlock(&rtc->lock);
176
177	return IRQ_RETVAL(ret);
178}
179
180static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181{
182	struct sh_rtc *rtc = dev_id;
183	int ret;
184
185	spin_lock(&rtc->lock);
186	ret = __sh_rtc_alarm(rtc);
187	spin_unlock(&rtc->lock);
188
189	return IRQ_RETVAL(ret);
190}
191
192static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193{
194	struct sh_rtc *rtc = dev_id;
195	int ret;
196
197	spin_lock(&rtc->lock);
198	ret = __sh_rtc_periodic(rtc);
199	spin_unlock(&rtc->lock);
200
201	return IRQ_RETVAL(ret);
202}
203
204static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205{
206	struct sh_rtc *rtc = dev_id;
207	int ret;
208
209	spin_lock(&rtc->lock);
210	ret = __sh_rtc_interrupt(rtc);
211	ret |= __sh_rtc_alarm(rtc);
212	ret |= __sh_rtc_periodic(rtc);
213	spin_unlock(&rtc->lock);
214
215	return IRQ_RETVAL(ret);
216}
217
218static int sh_rtc_irq_set_state(struct device *dev, int enable)
219{
220	struct sh_rtc *rtc = dev_get_drvdata(dev);
221	unsigned int tmp;
222
223	spin_lock_irq(&rtc->lock);
224
225	tmp = readb(rtc->regbase + RCR2);
226
227	if (enable) {
228		rtc->periodic_freq |= PF_KOU;
229		tmp &= ~RCR2_PEF;	/* Clear PES bit */
230		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
231	} else {
232		rtc->periodic_freq &= ~PF_KOU;
233		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
234	}
235
236	writeb(tmp, rtc->regbase + RCR2);
237
238	spin_unlock_irq(&rtc->lock);
239
240	return 0;
241}
242
243static int sh_rtc_irq_set_freq(struct device *dev, int freq)
244{
245	struct sh_rtc *rtc = dev_get_drvdata(dev);
246	int tmp, ret = 0;
247
248	spin_lock_irq(&rtc->lock);
249	tmp = rtc->periodic_freq & PF_MASK;
250
251	switch (freq) {
252	case 0:
253		rtc->periodic_freq = 0x00;
254		break;
255	case 1:
256		rtc->periodic_freq = 0x60;
257		break;
258	case 2:
259		rtc->periodic_freq = 0x50;
260		break;
261	case 4:
262		rtc->periodic_freq = 0x40;
263		break;
264	case 8:
265		rtc->periodic_freq = 0x30 | PF_HP;
266		break;
267	case 16:
268		rtc->periodic_freq = 0x30;
269		break;
270	case 32:
271		rtc->periodic_freq = 0x20 | PF_HP;
272		break;
273	case 64:
274		rtc->periodic_freq = 0x20;
275		break;
276	case 128:
277		rtc->periodic_freq = 0x10 | PF_HP;
278		break;
279	case 256:
280		rtc->periodic_freq = 0x10;
281		break;
282	default:
283		ret = -ENOTSUPP;
284	}
285
286	if (ret == 0)
287		rtc->periodic_freq |= tmp;
288
289	spin_unlock_irq(&rtc->lock);
290	return ret;
291}
292
293static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
294{
295	struct sh_rtc *rtc = dev_get_drvdata(dev);
296	unsigned int tmp;
297
298	spin_lock_irq(&rtc->lock);
299
300	tmp = readb(rtc->regbase + RCR1);
301
302	if (enable)
303		tmp |= RCR1_AIE;
304	else
305		tmp &= ~RCR1_AIE;
306
307	writeb(tmp, rtc->regbase + RCR1);
308
309	spin_unlock_irq(&rtc->lock);
310}
311
312static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
313{
314	struct sh_rtc *rtc = dev_get_drvdata(dev);
315	unsigned int tmp;
316
317	tmp = readb(rtc->regbase + RCR1);
318	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
319
320	tmp = readb(rtc->regbase + RCR2);
321	seq_printf(seq, "periodic_IRQ\t: %s\n",
322		   (tmp & RCR2_PESMASK) ? "yes" : "no");
323
324	return 0;
325}
326
327static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
328{
329	struct sh_rtc *rtc = dev_get_drvdata(dev);
330	unsigned int tmp;
331
332	spin_lock_irq(&rtc->lock);
333
334	tmp = readb(rtc->regbase + RCR1);
335
336	if (!enable)
337		tmp &= ~RCR1_CIE;
338	else
339		tmp |= RCR1_CIE;
340
341	writeb(tmp, rtc->regbase + RCR1);
342
343	spin_unlock_irq(&rtc->lock);
344}
345
346static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
347{
348	sh_rtc_setaie(dev, enabled);
349	return 0;
350}
351
352static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
353{
354	struct platform_device *pdev = to_platform_device(dev);
355	struct sh_rtc *rtc = platform_get_drvdata(pdev);
356	unsigned int sec128, sec2, yr, yr100, cf_bit;
357
358	do {
359		unsigned int tmp;
360
361		spin_lock_irq(&rtc->lock);
362
363		tmp = readb(rtc->regbase + RCR1);
364		tmp &= ~RCR1_CF; /* Clear CF-bit */
365		tmp |= RCR1_CIE;
366		writeb(tmp, rtc->regbase + RCR1);
367
368		sec128 = readb(rtc->regbase + R64CNT);
369
370		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
371		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
372		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
373		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
374		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
375		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
376
377		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
378			yr  = readw(rtc->regbase + RYRCNT);
379			yr100 = bcd2bin(yr >> 8);
380			yr &= 0xff;
381		} else {
382			yr  = readb(rtc->regbase + RYRCNT);
383			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
384		}
385
386		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
387
388		sec2 = readb(rtc->regbase + R64CNT);
389		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
390
391		spin_unlock_irq(&rtc->lock);
392	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
393
394#if RTC_BIT_INVERTED != 0
395	if ((sec128 & RTC_BIT_INVERTED))
396		tm->tm_sec--;
397#endif
398
399	/* only keep the carry interrupt enabled if UIE is on */
400	if (!(rtc->periodic_freq & PF_OXS))
401		sh_rtc_setcie(dev, 0);
402
403	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
404		"mday=%d, mon=%d, year=%d, wday=%d\n",
405		__func__,
406		tm->tm_sec, tm->tm_min, tm->tm_hour,
407		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
408
409	return rtc_valid_tm(tm);
410}
411
412static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
413{
414	struct platform_device *pdev = to_platform_device(dev);
415	struct sh_rtc *rtc = platform_get_drvdata(pdev);
416	unsigned int tmp;
417	int year;
418
419	spin_lock_irq(&rtc->lock);
420
421	/* Reset pre-scaler & stop RTC */
422	tmp = readb(rtc->regbase + RCR2);
423	tmp |= RCR2_RESET;
424	tmp &= ~RCR2_START;
425	writeb(tmp, rtc->regbase + RCR2);
426
427	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
428	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
429	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
430	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
431	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
432	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
433
434	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
435		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
436			bin2bcd(tm->tm_year % 100);
437		writew(year, rtc->regbase + RYRCNT);
438	} else {
439		year = tm->tm_year % 100;
440		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
441	}
442
443	/* Start RTC */
444	tmp = readb(rtc->regbase + RCR2);
445	tmp &= ~RCR2_RESET;
446	tmp |= RCR2_RTCEN | RCR2_START;
447	writeb(tmp, rtc->regbase + RCR2);
448
449	spin_unlock_irq(&rtc->lock);
450
451	return 0;
452}
453
454static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
455{
456	unsigned int byte;
457	int value = 0xff;	/* return 0xff for ignored values */
458
459	byte = readb(rtc->regbase + reg_off);
460	if (byte & AR_ENB) {
461		byte &= ~AR_ENB;	/* strip the enable bit */
462		value = bcd2bin(byte);
463	}
464
465	return value;
466}
467
468static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
469{
470	struct platform_device *pdev = to_platform_device(dev);
471	struct sh_rtc *rtc = platform_get_drvdata(pdev);
472	struct rtc_time *tm = &wkalrm->time;
473
474	spin_lock_irq(&rtc->lock);
475
476	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
477	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
478	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
479	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
480	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
481	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
482	if (tm->tm_mon > 0)
483		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
 
484
485	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
486
487	spin_unlock_irq(&rtc->lock);
488
489	return 0;
490}
491
492static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
493					    int value, int reg_off)
494{
495	/* < 0 for a value that is ignored */
496	if (value < 0)
497		writeb(0, rtc->regbase + reg_off);
498	else
499		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
500}
501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503{
504	struct platform_device *pdev = to_platform_device(dev);
505	struct sh_rtc *rtc = platform_get_drvdata(pdev);
506	unsigned int rcr1;
507	struct rtc_time *tm = &wkalrm->time;
508	int mon;
 
 
 
 
509
510	spin_lock_irq(&rtc->lock);
511
512	/* disable alarm interrupt and clear the alarm flag */
513	rcr1 = readb(rtc->regbase + RCR1);
514	rcr1 &= ~(RCR1_AF | RCR1_AIE);
515	writeb(rcr1, rtc->regbase + RCR1);
516
517	/* set alarm time */
518	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
519	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
520	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
521	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
522	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
523	mon = tm->tm_mon;
524	if (mon >= 0)
525		mon += 1;
526	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
527
528	if (wkalrm->enabled) {
529		rcr1 |= RCR1_AIE;
530		writeb(rcr1, rtc->regbase + RCR1);
531	}
532
533	spin_unlock_irq(&rtc->lock);
534
535	return 0;
536}
537
538static struct rtc_class_ops sh_rtc_ops = {
539	.read_time	= sh_rtc_read_time,
540	.set_time	= sh_rtc_set_time,
541	.read_alarm	= sh_rtc_read_alarm,
542	.set_alarm	= sh_rtc_set_alarm,
543	.proc		= sh_rtc_proc,
544	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
545};
546
547static int __init sh_rtc_probe(struct platform_device *pdev)
548{
549	struct sh_rtc *rtc;
550	struct resource *res;
551	struct rtc_time r;
552	char clk_name[6];
553	int clk_id, ret;
554
555	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
556	if (unlikely(!rtc))
557		return -ENOMEM;
558
559	spin_lock_init(&rtc->lock);
560
561	/* get periodic/carry/alarm irqs */
562	ret = platform_get_irq(pdev, 0);
563	if (unlikely(ret <= 0)) {
 
564		dev_err(&pdev->dev, "No IRQ resource\n");
565		return -ENOENT;
566	}
567
568	rtc->periodic_irq = ret;
569	rtc->carry_irq = platform_get_irq(pdev, 1);
570	rtc->alarm_irq = platform_get_irq(pdev, 2);
571
572	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
573	if (unlikely(res == NULL)) {
 
574		dev_err(&pdev->dev, "No IO resource\n");
575		return -ENOENT;
576	}
577
578	rtc->regsize = resource_size(res);
579
580	rtc->res = devm_request_mem_region(&pdev->dev, res->start,
581					rtc->regsize, pdev->name);
582	if (unlikely(!rtc->res))
583		return -EBUSY;
584
585	rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
586					rtc->regsize);
587	if (unlikely(!rtc->regbase))
588		return -EINVAL;
 
 
589
590	clk_id = pdev->id;
591	/* With a single device, the clock id is still "rtc0" */
592	if (clk_id < 0)
593		clk_id = 0;
594
595	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
596
597	rtc->clk = devm_clk_get(&pdev->dev, clk_name);
598	if (IS_ERR(rtc->clk)) {
599		/*
600		 * No error handling for rtc->clk intentionally, not all
601		 * platforms will have a unique clock for the RTC, and
602		 * the clk API can handle the struct clk pointer being
603		 * NULL.
604		 */
605		rtc->clk = NULL;
606	}
607
608	clk_enable(rtc->clk);
609
610	rtc->capabilities = RTC_DEF_CAPABILITIES;
611	if (dev_get_platdata(&pdev->dev)) {
612		struct sh_rtc_platform_info *pinfo =
613			dev_get_platdata(&pdev->dev);
614
615		/*
616		 * Some CPUs have special capabilities in addition to the
617		 * default set. Add those in here.
618		 */
619		rtc->capabilities |= pinfo->capabilities;
620	}
621
622	if (rtc->carry_irq <= 0) {
623		/* register shared periodic/carry/alarm irq */
624		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
625				sh_rtc_shared, 0, "sh-rtc", rtc);
626		if (unlikely(ret)) {
627			dev_err(&pdev->dev,
628				"request IRQ failed with %d, IRQ %d\n", ret,
629				rtc->periodic_irq);
630			goto err_unmap;
631		}
632	} else {
633		/* register periodic/carry/alarm irqs */
634		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
635				sh_rtc_periodic, 0, "sh-rtc period", rtc);
636		if (unlikely(ret)) {
637			dev_err(&pdev->dev,
638				"request period IRQ failed with %d, IRQ %d\n",
639				ret, rtc->periodic_irq);
640			goto err_unmap;
641		}
642
643		ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
644				sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
645		if (unlikely(ret)) {
646			dev_err(&pdev->dev,
647				"request carry IRQ failed with %d, IRQ %d\n",
648				ret, rtc->carry_irq);
 
649			goto err_unmap;
650		}
651
652		ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
653				sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
654		if (unlikely(ret)) {
655			dev_err(&pdev->dev,
656				"request alarm IRQ failed with %d, IRQ %d\n",
657				ret, rtc->alarm_irq);
 
 
658			goto err_unmap;
659		}
660	}
661
662	platform_set_drvdata(pdev, rtc);
663
664	/* everything disabled by default */
665	sh_rtc_irq_set_freq(&pdev->dev, 0);
666	sh_rtc_irq_set_state(&pdev->dev, 0);
667	sh_rtc_setaie(&pdev->dev, 0);
668	sh_rtc_setcie(&pdev->dev, 0);
669
670	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
671					   &sh_rtc_ops, THIS_MODULE);
672	if (IS_ERR(rtc->rtc_dev)) {
673		ret = PTR_ERR(rtc->rtc_dev);
 
 
 
674		goto err_unmap;
675	}
676
677	rtc->rtc_dev->max_user_freq = 256;
678
679	/* reset rtc to epoch 0 if time is invalid */
680	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
681		rtc_time_to_tm(0, &r);
682		rtc_set_time(rtc->rtc_dev, &r);
683	}
684
685	device_init_wakeup(&pdev->dev, 1);
686	return 0;
687
688err_unmap:
689	clk_disable(rtc->clk);
 
 
 
 
 
 
690
691	return ret;
692}
693
694static int __exit sh_rtc_remove(struct platform_device *pdev)
695{
696	struct sh_rtc *rtc = platform_get_drvdata(pdev);
697
 
698	sh_rtc_irq_set_state(&pdev->dev, 0);
699
700	sh_rtc_setaie(&pdev->dev, 0);
701	sh_rtc_setcie(&pdev->dev, 0);
702
 
 
 
 
 
 
 
 
 
 
703	clk_disable(rtc->clk);
 
 
 
 
 
704
705	return 0;
706}
707
708static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
709{
710	struct platform_device *pdev = to_platform_device(dev);
711	struct sh_rtc *rtc = platform_get_drvdata(pdev);
712
713	irq_set_irq_wake(rtc->periodic_irq, enabled);
714
715	if (rtc->carry_irq > 0) {
716		irq_set_irq_wake(rtc->carry_irq, enabled);
717		irq_set_irq_wake(rtc->alarm_irq, enabled);
718	}
719}
720
721#ifdef CONFIG_PM_SLEEP
722static int sh_rtc_suspend(struct device *dev)
723{
724	if (device_may_wakeup(dev))
725		sh_rtc_set_irq_wake(dev, 1);
726
727	return 0;
728}
729
730static int sh_rtc_resume(struct device *dev)
731{
732	if (device_may_wakeup(dev))
733		sh_rtc_set_irq_wake(dev, 0);
734
735	return 0;
736}
737#endif
738
739static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
 
 
 
740
741static struct platform_driver sh_rtc_platform_driver = {
742	.driver		= {
743		.name	= DRV_NAME,
744		.pm	= &sh_rtc_pm_ops,
 
745	},
746	.remove		= __exit_p(sh_rtc_remove),
747};
748
749module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
 
 
 
 
 
 
 
 
 
 
 
750
751MODULE_DESCRIPTION("SuperH on-chip RTC driver");
 
752MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
753	      "Jamie Lenehan <lenehan@twibble.org>, "
754	      "Angelo Castello <angelo.castello@st.com>");
755MODULE_LICENSE("GPL");
756MODULE_ALIAS("platform:" DRV_NAME);