Loading...
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/mutex.h>
32#include <linux/scatterlist.h>
33#include <linux/string_helpers.h>
34#include <linux/delay.h>
35#include <linux/capability.h>
36#include <linux/compat.h>
37
38#include <linux/mmc/ioctl.h>
39#include <linux/mmc/card.h>
40#include <linux/mmc/host.h>
41#include <linux/mmc/mmc.h>
42#include <linux/mmc/sd.h>
43
44#include <asm/system.h>
45#include <asm/uaccess.h>
46
47#include "queue.h"
48
49MODULE_ALIAS("mmc:block");
50#ifdef MODULE_PARAM_PREFIX
51#undef MODULE_PARAM_PREFIX
52#endif
53#define MODULE_PARAM_PREFIX "mmcblk."
54
55#define INAND_CMD38_ARG_EXT_CSD 113
56#define INAND_CMD38_ARG_ERASE 0x00
57#define INAND_CMD38_ARG_TRIM 0x01
58#define INAND_CMD38_ARG_SECERASE 0x80
59#define INAND_CMD38_ARG_SECTRIM1 0x81
60#define INAND_CMD38_ARG_SECTRIM2 0x88
61
62static DEFINE_MUTEX(block_mutex);
63
64/*
65 * The defaults come from config options but can be overriden by module
66 * or bootarg options.
67 */
68static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
69
70/*
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
73 */
74static int max_devices;
75
76/* 256 minors, so at most 256 separate devices */
77static DECLARE_BITMAP(dev_use, 256);
78static DECLARE_BITMAP(name_use, 256);
79
80/*
81 * There is one mmc_blk_data per slot.
82 */
83struct mmc_blk_data {
84 spinlock_t lock;
85 struct gendisk *disk;
86 struct mmc_queue queue;
87 struct list_head part;
88
89 unsigned int flags;
90#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
91#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
92
93 unsigned int usage;
94 unsigned int read_only;
95 unsigned int part_type;
96 unsigned int name_idx;
97
98 /*
99 * Only set in main mmc_blk_data associated
100 * with mmc_card with mmc_set_drvdata, and keeps
101 * track of the current selected device partition.
102 */
103 unsigned int part_curr;
104 struct device_attribute force_ro;
105};
106
107static DEFINE_MUTEX(open_lock);
108
109enum mmc_blk_status {
110 MMC_BLK_SUCCESS = 0,
111 MMC_BLK_PARTIAL,
112 MMC_BLK_RETRY,
113 MMC_BLK_RETRY_SINGLE,
114 MMC_BLK_DATA_ERR,
115 MMC_BLK_CMD_ERR,
116 MMC_BLK_ABORT,
117};
118
119module_param(perdev_minors, int, 0444);
120MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
121
122static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
123{
124 struct mmc_blk_data *md;
125
126 mutex_lock(&open_lock);
127 md = disk->private_data;
128 if (md && md->usage == 0)
129 md = NULL;
130 if (md)
131 md->usage++;
132 mutex_unlock(&open_lock);
133
134 return md;
135}
136
137static inline int mmc_get_devidx(struct gendisk *disk)
138{
139 int devmaj = MAJOR(disk_devt(disk));
140 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
141
142 if (!devmaj)
143 devidx = disk->first_minor / perdev_minors;
144 return devidx;
145}
146
147static void mmc_blk_put(struct mmc_blk_data *md)
148{
149 mutex_lock(&open_lock);
150 md->usage--;
151 if (md->usage == 0) {
152 int devidx = mmc_get_devidx(md->disk);
153 blk_cleanup_queue(md->queue.queue);
154
155 __clear_bit(devidx, dev_use);
156
157 put_disk(md->disk);
158 kfree(md);
159 }
160 mutex_unlock(&open_lock);
161}
162
163static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
164 char *buf)
165{
166 int ret;
167 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
168
169 ret = snprintf(buf, PAGE_SIZE, "%d",
170 get_disk_ro(dev_to_disk(dev)) ^
171 md->read_only);
172 mmc_blk_put(md);
173 return ret;
174}
175
176static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
177 const char *buf, size_t count)
178{
179 int ret;
180 char *end;
181 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
182 unsigned long set = simple_strtoul(buf, &end, 0);
183 if (end == buf) {
184 ret = -EINVAL;
185 goto out;
186 }
187
188 set_disk_ro(dev_to_disk(dev), set || md->read_only);
189 ret = count;
190out:
191 mmc_blk_put(md);
192 return ret;
193}
194
195static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
196{
197 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
198 int ret = -ENXIO;
199
200 mutex_lock(&block_mutex);
201 if (md) {
202 if (md->usage == 2)
203 check_disk_change(bdev);
204 ret = 0;
205
206 if ((mode & FMODE_WRITE) && md->read_only) {
207 mmc_blk_put(md);
208 ret = -EROFS;
209 }
210 }
211 mutex_unlock(&block_mutex);
212
213 return ret;
214}
215
216static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
217{
218 struct mmc_blk_data *md = disk->private_data;
219
220 mutex_lock(&block_mutex);
221 mmc_blk_put(md);
222 mutex_unlock(&block_mutex);
223 return 0;
224}
225
226static int
227mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
228{
229 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
230 geo->heads = 4;
231 geo->sectors = 16;
232 return 0;
233}
234
235struct mmc_blk_ioc_data {
236 struct mmc_ioc_cmd ic;
237 unsigned char *buf;
238 u64 buf_bytes;
239};
240
241static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
242 struct mmc_ioc_cmd __user *user)
243{
244 struct mmc_blk_ioc_data *idata;
245 int err;
246
247 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
248 if (!idata) {
249 err = -ENOMEM;
250 goto out;
251 }
252
253 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
254 err = -EFAULT;
255 goto idata_err;
256 }
257
258 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
259 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
260 err = -EOVERFLOW;
261 goto idata_err;
262 }
263
264 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
265 if (!idata->buf) {
266 err = -ENOMEM;
267 goto idata_err;
268 }
269
270 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
271 idata->ic.data_ptr, idata->buf_bytes)) {
272 err = -EFAULT;
273 goto copy_err;
274 }
275
276 return idata;
277
278copy_err:
279 kfree(idata->buf);
280idata_err:
281 kfree(idata);
282out:
283 return ERR_PTR(err);
284}
285
286static int mmc_blk_ioctl_cmd(struct block_device *bdev,
287 struct mmc_ioc_cmd __user *ic_ptr)
288{
289 struct mmc_blk_ioc_data *idata;
290 struct mmc_blk_data *md;
291 struct mmc_card *card;
292 struct mmc_command cmd = {0};
293 struct mmc_data data = {0};
294 struct mmc_request mrq = {0};
295 struct scatterlist sg;
296 int err;
297
298 /*
299 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
300 * whole block device, not on a partition. This prevents overspray
301 * between sibling partitions.
302 */
303 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
304 return -EPERM;
305
306 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
307 if (IS_ERR(idata))
308 return PTR_ERR(idata);
309
310 cmd.opcode = idata->ic.opcode;
311 cmd.arg = idata->ic.arg;
312 cmd.flags = idata->ic.flags;
313
314 data.sg = &sg;
315 data.sg_len = 1;
316 data.blksz = idata->ic.blksz;
317 data.blocks = idata->ic.blocks;
318
319 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
320
321 if (idata->ic.write_flag)
322 data.flags = MMC_DATA_WRITE;
323 else
324 data.flags = MMC_DATA_READ;
325
326 mrq.cmd = &cmd;
327 mrq.data = &data;
328
329 md = mmc_blk_get(bdev->bd_disk);
330 if (!md) {
331 err = -EINVAL;
332 goto cmd_done;
333 }
334
335 card = md->queue.card;
336 if (IS_ERR(card)) {
337 err = PTR_ERR(card);
338 goto cmd_done;
339 }
340
341 mmc_claim_host(card->host);
342
343 if (idata->ic.is_acmd) {
344 err = mmc_app_cmd(card->host, card);
345 if (err)
346 goto cmd_rel_host;
347 }
348
349 /* data.flags must already be set before doing this. */
350 mmc_set_data_timeout(&data, card);
351 /* Allow overriding the timeout_ns for empirical tuning. */
352 if (idata->ic.data_timeout_ns)
353 data.timeout_ns = idata->ic.data_timeout_ns;
354
355 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
356 /*
357 * Pretend this is a data transfer and rely on the host driver
358 * to compute timeout. When all host drivers support
359 * cmd.cmd_timeout for R1B, this can be changed to:
360 *
361 * mrq.data = NULL;
362 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
363 */
364 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
365 }
366
367 mmc_wait_for_req(card->host, &mrq);
368
369 if (cmd.error) {
370 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
371 __func__, cmd.error);
372 err = cmd.error;
373 goto cmd_rel_host;
374 }
375 if (data.error) {
376 dev_err(mmc_dev(card->host), "%s: data error %d\n",
377 __func__, data.error);
378 err = data.error;
379 goto cmd_rel_host;
380 }
381
382 /*
383 * According to the SD specs, some commands require a delay after
384 * issuing the command.
385 */
386 if (idata->ic.postsleep_min_us)
387 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
388
389 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
390 err = -EFAULT;
391 goto cmd_rel_host;
392 }
393
394 if (!idata->ic.write_flag) {
395 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
396 idata->buf, idata->buf_bytes)) {
397 err = -EFAULT;
398 goto cmd_rel_host;
399 }
400 }
401
402cmd_rel_host:
403 mmc_release_host(card->host);
404
405cmd_done:
406 mmc_blk_put(md);
407 kfree(idata->buf);
408 kfree(idata);
409 return err;
410}
411
412static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
413 unsigned int cmd, unsigned long arg)
414{
415 int ret = -EINVAL;
416 if (cmd == MMC_IOC_CMD)
417 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
418 return ret;
419}
420
421#ifdef CONFIG_COMPAT
422static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
423 unsigned int cmd, unsigned long arg)
424{
425 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
426}
427#endif
428
429static const struct block_device_operations mmc_bdops = {
430 .open = mmc_blk_open,
431 .release = mmc_blk_release,
432 .getgeo = mmc_blk_getgeo,
433 .owner = THIS_MODULE,
434 .ioctl = mmc_blk_ioctl,
435#ifdef CONFIG_COMPAT
436 .compat_ioctl = mmc_blk_compat_ioctl,
437#endif
438};
439
440static inline int mmc_blk_part_switch(struct mmc_card *card,
441 struct mmc_blk_data *md)
442{
443 int ret;
444 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
445 if (main_md->part_curr == md->part_type)
446 return 0;
447
448 if (mmc_card_mmc(card)) {
449 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
450 card->ext_csd.part_config |= md->part_type;
451
452 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
453 EXT_CSD_PART_CONFIG, card->ext_csd.part_config,
454 card->ext_csd.part_time);
455 if (ret)
456 return ret;
457}
458
459 main_md->part_curr = md->part_type;
460 return 0;
461}
462
463static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
464{
465 int err;
466 u32 result;
467 __be32 *blocks;
468
469 struct mmc_request mrq = {0};
470 struct mmc_command cmd = {0};
471 struct mmc_data data = {0};
472 unsigned int timeout_us;
473
474 struct scatterlist sg;
475
476 cmd.opcode = MMC_APP_CMD;
477 cmd.arg = card->rca << 16;
478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
479
480 err = mmc_wait_for_cmd(card->host, &cmd, 0);
481 if (err)
482 return (u32)-1;
483 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
484 return (u32)-1;
485
486 memset(&cmd, 0, sizeof(struct mmc_command));
487
488 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
489 cmd.arg = 0;
490 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
491
492 data.timeout_ns = card->csd.tacc_ns * 100;
493 data.timeout_clks = card->csd.tacc_clks * 100;
494
495 timeout_us = data.timeout_ns / 1000;
496 timeout_us += data.timeout_clks * 1000 /
497 (card->host->ios.clock / 1000);
498
499 if (timeout_us > 100000) {
500 data.timeout_ns = 100000000;
501 data.timeout_clks = 0;
502 }
503
504 data.blksz = 4;
505 data.blocks = 1;
506 data.flags = MMC_DATA_READ;
507 data.sg = &sg;
508 data.sg_len = 1;
509
510 mrq.cmd = &cmd;
511 mrq.data = &data;
512
513 blocks = kmalloc(4, GFP_KERNEL);
514 if (!blocks)
515 return (u32)-1;
516
517 sg_init_one(&sg, blocks, 4);
518
519 mmc_wait_for_req(card->host, &mrq);
520
521 result = ntohl(*blocks);
522 kfree(blocks);
523
524 if (cmd.error || data.error)
525 result = (u32)-1;
526
527 return result;
528}
529
530static int send_stop(struct mmc_card *card, u32 *status)
531{
532 struct mmc_command cmd = {0};
533 int err;
534
535 cmd.opcode = MMC_STOP_TRANSMISSION;
536 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
537 err = mmc_wait_for_cmd(card->host, &cmd, 5);
538 if (err == 0)
539 *status = cmd.resp[0];
540 return err;
541}
542
543static int get_card_status(struct mmc_card *card, u32 *status, int retries)
544{
545 struct mmc_command cmd = {0};
546 int err;
547
548 cmd.opcode = MMC_SEND_STATUS;
549 if (!mmc_host_is_spi(card->host))
550 cmd.arg = card->rca << 16;
551 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
552 err = mmc_wait_for_cmd(card->host, &cmd, retries);
553 if (err == 0)
554 *status = cmd.resp[0];
555 return err;
556}
557
558#define ERR_RETRY 2
559#define ERR_ABORT 1
560#define ERR_CONTINUE 0
561
562static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
563 bool status_valid, u32 status)
564{
565 switch (error) {
566 case -EILSEQ:
567 /* response crc error, retry the r/w cmd */
568 pr_err("%s: %s sending %s command, card status %#x\n",
569 req->rq_disk->disk_name, "response CRC error",
570 name, status);
571 return ERR_RETRY;
572
573 case -ETIMEDOUT:
574 pr_err("%s: %s sending %s command, card status %#x\n",
575 req->rq_disk->disk_name, "timed out", name, status);
576
577 /* If the status cmd initially failed, retry the r/w cmd */
578 if (!status_valid)
579 return ERR_RETRY;
580
581 /*
582 * If it was a r/w cmd crc error, or illegal command
583 * (eg, issued in wrong state) then retry - we should
584 * have corrected the state problem above.
585 */
586 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
587 return ERR_RETRY;
588
589 /* Otherwise abort the command */
590 return ERR_ABORT;
591
592 default:
593 /* We don't understand the error code the driver gave us */
594 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
595 req->rq_disk->disk_name, error, status);
596 return ERR_ABORT;
597 }
598}
599
600/*
601 * Initial r/w and stop cmd error recovery.
602 * We don't know whether the card received the r/w cmd or not, so try to
603 * restore things back to a sane state. Essentially, we do this as follows:
604 * - Obtain card status. If the first attempt to obtain card status fails,
605 * the status word will reflect the failed status cmd, not the failed
606 * r/w cmd. If we fail to obtain card status, it suggests we can no
607 * longer communicate with the card.
608 * - Check the card state. If the card received the cmd but there was a
609 * transient problem with the response, it might still be in a data transfer
610 * mode. Try to send it a stop command. If this fails, we can't recover.
611 * - If the r/w cmd failed due to a response CRC error, it was probably
612 * transient, so retry the cmd.
613 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
614 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
615 * illegal cmd, retry.
616 * Otherwise we don't understand what happened, so abort.
617 */
618static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
619 struct mmc_blk_request *brq)
620{
621 bool prev_cmd_status_valid = true;
622 u32 status, stop_status = 0;
623 int err, retry;
624
625 /*
626 * Try to get card status which indicates both the card state
627 * and why there was no response. If the first attempt fails,
628 * we can't be sure the returned status is for the r/w command.
629 */
630 for (retry = 2; retry >= 0; retry--) {
631 err = get_card_status(card, &status, 0);
632 if (!err)
633 break;
634
635 prev_cmd_status_valid = false;
636 pr_err("%s: error %d sending status command, %sing\n",
637 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
638 }
639
640 /* We couldn't get a response from the card. Give up. */
641 if (err)
642 return ERR_ABORT;
643
644 /*
645 * Check the current card state. If it is in some data transfer
646 * mode, tell it to stop (and hopefully transition back to TRAN.)
647 */
648 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
649 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
650 err = send_stop(card, &stop_status);
651 if (err)
652 pr_err("%s: error %d sending stop command\n",
653 req->rq_disk->disk_name, err);
654
655 /*
656 * If the stop cmd also timed out, the card is probably
657 * not present, so abort. Other errors are bad news too.
658 */
659 if (err)
660 return ERR_ABORT;
661 }
662
663 /* Check for set block count errors */
664 if (brq->sbc.error)
665 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
666 prev_cmd_status_valid, status);
667
668 /* Check for r/w command errors */
669 if (brq->cmd.error)
670 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
671 prev_cmd_status_valid, status);
672
673 /* Now for stop errors. These aren't fatal to the transfer. */
674 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
675 req->rq_disk->disk_name, brq->stop.error,
676 brq->cmd.resp[0], status);
677
678 /*
679 * Subsitute in our own stop status as this will give the error
680 * state which happened during the execution of the r/w command.
681 */
682 if (stop_status) {
683 brq->stop.resp[0] = stop_status;
684 brq->stop.error = 0;
685 }
686 return ERR_CONTINUE;
687}
688
689static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
690{
691 struct mmc_blk_data *md = mq->data;
692 struct mmc_card *card = md->queue.card;
693 unsigned int from, nr, arg;
694 int err = 0;
695
696 if (!mmc_can_erase(card)) {
697 err = -EOPNOTSUPP;
698 goto out;
699 }
700
701 from = blk_rq_pos(req);
702 nr = blk_rq_sectors(req);
703
704 if (mmc_can_trim(card))
705 arg = MMC_TRIM_ARG;
706 else
707 arg = MMC_ERASE_ARG;
708
709 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
710 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
711 INAND_CMD38_ARG_EXT_CSD,
712 arg == MMC_TRIM_ARG ?
713 INAND_CMD38_ARG_TRIM :
714 INAND_CMD38_ARG_ERASE,
715 0);
716 if (err)
717 goto out;
718 }
719 err = mmc_erase(card, from, nr, arg);
720out:
721 spin_lock_irq(&md->lock);
722 __blk_end_request(req, err, blk_rq_bytes(req));
723 spin_unlock_irq(&md->lock);
724
725 return err ? 0 : 1;
726}
727
728static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
729 struct request *req)
730{
731 struct mmc_blk_data *md = mq->data;
732 struct mmc_card *card = md->queue.card;
733 unsigned int from, nr, arg;
734 int err = 0;
735
736 if (!mmc_can_secure_erase_trim(card)) {
737 err = -EOPNOTSUPP;
738 goto out;
739 }
740
741 from = blk_rq_pos(req);
742 nr = blk_rq_sectors(req);
743
744 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
745 arg = MMC_SECURE_TRIM1_ARG;
746 else
747 arg = MMC_SECURE_ERASE_ARG;
748
749 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
750 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
751 INAND_CMD38_ARG_EXT_CSD,
752 arg == MMC_SECURE_TRIM1_ARG ?
753 INAND_CMD38_ARG_SECTRIM1 :
754 INAND_CMD38_ARG_SECERASE,
755 0);
756 if (err)
757 goto out;
758 }
759 err = mmc_erase(card, from, nr, arg);
760 if (!err && arg == MMC_SECURE_TRIM1_ARG) {
761 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
762 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
763 INAND_CMD38_ARG_EXT_CSD,
764 INAND_CMD38_ARG_SECTRIM2,
765 0);
766 if (err)
767 goto out;
768 }
769 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
770 }
771out:
772 spin_lock_irq(&md->lock);
773 __blk_end_request(req, err, blk_rq_bytes(req));
774 spin_unlock_irq(&md->lock);
775
776 return err ? 0 : 1;
777}
778
779static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
780{
781 struct mmc_blk_data *md = mq->data;
782
783 /*
784 * No-op, only service this because we need REQ_FUA for reliable
785 * writes.
786 */
787 spin_lock_irq(&md->lock);
788 __blk_end_request_all(req, 0);
789 spin_unlock_irq(&md->lock);
790
791 return 1;
792}
793
794/*
795 * Reformat current write as a reliable write, supporting
796 * both legacy and the enhanced reliable write MMC cards.
797 * In each transfer we'll handle only as much as a single
798 * reliable write can handle, thus finish the request in
799 * partial completions.
800 */
801static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
802 struct mmc_card *card,
803 struct request *req)
804{
805 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
806 /* Legacy mode imposes restrictions on transfers. */
807 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
808 brq->data.blocks = 1;
809
810 if (brq->data.blocks > card->ext_csd.rel_sectors)
811 brq->data.blocks = card->ext_csd.rel_sectors;
812 else if (brq->data.blocks < card->ext_csd.rel_sectors)
813 brq->data.blocks = 1;
814 }
815}
816
817#define CMD_ERRORS \
818 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
819 R1_ADDRESS_ERROR | /* Misaligned address */ \
820 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
821 R1_WP_VIOLATION | /* Tried to write to protected block */ \
822 R1_CC_ERROR | /* Card controller error */ \
823 R1_ERROR) /* General/unknown error */
824
825static int mmc_blk_err_check(struct mmc_card *card,
826 struct mmc_async_req *areq)
827{
828 enum mmc_blk_status ret = MMC_BLK_SUCCESS;
829 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
830 mmc_active);
831 struct mmc_blk_request *brq = &mq_mrq->brq;
832 struct request *req = mq_mrq->req;
833
834 /*
835 * sbc.error indicates a problem with the set block count
836 * command. No data will have been transferred.
837 *
838 * cmd.error indicates a problem with the r/w command. No
839 * data will have been transferred.
840 *
841 * stop.error indicates a problem with the stop command. Data
842 * may have been transferred, or may still be transferring.
843 */
844 if (brq->sbc.error || brq->cmd.error || brq->stop.error) {
845 switch (mmc_blk_cmd_recovery(card, req, brq)) {
846 case ERR_RETRY:
847 return MMC_BLK_RETRY;
848 case ERR_ABORT:
849 return MMC_BLK_ABORT;
850 case ERR_CONTINUE:
851 break;
852 }
853 }
854
855 /*
856 * Check for errors relating to the execution of the
857 * initial command - such as address errors. No data
858 * has been transferred.
859 */
860 if (brq->cmd.resp[0] & CMD_ERRORS) {
861 pr_err("%s: r/w command failed, status = %#x\n",
862 req->rq_disk->disk_name, brq->cmd.resp[0]);
863 return MMC_BLK_ABORT;
864 }
865
866 /*
867 * Everything else is either success, or a data error of some
868 * kind. If it was a write, we may have transitioned to
869 * program mode, which we have to wait for it to complete.
870 */
871 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
872 u32 status;
873 do {
874 int err = get_card_status(card, &status, 5);
875 if (err) {
876 printk(KERN_ERR "%s: error %d requesting status\n",
877 req->rq_disk->disk_name, err);
878 return MMC_BLK_CMD_ERR;
879 }
880 /*
881 * Some cards mishandle the status bits,
882 * so make sure to check both the busy
883 * indication and the card state.
884 */
885 } while (!(status & R1_READY_FOR_DATA) ||
886 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
887 }
888
889 if (brq->data.error) {
890 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
891 req->rq_disk->disk_name, brq->data.error,
892 (unsigned)blk_rq_pos(req),
893 (unsigned)blk_rq_sectors(req),
894 brq->cmd.resp[0], brq->stop.resp[0]);
895
896 if (rq_data_dir(req) == READ) {
897 if (brq->data.blocks > 1) {
898 /* Redo read one sector at a time */
899 pr_warning("%s: retrying using single block read\n",
900 req->rq_disk->disk_name);
901 return MMC_BLK_RETRY_SINGLE;
902 }
903 return MMC_BLK_DATA_ERR;
904 } else {
905 return MMC_BLK_CMD_ERR;
906 }
907 }
908
909 if (ret == MMC_BLK_SUCCESS &&
910 blk_rq_bytes(req) != brq->data.bytes_xfered)
911 ret = MMC_BLK_PARTIAL;
912
913 return ret;
914}
915
916static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
917 struct mmc_card *card,
918 int disable_multi,
919 struct mmc_queue *mq)
920{
921 u32 readcmd, writecmd;
922 struct mmc_blk_request *brq = &mqrq->brq;
923 struct request *req = mqrq->req;
924 struct mmc_blk_data *md = mq->data;
925
926 /*
927 * Reliable writes are used to implement Forced Unit Access and
928 * REQ_META accesses, and are supported only on MMCs.
929 *
930 * XXX: this really needs a good explanation of why REQ_META
931 * is treated special.
932 */
933 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
934 (req->cmd_flags & REQ_META)) &&
935 (rq_data_dir(req) == WRITE) &&
936 (md->flags & MMC_BLK_REL_WR);
937
938 memset(brq, 0, sizeof(struct mmc_blk_request));
939 brq->mrq.cmd = &brq->cmd;
940 brq->mrq.data = &brq->data;
941
942 brq->cmd.arg = blk_rq_pos(req);
943 if (!mmc_card_blockaddr(card))
944 brq->cmd.arg <<= 9;
945 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
946 brq->data.blksz = 512;
947 brq->stop.opcode = MMC_STOP_TRANSMISSION;
948 brq->stop.arg = 0;
949 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
950 brq->data.blocks = blk_rq_sectors(req);
951
952 /*
953 * The block layer doesn't support all sector count
954 * restrictions, so we need to be prepared for too big
955 * requests.
956 */
957 if (brq->data.blocks > card->host->max_blk_count)
958 brq->data.blocks = card->host->max_blk_count;
959
960 /*
961 * After a read error, we redo the request one sector at a time
962 * in order to accurately determine which sectors can be read
963 * successfully.
964 */
965 if (disable_multi && brq->data.blocks > 1)
966 brq->data.blocks = 1;
967
968 if (brq->data.blocks > 1 || do_rel_wr) {
969 /* SPI multiblock writes terminate using a special
970 * token, not a STOP_TRANSMISSION request.
971 */
972 if (!mmc_host_is_spi(card->host) ||
973 rq_data_dir(req) == READ)
974 brq->mrq.stop = &brq->stop;
975 readcmd = MMC_READ_MULTIPLE_BLOCK;
976 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
977 } else {
978 brq->mrq.stop = NULL;
979 readcmd = MMC_READ_SINGLE_BLOCK;
980 writecmd = MMC_WRITE_BLOCK;
981 }
982 if (rq_data_dir(req) == READ) {
983 brq->cmd.opcode = readcmd;
984 brq->data.flags |= MMC_DATA_READ;
985 } else {
986 brq->cmd.opcode = writecmd;
987 brq->data.flags |= MMC_DATA_WRITE;
988 }
989
990 if (do_rel_wr)
991 mmc_apply_rel_rw(brq, card, req);
992
993 /*
994 * Pre-defined multi-block transfers are preferable to
995 * open ended-ones (and necessary for reliable writes).
996 * However, it is not sufficient to just send CMD23,
997 * and avoid the final CMD12, as on an error condition
998 * CMD12 (stop) needs to be sent anyway. This, coupled
999 * with Auto-CMD23 enhancements provided by some
1000 * hosts, means that the complexity of dealing
1001 * with this is best left to the host. If CMD23 is
1002 * supported by card and host, we'll fill sbc in and let
1003 * the host deal with handling it correctly. This means
1004 * that for hosts that don't expose MMC_CAP_CMD23, no
1005 * change of behavior will be observed.
1006 *
1007 * N.B: Some MMC cards experience perf degradation.
1008 * We'll avoid using CMD23-bounded multiblock writes for
1009 * these, while retaining features like reliable writes.
1010 */
1011
1012 if ((md->flags & MMC_BLK_CMD23) &&
1013 mmc_op_multi(brq->cmd.opcode) &&
1014 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
1015 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1016 brq->sbc.arg = brq->data.blocks |
1017 (do_rel_wr ? (1 << 31) : 0);
1018 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1019 brq->mrq.sbc = &brq->sbc;
1020 }
1021
1022 mmc_set_data_timeout(&brq->data, card);
1023
1024 brq->data.sg = mqrq->sg;
1025 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1026
1027 /*
1028 * Adjust the sg list so it is the same size as the
1029 * request.
1030 */
1031 if (brq->data.blocks != blk_rq_sectors(req)) {
1032 int i, data_size = brq->data.blocks << 9;
1033 struct scatterlist *sg;
1034
1035 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1036 data_size -= sg->length;
1037 if (data_size <= 0) {
1038 sg->length += data_size;
1039 i++;
1040 break;
1041 }
1042 }
1043 brq->data.sg_len = i;
1044 }
1045
1046 mqrq->mmc_active.mrq = &brq->mrq;
1047 mqrq->mmc_active.err_check = mmc_blk_err_check;
1048
1049 mmc_queue_bounce_pre(mqrq);
1050}
1051
1052static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1053{
1054 struct mmc_blk_data *md = mq->data;
1055 struct mmc_card *card = md->queue.card;
1056 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1057 int ret = 1, disable_multi = 0, retry = 0;
1058 enum mmc_blk_status status;
1059 struct mmc_queue_req *mq_rq;
1060 struct request *req;
1061 struct mmc_async_req *areq;
1062
1063 if (!rqc && !mq->mqrq_prev->req)
1064 return 0;
1065
1066 do {
1067 if (rqc) {
1068 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1069 areq = &mq->mqrq_cur->mmc_active;
1070 } else
1071 areq = NULL;
1072 areq = mmc_start_req(card->host, areq, (int *) &status);
1073 if (!areq)
1074 return 0;
1075
1076 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1077 brq = &mq_rq->brq;
1078 req = mq_rq->req;
1079 mmc_queue_bounce_post(mq_rq);
1080
1081 switch (status) {
1082 case MMC_BLK_SUCCESS:
1083 case MMC_BLK_PARTIAL:
1084 /*
1085 * A block was successfully transferred.
1086 */
1087 spin_lock_irq(&md->lock);
1088 ret = __blk_end_request(req, 0,
1089 brq->data.bytes_xfered);
1090 spin_unlock_irq(&md->lock);
1091 if (status == MMC_BLK_SUCCESS && ret) {
1092 /*
1093 * The blk_end_request has returned non zero
1094 * even though all data is transfered and no
1095 * erros returned by host.
1096 * If this happen it's a bug.
1097 */
1098 printk(KERN_ERR "%s BUG rq_tot %d d_xfer %d\n",
1099 __func__, blk_rq_bytes(req),
1100 brq->data.bytes_xfered);
1101 rqc = NULL;
1102 goto cmd_abort;
1103 }
1104 break;
1105 case MMC_BLK_CMD_ERR:
1106 goto cmd_err;
1107 case MMC_BLK_RETRY_SINGLE:
1108 disable_multi = 1;
1109 break;
1110 case MMC_BLK_RETRY:
1111 if (retry++ < 5)
1112 break;
1113 case MMC_BLK_ABORT:
1114 goto cmd_abort;
1115 case MMC_BLK_DATA_ERR:
1116 /*
1117 * After an error, we redo I/O one sector at a
1118 * time, so we only reach here after trying to
1119 * read a single sector.
1120 */
1121 spin_lock_irq(&md->lock);
1122 ret = __blk_end_request(req, -EIO,
1123 brq->data.blksz);
1124 spin_unlock_irq(&md->lock);
1125 if (!ret)
1126 goto start_new_req;
1127 break;
1128 }
1129
1130 if (ret) {
1131 /*
1132 * In case of a none complete request
1133 * prepare it again and resend.
1134 */
1135 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1136 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1137 }
1138 } while (ret);
1139
1140 return 1;
1141
1142 cmd_err:
1143 /*
1144 * If this is an SD card and we're writing, we can first
1145 * mark the known good sectors as ok.
1146 *
1147 * If the card is not SD, we can still ok written sectors
1148 * as reported by the controller (which might be less than
1149 * the real number of written sectors, but never more).
1150 */
1151 if (mmc_card_sd(card)) {
1152 u32 blocks;
1153
1154 blocks = mmc_sd_num_wr_blocks(card);
1155 if (blocks != (u32)-1) {
1156 spin_lock_irq(&md->lock);
1157 ret = __blk_end_request(req, 0, blocks << 9);
1158 spin_unlock_irq(&md->lock);
1159 }
1160 } else {
1161 spin_lock_irq(&md->lock);
1162 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1163 spin_unlock_irq(&md->lock);
1164 }
1165
1166 cmd_abort:
1167 spin_lock_irq(&md->lock);
1168 while (ret)
1169 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1170 spin_unlock_irq(&md->lock);
1171
1172 start_new_req:
1173 if (rqc) {
1174 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1175 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1176 }
1177
1178 return 0;
1179}
1180
1181static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1182{
1183 int ret;
1184 struct mmc_blk_data *md = mq->data;
1185 struct mmc_card *card = md->queue.card;
1186
1187 if (req && !mq->mqrq_prev->req)
1188 /* claim host only for the first request */
1189 mmc_claim_host(card->host);
1190
1191 ret = mmc_blk_part_switch(card, md);
1192 if (ret) {
1193 ret = 0;
1194 goto out;
1195 }
1196
1197 if (req && req->cmd_flags & REQ_DISCARD) {
1198 /* complete ongoing async transfer before issuing discard */
1199 if (card->host->areq)
1200 mmc_blk_issue_rw_rq(mq, NULL);
1201 if (req->cmd_flags & REQ_SECURE)
1202 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1203 else
1204 ret = mmc_blk_issue_discard_rq(mq, req);
1205 } else if (req && req->cmd_flags & REQ_FLUSH) {
1206 /* complete ongoing async transfer before issuing flush */
1207 if (card->host->areq)
1208 mmc_blk_issue_rw_rq(mq, NULL);
1209 ret = mmc_blk_issue_flush(mq, req);
1210 } else {
1211 ret = mmc_blk_issue_rw_rq(mq, req);
1212 }
1213
1214out:
1215 if (!req)
1216 /* release host only when there are no more requests */
1217 mmc_release_host(card->host);
1218 return ret;
1219}
1220
1221static inline int mmc_blk_readonly(struct mmc_card *card)
1222{
1223 return mmc_card_readonly(card) ||
1224 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1225}
1226
1227static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1228 struct device *parent,
1229 sector_t size,
1230 bool default_ro,
1231 const char *subname)
1232{
1233 struct mmc_blk_data *md;
1234 int devidx, ret;
1235
1236 devidx = find_first_zero_bit(dev_use, max_devices);
1237 if (devidx >= max_devices)
1238 return ERR_PTR(-ENOSPC);
1239 __set_bit(devidx, dev_use);
1240
1241 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1242 if (!md) {
1243 ret = -ENOMEM;
1244 goto out;
1245 }
1246
1247 /*
1248 * !subname implies we are creating main mmc_blk_data that will be
1249 * associated with mmc_card with mmc_set_drvdata. Due to device
1250 * partitions, devidx will not coincide with a per-physical card
1251 * index anymore so we keep track of a name index.
1252 */
1253 if (!subname) {
1254 md->name_idx = find_first_zero_bit(name_use, max_devices);
1255 __set_bit(md->name_idx, name_use);
1256 }
1257 else
1258 md->name_idx = ((struct mmc_blk_data *)
1259 dev_to_disk(parent)->private_data)->name_idx;
1260
1261 /*
1262 * Set the read-only status based on the supported commands
1263 * and the write protect switch.
1264 */
1265 md->read_only = mmc_blk_readonly(card);
1266
1267 md->disk = alloc_disk(perdev_minors);
1268 if (md->disk == NULL) {
1269 ret = -ENOMEM;
1270 goto err_kfree;
1271 }
1272
1273 spin_lock_init(&md->lock);
1274 INIT_LIST_HEAD(&md->part);
1275 md->usage = 1;
1276
1277 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1278 if (ret)
1279 goto err_putdisk;
1280
1281 md->queue.issue_fn = mmc_blk_issue_rq;
1282 md->queue.data = md;
1283
1284 md->disk->major = MMC_BLOCK_MAJOR;
1285 md->disk->first_minor = devidx * perdev_minors;
1286 md->disk->fops = &mmc_bdops;
1287 md->disk->private_data = md;
1288 md->disk->queue = md->queue.queue;
1289 md->disk->driverfs_dev = parent;
1290 set_disk_ro(md->disk, md->read_only || default_ro);
1291
1292 /*
1293 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1294 *
1295 * - be set for removable media with permanent block devices
1296 * - be unset for removable block devices with permanent media
1297 *
1298 * Since MMC block devices clearly fall under the second
1299 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1300 * should use the block device creation/destruction hotplug
1301 * messages to tell when the card is present.
1302 */
1303
1304 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1305 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1306
1307 blk_queue_logical_block_size(md->queue.queue, 512);
1308 set_capacity(md->disk, size);
1309
1310 if (mmc_host_cmd23(card->host)) {
1311 if (mmc_card_mmc(card) ||
1312 (mmc_card_sd(card) &&
1313 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1314 md->flags |= MMC_BLK_CMD23;
1315 }
1316
1317 if (mmc_card_mmc(card) &&
1318 md->flags & MMC_BLK_CMD23 &&
1319 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1320 card->ext_csd.rel_sectors)) {
1321 md->flags |= MMC_BLK_REL_WR;
1322 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1323 }
1324
1325 return md;
1326
1327 err_putdisk:
1328 put_disk(md->disk);
1329 err_kfree:
1330 kfree(md);
1331 out:
1332 return ERR_PTR(ret);
1333}
1334
1335static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1336{
1337 sector_t size;
1338 struct mmc_blk_data *md;
1339
1340 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1341 /*
1342 * The EXT_CSD sector count is in number or 512 byte
1343 * sectors.
1344 */
1345 size = card->ext_csd.sectors;
1346 } else {
1347 /*
1348 * The CSD capacity field is in units of read_blkbits.
1349 * set_capacity takes units of 512 bytes.
1350 */
1351 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1352 }
1353
1354 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL);
1355 return md;
1356}
1357
1358static int mmc_blk_alloc_part(struct mmc_card *card,
1359 struct mmc_blk_data *md,
1360 unsigned int part_type,
1361 sector_t size,
1362 bool default_ro,
1363 const char *subname)
1364{
1365 char cap_str[10];
1366 struct mmc_blk_data *part_md;
1367
1368 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1369 subname);
1370 if (IS_ERR(part_md))
1371 return PTR_ERR(part_md);
1372 part_md->part_type = part_type;
1373 list_add(&part_md->part, &md->part);
1374
1375 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1376 cap_str, sizeof(cap_str));
1377 printk(KERN_INFO "%s: %s %s partition %u %s\n",
1378 part_md->disk->disk_name, mmc_card_id(card),
1379 mmc_card_name(card), part_md->part_type, cap_str);
1380 return 0;
1381}
1382
1383static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1384{
1385 int ret = 0;
1386
1387 if (!mmc_card_mmc(card))
1388 return 0;
1389
1390 if (card->ext_csd.boot_size) {
1391 ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT0,
1392 card->ext_csd.boot_size >> 9,
1393 true,
1394 "boot0");
1395 if (ret)
1396 return ret;
1397 ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT1,
1398 card->ext_csd.boot_size >> 9,
1399 true,
1400 "boot1");
1401 if (ret)
1402 return ret;
1403 }
1404
1405 return ret;
1406}
1407
1408static int
1409mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1410{
1411 int err;
1412
1413 mmc_claim_host(card->host);
1414 err = mmc_set_blocklen(card, 512);
1415 mmc_release_host(card->host);
1416
1417 if (err) {
1418 printk(KERN_ERR "%s: unable to set block size to 512: %d\n",
1419 md->disk->disk_name, err);
1420 return -EINVAL;
1421 }
1422
1423 return 0;
1424}
1425
1426static void mmc_blk_remove_req(struct mmc_blk_data *md)
1427{
1428 if (md) {
1429 if (md->disk->flags & GENHD_FL_UP) {
1430 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1431
1432 /* Stop new requests from getting into the queue */
1433 del_gendisk(md->disk);
1434 }
1435
1436 /* Then flush out any already in there */
1437 mmc_cleanup_queue(&md->queue);
1438 mmc_blk_put(md);
1439 }
1440}
1441
1442static void mmc_blk_remove_parts(struct mmc_card *card,
1443 struct mmc_blk_data *md)
1444{
1445 struct list_head *pos, *q;
1446 struct mmc_blk_data *part_md;
1447
1448 __clear_bit(md->name_idx, name_use);
1449 list_for_each_safe(pos, q, &md->part) {
1450 part_md = list_entry(pos, struct mmc_blk_data, part);
1451 list_del(pos);
1452 mmc_blk_remove_req(part_md);
1453 }
1454}
1455
1456static int mmc_add_disk(struct mmc_blk_data *md)
1457{
1458 int ret;
1459
1460 add_disk(md->disk);
1461 md->force_ro.show = force_ro_show;
1462 md->force_ro.store = force_ro_store;
1463 sysfs_attr_init(&md->force_ro.attr);
1464 md->force_ro.attr.name = "force_ro";
1465 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1466 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1467 if (ret)
1468 del_gendisk(md->disk);
1469
1470 return ret;
1471}
1472
1473static const struct mmc_fixup blk_fixups[] =
1474{
1475 MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1476 MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1477 MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1478 MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1479 MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1480
1481 /*
1482 * Some MMC cards experience performance degradation with CMD23
1483 * instead of CMD12-bounded multiblock transfers. For now we'll
1484 * black list what's bad...
1485 * - Certain Toshiba cards.
1486 *
1487 * N.B. This doesn't affect SD cards.
1488 */
1489 MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1490 MMC_QUIRK_BLK_NO_CMD23),
1491 MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1492 MMC_QUIRK_BLK_NO_CMD23),
1493 MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1494 MMC_QUIRK_BLK_NO_CMD23),
1495 END_FIXUP
1496};
1497
1498static int mmc_blk_probe(struct mmc_card *card)
1499{
1500 struct mmc_blk_data *md, *part_md;
1501 int err;
1502 char cap_str[10];
1503
1504 /*
1505 * Check that the card supports the command class(es) we need.
1506 */
1507 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1508 return -ENODEV;
1509
1510 md = mmc_blk_alloc(card);
1511 if (IS_ERR(md))
1512 return PTR_ERR(md);
1513
1514 err = mmc_blk_set_blksize(md, card);
1515 if (err)
1516 goto out;
1517
1518 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1519 cap_str, sizeof(cap_str));
1520 printk(KERN_INFO "%s: %s %s %s %s\n",
1521 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1522 cap_str, md->read_only ? "(ro)" : "");
1523
1524 if (mmc_blk_alloc_parts(card, md))
1525 goto out;
1526
1527 mmc_set_drvdata(card, md);
1528 mmc_fixup_device(card, blk_fixups);
1529
1530 if (mmc_add_disk(md))
1531 goto out;
1532
1533 list_for_each_entry(part_md, &md->part, part) {
1534 if (mmc_add_disk(part_md))
1535 goto out;
1536 }
1537 return 0;
1538
1539 out:
1540 mmc_blk_remove_parts(card, md);
1541 mmc_blk_remove_req(md);
1542 return err;
1543}
1544
1545static void mmc_blk_remove(struct mmc_card *card)
1546{
1547 struct mmc_blk_data *md = mmc_get_drvdata(card);
1548
1549 mmc_blk_remove_parts(card, md);
1550 mmc_claim_host(card->host);
1551 mmc_blk_part_switch(card, md);
1552 mmc_release_host(card->host);
1553 mmc_blk_remove_req(md);
1554 mmc_set_drvdata(card, NULL);
1555}
1556
1557#ifdef CONFIG_PM
1558static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1559{
1560 struct mmc_blk_data *part_md;
1561 struct mmc_blk_data *md = mmc_get_drvdata(card);
1562
1563 if (md) {
1564 mmc_queue_suspend(&md->queue);
1565 list_for_each_entry(part_md, &md->part, part) {
1566 mmc_queue_suspend(&part_md->queue);
1567 }
1568 }
1569 return 0;
1570}
1571
1572static int mmc_blk_resume(struct mmc_card *card)
1573{
1574 struct mmc_blk_data *part_md;
1575 struct mmc_blk_data *md = mmc_get_drvdata(card);
1576
1577 if (md) {
1578 mmc_blk_set_blksize(md, card);
1579
1580 /*
1581 * Resume involves the card going into idle state,
1582 * so current partition is always the main one.
1583 */
1584 md->part_curr = md->part_type;
1585 mmc_queue_resume(&md->queue);
1586 list_for_each_entry(part_md, &md->part, part) {
1587 mmc_queue_resume(&part_md->queue);
1588 }
1589 }
1590 return 0;
1591}
1592#else
1593#define mmc_blk_suspend NULL
1594#define mmc_blk_resume NULL
1595#endif
1596
1597static struct mmc_driver mmc_driver = {
1598 .drv = {
1599 .name = "mmcblk",
1600 },
1601 .probe = mmc_blk_probe,
1602 .remove = mmc_blk_remove,
1603 .suspend = mmc_blk_suspend,
1604 .resume = mmc_blk_resume,
1605};
1606
1607static int __init mmc_blk_init(void)
1608{
1609 int res;
1610
1611 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1612 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1613
1614 max_devices = 256 / perdev_minors;
1615
1616 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1617 if (res)
1618 goto out;
1619
1620 res = mmc_register_driver(&mmc_driver);
1621 if (res)
1622 goto out2;
1623
1624 return 0;
1625 out2:
1626 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1627 out:
1628 return res;
1629}
1630
1631static void __exit mmc_blk_exit(void)
1632{
1633 mmc_unregister_driver(&mmc_driver);
1634 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1635}
1636
1637module_init(mmc_blk_init);
1638module_exit(mmc_blk_exit);
1639
1640MODULE_LICENSE("GPL");
1641MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1642
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/mutex.h>
32#include <linux/scatterlist.h>
33#include <linux/string_helpers.h>
34#include <linux/delay.h>
35#include <linux/capability.h>
36#include <linux/compat.h>
37
38#include <linux/mmc/ioctl.h>
39#include <linux/mmc/card.h>
40#include <linux/mmc/host.h>
41#include <linux/mmc/mmc.h>
42#include <linux/mmc/sd.h>
43
44#include <asm/uaccess.h>
45
46#include "queue.h"
47
48MODULE_ALIAS("mmc:block");
49#ifdef MODULE_PARAM_PREFIX
50#undef MODULE_PARAM_PREFIX
51#endif
52#define MODULE_PARAM_PREFIX "mmcblk."
53
54#define INAND_CMD38_ARG_EXT_CSD 113
55#define INAND_CMD38_ARG_ERASE 0x00
56#define INAND_CMD38_ARG_TRIM 0x01
57#define INAND_CMD38_ARG_SECERASE 0x80
58#define INAND_CMD38_ARG_SECTRIM1 0x81
59#define INAND_CMD38_ARG_SECTRIM2 0x88
60
61static DEFINE_MUTEX(block_mutex);
62
63/*
64 * The defaults come from config options but can be overriden by module
65 * or bootarg options.
66 */
67static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
68
69/*
70 * We've only got one major, so number of mmcblk devices is
71 * limited to 256 / number of minors per device.
72 */
73static int max_devices;
74
75/* 256 minors, so at most 256 separate devices */
76static DECLARE_BITMAP(dev_use, 256);
77static DECLARE_BITMAP(name_use, 256);
78
79/*
80 * There is one mmc_blk_data per slot.
81 */
82struct mmc_blk_data {
83 spinlock_t lock;
84 struct gendisk *disk;
85 struct mmc_queue queue;
86 struct list_head part;
87
88 unsigned int flags;
89#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
90#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
91
92 unsigned int usage;
93 unsigned int read_only;
94 unsigned int part_type;
95 unsigned int name_idx;
96 unsigned int reset_done;
97#define MMC_BLK_READ BIT(0)
98#define MMC_BLK_WRITE BIT(1)
99#define MMC_BLK_DISCARD BIT(2)
100#define MMC_BLK_SECDISCARD BIT(3)
101
102 /*
103 * Only set in main mmc_blk_data associated
104 * with mmc_card with mmc_set_drvdata, and keeps
105 * track of the current selected device partition.
106 */
107 unsigned int part_curr;
108 struct device_attribute force_ro;
109 struct device_attribute power_ro_lock;
110 int area_type;
111};
112
113static DEFINE_MUTEX(open_lock);
114
115enum mmc_blk_status {
116 MMC_BLK_SUCCESS = 0,
117 MMC_BLK_PARTIAL,
118 MMC_BLK_CMD_ERR,
119 MMC_BLK_RETRY,
120 MMC_BLK_ABORT,
121 MMC_BLK_DATA_ERR,
122 MMC_BLK_ECC_ERR,
123 MMC_BLK_NOMEDIUM,
124};
125
126module_param(perdev_minors, int, 0444);
127MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
128
129static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
130{
131 struct mmc_blk_data *md;
132
133 mutex_lock(&open_lock);
134 md = disk->private_data;
135 if (md && md->usage == 0)
136 md = NULL;
137 if (md)
138 md->usage++;
139 mutex_unlock(&open_lock);
140
141 return md;
142}
143
144static inline int mmc_get_devidx(struct gendisk *disk)
145{
146 int devmaj = MAJOR(disk_devt(disk));
147 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
148
149 if (!devmaj)
150 devidx = disk->first_minor / perdev_minors;
151 return devidx;
152}
153
154static void mmc_blk_put(struct mmc_blk_data *md)
155{
156 mutex_lock(&open_lock);
157 md->usage--;
158 if (md->usage == 0) {
159 int devidx = mmc_get_devidx(md->disk);
160 blk_cleanup_queue(md->queue.queue);
161
162 __clear_bit(devidx, dev_use);
163
164 put_disk(md->disk);
165 kfree(md);
166 }
167 mutex_unlock(&open_lock);
168}
169
170static ssize_t power_ro_lock_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172{
173 int ret;
174 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
175 struct mmc_card *card = md->queue.card;
176 int locked = 0;
177
178 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
179 locked = 2;
180 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
181 locked = 1;
182
183 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
184
185 return ret;
186}
187
188static ssize_t power_ro_lock_store(struct device *dev,
189 struct device_attribute *attr, const char *buf, size_t count)
190{
191 int ret;
192 struct mmc_blk_data *md, *part_md;
193 struct mmc_card *card;
194 unsigned long set;
195
196 if (kstrtoul(buf, 0, &set))
197 return -EINVAL;
198
199 if (set != 1)
200 return count;
201
202 md = mmc_blk_get(dev_to_disk(dev));
203 card = md->queue.card;
204
205 mmc_claim_host(card->host);
206
207 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
208 card->ext_csd.boot_ro_lock |
209 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
210 card->ext_csd.part_time);
211 if (ret)
212 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
213 else
214 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
215
216 mmc_release_host(card->host);
217
218 if (!ret) {
219 pr_info("%s: Locking boot partition ro until next power on\n",
220 md->disk->disk_name);
221 set_disk_ro(md->disk, 1);
222
223 list_for_each_entry(part_md, &md->part, part)
224 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
225 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
226 set_disk_ro(part_md->disk, 1);
227 }
228 }
229
230 mmc_blk_put(md);
231 return count;
232}
233
234static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
235 char *buf)
236{
237 int ret;
238 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
239
240 ret = snprintf(buf, PAGE_SIZE, "%d",
241 get_disk_ro(dev_to_disk(dev)) ^
242 md->read_only);
243 mmc_blk_put(md);
244 return ret;
245}
246
247static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
248 const char *buf, size_t count)
249{
250 int ret;
251 char *end;
252 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
253 unsigned long set = simple_strtoul(buf, &end, 0);
254 if (end == buf) {
255 ret = -EINVAL;
256 goto out;
257 }
258
259 set_disk_ro(dev_to_disk(dev), set || md->read_only);
260 ret = count;
261out:
262 mmc_blk_put(md);
263 return ret;
264}
265
266static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
267{
268 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
269 int ret = -ENXIO;
270
271 mutex_lock(&block_mutex);
272 if (md) {
273 if (md->usage == 2)
274 check_disk_change(bdev);
275 ret = 0;
276
277 if ((mode & FMODE_WRITE) && md->read_only) {
278 mmc_blk_put(md);
279 ret = -EROFS;
280 }
281 }
282 mutex_unlock(&block_mutex);
283
284 return ret;
285}
286
287static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
288{
289 struct mmc_blk_data *md = disk->private_data;
290
291 mutex_lock(&block_mutex);
292 mmc_blk_put(md);
293 mutex_unlock(&block_mutex);
294 return 0;
295}
296
297static int
298mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
299{
300 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
301 geo->heads = 4;
302 geo->sectors = 16;
303 return 0;
304}
305
306struct mmc_blk_ioc_data {
307 struct mmc_ioc_cmd ic;
308 unsigned char *buf;
309 u64 buf_bytes;
310};
311
312static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
313 struct mmc_ioc_cmd __user *user)
314{
315 struct mmc_blk_ioc_data *idata;
316 int err;
317
318 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
319 if (!idata) {
320 err = -ENOMEM;
321 goto out;
322 }
323
324 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
325 err = -EFAULT;
326 goto idata_err;
327 }
328
329 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
330 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
331 err = -EOVERFLOW;
332 goto idata_err;
333 }
334
335 if (!idata->buf_bytes)
336 return idata;
337
338 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
339 if (!idata->buf) {
340 err = -ENOMEM;
341 goto idata_err;
342 }
343
344 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
345 idata->ic.data_ptr, idata->buf_bytes)) {
346 err = -EFAULT;
347 goto copy_err;
348 }
349
350 return idata;
351
352copy_err:
353 kfree(idata->buf);
354idata_err:
355 kfree(idata);
356out:
357 return ERR_PTR(err);
358}
359
360static int mmc_blk_ioctl_cmd(struct block_device *bdev,
361 struct mmc_ioc_cmd __user *ic_ptr)
362{
363 struct mmc_blk_ioc_data *idata;
364 struct mmc_blk_data *md;
365 struct mmc_card *card;
366 struct mmc_command cmd = {0};
367 struct mmc_data data = {0};
368 struct mmc_request mrq = {NULL};
369 struct scatterlist sg;
370 int err;
371
372 /*
373 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
374 * whole block device, not on a partition. This prevents overspray
375 * between sibling partitions.
376 */
377 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
378 return -EPERM;
379
380 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
381 if (IS_ERR(idata))
382 return PTR_ERR(idata);
383
384 md = mmc_blk_get(bdev->bd_disk);
385 if (!md) {
386 err = -EINVAL;
387 goto cmd_err;
388 }
389
390 card = md->queue.card;
391 if (IS_ERR(card)) {
392 err = PTR_ERR(card);
393 goto cmd_done;
394 }
395
396 cmd.opcode = idata->ic.opcode;
397 cmd.arg = idata->ic.arg;
398 cmd.flags = idata->ic.flags;
399
400 if (idata->buf_bytes) {
401 data.sg = &sg;
402 data.sg_len = 1;
403 data.blksz = idata->ic.blksz;
404 data.blocks = idata->ic.blocks;
405
406 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
407
408 if (idata->ic.write_flag)
409 data.flags = MMC_DATA_WRITE;
410 else
411 data.flags = MMC_DATA_READ;
412
413 /* data.flags must already be set before doing this. */
414 mmc_set_data_timeout(&data, card);
415
416 /* Allow overriding the timeout_ns for empirical tuning. */
417 if (idata->ic.data_timeout_ns)
418 data.timeout_ns = idata->ic.data_timeout_ns;
419
420 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
421 /*
422 * Pretend this is a data transfer and rely on the
423 * host driver to compute timeout. When all host
424 * drivers support cmd.cmd_timeout for R1B, this
425 * can be changed to:
426 *
427 * mrq.data = NULL;
428 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
429 */
430 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
431 }
432
433 mrq.data = &data;
434 }
435
436 mrq.cmd = &cmd;
437
438 mmc_claim_host(card->host);
439
440 if (idata->ic.is_acmd) {
441 err = mmc_app_cmd(card->host, card);
442 if (err)
443 goto cmd_rel_host;
444 }
445
446 mmc_wait_for_req(card->host, &mrq);
447
448 if (cmd.error) {
449 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
450 __func__, cmd.error);
451 err = cmd.error;
452 goto cmd_rel_host;
453 }
454 if (data.error) {
455 dev_err(mmc_dev(card->host), "%s: data error %d\n",
456 __func__, data.error);
457 err = data.error;
458 goto cmd_rel_host;
459 }
460
461 /*
462 * According to the SD specs, some commands require a delay after
463 * issuing the command.
464 */
465 if (idata->ic.postsleep_min_us)
466 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
467
468 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
469 err = -EFAULT;
470 goto cmd_rel_host;
471 }
472
473 if (!idata->ic.write_flag) {
474 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
475 idata->buf, idata->buf_bytes)) {
476 err = -EFAULT;
477 goto cmd_rel_host;
478 }
479 }
480
481cmd_rel_host:
482 mmc_release_host(card->host);
483
484cmd_done:
485 mmc_blk_put(md);
486cmd_err:
487 kfree(idata->buf);
488 kfree(idata);
489 return err;
490}
491
492static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
493 unsigned int cmd, unsigned long arg)
494{
495 int ret = -EINVAL;
496 if (cmd == MMC_IOC_CMD)
497 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
498 return ret;
499}
500
501#ifdef CONFIG_COMPAT
502static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
504{
505 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
506}
507#endif
508
509static const struct block_device_operations mmc_bdops = {
510 .open = mmc_blk_open,
511 .release = mmc_blk_release,
512 .getgeo = mmc_blk_getgeo,
513 .owner = THIS_MODULE,
514 .ioctl = mmc_blk_ioctl,
515#ifdef CONFIG_COMPAT
516 .compat_ioctl = mmc_blk_compat_ioctl,
517#endif
518};
519
520static inline int mmc_blk_part_switch(struct mmc_card *card,
521 struct mmc_blk_data *md)
522{
523 int ret;
524 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
525
526 if (main_md->part_curr == md->part_type)
527 return 0;
528
529 if (mmc_card_mmc(card)) {
530 u8 part_config = card->ext_csd.part_config;
531
532 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
533 part_config |= md->part_type;
534
535 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
536 EXT_CSD_PART_CONFIG, part_config,
537 card->ext_csd.part_time);
538 if (ret)
539 return ret;
540
541 card->ext_csd.part_config = part_config;
542 }
543
544 main_md->part_curr = md->part_type;
545 return 0;
546}
547
548static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
549{
550 int err;
551 u32 result;
552 __be32 *blocks;
553
554 struct mmc_request mrq = {NULL};
555 struct mmc_command cmd = {0};
556 struct mmc_data data = {0};
557
558 struct scatterlist sg;
559
560 cmd.opcode = MMC_APP_CMD;
561 cmd.arg = card->rca << 16;
562 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
563
564 err = mmc_wait_for_cmd(card->host, &cmd, 0);
565 if (err)
566 return (u32)-1;
567 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
568 return (u32)-1;
569
570 memset(&cmd, 0, sizeof(struct mmc_command));
571
572 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
573 cmd.arg = 0;
574 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
575
576 data.blksz = 4;
577 data.blocks = 1;
578 data.flags = MMC_DATA_READ;
579 data.sg = &sg;
580 data.sg_len = 1;
581 mmc_set_data_timeout(&data, card);
582
583 mrq.cmd = &cmd;
584 mrq.data = &data;
585
586 blocks = kmalloc(4, GFP_KERNEL);
587 if (!blocks)
588 return (u32)-1;
589
590 sg_init_one(&sg, blocks, 4);
591
592 mmc_wait_for_req(card->host, &mrq);
593
594 result = ntohl(*blocks);
595 kfree(blocks);
596
597 if (cmd.error || data.error)
598 result = (u32)-1;
599
600 return result;
601}
602
603static int send_stop(struct mmc_card *card, u32 *status)
604{
605 struct mmc_command cmd = {0};
606 int err;
607
608 cmd.opcode = MMC_STOP_TRANSMISSION;
609 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
610 err = mmc_wait_for_cmd(card->host, &cmd, 5);
611 if (err == 0)
612 *status = cmd.resp[0];
613 return err;
614}
615
616static int get_card_status(struct mmc_card *card, u32 *status, int retries)
617{
618 struct mmc_command cmd = {0};
619 int err;
620
621 cmd.opcode = MMC_SEND_STATUS;
622 if (!mmc_host_is_spi(card->host))
623 cmd.arg = card->rca << 16;
624 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
625 err = mmc_wait_for_cmd(card->host, &cmd, retries);
626 if (err == 0)
627 *status = cmd.resp[0];
628 return err;
629}
630
631#define ERR_NOMEDIUM 3
632#define ERR_RETRY 2
633#define ERR_ABORT 1
634#define ERR_CONTINUE 0
635
636static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
637 bool status_valid, u32 status)
638{
639 switch (error) {
640 case -EILSEQ:
641 /* response crc error, retry the r/w cmd */
642 pr_err("%s: %s sending %s command, card status %#x\n",
643 req->rq_disk->disk_name, "response CRC error",
644 name, status);
645 return ERR_RETRY;
646
647 case -ETIMEDOUT:
648 pr_err("%s: %s sending %s command, card status %#x\n",
649 req->rq_disk->disk_name, "timed out", name, status);
650
651 /* If the status cmd initially failed, retry the r/w cmd */
652 if (!status_valid)
653 return ERR_RETRY;
654
655 /*
656 * If it was a r/w cmd crc error, or illegal command
657 * (eg, issued in wrong state) then retry - we should
658 * have corrected the state problem above.
659 */
660 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
661 return ERR_RETRY;
662
663 /* Otherwise abort the command */
664 return ERR_ABORT;
665
666 default:
667 /* We don't understand the error code the driver gave us */
668 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
669 req->rq_disk->disk_name, error, status);
670 return ERR_ABORT;
671 }
672}
673
674/*
675 * Initial r/w and stop cmd error recovery.
676 * We don't know whether the card received the r/w cmd or not, so try to
677 * restore things back to a sane state. Essentially, we do this as follows:
678 * - Obtain card status. If the first attempt to obtain card status fails,
679 * the status word will reflect the failed status cmd, not the failed
680 * r/w cmd. If we fail to obtain card status, it suggests we can no
681 * longer communicate with the card.
682 * - Check the card state. If the card received the cmd but there was a
683 * transient problem with the response, it might still be in a data transfer
684 * mode. Try to send it a stop command. If this fails, we can't recover.
685 * - If the r/w cmd failed due to a response CRC error, it was probably
686 * transient, so retry the cmd.
687 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
688 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
689 * illegal cmd, retry.
690 * Otherwise we don't understand what happened, so abort.
691 */
692static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
693 struct mmc_blk_request *brq, int *ecc_err)
694{
695 bool prev_cmd_status_valid = true;
696 u32 status, stop_status = 0;
697 int err, retry;
698
699 if (mmc_card_removed(card))
700 return ERR_NOMEDIUM;
701
702 /*
703 * Try to get card status which indicates both the card state
704 * and why there was no response. If the first attempt fails,
705 * we can't be sure the returned status is for the r/w command.
706 */
707 for (retry = 2; retry >= 0; retry--) {
708 err = get_card_status(card, &status, 0);
709 if (!err)
710 break;
711
712 prev_cmd_status_valid = false;
713 pr_err("%s: error %d sending status command, %sing\n",
714 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
715 }
716
717 /* We couldn't get a response from the card. Give up. */
718 if (err) {
719 /* Check if the card is removed */
720 if (mmc_detect_card_removed(card->host))
721 return ERR_NOMEDIUM;
722 return ERR_ABORT;
723 }
724
725 /* Flag ECC errors */
726 if ((status & R1_CARD_ECC_FAILED) ||
727 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
728 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
729 *ecc_err = 1;
730
731 /*
732 * Check the current card state. If it is in some data transfer
733 * mode, tell it to stop (and hopefully transition back to TRAN.)
734 */
735 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
736 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
737 err = send_stop(card, &stop_status);
738 if (err)
739 pr_err("%s: error %d sending stop command\n",
740 req->rq_disk->disk_name, err);
741
742 /*
743 * If the stop cmd also timed out, the card is probably
744 * not present, so abort. Other errors are bad news too.
745 */
746 if (err)
747 return ERR_ABORT;
748 if (stop_status & R1_CARD_ECC_FAILED)
749 *ecc_err = 1;
750 }
751
752 /* Check for set block count errors */
753 if (brq->sbc.error)
754 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
755 prev_cmd_status_valid, status);
756
757 /* Check for r/w command errors */
758 if (brq->cmd.error)
759 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
760 prev_cmd_status_valid, status);
761
762 /* Data errors */
763 if (!brq->stop.error)
764 return ERR_CONTINUE;
765
766 /* Now for stop errors. These aren't fatal to the transfer. */
767 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
768 req->rq_disk->disk_name, brq->stop.error,
769 brq->cmd.resp[0], status);
770
771 /*
772 * Subsitute in our own stop status as this will give the error
773 * state which happened during the execution of the r/w command.
774 */
775 if (stop_status) {
776 brq->stop.resp[0] = stop_status;
777 brq->stop.error = 0;
778 }
779 return ERR_CONTINUE;
780}
781
782static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
783 int type)
784{
785 int err;
786
787 if (md->reset_done & type)
788 return -EEXIST;
789
790 md->reset_done |= type;
791 err = mmc_hw_reset(host);
792 /* Ensure we switch back to the correct partition */
793 if (err != -EOPNOTSUPP) {
794 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
795 int part_err;
796
797 main_md->part_curr = main_md->part_type;
798 part_err = mmc_blk_part_switch(host->card, md);
799 if (part_err) {
800 /*
801 * We have failed to get back into the correct
802 * partition, so we need to abort the whole request.
803 */
804 return -ENODEV;
805 }
806 }
807 return err;
808}
809
810static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
811{
812 md->reset_done &= ~type;
813}
814
815static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
816{
817 struct mmc_blk_data *md = mq->data;
818 struct mmc_card *card = md->queue.card;
819 unsigned int from, nr, arg;
820 int err = 0, type = MMC_BLK_DISCARD;
821
822 if (!mmc_can_erase(card)) {
823 err = -EOPNOTSUPP;
824 goto out;
825 }
826
827 from = blk_rq_pos(req);
828 nr = blk_rq_sectors(req);
829
830 if (mmc_can_discard(card))
831 arg = MMC_DISCARD_ARG;
832 else if (mmc_can_trim(card))
833 arg = MMC_TRIM_ARG;
834 else
835 arg = MMC_ERASE_ARG;
836retry:
837 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
838 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
839 INAND_CMD38_ARG_EXT_CSD,
840 arg == MMC_TRIM_ARG ?
841 INAND_CMD38_ARG_TRIM :
842 INAND_CMD38_ARG_ERASE,
843 0);
844 if (err)
845 goto out;
846 }
847 err = mmc_erase(card, from, nr, arg);
848out:
849 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
850 goto retry;
851 if (!err)
852 mmc_blk_reset_success(md, type);
853 spin_lock_irq(&md->lock);
854 __blk_end_request(req, err, blk_rq_bytes(req));
855 spin_unlock_irq(&md->lock);
856
857 return err ? 0 : 1;
858}
859
860static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
861 struct request *req)
862{
863 struct mmc_blk_data *md = mq->data;
864 struct mmc_card *card = md->queue.card;
865 unsigned int from, nr, arg, trim_arg, erase_arg;
866 int err = 0, type = MMC_BLK_SECDISCARD;
867
868 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
869 err = -EOPNOTSUPP;
870 goto out;
871 }
872
873 from = blk_rq_pos(req);
874 nr = blk_rq_sectors(req);
875
876 /* The sanitize operation is supported at v4.5 only */
877 if (mmc_can_sanitize(card)) {
878 erase_arg = MMC_ERASE_ARG;
879 trim_arg = MMC_TRIM_ARG;
880 } else {
881 erase_arg = MMC_SECURE_ERASE_ARG;
882 trim_arg = MMC_SECURE_TRIM1_ARG;
883 }
884
885 if (mmc_erase_group_aligned(card, from, nr))
886 arg = erase_arg;
887 else if (mmc_can_trim(card))
888 arg = trim_arg;
889 else {
890 err = -EINVAL;
891 goto out;
892 }
893retry:
894 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
895 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
896 INAND_CMD38_ARG_EXT_CSD,
897 arg == MMC_SECURE_TRIM1_ARG ?
898 INAND_CMD38_ARG_SECTRIM1 :
899 INAND_CMD38_ARG_SECERASE,
900 0);
901 if (err)
902 goto out_retry;
903 }
904
905 err = mmc_erase(card, from, nr, arg);
906 if (err == -EIO)
907 goto out_retry;
908 if (err)
909 goto out;
910
911 if (arg == MMC_SECURE_TRIM1_ARG) {
912 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
913 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
914 INAND_CMD38_ARG_EXT_CSD,
915 INAND_CMD38_ARG_SECTRIM2,
916 0);
917 if (err)
918 goto out_retry;
919 }
920
921 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
922 if (err == -EIO)
923 goto out_retry;
924 if (err)
925 goto out;
926 }
927
928 if (mmc_can_sanitize(card))
929 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
930 EXT_CSD_SANITIZE_START, 1, 0);
931out_retry:
932 if (err && !mmc_blk_reset(md, card->host, type))
933 goto retry;
934 if (!err)
935 mmc_blk_reset_success(md, type);
936out:
937 spin_lock_irq(&md->lock);
938 __blk_end_request(req, err, blk_rq_bytes(req));
939 spin_unlock_irq(&md->lock);
940
941 return err ? 0 : 1;
942}
943
944static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
945{
946 struct mmc_blk_data *md = mq->data;
947 struct mmc_card *card = md->queue.card;
948 int ret = 0;
949
950 ret = mmc_flush_cache(card);
951 if (ret)
952 ret = -EIO;
953
954 spin_lock_irq(&md->lock);
955 __blk_end_request_all(req, ret);
956 spin_unlock_irq(&md->lock);
957
958 return ret ? 0 : 1;
959}
960
961/*
962 * Reformat current write as a reliable write, supporting
963 * both legacy and the enhanced reliable write MMC cards.
964 * In each transfer we'll handle only as much as a single
965 * reliable write can handle, thus finish the request in
966 * partial completions.
967 */
968static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
969 struct mmc_card *card,
970 struct request *req)
971{
972 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
973 /* Legacy mode imposes restrictions on transfers. */
974 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
975 brq->data.blocks = 1;
976
977 if (brq->data.blocks > card->ext_csd.rel_sectors)
978 brq->data.blocks = card->ext_csd.rel_sectors;
979 else if (brq->data.blocks < card->ext_csd.rel_sectors)
980 brq->data.blocks = 1;
981 }
982}
983
984#define CMD_ERRORS \
985 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
986 R1_ADDRESS_ERROR | /* Misaligned address */ \
987 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
988 R1_WP_VIOLATION | /* Tried to write to protected block */ \
989 R1_CC_ERROR | /* Card controller error */ \
990 R1_ERROR) /* General/unknown error */
991
992static int mmc_blk_err_check(struct mmc_card *card,
993 struct mmc_async_req *areq)
994{
995 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
996 mmc_active);
997 struct mmc_blk_request *brq = &mq_mrq->brq;
998 struct request *req = mq_mrq->req;
999 int ecc_err = 0;
1000
1001 /*
1002 * sbc.error indicates a problem with the set block count
1003 * command. No data will have been transferred.
1004 *
1005 * cmd.error indicates a problem with the r/w command. No
1006 * data will have been transferred.
1007 *
1008 * stop.error indicates a problem with the stop command. Data
1009 * may have been transferred, or may still be transferring.
1010 */
1011 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1012 brq->data.error) {
1013 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1014 case ERR_RETRY:
1015 return MMC_BLK_RETRY;
1016 case ERR_ABORT:
1017 return MMC_BLK_ABORT;
1018 case ERR_NOMEDIUM:
1019 return MMC_BLK_NOMEDIUM;
1020 case ERR_CONTINUE:
1021 break;
1022 }
1023 }
1024
1025 /*
1026 * Check for errors relating to the execution of the
1027 * initial command - such as address errors. No data
1028 * has been transferred.
1029 */
1030 if (brq->cmd.resp[0] & CMD_ERRORS) {
1031 pr_err("%s: r/w command failed, status = %#x\n",
1032 req->rq_disk->disk_name, brq->cmd.resp[0]);
1033 return MMC_BLK_ABORT;
1034 }
1035
1036 /*
1037 * Everything else is either success, or a data error of some
1038 * kind. If it was a write, we may have transitioned to
1039 * program mode, which we have to wait for it to complete.
1040 */
1041 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1042 u32 status;
1043 do {
1044 int err = get_card_status(card, &status, 5);
1045 if (err) {
1046 pr_err("%s: error %d requesting status\n",
1047 req->rq_disk->disk_name, err);
1048 return MMC_BLK_CMD_ERR;
1049 }
1050 /*
1051 * Some cards mishandle the status bits,
1052 * so make sure to check both the busy
1053 * indication and the card state.
1054 */
1055 } while (!(status & R1_READY_FOR_DATA) ||
1056 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1057 }
1058
1059 if (brq->data.error) {
1060 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1061 req->rq_disk->disk_name, brq->data.error,
1062 (unsigned)blk_rq_pos(req),
1063 (unsigned)blk_rq_sectors(req),
1064 brq->cmd.resp[0], brq->stop.resp[0]);
1065
1066 if (rq_data_dir(req) == READ) {
1067 if (ecc_err)
1068 return MMC_BLK_ECC_ERR;
1069 return MMC_BLK_DATA_ERR;
1070 } else {
1071 return MMC_BLK_CMD_ERR;
1072 }
1073 }
1074
1075 if (!brq->data.bytes_xfered)
1076 return MMC_BLK_RETRY;
1077
1078 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1079 return MMC_BLK_PARTIAL;
1080
1081 return MMC_BLK_SUCCESS;
1082}
1083
1084static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1085 struct mmc_card *card,
1086 int disable_multi,
1087 struct mmc_queue *mq)
1088{
1089 u32 readcmd, writecmd;
1090 struct mmc_blk_request *brq = &mqrq->brq;
1091 struct request *req = mqrq->req;
1092 struct mmc_blk_data *md = mq->data;
1093 bool do_data_tag;
1094
1095 /*
1096 * Reliable writes are used to implement Forced Unit Access and
1097 * REQ_META accesses, and are supported only on MMCs.
1098 *
1099 * XXX: this really needs a good explanation of why REQ_META
1100 * is treated special.
1101 */
1102 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1103 (req->cmd_flags & REQ_META)) &&
1104 (rq_data_dir(req) == WRITE) &&
1105 (md->flags & MMC_BLK_REL_WR);
1106
1107 memset(brq, 0, sizeof(struct mmc_blk_request));
1108 brq->mrq.cmd = &brq->cmd;
1109 brq->mrq.data = &brq->data;
1110
1111 brq->cmd.arg = blk_rq_pos(req);
1112 if (!mmc_card_blockaddr(card))
1113 brq->cmd.arg <<= 9;
1114 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1115 brq->data.blksz = 512;
1116 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1117 brq->stop.arg = 0;
1118 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1119 brq->data.blocks = blk_rq_sectors(req);
1120
1121 /*
1122 * The block layer doesn't support all sector count
1123 * restrictions, so we need to be prepared for too big
1124 * requests.
1125 */
1126 if (brq->data.blocks > card->host->max_blk_count)
1127 brq->data.blocks = card->host->max_blk_count;
1128
1129 if (brq->data.blocks > 1) {
1130 /*
1131 * After a read error, we redo the request one sector
1132 * at a time in order to accurately determine which
1133 * sectors can be read successfully.
1134 */
1135 if (disable_multi)
1136 brq->data.blocks = 1;
1137
1138 /* Some controllers can't do multiblock reads due to hw bugs */
1139 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1140 rq_data_dir(req) == READ)
1141 brq->data.blocks = 1;
1142 }
1143
1144 if (brq->data.blocks > 1 || do_rel_wr) {
1145 /* SPI multiblock writes terminate using a special
1146 * token, not a STOP_TRANSMISSION request.
1147 */
1148 if (!mmc_host_is_spi(card->host) ||
1149 rq_data_dir(req) == READ)
1150 brq->mrq.stop = &brq->stop;
1151 readcmd = MMC_READ_MULTIPLE_BLOCK;
1152 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1153 } else {
1154 brq->mrq.stop = NULL;
1155 readcmd = MMC_READ_SINGLE_BLOCK;
1156 writecmd = MMC_WRITE_BLOCK;
1157 }
1158 if (rq_data_dir(req) == READ) {
1159 brq->cmd.opcode = readcmd;
1160 brq->data.flags |= MMC_DATA_READ;
1161 } else {
1162 brq->cmd.opcode = writecmd;
1163 brq->data.flags |= MMC_DATA_WRITE;
1164 }
1165
1166 if (do_rel_wr)
1167 mmc_apply_rel_rw(brq, card, req);
1168
1169 /*
1170 * Data tag is used only during writing meta data to speed
1171 * up write and any subsequent read of this meta data
1172 */
1173 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1174 (req->cmd_flags & REQ_META) &&
1175 (rq_data_dir(req) == WRITE) &&
1176 ((brq->data.blocks * brq->data.blksz) >=
1177 card->ext_csd.data_tag_unit_size);
1178
1179 /*
1180 * Pre-defined multi-block transfers are preferable to
1181 * open ended-ones (and necessary for reliable writes).
1182 * However, it is not sufficient to just send CMD23,
1183 * and avoid the final CMD12, as on an error condition
1184 * CMD12 (stop) needs to be sent anyway. This, coupled
1185 * with Auto-CMD23 enhancements provided by some
1186 * hosts, means that the complexity of dealing
1187 * with this is best left to the host. If CMD23 is
1188 * supported by card and host, we'll fill sbc in and let
1189 * the host deal with handling it correctly. This means
1190 * that for hosts that don't expose MMC_CAP_CMD23, no
1191 * change of behavior will be observed.
1192 *
1193 * N.B: Some MMC cards experience perf degradation.
1194 * We'll avoid using CMD23-bounded multiblock writes for
1195 * these, while retaining features like reliable writes.
1196 */
1197 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1198 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1199 do_data_tag)) {
1200 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1201 brq->sbc.arg = brq->data.blocks |
1202 (do_rel_wr ? (1 << 31) : 0) |
1203 (do_data_tag ? (1 << 29) : 0);
1204 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1205 brq->mrq.sbc = &brq->sbc;
1206 }
1207
1208 mmc_set_data_timeout(&brq->data, card);
1209
1210 brq->data.sg = mqrq->sg;
1211 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1212
1213 /*
1214 * Adjust the sg list so it is the same size as the
1215 * request.
1216 */
1217 if (brq->data.blocks != blk_rq_sectors(req)) {
1218 int i, data_size = brq->data.blocks << 9;
1219 struct scatterlist *sg;
1220
1221 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1222 data_size -= sg->length;
1223 if (data_size <= 0) {
1224 sg->length += data_size;
1225 i++;
1226 break;
1227 }
1228 }
1229 brq->data.sg_len = i;
1230 }
1231
1232 mqrq->mmc_active.mrq = &brq->mrq;
1233 mqrq->mmc_active.err_check = mmc_blk_err_check;
1234
1235 mmc_queue_bounce_pre(mqrq);
1236}
1237
1238static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1239 struct mmc_blk_request *brq, struct request *req,
1240 int ret)
1241{
1242 /*
1243 * If this is an SD card and we're writing, we can first
1244 * mark the known good sectors as ok.
1245 *
1246 * If the card is not SD, we can still ok written sectors
1247 * as reported by the controller (which might be less than
1248 * the real number of written sectors, but never more).
1249 */
1250 if (mmc_card_sd(card)) {
1251 u32 blocks;
1252
1253 blocks = mmc_sd_num_wr_blocks(card);
1254 if (blocks != (u32)-1) {
1255 spin_lock_irq(&md->lock);
1256 ret = __blk_end_request(req, 0, blocks << 9);
1257 spin_unlock_irq(&md->lock);
1258 }
1259 } else {
1260 spin_lock_irq(&md->lock);
1261 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1262 spin_unlock_irq(&md->lock);
1263 }
1264 return ret;
1265}
1266
1267static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1268{
1269 struct mmc_blk_data *md = mq->data;
1270 struct mmc_card *card = md->queue.card;
1271 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1272 int ret = 1, disable_multi = 0, retry = 0, type;
1273 enum mmc_blk_status status;
1274 struct mmc_queue_req *mq_rq;
1275 struct request *req = rqc;
1276 struct mmc_async_req *areq;
1277
1278 if (!rqc && !mq->mqrq_prev->req)
1279 return 0;
1280
1281 do {
1282 if (rqc) {
1283 /*
1284 * When 4KB native sector is enabled, only 8 blocks
1285 * multiple read or write is allowed
1286 */
1287 if ((brq->data.blocks & 0x07) &&
1288 (card->ext_csd.data_sector_size == 4096)) {
1289 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1290 req->rq_disk->disk_name);
1291 goto cmd_abort;
1292 }
1293 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1294 areq = &mq->mqrq_cur->mmc_active;
1295 } else
1296 areq = NULL;
1297 areq = mmc_start_req(card->host, areq, (int *) &status);
1298 if (!areq)
1299 return 0;
1300
1301 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1302 brq = &mq_rq->brq;
1303 req = mq_rq->req;
1304 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1305 mmc_queue_bounce_post(mq_rq);
1306
1307 switch (status) {
1308 case MMC_BLK_SUCCESS:
1309 case MMC_BLK_PARTIAL:
1310 /*
1311 * A block was successfully transferred.
1312 */
1313 mmc_blk_reset_success(md, type);
1314 spin_lock_irq(&md->lock);
1315 ret = __blk_end_request(req, 0,
1316 brq->data.bytes_xfered);
1317 spin_unlock_irq(&md->lock);
1318 /*
1319 * If the blk_end_request function returns non-zero even
1320 * though all data has been transferred and no errors
1321 * were returned by the host controller, it's a bug.
1322 */
1323 if (status == MMC_BLK_SUCCESS && ret) {
1324 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1325 __func__, blk_rq_bytes(req),
1326 brq->data.bytes_xfered);
1327 rqc = NULL;
1328 goto cmd_abort;
1329 }
1330 break;
1331 case MMC_BLK_CMD_ERR:
1332 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1333 if (!mmc_blk_reset(md, card->host, type))
1334 break;
1335 goto cmd_abort;
1336 case MMC_BLK_RETRY:
1337 if (retry++ < 5)
1338 break;
1339 /* Fall through */
1340 case MMC_BLK_ABORT:
1341 if (!mmc_blk_reset(md, card->host, type))
1342 break;
1343 goto cmd_abort;
1344 case MMC_BLK_DATA_ERR: {
1345 int err;
1346
1347 err = mmc_blk_reset(md, card->host, type);
1348 if (!err)
1349 break;
1350 if (err == -ENODEV)
1351 goto cmd_abort;
1352 /* Fall through */
1353 }
1354 case MMC_BLK_ECC_ERR:
1355 if (brq->data.blocks > 1) {
1356 /* Redo read one sector at a time */
1357 pr_warning("%s: retrying using single block read\n",
1358 req->rq_disk->disk_name);
1359 disable_multi = 1;
1360 break;
1361 }
1362 /*
1363 * After an error, we redo I/O one sector at a
1364 * time, so we only reach here after trying to
1365 * read a single sector.
1366 */
1367 spin_lock_irq(&md->lock);
1368 ret = __blk_end_request(req, -EIO,
1369 brq->data.blksz);
1370 spin_unlock_irq(&md->lock);
1371 if (!ret)
1372 goto start_new_req;
1373 break;
1374 case MMC_BLK_NOMEDIUM:
1375 goto cmd_abort;
1376 }
1377
1378 if (ret) {
1379 /*
1380 * In case of a incomplete request
1381 * prepare it again and resend.
1382 */
1383 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1384 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1385 }
1386 } while (ret);
1387
1388 return 1;
1389
1390 cmd_abort:
1391 spin_lock_irq(&md->lock);
1392 if (mmc_card_removed(card))
1393 req->cmd_flags |= REQ_QUIET;
1394 while (ret)
1395 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1396 spin_unlock_irq(&md->lock);
1397
1398 start_new_req:
1399 if (rqc) {
1400 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1401 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1402 }
1403
1404 return 0;
1405}
1406
1407static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1408{
1409 int ret;
1410 struct mmc_blk_data *md = mq->data;
1411 struct mmc_card *card = md->queue.card;
1412
1413 if (req && !mq->mqrq_prev->req)
1414 /* claim host only for the first request */
1415 mmc_claim_host(card->host);
1416
1417 ret = mmc_blk_part_switch(card, md);
1418 if (ret) {
1419 if (req) {
1420 spin_lock_irq(&md->lock);
1421 __blk_end_request_all(req, -EIO);
1422 spin_unlock_irq(&md->lock);
1423 }
1424 ret = 0;
1425 goto out;
1426 }
1427
1428 if (req && req->cmd_flags & REQ_DISCARD) {
1429 /* complete ongoing async transfer before issuing discard */
1430 if (card->host->areq)
1431 mmc_blk_issue_rw_rq(mq, NULL);
1432 if (req->cmd_flags & REQ_SECURE &&
1433 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1434 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1435 else
1436 ret = mmc_blk_issue_discard_rq(mq, req);
1437 } else if (req && req->cmd_flags & REQ_FLUSH) {
1438 /* complete ongoing async transfer before issuing flush */
1439 if (card->host->areq)
1440 mmc_blk_issue_rw_rq(mq, NULL);
1441 ret = mmc_blk_issue_flush(mq, req);
1442 } else {
1443 ret = mmc_blk_issue_rw_rq(mq, req);
1444 }
1445
1446out:
1447 if (!req)
1448 /* release host only when there are no more requests */
1449 mmc_release_host(card->host);
1450 return ret;
1451}
1452
1453static inline int mmc_blk_readonly(struct mmc_card *card)
1454{
1455 return mmc_card_readonly(card) ||
1456 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1457}
1458
1459static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1460 struct device *parent,
1461 sector_t size,
1462 bool default_ro,
1463 const char *subname,
1464 int area_type)
1465{
1466 struct mmc_blk_data *md;
1467 int devidx, ret;
1468
1469 devidx = find_first_zero_bit(dev_use, max_devices);
1470 if (devidx >= max_devices)
1471 return ERR_PTR(-ENOSPC);
1472 __set_bit(devidx, dev_use);
1473
1474 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1475 if (!md) {
1476 ret = -ENOMEM;
1477 goto out;
1478 }
1479
1480 /*
1481 * !subname implies we are creating main mmc_blk_data that will be
1482 * associated with mmc_card with mmc_set_drvdata. Due to device
1483 * partitions, devidx will not coincide with a per-physical card
1484 * index anymore so we keep track of a name index.
1485 */
1486 if (!subname) {
1487 md->name_idx = find_first_zero_bit(name_use, max_devices);
1488 __set_bit(md->name_idx, name_use);
1489 } else
1490 md->name_idx = ((struct mmc_blk_data *)
1491 dev_to_disk(parent)->private_data)->name_idx;
1492
1493 md->area_type = area_type;
1494
1495 /*
1496 * Set the read-only status based on the supported commands
1497 * and the write protect switch.
1498 */
1499 md->read_only = mmc_blk_readonly(card);
1500
1501 md->disk = alloc_disk(perdev_minors);
1502 if (md->disk == NULL) {
1503 ret = -ENOMEM;
1504 goto err_kfree;
1505 }
1506
1507 spin_lock_init(&md->lock);
1508 INIT_LIST_HEAD(&md->part);
1509 md->usage = 1;
1510
1511 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1512 if (ret)
1513 goto err_putdisk;
1514
1515 md->queue.issue_fn = mmc_blk_issue_rq;
1516 md->queue.data = md;
1517
1518 md->disk->major = MMC_BLOCK_MAJOR;
1519 md->disk->first_minor = devidx * perdev_minors;
1520 md->disk->fops = &mmc_bdops;
1521 md->disk->private_data = md;
1522 md->disk->queue = md->queue.queue;
1523 md->disk->driverfs_dev = parent;
1524 set_disk_ro(md->disk, md->read_only || default_ro);
1525
1526 /*
1527 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1528 *
1529 * - be set for removable media with permanent block devices
1530 * - be unset for removable block devices with permanent media
1531 *
1532 * Since MMC block devices clearly fall under the second
1533 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1534 * should use the block device creation/destruction hotplug
1535 * messages to tell when the card is present.
1536 */
1537
1538 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1539 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1540
1541 if (mmc_card_mmc(card))
1542 blk_queue_logical_block_size(md->queue.queue,
1543 card->ext_csd.data_sector_size);
1544 else
1545 blk_queue_logical_block_size(md->queue.queue, 512);
1546
1547 set_capacity(md->disk, size);
1548
1549 if (mmc_host_cmd23(card->host)) {
1550 if (mmc_card_mmc(card) ||
1551 (mmc_card_sd(card) &&
1552 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1553 md->flags |= MMC_BLK_CMD23;
1554 }
1555
1556 if (mmc_card_mmc(card) &&
1557 md->flags & MMC_BLK_CMD23 &&
1558 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1559 card->ext_csd.rel_sectors)) {
1560 md->flags |= MMC_BLK_REL_WR;
1561 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1562 }
1563
1564 return md;
1565
1566 err_putdisk:
1567 put_disk(md->disk);
1568 err_kfree:
1569 kfree(md);
1570 out:
1571 return ERR_PTR(ret);
1572}
1573
1574static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1575{
1576 sector_t size;
1577 struct mmc_blk_data *md;
1578
1579 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1580 /*
1581 * The EXT_CSD sector count is in number or 512 byte
1582 * sectors.
1583 */
1584 size = card->ext_csd.sectors;
1585 } else {
1586 /*
1587 * The CSD capacity field is in units of read_blkbits.
1588 * set_capacity takes units of 512 bytes.
1589 */
1590 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1591 }
1592
1593 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1594 MMC_BLK_DATA_AREA_MAIN);
1595 return md;
1596}
1597
1598static int mmc_blk_alloc_part(struct mmc_card *card,
1599 struct mmc_blk_data *md,
1600 unsigned int part_type,
1601 sector_t size,
1602 bool default_ro,
1603 const char *subname,
1604 int area_type)
1605{
1606 char cap_str[10];
1607 struct mmc_blk_data *part_md;
1608
1609 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1610 subname, area_type);
1611 if (IS_ERR(part_md))
1612 return PTR_ERR(part_md);
1613 part_md->part_type = part_type;
1614 list_add(&part_md->part, &md->part);
1615
1616 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1617 cap_str, sizeof(cap_str));
1618 pr_info("%s: %s %s partition %u %s\n",
1619 part_md->disk->disk_name, mmc_card_id(card),
1620 mmc_card_name(card), part_md->part_type, cap_str);
1621 return 0;
1622}
1623
1624/* MMC Physical partitions consist of two boot partitions and
1625 * up to four general purpose partitions.
1626 * For each partition enabled in EXT_CSD a block device will be allocatedi
1627 * to provide access to the partition.
1628 */
1629
1630static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1631{
1632 int idx, ret = 0;
1633
1634 if (!mmc_card_mmc(card))
1635 return 0;
1636
1637 for (idx = 0; idx < card->nr_parts; idx++) {
1638 if (card->part[idx].size) {
1639 ret = mmc_blk_alloc_part(card, md,
1640 card->part[idx].part_cfg,
1641 card->part[idx].size >> 9,
1642 card->part[idx].force_ro,
1643 card->part[idx].name,
1644 card->part[idx].area_type);
1645 if (ret)
1646 return ret;
1647 }
1648 }
1649
1650 return ret;
1651}
1652
1653static void mmc_blk_remove_req(struct mmc_blk_data *md)
1654{
1655 struct mmc_card *card;
1656
1657 if (md) {
1658 card = md->queue.card;
1659 if (md->disk->flags & GENHD_FL_UP) {
1660 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1661 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1662 card->ext_csd.boot_ro_lockable)
1663 device_remove_file(disk_to_dev(md->disk),
1664 &md->power_ro_lock);
1665
1666 /* Stop new requests from getting into the queue */
1667 del_gendisk(md->disk);
1668 }
1669
1670 /* Then flush out any already in there */
1671 mmc_cleanup_queue(&md->queue);
1672 mmc_blk_put(md);
1673 }
1674}
1675
1676static void mmc_blk_remove_parts(struct mmc_card *card,
1677 struct mmc_blk_data *md)
1678{
1679 struct list_head *pos, *q;
1680 struct mmc_blk_data *part_md;
1681
1682 __clear_bit(md->name_idx, name_use);
1683 list_for_each_safe(pos, q, &md->part) {
1684 part_md = list_entry(pos, struct mmc_blk_data, part);
1685 list_del(pos);
1686 mmc_blk_remove_req(part_md);
1687 }
1688}
1689
1690static int mmc_add_disk(struct mmc_blk_data *md)
1691{
1692 int ret;
1693 struct mmc_card *card = md->queue.card;
1694
1695 add_disk(md->disk);
1696 md->force_ro.show = force_ro_show;
1697 md->force_ro.store = force_ro_store;
1698 sysfs_attr_init(&md->force_ro.attr);
1699 md->force_ro.attr.name = "force_ro";
1700 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1701 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1702 if (ret)
1703 goto force_ro_fail;
1704
1705 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1706 card->ext_csd.boot_ro_lockable) {
1707 umode_t mode;
1708
1709 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1710 mode = S_IRUGO;
1711 else
1712 mode = S_IRUGO | S_IWUSR;
1713
1714 md->power_ro_lock.show = power_ro_lock_show;
1715 md->power_ro_lock.store = power_ro_lock_store;
1716 sysfs_attr_init(&md->power_ro_lock.attr);
1717 md->power_ro_lock.attr.mode = mode;
1718 md->power_ro_lock.attr.name =
1719 "ro_lock_until_next_power_on";
1720 ret = device_create_file(disk_to_dev(md->disk),
1721 &md->power_ro_lock);
1722 if (ret)
1723 goto power_ro_lock_fail;
1724 }
1725 return ret;
1726
1727power_ro_lock_fail:
1728 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1729force_ro_fail:
1730 del_gendisk(md->disk);
1731
1732 return ret;
1733}
1734
1735#define CID_MANFID_SANDISK 0x2
1736#define CID_MANFID_TOSHIBA 0x11
1737#define CID_MANFID_MICRON 0x13
1738#define CID_MANFID_SAMSUNG 0x15
1739
1740static const struct mmc_fixup blk_fixups[] =
1741{
1742 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1743 MMC_QUIRK_INAND_CMD38),
1744 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1745 MMC_QUIRK_INAND_CMD38),
1746 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1747 MMC_QUIRK_INAND_CMD38),
1748 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1749 MMC_QUIRK_INAND_CMD38),
1750 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1751 MMC_QUIRK_INAND_CMD38),
1752
1753 /*
1754 * Some MMC cards experience performance degradation with CMD23
1755 * instead of CMD12-bounded multiblock transfers. For now we'll
1756 * black list what's bad...
1757 * - Certain Toshiba cards.
1758 *
1759 * N.B. This doesn't affect SD cards.
1760 */
1761 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1762 MMC_QUIRK_BLK_NO_CMD23),
1763 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1764 MMC_QUIRK_BLK_NO_CMD23),
1765 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1766 MMC_QUIRK_BLK_NO_CMD23),
1767
1768 /*
1769 * Some Micron MMC cards needs longer data read timeout than
1770 * indicated in CSD.
1771 */
1772 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1773 MMC_QUIRK_LONG_READ_TIME),
1774
1775 /*
1776 * On these Samsung MoviNAND parts, performing secure erase or
1777 * secure trim can result in unrecoverable corruption due to a
1778 * firmware bug.
1779 */
1780 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1781 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1782 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1783 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1784 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1785 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1786 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1787 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1788 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1789 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1790 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1791 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1792 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1793 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1794 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1795 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1796
1797 END_FIXUP
1798};
1799
1800static int mmc_blk_probe(struct mmc_card *card)
1801{
1802 struct mmc_blk_data *md, *part_md;
1803 char cap_str[10];
1804
1805 /*
1806 * Check that the card supports the command class(es) we need.
1807 */
1808 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1809 return -ENODEV;
1810
1811 md = mmc_blk_alloc(card);
1812 if (IS_ERR(md))
1813 return PTR_ERR(md);
1814
1815 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1816 cap_str, sizeof(cap_str));
1817 pr_info("%s: %s %s %s %s\n",
1818 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1819 cap_str, md->read_only ? "(ro)" : "");
1820
1821 if (mmc_blk_alloc_parts(card, md))
1822 goto out;
1823
1824 mmc_set_drvdata(card, md);
1825 mmc_fixup_device(card, blk_fixups);
1826
1827 if (mmc_add_disk(md))
1828 goto out;
1829
1830 list_for_each_entry(part_md, &md->part, part) {
1831 if (mmc_add_disk(part_md))
1832 goto out;
1833 }
1834 return 0;
1835
1836 out:
1837 mmc_blk_remove_parts(card, md);
1838 mmc_blk_remove_req(md);
1839 return 0;
1840}
1841
1842static void mmc_blk_remove(struct mmc_card *card)
1843{
1844 struct mmc_blk_data *md = mmc_get_drvdata(card);
1845
1846 mmc_blk_remove_parts(card, md);
1847 mmc_claim_host(card->host);
1848 mmc_blk_part_switch(card, md);
1849 mmc_release_host(card->host);
1850 mmc_blk_remove_req(md);
1851 mmc_set_drvdata(card, NULL);
1852}
1853
1854#ifdef CONFIG_PM
1855static int mmc_blk_suspend(struct mmc_card *card)
1856{
1857 struct mmc_blk_data *part_md;
1858 struct mmc_blk_data *md = mmc_get_drvdata(card);
1859
1860 if (md) {
1861 mmc_queue_suspend(&md->queue);
1862 list_for_each_entry(part_md, &md->part, part) {
1863 mmc_queue_suspend(&part_md->queue);
1864 }
1865 }
1866 return 0;
1867}
1868
1869static int mmc_blk_resume(struct mmc_card *card)
1870{
1871 struct mmc_blk_data *part_md;
1872 struct mmc_blk_data *md = mmc_get_drvdata(card);
1873
1874 if (md) {
1875 /*
1876 * Resume involves the card going into idle state,
1877 * so current partition is always the main one.
1878 */
1879 md->part_curr = md->part_type;
1880 mmc_queue_resume(&md->queue);
1881 list_for_each_entry(part_md, &md->part, part) {
1882 mmc_queue_resume(&part_md->queue);
1883 }
1884 }
1885 return 0;
1886}
1887#else
1888#define mmc_blk_suspend NULL
1889#define mmc_blk_resume NULL
1890#endif
1891
1892static struct mmc_driver mmc_driver = {
1893 .drv = {
1894 .name = "mmcblk",
1895 },
1896 .probe = mmc_blk_probe,
1897 .remove = mmc_blk_remove,
1898 .suspend = mmc_blk_suspend,
1899 .resume = mmc_blk_resume,
1900};
1901
1902static int __init mmc_blk_init(void)
1903{
1904 int res;
1905
1906 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1907 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1908
1909 max_devices = 256 / perdev_minors;
1910
1911 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1912 if (res)
1913 goto out;
1914
1915 res = mmc_register_driver(&mmc_driver);
1916 if (res)
1917 goto out2;
1918
1919 return 0;
1920 out2:
1921 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1922 out:
1923 return res;
1924}
1925
1926static void __exit mmc_blk_exit(void)
1927{
1928 mmc_unregister_driver(&mmc_driver);
1929 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1930}
1931
1932module_init(mmc_blk_init);
1933module_exit(mmc_blk_exit);
1934
1935MODULE_LICENSE("GPL");
1936MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1937