Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
4 *
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 *
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 *
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 *
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/fcntl.h>
22#include <linux/interrupt.h>
23#include <linux/ioport.h>
24#include <linux/in.h>
25#include <linux/sched.h>
26#include <linux/string.h>
27#include <linux/delay.h>
28#include <linux/errno.h>
29#include <linux/pci.h>
30#include <linux/dma-mapping.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36#include <linux/crc32.h>
37#include <linux/random.h>
38#include <linux/workqueue.h>
39#include <linux/if_vlan.h>
40#include <linux/bitops.h>
41#include <linux/mm.h>
42#include <linux/gfp.h>
43
44#include <asm/io.h>
45#include <asm/byteorder.h>
46#include <linux/uaccess.h>
47#include <asm/irq.h>
48
49#ifdef CONFIG_SPARC
50#include <asm/idprom.h>
51#include <asm/prom.h>
52#endif
53
54#ifdef CONFIG_PPC_PMAC
55#include <asm/machdep.h>
56#include <asm/pmac_feature.h>
57#endif
58
59#include <linux/sungem_phy.h>
60#include "sungem.h"
61
62#define STRIP_FCS
63
64#define DEFAULT_MSG (NETIF_MSG_DRV | \
65 NETIF_MSG_PROBE | \
66 NETIF_MSG_LINK)
67
68#define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
69 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
70 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
71 SUPPORTED_Pause | SUPPORTED_Autoneg)
72
73#define DRV_NAME "sungem"
74#define DRV_VERSION "1.0"
75#define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
76
77static char version[] =
78 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
79
80MODULE_AUTHOR(DRV_AUTHOR);
81MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
82MODULE_LICENSE("GPL");
83
84#define GEM_MODULE_NAME "gem"
85
86static const struct pci_device_id gem_pci_tbl[] = {
87 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
88 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
89
90 /* These models only differ from the original GEM in
91 * that their tx/rx fifos are of a different size and
92 * they only support 10/100 speeds. -DaveM
93 *
94 * Apple's GMAC does support gigabit on machines with
95 * the BCM54xx PHYs. -BenH
96 */
97 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
98 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
99 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
100 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 {0, }
112};
113
114MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
115
116static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
117{
118 u32 cmd;
119 int limit = 10000;
120
121 cmd = (1 << 30);
122 cmd |= (2 << 28);
123 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
124 cmd |= (reg << 18) & MIF_FRAME_REGAD;
125 cmd |= (MIF_FRAME_TAMSB);
126 writel(cmd, gp->regs + MIF_FRAME);
127
128 while (--limit) {
129 cmd = readl(gp->regs + MIF_FRAME);
130 if (cmd & MIF_FRAME_TALSB)
131 break;
132
133 udelay(10);
134 }
135
136 if (!limit)
137 cmd = 0xffff;
138
139 return cmd & MIF_FRAME_DATA;
140}
141
142static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
143{
144 struct gem *gp = netdev_priv(dev);
145 return __sungem_phy_read(gp, mii_id, reg);
146}
147
148static inline u16 sungem_phy_read(struct gem *gp, int reg)
149{
150 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
151}
152
153static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
154{
155 u32 cmd;
156 int limit = 10000;
157
158 cmd = (1 << 30);
159 cmd |= (1 << 28);
160 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
161 cmd |= (reg << 18) & MIF_FRAME_REGAD;
162 cmd |= (MIF_FRAME_TAMSB);
163 cmd |= (val & MIF_FRAME_DATA);
164 writel(cmd, gp->regs + MIF_FRAME);
165
166 while (limit--) {
167 cmd = readl(gp->regs + MIF_FRAME);
168 if (cmd & MIF_FRAME_TALSB)
169 break;
170
171 udelay(10);
172 }
173}
174
175static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
176{
177 struct gem *gp = netdev_priv(dev);
178 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
179}
180
181static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
182{
183 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
184}
185
186static inline void gem_enable_ints(struct gem *gp)
187{
188 /* Enable all interrupts but TXDONE */
189 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
190}
191
192static inline void gem_disable_ints(struct gem *gp)
193{
194 /* Disable all interrupts, including TXDONE */
195 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
196 (void)readl(gp->regs + GREG_IMASK); /* write posting */
197}
198
199static void gem_get_cell(struct gem *gp)
200{
201 BUG_ON(gp->cell_enabled < 0);
202 gp->cell_enabled++;
203#ifdef CONFIG_PPC_PMAC
204 if (gp->cell_enabled == 1) {
205 mb();
206 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
207 udelay(10);
208 }
209#endif /* CONFIG_PPC_PMAC */
210}
211
212/* Turn off the chip's clock */
213static void gem_put_cell(struct gem *gp)
214{
215 BUG_ON(gp->cell_enabled <= 0);
216 gp->cell_enabled--;
217#ifdef CONFIG_PPC_PMAC
218 if (gp->cell_enabled == 0) {
219 mb();
220 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
221 udelay(10);
222 }
223#endif /* CONFIG_PPC_PMAC */
224}
225
226static inline void gem_netif_stop(struct gem *gp)
227{
228 netif_trans_update(gp->dev); /* prevent tx timeout */
229 napi_disable(&gp->napi);
230 netif_tx_disable(gp->dev);
231}
232
233static inline void gem_netif_start(struct gem *gp)
234{
235 /* NOTE: unconditional netif_wake_queue is only
236 * appropriate so long as all callers are assured to
237 * have free tx slots.
238 */
239 netif_wake_queue(gp->dev);
240 napi_enable(&gp->napi);
241}
242
243static void gem_schedule_reset(struct gem *gp)
244{
245 gp->reset_task_pending = 1;
246 schedule_work(&gp->reset_task);
247}
248
249static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250{
251 if (netif_msg_intr(gp))
252 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
253}
254
255static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256{
257 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
258 u32 pcs_miistat;
259
260 if (netif_msg_intr(gp))
261 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
262 gp->dev->name, pcs_istat);
263
264 if (!(pcs_istat & PCS_ISTAT_LSC)) {
265 netdev_err(dev, "PCS irq but no link status change???\n");
266 return 0;
267 }
268
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
272 */
273 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 pcs_miistat |=
276 (readl(gp->regs + PCS_MIISTAT) &
277 PCS_MIISTAT_LS);
278
279 if (pcs_miistat & PCS_MIISTAT_ANC) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
282 */
283 if (pcs_miistat & PCS_MIISTAT_RF)
284 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
285 else
286 netdev_info(dev, "PCS AutoNEG complete\n");
287 }
288
289 if (pcs_miistat & PCS_MIISTAT_LS) {
290 netdev_info(dev, "PCS link is now up\n");
291 netif_carrier_on(gp->dev);
292 } else {
293 netdev_info(dev, "PCS link is now down\n");
294 netif_carrier_off(gp->dev);
295 /* If this happens and the link timer is not running,
296 * reset so we re-negotiate.
297 */
298 if (!timer_pending(&gp->link_timer))
299 return 1;
300 }
301
302 return 0;
303}
304
305static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
306{
307 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
308
309 if (netif_msg_intr(gp))
310 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
311 gp->dev->name, txmac_stat);
312
313 /* Defer timer expiration is quite normal,
314 * don't even log the event.
315 */
316 if ((txmac_stat & MAC_TXSTAT_DTE) &&
317 !(txmac_stat & ~MAC_TXSTAT_DTE))
318 return 0;
319
320 if (txmac_stat & MAC_TXSTAT_URUN) {
321 netdev_err(dev, "TX MAC xmit underrun\n");
322 dev->stats.tx_fifo_errors++;
323 }
324
325 if (txmac_stat & MAC_TXSTAT_MPE) {
326 netdev_err(dev, "TX MAC max packet size error\n");
327 dev->stats.tx_errors++;
328 }
329
330 /* The rest are all cases of one of the 16-bit TX
331 * counters expiring.
332 */
333 if (txmac_stat & MAC_TXSTAT_NCE)
334 dev->stats.collisions += 0x10000;
335
336 if (txmac_stat & MAC_TXSTAT_ECE) {
337 dev->stats.tx_aborted_errors += 0x10000;
338 dev->stats.collisions += 0x10000;
339 }
340
341 if (txmac_stat & MAC_TXSTAT_LCE) {
342 dev->stats.tx_aborted_errors += 0x10000;
343 dev->stats.collisions += 0x10000;
344 }
345
346 /* We do not keep track of MAC_TXSTAT_FCE and
347 * MAC_TXSTAT_PCE events.
348 */
349 return 0;
350}
351
352/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
353 * so we do the following.
354 *
355 * If any part of the reset goes wrong, we return 1 and that causes the
356 * whole chip to be reset.
357 */
358static int gem_rxmac_reset(struct gem *gp)
359{
360 struct net_device *dev = gp->dev;
361 int limit, i;
362 u64 desc_dma;
363 u32 val;
364
365 /* First, reset & disable MAC RX. */
366 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
367 for (limit = 0; limit < 5000; limit++) {
368 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
369 break;
370 udelay(10);
371 }
372 if (limit == 5000) {
373 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
374 return 1;
375 }
376
377 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
378 gp->regs + MAC_RXCFG);
379 for (limit = 0; limit < 5000; limit++) {
380 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
381 break;
382 udelay(10);
383 }
384 if (limit == 5000) {
385 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
386 return 1;
387 }
388
389 /* Second, disable RX DMA. */
390 writel(0, gp->regs + RXDMA_CFG);
391 for (limit = 0; limit < 5000; limit++) {
392 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
393 break;
394 udelay(10);
395 }
396 if (limit == 5000) {
397 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
398 return 1;
399 }
400
401 mdelay(5);
402
403 /* Execute RX reset command. */
404 writel(gp->swrst_base | GREG_SWRST_RXRST,
405 gp->regs + GREG_SWRST);
406 for (limit = 0; limit < 5000; limit++) {
407 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
408 break;
409 udelay(10);
410 }
411 if (limit == 5000) {
412 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
413 return 1;
414 }
415
416 /* Refresh the RX ring. */
417 for (i = 0; i < RX_RING_SIZE; i++) {
418 struct gem_rxd *rxd = &gp->init_block->rxd[i];
419
420 if (gp->rx_skbs[i] == NULL) {
421 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
422 return 1;
423 }
424
425 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
426 }
427 gp->rx_new = gp->rx_old = 0;
428
429 /* Now we must reprogram the rest of RX unit. */
430 desc_dma = (u64) gp->gblock_dvma;
431 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
432 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
433 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
434 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
435 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
436 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
437 writel(val, gp->regs + RXDMA_CFG);
438 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
439 writel(((5 & RXDMA_BLANK_IPKTS) |
440 ((8 << 12) & RXDMA_BLANK_ITIME)),
441 gp->regs + RXDMA_BLANK);
442 else
443 writel(((5 & RXDMA_BLANK_IPKTS) |
444 ((4 << 12) & RXDMA_BLANK_ITIME)),
445 gp->regs + RXDMA_BLANK);
446 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
447 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
448 writel(val, gp->regs + RXDMA_PTHRESH);
449 val = readl(gp->regs + RXDMA_CFG);
450 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
451 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
452 val = readl(gp->regs + MAC_RXCFG);
453 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
454
455 return 0;
456}
457
458static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
459{
460 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
461 int ret = 0;
462
463 if (netif_msg_intr(gp))
464 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
465 gp->dev->name, rxmac_stat);
466
467 if (rxmac_stat & MAC_RXSTAT_OFLW) {
468 u32 smac = readl(gp->regs + MAC_SMACHINE);
469
470 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
471 dev->stats.rx_over_errors++;
472 dev->stats.rx_fifo_errors++;
473
474 ret = gem_rxmac_reset(gp);
475 }
476
477 if (rxmac_stat & MAC_RXSTAT_ACE)
478 dev->stats.rx_frame_errors += 0x10000;
479
480 if (rxmac_stat & MAC_RXSTAT_CCE)
481 dev->stats.rx_crc_errors += 0x10000;
482
483 if (rxmac_stat & MAC_RXSTAT_LCE)
484 dev->stats.rx_length_errors += 0x10000;
485
486 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
487 * events.
488 */
489 return ret;
490}
491
492static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
493{
494 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
495
496 if (netif_msg_intr(gp))
497 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
498 gp->dev->name, mac_cstat);
499
500 /* This interrupt is just for pause frame and pause
501 * tracking. It is useful for diagnostics and debug
502 * but probably by default we will mask these events.
503 */
504 if (mac_cstat & MAC_CSTAT_PS)
505 gp->pause_entered++;
506
507 if (mac_cstat & MAC_CSTAT_PRCV)
508 gp->pause_last_time_recvd = (mac_cstat >> 16);
509
510 return 0;
511}
512
513static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
514{
515 u32 mif_status = readl(gp->regs + MIF_STATUS);
516 u32 reg_val, changed_bits;
517
518 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
519 changed_bits = (mif_status & MIF_STATUS_STAT);
520
521 gem_handle_mif_event(gp, reg_val, changed_bits);
522
523 return 0;
524}
525
526static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527{
528 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
529
530 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
531 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
532 netdev_err(dev, "PCI error [%04x]", pci_estat);
533
534 if (pci_estat & GREG_PCIESTAT_BADACK)
535 pr_cont(" <No ACK64# during ABS64 cycle>");
536 if (pci_estat & GREG_PCIESTAT_DTRTO)
537 pr_cont(" <Delayed transaction timeout>");
538 if (pci_estat & GREG_PCIESTAT_OTHER)
539 pr_cont(" <other>");
540 pr_cont("\n");
541 } else {
542 pci_estat |= GREG_PCIESTAT_OTHER;
543 netdev_err(dev, "PCI error\n");
544 }
545
546 if (pci_estat & GREG_PCIESTAT_OTHER) {
547 int pci_errs;
548
549 /* Interrogate PCI config space for the
550 * true cause.
551 */
552 pci_errs = pci_status_get_and_clear_errors(gp->pdev);
553 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
554 if (pci_errs & PCI_STATUS_PARITY)
555 netdev_err(dev, "PCI parity error detected\n");
556 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
557 netdev_err(dev, "PCI target abort\n");
558 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
559 netdev_err(dev, "PCI master acks target abort\n");
560 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
561 netdev_err(dev, "PCI master abort\n");
562 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
563 netdev_err(dev, "PCI system error SERR#\n");
564 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
565 netdev_err(dev, "PCI parity error\n");
566 }
567
568 /* For all PCI errors, we should reset the chip. */
569 return 1;
570}
571
572/* All non-normal interrupt conditions get serviced here.
573 * Returns non-zero if we should just exit the interrupt
574 * handler right now (ie. if we reset the card which invalidates
575 * all of the other original irq status bits).
576 */
577static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
578{
579 if (gem_status & GREG_STAT_RXNOBUF) {
580 /* Frame arrived, no free RX buffers available. */
581 if (netif_msg_rx_err(gp))
582 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
583 gp->dev->name);
584 dev->stats.rx_dropped++;
585 }
586
587 if (gem_status & GREG_STAT_RXTAGERR) {
588 /* corrupt RX tag framing */
589 if (netif_msg_rx_err(gp))
590 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
591 gp->dev->name);
592 dev->stats.rx_errors++;
593
594 return 1;
595 }
596
597 if (gem_status & GREG_STAT_PCS) {
598 if (gem_pcs_interrupt(dev, gp, gem_status))
599 return 1;
600 }
601
602 if (gem_status & GREG_STAT_TXMAC) {
603 if (gem_txmac_interrupt(dev, gp, gem_status))
604 return 1;
605 }
606
607 if (gem_status & GREG_STAT_RXMAC) {
608 if (gem_rxmac_interrupt(dev, gp, gem_status))
609 return 1;
610 }
611
612 if (gem_status & GREG_STAT_MAC) {
613 if (gem_mac_interrupt(dev, gp, gem_status))
614 return 1;
615 }
616
617 if (gem_status & GREG_STAT_MIF) {
618 if (gem_mif_interrupt(dev, gp, gem_status))
619 return 1;
620 }
621
622 if (gem_status & GREG_STAT_PCIERR) {
623 if (gem_pci_interrupt(dev, gp, gem_status))
624 return 1;
625 }
626
627 return 0;
628}
629
630static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
631{
632 int entry, limit;
633
634 entry = gp->tx_old;
635 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
636 while (entry != limit) {
637 struct sk_buff *skb;
638 struct gem_txd *txd;
639 dma_addr_t dma_addr;
640 u32 dma_len;
641 int frag;
642
643 if (netif_msg_tx_done(gp))
644 printk(KERN_DEBUG "%s: tx done, slot %d\n",
645 gp->dev->name, entry);
646 skb = gp->tx_skbs[entry];
647 if (skb_shinfo(skb)->nr_frags) {
648 int last = entry + skb_shinfo(skb)->nr_frags;
649 int walk = entry;
650 int incomplete = 0;
651
652 last &= (TX_RING_SIZE - 1);
653 for (;;) {
654 walk = NEXT_TX(walk);
655 if (walk == limit)
656 incomplete = 1;
657 if (walk == last)
658 break;
659 }
660 if (incomplete)
661 break;
662 }
663 gp->tx_skbs[entry] = NULL;
664 dev->stats.tx_bytes += skb->len;
665
666 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
667 txd = &gp->init_block->txd[entry];
668
669 dma_addr = le64_to_cpu(txd->buffer);
670 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
671
672 dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
673 DMA_TO_DEVICE);
674 entry = NEXT_TX(entry);
675 }
676
677 dev->stats.tx_packets++;
678 dev_consume_skb_any(skb);
679 }
680 gp->tx_old = entry;
681
682 /* Need to make the tx_old update visible to gem_start_xmit()
683 * before checking for netif_queue_stopped(). Without the
684 * memory barrier, there is a small possibility that gem_start_xmit()
685 * will miss it and cause the queue to be stopped forever.
686 */
687 smp_mb();
688
689 if (unlikely(netif_queue_stopped(dev) &&
690 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
691 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
692
693 __netif_tx_lock(txq, smp_processor_id());
694 if (netif_queue_stopped(dev) &&
695 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
696 netif_wake_queue(dev);
697 __netif_tx_unlock(txq);
698 }
699}
700
701static __inline__ void gem_post_rxds(struct gem *gp, int limit)
702{
703 int cluster_start, curr, count, kick;
704
705 cluster_start = curr = (gp->rx_new & ~(4 - 1));
706 count = 0;
707 kick = -1;
708 dma_wmb();
709 while (curr != limit) {
710 curr = NEXT_RX(curr);
711 if (++count == 4) {
712 struct gem_rxd *rxd =
713 &gp->init_block->rxd[cluster_start];
714 for (;;) {
715 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
716 rxd++;
717 cluster_start = NEXT_RX(cluster_start);
718 if (cluster_start == curr)
719 break;
720 }
721 kick = curr;
722 count = 0;
723 }
724 }
725 if (kick >= 0) {
726 mb();
727 writel(kick, gp->regs + RXDMA_KICK);
728 }
729}
730
731#define ALIGNED_RX_SKB_ADDR(addr) \
732 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
733static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
734 gfp_t gfp_flags)
735{
736 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
737
738 if (likely(skb)) {
739 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
740 skb_reserve(skb, offset);
741 }
742 return skb;
743}
744
745static int gem_rx(struct gem *gp, int work_to_do)
746{
747 struct net_device *dev = gp->dev;
748 int entry, drops, work_done = 0;
749 u32 done;
750
751 if (netif_msg_rx_status(gp))
752 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
753 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
754
755 entry = gp->rx_new;
756 drops = 0;
757 done = readl(gp->regs + RXDMA_DONE);
758 for (;;) {
759 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
760 struct sk_buff *skb;
761 u64 status = le64_to_cpu(rxd->status_word);
762 dma_addr_t dma_addr;
763 int len;
764
765 if ((status & RXDCTRL_OWN) != 0)
766 break;
767
768 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
769 break;
770
771 /* When writing back RX descriptor, GEM writes status
772 * then buffer address, possibly in separate transactions.
773 * If we don't wait for the chip to write both, we could
774 * post a new buffer to this descriptor then have GEM spam
775 * on the buffer address. We sync on the RX completion
776 * register to prevent this from happening.
777 */
778 if (entry == done) {
779 done = readl(gp->regs + RXDMA_DONE);
780 if (entry == done)
781 break;
782 }
783
784 /* We can now account for the work we're about to do */
785 work_done++;
786
787 skb = gp->rx_skbs[entry];
788
789 len = (status & RXDCTRL_BUFSZ) >> 16;
790 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
791 dev->stats.rx_errors++;
792 if (len < ETH_ZLEN)
793 dev->stats.rx_length_errors++;
794 if (len & RXDCTRL_BAD)
795 dev->stats.rx_crc_errors++;
796
797 /* We'll just return it to GEM. */
798 drop_it:
799 dev->stats.rx_dropped++;
800 goto next;
801 }
802
803 dma_addr = le64_to_cpu(rxd->buffer);
804 if (len > RX_COPY_THRESHOLD) {
805 struct sk_buff *new_skb;
806
807 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
808 if (new_skb == NULL) {
809 drops++;
810 goto drop_it;
811 }
812 dma_unmap_page(&gp->pdev->dev, dma_addr,
813 RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
814 gp->rx_skbs[entry] = new_skb;
815 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
816 rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
817 virt_to_page(new_skb->data),
818 offset_in_page(new_skb->data),
819 RX_BUF_ALLOC_SIZE(gp),
820 DMA_FROM_DEVICE));
821 skb_reserve(new_skb, RX_OFFSET);
822
823 /* Trim the original skb for the netif. */
824 skb_trim(skb, len);
825 } else {
826 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
827
828 if (copy_skb == NULL) {
829 drops++;
830 goto drop_it;
831 }
832
833 skb_reserve(copy_skb, 2);
834 skb_put(copy_skb, len);
835 dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
836 DMA_FROM_DEVICE);
837 skb_copy_from_linear_data(skb, copy_skb->data, len);
838 dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
839 len, DMA_FROM_DEVICE);
840
841 /* We'll reuse the original ring buffer. */
842 skb = copy_skb;
843 }
844
845 if (likely(dev->features & NETIF_F_RXCSUM)) {
846 __sum16 csum;
847
848 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
849 skb->csum = csum_unfold(csum);
850 skb->ip_summed = CHECKSUM_COMPLETE;
851 }
852 skb->protocol = eth_type_trans(skb, gp->dev);
853
854 napi_gro_receive(&gp->napi, skb);
855
856 dev->stats.rx_packets++;
857 dev->stats.rx_bytes += len;
858
859 next:
860 entry = NEXT_RX(entry);
861 }
862
863 gem_post_rxds(gp, entry);
864
865 gp->rx_new = entry;
866
867 if (drops)
868 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
869
870 return work_done;
871}
872
873static int gem_poll(struct napi_struct *napi, int budget)
874{
875 struct gem *gp = container_of(napi, struct gem, napi);
876 struct net_device *dev = gp->dev;
877 int work_done;
878
879 work_done = 0;
880 do {
881 /* Handle anomalies */
882 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
883 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
884 int reset;
885
886 /* We run the abnormal interrupt handling code with
887 * the Tx lock. It only resets the Rx portion of the
888 * chip, but we need to guard it against DMA being
889 * restarted by the link poll timer
890 */
891 __netif_tx_lock(txq, smp_processor_id());
892 reset = gem_abnormal_irq(dev, gp, gp->status);
893 __netif_tx_unlock(txq);
894 if (reset) {
895 gem_schedule_reset(gp);
896 napi_complete(napi);
897 return work_done;
898 }
899 }
900
901 /* Run TX completion thread */
902 gem_tx(dev, gp, gp->status);
903
904 /* Run RX thread. We don't use any locking here,
905 * code willing to do bad things - like cleaning the
906 * rx ring - must call napi_disable(), which
907 * schedule_timeout()'s if polling is already disabled.
908 */
909 work_done += gem_rx(gp, budget - work_done);
910
911 if (work_done >= budget)
912 return work_done;
913
914 gp->status = readl(gp->regs + GREG_STAT);
915 } while (gp->status & GREG_STAT_NAPI);
916
917 napi_complete_done(napi, work_done);
918 gem_enable_ints(gp);
919
920 return work_done;
921}
922
923static irqreturn_t gem_interrupt(int irq, void *dev_id)
924{
925 struct net_device *dev = dev_id;
926 struct gem *gp = netdev_priv(dev);
927
928 if (napi_schedule_prep(&gp->napi)) {
929 u32 gem_status = readl(gp->regs + GREG_STAT);
930
931 if (unlikely(gem_status == 0)) {
932 napi_enable(&gp->napi);
933 return IRQ_NONE;
934 }
935 if (netif_msg_intr(gp))
936 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
937 gp->dev->name, gem_status);
938
939 gp->status = gem_status;
940 gem_disable_ints(gp);
941 __napi_schedule(&gp->napi);
942 }
943
944 /* If polling was disabled at the time we received that
945 * interrupt, we may return IRQ_HANDLED here while we
946 * should return IRQ_NONE. No big deal...
947 */
948 return IRQ_HANDLED;
949}
950
951#ifdef CONFIG_NET_POLL_CONTROLLER
952static void gem_poll_controller(struct net_device *dev)
953{
954 struct gem *gp = netdev_priv(dev);
955
956 disable_irq(gp->pdev->irq);
957 gem_interrupt(gp->pdev->irq, dev);
958 enable_irq(gp->pdev->irq);
959}
960#endif
961
962static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
963{
964 struct gem *gp = netdev_priv(dev);
965
966 netdev_err(dev, "transmit timed out, resetting\n");
967
968 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
969 readl(gp->regs + TXDMA_CFG),
970 readl(gp->regs + MAC_TXSTAT),
971 readl(gp->regs + MAC_TXCFG));
972 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
973 readl(gp->regs + RXDMA_CFG),
974 readl(gp->regs + MAC_RXSTAT),
975 readl(gp->regs + MAC_RXCFG));
976
977 gem_schedule_reset(gp);
978}
979
980static __inline__ int gem_intme(int entry)
981{
982 /* Algorithm: IRQ every 1/2 of descriptors. */
983 if (!(entry & ((TX_RING_SIZE>>1)-1)))
984 return 1;
985
986 return 0;
987}
988
989static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
990 struct net_device *dev)
991{
992 struct gem *gp = netdev_priv(dev);
993 int entry;
994 u64 ctrl;
995
996 ctrl = 0;
997 if (skb->ip_summed == CHECKSUM_PARTIAL) {
998 const u64 csum_start_off = skb_checksum_start_offset(skb);
999 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1000
1001 ctrl = (TXDCTRL_CENAB |
1002 (csum_start_off << 15) |
1003 (csum_stuff_off << 21));
1004 }
1005
1006 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1007 /* This is a hard error, log it. */
1008 if (!netif_queue_stopped(dev)) {
1009 netif_stop_queue(dev);
1010 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1011 }
1012 return NETDEV_TX_BUSY;
1013 }
1014
1015 entry = gp->tx_new;
1016 gp->tx_skbs[entry] = skb;
1017
1018 if (skb_shinfo(skb)->nr_frags == 0) {
1019 struct gem_txd *txd = &gp->init_block->txd[entry];
1020 dma_addr_t mapping;
1021 u32 len;
1022
1023 len = skb->len;
1024 mapping = dma_map_page(&gp->pdev->dev,
1025 virt_to_page(skb->data),
1026 offset_in_page(skb->data),
1027 len, DMA_TO_DEVICE);
1028 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1029 if (gem_intme(entry))
1030 ctrl |= TXDCTRL_INTME;
1031 txd->buffer = cpu_to_le64(mapping);
1032 dma_wmb();
1033 txd->control_word = cpu_to_le64(ctrl);
1034 entry = NEXT_TX(entry);
1035 } else {
1036 struct gem_txd *txd;
1037 u32 first_len;
1038 u64 intme;
1039 dma_addr_t first_mapping;
1040 int frag, first_entry = entry;
1041
1042 intme = 0;
1043 if (gem_intme(entry))
1044 intme |= TXDCTRL_INTME;
1045
1046 /* We must give this initial chunk to the device last.
1047 * Otherwise we could race with the device.
1048 */
1049 first_len = skb_headlen(skb);
1050 first_mapping = dma_map_page(&gp->pdev->dev,
1051 virt_to_page(skb->data),
1052 offset_in_page(skb->data),
1053 first_len, DMA_TO_DEVICE);
1054 entry = NEXT_TX(entry);
1055
1056 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1057 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1058 u32 len;
1059 dma_addr_t mapping;
1060 u64 this_ctrl;
1061
1062 len = skb_frag_size(this_frag);
1063 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1064 0, len, DMA_TO_DEVICE);
1065 this_ctrl = ctrl;
1066 if (frag == skb_shinfo(skb)->nr_frags - 1)
1067 this_ctrl |= TXDCTRL_EOF;
1068
1069 txd = &gp->init_block->txd[entry];
1070 txd->buffer = cpu_to_le64(mapping);
1071 dma_wmb();
1072 txd->control_word = cpu_to_le64(this_ctrl | len);
1073
1074 if (gem_intme(entry))
1075 intme |= TXDCTRL_INTME;
1076
1077 entry = NEXT_TX(entry);
1078 }
1079 txd = &gp->init_block->txd[first_entry];
1080 txd->buffer = cpu_to_le64(first_mapping);
1081 dma_wmb();
1082 txd->control_word =
1083 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1084 }
1085
1086 gp->tx_new = entry;
1087 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1088 netif_stop_queue(dev);
1089
1090 /* netif_stop_queue() must be done before checking
1091 * tx index in TX_BUFFS_AVAIL() below, because
1092 * in gem_tx(), we update tx_old before checking for
1093 * netif_queue_stopped().
1094 */
1095 smp_mb();
1096 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1097 netif_wake_queue(dev);
1098 }
1099 if (netif_msg_tx_queued(gp))
1100 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1101 dev->name, entry, skb->len);
1102 mb();
1103 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1104
1105 return NETDEV_TX_OK;
1106}
1107
1108static void gem_pcs_reset(struct gem *gp)
1109{
1110 int limit;
1111 u32 val;
1112
1113 /* Reset PCS unit. */
1114 val = readl(gp->regs + PCS_MIICTRL);
1115 val |= PCS_MIICTRL_RST;
1116 writel(val, gp->regs + PCS_MIICTRL);
1117
1118 limit = 32;
1119 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1120 udelay(100);
1121 if (limit-- <= 0)
1122 break;
1123 }
1124 if (limit < 0)
1125 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1126}
1127
1128static void gem_pcs_reinit_adv(struct gem *gp)
1129{
1130 u32 val;
1131
1132 /* Make sure PCS is disabled while changing advertisement
1133 * configuration.
1134 */
1135 val = readl(gp->regs + PCS_CFG);
1136 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1137 writel(val, gp->regs + PCS_CFG);
1138
1139 /* Advertise all capabilities except asymmetric
1140 * pause.
1141 */
1142 val = readl(gp->regs + PCS_MIIADV);
1143 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1144 PCS_MIIADV_SP | PCS_MIIADV_AP);
1145 writel(val, gp->regs + PCS_MIIADV);
1146
1147 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1148 * and re-enable PCS.
1149 */
1150 val = readl(gp->regs + PCS_MIICTRL);
1151 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1152 val &= ~PCS_MIICTRL_WB;
1153 writel(val, gp->regs + PCS_MIICTRL);
1154
1155 val = readl(gp->regs + PCS_CFG);
1156 val |= PCS_CFG_ENABLE;
1157 writel(val, gp->regs + PCS_CFG);
1158
1159 /* Make sure serialink loopback is off. The meaning
1160 * of this bit is logically inverted based upon whether
1161 * you are in Serialink or SERDES mode.
1162 */
1163 val = readl(gp->regs + PCS_SCTRL);
1164 if (gp->phy_type == phy_serialink)
1165 val &= ~PCS_SCTRL_LOOP;
1166 else
1167 val |= PCS_SCTRL_LOOP;
1168 writel(val, gp->regs + PCS_SCTRL);
1169}
1170
1171#define STOP_TRIES 32
1172
1173static void gem_reset(struct gem *gp)
1174{
1175 int limit;
1176 u32 val;
1177
1178 /* Make sure we won't get any more interrupts */
1179 writel(0xffffffff, gp->regs + GREG_IMASK);
1180
1181 /* Reset the chip */
1182 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1183 gp->regs + GREG_SWRST);
1184
1185 limit = STOP_TRIES;
1186
1187 do {
1188 udelay(20);
1189 val = readl(gp->regs + GREG_SWRST);
1190 if (limit-- <= 0)
1191 break;
1192 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1193
1194 if (limit < 0)
1195 netdev_err(gp->dev, "SW reset is ghetto\n");
1196
1197 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1198 gem_pcs_reinit_adv(gp);
1199}
1200
1201static void gem_start_dma(struct gem *gp)
1202{
1203 u32 val;
1204
1205 /* We are ready to rock, turn everything on. */
1206 val = readl(gp->regs + TXDMA_CFG);
1207 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1208 val = readl(gp->regs + RXDMA_CFG);
1209 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1210 val = readl(gp->regs + MAC_TXCFG);
1211 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1212 val = readl(gp->regs + MAC_RXCFG);
1213 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1214
1215 (void) readl(gp->regs + MAC_RXCFG);
1216 udelay(100);
1217
1218 gem_enable_ints(gp);
1219
1220 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1221}
1222
1223/* DMA won't be actually stopped before about 4ms tho ...
1224 */
1225static void gem_stop_dma(struct gem *gp)
1226{
1227 u32 val;
1228
1229 /* We are done rocking, turn everything off. */
1230 val = readl(gp->regs + TXDMA_CFG);
1231 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1232 val = readl(gp->regs + RXDMA_CFG);
1233 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1234 val = readl(gp->regs + MAC_TXCFG);
1235 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1236 val = readl(gp->regs + MAC_RXCFG);
1237 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1238
1239 (void) readl(gp->regs + MAC_RXCFG);
1240
1241 /* Need to wait a bit ... done by the caller */
1242}
1243
1244
1245// XXX dbl check what that function should do when called on PCS PHY
1246static void gem_begin_auto_negotiation(struct gem *gp,
1247 const struct ethtool_link_ksettings *ep)
1248{
1249 u32 advertise, features;
1250 int autoneg;
1251 int speed;
1252 int duplex;
1253 u32 advertising;
1254
1255 if (ep)
1256 ethtool_convert_link_mode_to_legacy_u32(
1257 &advertising, ep->link_modes.advertising);
1258
1259 if (gp->phy_type != phy_mii_mdio0 &&
1260 gp->phy_type != phy_mii_mdio1)
1261 goto non_mii;
1262
1263 /* Setup advertise */
1264 if (found_mii_phy(gp))
1265 features = gp->phy_mii.def->features;
1266 else
1267 features = 0;
1268
1269 advertise = features & ADVERTISE_MASK;
1270 if (gp->phy_mii.advertising != 0)
1271 advertise &= gp->phy_mii.advertising;
1272
1273 autoneg = gp->want_autoneg;
1274 speed = gp->phy_mii.speed;
1275 duplex = gp->phy_mii.duplex;
1276
1277 /* Setup link parameters */
1278 if (!ep)
1279 goto start_aneg;
1280 if (ep->base.autoneg == AUTONEG_ENABLE) {
1281 advertise = advertising;
1282 autoneg = 1;
1283 } else {
1284 autoneg = 0;
1285 speed = ep->base.speed;
1286 duplex = ep->base.duplex;
1287 }
1288
1289start_aneg:
1290 /* Sanitize settings based on PHY capabilities */
1291 if ((features & SUPPORTED_Autoneg) == 0)
1292 autoneg = 0;
1293 if (speed == SPEED_1000 &&
1294 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1295 speed = SPEED_100;
1296 if (speed == SPEED_100 &&
1297 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1298 speed = SPEED_10;
1299 if (duplex == DUPLEX_FULL &&
1300 !(features & (SUPPORTED_1000baseT_Full |
1301 SUPPORTED_100baseT_Full |
1302 SUPPORTED_10baseT_Full)))
1303 duplex = DUPLEX_HALF;
1304 if (speed == 0)
1305 speed = SPEED_10;
1306
1307 /* If we are asleep, we don't try to actually setup the PHY, we
1308 * just store the settings
1309 */
1310 if (!netif_device_present(gp->dev)) {
1311 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1312 gp->phy_mii.speed = speed;
1313 gp->phy_mii.duplex = duplex;
1314 return;
1315 }
1316
1317 /* Configure PHY & start aneg */
1318 gp->want_autoneg = autoneg;
1319 if (autoneg) {
1320 if (found_mii_phy(gp))
1321 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1322 gp->lstate = link_aneg;
1323 } else {
1324 if (found_mii_phy(gp))
1325 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1326 gp->lstate = link_force_ok;
1327 }
1328
1329non_mii:
1330 gp->timer_ticks = 0;
1331 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1332}
1333
1334/* A link-up condition has occurred, initialize and enable the
1335 * rest of the chip.
1336 */
1337static int gem_set_link_modes(struct gem *gp)
1338{
1339 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1340 int full_duplex, speed, pause;
1341 u32 val;
1342
1343 full_duplex = 0;
1344 speed = SPEED_10;
1345 pause = 0;
1346
1347 if (found_mii_phy(gp)) {
1348 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1349 return 1;
1350 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1351 speed = gp->phy_mii.speed;
1352 pause = gp->phy_mii.pause;
1353 } else if (gp->phy_type == phy_serialink ||
1354 gp->phy_type == phy_serdes) {
1355 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1356
1357 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1358 full_duplex = 1;
1359 speed = SPEED_1000;
1360 }
1361
1362 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1363 speed, (full_duplex ? "full" : "half"));
1364
1365
1366 /* We take the tx queue lock to avoid collisions between
1367 * this code, the tx path and the NAPI-driven error path
1368 */
1369 __netif_tx_lock(txq, smp_processor_id());
1370
1371 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1372 if (full_duplex) {
1373 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1374 } else {
1375 /* MAC_TXCFG_NBO must be zero. */
1376 }
1377 writel(val, gp->regs + MAC_TXCFG);
1378
1379 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1380 if (!full_duplex &&
1381 (gp->phy_type == phy_mii_mdio0 ||
1382 gp->phy_type == phy_mii_mdio1)) {
1383 val |= MAC_XIFCFG_DISE;
1384 } else if (full_duplex) {
1385 val |= MAC_XIFCFG_FLED;
1386 }
1387
1388 if (speed == SPEED_1000)
1389 val |= (MAC_XIFCFG_GMII);
1390
1391 writel(val, gp->regs + MAC_XIFCFG);
1392
1393 /* If gigabit and half-duplex, enable carrier extension
1394 * mode. Else, disable it.
1395 */
1396 if (speed == SPEED_1000 && !full_duplex) {
1397 val = readl(gp->regs + MAC_TXCFG);
1398 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1399
1400 val = readl(gp->regs + MAC_RXCFG);
1401 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1402 } else {
1403 val = readl(gp->regs + MAC_TXCFG);
1404 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1405
1406 val = readl(gp->regs + MAC_RXCFG);
1407 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1408 }
1409
1410 if (gp->phy_type == phy_serialink ||
1411 gp->phy_type == phy_serdes) {
1412 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1413
1414 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1415 pause = 1;
1416 }
1417
1418 if (!full_duplex)
1419 writel(512, gp->regs + MAC_STIME);
1420 else
1421 writel(64, gp->regs + MAC_STIME);
1422 val = readl(gp->regs + MAC_MCCFG);
1423 if (pause)
1424 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1425 else
1426 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1427 writel(val, gp->regs + MAC_MCCFG);
1428
1429 gem_start_dma(gp);
1430
1431 __netif_tx_unlock(txq);
1432
1433 if (netif_msg_link(gp)) {
1434 if (pause) {
1435 netdev_info(gp->dev,
1436 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1437 gp->rx_fifo_sz,
1438 gp->rx_pause_off,
1439 gp->rx_pause_on);
1440 } else {
1441 netdev_info(gp->dev, "Pause is disabled\n");
1442 }
1443 }
1444
1445 return 0;
1446}
1447
1448static int gem_mdio_link_not_up(struct gem *gp)
1449{
1450 switch (gp->lstate) {
1451 case link_force_ret:
1452 netif_info(gp, link, gp->dev,
1453 "Autoneg failed again, keeping forced mode\n");
1454 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1455 gp->last_forced_speed, DUPLEX_HALF);
1456 gp->timer_ticks = 5;
1457 gp->lstate = link_force_ok;
1458 return 0;
1459 case link_aneg:
1460 /* We try forced modes after a failed aneg only on PHYs that don't
1461 * have "magic_aneg" bit set, which means they internally do the
1462 * while forced-mode thingy. On these, we just restart aneg
1463 */
1464 if (gp->phy_mii.def->magic_aneg)
1465 return 1;
1466 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1467 /* Try forced modes. */
1468 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1469 DUPLEX_HALF);
1470 gp->timer_ticks = 5;
1471 gp->lstate = link_force_try;
1472 return 0;
1473 case link_force_try:
1474 /* Downgrade from 100 to 10 Mbps if necessary.
1475 * If already at 10Mbps, warn user about the
1476 * situation every 10 ticks.
1477 */
1478 if (gp->phy_mii.speed == SPEED_100) {
1479 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1480 DUPLEX_HALF);
1481 gp->timer_ticks = 5;
1482 netif_info(gp, link, gp->dev,
1483 "switching to forced 10bt\n");
1484 return 0;
1485 } else
1486 return 1;
1487 default:
1488 return 0;
1489 }
1490}
1491
1492static void gem_link_timer(struct timer_list *t)
1493{
1494 struct gem *gp = from_timer(gp, t, link_timer);
1495 struct net_device *dev = gp->dev;
1496 int restart_aneg = 0;
1497
1498 /* There's no point doing anything if we're going to be reset */
1499 if (gp->reset_task_pending)
1500 return;
1501
1502 if (gp->phy_type == phy_serialink ||
1503 gp->phy_type == phy_serdes) {
1504 u32 val = readl(gp->regs + PCS_MIISTAT);
1505
1506 if (!(val & PCS_MIISTAT_LS))
1507 val = readl(gp->regs + PCS_MIISTAT);
1508
1509 if ((val & PCS_MIISTAT_LS) != 0) {
1510 if (gp->lstate == link_up)
1511 goto restart;
1512
1513 gp->lstate = link_up;
1514 netif_carrier_on(dev);
1515 (void)gem_set_link_modes(gp);
1516 }
1517 goto restart;
1518 }
1519 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1520 /* Ok, here we got a link. If we had it due to a forced
1521 * fallback, and we were configured for autoneg, we do
1522 * retry a short autoneg pass. If you know your hub is
1523 * broken, use ethtool ;)
1524 */
1525 if (gp->lstate == link_force_try && gp->want_autoneg) {
1526 gp->lstate = link_force_ret;
1527 gp->last_forced_speed = gp->phy_mii.speed;
1528 gp->timer_ticks = 5;
1529 if (netif_msg_link(gp))
1530 netdev_info(dev,
1531 "Got link after fallback, retrying autoneg once...\n");
1532 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1533 } else if (gp->lstate != link_up) {
1534 gp->lstate = link_up;
1535 netif_carrier_on(dev);
1536 if (gem_set_link_modes(gp))
1537 restart_aneg = 1;
1538 }
1539 } else {
1540 /* If the link was previously up, we restart the
1541 * whole process
1542 */
1543 if (gp->lstate == link_up) {
1544 gp->lstate = link_down;
1545 netif_info(gp, link, dev, "Link down\n");
1546 netif_carrier_off(dev);
1547 gem_schedule_reset(gp);
1548 /* The reset task will restart the timer */
1549 return;
1550 } else if (++gp->timer_ticks > 10) {
1551 if (found_mii_phy(gp))
1552 restart_aneg = gem_mdio_link_not_up(gp);
1553 else
1554 restart_aneg = 1;
1555 }
1556 }
1557 if (restart_aneg) {
1558 gem_begin_auto_negotiation(gp, NULL);
1559 return;
1560 }
1561restart:
1562 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1563}
1564
1565static void gem_clean_rings(struct gem *gp)
1566{
1567 struct gem_init_block *gb = gp->init_block;
1568 struct sk_buff *skb;
1569 int i;
1570 dma_addr_t dma_addr;
1571
1572 for (i = 0; i < RX_RING_SIZE; i++) {
1573 struct gem_rxd *rxd;
1574
1575 rxd = &gb->rxd[i];
1576 if (gp->rx_skbs[i] != NULL) {
1577 skb = gp->rx_skbs[i];
1578 dma_addr = le64_to_cpu(rxd->buffer);
1579 dma_unmap_page(&gp->pdev->dev, dma_addr,
1580 RX_BUF_ALLOC_SIZE(gp),
1581 DMA_FROM_DEVICE);
1582 dev_kfree_skb_any(skb);
1583 gp->rx_skbs[i] = NULL;
1584 }
1585 rxd->status_word = 0;
1586 dma_wmb();
1587 rxd->buffer = 0;
1588 }
1589
1590 for (i = 0; i < TX_RING_SIZE; i++) {
1591 if (gp->tx_skbs[i] != NULL) {
1592 struct gem_txd *txd;
1593 int frag;
1594
1595 skb = gp->tx_skbs[i];
1596 gp->tx_skbs[i] = NULL;
1597
1598 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1599 int ent = i & (TX_RING_SIZE - 1);
1600
1601 txd = &gb->txd[ent];
1602 dma_addr = le64_to_cpu(txd->buffer);
1603 dma_unmap_page(&gp->pdev->dev, dma_addr,
1604 le64_to_cpu(txd->control_word) &
1605 TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1606
1607 if (frag != skb_shinfo(skb)->nr_frags)
1608 i++;
1609 }
1610 dev_kfree_skb_any(skb);
1611 }
1612 }
1613}
1614
1615static void gem_init_rings(struct gem *gp)
1616{
1617 struct gem_init_block *gb = gp->init_block;
1618 struct net_device *dev = gp->dev;
1619 int i;
1620 dma_addr_t dma_addr;
1621
1622 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1623
1624 gem_clean_rings(gp);
1625
1626 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1627 (unsigned)VLAN_ETH_FRAME_LEN);
1628
1629 for (i = 0; i < RX_RING_SIZE; i++) {
1630 struct sk_buff *skb;
1631 struct gem_rxd *rxd = &gb->rxd[i];
1632
1633 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1634 if (!skb) {
1635 rxd->buffer = 0;
1636 rxd->status_word = 0;
1637 continue;
1638 }
1639
1640 gp->rx_skbs[i] = skb;
1641 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1642 dma_addr = dma_map_page(&gp->pdev->dev,
1643 virt_to_page(skb->data),
1644 offset_in_page(skb->data),
1645 RX_BUF_ALLOC_SIZE(gp),
1646 DMA_FROM_DEVICE);
1647 rxd->buffer = cpu_to_le64(dma_addr);
1648 dma_wmb();
1649 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1650 skb_reserve(skb, RX_OFFSET);
1651 }
1652
1653 for (i = 0; i < TX_RING_SIZE; i++) {
1654 struct gem_txd *txd = &gb->txd[i];
1655
1656 txd->control_word = 0;
1657 dma_wmb();
1658 txd->buffer = 0;
1659 }
1660 wmb();
1661}
1662
1663/* Init PHY interface and start link poll state machine */
1664static void gem_init_phy(struct gem *gp)
1665{
1666 u32 mifcfg;
1667
1668 /* Revert MIF CFG setting done on stop_phy */
1669 mifcfg = readl(gp->regs + MIF_CFG);
1670 mifcfg &= ~MIF_CFG_BBMODE;
1671 writel(mifcfg, gp->regs + MIF_CFG);
1672
1673 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1674 int i;
1675
1676 /* Those delays sucks, the HW seems to love them though, I'll
1677 * seriously consider breaking some locks here to be able
1678 * to schedule instead
1679 */
1680 for (i = 0; i < 3; i++) {
1681#ifdef CONFIG_PPC_PMAC
1682 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1683 msleep(20);
1684#endif
1685 /* Some PHYs used by apple have problem getting back to us,
1686 * we do an additional reset here
1687 */
1688 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1689 msleep(20);
1690 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1691 break;
1692 if (i == 2)
1693 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1694 }
1695 }
1696
1697 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1698 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1699 u32 val;
1700
1701 /* Init datapath mode register. */
1702 if (gp->phy_type == phy_mii_mdio0 ||
1703 gp->phy_type == phy_mii_mdio1) {
1704 val = PCS_DMODE_MGM;
1705 } else if (gp->phy_type == phy_serialink) {
1706 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1707 } else {
1708 val = PCS_DMODE_ESM;
1709 }
1710
1711 writel(val, gp->regs + PCS_DMODE);
1712 }
1713
1714 if (gp->phy_type == phy_mii_mdio0 ||
1715 gp->phy_type == phy_mii_mdio1) {
1716 /* Reset and detect MII PHY */
1717 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1718
1719 /* Init PHY */
1720 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1721 gp->phy_mii.def->ops->init(&gp->phy_mii);
1722 } else {
1723 gem_pcs_reset(gp);
1724 gem_pcs_reinit_adv(gp);
1725 }
1726
1727 /* Default aneg parameters */
1728 gp->timer_ticks = 0;
1729 gp->lstate = link_down;
1730 netif_carrier_off(gp->dev);
1731
1732 /* Print things out */
1733 if (gp->phy_type == phy_mii_mdio0 ||
1734 gp->phy_type == phy_mii_mdio1)
1735 netdev_info(gp->dev, "Found %s PHY\n",
1736 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1737
1738 gem_begin_auto_negotiation(gp, NULL);
1739}
1740
1741static void gem_init_dma(struct gem *gp)
1742{
1743 u64 desc_dma = (u64) gp->gblock_dvma;
1744 u32 val;
1745
1746 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1747 writel(val, gp->regs + TXDMA_CFG);
1748
1749 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1750 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1751 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1752
1753 writel(0, gp->regs + TXDMA_KICK);
1754
1755 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1756 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1757 writel(val, gp->regs + RXDMA_CFG);
1758
1759 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1760 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1761
1762 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1763
1764 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1765 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1766 writel(val, gp->regs + RXDMA_PTHRESH);
1767
1768 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1769 writel(((5 & RXDMA_BLANK_IPKTS) |
1770 ((8 << 12) & RXDMA_BLANK_ITIME)),
1771 gp->regs + RXDMA_BLANK);
1772 else
1773 writel(((5 & RXDMA_BLANK_IPKTS) |
1774 ((4 << 12) & RXDMA_BLANK_ITIME)),
1775 gp->regs + RXDMA_BLANK);
1776}
1777
1778static u32 gem_setup_multicast(struct gem *gp)
1779{
1780 u32 rxcfg = 0;
1781 int i;
1782
1783 if ((gp->dev->flags & IFF_ALLMULTI) ||
1784 (netdev_mc_count(gp->dev) > 256)) {
1785 for (i=0; i<16; i++)
1786 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1787 rxcfg |= MAC_RXCFG_HFE;
1788 } else if (gp->dev->flags & IFF_PROMISC) {
1789 rxcfg |= MAC_RXCFG_PROM;
1790 } else {
1791 u16 hash_table[16];
1792 u32 crc;
1793 struct netdev_hw_addr *ha;
1794 int i;
1795
1796 memset(hash_table, 0, sizeof(hash_table));
1797 netdev_for_each_mc_addr(ha, gp->dev) {
1798 crc = ether_crc_le(6, ha->addr);
1799 crc >>= 24;
1800 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1801 }
1802 for (i=0; i<16; i++)
1803 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1804 rxcfg |= MAC_RXCFG_HFE;
1805 }
1806
1807 return rxcfg;
1808}
1809
1810static void gem_init_mac(struct gem *gp)
1811{
1812 const unsigned char *e = &gp->dev->dev_addr[0];
1813
1814 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1815
1816 writel(0x00, gp->regs + MAC_IPG0);
1817 writel(0x08, gp->regs + MAC_IPG1);
1818 writel(0x04, gp->regs + MAC_IPG2);
1819 writel(0x40, gp->regs + MAC_STIME);
1820 writel(0x40, gp->regs + MAC_MINFSZ);
1821
1822 /* Ethernet payload + header + FCS + optional VLAN tag. */
1823 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1824
1825 writel(0x07, gp->regs + MAC_PASIZE);
1826 writel(0x04, gp->regs + MAC_JAMSIZE);
1827 writel(0x10, gp->regs + MAC_ATTLIM);
1828 writel(0x8808, gp->regs + MAC_MCTYPE);
1829
1830 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1831
1832 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1833 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1834 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1835
1836 writel(0, gp->regs + MAC_ADDR3);
1837 writel(0, gp->regs + MAC_ADDR4);
1838 writel(0, gp->regs + MAC_ADDR5);
1839
1840 writel(0x0001, gp->regs + MAC_ADDR6);
1841 writel(0xc200, gp->regs + MAC_ADDR7);
1842 writel(0x0180, gp->regs + MAC_ADDR8);
1843
1844 writel(0, gp->regs + MAC_AFILT0);
1845 writel(0, gp->regs + MAC_AFILT1);
1846 writel(0, gp->regs + MAC_AFILT2);
1847 writel(0, gp->regs + MAC_AF21MSK);
1848 writel(0, gp->regs + MAC_AF0MSK);
1849
1850 gp->mac_rx_cfg = gem_setup_multicast(gp);
1851#ifdef STRIP_FCS
1852 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1853#endif
1854 writel(0, gp->regs + MAC_NCOLL);
1855 writel(0, gp->regs + MAC_FASUCC);
1856 writel(0, gp->regs + MAC_ECOLL);
1857 writel(0, gp->regs + MAC_LCOLL);
1858 writel(0, gp->regs + MAC_DTIMER);
1859 writel(0, gp->regs + MAC_PATMPS);
1860 writel(0, gp->regs + MAC_RFCTR);
1861 writel(0, gp->regs + MAC_LERR);
1862 writel(0, gp->regs + MAC_AERR);
1863 writel(0, gp->regs + MAC_FCSERR);
1864 writel(0, gp->regs + MAC_RXCVERR);
1865
1866 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1867 * them once a link is established.
1868 */
1869 writel(0, gp->regs + MAC_TXCFG);
1870 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1871 writel(0, gp->regs + MAC_MCCFG);
1872 writel(0, gp->regs + MAC_XIFCFG);
1873
1874 /* Setup MAC interrupts. We want to get all of the interesting
1875 * counter expiration events, but we do not want to hear about
1876 * normal rx/tx as the DMA engine tells us that.
1877 */
1878 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1879 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1880
1881 /* Don't enable even the PAUSE interrupts for now, we
1882 * make no use of those events other than to record them.
1883 */
1884 writel(0xffffffff, gp->regs + MAC_MCMASK);
1885
1886 /* Don't enable GEM's WOL in normal operations
1887 */
1888 if (gp->has_wol)
1889 writel(0, gp->regs + WOL_WAKECSR);
1890}
1891
1892static void gem_init_pause_thresholds(struct gem *gp)
1893{
1894 u32 cfg;
1895
1896 /* Calculate pause thresholds. Setting the OFF threshold to the
1897 * full RX fifo size effectively disables PAUSE generation which
1898 * is what we do for 10/100 only GEMs which have FIFOs too small
1899 * to make real gains from PAUSE.
1900 */
1901 if (gp->rx_fifo_sz <= (2 * 1024)) {
1902 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1903 } else {
1904 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1905 int off = (gp->rx_fifo_sz - (max_frame * 2));
1906 int on = off - max_frame;
1907
1908 gp->rx_pause_off = off;
1909 gp->rx_pause_on = on;
1910 }
1911
1912
1913 /* Configure the chip "burst" DMA mode & enable some
1914 * HW bug fixes on Apple version
1915 */
1916 cfg = 0;
1917 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1918 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1919#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1920 cfg |= GREG_CFG_IBURST;
1921#endif
1922 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1923 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1924 writel(cfg, gp->regs + GREG_CFG);
1925
1926 /* If Infinite Burst didn't stick, then use different
1927 * thresholds (and Apple bug fixes don't exist)
1928 */
1929 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1930 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1931 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1932 writel(cfg, gp->regs + GREG_CFG);
1933 }
1934}
1935
1936static int gem_check_invariants(struct gem *gp)
1937{
1938 struct pci_dev *pdev = gp->pdev;
1939 u32 mif_cfg;
1940
1941 /* On Apple's sungem, we can't rely on registers as the chip
1942 * was been powered down by the firmware. The PHY is looked
1943 * up later on.
1944 */
1945 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1946 gp->phy_type = phy_mii_mdio0;
1947 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1948 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1949 gp->swrst_base = 0;
1950
1951 mif_cfg = readl(gp->regs + MIF_CFG);
1952 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1953 mif_cfg |= MIF_CFG_MDI0;
1954 writel(mif_cfg, gp->regs + MIF_CFG);
1955 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1956 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1957
1958 /* We hard-code the PHY address so we can properly bring it out of
1959 * reset later on, we can't really probe it at this point, though
1960 * that isn't an issue.
1961 */
1962 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1963 gp->mii_phy_addr = 1;
1964 else
1965 gp->mii_phy_addr = 0;
1966
1967 return 0;
1968 }
1969
1970 mif_cfg = readl(gp->regs + MIF_CFG);
1971
1972 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1973 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1974 /* One of the MII PHYs _must_ be present
1975 * as this chip has no gigabit PHY.
1976 */
1977 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1978 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1979 mif_cfg);
1980 return -1;
1981 }
1982 }
1983
1984 /* Determine initial PHY interface type guess. MDIO1 is the
1985 * external PHY and thus takes precedence over MDIO0.
1986 */
1987
1988 if (mif_cfg & MIF_CFG_MDI1) {
1989 gp->phy_type = phy_mii_mdio1;
1990 mif_cfg |= MIF_CFG_PSELECT;
1991 writel(mif_cfg, gp->regs + MIF_CFG);
1992 } else if (mif_cfg & MIF_CFG_MDI0) {
1993 gp->phy_type = phy_mii_mdio0;
1994 mif_cfg &= ~MIF_CFG_PSELECT;
1995 writel(mif_cfg, gp->regs + MIF_CFG);
1996 } else {
1997#ifdef CONFIG_SPARC
1998 const char *p;
1999
2000 p = of_get_property(gp->of_node, "shared-pins", NULL);
2001 if (p && !strcmp(p, "serdes"))
2002 gp->phy_type = phy_serdes;
2003 else
2004#endif
2005 gp->phy_type = phy_serialink;
2006 }
2007 if (gp->phy_type == phy_mii_mdio1 ||
2008 gp->phy_type == phy_mii_mdio0) {
2009 int i;
2010
2011 for (i = 0; i < 32; i++) {
2012 gp->mii_phy_addr = i;
2013 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2014 break;
2015 }
2016 if (i == 32) {
2017 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2018 pr_err("RIO MII phy will not respond\n");
2019 return -1;
2020 }
2021 gp->phy_type = phy_serdes;
2022 }
2023 }
2024
2025 /* Fetch the FIFO configurations now too. */
2026 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2027 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2028
2029 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2030 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2031 if (gp->tx_fifo_sz != (9 * 1024) ||
2032 gp->rx_fifo_sz != (20 * 1024)) {
2033 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2034 gp->tx_fifo_sz, gp->rx_fifo_sz);
2035 return -1;
2036 }
2037 gp->swrst_base = 0;
2038 } else {
2039 if (gp->tx_fifo_sz != (2 * 1024) ||
2040 gp->rx_fifo_sz != (2 * 1024)) {
2041 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2042 gp->tx_fifo_sz, gp->rx_fifo_sz);
2043 return -1;
2044 }
2045 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2046 }
2047 }
2048
2049 return 0;
2050}
2051
2052static void gem_reinit_chip(struct gem *gp)
2053{
2054 /* Reset the chip */
2055 gem_reset(gp);
2056
2057 /* Make sure ints are disabled */
2058 gem_disable_ints(gp);
2059
2060 /* Allocate & setup ring buffers */
2061 gem_init_rings(gp);
2062
2063 /* Configure pause thresholds */
2064 gem_init_pause_thresholds(gp);
2065
2066 /* Init DMA & MAC engines */
2067 gem_init_dma(gp);
2068 gem_init_mac(gp);
2069}
2070
2071
2072static void gem_stop_phy(struct gem *gp, int wol)
2073{
2074 u32 mifcfg;
2075
2076 /* Let the chip settle down a bit, it seems that helps
2077 * for sleep mode on some models
2078 */
2079 msleep(10);
2080
2081 /* Make sure we aren't polling PHY status change. We
2082 * don't currently use that feature though
2083 */
2084 mifcfg = readl(gp->regs + MIF_CFG);
2085 mifcfg &= ~MIF_CFG_POLL;
2086 writel(mifcfg, gp->regs + MIF_CFG);
2087
2088 if (wol && gp->has_wol) {
2089 const unsigned char *e = &gp->dev->dev_addr[0];
2090 u32 csr;
2091
2092 /* Setup wake-on-lan for MAGIC packet */
2093 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2094 gp->regs + MAC_RXCFG);
2095 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2096 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2097 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2098
2099 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2100 csr = WOL_WAKECSR_ENABLE;
2101 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2102 csr |= WOL_WAKECSR_MII;
2103 writel(csr, gp->regs + WOL_WAKECSR);
2104 } else {
2105 writel(0, gp->regs + MAC_RXCFG);
2106 (void)readl(gp->regs + MAC_RXCFG);
2107 /* Machine sleep will die in strange ways if we
2108 * dont wait a bit here, looks like the chip takes
2109 * some time to really shut down
2110 */
2111 msleep(10);
2112 }
2113
2114 writel(0, gp->regs + MAC_TXCFG);
2115 writel(0, gp->regs + MAC_XIFCFG);
2116 writel(0, gp->regs + TXDMA_CFG);
2117 writel(0, gp->regs + RXDMA_CFG);
2118
2119 if (!wol) {
2120 gem_reset(gp);
2121 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2122 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2123
2124 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2125 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2126
2127 /* According to Apple, we must set the MDIO pins to this begnign
2128 * state or we may 1) eat more current, 2) damage some PHYs
2129 */
2130 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2131 writel(0, gp->regs + MIF_BBCLK);
2132 writel(0, gp->regs + MIF_BBDATA);
2133 writel(0, gp->regs + MIF_BBOENAB);
2134 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2135 (void) readl(gp->regs + MAC_XIFCFG);
2136 }
2137}
2138
2139static int gem_do_start(struct net_device *dev)
2140{
2141 struct gem *gp = netdev_priv(dev);
2142 int rc;
2143
2144 pci_set_master(gp->pdev);
2145
2146 /* Init & setup chip hardware */
2147 gem_reinit_chip(gp);
2148
2149 /* An interrupt might come in handy */
2150 rc = request_irq(gp->pdev->irq, gem_interrupt,
2151 IRQF_SHARED, dev->name, (void *)dev);
2152 if (rc) {
2153 netdev_err(dev, "failed to request irq !\n");
2154
2155 gem_reset(gp);
2156 gem_clean_rings(gp);
2157 gem_put_cell(gp);
2158 return rc;
2159 }
2160
2161 /* Mark us as attached again if we come from resume(), this has
2162 * no effect if we weren't detached and needs to be done now.
2163 */
2164 netif_device_attach(dev);
2165
2166 /* Restart NAPI & queues */
2167 gem_netif_start(gp);
2168
2169 /* Detect & init PHY, start autoneg etc... this will
2170 * eventually result in starting DMA operations when
2171 * the link is up
2172 */
2173 gem_init_phy(gp);
2174
2175 return 0;
2176}
2177
2178static void gem_do_stop(struct net_device *dev, int wol)
2179{
2180 struct gem *gp = netdev_priv(dev);
2181
2182 /* Stop NAPI and stop tx queue */
2183 gem_netif_stop(gp);
2184
2185 /* Make sure ints are disabled. We don't care about
2186 * synchronizing as NAPI is disabled, thus a stray
2187 * interrupt will do nothing bad (our irq handler
2188 * just schedules NAPI)
2189 */
2190 gem_disable_ints(gp);
2191
2192 /* Stop the link timer */
2193 del_timer_sync(&gp->link_timer);
2194
2195 /* We cannot cancel the reset task while holding the
2196 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2197 * if we did. This is not an issue however as the reset
2198 * task is synchronized vs. us (rtnl_lock) and will do
2199 * nothing if the device is down or suspended. We do
2200 * still clear reset_task_pending to avoid a spurrious
2201 * reset later on in case we do resume before it gets
2202 * scheduled.
2203 */
2204 gp->reset_task_pending = 0;
2205
2206 /* If we are going to sleep with WOL */
2207 gem_stop_dma(gp);
2208 msleep(10);
2209 if (!wol)
2210 gem_reset(gp);
2211 msleep(10);
2212
2213 /* Get rid of rings */
2214 gem_clean_rings(gp);
2215
2216 /* No irq needed anymore */
2217 free_irq(gp->pdev->irq, (void *) dev);
2218
2219 /* Shut the PHY down eventually and setup WOL */
2220 gem_stop_phy(gp, wol);
2221}
2222
2223static void gem_reset_task(struct work_struct *work)
2224{
2225 struct gem *gp = container_of(work, struct gem, reset_task);
2226
2227 /* Lock out the network stack (essentially shield ourselves
2228 * against a racing open, close, control call, or suspend
2229 */
2230 rtnl_lock();
2231
2232 /* Skip the reset task if suspended or closed, or if it's
2233 * been cancelled by gem_do_stop (see comment there)
2234 */
2235 if (!netif_device_present(gp->dev) ||
2236 !netif_running(gp->dev) ||
2237 !gp->reset_task_pending) {
2238 rtnl_unlock();
2239 return;
2240 }
2241
2242 /* Stop the link timer */
2243 del_timer_sync(&gp->link_timer);
2244
2245 /* Stop NAPI and tx */
2246 gem_netif_stop(gp);
2247
2248 /* Reset the chip & rings */
2249 gem_reinit_chip(gp);
2250 if (gp->lstate == link_up)
2251 gem_set_link_modes(gp);
2252
2253 /* Restart NAPI and Tx */
2254 gem_netif_start(gp);
2255
2256 /* We are back ! */
2257 gp->reset_task_pending = 0;
2258
2259 /* If the link is not up, restart autoneg, else restart the
2260 * polling timer
2261 */
2262 if (gp->lstate != link_up)
2263 gem_begin_auto_negotiation(gp, NULL);
2264 else
2265 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2266
2267 rtnl_unlock();
2268}
2269
2270static int gem_open(struct net_device *dev)
2271{
2272 struct gem *gp = netdev_priv(dev);
2273 int rc;
2274
2275 /* We allow open while suspended, we just do nothing,
2276 * the chip will be initialized in resume()
2277 */
2278 if (netif_device_present(dev)) {
2279 /* Enable the cell */
2280 gem_get_cell(gp);
2281
2282 /* Make sure PCI access and bus master are enabled */
2283 rc = pci_enable_device(gp->pdev);
2284 if (rc) {
2285 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2286
2287 /* Put cell and forget it for now, it will be considered
2288 *as still asleep, a new sleep cycle may bring it back
2289 */
2290 gem_put_cell(gp);
2291 return -ENXIO;
2292 }
2293 return gem_do_start(dev);
2294 }
2295
2296 return 0;
2297}
2298
2299static int gem_close(struct net_device *dev)
2300{
2301 struct gem *gp = netdev_priv(dev);
2302
2303 if (netif_device_present(dev)) {
2304 gem_do_stop(dev, 0);
2305
2306 /* Make sure bus master is disabled */
2307 pci_disable_device(gp->pdev);
2308
2309 /* Cell not needed neither if no WOL */
2310 if (!gp->asleep_wol)
2311 gem_put_cell(gp);
2312 }
2313 return 0;
2314}
2315
2316static int __maybe_unused gem_suspend(struct device *dev_d)
2317{
2318 struct net_device *dev = dev_get_drvdata(dev_d);
2319 struct gem *gp = netdev_priv(dev);
2320
2321 /* Lock the network stack first to avoid racing with open/close,
2322 * reset task and setting calls
2323 */
2324 rtnl_lock();
2325
2326 /* Not running, mark ourselves non-present, no need for
2327 * a lock here
2328 */
2329 if (!netif_running(dev)) {
2330 netif_device_detach(dev);
2331 rtnl_unlock();
2332 return 0;
2333 }
2334 netdev_info(dev, "suspending, WakeOnLan %s\n",
2335 (gp->wake_on_lan && netif_running(dev)) ?
2336 "enabled" : "disabled");
2337
2338 /* Tell the network stack we're gone. gem_do_stop() below will
2339 * synchronize with TX, stop NAPI etc...
2340 */
2341 netif_device_detach(dev);
2342
2343 /* Switch off chip, remember WOL setting */
2344 gp->asleep_wol = !!gp->wake_on_lan;
2345 gem_do_stop(dev, gp->asleep_wol);
2346
2347 /* Cell not needed neither if no WOL */
2348 if (!gp->asleep_wol)
2349 gem_put_cell(gp);
2350
2351 /* Unlock the network stack */
2352 rtnl_unlock();
2353
2354 return 0;
2355}
2356
2357static int __maybe_unused gem_resume(struct device *dev_d)
2358{
2359 struct net_device *dev = dev_get_drvdata(dev_d);
2360 struct gem *gp = netdev_priv(dev);
2361
2362 /* See locking comment in gem_suspend */
2363 rtnl_lock();
2364
2365 /* Not running, mark ourselves present, no need for
2366 * a lock here
2367 */
2368 if (!netif_running(dev)) {
2369 netif_device_attach(dev);
2370 rtnl_unlock();
2371 return 0;
2372 }
2373
2374 /* Enable the cell */
2375 gem_get_cell(gp);
2376
2377 /* Restart chip. If that fails there isn't much we can do, we
2378 * leave things stopped.
2379 */
2380 gem_do_start(dev);
2381
2382 /* If we had WOL enabled, the cell clock was never turned off during
2383 * sleep, so we end up beeing unbalanced. Fix that here
2384 */
2385 if (gp->asleep_wol)
2386 gem_put_cell(gp);
2387
2388 /* Unlock the network stack */
2389 rtnl_unlock();
2390
2391 return 0;
2392}
2393
2394static struct net_device_stats *gem_get_stats(struct net_device *dev)
2395{
2396 struct gem *gp = netdev_priv(dev);
2397
2398 /* I have seen this being called while the PM was in progress,
2399 * so we shield against this. Let's also not poke at registers
2400 * while the reset task is going on.
2401 *
2402 * TODO: Move stats collection elsewhere (link timer ?) and
2403 * make this a nop to avoid all those synchro issues
2404 */
2405 if (!netif_device_present(dev) || !netif_running(dev))
2406 goto bail;
2407
2408 /* Better safe than sorry... */
2409 if (WARN_ON(!gp->cell_enabled))
2410 goto bail;
2411
2412 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2413 writel(0, gp->regs + MAC_FCSERR);
2414
2415 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2416 writel(0, gp->regs + MAC_AERR);
2417
2418 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2419 writel(0, gp->regs + MAC_LERR);
2420
2421 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2422 dev->stats.collisions +=
2423 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2424 writel(0, gp->regs + MAC_ECOLL);
2425 writel(0, gp->regs + MAC_LCOLL);
2426 bail:
2427 return &dev->stats;
2428}
2429
2430static int gem_set_mac_address(struct net_device *dev, void *addr)
2431{
2432 struct sockaddr *macaddr = (struct sockaddr *) addr;
2433 const unsigned char *e = &dev->dev_addr[0];
2434 struct gem *gp = netdev_priv(dev);
2435
2436 if (!is_valid_ether_addr(macaddr->sa_data))
2437 return -EADDRNOTAVAIL;
2438
2439 eth_hw_addr_set(dev, macaddr->sa_data);
2440
2441 /* We'll just catch it later when the device is up'd or resumed */
2442 if (!netif_running(dev) || !netif_device_present(dev))
2443 return 0;
2444
2445 /* Better safe than sorry... */
2446 if (WARN_ON(!gp->cell_enabled))
2447 return 0;
2448
2449 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2450 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2451 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2452
2453 return 0;
2454}
2455
2456static void gem_set_multicast(struct net_device *dev)
2457{
2458 struct gem *gp = netdev_priv(dev);
2459 u32 rxcfg, rxcfg_new;
2460 int limit = 10000;
2461
2462 if (!netif_running(dev) || !netif_device_present(dev))
2463 return;
2464
2465 /* Better safe than sorry... */
2466 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2467 return;
2468
2469 rxcfg = readl(gp->regs + MAC_RXCFG);
2470 rxcfg_new = gem_setup_multicast(gp);
2471#ifdef STRIP_FCS
2472 rxcfg_new |= MAC_RXCFG_SFCS;
2473#endif
2474 gp->mac_rx_cfg = rxcfg_new;
2475
2476 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2477 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2478 if (!limit--)
2479 break;
2480 udelay(10);
2481 }
2482
2483 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2484 rxcfg |= rxcfg_new;
2485
2486 writel(rxcfg, gp->regs + MAC_RXCFG);
2487}
2488
2489/* Jumbo-grams don't seem to work :-( */
2490#define GEM_MIN_MTU ETH_MIN_MTU
2491#if 1
2492#define GEM_MAX_MTU ETH_DATA_LEN
2493#else
2494#define GEM_MAX_MTU 9000
2495#endif
2496
2497static int gem_change_mtu(struct net_device *dev, int new_mtu)
2498{
2499 struct gem *gp = netdev_priv(dev);
2500
2501 dev->mtu = new_mtu;
2502
2503 /* We'll just catch it later when the device is up'd or resumed */
2504 if (!netif_running(dev) || !netif_device_present(dev))
2505 return 0;
2506
2507 /* Better safe than sorry... */
2508 if (WARN_ON(!gp->cell_enabled))
2509 return 0;
2510
2511 gem_netif_stop(gp);
2512 gem_reinit_chip(gp);
2513 if (gp->lstate == link_up)
2514 gem_set_link_modes(gp);
2515 gem_netif_start(gp);
2516
2517 return 0;
2518}
2519
2520static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2521{
2522 struct gem *gp = netdev_priv(dev);
2523
2524 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2525 strscpy(info->version, DRV_VERSION, sizeof(info->version));
2526 strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2527}
2528
2529static int gem_get_link_ksettings(struct net_device *dev,
2530 struct ethtool_link_ksettings *cmd)
2531{
2532 struct gem *gp = netdev_priv(dev);
2533 u32 supported, advertising;
2534
2535 if (gp->phy_type == phy_mii_mdio0 ||
2536 gp->phy_type == phy_mii_mdio1) {
2537 if (gp->phy_mii.def)
2538 supported = gp->phy_mii.def->features;
2539 else
2540 supported = (SUPPORTED_10baseT_Half |
2541 SUPPORTED_10baseT_Full);
2542
2543 /* XXX hardcoded stuff for now */
2544 cmd->base.port = PORT_MII;
2545 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2546
2547 /* Return current PHY settings */
2548 cmd->base.autoneg = gp->want_autoneg;
2549 cmd->base.speed = gp->phy_mii.speed;
2550 cmd->base.duplex = gp->phy_mii.duplex;
2551 advertising = gp->phy_mii.advertising;
2552
2553 /* If we started with a forced mode, we don't have a default
2554 * advertise set, we need to return something sensible so
2555 * userland can re-enable autoneg properly.
2556 */
2557 if (advertising == 0)
2558 advertising = supported;
2559 } else { // XXX PCS ?
2560 supported =
2561 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2562 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2563 SUPPORTED_Autoneg);
2564 advertising = supported;
2565 cmd->base.speed = 0;
2566 cmd->base.duplex = 0;
2567 cmd->base.port = 0;
2568 cmd->base.phy_address = 0;
2569 cmd->base.autoneg = 0;
2570
2571 /* serdes means usually a Fibre connector, with most fixed */
2572 if (gp->phy_type == phy_serdes) {
2573 cmd->base.port = PORT_FIBRE;
2574 supported = (SUPPORTED_1000baseT_Half |
2575 SUPPORTED_1000baseT_Full |
2576 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2577 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2578 advertising = supported;
2579 if (gp->lstate == link_up)
2580 cmd->base.speed = SPEED_1000;
2581 cmd->base.duplex = DUPLEX_FULL;
2582 cmd->base.autoneg = 1;
2583 }
2584 }
2585
2586 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2587 supported);
2588 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2589 advertising);
2590
2591 return 0;
2592}
2593
2594static int gem_set_link_ksettings(struct net_device *dev,
2595 const struct ethtool_link_ksettings *cmd)
2596{
2597 struct gem *gp = netdev_priv(dev);
2598 u32 speed = cmd->base.speed;
2599 u32 advertising;
2600
2601 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2602 cmd->link_modes.advertising);
2603
2604 /* Verify the settings we care about. */
2605 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2606 cmd->base.autoneg != AUTONEG_DISABLE)
2607 return -EINVAL;
2608
2609 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2610 advertising == 0)
2611 return -EINVAL;
2612
2613 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2614 ((speed != SPEED_1000 &&
2615 speed != SPEED_100 &&
2616 speed != SPEED_10) ||
2617 (cmd->base.duplex != DUPLEX_HALF &&
2618 cmd->base.duplex != DUPLEX_FULL)))
2619 return -EINVAL;
2620
2621 /* Apply settings and restart link process. */
2622 if (netif_device_present(gp->dev)) {
2623 del_timer_sync(&gp->link_timer);
2624 gem_begin_auto_negotiation(gp, cmd);
2625 }
2626
2627 return 0;
2628}
2629
2630static int gem_nway_reset(struct net_device *dev)
2631{
2632 struct gem *gp = netdev_priv(dev);
2633
2634 if (!gp->want_autoneg)
2635 return -EINVAL;
2636
2637 /* Restart link process */
2638 if (netif_device_present(gp->dev)) {
2639 del_timer_sync(&gp->link_timer);
2640 gem_begin_auto_negotiation(gp, NULL);
2641 }
2642
2643 return 0;
2644}
2645
2646static u32 gem_get_msglevel(struct net_device *dev)
2647{
2648 struct gem *gp = netdev_priv(dev);
2649 return gp->msg_enable;
2650}
2651
2652static void gem_set_msglevel(struct net_device *dev, u32 value)
2653{
2654 struct gem *gp = netdev_priv(dev);
2655 gp->msg_enable = value;
2656}
2657
2658
2659/* Add more when I understand how to program the chip */
2660/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2661
2662#define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2663
2664static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665{
2666 struct gem *gp = netdev_priv(dev);
2667
2668 /* Add more when I understand how to program the chip */
2669 if (gp->has_wol) {
2670 wol->supported = WOL_SUPPORTED_MASK;
2671 wol->wolopts = gp->wake_on_lan;
2672 } else {
2673 wol->supported = 0;
2674 wol->wolopts = 0;
2675 }
2676}
2677
2678static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2679{
2680 struct gem *gp = netdev_priv(dev);
2681
2682 if (!gp->has_wol)
2683 return -EOPNOTSUPP;
2684 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2685 return 0;
2686}
2687
2688static const struct ethtool_ops gem_ethtool_ops = {
2689 .get_drvinfo = gem_get_drvinfo,
2690 .get_link = ethtool_op_get_link,
2691 .nway_reset = gem_nway_reset,
2692 .get_msglevel = gem_get_msglevel,
2693 .set_msglevel = gem_set_msglevel,
2694 .get_wol = gem_get_wol,
2695 .set_wol = gem_set_wol,
2696 .get_link_ksettings = gem_get_link_ksettings,
2697 .set_link_ksettings = gem_set_link_ksettings,
2698};
2699
2700static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2701{
2702 struct gem *gp = netdev_priv(dev);
2703 struct mii_ioctl_data *data = if_mii(ifr);
2704 int rc = -EOPNOTSUPP;
2705
2706 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2707 * netif_device_present() is true and holds rtnl_lock for us
2708 * so we have nothing to worry about
2709 */
2710
2711 switch (cmd) {
2712 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2713 data->phy_id = gp->mii_phy_addr;
2714 fallthrough;
2715
2716 case SIOCGMIIREG: /* Read MII PHY register. */
2717 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2718 data->reg_num & 0x1f);
2719 rc = 0;
2720 break;
2721
2722 case SIOCSMIIREG: /* Write MII PHY register. */
2723 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2724 data->val_in);
2725 rc = 0;
2726 break;
2727 }
2728 return rc;
2729}
2730
2731#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2732/* Fetch MAC address from vital product data of PCI ROM. */
2733static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2734{
2735 int this_offset;
2736
2737 for (this_offset = 0x20; this_offset < len; this_offset++) {
2738 void __iomem *p = rom_base + this_offset;
2739 int i;
2740
2741 if (readb(p + 0) != 0x90 ||
2742 readb(p + 1) != 0x00 ||
2743 readb(p + 2) != 0x09 ||
2744 readb(p + 3) != 0x4e ||
2745 readb(p + 4) != 0x41 ||
2746 readb(p + 5) != 0x06)
2747 continue;
2748
2749 this_offset += 6;
2750 p += 6;
2751
2752 for (i = 0; i < 6; i++)
2753 dev_addr[i] = readb(p + i);
2754 return 1;
2755 }
2756 return 0;
2757}
2758
2759static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2760{
2761 size_t size;
2762 void __iomem *p = pci_map_rom(pdev, &size);
2763
2764 if (p) {
2765 int found;
2766
2767 found = readb(p) == 0x55 &&
2768 readb(p + 1) == 0xaa &&
2769 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2770 pci_unmap_rom(pdev, p);
2771 if (found)
2772 return;
2773 }
2774
2775 /* Sun MAC prefix then 3 random bytes. */
2776 dev_addr[0] = 0x08;
2777 dev_addr[1] = 0x00;
2778 dev_addr[2] = 0x20;
2779 get_random_bytes(dev_addr + 3, 3);
2780}
2781#endif /* not Sparc and not PPC */
2782
2783static int gem_get_device_address(struct gem *gp)
2784{
2785#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2786 struct net_device *dev = gp->dev;
2787 const unsigned char *addr;
2788
2789 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2790 if (addr == NULL) {
2791#ifdef CONFIG_SPARC
2792 addr = idprom->id_ethaddr;
2793#else
2794 printk("\n");
2795 pr_err("%s: can't get mac-address\n", dev->name);
2796 return -1;
2797#endif
2798 }
2799 eth_hw_addr_set(dev, addr);
2800#else
2801 u8 addr[ETH_ALEN];
2802
2803 get_gem_mac_nonobp(gp->pdev, addr);
2804 eth_hw_addr_set(gp->dev, addr);
2805#endif
2806 return 0;
2807}
2808
2809static void gem_remove_one(struct pci_dev *pdev)
2810{
2811 struct net_device *dev = pci_get_drvdata(pdev);
2812
2813 if (dev) {
2814 struct gem *gp = netdev_priv(dev);
2815
2816 unregister_netdev(dev);
2817
2818 /* Ensure reset task is truly gone */
2819 cancel_work_sync(&gp->reset_task);
2820
2821 /* Free resources */
2822 dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2823 gp->init_block, gp->gblock_dvma);
2824 iounmap(gp->regs);
2825 pci_release_regions(pdev);
2826 free_netdev(dev);
2827 }
2828}
2829
2830static const struct net_device_ops gem_netdev_ops = {
2831 .ndo_open = gem_open,
2832 .ndo_stop = gem_close,
2833 .ndo_start_xmit = gem_start_xmit,
2834 .ndo_get_stats = gem_get_stats,
2835 .ndo_set_rx_mode = gem_set_multicast,
2836 .ndo_eth_ioctl = gem_ioctl,
2837 .ndo_tx_timeout = gem_tx_timeout,
2838 .ndo_change_mtu = gem_change_mtu,
2839 .ndo_validate_addr = eth_validate_addr,
2840 .ndo_set_mac_address = gem_set_mac_address,
2841#ifdef CONFIG_NET_POLL_CONTROLLER
2842 .ndo_poll_controller = gem_poll_controller,
2843#endif
2844};
2845
2846static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2847{
2848 unsigned long gemreg_base, gemreg_len;
2849 struct net_device *dev;
2850 struct gem *gp;
2851 int err, pci_using_dac;
2852
2853 printk_once(KERN_INFO "%s", version);
2854
2855 /* Apple gmac note: during probe, the chip is powered up by
2856 * the arch code to allow the code below to work (and to let
2857 * the chip be probed on the config space. It won't stay powered
2858 * up until the interface is brought up however, so we can't rely
2859 * on register configuration done at this point.
2860 */
2861 err = pci_enable_device(pdev);
2862 if (err) {
2863 pr_err("Cannot enable MMIO operation, aborting\n");
2864 return err;
2865 }
2866 pci_set_master(pdev);
2867
2868 /* Configure DMA attributes. */
2869
2870 /* All of the GEM documentation states that 64-bit DMA addressing
2871 * is fully supported and should work just fine. However the
2872 * front end for RIO based GEMs is different and only supports
2873 * 32-bit addressing.
2874 *
2875 * For now we assume the various PPC GEMs are 32-bit only as well.
2876 */
2877 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2878 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2879 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2880 pci_using_dac = 1;
2881 } else {
2882 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2883 if (err) {
2884 pr_err("No usable DMA configuration, aborting\n");
2885 goto err_disable_device;
2886 }
2887 pci_using_dac = 0;
2888 }
2889
2890 gemreg_base = pci_resource_start(pdev, 0);
2891 gemreg_len = pci_resource_len(pdev, 0);
2892
2893 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2894 pr_err("Cannot find proper PCI device base address, aborting\n");
2895 err = -ENODEV;
2896 goto err_disable_device;
2897 }
2898
2899 dev = alloc_etherdev(sizeof(*gp));
2900 if (!dev) {
2901 err = -ENOMEM;
2902 goto err_disable_device;
2903 }
2904 SET_NETDEV_DEV(dev, &pdev->dev);
2905
2906 gp = netdev_priv(dev);
2907
2908 err = pci_request_regions(pdev, DRV_NAME);
2909 if (err) {
2910 pr_err("Cannot obtain PCI resources, aborting\n");
2911 goto err_out_free_netdev;
2912 }
2913
2914 gp->pdev = pdev;
2915 gp->dev = dev;
2916
2917 gp->msg_enable = DEFAULT_MSG;
2918
2919 timer_setup(&gp->link_timer, gem_link_timer, 0);
2920
2921 INIT_WORK(&gp->reset_task, gem_reset_task);
2922
2923 gp->lstate = link_down;
2924 gp->timer_ticks = 0;
2925 netif_carrier_off(dev);
2926
2927 gp->regs = ioremap(gemreg_base, gemreg_len);
2928 if (!gp->regs) {
2929 pr_err("Cannot map device registers, aborting\n");
2930 err = -EIO;
2931 goto err_out_free_res;
2932 }
2933
2934 /* On Apple, we want a reference to the Open Firmware device-tree
2935 * node. We use it for clock control.
2936 */
2937#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2938 gp->of_node = pci_device_to_OF_node(pdev);
2939#endif
2940
2941 /* Only Apple version supports WOL afaik */
2942 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2943 gp->has_wol = 1;
2944
2945 /* Make sure cell is enabled */
2946 gem_get_cell(gp);
2947
2948 /* Make sure everything is stopped and in init state */
2949 gem_reset(gp);
2950
2951 /* Fill up the mii_phy structure (even if we won't use it) */
2952 gp->phy_mii.dev = dev;
2953 gp->phy_mii.mdio_read = _sungem_phy_read;
2954 gp->phy_mii.mdio_write = _sungem_phy_write;
2955#ifdef CONFIG_PPC_PMAC
2956 gp->phy_mii.platform_data = gp->of_node;
2957#endif
2958 /* By default, we start with autoneg */
2959 gp->want_autoneg = 1;
2960
2961 /* Check fifo sizes, PHY type, etc... */
2962 if (gem_check_invariants(gp)) {
2963 err = -ENODEV;
2964 goto err_out_iounmap;
2965 }
2966
2967 /* It is guaranteed that the returned buffer will be at least
2968 * PAGE_SIZE aligned.
2969 */
2970 gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2971 &gp->gblock_dvma, GFP_KERNEL);
2972 if (!gp->init_block) {
2973 pr_err("Cannot allocate init block, aborting\n");
2974 err = -ENOMEM;
2975 goto err_out_iounmap;
2976 }
2977
2978 err = gem_get_device_address(gp);
2979 if (err)
2980 goto err_out_free_consistent;
2981
2982 dev->netdev_ops = &gem_netdev_ops;
2983 netif_napi_add(dev, &gp->napi, gem_poll);
2984 dev->ethtool_ops = &gem_ethtool_ops;
2985 dev->watchdog_timeo = 5 * HZ;
2986 dev->dma = 0;
2987
2988 /* Set that now, in case PM kicks in now */
2989 pci_set_drvdata(pdev, dev);
2990
2991 /* We can do scatter/gather and HW checksum */
2992 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2993 dev->features = dev->hw_features;
2994 if (pci_using_dac)
2995 dev->features |= NETIF_F_HIGHDMA;
2996
2997 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2998 dev->min_mtu = GEM_MIN_MTU;
2999 dev->max_mtu = GEM_MAX_MTU;
3000
3001 /* Register with kernel */
3002 if (register_netdev(dev)) {
3003 pr_err("Cannot register net device, aborting\n");
3004 err = -ENOMEM;
3005 goto err_out_free_consistent;
3006 }
3007
3008 /* Undo the get_cell with appropriate locking (we could use
3009 * ndo_init/uninit but that would be even more clumsy imho)
3010 */
3011 rtnl_lock();
3012 gem_put_cell(gp);
3013 rtnl_unlock();
3014
3015 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3016 dev->dev_addr);
3017 return 0;
3018
3019err_out_free_consistent:
3020 gem_remove_one(pdev);
3021err_out_iounmap:
3022 gem_put_cell(gp);
3023 iounmap(gp->regs);
3024
3025err_out_free_res:
3026 pci_release_regions(pdev);
3027
3028err_out_free_netdev:
3029 free_netdev(dev);
3030err_disable_device:
3031 pci_disable_device(pdev);
3032 return err;
3033
3034}
3035
3036static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3037
3038static struct pci_driver gem_driver = {
3039 .name = GEM_MODULE_NAME,
3040 .id_table = gem_pci_tbl,
3041 .probe = gem_init_one,
3042 .remove = gem_remove_one,
3043 .driver.pm = &gem_pm_ops,
3044};
3045
3046module_pci_driver(gem_driver);