Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17/**
 18 * DOC: Programming Atheros 802.11n analog front end radios
 19 *
 20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
 21 * devices have either an external AR2133 analog front end radio for single
 22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
 23 * band 2.4 GHz / 5 GHz communication.
 24 *
 25 * All devices after the AR5416 and AR5418 family starting with the AR9280
 26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
 27 * into a single-chip and require less programming.
 28 *
 29 * The following single-chips exist with a respective embedded radio:
 30 *
 31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
 32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
 33 * AR9285 - 11n single-band 1x1 for PCIe
 34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
 35 *
 36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
 37 * AR9223 - 11n single-band 2x2 MIMO for PCI
 38 *
 39 * AR9287 - 11n single-band 1x1 MIMO for USB
 40 */
 41
 42#include "hw.h"
 43#include "ar9002_phy.h"
 44
 45/**
 46 * ar9002_hw_set_channel - set channel on single-chip device
 47 * @ah: atheros hardware structure
 48 * @chan:
 49 *
 50 * This is the function to change channel on single-chip devices, that is
 51 * all devices after ar9280.
 52 *
 53 * This function takes the channel value in MHz and sets
 54 * hardware channel value. Assumes writes have been enabled to analog bus.
 55 *
 56 * Actual Expression,
 57 *
 58 * For 2GHz channel,
 59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 60 * (freq_ref = 40MHz)
 61 *
 62 * For 5GHz channel,
 63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 64 * (freq_ref = 40MHz/(24>>amodeRefSel))
 65 */
 66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
 67{
 68	u16 bMode, fracMode, aModeRefSel = 0;
 69	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
 70	struct chan_centers centers;
 71	u32 refDivA = 24;
 72
 73	ath9k_hw_get_channel_centers(ah, chan, &centers);
 74	freq = centers.synth_center;
 75
 76	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
 77	reg32 &= 0xc0000000;
 78
 79	if (freq < 4800) { /* 2 GHz, fractional mode */
 80		u32 txctl;
 81		int regWrites = 0;
 82
 83		bMode = 1;
 84		fracMode = 1;
 85		aModeRefSel = 0;
 86		channelSel = CHANSEL_2G(freq);
 87
 88		if (AR_SREV_9287_11_OR_LATER(ah)) {
 89			if (freq == 2484) {
 90				/* Enable channel spreading for channel 14 */
 91				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
 92						1, regWrites);
 93			} else {
 94				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
 95						1, regWrites);
 96			}
 97		} else {
 98			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
 99			if (freq == 2484) {
100				/* Enable channel spreading for channel 14 */
101				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103			} else {
104				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106			}
107		}
108	} else {
109		bMode = 0;
110		fracMode = 0;
111
112		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113		case 0:
114			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115				aModeRefSel = 0;
116			else if ((freq % 20) == 0)
117				aModeRefSel = 3;
118			else if ((freq % 10) == 0)
119				aModeRefSel = 2;
120			if (aModeRefSel)
121				break;
122		case 1:
123		default:
124			aModeRefSel = 0;
125			/*
126			 * Enable 2G (fractional) mode for channels
127			 * which are 5MHz spaced.
128			 */
129			fracMode = 1;
130			refDivA = 1;
131			channelSel = CHANSEL_5G(freq);
132
133			/* RefDivA setting */
134			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135				      AR_AN_SYNTH9_REFDIVA,
136				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137
138		}
139
140		if (!fracMode) {
141			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142			channelSel = ndiv & 0x1ff;
143			channelFrac = (ndiv & 0xfffffe00) * 2;
144			channelSel = (channelSel << 17) | channelFrac;
145		}
146	}
147
148	reg32 = reg32 |
149	    (bMode << 29) |
150	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151
152	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153
154	ah->curchan = chan;
155	ah->curchan_rad_index = -1;
156
157	return 0;
158}
159
160/**
161 * ar9002_hw_spur_mitigate - convert baseband spur frequency
162 * @ah: atheros hardware structure
163 * @chan:
164 *
165 * For single-chip solutions. Converts to baseband spur frequency given the
166 * input channel frequency and compute register settings below.
167 */
168static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
169				    struct ath9k_channel *chan)
170{
171	int bb_spur = AR_NO_SPUR;
172	int freq;
173	int bin, cur_bin;
174	int bb_spur_off, spur_subchannel_sd;
175	int spur_freq_sd;
176	int spur_delta_phase;
177	int denominator;
178	int upper, lower, cur_vit_mask;
179	int tmp, newVal;
180	int i;
181	static const int pilot_mask_reg[4] = {
182		AR_PHY_TIMING7, AR_PHY_TIMING8,
183		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
184	};
185	static const int chan_mask_reg[4] = {
186		AR_PHY_TIMING9, AR_PHY_TIMING10,
187		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
188	};
189	static const int inc[4] = { 0, 100, 0, 0 };
190	struct chan_centers centers;
191
192	int8_t mask_m[123];
193	int8_t mask_p[123];
194	int8_t mask_amt;
195	int tmp_mask;
196	int cur_bb_spur;
197	bool is2GHz = IS_CHAN_2GHZ(chan);
198
199	memset(&mask_m, 0, sizeof(int8_t) * 123);
200	memset(&mask_p, 0, sizeof(int8_t) * 123);
201
202	ath9k_hw_get_channel_centers(ah, chan, &centers);
203	freq = centers.synth_center;
204
205	ah->config.spurmode = SPUR_ENABLE_EEPROM;
206	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
207		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
208
209		if (AR_NO_SPUR == cur_bb_spur)
210			break;
211
212		if (is2GHz)
213			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
214		else
215			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
216
217		cur_bb_spur = cur_bb_spur - freq;
218
219		if (IS_CHAN_HT40(chan)) {
220			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
221			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
222				bb_spur = cur_bb_spur;
223				break;
224			}
225		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
226			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
227			bb_spur = cur_bb_spur;
228			break;
229		}
230	}
231
232	if (AR_NO_SPUR == bb_spur) {
233		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
234			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
235		return;
236	} else {
237		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
238			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
239	}
240
241	bin = bb_spur * 320;
242
243	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
244
245	ENABLE_REGWRITE_BUFFER(ah);
246
247	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
248			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
249			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
250			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
251	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
252
253	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
254		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
255		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
256		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
257		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
258	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
259
260	if (IS_CHAN_HT40(chan)) {
261		if (bb_spur < 0) {
262			spur_subchannel_sd = 1;
263			bb_spur_off = bb_spur + 10;
264		} else {
265			spur_subchannel_sd = 0;
266			bb_spur_off = bb_spur - 10;
267		}
268	} else {
269		spur_subchannel_sd = 0;
270		bb_spur_off = bb_spur;
271	}
272
273	if (IS_CHAN_HT40(chan))
274		spur_delta_phase =
275			((bb_spur * 262144) /
276			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
277	else
278		spur_delta_phase =
279			((bb_spur * 524288) /
280			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
281
282	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
283	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
284
285	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
286		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
287		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
288	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
289
290	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
291	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
292
293	cur_bin = -6000;
294	upper = bin + 100;
295	lower = bin - 100;
296
297	for (i = 0; i < 4; i++) {
298		int pilot_mask = 0;
299		int chan_mask = 0;
300		int bp = 0;
301		for (bp = 0; bp < 30; bp++) {
302			if ((cur_bin > lower) && (cur_bin < upper)) {
303				pilot_mask = pilot_mask | 0x1 << bp;
304				chan_mask = chan_mask | 0x1 << bp;
305			}
306			cur_bin += 100;
307		}
308		cur_bin += inc[i];
309		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
310		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
311	}
312
313	cur_vit_mask = 6100;
314	upper = bin + 120;
315	lower = bin - 120;
316
317	for (i = 0; i < 123; i++) {
318		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
319
320			/* workaround for gcc bug #37014 */
321			volatile int tmp_v = abs(cur_vit_mask - bin);
322
323			if (tmp_v < 75)
324				mask_amt = 1;
325			else
326				mask_amt = 0;
327			if (cur_vit_mask < 0)
328				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
329			else
330				mask_p[cur_vit_mask / 100] = mask_amt;
331		}
332		cur_vit_mask -= 100;
333	}
334
335	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
336		| (mask_m[48] << 26) | (mask_m[49] << 24)
337		| (mask_m[50] << 22) | (mask_m[51] << 20)
338		| (mask_m[52] << 18) | (mask_m[53] << 16)
339		| (mask_m[54] << 14) | (mask_m[55] << 12)
340		| (mask_m[56] << 10) | (mask_m[57] << 8)
341		| (mask_m[58] << 6) | (mask_m[59] << 4)
342		| (mask_m[60] << 2) | (mask_m[61] << 0);
343	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
344	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
345
346	tmp_mask = (mask_m[31] << 28)
347		| (mask_m[32] << 26) | (mask_m[33] << 24)
348		| (mask_m[34] << 22) | (mask_m[35] << 20)
349		| (mask_m[36] << 18) | (mask_m[37] << 16)
350		| (mask_m[48] << 14) | (mask_m[39] << 12)
351		| (mask_m[40] << 10) | (mask_m[41] << 8)
352		| (mask_m[42] << 6) | (mask_m[43] << 4)
353		| (mask_m[44] << 2) | (mask_m[45] << 0);
354	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
355	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
356
357	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
358		| (mask_m[18] << 26) | (mask_m[18] << 24)
359		| (mask_m[20] << 22) | (mask_m[20] << 20)
360		| (mask_m[22] << 18) | (mask_m[22] << 16)
361		| (mask_m[24] << 14) | (mask_m[24] << 12)
362		| (mask_m[25] << 10) | (mask_m[26] << 8)
363		| (mask_m[27] << 6) | (mask_m[28] << 4)
364		| (mask_m[29] << 2) | (mask_m[30] << 0);
365	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
366	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
367
368	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
369		| (mask_m[2] << 26) | (mask_m[3] << 24)
370		| (mask_m[4] << 22) | (mask_m[5] << 20)
371		| (mask_m[6] << 18) | (mask_m[7] << 16)
372		| (mask_m[8] << 14) | (mask_m[9] << 12)
373		| (mask_m[10] << 10) | (mask_m[11] << 8)
374		| (mask_m[12] << 6) | (mask_m[13] << 4)
375		| (mask_m[14] << 2) | (mask_m[15] << 0);
376	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
377	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
378
379	tmp_mask = (mask_p[15] << 28)
380		| (mask_p[14] << 26) | (mask_p[13] << 24)
381		| (mask_p[12] << 22) | (mask_p[11] << 20)
382		| (mask_p[10] << 18) | (mask_p[9] << 16)
383		| (mask_p[8] << 14) | (mask_p[7] << 12)
384		| (mask_p[6] << 10) | (mask_p[5] << 8)
385		| (mask_p[4] << 6) | (mask_p[3] << 4)
386		| (mask_p[2] << 2) | (mask_p[1] << 0);
387	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
388	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
389
390	tmp_mask = (mask_p[30] << 28)
391		| (mask_p[29] << 26) | (mask_p[28] << 24)
392		| (mask_p[27] << 22) | (mask_p[26] << 20)
393		| (mask_p[25] << 18) | (mask_p[24] << 16)
394		| (mask_p[23] << 14) | (mask_p[22] << 12)
395		| (mask_p[21] << 10) | (mask_p[20] << 8)
396		| (mask_p[19] << 6) | (mask_p[18] << 4)
397		| (mask_p[17] << 2) | (mask_p[16] << 0);
398	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
399	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
400
401	tmp_mask = (mask_p[45] << 28)
402		| (mask_p[44] << 26) | (mask_p[43] << 24)
403		| (mask_p[42] << 22) | (mask_p[41] << 20)
404		| (mask_p[40] << 18) | (mask_p[39] << 16)
405		| (mask_p[38] << 14) | (mask_p[37] << 12)
406		| (mask_p[36] << 10) | (mask_p[35] << 8)
407		| (mask_p[34] << 6) | (mask_p[33] << 4)
408		| (mask_p[32] << 2) | (mask_p[31] << 0);
409	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
410	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
411
412	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
413		| (mask_p[59] << 26) | (mask_p[58] << 24)
414		| (mask_p[57] << 22) | (mask_p[56] << 20)
415		| (mask_p[55] << 18) | (mask_p[54] << 16)
416		| (mask_p[53] << 14) | (mask_p[52] << 12)
417		| (mask_p[51] << 10) | (mask_p[50] << 8)
418		| (mask_p[49] << 6) | (mask_p[48] << 4)
419		| (mask_p[47] << 2) | (mask_p[46] << 0);
420	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
421	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
422
423	REGWRITE_BUFFER_FLUSH(ah);
424}
425
426static void ar9002_olc_init(struct ath_hw *ah)
427{
428	u32 i;
429
430	if (!OLC_FOR_AR9280_20_LATER)
431		return;
432
433	if (OLC_FOR_AR9287_10_LATER) {
434		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
435				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
436		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
437				AR9287_AN_TXPC0_TXPCMODE,
438				AR9287_AN_TXPC0_TXPCMODE_S,
439				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
440		udelay(100);
441	} else {
442		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
443			ah->originalGain[i] =
444				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
445						AR_PHY_TX_GAIN);
446		ah->PDADCdelta = 0;
447	}
448}
449
450static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
451					 struct ath9k_channel *chan)
452{
453	int ref_div = 5;
454	int pll_div = 0x2c;
455	u32 pll;
456
457	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
458		if (AR_SREV_9280_20(ah)) {
459			ref_div = 10;
460			pll_div = 0x50;
461		} else {
462			pll_div = 0x28;
463		}
464	}
465
466	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
467	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
468
469	if (chan && IS_CHAN_HALF_RATE(chan))
470		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
471	else if (chan && IS_CHAN_QUARTER_RATE(chan))
472		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
473
474	return pll;
475}
476
477static void ar9002_hw_do_getnf(struct ath_hw *ah,
478			      int16_t nfarray[NUM_NF_READINGS])
479{
480	int16_t nf;
481
482	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
483	nfarray[0] = sign_extend32(nf, 8);
484
485	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
486	if (IS_CHAN_HT40(ah->curchan))
487		nfarray[3] = sign_extend32(nf, 8);
488
489	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
490		return;
491
492	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
493	nfarray[1] = sign_extend32(nf, 8);
494
495	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
496	if (IS_CHAN_HT40(ah->curchan))
497		nfarray[4] = sign_extend32(nf, 8);
498}
499
500static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
501{
502	if (AR_SREV_9285(ah)) {
503		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
504		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
505		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
506	} else if (AR_SREV_9287(ah)) {
507		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
508		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
509		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
510	} else if (AR_SREV_9271(ah)) {
511		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
512		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
513		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
514	} else {
515		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
516		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
517		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
518		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
519		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
520		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
521	}
522}
523
524static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
525				   struct ath_hw_antcomb_conf *antconf)
526{
527	u32 regval;
528
529	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
530	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
531				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
532	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
533				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
534	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
535				  AR_PHY_9285_FAST_DIV_BIAS_S;
 
536	antconf->lna1_lna2_delta = -3;
537	antconf->div_group = 0;
538}
539
540static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
541				   struct ath_hw_antcomb_conf *antconf)
542{
543	u32 regval;
544
545	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
546	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
547		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
548		    AR_PHY_9285_FAST_DIV_BIAS);
549	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
550		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
551	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
552		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
553	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
554		   & AR_PHY_9285_FAST_DIV_BIAS);
555
556	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
557}
558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
560{
561	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
562	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
563
564	priv_ops->set_rf_regs = NULL;
565	priv_ops->rf_alloc_ext_banks = NULL;
566	priv_ops->rf_free_ext_banks = NULL;
567	priv_ops->rf_set_freq = ar9002_hw_set_channel;
568	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
569	priv_ops->olc_init = ar9002_olc_init;
570	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
571	priv_ops->do_getnf = ar9002_hw_do_getnf;
572
573	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
574	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
 
 
 
 
 
 
 
 
 
575
576	ar9002_hw_set_nf_limits(ah);
577}
v4.17
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17/**
 18 * DOC: Programming Atheros 802.11n analog front end radios
 19 *
 20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
 21 * devices have either an external AR2133 analog front end radio for single
 22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
 23 * band 2.4 GHz / 5 GHz communication.
 24 *
 25 * All devices after the AR5416 and AR5418 family starting with the AR9280
 26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
 27 * into a single-chip and require less programming.
 28 *
 29 * The following single-chips exist with a respective embedded radio:
 30 *
 31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
 32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
 33 * AR9285 - 11n single-band 1x1 for PCIe
 34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
 35 *
 36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
 37 * AR9223 - 11n single-band 2x2 MIMO for PCI
 38 *
 39 * AR9287 - 11n single-band 1x1 MIMO for USB
 40 */
 41
 42#include "hw.h"
 43#include "ar9002_phy.h"
 44
 45/**
 46 * ar9002_hw_set_channel - set channel on single-chip device
 47 * @ah: atheros hardware structure
 48 * @chan:
 49 *
 50 * This is the function to change channel on single-chip devices, that is
 51 * all devices after ar9280.
 52 *
 53 * This function takes the channel value in MHz and sets
 54 * hardware channel value. Assumes writes have been enabled to analog bus.
 55 *
 56 * Actual Expression,
 57 *
 58 * For 2GHz channel,
 59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 60 * (freq_ref = 40MHz)
 61 *
 62 * For 5GHz channel,
 63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 64 * (freq_ref = 40MHz/(24>>amodeRefSel))
 65 */
 66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
 67{
 68	u16 bMode, fracMode, aModeRefSel = 0;
 69	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
 70	struct chan_centers centers;
 71	u32 refDivA = 24;
 72
 73	ath9k_hw_get_channel_centers(ah, chan, &centers);
 74	freq = centers.synth_center;
 75
 76	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
 77	reg32 &= 0xc0000000;
 78
 79	if (freq < 4800) { /* 2 GHz, fractional mode */
 80		u32 txctl;
 81		int regWrites = 0;
 82
 83		bMode = 1;
 84		fracMode = 1;
 85		aModeRefSel = 0;
 86		channelSel = CHANSEL_2G(freq);
 87
 88		if (AR_SREV_9287_11_OR_LATER(ah)) {
 89			if (freq == 2484) {
 90				/* Enable channel spreading for channel 14 */
 91				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
 92						1, regWrites);
 93			} else {
 94				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
 95						1, regWrites);
 96			}
 97		} else {
 98			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
 99			if (freq == 2484) {
100				/* Enable channel spreading for channel 14 */
101				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103			} else {
104				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106			}
107		}
108	} else {
109		bMode = 0;
110		fracMode = 0;
111
112		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113		case 0:
114			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115				aModeRefSel = 0;
116			else if ((freq % 20) == 0)
117				aModeRefSel = 3;
118			else if ((freq % 10) == 0)
119				aModeRefSel = 2;
120			if (aModeRefSel)
121				break;
122		case 1:
123		default:
124			aModeRefSel = 0;
125			/*
126			 * Enable 2G (fractional) mode for channels
127			 * which are 5MHz spaced.
128			 */
129			fracMode = 1;
130			refDivA = 1;
131			channelSel = CHANSEL_5G(freq);
132
133			/* RefDivA setting */
134			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135				      AR_AN_SYNTH9_REFDIVA,
136				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137
138		}
139
140		if (!fracMode) {
141			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142			channelSel = ndiv & 0x1ff;
143			channelFrac = (ndiv & 0xfffffe00) * 2;
144			channelSel = (channelSel << 17) | channelFrac;
145		}
146	}
147
148	reg32 = reg32 |
149	    (bMode << 29) |
150	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151
152	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153
154	ah->curchan = chan;
 
155
156	return 0;
157}
158
159/**
160 * ar9002_hw_spur_mitigate - convert baseband spur frequency
161 * @ah: atheros hardware structure
162 * @chan:
163 *
164 * For single-chip solutions. Converts to baseband spur frequency given the
165 * input channel frequency and compute register settings below.
166 */
167static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168				    struct ath9k_channel *chan)
169{
170	int bb_spur = AR_NO_SPUR;
171	int freq;
172	int bin;
173	int bb_spur_off, spur_subchannel_sd;
174	int spur_freq_sd;
175	int spur_delta_phase;
176	int denominator;
 
177	int tmp, newVal;
178	int i;
 
 
 
 
 
 
 
 
 
179	struct chan_centers centers;
180
 
 
 
 
181	int cur_bb_spur;
182	bool is2GHz = IS_CHAN_2GHZ(chan);
183
 
 
 
184	ath9k_hw_get_channel_centers(ah, chan, &centers);
185	freq = centers.synth_center;
186
 
187	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
188		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
189
190		if (AR_NO_SPUR == cur_bb_spur)
191			break;
192
193		if (is2GHz)
194			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
195		else
196			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
197
198		cur_bb_spur = cur_bb_spur - freq;
199
200		if (IS_CHAN_HT40(chan)) {
201			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
202			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
203				bb_spur = cur_bb_spur;
204				break;
205			}
206		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
207			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
208			bb_spur = cur_bb_spur;
209			break;
210		}
211	}
212
213	if (AR_NO_SPUR == bb_spur) {
214		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
215			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
216		return;
217	} else {
218		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
219			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
220	}
221
222	bin = bb_spur * 320;
223
224	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
225
226	ENABLE_REGWRITE_BUFFER(ah);
227
228	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
229			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
230			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
231			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
232	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
233
234	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
235		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
236		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
237		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
238		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
239	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
240
241	if (IS_CHAN_HT40(chan)) {
242		if (bb_spur < 0) {
243			spur_subchannel_sd = 1;
244			bb_spur_off = bb_spur + 10;
245		} else {
246			spur_subchannel_sd = 0;
247			bb_spur_off = bb_spur - 10;
248		}
249	} else {
250		spur_subchannel_sd = 0;
251		bb_spur_off = bb_spur;
252	}
253
254	if (IS_CHAN_HT40(chan))
255		spur_delta_phase =
256			((bb_spur * 262144) /
257			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
258	else
259		spur_delta_phase =
260			((bb_spur * 524288) /
261			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
262
263	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
264	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
265
266	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
267		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
268		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
269	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
270
271	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
272	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
273
274	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
276	REGWRITE_BUFFER_FLUSH(ah);
277}
278
279static void ar9002_olc_init(struct ath_hw *ah)
280{
281	u32 i;
282
283	if (!OLC_FOR_AR9280_20_LATER)
284		return;
285
286	if (OLC_FOR_AR9287_10_LATER) {
287		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
288				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
289		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
290				AR9287_AN_TXPC0_TXPCMODE,
291				AR9287_AN_TXPC0_TXPCMODE_S,
292				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
293		udelay(100);
294	} else {
295		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
296			ah->originalGain[i] =
297				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
298						AR_PHY_TX_GAIN);
299		ah->PDADCdelta = 0;
300	}
301}
302
303static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
304					 struct ath9k_channel *chan)
305{
306	int ref_div = 5;
307	int pll_div = 0x2c;
308	u32 pll;
309
310	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
311		if (AR_SREV_9280_20(ah)) {
312			ref_div = 10;
313			pll_div = 0x50;
314		} else {
315			pll_div = 0x28;
316		}
317	}
318
319	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
320	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
321
322	if (chan && IS_CHAN_HALF_RATE(chan))
323		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
324	else if (chan && IS_CHAN_QUARTER_RATE(chan))
325		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
326
327	return pll;
328}
329
330static void ar9002_hw_do_getnf(struct ath_hw *ah,
331			      int16_t nfarray[NUM_NF_READINGS])
332{
333	int16_t nf;
334
335	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
336	nfarray[0] = sign_extend32(nf, 8);
337
338	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
339	if (IS_CHAN_HT40(ah->curchan))
340		nfarray[3] = sign_extend32(nf, 8);
341
342	if (!(ah->rxchainmask & BIT(1)))
343		return;
344
345	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
346	nfarray[1] = sign_extend32(nf, 8);
347
348	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
349	if (IS_CHAN_HT40(ah->curchan))
350		nfarray[4] = sign_extend32(nf, 8);
351}
352
353static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
354{
355	if (AR_SREV_9285(ah)) {
356		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
357		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
358		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
359	} else if (AR_SREV_9287(ah)) {
360		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
361		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
362		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
363	} else if (AR_SREV_9271(ah)) {
364		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
365		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
366		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
367	} else {
368		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
369		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
370		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
371		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
372		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
373		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
374	}
375}
376
377static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
378				   struct ath_hw_antcomb_conf *antconf)
379{
380	u32 regval;
381
382	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
383	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
384				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
385	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
386				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
387	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
388				  AR_PHY_9285_FAST_DIV_BIAS_S;
389	antconf->lna1_lna2_switch_delta = -1;
390	antconf->lna1_lna2_delta = -3;
391	antconf->div_group = 0;
392}
393
394static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
395				   struct ath_hw_antcomb_conf *antconf)
396{
397	u32 regval;
398
399	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
400	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
401		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
402		    AR_PHY_9285_FAST_DIV_BIAS);
403	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
404		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
405	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
406		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
407	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
408		   & AR_PHY_9285_FAST_DIV_BIAS);
409
410	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
411}
412
413#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
414
415static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
416{
417	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
418	u8 antdiv_ctrl1, antdiv_ctrl2;
419	u32 regval;
420
421	if (enable) {
422		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
423		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
424
425		/*
426		 * Don't disable BT ant to allow BB to control SWCOM.
427		 */
428		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
429		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
430
431		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
432		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
433	} else {
434		/*
435		 * Disable antenna diversity, use LNA1 only.
436		 */
437		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
438		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
439
440		/*
441		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
442		 */
443		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
444		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
445
446		/*
447		 * Program SWCOM table to make sure RF switch always parks
448		 * at BT side.
449		 */
450		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
451		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
452	}
453
454	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
455	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
456        /*
457	 * Clear ant_fast_div_bias [14:9] since for WB195,
458	 * the main LNA is always LNA1.
459	 */
460	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
461	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
462	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
463	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
464	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
465	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
466	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
467
468	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
469	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
470	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
471	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
472}
473
474#endif
475
476static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
477				    struct ath_spec_scan *param)
478{
479	u32 repeat_bit;
480	u8 count;
481
482	if (!param->enabled) {
483		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
484			    AR_PHY_SPECTRAL_SCAN_ENABLE);
485		return;
486	}
487	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
488	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
489
490	if (AR_SREV_9280(ah))
491		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT;
492	else
493		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT_KIWI;
494
495	if (param->short_repeat)
496		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
497	else
498		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
499
500	/* on AR92xx, the highest bit of count will make the the chip send
501	 * spectral samples endlessly. Check if this really was intended,
502	 * and fix otherwise.
503	 */
504	count = param->count;
505	if (param->endless) {
506		if (AR_SREV_9280(ah))
507			count = 0x80;
508		else
509			count = 0;
510	} else if (count & 0x80)
511		count = 0x7f;
512	else if (!count)
513		count = 1;
514
515	if (AR_SREV_9280(ah)) {
516		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
517			      AR_PHY_SPECTRAL_SCAN_COUNT, count);
518	} else {
519		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
520			      AR_PHY_SPECTRAL_SCAN_COUNT_KIWI, count);
521		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
522			    AR_PHY_SPECTRAL_SCAN_PHYERR_MASK_SELECT);
523	}
524
525	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
526		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
527	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
528		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
529
530	return;
531}
532
533static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
534{
535	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
536	/* Activate spectral scan */
537	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
538		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
539}
540
541static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
542{
543	struct ath_common *common = ath9k_hw_common(ah);
544
545	/* Poll for spectral scan complete */
546	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
547			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
548			   0, AH_WAIT_TIMEOUT)) {
549		ath_err(common, "spectral scan wait failed\n");
550		return;
551	}
552}
553
554static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
555{
556	REG_SET_BIT(ah, 0x9864, 0x7f000);
557	REG_SET_BIT(ah, 0x9924, 0x7f00fe);
558	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
559	REG_WRITE(ah, AR_CR, AR_CR_RXD);
560	REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
561	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
562	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
563	REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
564	REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
565	REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
566	REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
567}
568
569static void ar9002_hw_tx99_stop(struct ath_hw *ah)
570{
571	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
572}
573
574void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
575{
576	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
577	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
578
579	priv_ops->set_rf_regs = NULL;
 
 
580	priv_ops->rf_set_freq = ar9002_hw_set_channel;
581	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
582	priv_ops->olc_init = ar9002_olc_init;
583	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
584	priv_ops->do_getnf = ar9002_hw_do_getnf;
585
586	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
587	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
588	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
589	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
590	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
591
592#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
593	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
594#endif
595	ops->tx99_start = ar9002_hw_tx99_start;
596	ops->tx99_stop = ar9002_hw_tx99_stop;
597
598	ar9002_hw_set_nf_limits(ah);
599}