Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17/**
 18 * DOC: Programming Atheros 802.11n analog front end radios
 19 *
 20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
 21 * devices have either an external AR2133 analog front end radio for single
 22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
 23 * band 2.4 GHz / 5 GHz communication.
 24 *
 25 * All devices after the AR5416 and AR5418 family starting with the AR9280
 26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
 27 * into a single-chip and require less programming.
 28 *
 29 * The following single-chips exist with a respective embedded radio:
 30 *
 31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
 32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
 33 * AR9285 - 11n single-band 1x1 for PCIe
 34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
 35 *
 36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
 37 * AR9223 - 11n single-band 2x2 MIMO for PCI
 38 *
 39 * AR9287 - 11n single-band 1x1 MIMO for USB
 40 */
 41
 42#include "hw.h"
 43#include "ar9002_phy.h"
 44
 45/**
 46 * ar9002_hw_set_channel - set channel on single-chip device
 47 * @ah: atheros hardware structure
 48 * @chan:
 49 *
 50 * This is the function to change channel on single-chip devices, that is
 51 * all devices after ar9280.
 52 *
 53 * This function takes the channel value in MHz and sets
 54 * hardware channel value. Assumes writes have been enabled to analog bus.
 55 *
 56 * Actual Expression,
 57 *
 58 * For 2GHz channel,
 59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 60 * (freq_ref = 40MHz)
 61 *
 62 * For 5GHz channel,
 63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 64 * (freq_ref = 40MHz/(24>>amodeRefSel))
 65 */
 66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
 67{
 68	u16 bMode, fracMode, aModeRefSel = 0;
 69	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
 70	struct chan_centers centers;
 71	u32 refDivA = 24;
 72
 73	ath9k_hw_get_channel_centers(ah, chan, &centers);
 74	freq = centers.synth_center;
 75
 76	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
 77	reg32 &= 0xc0000000;
 78
 79	if (freq < 4800) { /* 2 GHz, fractional mode */
 80		u32 txctl;
 81		int regWrites = 0;
 82
 83		bMode = 1;
 84		fracMode = 1;
 85		aModeRefSel = 0;
 86		channelSel = CHANSEL_2G(freq);
 87
 88		if (AR_SREV_9287_11_OR_LATER(ah)) {
 89			if (freq == 2484) {
 90				/* Enable channel spreading for channel 14 */
 91				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
 92						1, regWrites);
 93			} else {
 94				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
 95						1, regWrites);
 96			}
 97		} else {
 98			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
 99			if (freq == 2484) {
100				/* Enable channel spreading for channel 14 */
101				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103			} else {
104				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106			}
107		}
108	} else {
109		bMode = 0;
110		fracMode = 0;
111
112		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113		case 0:
114			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115				aModeRefSel = 0;
116			else if ((freq % 20) == 0)
117				aModeRefSel = 3;
118			else if ((freq % 10) == 0)
119				aModeRefSel = 2;
120			if (aModeRefSel)
121				break;
122		case 1:
123		default:
124			aModeRefSel = 0;
125			/*
126			 * Enable 2G (fractional) mode for channels
127			 * which are 5MHz spaced.
128			 */
129			fracMode = 1;
130			refDivA = 1;
131			channelSel = CHANSEL_5G(freq);
132
133			/* RefDivA setting */
134			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135				      AR_AN_SYNTH9_REFDIVA,
136				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137
138		}
139
140		if (!fracMode) {
141			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142			channelSel = ndiv & 0x1ff;
143			channelFrac = (ndiv & 0xfffffe00) * 2;
144			channelSel = (channelSel << 17) | channelFrac;
145		}
146	}
147
148	reg32 = reg32 |
149	    (bMode << 29) |
150	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151
152	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153
154	ah->curchan = chan;
155	ah->curchan_rad_index = -1;
156
157	return 0;
158}
159
160/**
161 * ar9002_hw_spur_mitigate - convert baseband spur frequency
162 * @ah: atheros hardware structure
163 * @chan:
164 *
165 * For single-chip solutions. Converts to baseband spur frequency given the
166 * input channel frequency and compute register settings below.
167 */
168static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
169				    struct ath9k_channel *chan)
170{
171	int bb_spur = AR_NO_SPUR;
172	int freq;
173	int bin, cur_bin;
174	int bb_spur_off, spur_subchannel_sd;
175	int spur_freq_sd;
176	int spur_delta_phase;
177	int denominator;
178	int upper, lower, cur_vit_mask;
179	int tmp, newVal;
180	int i;
181	static const int pilot_mask_reg[4] = {
182		AR_PHY_TIMING7, AR_PHY_TIMING8,
183		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
184	};
185	static const int chan_mask_reg[4] = {
186		AR_PHY_TIMING9, AR_PHY_TIMING10,
187		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
188	};
189	static const int inc[4] = { 0, 100, 0, 0 };
190	struct chan_centers centers;
191
192	int8_t mask_m[123];
193	int8_t mask_p[123];
194	int8_t mask_amt;
195	int tmp_mask;
196	int cur_bb_spur;
197	bool is2GHz = IS_CHAN_2GHZ(chan);
198
199	memset(&mask_m, 0, sizeof(int8_t) * 123);
200	memset(&mask_p, 0, sizeof(int8_t) * 123);
201
202	ath9k_hw_get_channel_centers(ah, chan, &centers);
203	freq = centers.synth_center;
204
205	ah->config.spurmode = SPUR_ENABLE_EEPROM;
206	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
207		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
208
209		if (AR_NO_SPUR == cur_bb_spur)
210			break;
211
212		if (is2GHz)
213			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
214		else
215			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
216
217		cur_bb_spur = cur_bb_spur - freq;
218
219		if (IS_CHAN_HT40(chan)) {
220			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
221			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
222				bb_spur = cur_bb_spur;
223				break;
224			}
225		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
226			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
227			bb_spur = cur_bb_spur;
228			break;
229		}
230	}
231
232	if (AR_NO_SPUR == bb_spur) {
233		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
234			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
235		return;
236	} else {
237		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
238			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
239	}
240
241	bin = bb_spur * 320;
242
243	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
244
245	ENABLE_REGWRITE_BUFFER(ah);
246
247	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
248			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
249			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
250			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
251	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
252
253	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
254		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
255		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
256		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
257		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
258	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
259
260	if (IS_CHAN_HT40(chan)) {
261		if (bb_spur < 0) {
262			spur_subchannel_sd = 1;
263			bb_spur_off = bb_spur + 10;
264		} else {
265			spur_subchannel_sd = 0;
266			bb_spur_off = bb_spur - 10;
267		}
268	} else {
269		spur_subchannel_sd = 0;
270		bb_spur_off = bb_spur;
271	}
272
273	if (IS_CHAN_HT40(chan))
274		spur_delta_phase =
275			((bb_spur * 262144) /
276			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
277	else
278		spur_delta_phase =
279			((bb_spur * 524288) /
280			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
281
282	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
283	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
284
285	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
286		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
287		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
288	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
289
290	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
291	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
292
293	cur_bin = -6000;
294	upper = bin + 100;
295	lower = bin - 100;
296
297	for (i = 0; i < 4; i++) {
298		int pilot_mask = 0;
299		int chan_mask = 0;
300		int bp = 0;
301		for (bp = 0; bp < 30; bp++) {
302			if ((cur_bin > lower) && (cur_bin < upper)) {
303				pilot_mask = pilot_mask | 0x1 << bp;
304				chan_mask = chan_mask | 0x1 << bp;
305			}
306			cur_bin += 100;
307		}
308		cur_bin += inc[i];
309		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
310		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
311	}
312
313	cur_vit_mask = 6100;
314	upper = bin + 120;
315	lower = bin - 120;
316
317	for (i = 0; i < 123; i++) {
318		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
319
320			/* workaround for gcc bug #37014 */
321			volatile int tmp_v = abs(cur_vit_mask - bin);
322
323			if (tmp_v < 75)
324				mask_amt = 1;
325			else
326				mask_amt = 0;
327			if (cur_vit_mask < 0)
328				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
329			else
330				mask_p[cur_vit_mask / 100] = mask_amt;
331		}
332		cur_vit_mask -= 100;
333	}
334
335	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
336		| (mask_m[48] << 26) | (mask_m[49] << 24)
337		| (mask_m[50] << 22) | (mask_m[51] << 20)
338		| (mask_m[52] << 18) | (mask_m[53] << 16)
339		| (mask_m[54] << 14) | (mask_m[55] << 12)
340		| (mask_m[56] << 10) | (mask_m[57] << 8)
341		| (mask_m[58] << 6) | (mask_m[59] << 4)
342		| (mask_m[60] << 2) | (mask_m[61] << 0);
343	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
344	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
345
346	tmp_mask = (mask_m[31] << 28)
347		| (mask_m[32] << 26) | (mask_m[33] << 24)
348		| (mask_m[34] << 22) | (mask_m[35] << 20)
349		| (mask_m[36] << 18) | (mask_m[37] << 16)
350		| (mask_m[48] << 14) | (mask_m[39] << 12)
351		| (mask_m[40] << 10) | (mask_m[41] << 8)
352		| (mask_m[42] << 6) | (mask_m[43] << 4)
353		| (mask_m[44] << 2) | (mask_m[45] << 0);
354	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
355	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
356
357	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
358		| (mask_m[18] << 26) | (mask_m[18] << 24)
359		| (mask_m[20] << 22) | (mask_m[20] << 20)
360		| (mask_m[22] << 18) | (mask_m[22] << 16)
361		| (mask_m[24] << 14) | (mask_m[24] << 12)
362		| (mask_m[25] << 10) | (mask_m[26] << 8)
363		| (mask_m[27] << 6) | (mask_m[28] << 4)
364		| (mask_m[29] << 2) | (mask_m[30] << 0);
365	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
366	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
367
368	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
369		| (mask_m[2] << 26) | (mask_m[3] << 24)
370		| (mask_m[4] << 22) | (mask_m[5] << 20)
371		| (mask_m[6] << 18) | (mask_m[7] << 16)
372		| (mask_m[8] << 14) | (mask_m[9] << 12)
373		| (mask_m[10] << 10) | (mask_m[11] << 8)
374		| (mask_m[12] << 6) | (mask_m[13] << 4)
375		| (mask_m[14] << 2) | (mask_m[15] << 0);
376	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
377	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
378
379	tmp_mask = (mask_p[15] << 28)
380		| (mask_p[14] << 26) | (mask_p[13] << 24)
381		| (mask_p[12] << 22) | (mask_p[11] << 20)
382		| (mask_p[10] << 18) | (mask_p[9] << 16)
383		| (mask_p[8] << 14) | (mask_p[7] << 12)
384		| (mask_p[6] << 10) | (mask_p[5] << 8)
385		| (mask_p[4] << 6) | (mask_p[3] << 4)
386		| (mask_p[2] << 2) | (mask_p[1] << 0);
387	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
388	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
389
390	tmp_mask = (mask_p[30] << 28)
391		| (mask_p[29] << 26) | (mask_p[28] << 24)
392		| (mask_p[27] << 22) | (mask_p[26] << 20)
393		| (mask_p[25] << 18) | (mask_p[24] << 16)
394		| (mask_p[23] << 14) | (mask_p[22] << 12)
395		| (mask_p[21] << 10) | (mask_p[20] << 8)
396		| (mask_p[19] << 6) | (mask_p[18] << 4)
397		| (mask_p[17] << 2) | (mask_p[16] << 0);
398	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
399	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
400
401	tmp_mask = (mask_p[45] << 28)
402		| (mask_p[44] << 26) | (mask_p[43] << 24)
403		| (mask_p[42] << 22) | (mask_p[41] << 20)
404		| (mask_p[40] << 18) | (mask_p[39] << 16)
405		| (mask_p[38] << 14) | (mask_p[37] << 12)
406		| (mask_p[36] << 10) | (mask_p[35] << 8)
407		| (mask_p[34] << 6) | (mask_p[33] << 4)
408		| (mask_p[32] << 2) | (mask_p[31] << 0);
409	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
410	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
411
412	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
413		| (mask_p[59] << 26) | (mask_p[58] << 24)
414		| (mask_p[57] << 22) | (mask_p[56] << 20)
415		| (mask_p[55] << 18) | (mask_p[54] << 16)
416		| (mask_p[53] << 14) | (mask_p[52] << 12)
417		| (mask_p[51] << 10) | (mask_p[50] << 8)
418		| (mask_p[49] << 6) | (mask_p[48] << 4)
419		| (mask_p[47] << 2) | (mask_p[46] << 0);
420	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
421	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
422
423	REGWRITE_BUFFER_FLUSH(ah);
424}
425
426static void ar9002_olc_init(struct ath_hw *ah)
427{
428	u32 i;
429
430	if (!OLC_FOR_AR9280_20_LATER)
431		return;
432
433	if (OLC_FOR_AR9287_10_LATER) {
434		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
435				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
436		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
437				AR9287_AN_TXPC0_TXPCMODE,
438				AR9287_AN_TXPC0_TXPCMODE_S,
439				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
440		udelay(100);
441	} else {
442		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
443			ah->originalGain[i] =
444				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
445						AR_PHY_TX_GAIN);
446		ah->PDADCdelta = 0;
447	}
448}
449
450static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
451					 struct ath9k_channel *chan)
452{
453	int ref_div = 5;
454	int pll_div = 0x2c;
455	u32 pll;
456
457	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
458		if (AR_SREV_9280_20(ah)) {
459			ref_div = 10;
460			pll_div = 0x50;
461		} else {
462			pll_div = 0x28;
463		}
464	}
465
466	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
467	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
468
469	if (chan && IS_CHAN_HALF_RATE(chan))
470		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
471	else if (chan && IS_CHAN_QUARTER_RATE(chan))
472		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
473
474	return pll;
475}
476
477static void ar9002_hw_do_getnf(struct ath_hw *ah,
478			      int16_t nfarray[NUM_NF_READINGS])
479{
480	int16_t nf;
481
482	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
483	nfarray[0] = sign_extend32(nf, 8);
484
485	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
486	if (IS_CHAN_HT40(ah->curchan))
487		nfarray[3] = sign_extend32(nf, 8);
488
489	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
490		return;
491
492	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
493	nfarray[1] = sign_extend32(nf, 8);
494
495	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
496	if (IS_CHAN_HT40(ah->curchan))
497		nfarray[4] = sign_extend32(nf, 8);
498}
499
500static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
501{
502	if (AR_SREV_9285(ah)) {
503		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
504		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
505		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
506	} else if (AR_SREV_9287(ah)) {
507		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
508		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
509		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
510	} else if (AR_SREV_9271(ah)) {
511		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
512		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
513		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
514	} else {
515		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
516		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
517		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
518		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
519		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
520		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
521	}
522}
523
524static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
525				   struct ath_hw_antcomb_conf *antconf)
526{
527	u32 regval;
528
529	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
530	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
531				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
532	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
533				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
534	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
535				  AR_PHY_9285_FAST_DIV_BIAS_S;
536	antconf->lna1_lna2_delta = -3;
537	antconf->div_group = 0;
538}
539
540static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
541				   struct ath_hw_antcomb_conf *antconf)
542{
543	u32 regval;
544
545	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
546	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
547		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
548		    AR_PHY_9285_FAST_DIV_BIAS);
549	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
550		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
551	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
552		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
553	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
554		   & AR_PHY_9285_FAST_DIV_BIAS);
555
556	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
557}
558
559void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
560{
561	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
562	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
563
564	priv_ops->set_rf_regs = NULL;
565	priv_ops->rf_alloc_ext_banks = NULL;
566	priv_ops->rf_free_ext_banks = NULL;
567	priv_ops->rf_set_freq = ar9002_hw_set_channel;
568	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
569	priv_ops->olc_init = ar9002_olc_init;
570	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
571	priv_ops->do_getnf = ar9002_hw_do_getnf;
572
573	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
574	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
575
576	ar9002_hw_set_nf_limits(ah);
577}
v3.5.6
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17/**
 18 * DOC: Programming Atheros 802.11n analog front end radios
 19 *
 20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
 21 * devices have either an external AR2133 analog front end radio for single
 22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
 23 * band 2.4 GHz / 5 GHz communication.
 24 *
 25 * All devices after the AR5416 and AR5418 family starting with the AR9280
 26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
 27 * into a single-chip and require less programming.
 28 *
 29 * The following single-chips exist with a respective embedded radio:
 30 *
 31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
 32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
 33 * AR9285 - 11n single-band 1x1 for PCIe
 34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
 35 *
 36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
 37 * AR9223 - 11n single-band 2x2 MIMO for PCI
 38 *
 39 * AR9287 - 11n single-band 1x1 MIMO for USB
 40 */
 41
 42#include "hw.h"
 43#include "ar9002_phy.h"
 44
 45/**
 46 * ar9002_hw_set_channel - set channel on single-chip device
 47 * @ah: atheros hardware structure
 48 * @chan:
 49 *
 50 * This is the function to change channel on single-chip devices, that is
 51 * all devices after ar9280.
 52 *
 53 * This function takes the channel value in MHz and sets
 54 * hardware channel value. Assumes writes have been enabled to analog bus.
 55 *
 56 * Actual Expression,
 57 *
 58 * For 2GHz channel,
 59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 60 * (freq_ref = 40MHz)
 61 *
 62 * For 5GHz channel,
 63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 64 * (freq_ref = 40MHz/(24>>amodeRefSel))
 65 */
 66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
 67{
 68	u16 bMode, fracMode, aModeRefSel = 0;
 69	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
 70	struct chan_centers centers;
 71	u32 refDivA = 24;
 72
 73	ath9k_hw_get_channel_centers(ah, chan, &centers);
 74	freq = centers.synth_center;
 75
 76	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
 77	reg32 &= 0xc0000000;
 78
 79	if (freq < 4800) { /* 2 GHz, fractional mode */
 80		u32 txctl;
 81		int regWrites = 0;
 82
 83		bMode = 1;
 84		fracMode = 1;
 85		aModeRefSel = 0;
 86		channelSel = CHANSEL_2G(freq);
 87
 88		if (AR_SREV_9287_11_OR_LATER(ah)) {
 89			if (freq == 2484) {
 90				/* Enable channel spreading for channel 14 */
 91				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
 92						1, regWrites);
 93			} else {
 94				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
 95						1, regWrites);
 96			}
 97		} else {
 98			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
 99			if (freq == 2484) {
100				/* Enable channel spreading for channel 14 */
101				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103			} else {
104				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106			}
107		}
108	} else {
109		bMode = 0;
110		fracMode = 0;
111
112		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113		case 0:
114			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115				aModeRefSel = 0;
116			else if ((freq % 20) == 0)
117				aModeRefSel = 3;
118			else if ((freq % 10) == 0)
119				aModeRefSel = 2;
120			if (aModeRefSel)
121				break;
122		case 1:
123		default:
124			aModeRefSel = 0;
125			/*
126			 * Enable 2G (fractional) mode for channels
127			 * which are 5MHz spaced.
128			 */
129			fracMode = 1;
130			refDivA = 1;
131			channelSel = CHANSEL_5G(freq);
132
133			/* RefDivA setting */
134			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135				      AR_AN_SYNTH9_REFDIVA,
136				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137
138		}
139
140		if (!fracMode) {
141			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142			channelSel = ndiv & 0x1ff;
143			channelFrac = (ndiv & 0xfffffe00) * 2;
144			channelSel = (channelSel << 17) | channelFrac;
145		}
146	}
147
148	reg32 = reg32 |
149	    (bMode << 29) |
150	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151
152	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153
154	ah->curchan = chan;
 
155
156	return 0;
157}
158
159/**
160 * ar9002_hw_spur_mitigate - convert baseband spur frequency
161 * @ah: atheros hardware structure
162 * @chan:
163 *
164 * For single-chip solutions. Converts to baseband spur frequency given the
165 * input channel frequency and compute register settings below.
166 */
167static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168				    struct ath9k_channel *chan)
169{
170	int bb_spur = AR_NO_SPUR;
171	int freq;
172	int bin, cur_bin;
173	int bb_spur_off, spur_subchannel_sd;
174	int spur_freq_sd;
175	int spur_delta_phase;
176	int denominator;
177	int upper, lower, cur_vit_mask;
178	int tmp, newVal;
179	int i;
180	static const int pilot_mask_reg[4] = {
181		AR_PHY_TIMING7, AR_PHY_TIMING8,
182		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
183	};
184	static const int chan_mask_reg[4] = {
185		AR_PHY_TIMING9, AR_PHY_TIMING10,
186		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
187	};
188	static const int inc[4] = { 0, 100, 0, 0 };
189	struct chan_centers centers;
190
191	int8_t mask_m[123];
192	int8_t mask_p[123];
193	int8_t mask_amt;
194	int tmp_mask;
195	int cur_bb_spur;
196	bool is2GHz = IS_CHAN_2GHZ(chan);
197
198	memset(&mask_m, 0, sizeof(int8_t) * 123);
199	memset(&mask_p, 0, sizeof(int8_t) * 123);
200
201	ath9k_hw_get_channel_centers(ah, chan, &centers);
202	freq = centers.synth_center;
203
204	ah->config.spurmode = SPUR_ENABLE_EEPROM;
205	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
206		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
207
208		if (AR_NO_SPUR == cur_bb_spur)
209			break;
210
211		if (is2GHz)
212			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
213		else
214			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
215
216		cur_bb_spur = cur_bb_spur - freq;
217
218		if (IS_CHAN_HT40(chan)) {
219			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
220			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
221				bb_spur = cur_bb_spur;
222				break;
223			}
224		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
225			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
226			bb_spur = cur_bb_spur;
227			break;
228		}
229	}
230
231	if (AR_NO_SPUR == bb_spur) {
232		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
233			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
234		return;
235	} else {
236		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
237			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
238	}
239
240	bin = bb_spur * 320;
241
242	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
243
244	ENABLE_REGWRITE_BUFFER(ah);
245
246	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
247			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
248			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
249			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
250	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
251
252	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
253		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
254		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
255		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
256		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
257	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
258
259	if (IS_CHAN_HT40(chan)) {
260		if (bb_spur < 0) {
261			spur_subchannel_sd = 1;
262			bb_spur_off = bb_spur + 10;
263		} else {
264			spur_subchannel_sd = 0;
265			bb_spur_off = bb_spur - 10;
266		}
267	} else {
268		spur_subchannel_sd = 0;
269		bb_spur_off = bb_spur;
270	}
271
272	if (IS_CHAN_HT40(chan))
273		spur_delta_phase =
274			((bb_spur * 262144) /
275			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
276	else
277		spur_delta_phase =
278			((bb_spur * 524288) /
279			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
280
281	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
282	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
283
284	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
285		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
286		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
287	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
288
289	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
290	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
291
292	cur_bin = -6000;
293	upper = bin + 100;
294	lower = bin - 100;
295
296	for (i = 0; i < 4; i++) {
297		int pilot_mask = 0;
298		int chan_mask = 0;
299		int bp = 0;
300		for (bp = 0; bp < 30; bp++) {
301			if ((cur_bin > lower) && (cur_bin < upper)) {
302				pilot_mask = pilot_mask | 0x1 << bp;
303				chan_mask = chan_mask | 0x1 << bp;
304			}
305			cur_bin += 100;
306		}
307		cur_bin += inc[i];
308		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
309		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
310	}
311
312	cur_vit_mask = 6100;
313	upper = bin + 120;
314	lower = bin - 120;
315
316	for (i = 0; i < 123; i++) {
317		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
318
319			/* workaround for gcc bug #37014 */
320			volatile int tmp_v = abs(cur_vit_mask - bin);
321
322			if (tmp_v < 75)
323				mask_amt = 1;
324			else
325				mask_amt = 0;
326			if (cur_vit_mask < 0)
327				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
328			else
329				mask_p[cur_vit_mask / 100] = mask_amt;
330		}
331		cur_vit_mask -= 100;
332	}
333
334	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
335		| (mask_m[48] << 26) | (mask_m[49] << 24)
336		| (mask_m[50] << 22) | (mask_m[51] << 20)
337		| (mask_m[52] << 18) | (mask_m[53] << 16)
338		| (mask_m[54] << 14) | (mask_m[55] << 12)
339		| (mask_m[56] << 10) | (mask_m[57] << 8)
340		| (mask_m[58] << 6) | (mask_m[59] << 4)
341		| (mask_m[60] << 2) | (mask_m[61] << 0);
342	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
343	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
344
345	tmp_mask = (mask_m[31] << 28)
346		| (mask_m[32] << 26) | (mask_m[33] << 24)
347		| (mask_m[34] << 22) | (mask_m[35] << 20)
348		| (mask_m[36] << 18) | (mask_m[37] << 16)
349		| (mask_m[48] << 14) | (mask_m[39] << 12)
350		| (mask_m[40] << 10) | (mask_m[41] << 8)
351		| (mask_m[42] << 6) | (mask_m[43] << 4)
352		| (mask_m[44] << 2) | (mask_m[45] << 0);
353	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
354	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
355
356	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
357		| (mask_m[18] << 26) | (mask_m[18] << 24)
358		| (mask_m[20] << 22) | (mask_m[20] << 20)
359		| (mask_m[22] << 18) | (mask_m[22] << 16)
360		| (mask_m[24] << 14) | (mask_m[24] << 12)
361		| (mask_m[25] << 10) | (mask_m[26] << 8)
362		| (mask_m[27] << 6) | (mask_m[28] << 4)
363		| (mask_m[29] << 2) | (mask_m[30] << 0);
364	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
365	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
366
367	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
368		| (mask_m[2] << 26) | (mask_m[3] << 24)
369		| (mask_m[4] << 22) | (mask_m[5] << 20)
370		| (mask_m[6] << 18) | (mask_m[7] << 16)
371		| (mask_m[8] << 14) | (mask_m[9] << 12)
372		| (mask_m[10] << 10) | (mask_m[11] << 8)
373		| (mask_m[12] << 6) | (mask_m[13] << 4)
374		| (mask_m[14] << 2) | (mask_m[15] << 0);
375	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
376	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
377
378	tmp_mask = (mask_p[15] << 28)
379		| (mask_p[14] << 26) | (mask_p[13] << 24)
380		| (mask_p[12] << 22) | (mask_p[11] << 20)
381		| (mask_p[10] << 18) | (mask_p[9] << 16)
382		| (mask_p[8] << 14) | (mask_p[7] << 12)
383		| (mask_p[6] << 10) | (mask_p[5] << 8)
384		| (mask_p[4] << 6) | (mask_p[3] << 4)
385		| (mask_p[2] << 2) | (mask_p[1] << 0);
386	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
387	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
388
389	tmp_mask = (mask_p[30] << 28)
390		| (mask_p[29] << 26) | (mask_p[28] << 24)
391		| (mask_p[27] << 22) | (mask_p[26] << 20)
392		| (mask_p[25] << 18) | (mask_p[24] << 16)
393		| (mask_p[23] << 14) | (mask_p[22] << 12)
394		| (mask_p[21] << 10) | (mask_p[20] << 8)
395		| (mask_p[19] << 6) | (mask_p[18] << 4)
396		| (mask_p[17] << 2) | (mask_p[16] << 0);
397	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
398	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
399
400	tmp_mask = (mask_p[45] << 28)
401		| (mask_p[44] << 26) | (mask_p[43] << 24)
402		| (mask_p[42] << 22) | (mask_p[41] << 20)
403		| (mask_p[40] << 18) | (mask_p[39] << 16)
404		| (mask_p[38] << 14) | (mask_p[37] << 12)
405		| (mask_p[36] << 10) | (mask_p[35] << 8)
406		| (mask_p[34] << 6) | (mask_p[33] << 4)
407		| (mask_p[32] << 2) | (mask_p[31] << 0);
408	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
409	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
410
411	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
412		| (mask_p[59] << 26) | (mask_p[58] << 24)
413		| (mask_p[57] << 22) | (mask_p[56] << 20)
414		| (mask_p[55] << 18) | (mask_p[54] << 16)
415		| (mask_p[53] << 14) | (mask_p[52] << 12)
416		| (mask_p[51] << 10) | (mask_p[50] << 8)
417		| (mask_p[49] << 6) | (mask_p[48] << 4)
418		| (mask_p[47] << 2) | (mask_p[46] << 0);
419	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
420	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
421
422	REGWRITE_BUFFER_FLUSH(ah);
423}
424
425static void ar9002_olc_init(struct ath_hw *ah)
426{
427	u32 i;
428
429	if (!OLC_FOR_AR9280_20_LATER)
430		return;
431
432	if (OLC_FOR_AR9287_10_LATER) {
433		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
434				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
435		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
436				AR9287_AN_TXPC0_TXPCMODE,
437				AR9287_AN_TXPC0_TXPCMODE_S,
438				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
439		udelay(100);
440	} else {
441		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
442			ah->originalGain[i] =
443				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
444						AR_PHY_TX_GAIN);
445		ah->PDADCdelta = 0;
446	}
447}
448
449static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
450					 struct ath9k_channel *chan)
451{
452	int ref_div = 5;
453	int pll_div = 0x2c;
454	u32 pll;
455
456	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
457		if (AR_SREV_9280_20(ah)) {
458			ref_div = 10;
459			pll_div = 0x50;
460		} else {
461			pll_div = 0x28;
462		}
463	}
464
465	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
466	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
467
468	if (chan && IS_CHAN_HALF_RATE(chan))
469		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
470	else if (chan && IS_CHAN_QUARTER_RATE(chan))
471		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
472
473	return pll;
474}
475
476static void ar9002_hw_do_getnf(struct ath_hw *ah,
477			      int16_t nfarray[NUM_NF_READINGS])
478{
479	int16_t nf;
480
481	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
482	nfarray[0] = sign_extend32(nf, 8);
483
484	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
485	if (IS_CHAN_HT40(ah->curchan))
486		nfarray[3] = sign_extend32(nf, 8);
487
488	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
489		return;
490
491	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
492	nfarray[1] = sign_extend32(nf, 8);
493
494	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
495	if (IS_CHAN_HT40(ah->curchan))
496		nfarray[4] = sign_extend32(nf, 8);
497}
498
499static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
500{
501	if (AR_SREV_9285(ah)) {
502		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
503		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
504		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
505	} else if (AR_SREV_9287(ah)) {
506		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
507		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
508		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
509	} else if (AR_SREV_9271(ah)) {
510		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
511		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
512		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
513	} else {
514		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
515		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
516		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
517		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
518		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
519		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
520	}
521}
522
523static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
524				   struct ath_hw_antcomb_conf *antconf)
525{
526	u32 regval;
527
528	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
529	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
530				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
531	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
532				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
533	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
534				  AR_PHY_9285_FAST_DIV_BIAS_S;
535	antconf->lna1_lna2_delta = -3;
536	antconf->div_group = 0;
537}
538
539static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
540				   struct ath_hw_antcomb_conf *antconf)
541{
542	u32 regval;
543
544	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
545	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
546		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
547		    AR_PHY_9285_FAST_DIV_BIAS);
548	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
549		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
550	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
551		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
552	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
553		   & AR_PHY_9285_FAST_DIV_BIAS);
554
555	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
556}
557
558void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
559{
560	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
561	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
562
563	priv_ops->set_rf_regs = NULL;
564	priv_ops->rf_alloc_ext_banks = NULL;
565	priv_ops->rf_free_ext_banks = NULL;
566	priv_ops->rf_set_freq = ar9002_hw_set_channel;
567	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
568	priv_ops->olc_init = ar9002_olc_init;
569	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
570	priv_ops->do_getnf = ar9002_hw_do_getnf;
571
572	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
573	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
574
575	ar9002_hw_set_nf_limits(ah);
576}