Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* ethtool support for igb */
  29
  30#include <linux/vmalloc.h>
  31#include <linux/netdevice.h>
  32#include <linux/pci.h>
  33#include <linux/delay.h>
  34#include <linux/interrupt.h>
  35#include <linux/if_ether.h>
  36#include <linux/ethtool.h>
  37#include <linux/sched.h>
  38#include <linux/slab.h>
  39#include <linux/pm_runtime.h>
  40
  41#include "igb.h"
  42
  43struct igb_stats {
  44	char stat_string[ETH_GSTRING_LEN];
  45	int sizeof_stat;
  46	int stat_offset;
  47};
  48
  49#define IGB_STAT(_name, _stat) { \
  50	.stat_string = _name, \
  51	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  52	.stat_offset = offsetof(struct igb_adapter, _stat) \
  53}
  54static const struct igb_stats igb_gstrings_stats[] = {
  55	IGB_STAT("rx_packets", stats.gprc),
  56	IGB_STAT("tx_packets", stats.gptc),
  57	IGB_STAT("rx_bytes", stats.gorc),
  58	IGB_STAT("tx_bytes", stats.gotc),
  59	IGB_STAT("rx_broadcast", stats.bprc),
  60	IGB_STAT("tx_broadcast", stats.bptc),
  61	IGB_STAT("rx_multicast", stats.mprc),
  62	IGB_STAT("tx_multicast", stats.mptc),
  63	IGB_STAT("multicast", stats.mprc),
  64	IGB_STAT("collisions", stats.colc),
  65	IGB_STAT("rx_crc_errors", stats.crcerrs),
  66	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  67	IGB_STAT("rx_missed_errors", stats.mpc),
  68	IGB_STAT("tx_aborted_errors", stats.ecol),
  69	IGB_STAT("tx_carrier_errors", stats.tncrs),
  70	IGB_STAT("tx_window_errors", stats.latecol),
  71	IGB_STAT("tx_abort_late_coll", stats.latecol),
  72	IGB_STAT("tx_deferred_ok", stats.dc),
  73	IGB_STAT("tx_single_coll_ok", stats.scc),
  74	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  75	IGB_STAT("tx_timeout_count", tx_timeout_count),
  76	IGB_STAT("rx_long_length_errors", stats.roc),
  77	IGB_STAT("rx_short_length_errors", stats.ruc),
  78	IGB_STAT("rx_align_errors", stats.algnerrc),
  79	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  80	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  81	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  82	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  83	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  84	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  85	IGB_STAT("rx_long_byte_count", stats.gorc),
  86	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  87	IGB_STAT("tx_smbus", stats.mgptc),
  88	IGB_STAT("rx_smbus", stats.mgprc),
  89	IGB_STAT("dropped_smbus", stats.mgpdc),
  90	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  91	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  92	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  93	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  94};
  95
  96#define IGB_NETDEV_STAT(_net_stat) { \
  97	.stat_string = __stringify(_net_stat), \
  98	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  99	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 100}
 101static const struct igb_stats igb_gstrings_net_stats[] = {
 102	IGB_NETDEV_STAT(rx_errors),
 103	IGB_NETDEV_STAT(tx_errors),
 104	IGB_NETDEV_STAT(tx_dropped),
 105	IGB_NETDEV_STAT(rx_length_errors),
 106	IGB_NETDEV_STAT(rx_over_errors),
 107	IGB_NETDEV_STAT(rx_frame_errors),
 108	IGB_NETDEV_STAT(rx_fifo_errors),
 109	IGB_NETDEV_STAT(tx_fifo_errors),
 110	IGB_NETDEV_STAT(tx_heartbeat_errors)
 111};
 112
 113#define IGB_GLOBAL_STATS_LEN	\
 114	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 115#define IGB_NETDEV_STATS_LEN	\
 116	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 117#define IGB_RX_QUEUE_STATS_LEN \
 118	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 119
 120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 121
 122#define IGB_QUEUE_STATS_LEN \
 123	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 124	  IGB_RX_QUEUE_STATS_LEN) + \
 125	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 126	  IGB_TX_QUEUE_STATS_LEN))
 127#define IGB_STATS_LEN \
 128	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 129
 130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 131	"Register test  (offline)", "Eeprom test    (offline)",
 132	"Interrupt test (offline)", "Loopback test  (offline)",
 133	"Link test   (on/offline)"
 134};
 135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 136
 137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 138{
 139	struct igb_adapter *adapter = netdev_priv(netdev);
 140	struct e1000_hw *hw = &adapter->hw;
 141	u32 status;
 142
 143	if (hw->phy.media_type == e1000_media_type_copper) {
 144
 145		ecmd->supported = (SUPPORTED_10baseT_Half |
 146				   SUPPORTED_10baseT_Full |
 147				   SUPPORTED_100baseT_Half |
 148				   SUPPORTED_100baseT_Full |
 149				   SUPPORTED_1000baseT_Full|
 150				   SUPPORTED_Autoneg |
 151				   SUPPORTED_TP);
 152		ecmd->advertising = (ADVERTISED_TP |
 153				     ADVERTISED_Pause);
 154
 155		if (hw->mac.autoneg == 1) {
 156			ecmd->advertising |= ADVERTISED_Autoneg;
 157			/* the e1000 autoneg seems to match ethtool nicely */
 158			ecmd->advertising |= hw->phy.autoneg_advertised;
 159		}
 160
 161		ecmd->port = PORT_TP;
 162		ecmd->phy_address = hw->phy.addr;
 163	} else {
 164		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 165				     SUPPORTED_FIBRE |
 166				     SUPPORTED_Autoneg);
 167
 168		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 169				     ADVERTISED_FIBRE |
 170				     ADVERTISED_Autoneg |
 171				     ADVERTISED_Pause);
 172
 173		ecmd->port = PORT_FIBRE;
 174	}
 175
 176	ecmd->transceiver = XCVR_INTERNAL;
 177
 178	status = rd32(E1000_STATUS);
 179
 180	if (status & E1000_STATUS_LU) {
 181
 182		if ((status & E1000_STATUS_SPEED_1000) ||
 183		    hw->phy.media_type != e1000_media_type_copper)
 184			ethtool_cmd_speed_set(ecmd, SPEED_1000);
 185		else if (status & E1000_STATUS_SPEED_100)
 186			ethtool_cmd_speed_set(ecmd, SPEED_100);
 187		else
 188			ethtool_cmd_speed_set(ecmd, SPEED_10);
 189
 190		if ((status & E1000_STATUS_FD) ||
 191		    hw->phy.media_type != e1000_media_type_copper)
 192			ecmd->duplex = DUPLEX_FULL;
 193		else
 194			ecmd->duplex = DUPLEX_HALF;
 195	} else {
 196		ethtool_cmd_speed_set(ecmd, -1);
 197		ecmd->duplex = -1;
 198	}
 199
 200	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 201	return 0;
 202}
 203
 204static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 205{
 206	struct igb_adapter *adapter = netdev_priv(netdev);
 207	struct e1000_hw *hw = &adapter->hw;
 208
 209	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 210	 * cannot be changed */
 211	if (igb_check_reset_block(hw)) {
 212		dev_err(&adapter->pdev->dev, "Cannot change link "
 213			"characteristics when SoL/IDER is active.\n");
 214		return -EINVAL;
 215	}
 216
 217	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 218		msleep(1);
 219
 220	if (ecmd->autoneg == AUTONEG_ENABLE) {
 221		hw->mac.autoneg = 1;
 222		hw->phy.autoneg_advertised = ecmd->advertising |
 223					     ADVERTISED_TP |
 224					     ADVERTISED_Autoneg;
 225		ecmd->advertising = hw->phy.autoneg_advertised;
 226		if (adapter->fc_autoneg)
 227			hw->fc.requested_mode = e1000_fc_default;
 228	} else {
 229		u32 speed = ethtool_cmd_speed(ecmd);
 230		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 231			clear_bit(__IGB_RESETTING, &adapter->state);
 232			return -EINVAL;
 233		}
 234	}
 235
 236	/* reset the link */
 237	if (netif_running(adapter->netdev)) {
 238		igb_down(adapter);
 239		igb_up(adapter);
 240	} else
 241		igb_reset(adapter);
 242
 243	clear_bit(__IGB_RESETTING, &adapter->state);
 244	return 0;
 245}
 246
 247static u32 igb_get_link(struct net_device *netdev)
 248{
 249	struct igb_adapter *adapter = netdev_priv(netdev);
 250	struct e1000_mac_info *mac = &adapter->hw.mac;
 251
 252	/*
 253	 * If the link is not reported up to netdev, interrupts are disabled,
 254	 * and so the physical link state may have changed since we last
 255	 * looked. Set get_link_status to make sure that the true link
 256	 * state is interrogated, rather than pulling a cached and possibly
 257	 * stale link state from the driver.
 258	 */
 259	if (!netif_carrier_ok(netdev))
 260		mac->get_link_status = 1;
 261
 262	return igb_has_link(adapter);
 263}
 264
 265static void igb_get_pauseparam(struct net_device *netdev,
 266			       struct ethtool_pauseparam *pause)
 267{
 268	struct igb_adapter *adapter = netdev_priv(netdev);
 269	struct e1000_hw *hw = &adapter->hw;
 270
 271	pause->autoneg =
 272		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 273
 274	if (hw->fc.current_mode == e1000_fc_rx_pause)
 275		pause->rx_pause = 1;
 276	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 277		pause->tx_pause = 1;
 278	else if (hw->fc.current_mode == e1000_fc_full) {
 279		pause->rx_pause = 1;
 280		pause->tx_pause = 1;
 281	}
 282}
 283
 284static int igb_set_pauseparam(struct net_device *netdev,
 285			      struct ethtool_pauseparam *pause)
 286{
 287	struct igb_adapter *adapter = netdev_priv(netdev);
 288	struct e1000_hw *hw = &adapter->hw;
 289	int retval = 0;
 290
 291	adapter->fc_autoneg = pause->autoneg;
 292
 293	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 294		msleep(1);
 295
 296	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 297		hw->fc.requested_mode = e1000_fc_default;
 298		if (netif_running(adapter->netdev)) {
 299			igb_down(adapter);
 300			igb_up(adapter);
 301		} else {
 302			igb_reset(adapter);
 303		}
 304	} else {
 305		if (pause->rx_pause && pause->tx_pause)
 306			hw->fc.requested_mode = e1000_fc_full;
 307		else if (pause->rx_pause && !pause->tx_pause)
 308			hw->fc.requested_mode = e1000_fc_rx_pause;
 309		else if (!pause->rx_pause && pause->tx_pause)
 310			hw->fc.requested_mode = e1000_fc_tx_pause;
 311		else if (!pause->rx_pause && !pause->tx_pause)
 312			hw->fc.requested_mode = e1000_fc_none;
 313
 314		hw->fc.current_mode = hw->fc.requested_mode;
 315
 316		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 317			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 318	}
 319
 320	clear_bit(__IGB_RESETTING, &adapter->state);
 321	return retval;
 322}
 323
 324static u32 igb_get_msglevel(struct net_device *netdev)
 325{
 326	struct igb_adapter *adapter = netdev_priv(netdev);
 327	return adapter->msg_enable;
 328}
 329
 330static void igb_set_msglevel(struct net_device *netdev, u32 data)
 331{
 332	struct igb_adapter *adapter = netdev_priv(netdev);
 333	adapter->msg_enable = data;
 334}
 335
 336static int igb_get_regs_len(struct net_device *netdev)
 337{
 338#define IGB_REGS_LEN 739
 339	return IGB_REGS_LEN * sizeof(u32);
 340}
 341
 342static void igb_get_regs(struct net_device *netdev,
 343			 struct ethtool_regs *regs, void *p)
 344{
 345	struct igb_adapter *adapter = netdev_priv(netdev);
 346	struct e1000_hw *hw = &adapter->hw;
 347	u32 *regs_buff = p;
 348	u8 i;
 349
 350	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 351
 352	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 353
 354	/* General Registers */
 355	regs_buff[0] = rd32(E1000_CTRL);
 356	regs_buff[1] = rd32(E1000_STATUS);
 357	regs_buff[2] = rd32(E1000_CTRL_EXT);
 358	regs_buff[3] = rd32(E1000_MDIC);
 359	regs_buff[4] = rd32(E1000_SCTL);
 360	regs_buff[5] = rd32(E1000_CONNSW);
 361	regs_buff[6] = rd32(E1000_VET);
 362	regs_buff[7] = rd32(E1000_LEDCTL);
 363	regs_buff[8] = rd32(E1000_PBA);
 364	regs_buff[9] = rd32(E1000_PBS);
 365	regs_buff[10] = rd32(E1000_FRTIMER);
 366	regs_buff[11] = rd32(E1000_TCPTIMER);
 367
 368	/* NVM Register */
 369	regs_buff[12] = rd32(E1000_EECD);
 370
 371	/* Interrupt */
 372	/* Reading EICS for EICR because they read the
 373	 * same but EICS does not clear on read */
 374	regs_buff[13] = rd32(E1000_EICS);
 375	regs_buff[14] = rd32(E1000_EICS);
 376	regs_buff[15] = rd32(E1000_EIMS);
 377	regs_buff[16] = rd32(E1000_EIMC);
 378	regs_buff[17] = rd32(E1000_EIAC);
 379	regs_buff[18] = rd32(E1000_EIAM);
 380	/* Reading ICS for ICR because they read the
 381	 * same but ICS does not clear on read */
 382	regs_buff[19] = rd32(E1000_ICS);
 383	regs_buff[20] = rd32(E1000_ICS);
 384	regs_buff[21] = rd32(E1000_IMS);
 385	regs_buff[22] = rd32(E1000_IMC);
 386	regs_buff[23] = rd32(E1000_IAC);
 387	regs_buff[24] = rd32(E1000_IAM);
 388	regs_buff[25] = rd32(E1000_IMIRVP);
 389
 390	/* Flow Control */
 391	regs_buff[26] = rd32(E1000_FCAL);
 392	regs_buff[27] = rd32(E1000_FCAH);
 393	regs_buff[28] = rd32(E1000_FCTTV);
 394	regs_buff[29] = rd32(E1000_FCRTL);
 395	regs_buff[30] = rd32(E1000_FCRTH);
 396	regs_buff[31] = rd32(E1000_FCRTV);
 397
 398	/* Receive */
 399	regs_buff[32] = rd32(E1000_RCTL);
 400	regs_buff[33] = rd32(E1000_RXCSUM);
 401	regs_buff[34] = rd32(E1000_RLPML);
 402	regs_buff[35] = rd32(E1000_RFCTL);
 403	regs_buff[36] = rd32(E1000_MRQC);
 404	regs_buff[37] = rd32(E1000_VT_CTL);
 405
 406	/* Transmit */
 407	regs_buff[38] = rd32(E1000_TCTL);
 408	regs_buff[39] = rd32(E1000_TCTL_EXT);
 409	regs_buff[40] = rd32(E1000_TIPG);
 410	regs_buff[41] = rd32(E1000_DTXCTL);
 411
 412	/* Wake Up */
 413	regs_buff[42] = rd32(E1000_WUC);
 414	regs_buff[43] = rd32(E1000_WUFC);
 415	regs_buff[44] = rd32(E1000_WUS);
 416	regs_buff[45] = rd32(E1000_IPAV);
 417	regs_buff[46] = rd32(E1000_WUPL);
 418
 419	/* MAC */
 420	regs_buff[47] = rd32(E1000_PCS_CFG0);
 421	regs_buff[48] = rd32(E1000_PCS_LCTL);
 422	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 423	regs_buff[50] = rd32(E1000_PCS_ANADV);
 424	regs_buff[51] = rd32(E1000_PCS_LPAB);
 425	regs_buff[52] = rd32(E1000_PCS_NPTX);
 426	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 427
 428	/* Statistics */
 429	regs_buff[54] = adapter->stats.crcerrs;
 430	regs_buff[55] = adapter->stats.algnerrc;
 431	regs_buff[56] = adapter->stats.symerrs;
 432	regs_buff[57] = adapter->stats.rxerrc;
 433	regs_buff[58] = adapter->stats.mpc;
 434	regs_buff[59] = adapter->stats.scc;
 435	regs_buff[60] = adapter->stats.ecol;
 436	regs_buff[61] = adapter->stats.mcc;
 437	regs_buff[62] = adapter->stats.latecol;
 438	regs_buff[63] = adapter->stats.colc;
 439	regs_buff[64] = adapter->stats.dc;
 440	regs_buff[65] = adapter->stats.tncrs;
 441	regs_buff[66] = adapter->stats.sec;
 442	regs_buff[67] = adapter->stats.htdpmc;
 443	regs_buff[68] = adapter->stats.rlec;
 444	regs_buff[69] = adapter->stats.xonrxc;
 445	regs_buff[70] = adapter->stats.xontxc;
 446	regs_buff[71] = adapter->stats.xoffrxc;
 447	regs_buff[72] = adapter->stats.xofftxc;
 448	regs_buff[73] = adapter->stats.fcruc;
 449	regs_buff[74] = adapter->stats.prc64;
 450	regs_buff[75] = adapter->stats.prc127;
 451	regs_buff[76] = adapter->stats.prc255;
 452	regs_buff[77] = adapter->stats.prc511;
 453	regs_buff[78] = adapter->stats.prc1023;
 454	regs_buff[79] = adapter->stats.prc1522;
 455	regs_buff[80] = adapter->stats.gprc;
 456	regs_buff[81] = adapter->stats.bprc;
 457	regs_buff[82] = adapter->stats.mprc;
 458	regs_buff[83] = adapter->stats.gptc;
 459	regs_buff[84] = adapter->stats.gorc;
 460	regs_buff[86] = adapter->stats.gotc;
 461	regs_buff[88] = adapter->stats.rnbc;
 462	regs_buff[89] = adapter->stats.ruc;
 463	regs_buff[90] = adapter->stats.rfc;
 464	regs_buff[91] = adapter->stats.roc;
 465	regs_buff[92] = adapter->stats.rjc;
 466	regs_buff[93] = adapter->stats.mgprc;
 467	regs_buff[94] = adapter->stats.mgpdc;
 468	regs_buff[95] = adapter->stats.mgptc;
 469	regs_buff[96] = adapter->stats.tor;
 470	regs_buff[98] = adapter->stats.tot;
 471	regs_buff[100] = adapter->stats.tpr;
 472	regs_buff[101] = adapter->stats.tpt;
 473	regs_buff[102] = adapter->stats.ptc64;
 474	regs_buff[103] = adapter->stats.ptc127;
 475	regs_buff[104] = adapter->stats.ptc255;
 476	regs_buff[105] = adapter->stats.ptc511;
 477	regs_buff[106] = adapter->stats.ptc1023;
 478	regs_buff[107] = adapter->stats.ptc1522;
 479	regs_buff[108] = adapter->stats.mptc;
 480	regs_buff[109] = adapter->stats.bptc;
 481	regs_buff[110] = adapter->stats.tsctc;
 482	regs_buff[111] = adapter->stats.iac;
 483	regs_buff[112] = adapter->stats.rpthc;
 484	regs_buff[113] = adapter->stats.hgptc;
 485	regs_buff[114] = adapter->stats.hgorc;
 486	regs_buff[116] = adapter->stats.hgotc;
 487	regs_buff[118] = adapter->stats.lenerrs;
 488	regs_buff[119] = adapter->stats.scvpc;
 489	regs_buff[120] = adapter->stats.hrmpc;
 490
 491	for (i = 0; i < 4; i++)
 492		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 493	for (i = 0; i < 4; i++)
 494		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 495	for (i = 0; i < 4; i++)
 496		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 497	for (i = 0; i < 4; i++)
 498		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 499	for (i = 0; i < 4; i++)
 500		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 501	for (i = 0; i < 4; i++)
 502		regs_buff[141 + i] = rd32(E1000_RDH(i));
 503	for (i = 0; i < 4; i++)
 504		regs_buff[145 + i] = rd32(E1000_RDT(i));
 505	for (i = 0; i < 4; i++)
 506		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 507
 508	for (i = 0; i < 10; i++)
 509		regs_buff[153 + i] = rd32(E1000_EITR(i));
 510	for (i = 0; i < 8; i++)
 511		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 512	for (i = 0; i < 8; i++)
 513		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 514	for (i = 0; i < 16; i++)
 515		regs_buff[179 + i] = rd32(E1000_RAL(i));
 516	for (i = 0; i < 16; i++)
 517		regs_buff[195 + i] = rd32(E1000_RAH(i));
 518
 519	for (i = 0; i < 4; i++)
 520		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 521	for (i = 0; i < 4; i++)
 522		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 523	for (i = 0; i < 4; i++)
 524		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 525	for (i = 0; i < 4; i++)
 526		regs_buff[223 + i] = rd32(E1000_TDH(i));
 527	for (i = 0; i < 4; i++)
 528		regs_buff[227 + i] = rd32(E1000_TDT(i));
 529	for (i = 0; i < 4; i++)
 530		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 531	for (i = 0; i < 4; i++)
 532		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 533	for (i = 0; i < 4; i++)
 534		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 535	for (i = 0; i < 4; i++)
 536		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 537
 538	for (i = 0; i < 4; i++)
 539		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 540	for (i = 0; i < 4; i++)
 541		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 542	for (i = 0; i < 32; i++)
 543		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 544	for (i = 0; i < 128; i++)
 545		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 546	for (i = 0; i < 128; i++)
 547		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 548	for (i = 0; i < 4; i++)
 549		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 550
 551	regs_buff[547] = rd32(E1000_TDFH);
 552	regs_buff[548] = rd32(E1000_TDFT);
 553	regs_buff[549] = rd32(E1000_TDFHS);
 554	regs_buff[550] = rd32(E1000_TDFPC);
 555
 556	if (hw->mac.type > e1000_82580) {
 557		regs_buff[551] = adapter->stats.o2bgptc;
 558		regs_buff[552] = adapter->stats.b2ospc;
 559		regs_buff[553] = adapter->stats.o2bspc;
 560		regs_buff[554] = adapter->stats.b2ogprc;
 561	}
 562
 563	if (hw->mac.type != e1000_82576)
 564		return;
 565	for (i = 0; i < 12; i++)
 566		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 567	for (i = 0; i < 4; i++)
 568		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 569	for (i = 0; i < 12; i++)
 570		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 571	for (i = 0; i < 12; i++)
 572		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 573	for (i = 0; i < 12; i++)
 574		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 575	for (i = 0; i < 12; i++)
 576		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 577	for (i = 0; i < 12; i++)
 578		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 579	for (i = 0; i < 12; i++)
 580		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 581
 582	for (i = 0; i < 12; i++)
 583		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 584	for (i = 0; i < 12; i++)
 585		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 586	for (i = 0; i < 12; i++)
 587		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 588	for (i = 0; i < 12; i++)
 589		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 590	for (i = 0; i < 12; i++)
 591		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 592	for (i = 0; i < 12; i++)
 593		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 594	for (i = 0; i < 12; i++)
 595		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 596	for (i = 0; i < 12; i++)
 597		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 598}
 599
 600static int igb_get_eeprom_len(struct net_device *netdev)
 601{
 602	struct igb_adapter *adapter = netdev_priv(netdev);
 603	return adapter->hw.nvm.word_size * 2;
 604}
 605
 606static int igb_get_eeprom(struct net_device *netdev,
 607			  struct ethtool_eeprom *eeprom, u8 *bytes)
 608{
 609	struct igb_adapter *adapter = netdev_priv(netdev);
 610	struct e1000_hw *hw = &adapter->hw;
 611	u16 *eeprom_buff;
 612	int first_word, last_word;
 613	int ret_val = 0;
 614	u16 i;
 615
 616	if (eeprom->len == 0)
 617		return -EINVAL;
 618
 619	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 620
 621	first_word = eeprom->offset >> 1;
 622	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 623
 624	eeprom_buff = kmalloc(sizeof(u16) *
 625			(last_word - first_word + 1), GFP_KERNEL);
 626	if (!eeprom_buff)
 627		return -ENOMEM;
 628
 629	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 630		ret_val = hw->nvm.ops.read(hw, first_word,
 631					    last_word - first_word + 1,
 632					    eeprom_buff);
 633	else {
 634		for (i = 0; i < last_word - first_word + 1; i++) {
 635			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 636						    &eeprom_buff[i]);
 637			if (ret_val)
 638				break;
 639		}
 640	}
 641
 642	/* Device's eeprom is always little-endian, word addressable */
 643	for (i = 0; i < last_word - first_word + 1; i++)
 644		le16_to_cpus(&eeprom_buff[i]);
 645
 646	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 647			eeprom->len);
 648	kfree(eeprom_buff);
 649
 650	return ret_val;
 651}
 652
 653static int igb_set_eeprom(struct net_device *netdev,
 654			  struct ethtool_eeprom *eeprom, u8 *bytes)
 655{
 656	struct igb_adapter *adapter = netdev_priv(netdev);
 657	struct e1000_hw *hw = &adapter->hw;
 658	u16 *eeprom_buff;
 659	void *ptr;
 660	int max_len, first_word, last_word, ret_val = 0;
 661	u16 i;
 662
 663	if (eeprom->len == 0)
 664		return -EOPNOTSUPP;
 665
 666	if (hw->mac.type == e1000_i211)
 667		return -EOPNOTSUPP;
 668
 669	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 670		return -EFAULT;
 671
 672	max_len = hw->nvm.word_size * 2;
 673
 674	first_word = eeprom->offset >> 1;
 675	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 676	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 677	if (!eeprom_buff)
 678		return -ENOMEM;
 679
 680	ptr = (void *)eeprom_buff;
 681
 682	if (eeprom->offset & 1) {
 683		/* need read/modify/write of first changed EEPROM word */
 684		/* only the second byte of the word is being modified */
 685		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 686					    &eeprom_buff[0]);
 687		ptr++;
 688	}
 689	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 690		/* need read/modify/write of last changed EEPROM word */
 691		/* only the first byte of the word is being modified */
 692		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 693				   &eeprom_buff[last_word - first_word]);
 694	}
 695
 696	/* Device's eeprom is always little-endian, word addressable */
 697	for (i = 0; i < last_word - first_word + 1; i++)
 698		le16_to_cpus(&eeprom_buff[i]);
 699
 700	memcpy(ptr, bytes, eeprom->len);
 701
 702	for (i = 0; i < last_word - first_word + 1; i++)
 703		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 704
 705	ret_val = hw->nvm.ops.write(hw, first_word,
 706				     last_word - first_word + 1, eeprom_buff);
 707
 708	/* Update the checksum over the first part of the EEPROM if needed
 709	 * and flush shadow RAM for 82573 controllers */
 710	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
 711		hw->nvm.ops.update(hw);
 712
 713	kfree(eeprom_buff);
 714	return ret_val;
 715}
 716
 717static void igb_get_drvinfo(struct net_device *netdev,
 718			    struct ethtool_drvinfo *drvinfo)
 719{
 720	struct igb_adapter *adapter = netdev_priv(netdev);
 721	u16 eeprom_data;
 722
 723	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 724	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 725
 726	/* EEPROM image version # is reported as firmware version # for
 727	 * 82575 controllers */
 728	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
 729	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 730		"%d.%d-%d",
 731		(eeprom_data & 0xF000) >> 12,
 732		(eeprom_data & 0x0FF0) >> 4,
 733		eeprom_data & 0x000F);
 734
 735	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 736		sizeof(drvinfo->bus_info));
 737	drvinfo->n_stats = IGB_STATS_LEN;
 738	drvinfo->testinfo_len = IGB_TEST_LEN;
 739	drvinfo->regdump_len = igb_get_regs_len(netdev);
 740	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
 741}
 742
 743static void igb_get_ringparam(struct net_device *netdev,
 744			      struct ethtool_ringparam *ring)
 745{
 746	struct igb_adapter *adapter = netdev_priv(netdev);
 747
 748	ring->rx_max_pending = IGB_MAX_RXD;
 749	ring->tx_max_pending = IGB_MAX_TXD;
 750	ring->rx_pending = adapter->rx_ring_count;
 751	ring->tx_pending = adapter->tx_ring_count;
 752}
 753
 754static int igb_set_ringparam(struct net_device *netdev,
 755			     struct ethtool_ringparam *ring)
 756{
 757	struct igb_adapter *adapter = netdev_priv(netdev);
 758	struct igb_ring *temp_ring;
 759	int i, err = 0;
 760	u16 new_rx_count, new_tx_count;
 761
 762	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 763		return -EINVAL;
 764
 765	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 766	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 767	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 768
 769	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 770	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 771	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 772
 773	if ((new_tx_count == adapter->tx_ring_count) &&
 774	    (new_rx_count == adapter->rx_ring_count)) {
 775		/* nothing to do */
 776		return 0;
 777	}
 778
 779	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 780		msleep(1);
 781
 782	if (!netif_running(adapter->netdev)) {
 783		for (i = 0; i < adapter->num_tx_queues; i++)
 784			adapter->tx_ring[i]->count = new_tx_count;
 785		for (i = 0; i < adapter->num_rx_queues; i++)
 786			adapter->rx_ring[i]->count = new_rx_count;
 787		adapter->tx_ring_count = new_tx_count;
 788		adapter->rx_ring_count = new_rx_count;
 789		goto clear_reset;
 790	}
 791
 792	if (adapter->num_tx_queues > adapter->num_rx_queues)
 793		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
 794	else
 795		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
 796
 797	if (!temp_ring) {
 798		err = -ENOMEM;
 799		goto clear_reset;
 800	}
 801
 802	igb_down(adapter);
 803
 804	/*
 805	 * We can't just free everything and then setup again,
 806	 * because the ISRs in MSI-X mode get passed pointers
 807	 * to the tx and rx ring structs.
 808	 */
 809	if (new_tx_count != adapter->tx_ring_count) {
 810		for (i = 0; i < adapter->num_tx_queues; i++) {
 811			memcpy(&temp_ring[i], adapter->tx_ring[i],
 812			       sizeof(struct igb_ring));
 813
 814			temp_ring[i].count = new_tx_count;
 815			err = igb_setup_tx_resources(&temp_ring[i]);
 816			if (err) {
 817				while (i) {
 818					i--;
 819					igb_free_tx_resources(&temp_ring[i]);
 820				}
 821				goto err_setup;
 822			}
 823		}
 824
 825		for (i = 0; i < adapter->num_tx_queues; i++) {
 826			igb_free_tx_resources(adapter->tx_ring[i]);
 827
 828			memcpy(adapter->tx_ring[i], &temp_ring[i],
 829			       sizeof(struct igb_ring));
 830		}
 831
 832		adapter->tx_ring_count = new_tx_count;
 833	}
 834
 835	if (new_rx_count != adapter->rx_ring_count) {
 836		for (i = 0; i < adapter->num_rx_queues; i++) {
 837			memcpy(&temp_ring[i], adapter->rx_ring[i],
 838			       sizeof(struct igb_ring));
 839
 840			temp_ring[i].count = new_rx_count;
 841			err = igb_setup_rx_resources(&temp_ring[i]);
 842			if (err) {
 843				while (i) {
 844					i--;
 845					igb_free_rx_resources(&temp_ring[i]);
 846				}
 847				goto err_setup;
 848			}
 849
 850		}
 851
 852		for (i = 0; i < adapter->num_rx_queues; i++) {
 853			igb_free_rx_resources(adapter->rx_ring[i]);
 854
 855			memcpy(adapter->rx_ring[i], &temp_ring[i],
 856			       sizeof(struct igb_ring));
 857		}
 858
 859		adapter->rx_ring_count = new_rx_count;
 860	}
 861err_setup:
 862	igb_up(adapter);
 863	vfree(temp_ring);
 864clear_reset:
 865	clear_bit(__IGB_RESETTING, &adapter->state);
 866	return err;
 867}
 868
 869/* ethtool register test data */
 870struct igb_reg_test {
 871	u16 reg;
 872	u16 reg_offset;
 873	u16 array_len;
 874	u16 test_type;
 875	u32 mask;
 876	u32 write;
 877};
 878
 879/* In the hardware, registers are laid out either singly, in arrays
 880 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 881 * most tests take place on arrays or single registers (handled
 882 * as a single-element array) and special-case the tables.
 883 * Table tests are always pattern tests.
 884 *
 885 * We also make provision for some required setup steps by specifying
 886 * registers to be written without any read-back testing.
 887 */
 888
 889#define PATTERN_TEST	1
 890#define SET_READ_TEST	2
 891#define WRITE_NO_TEST	3
 892#define TABLE32_TEST	4
 893#define TABLE64_TEST_LO	5
 894#define TABLE64_TEST_HI	6
 895
 896/* i210 reg test */
 897static struct igb_reg_test reg_test_i210[] = {
 898	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 899	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 900	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 901	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 902	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 903	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 904	/* RDH is read-only for i210, only test RDT. */
 905	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 906	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 907	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 908	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 909	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 910	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 911	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 912	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 913	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 914	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 915	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 916	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 917	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
 918						0xFFFFFFFF, 0xFFFFFFFF },
 919	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
 920						0x900FFFFF, 0xFFFFFFFF },
 921	{ E1000_MTA,	   0, 128, TABLE32_TEST,
 922						0xFFFFFFFF, 0xFFFFFFFF },
 923	{ 0, 0, 0, 0, 0 }
 924};
 925
 926/* i350 reg test */
 927static struct igb_reg_test reg_test_i350[] = {
 928	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 929	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 930	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 931	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
 932	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 933	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 934	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 935	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 936	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 937	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 938	/* RDH is read-only for i350, only test RDT. */
 939	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 940	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 941	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 942	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 943	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 944	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 945	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 946	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 947	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 948	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 949	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 950	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 951	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 952	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 953	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 954	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 955	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 956	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
 957						0xFFFFFFFF, 0xFFFFFFFF },
 958	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
 959						0xC3FFFFFF, 0xFFFFFFFF },
 960	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
 961						0xFFFFFFFF, 0xFFFFFFFF },
 962	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
 963						0xC3FFFFFF, 0xFFFFFFFF },
 964	{ E1000_MTA,	   0, 128, TABLE32_TEST,
 965						0xFFFFFFFF, 0xFFFFFFFF },
 966	{ 0, 0, 0, 0 }
 967};
 968
 969/* 82580 reg test */
 970static struct igb_reg_test reg_test_82580[] = {
 971	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 972	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 973	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 974	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 975	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 976	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 977	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 978	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 979	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 980	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 981	/* RDH is read-only for 82580, only test RDT. */
 982	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 983	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 984	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 985	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 986	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 987	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 988	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 989	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 990	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 991	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 992	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 993	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 994	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 995	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 996	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 997	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 998	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 999	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1000						0xFFFFFFFF, 0xFFFFFFFF },
1001	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1002						0x83FFFFFF, 0xFFFFFFFF },
1003	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1004						0xFFFFFFFF, 0xFFFFFFFF },
1005	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1006						0x83FFFFFF, 0xFFFFFFFF },
1007	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1008						0xFFFFFFFF, 0xFFFFFFFF },
1009	{ 0, 0, 0, 0 }
1010};
1011
1012/* 82576 reg test */
1013static struct igb_reg_test reg_test_82576[] = {
1014	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1022	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1024	/* Enable all RX queues before testing. */
1025	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1026	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1027	/* RDH is read-only for 82576, only test RDT. */
1028	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1031	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1032	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1033	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1035	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1041	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1046	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1047	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1048	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1049	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050	{ 0, 0, 0, 0 }
1051};
1052
1053/* 82575 register test */
1054static struct igb_reg_test reg_test_82575[] = {
1055	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1057	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062	/* Enable all four RX queues before testing. */
1063	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1064	/* RDH is read-only for 82575, only test RDT. */
1065	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1067	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1068	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1070	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1071	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1073	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1075	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1076	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1078	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1079	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1080	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081	{ 0, 0, 0, 0 }
1082};
1083
1084static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1085			     int reg, u32 mask, u32 write)
1086{
1087	struct e1000_hw *hw = &adapter->hw;
1088	u32 pat, val;
1089	static const u32 _test[] =
1090		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1091	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1092		wr32(reg, (_test[pat] & write));
1093		val = rd32(reg) & mask;
1094		if (val != (_test[pat] & write & mask)) {
1095			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1096				"failed: got 0x%08X expected 0x%08X\n",
1097				reg, val, (_test[pat] & write & mask));
1098			*data = reg;
1099			return 1;
1100		}
1101	}
1102
1103	return 0;
1104}
1105
1106static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1107			      int reg, u32 mask, u32 write)
1108{
1109	struct e1000_hw *hw = &adapter->hw;
1110	u32 val;
1111	wr32(reg, write & mask);
1112	val = rd32(reg);
1113	if ((write & mask) != (val & mask)) {
1114		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1115			" got 0x%08X expected 0x%08X\n", reg,
1116			(val & mask), (write & mask));
1117		*data = reg;
1118		return 1;
1119	}
1120
1121	return 0;
1122}
1123
1124#define REG_PATTERN_TEST(reg, mask, write) \
1125	do { \
1126		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1127			return 1; \
1128	} while (0)
1129
1130#define REG_SET_AND_CHECK(reg, mask, write) \
1131	do { \
1132		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1133			return 1; \
1134	} while (0)
1135
1136static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1137{
1138	struct e1000_hw *hw = &adapter->hw;
1139	struct igb_reg_test *test;
1140	u32 value, before, after;
1141	u32 i, toggle;
1142
1143	switch (adapter->hw.mac.type) {
1144	case e1000_i350:
1145		test = reg_test_i350;
1146		toggle = 0x7FEFF3FF;
1147		break;
1148	case e1000_i210:
1149	case e1000_i211:
1150		test = reg_test_i210;
1151		toggle = 0x7FEFF3FF;
1152		break;
1153	case e1000_82580:
1154		test = reg_test_82580;
1155		toggle = 0x7FEFF3FF;
1156		break;
1157	case e1000_82576:
1158		test = reg_test_82576;
1159		toggle = 0x7FFFF3FF;
1160		break;
1161	default:
1162		test = reg_test_82575;
1163		toggle = 0x7FFFF3FF;
1164		break;
1165	}
1166
1167	/* Because the status register is such a special case,
1168	 * we handle it separately from the rest of the register
1169	 * tests.  Some bits are read-only, some toggle, and some
1170	 * are writable on newer MACs.
1171	 */
1172	before = rd32(E1000_STATUS);
1173	value = (rd32(E1000_STATUS) & toggle);
1174	wr32(E1000_STATUS, toggle);
1175	after = rd32(E1000_STATUS) & toggle;
1176	if (value != after) {
1177		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1178			"got: 0x%08X expected: 0x%08X\n", after, value);
1179		*data = 1;
1180		return 1;
1181	}
1182	/* restore previous status */
1183	wr32(E1000_STATUS, before);
1184
1185	/* Perform the remainder of the register test, looping through
1186	 * the test table until we either fail or reach the null entry.
1187	 */
1188	while (test->reg) {
1189		for (i = 0; i < test->array_len; i++) {
1190			switch (test->test_type) {
1191			case PATTERN_TEST:
1192				REG_PATTERN_TEST(test->reg +
1193						(i * test->reg_offset),
1194						test->mask,
1195						test->write);
1196				break;
1197			case SET_READ_TEST:
1198				REG_SET_AND_CHECK(test->reg +
1199						(i * test->reg_offset),
1200						test->mask,
1201						test->write);
1202				break;
1203			case WRITE_NO_TEST:
1204				writel(test->write,
1205				    (adapter->hw.hw_addr + test->reg)
1206					+ (i * test->reg_offset));
1207				break;
1208			case TABLE32_TEST:
1209				REG_PATTERN_TEST(test->reg + (i * 4),
1210						test->mask,
1211						test->write);
1212				break;
1213			case TABLE64_TEST_LO:
1214				REG_PATTERN_TEST(test->reg + (i * 8),
1215						test->mask,
1216						test->write);
1217				break;
1218			case TABLE64_TEST_HI:
1219				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1220						test->mask,
1221						test->write);
1222				break;
1223			}
1224		}
1225		test++;
1226	}
1227
1228	*data = 0;
1229	return 0;
1230}
1231
1232static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1233{
1234	*data = 0;
1235
1236	/* Validate eeprom on all parts but i211 */
1237	if (adapter->hw.mac.type != e1000_i211) {
1238		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1239			*data = 2;
1240	}
1241
1242	return *data;
1243}
1244
1245static irqreturn_t igb_test_intr(int irq, void *data)
1246{
1247	struct igb_adapter *adapter = (struct igb_adapter *) data;
1248	struct e1000_hw *hw = &adapter->hw;
1249
1250	adapter->test_icr |= rd32(E1000_ICR);
1251
1252	return IRQ_HANDLED;
1253}
1254
1255static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1256{
1257	struct e1000_hw *hw = &adapter->hw;
1258	struct net_device *netdev = adapter->netdev;
1259	u32 mask, ics_mask, i = 0, shared_int = true;
1260	u32 irq = adapter->pdev->irq;
1261
1262	*data = 0;
1263
1264	/* Hook up test interrupt handler just for this test */
1265	if (adapter->msix_entries) {
1266		if (request_irq(adapter->msix_entries[0].vector,
1267		                igb_test_intr, 0, netdev->name, adapter)) {
1268			*data = 1;
1269			return -1;
1270		}
1271	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1272		shared_int = false;
1273		if (request_irq(irq,
1274		                igb_test_intr, 0, netdev->name, adapter)) {
1275			*data = 1;
1276			return -1;
1277		}
1278	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1279				netdev->name, adapter)) {
1280		shared_int = false;
1281	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1282		 netdev->name, adapter)) {
1283		*data = 1;
1284		return -1;
1285	}
1286	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1287		(shared_int ? "shared" : "unshared"));
1288
1289	/* Disable all the interrupts */
1290	wr32(E1000_IMC, ~0);
1291	wrfl();
1292	msleep(10);
1293
1294	/* Define all writable bits for ICS */
1295	switch (hw->mac.type) {
1296	case e1000_82575:
1297		ics_mask = 0x37F47EDD;
1298		break;
1299	case e1000_82576:
1300		ics_mask = 0x77D4FBFD;
1301		break;
1302	case e1000_82580:
1303		ics_mask = 0x77DCFED5;
1304		break;
1305	case e1000_i350:
1306	case e1000_i210:
1307	case e1000_i211:
1308		ics_mask = 0x77DCFED5;
1309		break;
1310	default:
1311		ics_mask = 0x7FFFFFFF;
1312		break;
1313	}
1314
1315	/* Test each interrupt */
1316	for (; i < 31; i++) {
1317		/* Interrupt to test */
1318		mask = 1 << i;
1319
1320		if (!(mask & ics_mask))
1321			continue;
1322
1323		if (!shared_int) {
1324			/* Disable the interrupt to be reported in
1325			 * the cause register and then force the same
1326			 * interrupt and see if one gets posted.  If
1327			 * an interrupt was posted to the bus, the
1328			 * test failed.
1329			 */
1330			adapter->test_icr = 0;
1331
1332			/* Flush any pending interrupts */
1333			wr32(E1000_ICR, ~0);
1334
1335			wr32(E1000_IMC, mask);
1336			wr32(E1000_ICS, mask);
1337			wrfl();
1338			msleep(10);
1339
1340			if (adapter->test_icr & mask) {
1341				*data = 3;
1342				break;
1343			}
1344		}
1345
1346		/* Enable the interrupt to be reported in
1347		 * the cause register and then force the same
1348		 * interrupt and see if one gets posted.  If
1349		 * an interrupt was not posted to the bus, the
1350		 * test failed.
1351		 */
1352		adapter->test_icr = 0;
1353
1354		/* Flush any pending interrupts */
1355		wr32(E1000_ICR, ~0);
1356
1357		wr32(E1000_IMS, mask);
1358		wr32(E1000_ICS, mask);
1359		wrfl();
1360		msleep(10);
1361
1362		if (!(adapter->test_icr & mask)) {
1363			*data = 4;
1364			break;
1365		}
1366
1367		if (!shared_int) {
1368			/* Disable the other interrupts to be reported in
1369			 * the cause register and then force the other
1370			 * interrupts and see if any get posted.  If
1371			 * an interrupt was posted to the bus, the
1372			 * test failed.
1373			 */
1374			adapter->test_icr = 0;
1375
1376			/* Flush any pending interrupts */
1377			wr32(E1000_ICR, ~0);
1378
1379			wr32(E1000_IMC, ~mask);
1380			wr32(E1000_ICS, ~mask);
1381			wrfl();
1382			msleep(10);
1383
1384			if (adapter->test_icr & mask) {
1385				*data = 5;
1386				break;
1387			}
1388		}
1389	}
1390
1391	/* Disable all the interrupts */
1392	wr32(E1000_IMC, ~0);
1393	wrfl();
1394	msleep(10);
1395
1396	/* Unhook test interrupt handler */
1397	if (adapter->msix_entries)
1398		free_irq(adapter->msix_entries[0].vector, adapter);
1399	else
1400		free_irq(irq, adapter);
1401
1402	return *data;
1403}
1404
1405static void igb_free_desc_rings(struct igb_adapter *adapter)
1406{
1407	igb_free_tx_resources(&adapter->test_tx_ring);
1408	igb_free_rx_resources(&adapter->test_rx_ring);
1409}
1410
1411static int igb_setup_desc_rings(struct igb_adapter *adapter)
1412{
1413	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1414	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1415	struct e1000_hw *hw = &adapter->hw;
1416	int ret_val;
1417
1418	/* Setup Tx descriptor ring and Tx buffers */
1419	tx_ring->count = IGB_DEFAULT_TXD;
1420	tx_ring->dev = &adapter->pdev->dev;
1421	tx_ring->netdev = adapter->netdev;
1422	tx_ring->reg_idx = adapter->vfs_allocated_count;
1423
1424	if (igb_setup_tx_resources(tx_ring)) {
1425		ret_val = 1;
1426		goto err_nomem;
1427	}
1428
1429	igb_setup_tctl(adapter);
1430	igb_configure_tx_ring(adapter, tx_ring);
1431
1432	/* Setup Rx descriptor ring and Rx buffers */
1433	rx_ring->count = IGB_DEFAULT_RXD;
1434	rx_ring->dev = &adapter->pdev->dev;
1435	rx_ring->netdev = adapter->netdev;
1436	rx_ring->reg_idx = adapter->vfs_allocated_count;
1437
1438	if (igb_setup_rx_resources(rx_ring)) {
1439		ret_val = 3;
1440		goto err_nomem;
1441	}
1442
1443	/* set the default queue to queue 0 of PF */
1444	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1445
1446	/* enable receive ring */
1447	igb_setup_rctl(adapter);
1448	igb_configure_rx_ring(adapter, rx_ring);
1449
1450	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1451
1452	return 0;
1453
1454err_nomem:
1455	igb_free_desc_rings(adapter);
1456	return ret_val;
1457}
1458
1459static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1460{
1461	struct e1000_hw *hw = &adapter->hw;
1462
1463	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1464	igb_write_phy_reg(hw, 29, 0x001F);
1465	igb_write_phy_reg(hw, 30, 0x8FFC);
1466	igb_write_phy_reg(hw, 29, 0x001A);
1467	igb_write_phy_reg(hw, 30, 0x8FF0);
1468}
1469
1470static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1471{
1472	struct e1000_hw *hw = &adapter->hw;
1473	u32 ctrl_reg = 0;
1474	u16 phy_reg = 0;
1475
1476	hw->mac.autoneg = false;
1477
1478	switch (hw->phy.type) {
1479	case e1000_phy_m88:
1480		/* Auto-MDI/MDIX Off */
1481		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1482		/* reset to update Auto-MDI/MDIX */
1483		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1484		/* autoneg off */
1485		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1486		break;
1487	case e1000_phy_82580:
1488		/* enable MII loopback */
1489		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1490		break;
1491	case e1000_phy_i210:
1492		/* set loopback speed in PHY */
1493		igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1494					&phy_reg);
1495		phy_reg |= GS40G_MAC_SPEED_1G;
1496		igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1497					phy_reg);
1498		ctrl_reg = rd32(E1000_CTRL_EXT);
1499	default:
1500		break;
1501	}
1502
1503	/* force 1000, set loopback */
1504	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1505
1506	/* Now set up the MAC to the same speed/duplex as the PHY. */
1507	ctrl_reg = rd32(E1000_CTRL);
1508	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1509	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1510		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1511		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1512		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1513		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1514
1515	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1516		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1517
1518	wr32(E1000_CTRL, ctrl_reg);
1519
1520	/* Disable the receiver on the PHY so when a cable is plugged in, the
1521	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1522	 */
1523	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1524		igb_phy_disable_receiver(adapter);
1525
1526	udelay(500);
1527
1528	return 0;
1529}
1530
1531static int igb_set_phy_loopback(struct igb_adapter *adapter)
1532{
1533	return igb_integrated_phy_loopback(adapter);
1534}
1535
1536static int igb_setup_loopback_test(struct igb_adapter *adapter)
1537{
1538	struct e1000_hw *hw = &adapter->hw;
1539	u32 reg;
1540
1541	reg = rd32(E1000_CTRL_EXT);
1542
1543	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1544	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1545		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1546		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1547		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1548		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1549
1550			/* Enable DH89xxCC MPHY for near end loopback */
1551			reg = rd32(E1000_MPHY_ADDR_CTL);
1552			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1553			E1000_MPHY_PCS_CLK_REG_OFFSET;
1554			wr32(E1000_MPHY_ADDR_CTL, reg);
1555
1556			reg = rd32(E1000_MPHY_DATA);
1557			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1558			wr32(E1000_MPHY_DATA, reg);
1559		}
1560
1561		reg = rd32(E1000_RCTL);
1562		reg |= E1000_RCTL_LBM_TCVR;
1563		wr32(E1000_RCTL, reg);
1564
1565		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1566
1567		reg = rd32(E1000_CTRL);
1568		reg &= ~(E1000_CTRL_RFCE |
1569			 E1000_CTRL_TFCE |
1570			 E1000_CTRL_LRST);
1571		reg |= E1000_CTRL_SLU |
1572		       E1000_CTRL_FD;
1573		wr32(E1000_CTRL, reg);
1574
1575		/* Unset switch control to serdes energy detect */
1576		reg = rd32(E1000_CONNSW);
1577		reg &= ~E1000_CONNSW_ENRGSRC;
1578		wr32(E1000_CONNSW, reg);
1579
1580		/* Set PCS register for forced speed */
1581		reg = rd32(E1000_PCS_LCTL);
1582		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1583		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1584		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1585		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1586		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1587		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1588		wr32(E1000_PCS_LCTL, reg);
1589
1590		return 0;
1591	}
1592
1593	return igb_set_phy_loopback(adapter);
1594}
1595
1596static void igb_loopback_cleanup(struct igb_adapter *adapter)
1597{
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 rctl;
1600	u16 phy_reg;
1601
1602	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1603	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1604	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1605	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1606		u32 reg;
1607
1608		/* Disable near end loopback on DH89xxCC */
1609		reg = rd32(E1000_MPHY_ADDR_CTL);
1610		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1611		E1000_MPHY_PCS_CLK_REG_OFFSET;
1612		wr32(E1000_MPHY_ADDR_CTL, reg);
1613
1614		reg = rd32(E1000_MPHY_DATA);
1615		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1616		wr32(E1000_MPHY_DATA, reg);
1617	}
1618
1619	rctl = rd32(E1000_RCTL);
1620	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1621	wr32(E1000_RCTL, rctl);
1622
1623	hw->mac.autoneg = true;
1624	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1625	if (phy_reg & MII_CR_LOOPBACK) {
1626		phy_reg &= ~MII_CR_LOOPBACK;
1627		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1628		igb_phy_sw_reset(hw);
1629	}
1630}
1631
1632static void igb_create_lbtest_frame(struct sk_buff *skb,
1633				    unsigned int frame_size)
1634{
1635	memset(skb->data, 0xFF, frame_size);
1636	frame_size /= 2;
1637	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1638	memset(&skb->data[frame_size + 10], 0xBE, 1);
1639	memset(&skb->data[frame_size + 12], 0xAF, 1);
1640}
1641
1642static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1643{
1644	frame_size /= 2;
1645	if (*(skb->data + 3) == 0xFF) {
1646		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1647		   (*(skb->data + frame_size + 12) == 0xAF)) {
1648			return 0;
1649		}
1650	}
1651	return 13;
1652}
1653
1654static int igb_clean_test_rings(struct igb_ring *rx_ring,
1655                                struct igb_ring *tx_ring,
1656                                unsigned int size)
1657{
1658	union e1000_adv_rx_desc *rx_desc;
1659	struct igb_rx_buffer *rx_buffer_info;
1660	struct igb_tx_buffer *tx_buffer_info;
1661	struct netdev_queue *txq;
1662	u16 rx_ntc, tx_ntc, count = 0;
1663	unsigned int total_bytes = 0, total_packets = 0;
1664
1665	/* initialize next to clean and descriptor values */
1666	rx_ntc = rx_ring->next_to_clean;
1667	tx_ntc = tx_ring->next_to_clean;
1668	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1669
1670	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1671		/* check rx buffer */
1672		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1673
1674		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1675		dma_unmap_single(rx_ring->dev,
1676				 rx_buffer_info->dma,
1677				 IGB_RX_HDR_LEN,
1678				 DMA_FROM_DEVICE);
1679		rx_buffer_info->dma = 0;
1680
1681		/* verify contents of skb */
1682		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1683			count++;
1684
1685		/* unmap buffer on tx side */
1686		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1687		total_bytes += tx_buffer_info->bytecount;
1688		total_packets += tx_buffer_info->gso_segs;
1689		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1690
1691		/* increment rx/tx next to clean counters */
1692		rx_ntc++;
1693		if (rx_ntc == rx_ring->count)
1694			rx_ntc = 0;
1695		tx_ntc++;
1696		if (tx_ntc == tx_ring->count)
1697			tx_ntc = 0;
1698
1699		/* fetch next descriptor */
1700		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1701	}
1702
1703	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1704	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1705
1706	/* re-map buffers to ring, store next to clean values */
1707	igb_alloc_rx_buffers(rx_ring, count);
1708	rx_ring->next_to_clean = rx_ntc;
1709	tx_ring->next_to_clean = tx_ntc;
1710
1711	return count;
1712}
1713
1714static int igb_run_loopback_test(struct igb_adapter *adapter)
1715{
1716	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1717	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1718	u16 i, j, lc, good_cnt;
1719	int ret_val = 0;
1720	unsigned int size = IGB_RX_HDR_LEN;
1721	netdev_tx_t tx_ret_val;
1722	struct sk_buff *skb;
1723
1724	/* allocate test skb */
1725	skb = alloc_skb(size, GFP_KERNEL);
1726	if (!skb)
1727		return 11;
1728
1729	/* place data into test skb */
1730	igb_create_lbtest_frame(skb, size);
1731	skb_put(skb, size);
1732
1733	/*
1734	 * Calculate the loop count based on the largest descriptor ring
1735	 * The idea is to wrap the largest ring a number of times using 64
1736	 * send/receive pairs during each loop
1737	 */
1738
1739	if (rx_ring->count <= tx_ring->count)
1740		lc = ((tx_ring->count / 64) * 2) + 1;
1741	else
1742		lc = ((rx_ring->count / 64) * 2) + 1;
1743
1744	for (j = 0; j <= lc; j++) { /* loop count loop */
1745		/* reset count of good packets */
1746		good_cnt = 0;
1747
1748		/* place 64 packets on the transmit queue*/
1749		for (i = 0; i < 64; i++) {
1750			skb_get(skb);
1751			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1752			if (tx_ret_val == NETDEV_TX_OK)
1753				good_cnt++;
1754		}
1755
1756		if (good_cnt != 64) {
1757			ret_val = 12;
1758			break;
1759		}
1760
1761		/* allow 200 milliseconds for packets to go from tx to rx */
1762		msleep(200);
1763
1764		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1765		if (good_cnt != 64) {
1766			ret_val = 13;
1767			break;
1768		}
1769	} /* end loop count loop */
1770
1771	/* free the original skb */
1772	kfree_skb(skb);
1773
1774	return ret_val;
1775}
1776
1777static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1778{
1779	/* PHY loopback cannot be performed if SoL/IDER
1780	 * sessions are active */
1781	if (igb_check_reset_block(&adapter->hw)) {
1782		dev_err(&adapter->pdev->dev,
1783			"Cannot do PHY loopback test "
1784			"when SoL/IDER is active.\n");
1785		*data = 0;
1786		goto out;
1787	}
1788	if ((adapter->hw.mac.type == e1000_i210)
1789		|| (adapter->hw.mac.type == e1000_i210)) {
1790		dev_err(&adapter->pdev->dev,
1791			"Loopback test not supported "
1792			"on this part at this time.\n");
1793		*data = 0;
1794		goto out;
1795	}
1796	*data = igb_setup_desc_rings(adapter);
1797	if (*data)
1798		goto out;
1799	*data = igb_setup_loopback_test(adapter);
1800	if (*data)
1801		goto err_loopback;
1802	*data = igb_run_loopback_test(adapter);
1803	igb_loopback_cleanup(adapter);
1804
1805err_loopback:
1806	igb_free_desc_rings(adapter);
1807out:
1808	return *data;
1809}
1810
1811static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1812{
1813	struct e1000_hw *hw = &adapter->hw;
1814	*data = 0;
1815	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1816		int i = 0;
1817		hw->mac.serdes_has_link = false;
1818
1819		/* On some blade server designs, link establishment
1820		 * could take as long as 2-3 minutes */
1821		do {
1822			hw->mac.ops.check_for_link(&adapter->hw);
1823			if (hw->mac.serdes_has_link)
1824				return *data;
1825			msleep(20);
1826		} while (i++ < 3750);
1827
1828		*data = 1;
1829	} else {
1830		hw->mac.ops.check_for_link(&adapter->hw);
1831		if (hw->mac.autoneg)
1832			msleep(4000);
1833
1834		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1835			*data = 1;
1836	}
1837	return *data;
1838}
1839
1840static void igb_diag_test(struct net_device *netdev,
1841			  struct ethtool_test *eth_test, u64 *data)
1842{
1843	struct igb_adapter *adapter = netdev_priv(netdev);
1844	u16 autoneg_advertised;
1845	u8 forced_speed_duplex, autoneg;
1846	bool if_running = netif_running(netdev);
1847
1848	set_bit(__IGB_TESTING, &adapter->state);
1849	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1850		/* Offline tests */
1851
1852		/* save speed, duplex, autoneg settings */
1853		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1854		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1855		autoneg = adapter->hw.mac.autoneg;
1856
1857		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1858
1859		/* power up link for link test */
1860		igb_power_up_link(adapter);
1861
1862		/* Link test performed before hardware reset so autoneg doesn't
1863		 * interfere with test result */
1864		if (igb_link_test(adapter, &data[4]))
1865			eth_test->flags |= ETH_TEST_FL_FAILED;
1866
1867		if (if_running)
1868			/* indicate we're in test mode */
1869			dev_close(netdev);
1870		else
1871			igb_reset(adapter);
1872
1873		if (igb_reg_test(adapter, &data[0]))
1874			eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876		igb_reset(adapter);
1877		if (igb_eeprom_test(adapter, &data[1]))
1878			eth_test->flags |= ETH_TEST_FL_FAILED;
1879
1880		igb_reset(adapter);
1881		if (igb_intr_test(adapter, &data[2]))
1882			eth_test->flags |= ETH_TEST_FL_FAILED;
1883
1884		igb_reset(adapter);
1885		/* power up link for loopback test */
1886		igb_power_up_link(adapter);
1887		if (igb_loopback_test(adapter, &data[3]))
1888			eth_test->flags |= ETH_TEST_FL_FAILED;
1889
1890		/* restore speed, duplex, autoneg settings */
1891		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1892		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1893		adapter->hw.mac.autoneg = autoneg;
1894
1895		/* force this routine to wait until autoneg complete/timeout */
1896		adapter->hw.phy.autoneg_wait_to_complete = true;
1897		igb_reset(adapter);
1898		adapter->hw.phy.autoneg_wait_to_complete = false;
1899
1900		clear_bit(__IGB_TESTING, &adapter->state);
1901		if (if_running)
1902			dev_open(netdev);
1903	} else {
1904		dev_info(&adapter->pdev->dev, "online testing starting\n");
1905
1906		/* PHY is powered down when interface is down */
1907		if (if_running && igb_link_test(adapter, &data[4]))
1908			eth_test->flags |= ETH_TEST_FL_FAILED;
1909		else
1910			data[4] = 0;
1911
1912		/* Online tests aren't run; pass by default */
1913		data[0] = 0;
1914		data[1] = 0;
1915		data[2] = 0;
1916		data[3] = 0;
1917
1918		clear_bit(__IGB_TESTING, &adapter->state);
1919	}
1920	msleep_interruptible(4 * 1000);
1921}
1922
1923static int igb_wol_exclusion(struct igb_adapter *adapter,
1924			     struct ethtool_wolinfo *wol)
1925{
1926	struct e1000_hw *hw = &adapter->hw;
1927	int retval = 1; /* fail by default */
1928
1929	switch (hw->device_id) {
1930	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1931		/* WoL not supported */
1932		wol->supported = 0;
1933		break;
1934	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1935	case E1000_DEV_ID_82576_FIBER:
1936	case E1000_DEV_ID_82576_SERDES:
1937		/* Wake events not supported on port B */
1938		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1939			wol->supported = 0;
1940			break;
1941		}
1942		/* return success for non excluded adapter ports */
1943		retval = 0;
1944		break;
1945	case E1000_DEV_ID_82576_QUAD_COPPER:
1946	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1947		/* quad port adapters only support WoL on port A */
1948		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1949			wol->supported = 0;
1950			break;
1951		}
1952		/* return success for non excluded adapter ports */
1953		retval = 0;
1954		break;
1955	default:
1956		/* dual port cards only support WoL on port A from now on
1957		 * unless it was enabled in the eeprom for port B
1958		 * so exclude FUNC_1 ports from having WoL enabled */
1959		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1960		    !adapter->eeprom_wol) {
1961			wol->supported = 0;
1962			break;
1963		}
1964
1965		retval = 0;
1966	}
1967
1968	return retval;
1969}
1970
1971static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1972{
1973	struct igb_adapter *adapter = netdev_priv(netdev);
1974
1975	wol->supported = WAKE_UCAST | WAKE_MCAST |
1976	                 WAKE_BCAST | WAKE_MAGIC |
1977	                 WAKE_PHY;
1978	wol->wolopts = 0;
1979
1980	/* this function will set ->supported = 0 and return 1 if wol is not
1981	 * supported by this hardware */
1982	if (igb_wol_exclusion(adapter, wol) ||
1983	    !device_can_wakeup(&adapter->pdev->dev))
1984		return;
1985
1986	/* apply any specific unsupported masks here */
1987	switch (adapter->hw.device_id) {
1988	default:
1989		break;
1990	}
1991
1992	if (adapter->wol & E1000_WUFC_EX)
1993		wol->wolopts |= WAKE_UCAST;
1994	if (adapter->wol & E1000_WUFC_MC)
1995		wol->wolopts |= WAKE_MCAST;
1996	if (adapter->wol & E1000_WUFC_BC)
1997		wol->wolopts |= WAKE_BCAST;
1998	if (adapter->wol & E1000_WUFC_MAG)
1999		wol->wolopts |= WAKE_MAGIC;
2000	if (adapter->wol & E1000_WUFC_LNKC)
2001		wol->wolopts |= WAKE_PHY;
2002}
2003
2004static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2005{
2006	struct igb_adapter *adapter = netdev_priv(netdev);
2007
2008	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2009		return -EOPNOTSUPP;
2010
2011	if (igb_wol_exclusion(adapter, wol) ||
2012	    !device_can_wakeup(&adapter->pdev->dev))
2013		return wol->wolopts ? -EOPNOTSUPP : 0;
2014
2015	/* these settings will always override what we currently have */
2016	adapter->wol = 0;
2017
2018	if (wol->wolopts & WAKE_UCAST)
2019		adapter->wol |= E1000_WUFC_EX;
2020	if (wol->wolopts & WAKE_MCAST)
2021		adapter->wol |= E1000_WUFC_MC;
2022	if (wol->wolopts & WAKE_BCAST)
2023		adapter->wol |= E1000_WUFC_BC;
2024	if (wol->wolopts & WAKE_MAGIC)
2025		adapter->wol |= E1000_WUFC_MAG;
2026	if (wol->wolopts & WAKE_PHY)
2027		adapter->wol |= E1000_WUFC_LNKC;
2028	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2029
2030	return 0;
2031}
2032
2033/* bit defines for adapter->led_status */
2034#define IGB_LED_ON		0
2035
2036static int igb_set_phys_id(struct net_device *netdev,
2037			   enum ethtool_phys_id_state state)
2038{
2039	struct igb_adapter *adapter = netdev_priv(netdev);
2040	struct e1000_hw *hw = &adapter->hw;
2041
2042	switch (state) {
2043	case ETHTOOL_ID_ACTIVE:
2044		igb_blink_led(hw);
2045		return 2;
2046	case ETHTOOL_ID_ON:
2047		igb_blink_led(hw);
2048		break;
2049	case ETHTOOL_ID_OFF:
2050		igb_led_off(hw);
2051		break;
2052	case ETHTOOL_ID_INACTIVE:
2053		igb_led_off(hw);
2054		clear_bit(IGB_LED_ON, &adapter->led_status);
2055		igb_cleanup_led(hw);
2056		break;
2057	}
2058
2059	return 0;
2060}
2061
2062static int igb_set_coalesce(struct net_device *netdev,
2063			    struct ethtool_coalesce *ec)
2064{
2065	struct igb_adapter *adapter = netdev_priv(netdev);
2066	int i;
2067
2068	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2069	    ((ec->rx_coalesce_usecs > 3) &&
2070	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2071	    (ec->rx_coalesce_usecs == 2))
2072		return -EINVAL;
2073
2074	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2075	    ((ec->tx_coalesce_usecs > 3) &&
2076	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2077	    (ec->tx_coalesce_usecs == 2))
2078		return -EINVAL;
2079
2080	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2081		return -EINVAL;
2082
2083	/* If ITR is disabled, disable DMAC */
2084	if (ec->rx_coalesce_usecs == 0) {
2085		if (adapter->flags & IGB_FLAG_DMAC)
2086			adapter->flags &= ~IGB_FLAG_DMAC;
2087	}
2088
2089	/* convert to rate of irq's per second */
2090	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2091		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2092	else
2093		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2094
2095	/* convert to rate of irq's per second */
2096	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2097		adapter->tx_itr_setting = adapter->rx_itr_setting;
2098	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2099		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2100	else
2101		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2102
2103	for (i = 0; i < adapter->num_q_vectors; i++) {
2104		struct igb_q_vector *q_vector = adapter->q_vector[i];
2105		q_vector->tx.work_limit = adapter->tx_work_limit;
2106		if (q_vector->rx.ring)
2107			q_vector->itr_val = adapter->rx_itr_setting;
2108		else
2109			q_vector->itr_val = adapter->tx_itr_setting;
2110		if (q_vector->itr_val && q_vector->itr_val <= 3)
2111			q_vector->itr_val = IGB_START_ITR;
2112		q_vector->set_itr = 1;
2113	}
2114
2115	return 0;
2116}
2117
2118static int igb_get_coalesce(struct net_device *netdev,
2119			    struct ethtool_coalesce *ec)
2120{
2121	struct igb_adapter *adapter = netdev_priv(netdev);
2122
2123	if (adapter->rx_itr_setting <= 3)
2124		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2125	else
2126		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2127
2128	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2129		if (adapter->tx_itr_setting <= 3)
2130			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2131		else
2132			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2133	}
2134
2135	return 0;
2136}
2137
2138static int igb_nway_reset(struct net_device *netdev)
2139{
2140	struct igb_adapter *adapter = netdev_priv(netdev);
2141	if (netif_running(netdev))
2142		igb_reinit_locked(adapter);
2143	return 0;
2144}
2145
2146static int igb_get_sset_count(struct net_device *netdev, int sset)
2147{
2148	switch (sset) {
2149	case ETH_SS_STATS:
2150		return IGB_STATS_LEN;
2151	case ETH_SS_TEST:
2152		return IGB_TEST_LEN;
2153	default:
2154		return -ENOTSUPP;
2155	}
2156}
2157
2158static void igb_get_ethtool_stats(struct net_device *netdev,
2159				  struct ethtool_stats *stats, u64 *data)
2160{
2161	struct igb_adapter *adapter = netdev_priv(netdev);
2162	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2163	unsigned int start;
2164	struct igb_ring *ring;
2165	int i, j;
2166	char *p;
2167
2168	spin_lock(&adapter->stats64_lock);
2169	igb_update_stats(adapter, net_stats);
2170
2171	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2172		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2173		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2174			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2175	}
2176	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2177		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2178		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2179			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2180	}
2181	for (j = 0; j < adapter->num_tx_queues; j++) {
2182		u64	restart2;
2183
2184		ring = adapter->tx_ring[j];
2185		do {
2186			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2187			data[i]   = ring->tx_stats.packets;
2188			data[i+1] = ring->tx_stats.bytes;
2189			data[i+2] = ring->tx_stats.restart_queue;
2190		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2191		do {
2192			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2193			restart2  = ring->tx_stats.restart_queue2;
2194		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2195		data[i+2] += restart2;
2196
2197		i += IGB_TX_QUEUE_STATS_LEN;
2198	}
2199	for (j = 0; j < adapter->num_rx_queues; j++) {
2200		ring = adapter->rx_ring[j];
2201		do {
2202			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2203			data[i]   = ring->rx_stats.packets;
2204			data[i+1] = ring->rx_stats.bytes;
2205			data[i+2] = ring->rx_stats.drops;
2206			data[i+3] = ring->rx_stats.csum_err;
2207			data[i+4] = ring->rx_stats.alloc_failed;
2208		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2209		i += IGB_RX_QUEUE_STATS_LEN;
2210	}
2211	spin_unlock(&adapter->stats64_lock);
2212}
2213
2214static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2215{
2216	struct igb_adapter *adapter = netdev_priv(netdev);
2217	u8 *p = data;
2218	int i;
2219
2220	switch (stringset) {
2221	case ETH_SS_TEST:
2222		memcpy(data, *igb_gstrings_test,
2223			IGB_TEST_LEN*ETH_GSTRING_LEN);
2224		break;
2225	case ETH_SS_STATS:
2226		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2227			memcpy(p, igb_gstrings_stats[i].stat_string,
2228			       ETH_GSTRING_LEN);
2229			p += ETH_GSTRING_LEN;
2230		}
2231		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2232			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2233			       ETH_GSTRING_LEN);
2234			p += ETH_GSTRING_LEN;
2235		}
2236		for (i = 0; i < adapter->num_tx_queues; i++) {
2237			sprintf(p, "tx_queue_%u_packets", i);
2238			p += ETH_GSTRING_LEN;
2239			sprintf(p, "tx_queue_%u_bytes", i);
2240			p += ETH_GSTRING_LEN;
2241			sprintf(p, "tx_queue_%u_restart", i);
2242			p += ETH_GSTRING_LEN;
2243		}
2244		for (i = 0; i < adapter->num_rx_queues; i++) {
2245			sprintf(p, "rx_queue_%u_packets", i);
2246			p += ETH_GSTRING_LEN;
2247			sprintf(p, "rx_queue_%u_bytes", i);
2248			p += ETH_GSTRING_LEN;
2249			sprintf(p, "rx_queue_%u_drops", i);
2250			p += ETH_GSTRING_LEN;
2251			sprintf(p, "rx_queue_%u_csum_err", i);
2252			p += ETH_GSTRING_LEN;
2253			sprintf(p, "rx_queue_%u_alloc_failed", i);
2254			p += ETH_GSTRING_LEN;
2255		}
2256/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2257		break;
2258	}
2259}
2260
2261static int igb_ethtool_begin(struct net_device *netdev)
2262{
2263	struct igb_adapter *adapter = netdev_priv(netdev);
2264	pm_runtime_get_sync(&adapter->pdev->dev);
2265	return 0;
2266}
2267
2268static void igb_ethtool_complete(struct net_device *netdev)
2269{
2270	struct igb_adapter *adapter = netdev_priv(netdev);
2271	pm_runtime_put(&adapter->pdev->dev);
2272}
2273
2274static const struct ethtool_ops igb_ethtool_ops = {
2275	.get_settings           = igb_get_settings,
2276	.set_settings           = igb_set_settings,
2277	.get_drvinfo            = igb_get_drvinfo,
2278	.get_regs_len           = igb_get_regs_len,
2279	.get_regs               = igb_get_regs,
2280	.get_wol                = igb_get_wol,
2281	.set_wol                = igb_set_wol,
2282	.get_msglevel           = igb_get_msglevel,
2283	.set_msglevel           = igb_set_msglevel,
2284	.nway_reset             = igb_nway_reset,
2285	.get_link               = igb_get_link,
2286	.get_eeprom_len         = igb_get_eeprom_len,
2287	.get_eeprom             = igb_get_eeprom,
2288	.set_eeprom             = igb_set_eeprom,
2289	.get_ringparam          = igb_get_ringparam,
2290	.set_ringparam          = igb_set_ringparam,
2291	.get_pauseparam         = igb_get_pauseparam,
2292	.set_pauseparam         = igb_set_pauseparam,
2293	.self_test              = igb_diag_test,
2294	.get_strings            = igb_get_strings,
2295	.set_phys_id            = igb_set_phys_id,
2296	.get_sset_count         = igb_get_sset_count,
2297	.get_ethtool_stats      = igb_get_ethtool_stats,
2298	.get_coalesce           = igb_get_coalesce,
2299	.set_coalesce           = igb_set_coalesce,
2300	.begin			= igb_ethtool_begin,
2301	.complete		= igb_ethtool_complete,
2302};
2303
2304void igb_set_ethtool_ops(struct net_device *netdev)
2305{
2306	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2307}