Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   2 * sungem.c: Sun GEM ethernet driver.
   3 *
   4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   5 *
   6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
   9 *
  10 * NAPI and NETPOLL support
  11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12 *
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/types.h>
  20#include <linux/fcntl.h>
  21#include <linux/interrupt.h>
  22#include <linux/ioport.h>
  23#include <linux/in.h>
  24#include <linux/sched.h>
  25#include <linux/string.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36#include <linux/crc32.h>
  37#include <linux/random.h>
  38#include <linux/workqueue.h>
  39#include <linux/if_vlan.h>
  40#include <linux/bitops.h>
  41#include <linux/mm.h>
  42#include <linux/gfp.h>
  43
  44#include <asm/io.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <asm/irq.h>
  48
  49#ifdef CONFIG_SPARC
  50#include <asm/idprom.h>
  51#include <asm/prom.h>
  52#endif
  53
  54#ifdef CONFIG_PPC_PMAC
  55#include <asm/pci-bridge.h>
  56#include <asm/prom.h>
  57#include <asm/machdep.h>
  58#include <asm/pmac_feature.h>
  59#endif
  60
  61#include <linux/sungem_phy.h>
  62#include "sungem.h"
  63
  64/* Stripping FCS is causing problems, disabled for now */
  65#undef STRIP_FCS
  66
  67#define DEFAULT_MSG	(NETIF_MSG_DRV		| \
  68			 NETIF_MSG_PROBE	| \
  69			 NETIF_MSG_LINK)
  70
  71#define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  72			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  73			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  74			 SUPPORTED_Pause | SUPPORTED_Autoneg)
  75
  76#define DRV_NAME	"sungem"
  77#define DRV_VERSION	"1.0"
  78#define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
  79
  80static char version[] __devinitdata =
  81        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  82
  83MODULE_AUTHOR(DRV_AUTHOR);
  84MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  85MODULE_LICENSE("GPL");
  86
  87#define GEM_MODULE_NAME	"gem"
  88
  89static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  90	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  91	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  92
  93	/* These models only differ from the original GEM in
  94	 * that their tx/rx fifos are of a different size and
  95	 * they only support 10/100 speeds. -DaveM
  96	 *
  97	 * Apple's GMAC does support gigabit on machines with
  98	 * the BCM54xx PHYs. -BenH
  99	 */
 100	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
 101	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 102	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 103	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 104	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 105	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 106	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 107	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 108	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 109	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 110	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 111	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 112	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 113	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 114	{0, }
 115};
 116
 117MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 118
 119static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
 120{
 121	u32 cmd;
 122	int limit = 10000;
 123
 124	cmd  = (1 << 30);
 125	cmd |= (2 << 28);
 126	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 127	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 128	cmd |= (MIF_FRAME_TAMSB);
 129	writel(cmd, gp->regs + MIF_FRAME);
 130
 131	while (--limit) {
 132		cmd = readl(gp->regs + MIF_FRAME);
 133		if (cmd & MIF_FRAME_TALSB)
 134			break;
 135
 136		udelay(10);
 137	}
 138
 139	if (!limit)
 140		cmd = 0xffff;
 141
 142	return cmd & MIF_FRAME_DATA;
 143}
 144
 145static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
 146{
 147	struct gem *gp = netdev_priv(dev);
 148	return __phy_read(gp, mii_id, reg);
 149}
 150
 151static inline u16 phy_read(struct gem *gp, int reg)
 152{
 153	return __phy_read(gp, gp->mii_phy_addr, reg);
 154}
 155
 156static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 157{
 158	u32 cmd;
 159	int limit = 10000;
 160
 161	cmd  = (1 << 30);
 162	cmd |= (1 << 28);
 163	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 164	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 165	cmd |= (MIF_FRAME_TAMSB);
 166	cmd |= (val & MIF_FRAME_DATA);
 167	writel(cmd, gp->regs + MIF_FRAME);
 168
 169	while (limit--) {
 170		cmd = readl(gp->regs + MIF_FRAME);
 171		if (cmd & MIF_FRAME_TALSB)
 172			break;
 173
 174		udelay(10);
 175	}
 176}
 177
 178static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
 179{
 180	struct gem *gp = netdev_priv(dev);
 181	__phy_write(gp, mii_id, reg, val & 0xffff);
 182}
 183
 184static inline void phy_write(struct gem *gp, int reg, u16 val)
 185{
 186	__phy_write(gp, gp->mii_phy_addr, reg, val);
 187}
 188
 189static inline void gem_enable_ints(struct gem *gp)
 190{
 191	/* Enable all interrupts but TXDONE */
 192	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 193}
 194
 195static inline void gem_disable_ints(struct gem *gp)
 196{
 197	/* Disable all interrupts, including TXDONE */
 198	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 199	(void)readl(gp->regs + GREG_IMASK); /* write posting */
 200}
 201
 202static void gem_get_cell(struct gem *gp)
 203{
 204	BUG_ON(gp->cell_enabled < 0);
 205	gp->cell_enabled++;
 206#ifdef CONFIG_PPC_PMAC
 207	if (gp->cell_enabled == 1) {
 208		mb();
 209		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 210		udelay(10);
 211	}
 212#endif /* CONFIG_PPC_PMAC */
 213}
 214
 215/* Turn off the chip's clock */
 216static void gem_put_cell(struct gem *gp)
 217{
 218	BUG_ON(gp->cell_enabled <= 0);
 219	gp->cell_enabled--;
 220#ifdef CONFIG_PPC_PMAC
 221	if (gp->cell_enabled == 0) {
 222		mb();
 223		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 224		udelay(10);
 225	}
 226#endif /* CONFIG_PPC_PMAC */
 227}
 228
 229static inline void gem_netif_stop(struct gem *gp)
 230{
 231	gp->dev->trans_start = jiffies;	/* prevent tx timeout */
 232	napi_disable(&gp->napi);
 233	netif_tx_disable(gp->dev);
 234}
 235
 236static inline void gem_netif_start(struct gem *gp)
 237{
 238	/* NOTE: unconditional netif_wake_queue is only
 239	 * appropriate so long as all callers are assured to
 240	 * have free tx slots.
 241	 */
 242	netif_wake_queue(gp->dev);
 243	napi_enable(&gp->napi);
 244}
 245
 246static void gem_schedule_reset(struct gem *gp)
 247{
 248	gp->reset_task_pending = 1;
 249	schedule_work(&gp->reset_task);
 250}
 251
 252static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 253{
 254	if (netif_msg_intr(gp))
 255		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 256}
 257
 258static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 259{
 260	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 261	u32 pcs_miistat;
 262
 263	if (netif_msg_intr(gp))
 264		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 265			gp->dev->name, pcs_istat);
 266
 267	if (!(pcs_istat & PCS_ISTAT_LSC)) {
 268		netdev_err(dev, "PCS irq but no link status change???\n");
 269		return 0;
 270	}
 271
 272	/* The link status bit latches on zero, so you must
 273	 * read it twice in such a case to see a transition
 274	 * to the link being up.
 275	 */
 276	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 277	if (!(pcs_miistat & PCS_MIISTAT_LS))
 278		pcs_miistat |=
 279			(readl(gp->regs + PCS_MIISTAT) &
 280			 PCS_MIISTAT_LS);
 281
 282	if (pcs_miistat & PCS_MIISTAT_ANC) {
 283		/* The remote-fault indication is only valid
 284		 * when autoneg has completed.
 285		 */
 286		if (pcs_miistat & PCS_MIISTAT_RF)
 287			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
 288		else
 289			netdev_info(dev, "PCS AutoNEG complete\n");
 290	}
 291
 292	if (pcs_miistat & PCS_MIISTAT_LS) {
 293		netdev_info(dev, "PCS link is now up\n");
 294		netif_carrier_on(gp->dev);
 295	} else {
 296		netdev_info(dev, "PCS link is now down\n");
 297		netif_carrier_off(gp->dev);
 298		/* If this happens and the link timer is not running,
 299		 * reset so we re-negotiate.
 300		 */
 301		if (!timer_pending(&gp->link_timer))
 302			return 1;
 303	}
 304
 305	return 0;
 306}
 307
 308static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 309{
 310	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 311
 312	if (netif_msg_intr(gp))
 313		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 314			gp->dev->name, txmac_stat);
 315
 316	/* Defer timer expiration is quite normal,
 317	 * don't even log the event.
 318	 */
 319	if ((txmac_stat & MAC_TXSTAT_DTE) &&
 320	    !(txmac_stat & ~MAC_TXSTAT_DTE))
 321		return 0;
 322
 323	if (txmac_stat & MAC_TXSTAT_URUN) {
 324		netdev_err(dev, "TX MAC xmit underrun\n");
 325		dev->stats.tx_fifo_errors++;
 326	}
 327
 328	if (txmac_stat & MAC_TXSTAT_MPE) {
 329		netdev_err(dev, "TX MAC max packet size error\n");
 330		dev->stats.tx_errors++;
 331	}
 332
 333	/* The rest are all cases of one of the 16-bit TX
 334	 * counters expiring.
 335	 */
 336	if (txmac_stat & MAC_TXSTAT_NCE)
 337		dev->stats.collisions += 0x10000;
 338
 339	if (txmac_stat & MAC_TXSTAT_ECE) {
 340		dev->stats.tx_aborted_errors += 0x10000;
 341		dev->stats.collisions += 0x10000;
 342	}
 343
 344	if (txmac_stat & MAC_TXSTAT_LCE) {
 345		dev->stats.tx_aborted_errors += 0x10000;
 346		dev->stats.collisions += 0x10000;
 347	}
 348
 349	/* We do not keep track of MAC_TXSTAT_FCE and
 350	 * MAC_TXSTAT_PCE events.
 351	 */
 352	return 0;
 353}
 354
 355/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 356 * so we do the following.
 357 *
 358 * If any part of the reset goes wrong, we return 1 and that causes the
 359 * whole chip to be reset.
 360 */
 361static int gem_rxmac_reset(struct gem *gp)
 362{
 363	struct net_device *dev = gp->dev;
 364	int limit, i;
 365	u64 desc_dma;
 366	u32 val;
 367
 368	/* First, reset & disable MAC RX. */
 369	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 370	for (limit = 0; limit < 5000; limit++) {
 371		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 372			break;
 373		udelay(10);
 374	}
 375	if (limit == 5000) {
 376		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
 377		return 1;
 378	}
 379
 380	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 381	       gp->regs + MAC_RXCFG);
 382	for (limit = 0; limit < 5000; limit++) {
 383		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 384			break;
 385		udelay(10);
 386	}
 387	if (limit == 5000) {
 388		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 389		return 1;
 390	}
 391
 392	/* Second, disable RX DMA. */
 393	writel(0, gp->regs + RXDMA_CFG);
 394	for (limit = 0; limit < 5000; limit++) {
 395		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 396			break;
 397		udelay(10);
 398	}
 399	if (limit == 5000) {
 400		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 401		return 1;
 402	}
 403
 404	mdelay(5);
 405
 406	/* Execute RX reset command. */
 407	writel(gp->swrst_base | GREG_SWRST_RXRST,
 408	       gp->regs + GREG_SWRST);
 409	for (limit = 0; limit < 5000; limit++) {
 410		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 411			break;
 412		udelay(10);
 413	}
 414	if (limit == 5000) {
 415		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 416		return 1;
 417	}
 418
 419	/* Refresh the RX ring. */
 420	for (i = 0; i < RX_RING_SIZE; i++) {
 421		struct gem_rxd *rxd = &gp->init_block->rxd[i];
 422
 423		if (gp->rx_skbs[i] == NULL) {
 424			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
 425			return 1;
 426		}
 427
 428		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 429	}
 430	gp->rx_new = gp->rx_old = 0;
 431
 432	/* Now we must reprogram the rest of RX unit. */
 433	desc_dma = (u64) gp->gblock_dvma;
 434	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 435	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 436	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 437	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 438	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 439	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
 440	writel(val, gp->regs + RXDMA_CFG);
 441	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 442		writel(((5 & RXDMA_BLANK_IPKTS) |
 443			((8 << 12) & RXDMA_BLANK_ITIME)),
 444		       gp->regs + RXDMA_BLANK);
 445	else
 446		writel(((5 & RXDMA_BLANK_IPKTS) |
 447			((4 << 12) & RXDMA_BLANK_ITIME)),
 448		       gp->regs + RXDMA_BLANK);
 449	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 450	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 451	writel(val, gp->regs + RXDMA_PTHRESH);
 452	val = readl(gp->regs + RXDMA_CFG);
 453	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 454	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 455	val = readl(gp->regs + MAC_RXCFG);
 456	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 457
 458	return 0;
 459}
 460
 461static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 462{
 463	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 464	int ret = 0;
 465
 466	if (netif_msg_intr(gp))
 467		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 468			gp->dev->name, rxmac_stat);
 469
 470	if (rxmac_stat & MAC_RXSTAT_OFLW) {
 471		u32 smac = readl(gp->regs + MAC_SMACHINE);
 472
 473		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
 474		dev->stats.rx_over_errors++;
 475		dev->stats.rx_fifo_errors++;
 476
 477		ret = gem_rxmac_reset(gp);
 478	}
 479
 480	if (rxmac_stat & MAC_RXSTAT_ACE)
 481		dev->stats.rx_frame_errors += 0x10000;
 482
 483	if (rxmac_stat & MAC_RXSTAT_CCE)
 484		dev->stats.rx_crc_errors += 0x10000;
 485
 486	if (rxmac_stat & MAC_RXSTAT_LCE)
 487		dev->stats.rx_length_errors += 0x10000;
 488
 489	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 490	 * events.
 491	 */
 492	return ret;
 493}
 494
 495static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 496{
 497	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 498
 499	if (netif_msg_intr(gp))
 500		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 501			gp->dev->name, mac_cstat);
 502
 503	/* This interrupt is just for pause frame and pause
 504	 * tracking.  It is useful for diagnostics and debug
 505	 * but probably by default we will mask these events.
 506	 */
 507	if (mac_cstat & MAC_CSTAT_PS)
 508		gp->pause_entered++;
 509
 510	if (mac_cstat & MAC_CSTAT_PRCV)
 511		gp->pause_last_time_recvd = (mac_cstat >> 16);
 512
 513	return 0;
 514}
 515
 516static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 517{
 518	u32 mif_status = readl(gp->regs + MIF_STATUS);
 519	u32 reg_val, changed_bits;
 520
 521	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 522	changed_bits = (mif_status & MIF_STATUS_STAT);
 523
 524	gem_handle_mif_event(gp, reg_val, changed_bits);
 525
 526	return 0;
 527}
 528
 529static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 530{
 531	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 532
 533	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 534	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 535		netdev_err(dev, "PCI error [%04x]", pci_estat);
 536
 537		if (pci_estat & GREG_PCIESTAT_BADACK)
 538			pr_cont(" <No ACK64# during ABS64 cycle>");
 539		if (pci_estat & GREG_PCIESTAT_DTRTO)
 540			pr_cont(" <Delayed transaction timeout>");
 541		if (pci_estat & GREG_PCIESTAT_OTHER)
 542			pr_cont(" <other>");
 543		pr_cont("\n");
 544	} else {
 545		pci_estat |= GREG_PCIESTAT_OTHER;
 546		netdev_err(dev, "PCI error\n");
 547	}
 548
 549	if (pci_estat & GREG_PCIESTAT_OTHER) {
 550		u16 pci_cfg_stat;
 551
 552		/* Interrogate PCI config space for the
 553		 * true cause.
 554		 */
 555		pci_read_config_word(gp->pdev, PCI_STATUS,
 556				     &pci_cfg_stat);
 557		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
 558			   pci_cfg_stat);
 559		if (pci_cfg_stat & PCI_STATUS_PARITY)
 560			netdev_err(dev, "PCI parity error detected\n");
 561		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
 562			netdev_err(dev, "PCI target abort\n");
 563		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
 564			netdev_err(dev, "PCI master acks target abort\n");
 565		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
 566			netdev_err(dev, "PCI master abort\n");
 567		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
 568			netdev_err(dev, "PCI system error SERR#\n");
 569		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
 570			netdev_err(dev, "PCI parity error\n");
 571
 572		/* Write the error bits back to clear them. */
 573		pci_cfg_stat &= (PCI_STATUS_PARITY |
 574				 PCI_STATUS_SIG_TARGET_ABORT |
 575				 PCI_STATUS_REC_TARGET_ABORT |
 576				 PCI_STATUS_REC_MASTER_ABORT |
 577				 PCI_STATUS_SIG_SYSTEM_ERROR |
 578				 PCI_STATUS_DETECTED_PARITY);
 579		pci_write_config_word(gp->pdev,
 580				      PCI_STATUS, pci_cfg_stat);
 581	}
 582
 583	/* For all PCI errors, we should reset the chip. */
 584	return 1;
 585}
 586
 587/* All non-normal interrupt conditions get serviced here.
 588 * Returns non-zero if we should just exit the interrupt
 589 * handler right now (ie. if we reset the card which invalidates
 590 * all of the other original irq status bits).
 591 */
 592static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 593{
 594	if (gem_status & GREG_STAT_RXNOBUF) {
 595		/* Frame arrived, no free RX buffers available. */
 596		if (netif_msg_rx_err(gp))
 597			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 598				gp->dev->name);
 599		dev->stats.rx_dropped++;
 600	}
 601
 602	if (gem_status & GREG_STAT_RXTAGERR) {
 603		/* corrupt RX tag framing */
 604		if (netif_msg_rx_err(gp))
 605			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 606				gp->dev->name);
 607		dev->stats.rx_errors++;
 608
 609		return 1;
 610	}
 611
 612	if (gem_status & GREG_STAT_PCS) {
 613		if (gem_pcs_interrupt(dev, gp, gem_status))
 614			return 1;
 615	}
 616
 617	if (gem_status & GREG_STAT_TXMAC) {
 618		if (gem_txmac_interrupt(dev, gp, gem_status))
 619			return 1;
 620	}
 621
 622	if (gem_status & GREG_STAT_RXMAC) {
 623		if (gem_rxmac_interrupt(dev, gp, gem_status))
 624			return 1;
 625	}
 626
 627	if (gem_status & GREG_STAT_MAC) {
 628		if (gem_mac_interrupt(dev, gp, gem_status))
 629			return 1;
 630	}
 631
 632	if (gem_status & GREG_STAT_MIF) {
 633		if (gem_mif_interrupt(dev, gp, gem_status))
 634			return 1;
 635	}
 636
 637	if (gem_status & GREG_STAT_PCIERR) {
 638		if (gem_pci_interrupt(dev, gp, gem_status))
 639			return 1;
 640	}
 641
 642	return 0;
 643}
 644
 645static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 646{
 647	int entry, limit;
 648
 649	entry = gp->tx_old;
 650	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 651	while (entry != limit) {
 652		struct sk_buff *skb;
 653		struct gem_txd *txd;
 654		dma_addr_t dma_addr;
 655		u32 dma_len;
 656		int frag;
 657
 658		if (netif_msg_tx_done(gp))
 659			printk(KERN_DEBUG "%s: tx done, slot %d\n",
 660				gp->dev->name, entry);
 661		skb = gp->tx_skbs[entry];
 662		if (skb_shinfo(skb)->nr_frags) {
 663			int last = entry + skb_shinfo(skb)->nr_frags;
 664			int walk = entry;
 665			int incomplete = 0;
 666
 667			last &= (TX_RING_SIZE - 1);
 668			for (;;) {
 669				walk = NEXT_TX(walk);
 670				if (walk == limit)
 671					incomplete = 1;
 672				if (walk == last)
 673					break;
 674			}
 675			if (incomplete)
 676				break;
 677		}
 678		gp->tx_skbs[entry] = NULL;
 679		dev->stats.tx_bytes += skb->len;
 680
 681		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 682			txd = &gp->init_block->txd[entry];
 683
 684			dma_addr = le64_to_cpu(txd->buffer);
 685			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 686
 687			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
 688			entry = NEXT_TX(entry);
 689		}
 690
 691		dev->stats.tx_packets++;
 692		dev_kfree_skb(skb);
 693	}
 694	gp->tx_old = entry;
 695
 696	/* Need to make the tx_old update visible to gem_start_xmit()
 697	 * before checking for netif_queue_stopped().  Without the
 698	 * memory barrier, there is a small possibility that gem_start_xmit()
 699	 * will miss it and cause the queue to be stopped forever.
 700	 */
 701	smp_mb();
 702
 703	if (unlikely(netif_queue_stopped(dev) &&
 704		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
 705		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 706
 707		__netif_tx_lock(txq, smp_processor_id());
 708		if (netif_queue_stopped(dev) &&
 709		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 710			netif_wake_queue(dev);
 711		__netif_tx_unlock(txq);
 712	}
 713}
 714
 715static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 716{
 717	int cluster_start, curr, count, kick;
 718
 719	cluster_start = curr = (gp->rx_new & ~(4 - 1));
 720	count = 0;
 721	kick = -1;
 722	wmb();
 723	while (curr != limit) {
 724		curr = NEXT_RX(curr);
 725		if (++count == 4) {
 726			struct gem_rxd *rxd =
 727				&gp->init_block->rxd[cluster_start];
 728			for (;;) {
 729				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 730				rxd++;
 731				cluster_start = NEXT_RX(cluster_start);
 732				if (cluster_start == curr)
 733					break;
 734			}
 735			kick = curr;
 736			count = 0;
 737		}
 738	}
 739	if (kick >= 0) {
 740		mb();
 741		writel(kick, gp->regs + RXDMA_KICK);
 742	}
 743}
 744
 745#define ALIGNED_RX_SKB_ADDR(addr) \
 746        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
 747static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
 748						gfp_t gfp_flags)
 749{
 750	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
 751
 752	if (likely(skb)) {
 753		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
 754		skb_reserve(skb, offset);
 755		skb->dev = dev;
 756	}
 757	return skb;
 758}
 759
 760static int gem_rx(struct gem *gp, int work_to_do)
 761{
 762	struct net_device *dev = gp->dev;
 763	int entry, drops, work_done = 0;
 764	u32 done;
 765	__sum16 csum;
 766
 767	if (netif_msg_rx_status(gp))
 768		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 769			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 770
 771	entry = gp->rx_new;
 772	drops = 0;
 773	done = readl(gp->regs + RXDMA_DONE);
 774	for (;;) {
 775		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 776		struct sk_buff *skb;
 777		u64 status = le64_to_cpu(rxd->status_word);
 778		dma_addr_t dma_addr;
 779		int len;
 780
 781		if ((status & RXDCTRL_OWN) != 0)
 782			break;
 783
 784		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 785			break;
 786
 787		/* When writing back RX descriptor, GEM writes status
 788		 * then buffer address, possibly in separate transactions.
 789		 * If we don't wait for the chip to write both, we could
 790		 * post a new buffer to this descriptor then have GEM spam
 791		 * on the buffer address.  We sync on the RX completion
 792		 * register to prevent this from happening.
 793		 */
 794		if (entry == done) {
 795			done = readl(gp->regs + RXDMA_DONE);
 796			if (entry == done)
 797				break;
 798		}
 799
 800		/* We can now account for the work we're about to do */
 801		work_done++;
 802
 803		skb = gp->rx_skbs[entry];
 804
 805		len = (status & RXDCTRL_BUFSZ) >> 16;
 806		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 807			dev->stats.rx_errors++;
 808			if (len < ETH_ZLEN)
 809				dev->stats.rx_length_errors++;
 810			if (len & RXDCTRL_BAD)
 811				dev->stats.rx_crc_errors++;
 812
 813			/* We'll just return it to GEM. */
 814		drop_it:
 815			dev->stats.rx_dropped++;
 816			goto next;
 817		}
 818
 819		dma_addr = le64_to_cpu(rxd->buffer);
 820		if (len > RX_COPY_THRESHOLD) {
 821			struct sk_buff *new_skb;
 822
 823			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 824			if (new_skb == NULL) {
 825				drops++;
 826				goto drop_it;
 827			}
 828			pci_unmap_page(gp->pdev, dma_addr,
 829				       RX_BUF_ALLOC_SIZE(gp),
 830				       PCI_DMA_FROMDEVICE);
 831			gp->rx_skbs[entry] = new_skb;
 832			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 833			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
 834							       virt_to_page(new_skb->data),
 835							       offset_in_page(new_skb->data),
 836							       RX_BUF_ALLOC_SIZE(gp),
 837							       PCI_DMA_FROMDEVICE));
 838			skb_reserve(new_skb, RX_OFFSET);
 839
 840			/* Trim the original skb for the netif. */
 841			skb_trim(skb, len);
 842		} else {
 843			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 844
 845			if (copy_skb == NULL) {
 846				drops++;
 847				goto drop_it;
 848			}
 849
 850			skb_reserve(copy_skb, 2);
 851			skb_put(copy_skb, len);
 852			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 853			skb_copy_from_linear_data(skb, copy_skb->data, len);
 854			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 855
 856			/* We'll reuse the original ring buffer. */
 857			skb = copy_skb;
 858		}
 859
 860		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 861		skb->csum = csum_unfold(csum);
 862		skb->ip_summed = CHECKSUM_COMPLETE;
 863		skb->protocol = eth_type_trans(skb, gp->dev);
 864
 865		napi_gro_receive(&gp->napi, skb);
 866
 867		dev->stats.rx_packets++;
 868		dev->stats.rx_bytes += len;
 869
 870	next:
 871		entry = NEXT_RX(entry);
 872	}
 873
 874	gem_post_rxds(gp, entry);
 875
 876	gp->rx_new = entry;
 877
 878	if (drops)
 879		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
 880
 881	return work_done;
 882}
 883
 884static int gem_poll(struct napi_struct *napi, int budget)
 885{
 886	struct gem *gp = container_of(napi, struct gem, napi);
 887	struct net_device *dev = gp->dev;
 888	int work_done;
 889
 890	work_done = 0;
 891	do {
 892		/* Handle anomalies */
 893		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
 894			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 895			int reset;
 896
 897			/* We run the abnormal interrupt handling code with
 898			 * the Tx lock. It only resets the Rx portion of the
 899			 * chip, but we need to guard it against DMA being
 900			 * restarted by the link poll timer
 901			 */
 902			__netif_tx_lock(txq, smp_processor_id());
 903			reset = gem_abnormal_irq(dev, gp, gp->status);
 904			__netif_tx_unlock(txq);
 905			if (reset) {
 906				gem_schedule_reset(gp);
 907				napi_complete(napi);
 908				return work_done;
 909			}
 910		}
 911
 912		/* Run TX completion thread */
 913		gem_tx(dev, gp, gp->status);
 914
 915		/* Run RX thread. We don't use any locking here,
 916		 * code willing to do bad things - like cleaning the
 917		 * rx ring - must call napi_disable(), which
 918		 * schedule_timeout()'s if polling is already disabled.
 919		 */
 920		work_done += gem_rx(gp, budget - work_done);
 921
 922		if (work_done >= budget)
 923			return work_done;
 924
 925		gp->status = readl(gp->regs + GREG_STAT);
 926	} while (gp->status & GREG_STAT_NAPI);
 927
 928	napi_complete(napi);
 929	gem_enable_ints(gp);
 930
 931	return work_done;
 932}
 933
 934static irqreturn_t gem_interrupt(int irq, void *dev_id)
 935{
 936	struct net_device *dev = dev_id;
 937	struct gem *gp = netdev_priv(dev);
 938
 939	if (napi_schedule_prep(&gp->napi)) {
 940		u32 gem_status = readl(gp->regs + GREG_STAT);
 941
 942		if (unlikely(gem_status == 0)) {
 943			napi_enable(&gp->napi);
 944			return IRQ_NONE;
 945		}
 946		if (netif_msg_intr(gp))
 947			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
 948			       gp->dev->name, gem_status);
 949
 950		gp->status = gem_status;
 951		gem_disable_ints(gp);
 952		__napi_schedule(&gp->napi);
 953	}
 954
 955	/* If polling was disabled at the time we received that
 956	 * interrupt, we may return IRQ_HANDLED here while we
 957	 * should return IRQ_NONE. No big deal...
 958	 */
 959	return IRQ_HANDLED;
 960}
 961
 962#ifdef CONFIG_NET_POLL_CONTROLLER
 963static void gem_poll_controller(struct net_device *dev)
 964{
 965	struct gem *gp = netdev_priv(dev);
 966
 967	disable_irq(gp->pdev->irq);
 968	gem_interrupt(gp->pdev->irq, dev);
 969	enable_irq(gp->pdev->irq);
 970}
 971#endif
 972
 973static void gem_tx_timeout(struct net_device *dev)
 974{
 975	struct gem *gp = netdev_priv(dev);
 976
 977	netdev_err(dev, "transmit timed out, resetting\n");
 978
 979	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
 980		   readl(gp->regs + TXDMA_CFG),
 981		   readl(gp->regs + MAC_TXSTAT),
 982		   readl(gp->regs + MAC_TXCFG));
 983	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 984		   readl(gp->regs + RXDMA_CFG),
 985		   readl(gp->regs + MAC_RXSTAT),
 986		   readl(gp->regs + MAC_RXCFG));
 987
 988	gem_schedule_reset(gp);
 989}
 990
 991static __inline__ int gem_intme(int entry)
 992{
 993	/* Algorithm: IRQ every 1/2 of descriptors. */
 994	if (!(entry & ((TX_RING_SIZE>>1)-1)))
 995		return 1;
 996
 997	return 0;
 998}
 999
1000static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001				  struct net_device *dev)
1002{
1003	struct gem *gp = netdev_priv(dev);
1004	int entry;
1005	u64 ctrl;
1006
1007	ctrl = 0;
1008	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009		const u64 csum_start_off = skb_checksum_start_offset(skb);
1010		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011
1012		ctrl = (TXDCTRL_CENAB |
1013			(csum_start_off << 15) |
1014			(csum_stuff_off << 21));
1015	}
1016
1017	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018		/* This is a hard error, log it. */
1019		if (!netif_queue_stopped(dev)) {
1020			netif_stop_queue(dev);
1021			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1022		}
1023		return NETDEV_TX_BUSY;
1024	}
1025
1026	entry = gp->tx_new;
1027	gp->tx_skbs[entry] = skb;
1028
1029	if (skb_shinfo(skb)->nr_frags == 0) {
1030		struct gem_txd *txd = &gp->init_block->txd[entry];
1031		dma_addr_t mapping;
1032		u32 len;
1033
1034		len = skb->len;
1035		mapping = pci_map_page(gp->pdev,
1036				       virt_to_page(skb->data),
1037				       offset_in_page(skb->data),
1038				       len, PCI_DMA_TODEVICE);
1039		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040		if (gem_intme(entry))
1041			ctrl |= TXDCTRL_INTME;
1042		txd->buffer = cpu_to_le64(mapping);
1043		wmb();
1044		txd->control_word = cpu_to_le64(ctrl);
1045		entry = NEXT_TX(entry);
1046	} else {
1047		struct gem_txd *txd;
1048		u32 first_len;
1049		u64 intme;
1050		dma_addr_t first_mapping;
1051		int frag, first_entry = entry;
1052
1053		intme = 0;
1054		if (gem_intme(entry))
1055			intme |= TXDCTRL_INTME;
1056
1057		/* We must give this initial chunk to the device last.
1058		 * Otherwise we could race with the device.
1059		 */
1060		first_len = skb_headlen(skb);
1061		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1062					     offset_in_page(skb->data),
1063					     first_len, PCI_DMA_TODEVICE);
1064		entry = NEXT_TX(entry);
1065
1066		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068			u32 len;
1069			dma_addr_t mapping;
1070			u64 this_ctrl;
1071
1072			len = skb_frag_size(this_frag);
1073			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1074						   0, len, DMA_TO_DEVICE);
1075			this_ctrl = ctrl;
1076			if (frag == skb_shinfo(skb)->nr_frags - 1)
1077				this_ctrl |= TXDCTRL_EOF;
1078
1079			txd = &gp->init_block->txd[entry];
1080			txd->buffer = cpu_to_le64(mapping);
1081			wmb();
1082			txd->control_word = cpu_to_le64(this_ctrl | len);
1083
1084			if (gem_intme(entry))
1085				intme |= TXDCTRL_INTME;
1086
1087			entry = NEXT_TX(entry);
1088		}
1089		txd = &gp->init_block->txd[first_entry];
1090		txd->buffer = cpu_to_le64(first_mapping);
1091		wmb();
1092		txd->control_word =
1093			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1094	}
1095
1096	gp->tx_new = entry;
1097	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1098		netif_stop_queue(dev);
1099
1100		/* netif_stop_queue() must be done before checking
1101		 * checking tx index in TX_BUFFS_AVAIL() below, because
1102		 * in gem_tx(), we update tx_old before checking for
1103		 * netif_queue_stopped().
1104		 */
1105		smp_mb();
1106		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1107			netif_wake_queue(dev);
1108	}
1109	if (netif_msg_tx_queued(gp))
1110		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1111		       dev->name, entry, skb->len);
1112	mb();
1113	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1114
1115	return NETDEV_TX_OK;
1116}
1117
1118static void gem_pcs_reset(struct gem *gp)
1119{
1120	int limit;
1121	u32 val;
1122
1123	/* Reset PCS unit. */
1124	val = readl(gp->regs + PCS_MIICTRL);
1125	val |= PCS_MIICTRL_RST;
1126	writel(val, gp->regs + PCS_MIICTRL);
1127
1128	limit = 32;
1129	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1130		udelay(100);
1131		if (limit-- <= 0)
1132			break;
1133	}
1134	if (limit < 0)
1135		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1136}
1137
1138static void gem_pcs_reinit_adv(struct gem *gp)
1139{
1140	u32 val;
1141
1142	/* Make sure PCS is disabled while changing advertisement
1143	 * configuration.
1144	 */
1145	val = readl(gp->regs + PCS_CFG);
1146	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1147	writel(val, gp->regs + PCS_CFG);
1148
1149	/* Advertise all capabilities except asymmetric
1150	 * pause.
1151	 */
1152	val = readl(gp->regs + PCS_MIIADV);
1153	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1154		PCS_MIIADV_SP | PCS_MIIADV_AP);
1155	writel(val, gp->regs + PCS_MIIADV);
1156
1157	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1158	 * and re-enable PCS.
1159	 */
1160	val = readl(gp->regs + PCS_MIICTRL);
1161	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1162	val &= ~PCS_MIICTRL_WB;
1163	writel(val, gp->regs + PCS_MIICTRL);
1164
1165	val = readl(gp->regs + PCS_CFG);
1166	val |= PCS_CFG_ENABLE;
1167	writel(val, gp->regs + PCS_CFG);
1168
1169	/* Make sure serialink loopback is off.  The meaning
1170	 * of this bit is logically inverted based upon whether
1171	 * you are in Serialink or SERDES mode.
1172	 */
1173	val = readl(gp->regs + PCS_SCTRL);
1174	if (gp->phy_type == phy_serialink)
1175		val &= ~PCS_SCTRL_LOOP;
1176	else
1177		val |= PCS_SCTRL_LOOP;
1178	writel(val, gp->regs + PCS_SCTRL);
1179}
1180
1181#define STOP_TRIES 32
1182
1183static void gem_reset(struct gem *gp)
1184{
1185	int limit;
1186	u32 val;
1187
1188	/* Make sure we won't get any more interrupts */
1189	writel(0xffffffff, gp->regs + GREG_IMASK);
1190
1191	/* Reset the chip */
1192	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1193	       gp->regs + GREG_SWRST);
1194
1195	limit = STOP_TRIES;
1196
1197	do {
1198		udelay(20);
1199		val = readl(gp->regs + GREG_SWRST);
1200		if (limit-- <= 0)
1201			break;
1202	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1203
1204	if (limit < 0)
1205		netdev_err(gp->dev, "SW reset is ghetto\n");
1206
1207	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1208		gem_pcs_reinit_adv(gp);
1209}
1210
1211static void gem_start_dma(struct gem *gp)
1212{
1213	u32 val;
1214
1215	/* We are ready to rock, turn everything on. */
1216	val = readl(gp->regs + TXDMA_CFG);
1217	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1218	val = readl(gp->regs + RXDMA_CFG);
1219	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1220	val = readl(gp->regs + MAC_TXCFG);
1221	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1222	val = readl(gp->regs + MAC_RXCFG);
1223	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1224
1225	(void) readl(gp->regs + MAC_RXCFG);
1226	udelay(100);
1227
1228	gem_enable_ints(gp);
1229
1230	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1231}
1232
1233/* DMA won't be actually stopped before about 4ms tho ...
1234 */
1235static void gem_stop_dma(struct gem *gp)
1236{
1237	u32 val;
1238
1239	/* We are done rocking, turn everything off. */
1240	val = readl(gp->regs + TXDMA_CFG);
1241	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1242	val = readl(gp->regs + RXDMA_CFG);
1243	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1244	val = readl(gp->regs + MAC_TXCFG);
1245	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1246	val = readl(gp->regs + MAC_RXCFG);
1247	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1248
1249	(void) readl(gp->regs + MAC_RXCFG);
1250
1251	/* Need to wait a bit ... done by the caller */
1252}
1253
1254
1255// XXX dbl check what that function should do when called on PCS PHY
1256static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1257{
1258	u32 advertise, features;
1259	int autoneg;
1260	int speed;
1261	int duplex;
1262
1263	if (gp->phy_type != phy_mii_mdio0 &&
1264     	    gp->phy_type != phy_mii_mdio1)
1265     	    	goto non_mii;
1266
1267	/* Setup advertise */
1268	if (found_mii_phy(gp))
1269		features = gp->phy_mii.def->features;
1270	else
1271		features = 0;
1272
1273	advertise = features & ADVERTISE_MASK;
1274	if (gp->phy_mii.advertising != 0)
1275		advertise &= gp->phy_mii.advertising;
1276
1277	autoneg = gp->want_autoneg;
1278	speed = gp->phy_mii.speed;
1279	duplex = gp->phy_mii.duplex;
1280
1281	/* Setup link parameters */
1282	if (!ep)
1283		goto start_aneg;
1284	if (ep->autoneg == AUTONEG_ENABLE) {
1285		advertise = ep->advertising;
1286		autoneg = 1;
1287	} else {
1288		autoneg = 0;
1289		speed = ethtool_cmd_speed(ep);
1290		duplex = ep->duplex;
1291	}
1292
1293start_aneg:
1294	/* Sanitize settings based on PHY capabilities */
1295	if ((features & SUPPORTED_Autoneg) == 0)
1296		autoneg = 0;
1297	if (speed == SPEED_1000 &&
1298	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1299		speed = SPEED_100;
1300	if (speed == SPEED_100 &&
1301	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1302		speed = SPEED_10;
1303	if (duplex == DUPLEX_FULL &&
1304	    !(features & (SUPPORTED_1000baseT_Full |
1305	    		  SUPPORTED_100baseT_Full |
1306	    		  SUPPORTED_10baseT_Full)))
1307	    	duplex = DUPLEX_HALF;
1308	if (speed == 0)
1309		speed = SPEED_10;
1310
1311	/* If we are asleep, we don't try to actually setup the PHY, we
1312	 * just store the settings
1313	 */
1314	if (!netif_device_present(gp->dev)) {
1315		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1316		gp->phy_mii.speed = speed;
1317		gp->phy_mii.duplex = duplex;
1318		return;
1319	}
1320
1321	/* Configure PHY & start aneg */
1322	gp->want_autoneg = autoneg;
1323	if (autoneg) {
1324		if (found_mii_phy(gp))
1325			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1326		gp->lstate = link_aneg;
1327	} else {
1328		if (found_mii_phy(gp))
1329			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1330		gp->lstate = link_force_ok;
1331	}
1332
1333non_mii:
1334	gp->timer_ticks = 0;
1335	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1336}
1337
1338/* A link-up condition has occurred, initialize and enable the
1339 * rest of the chip.
1340 */
1341static int gem_set_link_modes(struct gem *gp)
1342{
1343	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1344	int full_duplex, speed, pause;
1345	u32 val;
1346
1347	full_duplex = 0;
1348	speed = SPEED_10;
1349	pause = 0;
1350
1351	if (found_mii_phy(gp)) {
1352	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1353	    		return 1;
1354		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1355		speed = gp->phy_mii.speed;
1356		pause = gp->phy_mii.pause;
1357	} else if (gp->phy_type == phy_serialink ||
1358	    	   gp->phy_type == phy_serdes) {
1359		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1360
1361		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1362			full_duplex = 1;
1363		speed = SPEED_1000;
1364	}
1365
1366	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1367		   speed, (full_duplex ? "full" : "half"));
1368
1369
1370	/* We take the tx queue lock to avoid collisions between
1371	 * this code, the tx path and the NAPI-driven error path
1372	 */
1373	__netif_tx_lock(txq, smp_processor_id());
1374
1375	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1376	if (full_duplex) {
1377		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1378	} else {
1379		/* MAC_TXCFG_NBO must be zero. */
1380	}
1381	writel(val, gp->regs + MAC_TXCFG);
1382
1383	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1384	if (!full_duplex &&
1385	    (gp->phy_type == phy_mii_mdio0 ||
1386	     gp->phy_type == phy_mii_mdio1)) {
1387		val |= MAC_XIFCFG_DISE;
1388	} else if (full_duplex) {
1389		val |= MAC_XIFCFG_FLED;
1390	}
1391
1392	if (speed == SPEED_1000)
1393		val |= (MAC_XIFCFG_GMII);
1394
1395	writel(val, gp->regs + MAC_XIFCFG);
1396
1397	/* If gigabit and half-duplex, enable carrier extension
1398	 * mode.  Else, disable it.
1399	 */
1400	if (speed == SPEED_1000 && !full_duplex) {
1401		val = readl(gp->regs + MAC_TXCFG);
1402		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1403
1404		val = readl(gp->regs + MAC_RXCFG);
1405		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1406	} else {
1407		val = readl(gp->regs + MAC_TXCFG);
1408		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1409
1410		val = readl(gp->regs + MAC_RXCFG);
1411		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412	}
1413
1414	if (gp->phy_type == phy_serialink ||
1415	    gp->phy_type == phy_serdes) {
1416 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1417
1418		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1419			pause = 1;
1420	}
1421
1422	if (!full_duplex)
1423		writel(512, gp->regs + MAC_STIME);
1424	else
1425		writel(64, gp->regs + MAC_STIME);
1426	val = readl(gp->regs + MAC_MCCFG);
1427	if (pause)
1428		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1429	else
1430		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1431	writel(val, gp->regs + MAC_MCCFG);
1432
1433	gem_start_dma(gp);
1434
1435	__netif_tx_unlock(txq);
1436
1437	if (netif_msg_link(gp)) {
1438		if (pause) {
1439			netdev_info(gp->dev,
1440				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1441				    gp->rx_fifo_sz,
1442				    gp->rx_pause_off,
1443				    gp->rx_pause_on);
1444		} else {
1445			netdev_info(gp->dev, "Pause is disabled\n");
1446		}
1447	}
1448
1449	return 0;
1450}
1451
1452static int gem_mdio_link_not_up(struct gem *gp)
1453{
1454	switch (gp->lstate) {
1455	case link_force_ret:
1456		netif_info(gp, link, gp->dev,
1457			   "Autoneg failed again, keeping forced mode\n");
1458		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1459			gp->last_forced_speed, DUPLEX_HALF);
1460		gp->timer_ticks = 5;
1461		gp->lstate = link_force_ok;
1462		return 0;
1463	case link_aneg:
1464		/* We try forced modes after a failed aneg only on PHYs that don't
1465		 * have "magic_aneg" bit set, which means they internally do the
1466		 * while forced-mode thingy. On these, we just restart aneg
1467		 */
1468		if (gp->phy_mii.def->magic_aneg)
1469			return 1;
1470		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1471		/* Try forced modes. */
1472		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1473			DUPLEX_HALF);
1474		gp->timer_ticks = 5;
1475		gp->lstate = link_force_try;
1476		return 0;
1477	case link_force_try:
1478		/* Downgrade from 100 to 10 Mbps if necessary.
1479		 * If already at 10Mbps, warn user about the
1480		 * situation every 10 ticks.
1481		 */
1482		if (gp->phy_mii.speed == SPEED_100) {
1483			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1484				DUPLEX_HALF);
1485			gp->timer_ticks = 5;
1486			netif_info(gp, link, gp->dev,
1487				   "switching to forced 10bt\n");
1488			return 0;
1489		} else
1490			return 1;
1491	default:
1492		return 0;
1493	}
1494}
1495
1496static void gem_link_timer(unsigned long data)
1497{
1498	struct gem *gp = (struct gem *) data;
1499	struct net_device *dev = gp->dev;
1500	int restart_aneg = 0;
1501
1502	/* There's no point doing anything if we're going to be reset */
1503	if (gp->reset_task_pending)
1504		return;
1505
1506	if (gp->phy_type == phy_serialink ||
1507	    gp->phy_type == phy_serdes) {
1508		u32 val = readl(gp->regs + PCS_MIISTAT);
1509
1510		if (!(val & PCS_MIISTAT_LS))
1511			val = readl(gp->regs + PCS_MIISTAT);
1512
1513		if ((val & PCS_MIISTAT_LS) != 0) {
1514			if (gp->lstate == link_up)
1515				goto restart;
1516
1517			gp->lstate = link_up;
1518			netif_carrier_on(dev);
1519			(void)gem_set_link_modes(gp);
1520		}
1521		goto restart;
1522	}
1523	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1524		/* Ok, here we got a link. If we had it due to a forced
1525		 * fallback, and we were configured for autoneg, we do
1526		 * retry a short autoneg pass. If you know your hub is
1527		 * broken, use ethtool ;)
1528		 */
1529		if (gp->lstate == link_force_try && gp->want_autoneg) {
1530			gp->lstate = link_force_ret;
1531			gp->last_forced_speed = gp->phy_mii.speed;
1532			gp->timer_ticks = 5;
1533			if (netif_msg_link(gp))
1534				netdev_info(dev,
1535					    "Got link after fallback, retrying autoneg once...\n");
1536			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1537		} else if (gp->lstate != link_up) {
1538			gp->lstate = link_up;
1539			netif_carrier_on(dev);
1540			if (gem_set_link_modes(gp))
1541				restart_aneg = 1;
1542		}
1543	} else {
1544		/* If the link was previously up, we restart the
1545		 * whole process
1546		 */
1547		if (gp->lstate == link_up) {
1548			gp->lstate = link_down;
1549			netif_info(gp, link, dev, "Link down\n");
1550			netif_carrier_off(dev);
1551			gem_schedule_reset(gp);
1552			/* The reset task will restart the timer */
1553			return;
1554		} else if (++gp->timer_ticks > 10) {
1555			if (found_mii_phy(gp))
1556				restart_aneg = gem_mdio_link_not_up(gp);
1557			else
1558				restart_aneg = 1;
1559		}
1560	}
1561	if (restart_aneg) {
1562		gem_begin_auto_negotiation(gp, NULL);
1563		return;
1564	}
1565restart:
1566	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1567}
1568
1569static void gem_clean_rings(struct gem *gp)
1570{
1571	struct gem_init_block *gb = gp->init_block;
1572	struct sk_buff *skb;
1573	int i;
1574	dma_addr_t dma_addr;
1575
1576	for (i = 0; i < RX_RING_SIZE; i++) {
1577		struct gem_rxd *rxd;
1578
1579		rxd = &gb->rxd[i];
1580		if (gp->rx_skbs[i] != NULL) {
1581			skb = gp->rx_skbs[i];
1582			dma_addr = le64_to_cpu(rxd->buffer);
1583			pci_unmap_page(gp->pdev, dma_addr,
1584				       RX_BUF_ALLOC_SIZE(gp),
1585				       PCI_DMA_FROMDEVICE);
1586			dev_kfree_skb_any(skb);
1587			gp->rx_skbs[i] = NULL;
1588		}
1589		rxd->status_word = 0;
1590		wmb();
1591		rxd->buffer = 0;
1592	}
1593
1594	for (i = 0; i < TX_RING_SIZE; i++) {
1595		if (gp->tx_skbs[i] != NULL) {
1596			struct gem_txd *txd;
1597			int frag;
1598
1599			skb = gp->tx_skbs[i];
1600			gp->tx_skbs[i] = NULL;
1601
1602			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1603				int ent = i & (TX_RING_SIZE - 1);
1604
1605				txd = &gb->txd[ent];
1606				dma_addr = le64_to_cpu(txd->buffer);
1607				pci_unmap_page(gp->pdev, dma_addr,
1608					       le64_to_cpu(txd->control_word) &
1609					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1610
1611				if (frag != skb_shinfo(skb)->nr_frags)
1612					i++;
1613			}
1614			dev_kfree_skb_any(skb);
1615		}
1616	}
1617}
1618
1619static void gem_init_rings(struct gem *gp)
1620{
1621	struct gem_init_block *gb = gp->init_block;
1622	struct net_device *dev = gp->dev;
1623	int i;
1624	dma_addr_t dma_addr;
1625
1626	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1627
1628	gem_clean_rings(gp);
1629
1630	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1631			    (unsigned)VLAN_ETH_FRAME_LEN);
1632
1633	for (i = 0; i < RX_RING_SIZE; i++) {
1634		struct sk_buff *skb;
1635		struct gem_rxd *rxd = &gb->rxd[i];
1636
1637		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1638		if (!skb) {
1639			rxd->buffer = 0;
1640			rxd->status_word = 0;
1641			continue;
1642		}
1643
1644		gp->rx_skbs[i] = skb;
1645		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1646		dma_addr = pci_map_page(gp->pdev,
1647					virt_to_page(skb->data),
1648					offset_in_page(skb->data),
1649					RX_BUF_ALLOC_SIZE(gp),
1650					PCI_DMA_FROMDEVICE);
1651		rxd->buffer = cpu_to_le64(dma_addr);
1652		wmb();
1653		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1654		skb_reserve(skb, RX_OFFSET);
1655	}
1656
1657	for (i = 0; i < TX_RING_SIZE; i++) {
1658		struct gem_txd *txd = &gb->txd[i];
1659
1660		txd->control_word = 0;
1661		wmb();
1662		txd->buffer = 0;
1663	}
1664	wmb();
1665}
1666
1667/* Init PHY interface and start link poll state machine */
1668static void gem_init_phy(struct gem *gp)
1669{
1670	u32 mifcfg;
1671
1672	/* Revert MIF CFG setting done on stop_phy */
1673	mifcfg = readl(gp->regs + MIF_CFG);
1674	mifcfg &= ~MIF_CFG_BBMODE;
1675	writel(mifcfg, gp->regs + MIF_CFG);
1676
1677	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1678		int i;
1679
1680		/* Those delay sucks, the HW seem to love them though, I'll
1681		 * serisouly consider breaking some locks here to be able
1682		 * to schedule instead
1683		 */
1684		for (i = 0; i < 3; i++) {
1685#ifdef CONFIG_PPC_PMAC
1686			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1687			msleep(20);
1688#endif
1689			/* Some PHYs used by apple have problem getting back to us,
1690			 * we do an additional reset here
1691			 */
1692			phy_write(gp, MII_BMCR, BMCR_RESET);
1693			msleep(20);
1694			if (phy_read(gp, MII_BMCR) != 0xffff)
1695				break;
1696			if (i == 2)
1697				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1698		}
1699	}
1700
1701	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1702	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1703		u32 val;
1704
1705		/* Init datapath mode register. */
1706		if (gp->phy_type == phy_mii_mdio0 ||
1707		    gp->phy_type == phy_mii_mdio1) {
1708			val = PCS_DMODE_MGM;
1709		} else if (gp->phy_type == phy_serialink) {
1710			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1711		} else {
1712			val = PCS_DMODE_ESM;
1713		}
1714
1715		writel(val, gp->regs + PCS_DMODE);
1716	}
1717
1718	if (gp->phy_type == phy_mii_mdio0 ||
1719	    gp->phy_type == phy_mii_mdio1) {
1720		/* Reset and detect MII PHY */
1721		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1722
1723		/* Init PHY */
1724		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1725			gp->phy_mii.def->ops->init(&gp->phy_mii);
1726	} else {
1727		gem_pcs_reset(gp);
1728		gem_pcs_reinit_adv(gp);
1729	}
1730
1731	/* Default aneg parameters */
1732	gp->timer_ticks = 0;
1733	gp->lstate = link_down;
1734	netif_carrier_off(gp->dev);
1735
1736	/* Print things out */
1737	if (gp->phy_type == phy_mii_mdio0 ||
1738	    gp->phy_type == phy_mii_mdio1)
1739		netdev_info(gp->dev, "Found %s PHY\n",
1740			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1741
1742	gem_begin_auto_negotiation(gp, NULL);
1743}
1744
1745static void gem_init_dma(struct gem *gp)
1746{
1747	u64 desc_dma = (u64) gp->gblock_dvma;
1748	u32 val;
1749
1750	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1751	writel(val, gp->regs + TXDMA_CFG);
1752
1753	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1754	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1755	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1756
1757	writel(0, gp->regs + TXDMA_KICK);
1758
1759	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1760	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1761	writel(val, gp->regs + RXDMA_CFG);
1762
1763	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1764	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1765
1766	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1767
1768	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1769	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1770	writel(val, gp->regs + RXDMA_PTHRESH);
1771
1772	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1773		writel(((5 & RXDMA_BLANK_IPKTS) |
1774			((8 << 12) & RXDMA_BLANK_ITIME)),
1775		       gp->regs + RXDMA_BLANK);
1776	else
1777		writel(((5 & RXDMA_BLANK_IPKTS) |
1778			((4 << 12) & RXDMA_BLANK_ITIME)),
1779		       gp->regs + RXDMA_BLANK);
1780}
1781
1782static u32 gem_setup_multicast(struct gem *gp)
1783{
1784	u32 rxcfg = 0;
1785	int i;
1786
1787	if ((gp->dev->flags & IFF_ALLMULTI) ||
1788	    (netdev_mc_count(gp->dev) > 256)) {
1789	    	for (i=0; i<16; i++)
1790			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1791		rxcfg |= MAC_RXCFG_HFE;
1792	} else if (gp->dev->flags & IFF_PROMISC) {
1793		rxcfg |= MAC_RXCFG_PROM;
1794	} else {
1795		u16 hash_table[16];
1796		u32 crc;
1797		struct netdev_hw_addr *ha;
1798		int i;
1799
1800		memset(hash_table, 0, sizeof(hash_table));
1801		netdev_for_each_mc_addr(ha, gp->dev) {
1802			crc = ether_crc_le(6, ha->addr);
1803			crc >>= 24;
1804			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1805		}
1806	    	for (i=0; i<16; i++)
1807			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1808		rxcfg |= MAC_RXCFG_HFE;
1809	}
1810
1811	return rxcfg;
1812}
1813
1814static void gem_init_mac(struct gem *gp)
1815{
1816	unsigned char *e = &gp->dev->dev_addr[0];
1817
1818	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1819
1820	writel(0x00, gp->regs + MAC_IPG0);
1821	writel(0x08, gp->regs + MAC_IPG1);
1822	writel(0x04, gp->regs + MAC_IPG2);
1823	writel(0x40, gp->regs + MAC_STIME);
1824	writel(0x40, gp->regs + MAC_MINFSZ);
1825
1826	/* Ethernet payload + header + FCS + optional VLAN tag. */
1827	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1828
1829	writel(0x07, gp->regs + MAC_PASIZE);
1830	writel(0x04, gp->regs + MAC_JAMSIZE);
1831	writel(0x10, gp->regs + MAC_ATTLIM);
1832	writel(0x8808, gp->regs + MAC_MCTYPE);
1833
1834	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1835
1836	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1837	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1838	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1839
1840	writel(0, gp->regs + MAC_ADDR3);
1841	writel(0, gp->regs + MAC_ADDR4);
1842	writel(0, gp->regs + MAC_ADDR5);
1843
1844	writel(0x0001, gp->regs + MAC_ADDR6);
1845	writel(0xc200, gp->regs + MAC_ADDR7);
1846	writel(0x0180, gp->regs + MAC_ADDR8);
1847
1848	writel(0, gp->regs + MAC_AFILT0);
1849	writel(0, gp->regs + MAC_AFILT1);
1850	writel(0, gp->regs + MAC_AFILT2);
1851	writel(0, gp->regs + MAC_AF21MSK);
1852	writel(0, gp->regs + MAC_AF0MSK);
1853
1854	gp->mac_rx_cfg = gem_setup_multicast(gp);
1855#ifdef STRIP_FCS
1856	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1857#endif
1858	writel(0, gp->regs + MAC_NCOLL);
1859	writel(0, gp->regs + MAC_FASUCC);
1860	writel(0, gp->regs + MAC_ECOLL);
1861	writel(0, gp->regs + MAC_LCOLL);
1862	writel(0, gp->regs + MAC_DTIMER);
1863	writel(0, gp->regs + MAC_PATMPS);
1864	writel(0, gp->regs + MAC_RFCTR);
1865	writel(0, gp->regs + MAC_LERR);
1866	writel(0, gp->regs + MAC_AERR);
1867	writel(0, gp->regs + MAC_FCSERR);
1868	writel(0, gp->regs + MAC_RXCVERR);
1869
1870	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1871	 * them once a link is established.
1872	 */
1873	writel(0, gp->regs + MAC_TXCFG);
1874	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1875	writel(0, gp->regs + MAC_MCCFG);
1876	writel(0, gp->regs + MAC_XIFCFG);
1877
1878	/* Setup MAC interrupts.  We want to get all of the interesting
1879	 * counter expiration events, but we do not want to hear about
1880	 * normal rx/tx as the DMA engine tells us that.
1881	 */
1882	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1883	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1884
1885	/* Don't enable even the PAUSE interrupts for now, we
1886	 * make no use of those events other than to record them.
1887	 */
1888	writel(0xffffffff, gp->regs + MAC_MCMASK);
1889
1890	/* Don't enable GEM's WOL in normal operations
1891	 */
1892	if (gp->has_wol)
1893		writel(0, gp->regs + WOL_WAKECSR);
1894}
1895
1896static void gem_init_pause_thresholds(struct gem *gp)
1897{
1898       	u32 cfg;
1899
1900	/* Calculate pause thresholds.  Setting the OFF threshold to the
1901	 * full RX fifo size effectively disables PAUSE generation which
1902	 * is what we do for 10/100 only GEMs which have FIFOs too small
1903	 * to make real gains from PAUSE.
1904	 */
1905	if (gp->rx_fifo_sz <= (2 * 1024)) {
1906		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1907	} else {
1908		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1909		int off = (gp->rx_fifo_sz - (max_frame * 2));
1910		int on = off - max_frame;
1911
1912		gp->rx_pause_off = off;
1913		gp->rx_pause_on = on;
1914	}
1915
1916
1917	/* Configure the chip "burst" DMA mode & enable some
1918	 * HW bug fixes on Apple version
1919	 */
1920       	cfg  = 0;
1921       	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1922		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1923#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1924       	cfg |= GREG_CFG_IBURST;
1925#endif
1926       	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1927       	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1928       	writel(cfg, gp->regs + GREG_CFG);
1929
1930	/* If Infinite Burst didn't stick, then use different
1931	 * thresholds (and Apple bug fixes don't exist)
1932	 */
1933	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1934		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1935		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1936		writel(cfg, gp->regs + GREG_CFG);
1937	}
1938}
1939
1940static int gem_check_invariants(struct gem *gp)
1941{
1942	struct pci_dev *pdev = gp->pdev;
1943	u32 mif_cfg;
1944
1945	/* On Apple's sungem, we can't rely on registers as the chip
1946	 * was been powered down by the firmware. The PHY is looked
1947	 * up later on.
1948	 */
1949	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1950		gp->phy_type = phy_mii_mdio0;
1951		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1952		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1953		gp->swrst_base = 0;
1954
1955		mif_cfg = readl(gp->regs + MIF_CFG);
1956		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1957		mif_cfg |= MIF_CFG_MDI0;
1958		writel(mif_cfg, gp->regs + MIF_CFG);
1959		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1960		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1961
1962		/* We hard-code the PHY address so we can properly bring it out of
1963		 * reset later on, we can't really probe it at this point, though
1964		 * that isn't an issue.
1965		 */
1966		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1967			gp->mii_phy_addr = 1;
1968		else
1969			gp->mii_phy_addr = 0;
1970
1971		return 0;
1972	}
1973
1974	mif_cfg = readl(gp->regs + MIF_CFG);
1975
1976	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1977	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1978		/* One of the MII PHYs _must_ be present
1979		 * as this chip has no gigabit PHY.
1980		 */
1981		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1982			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1983			       mif_cfg);
1984			return -1;
1985		}
1986	}
1987
1988	/* Determine initial PHY interface type guess.  MDIO1 is the
1989	 * external PHY and thus takes precedence over MDIO0.
1990	 */
1991
1992	if (mif_cfg & MIF_CFG_MDI1) {
1993		gp->phy_type = phy_mii_mdio1;
1994		mif_cfg |= MIF_CFG_PSELECT;
1995		writel(mif_cfg, gp->regs + MIF_CFG);
1996	} else if (mif_cfg & MIF_CFG_MDI0) {
1997		gp->phy_type = phy_mii_mdio0;
1998		mif_cfg &= ~MIF_CFG_PSELECT;
1999		writel(mif_cfg, gp->regs + MIF_CFG);
2000	} else {
2001#ifdef CONFIG_SPARC
2002		const char *p;
2003
2004		p = of_get_property(gp->of_node, "shared-pins", NULL);
2005		if (p && !strcmp(p, "serdes"))
2006			gp->phy_type = phy_serdes;
2007		else
2008#endif
2009			gp->phy_type = phy_serialink;
2010	}
2011	if (gp->phy_type == phy_mii_mdio1 ||
2012	    gp->phy_type == phy_mii_mdio0) {
2013		int i;
2014
2015		for (i = 0; i < 32; i++) {
2016			gp->mii_phy_addr = i;
2017			if (phy_read(gp, MII_BMCR) != 0xffff)
2018				break;
2019		}
2020		if (i == 32) {
2021			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2022				pr_err("RIO MII phy will not respond\n");
2023				return -1;
2024			}
2025			gp->phy_type = phy_serdes;
2026		}
2027	}
2028
2029	/* Fetch the FIFO configurations now too. */
2030	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2031	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2032
2033	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2034		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2035			if (gp->tx_fifo_sz != (9 * 1024) ||
2036			    gp->rx_fifo_sz != (20 * 1024)) {
2037				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2038				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2039				return -1;
2040			}
2041			gp->swrst_base = 0;
2042		} else {
2043			if (gp->tx_fifo_sz != (2 * 1024) ||
2044			    gp->rx_fifo_sz != (2 * 1024)) {
2045				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2046				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2047				return -1;
2048			}
2049			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2050		}
2051	}
2052
2053	return 0;
2054}
2055
2056static void gem_reinit_chip(struct gem *gp)
2057{
2058	/* Reset the chip */
2059	gem_reset(gp);
2060
2061	/* Make sure ints are disabled */
2062	gem_disable_ints(gp);
2063
2064	/* Allocate & setup ring buffers */
2065	gem_init_rings(gp);
2066
2067	/* Configure pause thresholds */
2068	gem_init_pause_thresholds(gp);
2069
2070	/* Init DMA & MAC engines */
2071	gem_init_dma(gp);
2072	gem_init_mac(gp);
2073}
2074
2075
2076static void gem_stop_phy(struct gem *gp, int wol)
2077{
2078	u32 mifcfg;
2079
2080	/* Let the chip settle down a bit, it seems that helps
2081	 * for sleep mode on some models
2082	 */
2083	msleep(10);
2084
2085	/* Make sure we aren't polling PHY status change. We
2086	 * don't currently use that feature though
2087	 */
2088	mifcfg = readl(gp->regs + MIF_CFG);
2089	mifcfg &= ~MIF_CFG_POLL;
2090	writel(mifcfg, gp->regs + MIF_CFG);
2091
2092	if (wol && gp->has_wol) {
2093		unsigned char *e = &gp->dev->dev_addr[0];
2094		u32 csr;
2095
2096		/* Setup wake-on-lan for MAGIC packet */
2097		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2098		       gp->regs + MAC_RXCFG);
2099		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2100		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2101		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2102
2103		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2104		csr = WOL_WAKECSR_ENABLE;
2105		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2106			csr |= WOL_WAKECSR_MII;
2107		writel(csr, gp->regs + WOL_WAKECSR);
2108	} else {
2109		writel(0, gp->regs + MAC_RXCFG);
2110		(void)readl(gp->regs + MAC_RXCFG);
2111		/* Machine sleep will die in strange ways if we
2112		 * dont wait a bit here, looks like the chip takes
2113		 * some time to really shut down
2114		 */
2115		msleep(10);
2116	}
2117
2118	writel(0, gp->regs + MAC_TXCFG);
2119	writel(0, gp->regs + MAC_XIFCFG);
2120	writel(0, gp->regs + TXDMA_CFG);
2121	writel(0, gp->regs + RXDMA_CFG);
2122
2123	if (!wol) {
2124		gem_reset(gp);
2125		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2126		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2127
2128		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2129			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2130
2131		/* According to Apple, we must set the MDIO pins to this begnign
2132		 * state or we may 1) eat more current, 2) damage some PHYs
2133		 */
2134		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2135		writel(0, gp->regs + MIF_BBCLK);
2136		writel(0, gp->regs + MIF_BBDATA);
2137		writel(0, gp->regs + MIF_BBOENAB);
2138		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2139		(void) readl(gp->regs + MAC_XIFCFG);
2140	}
2141}
2142
2143static int gem_do_start(struct net_device *dev)
2144{
2145	struct gem *gp = netdev_priv(dev);
2146	int rc;
2147
2148	/* Enable the cell */
2149	gem_get_cell(gp);
2150
2151	/* Make sure PCI access and bus master are enabled */
2152	rc = pci_enable_device(gp->pdev);
2153	if (rc) {
2154		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2155
2156		/* Put cell and forget it for now, it will be considered as
2157		 * still asleep, a new sleep cycle may bring it back
2158		 */
2159		gem_put_cell(gp);
2160		return -ENXIO;
2161	}
2162	pci_set_master(gp->pdev);
2163
2164	/* Init & setup chip hardware */
2165	gem_reinit_chip(gp);
2166
2167	/* An interrupt might come in handy */
2168	rc = request_irq(gp->pdev->irq, gem_interrupt,
2169			 IRQF_SHARED, dev->name, (void *)dev);
2170	if (rc) {
2171		netdev_err(dev, "failed to request irq !\n");
2172
2173		gem_reset(gp);
2174		gem_clean_rings(gp);
2175		gem_put_cell(gp);
2176		return rc;
2177	}
2178
2179	/* Mark us as attached again if we come from resume(), this has
2180	 * no effect if we weren't detatched and needs to be done now.
2181	 */
2182	netif_device_attach(dev);
2183
2184	/* Restart NAPI & queues */
2185	gem_netif_start(gp);
2186
2187	/* Detect & init PHY, start autoneg etc... this will
2188	 * eventually result in starting DMA operations when
2189	 * the link is up
2190	 */
2191	gem_init_phy(gp);
2192
2193	return 0;
2194}
2195
2196static void gem_do_stop(struct net_device *dev, int wol)
2197{
2198	struct gem *gp = netdev_priv(dev);
2199
2200	/* Stop NAPI and stop tx queue */
2201	gem_netif_stop(gp);
2202
2203	/* Make sure ints are disabled. We don't care about
2204	 * synchronizing as NAPI is disabled, thus a stray
2205	 * interrupt will do nothing bad (our irq handler
2206	 * just schedules NAPI)
2207	 */
2208	gem_disable_ints(gp);
2209
2210	/* Stop the link timer */
2211	del_timer_sync(&gp->link_timer);
2212
2213	/* We cannot cancel the reset task while holding the
2214	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2215	 * if we did. This is not an issue however as the reset
2216	 * task is synchronized vs. us (rtnl_lock) and will do
2217	 * nothing if the device is down or suspended. We do
2218	 * still clear reset_task_pending to avoid a spurrious
2219	 * reset later on in case we do resume before it gets
2220	 * scheduled.
2221	 */
2222	gp->reset_task_pending = 0;
2223
2224	/* If we are going to sleep with WOL */
2225	gem_stop_dma(gp);
2226	msleep(10);
2227	if (!wol)
2228		gem_reset(gp);
2229	msleep(10);
2230
2231	/* Get rid of rings */
2232	gem_clean_rings(gp);
2233
2234	/* No irq needed anymore */
2235	free_irq(gp->pdev->irq, (void *) dev);
2236
2237	/* Shut the PHY down eventually and setup WOL */
2238	gem_stop_phy(gp, wol);
2239
2240	/* Make sure bus master is disabled */
2241	pci_disable_device(gp->pdev);
2242
2243	/* Cell not needed neither if no WOL */
2244	if (!wol)
2245		gem_put_cell(gp);
2246}
2247
2248static void gem_reset_task(struct work_struct *work)
2249{
2250	struct gem *gp = container_of(work, struct gem, reset_task);
2251
2252	/* Lock out the network stack (essentially shield ourselves
2253	 * against a racing open, close, control call, or suspend
2254	 */
2255	rtnl_lock();
2256
2257	/* Skip the reset task if suspended or closed, or if it's
2258	 * been cancelled by gem_do_stop (see comment there)
2259	 */
2260	if (!netif_device_present(gp->dev) ||
2261	    !netif_running(gp->dev) ||
2262	    !gp->reset_task_pending) {
2263		rtnl_unlock();
2264		return;
2265	}
2266
2267	/* Stop the link timer */
2268	del_timer_sync(&gp->link_timer);
2269
2270	/* Stop NAPI and tx */
2271	gem_netif_stop(gp);
2272
2273	/* Reset the chip & rings */
2274	gem_reinit_chip(gp);
2275	if (gp->lstate == link_up)
2276		gem_set_link_modes(gp);
2277
2278	/* Restart NAPI and Tx */
2279	gem_netif_start(gp);
2280
2281	/* We are back ! */
2282	gp->reset_task_pending = 0;
2283
2284	/* If the link is not up, restart autoneg, else restart the
2285	 * polling timer
2286	 */
2287	if (gp->lstate != link_up)
2288		gem_begin_auto_negotiation(gp, NULL);
2289	else
2290		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2291
2292	rtnl_unlock();
2293}
2294
2295static int gem_open(struct net_device *dev)
2296{
2297	/* We allow open while suspended, we just do nothing,
2298	 * the chip will be initialized in resume()
2299	 */
2300	if (netif_device_present(dev))
2301		return gem_do_start(dev);
2302	return 0;
2303}
2304
2305static int gem_close(struct net_device *dev)
2306{
2307	if (netif_device_present(dev))
2308		gem_do_stop(dev, 0);
2309
2310	return 0;
2311}
2312
2313#ifdef CONFIG_PM
2314static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2315{
2316	struct net_device *dev = pci_get_drvdata(pdev);
2317	struct gem *gp = netdev_priv(dev);
2318
2319	/* Lock the network stack first to avoid racing with open/close,
2320	 * reset task and setting calls
2321	 */
2322	rtnl_lock();
2323
2324	/* Not running, mark ourselves non-present, no need for
2325	 * a lock here
2326	 */
2327	if (!netif_running(dev)) {
2328		netif_device_detach(dev);
2329		rtnl_unlock();
2330		return 0;
2331	}
2332	netdev_info(dev, "suspending, WakeOnLan %s\n",
2333		    (gp->wake_on_lan && netif_running(dev)) ?
2334		    "enabled" : "disabled");
2335
2336	/* Tell the network stack we're gone. gem_do_stop() below will
2337	 * synchronize with TX, stop NAPI etc...
2338	 */
2339	netif_device_detach(dev);
2340
2341	/* Switch off chip, remember WOL setting */
2342	gp->asleep_wol = !!gp->wake_on_lan;
2343	gem_do_stop(dev, gp->asleep_wol);
2344
2345	/* Unlock the network stack */
2346	rtnl_unlock();
2347
2348	return 0;
2349}
2350
2351static int gem_resume(struct pci_dev *pdev)
2352{
2353	struct net_device *dev = pci_get_drvdata(pdev);
2354	struct gem *gp = netdev_priv(dev);
2355
2356	/* See locking comment in gem_suspend */
2357	rtnl_lock();
2358
2359	/* Not running, mark ourselves present, no need for
2360	 * a lock here
2361	 */
2362	if (!netif_running(dev)) {
2363		netif_device_attach(dev);
2364		rtnl_unlock();
2365		return 0;
2366	}
2367
2368	/* Restart chip. If that fails there isn't much we can do, we
2369	 * leave things stopped.
2370	 */
2371	gem_do_start(dev);
2372
2373	/* If we had WOL enabled, the cell clock was never turned off during
2374	 * sleep, so we end up beeing unbalanced. Fix that here
2375	 */
2376	if (gp->asleep_wol)
2377		gem_put_cell(gp);
2378
2379	/* Unlock the network stack */
2380	rtnl_unlock();
2381
2382	return 0;
2383}
2384#endif /* CONFIG_PM */
2385
2386static struct net_device_stats *gem_get_stats(struct net_device *dev)
2387{
2388	struct gem *gp = netdev_priv(dev);
2389
2390	/* I have seen this being called while the PM was in progress,
2391	 * so we shield against this. Let's also not poke at registers
2392	 * while the reset task is going on.
2393	 *
2394	 * TODO: Move stats collection elsewhere (link timer ?) and
2395	 * make this a nop to avoid all those synchro issues
2396	 */
2397	if (!netif_device_present(dev) || !netif_running(dev))
2398		goto bail;
2399
2400	/* Better safe than sorry... */
2401	if (WARN_ON(!gp->cell_enabled))
2402		goto bail;
2403
2404	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2405	writel(0, gp->regs + MAC_FCSERR);
2406
2407	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2408	writel(0, gp->regs + MAC_AERR);
2409
2410	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2411	writel(0, gp->regs + MAC_LERR);
2412
2413	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2414	dev->stats.collisions +=
2415		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2416	writel(0, gp->regs + MAC_ECOLL);
2417	writel(0, gp->regs + MAC_LCOLL);
2418 bail:
2419	return &dev->stats;
2420}
2421
2422static int gem_set_mac_address(struct net_device *dev, void *addr)
2423{
2424	struct sockaddr *macaddr = (struct sockaddr *) addr;
2425	struct gem *gp = netdev_priv(dev);
2426	unsigned char *e = &dev->dev_addr[0];
2427
2428	if (!is_valid_ether_addr(macaddr->sa_data))
2429		return -EADDRNOTAVAIL;
2430
2431	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2432
2433	/* We'll just catch it later when the device is up'd or resumed */
2434	if (!netif_running(dev) || !netif_device_present(dev))
2435		return 0;
2436
2437	/* Better safe than sorry... */
2438	if (WARN_ON(!gp->cell_enabled))
2439		return 0;
2440
2441	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2442	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2443	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2444
2445	return 0;
2446}
2447
2448static void gem_set_multicast(struct net_device *dev)
2449{
2450	struct gem *gp = netdev_priv(dev);
2451	u32 rxcfg, rxcfg_new;
2452	int limit = 10000;
2453
2454	if (!netif_running(dev) || !netif_device_present(dev))
2455		return;
2456
2457	/* Better safe than sorry... */
2458	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2459		return;
2460
2461	rxcfg = readl(gp->regs + MAC_RXCFG);
2462	rxcfg_new = gem_setup_multicast(gp);
2463#ifdef STRIP_FCS
2464	rxcfg_new |= MAC_RXCFG_SFCS;
2465#endif
2466	gp->mac_rx_cfg = rxcfg_new;
2467
2468	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2469	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2470		if (!limit--)
2471			break;
2472		udelay(10);
2473	}
2474
2475	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2476	rxcfg |= rxcfg_new;
2477
2478	writel(rxcfg, gp->regs + MAC_RXCFG);
2479}
2480
2481/* Jumbo-grams don't seem to work :-( */
2482#define GEM_MIN_MTU	68
2483#if 1
2484#define GEM_MAX_MTU	1500
2485#else
2486#define GEM_MAX_MTU	9000
2487#endif
2488
2489static int gem_change_mtu(struct net_device *dev, int new_mtu)
2490{
2491	struct gem *gp = netdev_priv(dev);
2492
2493	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2494		return -EINVAL;
2495
2496	dev->mtu = new_mtu;
2497
2498	/* We'll just catch it later when the device is up'd or resumed */
2499	if (!netif_running(dev) || !netif_device_present(dev))
2500		return 0;
2501
2502	/* Better safe than sorry... */
2503	if (WARN_ON(!gp->cell_enabled))
2504		return 0;
2505
2506	gem_netif_stop(gp);
2507	gem_reinit_chip(gp);
2508	if (gp->lstate == link_up)
2509		gem_set_link_modes(gp);
2510	gem_netif_start(gp);
2511
2512	return 0;
2513}
2514
2515static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2516{
2517	struct gem *gp = netdev_priv(dev);
2518
2519	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2520	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2521	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2522}
2523
2524static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2525{
2526	struct gem *gp = netdev_priv(dev);
2527
2528	if (gp->phy_type == phy_mii_mdio0 ||
2529	    gp->phy_type == phy_mii_mdio1) {
2530		if (gp->phy_mii.def)
2531			cmd->supported = gp->phy_mii.def->features;
2532		else
2533			cmd->supported = (SUPPORTED_10baseT_Half |
2534					  SUPPORTED_10baseT_Full);
2535
2536		/* XXX hardcoded stuff for now */
2537		cmd->port = PORT_MII;
2538		cmd->transceiver = XCVR_EXTERNAL;
2539		cmd->phy_address = 0; /* XXX fixed PHYAD */
2540
2541		/* Return current PHY settings */
2542		cmd->autoneg = gp->want_autoneg;
2543		ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2544		cmd->duplex = gp->phy_mii.duplex;
2545		cmd->advertising = gp->phy_mii.advertising;
2546
2547		/* If we started with a forced mode, we don't have a default
2548		 * advertise set, we need to return something sensible so
2549		 * userland can re-enable autoneg properly.
2550		 */
2551		if (cmd->advertising == 0)
2552			cmd->advertising = cmd->supported;
2553	} else { // XXX PCS ?
2554		cmd->supported =
2555			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2556			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2557			 SUPPORTED_Autoneg);
2558		cmd->advertising = cmd->supported;
2559		ethtool_cmd_speed_set(cmd, 0);
2560		cmd->duplex = cmd->port = cmd->phy_address =
2561			cmd->transceiver = cmd->autoneg = 0;
2562
2563		/* serdes means usually a Fibre connector, with most fixed */
2564		if (gp->phy_type == phy_serdes) {
2565			cmd->port = PORT_FIBRE;
2566			cmd->supported = (SUPPORTED_1000baseT_Half |
2567				SUPPORTED_1000baseT_Full |
2568				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2569				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2570			cmd->advertising = cmd->supported;
2571			cmd->transceiver = XCVR_INTERNAL;
2572			if (gp->lstate == link_up)
2573				ethtool_cmd_speed_set(cmd, SPEED_1000);
2574			cmd->duplex = DUPLEX_FULL;
2575			cmd->autoneg = 1;
2576		}
2577	}
2578	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2579
2580	return 0;
2581}
2582
2583static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2584{
2585	struct gem *gp = netdev_priv(dev);
2586	u32 speed = ethtool_cmd_speed(cmd);
2587
2588	/* Verify the settings we care about. */
2589	if (cmd->autoneg != AUTONEG_ENABLE &&
2590	    cmd->autoneg != AUTONEG_DISABLE)
2591		return -EINVAL;
2592
2593	if (cmd->autoneg == AUTONEG_ENABLE &&
2594	    cmd->advertising == 0)
2595		return -EINVAL;
2596
2597	if (cmd->autoneg == AUTONEG_DISABLE &&
2598	    ((speed != SPEED_1000 &&
2599	      speed != SPEED_100 &&
2600	      speed != SPEED_10) ||
2601	     (cmd->duplex != DUPLEX_HALF &&
2602	      cmd->duplex != DUPLEX_FULL)))
2603		return -EINVAL;
2604
2605	/* Apply settings and restart link process. */
2606	if (netif_device_present(gp->dev)) {
2607		del_timer_sync(&gp->link_timer);
2608		gem_begin_auto_negotiation(gp, cmd);
2609	}
2610
2611	return 0;
2612}
2613
2614static int gem_nway_reset(struct net_device *dev)
2615{
2616	struct gem *gp = netdev_priv(dev);
2617
2618	if (!gp->want_autoneg)
2619		return -EINVAL;
2620
2621	/* Restart link process  */
2622	if (netif_device_present(gp->dev)) {
2623		del_timer_sync(&gp->link_timer);
2624		gem_begin_auto_negotiation(gp, NULL);
2625	}
2626
2627	return 0;
2628}
2629
2630static u32 gem_get_msglevel(struct net_device *dev)
2631{
2632	struct gem *gp = netdev_priv(dev);
2633	return gp->msg_enable;
2634}
2635
2636static void gem_set_msglevel(struct net_device *dev, u32 value)
2637{
2638	struct gem *gp = netdev_priv(dev);
2639	gp->msg_enable = value;
2640}
2641
2642
2643/* Add more when I understand how to program the chip */
2644/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2645
2646#define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2647
2648static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2649{
2650	struct gem *gp = netdev_priv(dev);
2651
2652	/* Add more when I understand how to program the chip */
2653	if (gp->has_wol) {
2654		wol->supported = WOL_SUPPORTED_MASK;
2655		wol->wolopts = gp->wake_on_lan;
2656	} else {
2657		wol->supported = 0;
2658		wol->wolopts = 0;
2659	}
2660}
2661
2662static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663{
2664	struct gem *gp = netdev_priv(dev);
2665
2666	if (!gp->has_wol)
2667		return -EOPNOTSUPP;
2668	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2669	return 0;
2670}
2671
2672static const struct ethtool_ops gem_ethtool_ops = {
2673	.get_drvinfo		= gem_get_drvinfo,
2674	.get_link		= ethtool_op_get_link,
2675	.get_settings		= gem_get_settings,
2676	.set_settings		= gem_set_settings,
2677	.nway_reset		= gem_nway_reset,
2678	.get_msglevel		= gem_get_msglevel,
2679	.set_msglevel		= gem_set_msglevel,
2680	.get_wol		= gem_get_wol,
2681	.set_wol		= gem_set_wol,
2682};
2683
2684static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2685{
2686	struct gem *gp = netdev_priv(dev);
2687	struct mii_ioctl_data *data = if_mii(ifr);
2688	int rc = -EOPNOTSUPP;
2689
2690	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2691	 * netif_device_present() is true and holds rtnl_lock for us
2692	 * so we have nothing to worry about
2693	 */
2694
2695	switch (cmd) {
2696	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2697		data->phy_id = gp->mii_phy_addr;
2698		/* Fallthrough... */
2699
2700	case SIOCGMIIREG:		/* Read MII PHY register. */
2701		data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2702					   data->reg_num & 0x1f);
2703		rc = 0;
2704		break;
2705
2706	case SIOCSMIIREG:		/* Write MII PHY register. */
2707		__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2708			    data->val_in);
2709		rc = 0;
2710		break;
2711	}
2712	return rc;
2713}
2714
2715#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2716/* Fetch MAC address from vital product data of PCI ROM. */
2717static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2718{
2719	int this_offset;
2720
2721	for (this_offset = 0x20; this_offset < len; this_offset++) {
2722		void __iomem *p = rom_base + this_offset;
2723		int i;
2724
2725		if (readb(p + 0) != 0x90 ||
2726		    readb(p + 1) != 0x00 ||
2727		    readb(p + 2) != 0x09 ||
2728		    readb(p + 3) != 0x4e ||
2729		    readb(p + 4) != 0x41 ||
2730		    readb(p + 5) != 0x06)
2731			continue;
2732
2733		this_offset += 6;
2734		p += 6;
2735
2736		for (i = 0; i < 6; i++)
2737			dev_addr[i] = readb(p + i);
2738		return 1;
2739	}
2740	return 0;
2741}
2742
2743static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2744{
2745	size_t size;
2746	void __iomem *p = pci_map_rom(pdev, &size);
2747
2748	if (p) {
2749			int found;
2750
2751		found = readb(p) == 0x55 &&
2752			readb(p + 1) == 0xaa &&
2753			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2754		pci_unmap_rom(pdev, p);
2755		if (found)
2756			return;
2757	}
2758
2759	/* Sun MAC prefix then 3 random bytes. */
2760	dev_addr[0] = 0x08;
2761	dev_addr[1] = 0x00;
2762	dev_addr[2] = 0x20;
2763	get_random_bytes(dev_addr + 3, 3);
2764}
2765#endif /* not Sparc and not PPC */
2766
2767static int __devinit gem_get_device_address(struct gem *gp)
2768{
2769#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2770	struct net_device *dev = gp->dev;
2771	const unsigned char *addr;
2772
2773	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2774	if (addr == NULL) {
2775#ifdef CONFIG_SPARC
2776		addr = idprom->id_ethaddr;
2777#else
2778		printk("\n");
2779		pr_err("%s: can't get mac-address\n", dev->name);
2780		return -1;
2781#endif
2782	}
2783	memcpy(dev->dev_addr, addr, 6);
2784#else
2785	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2786#endif
2787	return 0;
2788}
2789
2790static void gem_remove_one(struct pci_dev *pdev)
2791{
2792	struct net_device *dev = pci_get_drvdata(pdev);
2793
2794	if (dev) {
2795		struct gem *gp = netdev_priv(dev);
2796
2797		unregister_netdev(dev);
2798
2799		/* Ensure reset task is truely gone */
2800		cancel_work_sync(&gp->reset_task);
2801
2802		/* Free resources */
2803		pci_free_consistent(pdev,
2804				    sizeof(struct gem_init_block),
2805				    gp->init_block,
2806				    gp->gblock_dvma);
2807		iounmap(gp->regs);
2808		pci_release_regions(pdev);
2809		free_netdev(dev);
2810
2811		pci_set_drvdata(pdev, NULL);
2812	}
2813}
2814
2815static const struct net_device_ops gem_netdev_ops = {
2816	.ndo_open		= gem_open,
2817	.ndo_stop		= gem_close,
2818	.ndo_start_xmit		= gem_start_xmit,
2819	.ndo_get_stats		= gem_get_stats,
2820	.ndo_set_rx_mode	= gem_set_multicast,
2821	.ndo_do_ioctl		= gem_ioctl,
2822	.ndo_tx_timeout		= gem_tx_timeout,
2823	.ndo_change_mtu		= gem_change_mtu,
2824	.ndo_validate_addr	= eth_validate_addr,
2825	.ndo_set_mac_address    = gem_set_mac_address,
2826#ifdef CONFIG_NET_POLL_CONTROLLER
2827	.ndo_poll_controller    = gem_poll_controller,
2828#endif
2829};
2830
2831static int __devinit gem_init_one(struct pci_dev *pdev,
2832				  const struct pci_device_id *ent)
2833{
2834	unsigned long gemreg_base, gemreg_len;
2835	struct net_device *dev;
2836	struct gem *gp;
2837	int err, pci_using_dac;
2838
2839	printk_once(KERN_INFO "%s", version);
2840
2841	/* Apple gmac note: during probe, the chip is powered up by
2842	 * the arch code to allow the code below to work (and to let
2843	 * the chip be probed on the config space. It won't stay powered
2844	 * up until the interface is brought up however, so we can't rely
2845	 * on register configuration done at this point.
2846	 */
2847	err = pci_enable_device(pdev);
2848	if (err) {
2849		pr_err("Cannot enable MMIO operation, aborting\n");
2850		return err;
2851	}
2852	pci_set_master(pdev);
2853
2854	/* Configure DMA attributes. */
2855
2856	/* All of the GEM documentation states that 64-bit DMA addressing
2857	 * is fully supported and should work just fine.  However the
2858	 * front end for RIO based GEMs is different and only supports
2859	 * 32-bit addressing.
2860	 *
2861	 * For now we assume the various PPC GEMs are 32-bit only as well.
2862	 */
2863	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2864	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2865	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2866		pci_using_dac = 1;
2867	} else {
2868		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2869		if (err) {
2870			pr_err("No usable DMA configuration, aborting\n");
2871			goto err_disable_device;
2872		}
2873		pci_using_dac = 0;
2874	}
2875
2876	gemreg_base = pci_resource_start(pdev, 0);
2877	gemreg_len = pci_resource_len(pdev, 0);
2878
2879	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2880		pr_err("Cannot find proper PCI device base address, aborting\n");
2881		err = -ENODEV;
2882		goto err_disable_device;
2883	}
2884
2885	dev = alloc_etherdev(sizeof(*gp));
2886	if (!dev) {
2887		err = -ENOMEM;
2888		goto err_disable_device;
2889	}
2890	SET_NETDEV_DEV(dev, &pdev->dev);
2891
2892	gp = netdev_priv(dev);
2893
2894	err = pci_request_regions(pdev, DRV_NAME);
2895	if (err) {
2896		pr_err("Cannot obtain PCI resources, aborting\n");
2897		goto err_out_free_netdev;
2898	}
2899
2900	gp->pdev = pdev;
2901	gp->dev = dev;
2902
2903	gp->msg_enable = DEFAULT_MSG;
2904
2905	init_timer(&gp->link_timer);
2906	gp->link_timer.function = gem_link_timer;
2907	gp->link_timer.data = (unsigned long) gp;
2908
2909	INIT_WORK(&gp->reset_task, gem_reset_task);
2910
2911	gp->lstate = link_down;
2912	gp->timer_ticks = 0;
2913	netif_carrier_off(dev);
2914
2915	gp->regs = ioremap(gemreg_base, gemreg_len);
2916	if (!gp->regs) {
2917		pr_err("Cannot map device registers, aborting\n");
2918		err = -EIO;
2919		goto err_out_free_res;
2920	}
2921
2922	/* On Apple, we want a reference to the Open Firmware device-tree
2923	 * node. We use it for clock control.
2924	 */
2925#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2926	gp->of_node = pci_device_to_OF_node(pdev);
2927#endif
2928
2929	/* Only Apple version supports WOL afaik */
2930	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2931		gp->has_wol = 1;
2932
2933	/* Make sure cell is enabled */
2934	gem_get_cell(gp);
2935
2936	/* Make sure everything is stopped and in init state */
2937	gem_reset(gp);
2938
2939	/* Fill up the mii_phy structure (even if we won't use it) */
2940	gp->phy_mii.dev = dev;
2941	gp->phy_mii.mdio_read = _phy_read;
2942	gp->phy_mii.mdio_write = _phy_write;
2943#ifdef CONFIG_PPC_PMAC
2944	gp->phy_mii.platform_data = gp->of_node;
2945#endif
2946	/* By default, we start with autoneg */
2947	gp->want_autoneg = 1;
2948
2949	/* Check fifo sizes, PHY type, etc... */
2950	if (gem_check_invariants(gp)) {
2951		err = -ENODEV;
2952		goto err_out_iounmap;
2953	}
2954
2955	/* It is guaranteed that the returned buffer will be at least
2956	 * PAGE_SIZE aligned.
2957	 */
2958	gp->init_block = (struct gem_init_block *)
2959		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2960				     &gp->gblock_dvma);
2961	if (!gp->init_block) {
2962		pr_err("Cannot allocate init block, aborting\n");
2963		err = -ENOMEM;
2964		goto err_out_iounmap;
2965	}
2966
2967	if (gem_get_device_address(gp))
2968		goto err_out_free_consistent;
2969
2970	dev->netdev_ops = &gem_netdev_ops;
2971	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2972	dev->ethtool_ops = &gem_ethtool_ops;
2973	dev->watchdog_timeo = 5 * HZ;
2974	dev->dma = 0;
2975
2976	/* Set that now, in case PM kicks in now */
2977	pci_set_drvdata(pdev, dev);
2978
2979	/* We can do scatter/gather and HW checksum */
2980	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2981	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2982	if (pci_using_dac)
2983		dev->features |= NETIF_F_HIGHDMA;
2984
2985	/* Register with kernel */
2986	if (register_netdev(dev)) {
2987		pr_err("Cannot register net device, aborting\n");
2988		err = -ENOMEM;
2989		goto err_out_free_consistent;
2990	}
2991
2992	/* Undo the get_cell with appropriate locking (we could use
2993	 * ndo_init/uninit but that would be even more clumsy imho)
2994	 */
2995	rtnl_lock();
2996	gem_put_cell(gp);
2997	rtnl_unlock();
2998
2999	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3000		    dev->dev_addr);
3001	return 0;
3002
3003err_out_free_consistent:
3004	gem_remove_one(pdev);
3005err_out_iounmap:
3006	gem_put_cell(gp);
3007	iounmap(gp->regs);
3008
3009err_out_free_res:
3010	pci_release_regions(pdev);
3011
3012err_out_free_netdev:
3013	free_netdev(dev);
3014err_disable_device:
3015	pci_disable_device(pdev);
3016	return err;
3017
3018}
3019
3020
3021static struct pci_driver gem_driver = {
3022	.name		= GEM_MODULE_NAME,
3023	.id_table	= gem_pci_tbl,
3024	.probe		= gem_init_one,
3025	.remove		= gem_remove_one,
3026#ifdef CONFIG_PM
3027	.suspend	= gem_suspend,
3028	.resume		= gem_resume,
3029#endif /* CONFIG_PM */
3030};
3031
3032static int __init gem_init(void)
3033{
3034	return pci_register_driver(&gem_driver);
3035}
3036
3037static void __exit gem_cleanup(void)
3038{
3039	pci_unregister_driver(&gem_driver);
3040}
3041
3042module_init(gem_init);
3043module_exit(gem_cleanup);