Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
  30#include <linux/blkdev.h>
  31#include <linux/mutex.h>
  32#include <linux/scatterlist.h>
  33#include <linux/string_helpers.h>
  34#include <linux/delay.h>
  35#include <linux/capability.h>
  36#include <linux/compat.h>
  37
  38#include <linux/mmc/ioctl.h>
  39#include <linux/mmc/card.h>
  40#include <linux/mmc/host.h>
  41#include <linux/mmc/mmc.h>
  42#include <linux/mmc/sd.h>
  43
  44#include <asm/system.h>
  45#include <asm/uaccess.h>
  46
  47#include "queue.h"
  48
  49MODULE_ALIAS("mmc:block");
  50#ifdef MODULE_PARAM_PREFIX
  51#undef MODULE_PARAM_PREFIX
  52#endif
  53#define MODULE_PARAM_PREFIX "mmcblk."
  54
  55#define INAND_CMD38_ARG_EXT_CSD  113
  56#define INAND_CMD38_ARG_ERASE    0x00
  57#define INAND_CMD38_ARG_TRIM     0x01
  58#define INAND_CMD38_ARG_SECERASE 0x80
  59#define INAND_CMD38_ARG_SECTRIM1 0x81
  60#define INAND_CMD38_ARG_SECTRIM2 0x88
  61
  62static DEFINE_MUTEX(block_mutex);
  63
  64/*
  65 * The defaults come from config options but can be overriden by module
  66 * or bootarg options.
  67 */
  68static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  69
  70/*
  71 * We've only got one major, so number of mmcblk devices is
  72 * limited to 256 / number of minors per device.
  73 */
  74static int max_devices;
  75
  76/* 256 minors, so at most 256 separate devices */
  77static DECLARE_BITMAP(dev_use, 256);
  78static DECLARE_BITMAP(name_use, 256);
  79
  80/*
  81 * There is one mmc_blk_data per slot.
  82 */
  83struct mmc_blk_data {
  84	spinlock_t	lock;
  85	struct gendisk	*disk;
  86	struct mmc_queue queue;
  87	struct list_head part;
  88
  89	unsigned int	flags;
  90#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
  91#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
  92
  93	unsigned int	usage;
  94	unsigned int	read_only;
  95	unsigned int	part_type;
  96	unsigned int	name_idx;
  97
  98	/*
  99	 * Only set in main mmc_blk_data associated
 100	 * with mmc_card with mmc_set_drvdata, and keeps
 101	 * track of the current selected device partition.
 102	 */
 103	unsigned int	part_curr;
 104	struct device_attribute force_ro;
 105};
 106
 107static DEFINE_MUTEX(open_lock);
 108
 109enum mmc_blk_status {
 110	MMC_BLK_SUCCESS = 0,
 111	MMC_BLK_PARTIAL,
 112	MMC_BLK_RETRY,
 113	MMC_BLK_RETRY_SINGLE,
 114	MMC_BLK_DATA_ERR,
 115	MMC_BLK_CMD_ERR,
 116	MMC_BLK_ABORT,
 117};
 118
 119module_param(perdev_minors, int, 0444);
 120MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 121
 122static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 123{
 124	struct mmc_blk_data *md;
 125
 126	mutex_lock(&open_lock);
 127	md = disk->private_data;
 128	if (md && md->usage == 0)
 129		md = NULL;
 130	if (md)
 131		md->usage++;
 132	mutex_unlock(&open_lock);
 133
 134	return md;
 135}
 136
 137static inline int mmc_get_devidx(struct gendisk *disk)
 138{
 139	int devmaj = MAJOR(disk_devt(disk));
 140	int devidx = MINOR(disk_devt(disk)) / perdev_minors;
 141
 142	if (!devmaj)
 143		devidx = disk->first_minor / perdev_minors;
 144	return devidx;
 145}
 146
 147static void mmc_blk_put(struct mmc_blk_data *md)
 148{
 149	mutex_lock(&open_lock);
 150	md->usage--;
 151	if (md->usage == 0) {
 152		int devidx = mmc_get_devidx(md->disk);
 153		blk_cleanup_queue(md->queue.queue);
 154
 155		__clear_bit(devidx, dev_use);
 156
 157		put_disk(md->disk);
 158		kfree(md);
 159	}
 160	mutex_unlock(&open_lock);
 161}
 162
 163static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 164			     char *buf)
 165{
 166	int ret;
 167	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 168
 169	ret = snprintf(buf, PAGE_SIZE, "%d",
 170		       get_disk_ro(dev_to_disk(dev)) ^
 171		       md->read_only);
 172	mmc_blk_put(md);
 173	return ret;
 174}
 175
 176static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 177			      const char *buf, size_t count)
 178{
 179	int ret;
 180	char *end;
 181	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 182	unsigned long set = simple_strtoul(buf, &end, 0);
 183	if (end == buf) {
 184		ret = -EINVAL;
 185		goto out;
 186	}
 187
 188	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 189	ret = count;
 190out:
 191	mmc_blk_put(md);
 192	return ret;
 193}
 194
 195static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 196{
 197	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 198	int ret = -ENXIO;
 199
 200	mutex_lock(&block_mutex);
 201	if (md) {
 202		if (md->usage == 2)
 203			check_disk_change(bdev);
 204		ret = 0;
 205
 206		if ((mode & FMODE_WRITE) && md->read_only) {
 207			mmc_blk_put(md);
 208			ret = -EROFS;
 209		}
 210	}
 211	mutex_unlock(&block_mutex);
 212
 213	return ret;
 214}
 215
 216static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
 217{
 218	struct mmc_blk_data *md = disk->private_data;
 219
 220	mutex_lock(&block_mutex);
 221	mmc_blk_put(md);
 222	mutex_unlock(&block_mutex);
 223	return 0;
 224}
 225
 226static int
 227mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 228{
 229	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 230	geo->heads = 4;
 231	geo->sectors = 16;
 232	return 0;
 233}
 234
 235struct mmc_blk_ioc_data {
 236	struct mmc_ioc_cmd ic;
 237	unsigned char *buf;
 238	u64 buf_bytes;
 239};
 240
 241static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 242	struct mmc_ioc_cmd __user *user)
 243{
 244	struct mmc_blk_ioc_data *idata;
 245	int err;
 246
 247	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
 248	if (!idata) {
 249		err = -ENOMEM;
 250		goto out;
 251	}
 252
 253	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 254		err = -EFAULT;
 255		goto idata_err;
 256	}
 257
 258	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 259	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 260		err = -EOVERFLOW;
 261		goto idata_err;
 262	}
 263
 264	idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
 265	if (!idata->buf) {
 266		err = -ENOMEM;
 267		goto idata_err;
 268	}
 269
 270	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
 271					idata->ic.data_ptr, idata->buf_bytes)) {
 272		err = -EFAULT;
 273		goto copy_err;
 274	}
 275
 276	return idata;
 277
 278copy_err:
 279	kfree(idata->buf);
 280idata_err:
 281	kfree(idata);
 282out:
 283	return ERR_PTR(err);
 284}
 285
 286static int mmc_blk_ioctl_cmd(struct block_device *bdev,
 287	struct mmc_ioc_cmd __user *ic_ptr)
 288{
 289	struct mmc_blk_ioc_data *idata;
 290	struct mmc_blk_data *md;
 291	struct mmc_card *card;
 292	struct mmc_command cmd = {0};
 293	struct mmc_data data = {0};
 294	struct mmc_request mrq = {0};
 295	struct scatterlist sg;
 296	int err;
 297
 298	/*
 299	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 300	 * whole block device, not on a partition.  This prevents overspray
 301	 * between sibling partitions.
 302	 */
 303	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 304		return -EPERM;
 305
 306	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 307	if (IS_ERR(idata))
 308		return PTR_ERR(idata);
 309
 310	cmd.opcode = idata->ic.opcode;
 311	cmd.arg = idata->ic.arg;
 312	cmd.flags = idata->ic.flags;
 313
 314	data.sg = &sg;
 315	data.sg_len = 1;
 316	data.blksz = idata->ic.blksz;
 317	data.blocks = idata->ic.blocks;
 318
 319	sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 320
 321	if (idata->ic.write_flag)
 322		data.flags = MMC_DATA_WRITE;
 323	else
 324		data.flags = MMC_DATA_READ;
 325
 326	mrq.cmd = &cmd;
 327	mrq.data = &data;
 328
 329	md = mmc_blk_get(bdev->bd_disk);
 330	if (!md) {
 331		err = -EINVAL;
 332		goto cmd_done;
 333	}
 334
 335	card = md->queue.card;
 336	if (IS_ERR(card)) {
 337		err = PTR_ERR(card);
 338		goto cmd_done;
 339	}
 340
 341	mmc_claim_host(card->host);
 342
 343	if (idata->ic.is_acmd) {
 344		err = mmc_app_cmd(card->host, card);
 345		if (err)
 346			goto cmd_rel_host;
 347	}
 348
 349	/* data.flags must already be set before doing this. */
 350	mmc_set_data_timeout(&data, card);
 351	/* Allow overriding the timeout_ns for empirical tuning. */
 352	if (idata->ic.data_timeout_ns)
 353		data.timeout_ns = idata->ic.data_timeout_ns;
 354
 355	if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 356		/*
 357		 * Pretend this is a data transfer and rely on the host driver
 358		 * to compute timeout.  When all host drivers support
 359		 * cmd.cmd_timeout for R1B, this can be changed to:
 360		 *
 361		 *     mrq.data = NULL;
 362		 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 363		 */
 364		data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 365	}
 366
 367	mmc_wait_for_req(card->host, &mrq);
 368
 369	if (cmd.error) {
 370		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 371						__func__, cmd.error);
 372		err = cmd.error;
 373		goto cmd_rel_host;
 374	}
 375	if (data.error) {
 376		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 377						__func__, data.error);
 378		err = data.error;
 379		goto cmd_rel_host;
 380	}
 381
 382	/*
 383	 * According to the SD specs, some commands require a delay after
 384	 * issuing the command.
 385	 */
 386	if (idata->ic.postsleep_min_us)
 387		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 388
 389	if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
 390		err = -EFAULT;
 391		goto cmd_rel_host;
 392	}
 393
 394	if (!idata->ic.write_flag) {
 395		if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
 396						idata->buf, idata->buf_bytes)) {
 397			err = -EFAULT;
 398			goto cmd_rel_host;
 399		}
 400	}
 401
 402cmd_rel_host:
 403	mmc_release_host(card->host);
 404
 405cmd_done:
 406	mmc_blk_put(md);
 407	kfree(idata->buf);
 408	kfree(idata);
 409	return err;
 410}
 411
 412static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 413	unsigned int cmd, unsigned long arg)
 414{
 415	int ret = -EINVAL;
 416	if (cmd == MMC_IOC_CMD)
 417		ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
 418	return ret;
 419}
 420
 421#ifdef CONFIG_COMPAT
 422static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 423	unsigned int cmd, unsigned long arg)
 424{
 425	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 426}
 427#endif
 428
 429static const struct block_device_operations mmc_bdops = {
 430	.open			= mmc_blk_open,
 431	.release		= mmc_blk_release,
 432	.getgeo			= mmc_blk_getgeo,
 433	.owner			= THIS_MODULE,
 434	.ioctl			= mmc_blk_ioctl,
 435#ifdef CONFIG_COMPAT
 436	.compat_ioctl		= mmc_blk_compat_ioctl,
 437#endif
 438};
 439
 440static inline int mmc_blk_part_switch(struct mmc_card *card,
 441				      struct mmc_blk_data *md)
 442{
 443	int ret;
 444	struct mmc_blk_data *main_md = mmc_get_drvdata(card);
 445	if (main_md->part_curr == md->part_type)
 446		return 0;
 447
 448	if (mmc_card_mmc(card)) {
 449		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 450		card->ext_csd.part_config |= md->part_type;
 451
 452		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 453				 EXT_CSD_PART_CONFIG, card->ext_csd.part_config,
 454				 card->ext_csd.part_time);
 455		if (ret)
 456			return ret;
 457}
 458
 459	main_md->part_curr = md->part_type;
 460	return 0;
 461}
 462
 463static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
 464{
 465	int err;
 466	u32 result;
 467	__be32 *blocks;
 468
 469	struct mmc_request mrq = {0};
 470	struct mmc_command cmd = {0};
 471	struct mmc_data data = {0};
 472	unsigned int timeout_us;
 473
 474	struct scatterlist sg;
 475
 476	cmd.opcode = MMC_APP_CMD;
 477	cmd.arg = card->rca << 16;
 478	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 479
 480	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 481	if (err)
 482		return (u32)-1;
 483	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 484		return (u32)-1;
 485
 486	memset(&cmd, 0, sizeof(struct mmc_command));
 487
 488	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 489	cmd.arg = 0;
 490	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 491
 492	data.timeout_ns = card->csd.tacc_ns * 100;
 493	data.timeout_clks = card->csd.tacc_clks * 100;
 494
 495	timeout_us = data.timeout_ns / 1000;
 496	timeout_us += data.timeout_clks * 1000 /
 497		(card->host->ios.clock / 1000);
 498
 499	if (timeout_us > 100000) {
 500		data.timeout_ns = 100000000;
 501		data.timeout_clks = 0;
 502	}
 503
 504	data.blksz = 4;
 505	data.blocks = 1;
 506	data.flags = MMC_DATA_READ;
 507	data.sg = &sg;
 508	data.sg_len = 1;
 509
 510	mrq.cmd = &cmd;
 511	mrq.data = &data;
 512
 513	blocks = kmalloc(4, GFP_KERNEL);
 514	if (!blocks)
 515		return (u32)-1;
 516
 517	sg_init_one(&sg, blocks, 4);
 518
 519	mmc_wait_for_req(card->host, &mrq);
 520
 521	result = ntohl(*blocks);
 522	kfree(blocks);
 523
 524	if (cmd.error || data.error)
 525		result = (u32)-1;
 526
 527	return result;
 528}
 529
 530static int send_stop(struct mmc_card *card, u32 *status)
 531{
 532	struct mmc_command cmd = {0};
 533	int err;
 534
 535	cmd.opcode = MMC_STOP_TRANSMISSION;
 536	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
 537	err = mmc_wait_for_cmd(card->host, &cmd, 5);
 538	if (err == 0)
 539		*status = cmd.resp[0];
 540	return err;
 541}
 542
 543static int get_card_status(struct mmc_card *card, u32 *status, int retries)
 544{
 545	struct mmc_command cmd = {0};
 546	int err;
 547
 548	cmd.opcode = MMC_SEND_STATUS;
 549	if (!mmc_host_is_spi(card->host))
 550		cmd.arg = card->rca << 16;
 551	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
 552	err = mmc_wait_for_cmd(card->host, &cmd, retries);
 553	if (err == 0)
 554		*status = cmd.resp[0];
 555	return err;
 556}
 557
 558#define ERR_RETRY	2
 559#define ERR_ABORT	1
 560#define ERR_CONTINUE	0
 561
 562static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
 563	bool status_valid, u32 status)
 564{
 565	switch (error) {
 566	case -EILSEQ:
 567		/* response crc error, retry the r/w cmd */
 568		pr_err("%s: %s sending %s command, card status %#x\n",
 569			req->rq_disk->disk_name, "response CRC error",
 570			name, status);
 571		return ERR_RETRY;
 572
 573	case -ETIMEDOUT:
 574		pr_err("%s: %s sending %s command, card status %#x\n",
 575			req->rq_disk->disk_name, "timed out", name, status);
 576
 577		/* If the status cmd initially failed, retry the r/w cmd */
 578		if (!status_valid)
 579			return ERR_RETRY;
 580
 581		/*
 582		 * If it was a r/w cmd crc error, or illegal command
 583		 * (eg, issued in wrong state) then retry - we should
 584		 * have corrected the state problem above.
 585		 */
 586		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
 587			return ERR_RETRY;
 588
 589		/* Otherwise abort the command */
 590		return ERR_ABORT;
 591
 592	default:
 593		/* We don't understand the error code the driver gave us */
 594		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
 595		       req->rq_disk->disk_name, error, status);
 596		return ERR_ABORT;
 597	}
 598}
 599
 600/*
 601 * Initial r/w and stop cmd error recovery.
 602 * We don't know whether the card received the r/w cmd or not, so try to
 603 * restore things back to a sane state.  Essentially, we do this as follows:
 604 * - Obtain card status.  If the first attempt to obtain card status fails,
 605 *   the status word will reflect the failed status cmd, not the failed
 606 *   r/w cmd.  If we fail to obtain card status, it suggests we can no
 607 *   longer communicate with the card.
 608 * - Check the card state.  If the card received the cmd but there was a
 609 *   transient problem with the response, it might still be in a data transfer
 610 *   mode.  Try to send it a stop command.  If this fails, we can't recover.
 611 * - If the r/w cmd failed due to a response CRC error, it was probably
 612 *   transient, so retry the cmd.
 613 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
 614 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
 615 *   illegal cmd, retry.
 616 * Otherwise we don't understand what happened, so abort.
 617 */
 618static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
 619	struct mmc_blk_request *brq)
 620{
 621	bool prev_cmd_status_valid = true;
 622	u32 status, stop_status = 0;
 623	int err, retry;
 624
 625	/*
 626	 * Try to get card status which indicates both the card state
 627	 * and why there was no response.  If the first attempt fails,
 628	 * we can't be sure the returned status is for the r/w command.
 629	 */
 630	for (retry = 2; retry >= 0; retry--) {
 631		err = get_card_status(card, &status, 0);
 632		if (!err)
 633			break;
 634
 635		prev_cmd_status_valid = false;
 636		pr_err("%s: error %d sending status command, %sing\n",
 637		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
 638	}
 639
 640	/* We couldn't get a response from the card.  Give up. */
 641	if (err)
 642		return ERR_ABORT;
 643
 644	/*
 645	 * Check the current card state.  If it is in some data transfer
 646	 * mode, tell it to stop (and hopefully transition back to TRAN.)
 647	 */
 648	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
 649	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
 650		err = send_stop(card, &stop_status);
 651		if (err)
 652			pr_err("%s: error %d sending stop command\n",
 653			       req->rq_disk->disk_name, err);
 654
 655		/*
 656		 * If the stop cmd also timed out, the card is probably
 657		 * not present, so abort.  Other errors are bad news too.
 658		 */
 659		if (err)
 660			return ERR_ABORT;
 661	}
 662
 663	/* Check for set block count errors */
 664	if (brq->sbc.error)
 665		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
 666				prev_cmd_status_valid, status);
 667
 668	/* Check for r/w command errors */
 669	if (brq->cmd.error)
 670		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
 671				prev_cmd_status_valid, status);
 672
 673	/* Now for stop errors.  These aren't fatal to the transfer. */
 674	pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
 675	       req->rq_disk->disk_name, brq->stop.error,
 676	       brq->cmd.resp[0], status);
 677
 678	/*
 679	 * Subsitute in our own stop status as this will give the error
 680	 * state which happened during the execution of the r/w command.
 681	 */
 682	if (stop_status) {
 683		brq->stop.resp[0] = stop_status;
 684		brq->stop.error = 0;
 685	}
 686	return ERR_CONTINUE;
 687}
 688
 689static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
 690{
 691	struct mmc_blk_data *md = mq->data;
 692	struct mmc_card *card = md->queue.card;
 693	unsigned int from, nr, arg;
 694	int err = 0;
 695
 696	if (!mmc_can_erase(card)) {
 697		err = -EOPNOTSUPP;
 698		goto out;
 699	}
 700
 701	from = blk_rq_pos(req);
 702	nr = blk_rq_sectors(req);
 703
 704	if (mmc_can_trim(card))
 705		arg = MMC_TRIM_ARG;
 706	else
 707		arg = MMC_ERASE_ARG;
 708
 709	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
 710		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 711				 INAND_CMD38_ARG_EXT_CSD,
 712				 arg == MMC_TRIM_ARG ?
 713				 INAND_CMD38_ARG_TRIM :
 714				 INAND_CMD38_ARG_ERASE,
 715				 0);
 716		if (err)
 717			goto out;
 718	}
 719	err = mmc_erase(card, from, nr, arg);
 720out:
 721	spin_lock_irq(&md->lock);
 722	__blk_end_request(req, err, blk_rq_bytes(req));
 723	spin_unlock_irq(&md->lock);
 724
 725	return err ? 0 : 1;
 726}
 727
 728static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
 729				       struct request *req)
 730{
 731	struct mmc_blk_data *md = mq->data;
 732	struct mmc_card *card = md->queue.card;
 733	unsigned int from, nr, arg;
 734	int err = 0;
 735
 736	if (!mmc_can_secure_erase_trim(card)) {
 737		err = -EOPNOTSUPP;
 738		goto out;
 739	}
 740
 741	from = blk_rq_pos(req);
 742	nr = blk_rq_sectors(req);
 743
 744	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
 745		arg = MMC_SECURE_TRIM1_ARG;
 746	else
 747		arg = MMC_SECURE_ERASE_ARG;
 748
 749	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
 750		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 751				 INAND_CMD38_ARG_EXT_CSD,
 752				 arg == MMC_SECURE_TRIM1_ARG ?
 753				 INAND_CMD38_ARG_SECTRIM1 :
 754				 INAND_CMD38_ARG_SECERASE,
 755				 0);
 756		if (err)
 757			goto out;
 758	}
 759	err = mmc_erase(card, from, nr, arg);
 760	if (!err && arg == MMC_SECURE_TRIM1_ARG) {
 761		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
 762			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 763					 INAND_CMD38_ARG_EXT_CSD,
 764					 INAND_CMD38_ARG_SECTRIM2,
 765					 0);
 766			if (err)
 767				goto out;
 768		}
 769		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
 770	}
 771out:
 772	spin_lock_irq(&md->lock);
 773	__blk_end_request(req, err, blk_rq_bytes(req));
 774	spin_unlock_irq(&md->lock);
 775
 776	return err ? 0 : 1;
 777}
 778
 779static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
 780{
 781	struct mmc_blk_data *md = mq->data;
 782
 783	/*
 784	 * No-op, only service this because we need REQ_FUA for reliable
 785	 * writes.
 786	 */
 787	spin_lock_irq(&md->lock);
 788	__blk_end_request_all(req, 0);
 789	spin_unlock_irq(&md->lock);
 790
 791	return 1;
 792}
 793
 794/*
 795 * Reformat current write as a reliable write, supporting
 796 * both legacy and the enhanced reliable write MMC cards.
 797 * In each transfer we'll handle only as much as a single
 798 * reliable write can handle, thus finish the request in
 799 * partial completions.
 800 */
 801static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
 802				    struct mmc_card *card,
 803				    struct request *req)
 804{
 805	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
 806		/* Legacy mode imposes restrictions on transfers. */
 807		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
 808			brq->data.blocks = 1;
 809
 810		if (brq->data.blocks > card->ext_csd.rel_sectors)
 811			brq->data.blocks = card->ext_csd.rel_sectors;
 812		else if (brq->data.blocks < card->ext_csd.rel_sectors)
 813			brq->data.blocks = 1;
 814	}
 815}
 816
 817#define CMD_ERRORS							\
 818	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
 819	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
 820	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
 821	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
 822	 R1_CC_ERROR |		/* Card controller error */		\
 823	 R1_ERROR)		/* General/unknown error */
 824
 825static int mmc_blk_err_check(struct mmc_card *card,
 826			     struct mmc_async_req *areq)
 827{
 828	enum mmc_blk_status ret = MMC_BLK_SUCCESS;
 829	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
 830						    mmc_active);
 831	struct mmc_blk_request *brq = &mq_mrq->brq;
 832	struct request *req = mq_mrq->req;
 833
 834	/*
 835	 * sbc.error indicates a problem with the set block count
 836	 * command.  No data will have been transferred.
 837	 *
 838	 * cmd.error indicates a problem with the r/w command.  No
 839	 * data will have been transferred.
 840	 *
 841	 * stop.error indicates a problem with the stop command.  Data
 842	 * may have been transferred, or may still be transferring.
 843	 */
 844	if (brq->sbc.error || brq->cmd.error || brq->stop.error) {
 845		switch (mmc_blk_cmd_recovery(card, req, brq)) {
 846		case ERR_RETRY:
 847			return MMC_BLK_RETRY;
 848		case ERR_ABORT:
 849			return MMC_BLK_ABORT;
 850		case ERR_CONTINUE:
 851			break;
 852		}
 853	}
 854
 855	/*
 856	 * Check for errors relating to the execution of the
 857	 * initial command - such as address errors.  No data
 858	 * has been transferred.
 859	 */
 860	if (brq->cmd.resp[0] & CMD_ERRORS) {
 861		pr_err("%s: r/w command failed, status = %#x\n",
 862		       req->rq_disk->disk_name, brq->cmd.resp[0]);
 863		return MMC_BLK_ABORT;
 864	}
 865
 866	/*
 867	 * Everything else is either success, or a data error of some
 868	 * kind.  If it was a write, we may have transitioned to
 869	 * program mode, which we have to wait for it to complete.
 870	 */
 871	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
 872		u32 status;
 873		do {
 874			int err = get_card_status(card, &status, 5);
 875			if (err) {
 876				printk(KERN_ERR "%s: error %d requesting status\n",
 877				       req->rq_disk->disk_name, err);
 878				return MMC_BLK_CMD_ERR;
 879			}
 880			/*
 881			 * Some cards mishandle the status bits,
 882			 * so make sure to check both the busy
 883			 * indication and the card state.
 884			 */
 885		} while (!(status & R1_READY_FOR_DATA) ||
 886			 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
 887	}
 888
 889	if (brq->data.error) {
 890		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
 891		       req->rq_disk->disk_name, brq->data.error,
 892		       (unsigned)blk_rq_pos(req),
 893		       (unsigned)blk_rq_sectors(req),
 894		       brq->cmd.resp[0], brq->stop.resp[0]);
 895
 896		if (rq_data_dir(req) == READ) {
 897			if (brq->data.blocks > 1) {
 898				/* Redo read one sector at a time */
 899				pr_warning("%s: retrying using single block read\n",
 900					   req->rq_disk->disk_name);
 901				return MMC_BLK_RETRY_SINGLE;
 902			}
 903			return MMC_BLK_DATA_ERR;
 904		} else {
 905			return MMC_BLK_CMD_ERR;
 906		}
 907	}
 908
 909	if (ret == MMC_BLK_SUCCESS &&
 910	    blk_rq_bytes(req) != brq->data.bytes_xfered)
 911		ret = MMC_BLK_PARTIAL;
 912
 913	return ret;
 914}
 915
 916static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 917			       struct mmc_card *card,
 918			       int disable_multi,
 919			       struct mmc_queue *mq)
 920{
 921	u32 readcmd, writecmd;
 922	struct mmc_blk_request *brq = &mqrq->brq;
 923	struct request *req = mqrq->req;
 924	struct mmc_blk_data *md = mq->data;
 925
 926	/*
 927	 * Reliable writes are used to implement Forced Unit Access and
 928	 * REQ_META accesses, and are supported only on MMCs.
 929	 *
 930	 * XXX: this really needs a good explanation of why REQ_META
 931	 * is treated special.
 932	 */
 933	bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
 934			  (req->cmd_flags & REQ_META)) &&
 935		(rq_data_dir(req) == WRITE) &&
 936		(md->flags & MMC_BLK_REL_WR);
 937
 938	memset(brq, 0, sizeof(struct mmc_blk_request));
 939	brq->mrq.cmd = &brq->cmd;
 940	brq->mrq.data = &brq->data;
 941
 942	brq->cmd.arg = blk_rq_pos(req);
 943	if (!mmc_card_blockaddr(card))
 944		brq->cmd.arg <<= 9;
 945	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 946	brq->data.blksz = 512;
 947	brq->stop.opcode = MMC_STOP_TRANSMISSION;
 948	brq->stop.arg = 0;
 949	brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
 950	brq->data.blocks = blk_rq_sectors(req);
 951
 952	/*
 953	 * The block layer doesn't support all sector count
 954	 * restrictions, so we need to be prepared for too big
 955	 * requests.
 956	 */
 957	if (brq->data.blocks > card->host->max_blk_count)
 958		brq->data.blocks = card->host->max_blk_count;
 959
 960	/*
 961	 * After a read error, we redo the request one sector at a time
 962	 * in order to accurately determine which sectors can be read
 963	 * successfully.
 964	 */
 965	if (disable_multi && brq->data.blocks > 1)
 966		brq->data.blocks = 1;
 967
 968	if (brq->data.blocks > 1 || do_rel_wr) {
 969		/* SPI multiblock writes terminate using a special
 970		 * token, not a STOP_TRANSMISSION request.
 971		 */
 972		if (!mmc_host_is_spi(card->host) ||
 973		    rq_data_dir(req) == READ)
 974			brq->mrq.stop = &brq->stop;
 975		readcmd = MMC_READ_MULTIPLE_BLOCK;
 976		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
 977	} else {
 978		brq->mrq.stop = NULL;
 979		readcmd = MMC_READ_SINGLE_BLOCK;
 980		writecmd = MMC_WRITE_BLOCK;
 981	}
 982	if (rq_data_dir(req) == READ) {
 983		brq->cmd.opcode = readcmd;
 984		brq->data.flags |= MMC_DATA_READ;
 985	} else {
 986		brq->cmd.opcode = writecmd;
 987		brq->data.flags |= MMC_DATA_WRITE;
 988	}
 989
 990	if (do_rel_wr)
 991		mmc_apply_rel_rw(brq, card, req);
 992
 993	/*
 994	 * Pre-defined multi-block transfers are preferable to
 995	 * open ended-ones (and necessary for reliable writes).
 996	 * However, it is not sufficient to just send CMD23,
 997	 * and avoid the final CMD12, as on an error condition
 998	 * CMD12 (stop) needs to be sent anyway. This, coupled
 999	 * with Auto-CMD23 enhancements provided by some
1000	 * hosts, means that the complexity of dealing
1001	 * with this is best left to the host. If CMD23 is
1002	 * supported by card and host, we'll fill sbc in and let
1003	 * the host deal with handling it correctly. This means
1004	 * that for hosts that don't expose MMC_CAP_CMD23, no
1005	 * change of behavior will be observed.
1006	 *
1007	 * N.B: Some MMC cards experience perf degradation.
1008	 * We'll avoid using CMD23-bounded multiblock writes for
1009	 * these, while retaining features like reliable writes.
1010	 */
1011
1012	if ((md->flags & MMC_BLK_CMD23) &&
1013	    mmc_op_multi(brq->cmd.opcode) &&
1014	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
1015		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1016		brq->sbc.arg = brq->data.blocks |
1017			(do_rel_wr ? (1 << 31) : 0);
1018		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1019		brq->mrq.sbc = &brq->sbc;
1020	}
1021
1022	mmc_set_data_timeout(&brq->data, card);
1023
1024	brq->data.sg = mqrq->sg;
1025	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1026
1027	/*
1028	 * Adjust the sg list so it is the same size as the
1029	 * request.
1030	 */
1031	if (brq->data.blocks != blk_rq_sectors(req)) {
1032		int i, data_size = brq->data.blocks << 9;
1033		struct scatterlist *sg;
1034
1035		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1036			data_size -= sg->length;
1037			if (data_size <= 0) {
1038				sg->length += data_size;
1039				i++;
1040				break;
1041			}
1042		}
1043		brq->data.sg_len = i;
1044	}
1045
1046	mqrq->mmc_active.mrq = &brq->mrq;
1047	mqrq->mmc_active.err_check = mmc_blk_err_check;
1048
1049	mmc_queue_bounce_pre(mqrq);
1050}
1051
1052static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1053{
1054	struct mmc_blk_data *md = mq->data;
1055	struct mmc_card *card = md->queue.card;
1056	struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1057	int ret = 1, disable_multi = 0, retry = 0;
1058	enum mmc_blk_status status;
1059	struct mmc_queue_req *mq_rq;
1060	struct request *req;
1061	struct mmc_async_req *areq;
1062
1063	if (!rqc && !mq->mqrq_prev->req)
1064		return 0;
1065
1066	do {
1067		if (rqc) {
1068			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1069			areq = &mq->mqrq_cur->mmc_active;
1070		} else
1071			areq = NULL;
1072		areq = mmc_start_req(card->host, areq, (int *) &status);
1073		if (!areq)
1074			return 0;
1075
1076		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1077		brq = &mq_rq->brq;
1078		req = mq_rq->req;
1079		mmc_queue_bounce_post(mq_rq);
1080
1081		switch (status) {
1082		case MMC_BLK_SUCCESS:
1083		case MMC_BLK_PARTIAL:
1084			/*
1085			 * A block was successfully transferred.
1086			 */
1087			spin_lock_irq(&md->lock);
1088			ret = __blk_end_request(req, 0,
1089						brq->data.bytes_xfered);
1090			spin_unlock_irq(&md->lock);
1091			if (status == MMC_BLK_SUCCESS && ret) {
1092				/*
1093				 * The blk_end_request has returned non zero
1094				 * even though all data is transfered and no
1095				 * erros returned by host.
1096				 * If this happen it's a bug.
1097				 */
1098				printk(KERN_ERR "%s BUG rq_tot %d d_xfer %d\n",
1099				       __func__, blk_rq_bytes(req),
1100				       brq->data.bytes_xfered);
1101				rqc = NULL;
1102				goto cmd_abort;
1103			}
1104			break;
1105		case MMC_BLK_CMD_ERR:
1106			goto cmd_err;
1107		case MMC_BLK_RETRY_SINGLE:
1108			disable_multi = 1;
1109			break;
1110		case MMC_BLK_RETRY:
1111			if (retry++ < 5)
1112				break;
1113		case MMC_BLK_ABORT:
1114			goto cmd_abort;
1115		case MMC_BLK_DATA_ERR:
1116			/*
1117			 * After an error, we redo I/O one sector at a
1118			 * time, so we only reach here after trying to
1119			 * read a single sector.
1120			 */
1121			spin_lock_irq(&md->lock);
1122			ret = __blk_end_request(req, -EIO,
1123						brq->data.blksz);
1124			spin_unlock_irq(&md->lock);
1125			if (!ret)
1126				goto start_new_req;
1127			break;
1128		}
1129
1130		if (ret) {
1131			/*
1132			 * In case of a none complete request
1133			 * prepare it again and resend.
1134			 */
1135			mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1136			mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1137		}
1138	} while (ret);
1139
1140	return 1;
1141
1142 cmd_err:
1143 	/*
1144 	 * If this is an SD card and we're writing, we can first
1145 	 * mark the known good sectors as ok.
1146 	 *
1147	 * If the card is not SD, we can still ok written sectors
1148	 * as reported by the controller (which might be less than
1149	 * the real number of written sectors, but never more).
1150	 */
1151	if (mmc_card_sd(card)) {
1152		u32 blocks;
1153
1154		blocks = mmc_sd_num_wr_blocks(card);
1155		if (blocks != (u32)-1) {
1156			spin_lock_irq(&md->lock);
1157			ret = __blk_end_request(req, 0, blocks << 9);
1158			spin_unlock_irq(&md->lock);
1159		}
1160	} else {
1161		spin_lock_irq(&md->lock);
1162		ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1163		spin_unlock_irq(&md->lock);
1164	}
1165
1166 cmd_abort:
1167	spin_lock_irq(&md->lock);
1168	while (ret)
1169		ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1170	spin_unlock_irq(&md->lock);
1171
1172 start_new_req:
1173	if (rqc) {
1174		mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1175		mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1176	}
1177
1178	return 0;
1179}
1180
1181static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1182{
1183	int ret;
1184	struct mmc_blk_data *md = mq->data;
1185	struct mmc_card *card = md->queue.card;
1186
1187	if (req && !mq->mqrq_prev->req)
1188		/* claim host only for the first request */
1189		mmc_claim_host(card->host);
1190
1191	ret = mmc_blk_part_switch(card, md);
1192	if (ret) {
1193		ret = 0;
1194		goto out;
1195	}
1196
1197	if (req && req->cmd_flags & REQ_DISCARD) {
1198		/* complete ongoing async transfer before issuing discard */
1199		if (card->host->areq)
1200			mmc_blk_issue_rw_rq(mq, NULL);
1201		if (req->cmd_flags & REQ_SECURE)
1202			ret = mmc_blk_issue_secdiscard_rq(mq, req);
1203		else
1204			ret = mmc_blk_issue_discard_rq(mq, req);
1205	} else if (req && req->cmd_flags & REQ_FLUSH) {
1206		/* complete ongoing async transfer before issuing flush */
1207		if (card->host->areq)
1208			mmc_blk_issue_rw_rq(mq, NULL);
1209		ret = mmc_blk_issue_flush(mq, req);
1210	} else {
1211		ret = mmc_blk_issue_rw_rq(mq, req);
1212	}
1213
1214out:
1215	if (!req)
1216		/* release host only when there are no more requests */
1217		mmc_release_host(card->host);
1218	return ret;
1219}
1220
1221static inline int mmc_blk_readonly(struct mmc_card *card)
1222{
1223	return mmc_card_readonly(card) ||
1224	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1225}
1226
1227static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1228					      struct device *parent,
1229					      sector_t size,
1230					      bool default_ro,
1231					      const char *subname)
1232{
1233	struct mmc_blk_data *md;
1234	int devidx, ret;
1235
1236	devidx = find_first_zero_bit(dev_use, max_devices);
1237	if (devidx >= max_devices)
1238		return ERR_PTR(-ENOSPC);
1239	__set_bit(devidx, dev_use);
1240
1241	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1242	if (!md) {
1243		ret = -ENOMEM;
1244		goto out;
1245	}
1246
1247	/*
1248	 * !subname implies we are creating main mmc_blk_data that will be
1249	 * associated with mmc_card with mmc_set_drvdata. Due to device
1250	 * partitions, devidx will not coincide with a per-physical card
1251	 * index anymore so we keep track of a name index.
1252	 */
1253	if (!subname) {
1254		md->name_idx = find_first_zero_bit(name_use, max_devices);
1255		__set_bit(md->name_idx, name_use);
1256	}
1257	else
1258		md->name_idx = ((struct mmc_blk_data *)
1259				dev_to_disk(parent)->private_data)->name_idx;
1260
1261	/*
1262	 * Set the read-only status based on the supported commands
1263	 * and the write protect switch.
1264	 */
1265	md->read_only = mmc_blk_readonly(card);
1266
1267	md->disk = alloc_disk(perdev_minors);
1268	if (md->disk == NULL) {
1269		ret = -ENOMEM;
1270		goto err_kfree;
1271	}
1272
1273	spin_lock_init(&md->lock);
1274	INIT_LIST_HEAD(&md->part);
1275	md->usage = 1;
1276
1277	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1278	if (ret)
1279		goto err_putdisk;
1280
1281	md->queue.issue_fn = mmc_blk_issue_rq;
1282	md->queue.data = md;
1283
1284	md->disk->major	= MMC_BLOCK_MAJOR;
1285	md->disk->first_minor = devidx * perdev_minors;
1286	md->disk->fops = &mmc_bdops;
1287	md->disk->private_data = md;
1288	md->disk->queue = md->queue.queue;
1289	md->disk->driverfs_dev = parent;
1290	set_disk_ro(md->disk, md->read_only || default_ro);
1291
1292	/*
1293	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1294	 *
1295	 * - be set for removable media with permanent block devices
1296	 * - be unset for removable block devices with permanent media
1297	 *
1298	 * Since MMC block devices clearly fall under the second
1299	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1300	 * should use the block device creation/destruction hotplug
1301	 * messages to tell when the card is present.
1302	 */
1303
1304	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1305		 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1306
1307	blk_queue_logical_block_size(md->queue.queue, 512);
1308	set_capacity(md->disk, size);
1309
1310	if (mmc_host_cmd23(card->host)) {
1311		if (mmc_card_mmc(card) ||
1312		    (mmc_card_sd(card) &&
1313		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1314			md->flags |= MMC_BLK_CMD23;
1315	}
1316
1317	if (mmc_card_mmc(card) &&
1318	    md->flags & MMC_BLK_CMD23 &&
1319	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1320	     card->ext_csd.rel_sectors)) {
1321		md->flags |= MMC_BLK_REL_WR;
1322		blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1323	}
1324
1325	return md;
1326
1327 err_putdisk:
1328	put_disk(md->disk);
1329 err_kfree:
1330	kfree(md);
1331 out:
1332	return ERR_PTR(ret);
1333}
1334
1335static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1336{
1337	sector_t size;
1338	struct mmc_blk_data *md;
1339
1340	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1341		/*
1342		 * The EXT_CSD sector count is in number or 512 byte
1343		 * sectors.
1344		 */
1345		size = card->ext_csd.sectors;
1346	} else {
1347		/*
1348		 * The CSD capacity field is in units of read_blkbits.
1349		 * set_capacity takes units of 512 bytes.
1350		 */
1351		size = card->csd.capacity << (card->csd.read_blkbits - 9);
1352	}
1353
1354	md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL);
1355	return md;
1356}
1357
1358static int mmc_blk_alloc_part(struct mmc_card *card,
1359			      struct mmc_blk_data *md,
1360			      unsigned int part_type,
1361			      sector_t size,
1362			      bool default_ro,
1363			      const char *subname)
1364{
1365	char cap_str[10];
1366	struct mmc_blk_data *part_md;
1367
1368	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1369				    subname);
1370	if (IS_ERR(part_md))
1371		return PTR_ERR(part_md);
1372	part_md->part_type = part_type;
1373	list_add(&part_md->part, &md->part);
1374
1375	string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1376			cap_str, sizeof(cap_str));
1377	printk(KERN_INFO "%s: %s %s partition %u %s\n",
1378	       part_md->disk->disk_name, mmc_card_id(card),
1379	       mmc_card_name(card), part_md->part_type, cap_str);
1380	return 0;
1381}
1382
1383static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1384{
1385	int ret = 0;
1386
1387	if (!mmc_card_mmc(card))
1388		return 0;
1389
1390	if (card->ext_csd.boot_size) {
1391		ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT0,
1392					 card->ext_csd.boot_size >> 9,
1393					 true,
1394					 "boot0");
1395		if (ret)
1396			return ret;
1397		ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT1,
1398					 card->ext_csd.boot_size >> 9,
1399					 true,
1400					 "boot1");
1401		if (ret)
1402			return ret;
1403	}
1404
1405	return ret;
1406}
1407
1408static int
1409mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1410{
1411	int err;
1412
1413	mmc_claim_host(card->host);
1414	err = mmc_set_blocklen(card, 512);
1415	mmc_release_host(card->host);
1416
1417	if (err) {
1418		printk(KERN_ERR "%s: unable to set block size to 512: %d\n",
1419			md->disk->disk_name, err);
1420		return -EINVAL;
1421	}
1422
1423	return 0;
1424}
1425
1426static void mmc_blk_remove_req(struct mmc_blk_data *md)
1427{
1428	if (md) {
1429		if (md->disk->flags & GENHD_FL_UP) {
1430			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1431
1432			/* Stop new requests from getting into the queue */
1433			del_gendisk(md->disk);
1434		}
1435
1436		/* Then flush out any already in there */
1437		mmc_cleanup_queue(&md->queue);
1438		mmc_blk_put(md);
1439	}
1440}
1441
1442static void mmc_blk_remove_parts(struct mmc_card *card,
1443				 struct mmc_blk_data *md)
1444{
1445	struct list_head *pos, *q;
1446	struct mmc_blk_data *part_md;
1447
1448	__clear_bit(md->name_idx, name_use);
1449	list_for_each_safe(pos, q, &md->part) {
1450		part_md = list_entry(pos, struct mmc_blk_data, part);
1451		list_del(pos);
1452		mmc_blk_remove_req(part_md);
1453	}
1454}
1455
1456static int mmc_add_disk(struct mmc_blk_data *md)
1457{
1458	int ret;
1459
1460	add_disk(md->disk);
1461	md->force_ro.show = force_ro_show;
1462	md->force_ro.store = force_ro_store;
1463	sysfs_attr_init(&md->force_ro.attr);
1464	md->force_ro.attr.name = "force_ro";
1465	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1466	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1467	if (ret)
1468		del_gendisk(md->disk);
1469
1470	return ret;
1471}
1472
1473static const struct mmc_fixup blk_fixups[] =
1474{
1475	MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1476	MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1477	MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1478	MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1479	MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1480
1481	/*
1482	 * Some MMC cards experience performance degradation with CMD23
1483	 * instead of CMD12-bounded multiblock transfers. For now we'll
1484	 * black list what's bad...
1485	 * - Certain Toshiba cards.
1486	 *
1487	 * N.B. This doesn't affect SD cards.
1488	 */
1489	MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1490		  MMC_QUIRK_BLK_NO_CMD23),
1491	MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1492		  MMC_QUIRK_BLK_NO_CMD23),
1493	MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1494		  MMC_QUIRK_BLK_NO_CMD23),
1495	END_FIXUP
1496};
1497
1498static int mmc_blk_probe(struct mmc_card *card)
1499{
1500	struct mmc_blk_data *md, *part_md;
1501	int err;
1502	char cap_str[10];
1503
1504	/*
1505	 * Check that the card supports the command class(es) we need.
1506	 */
1507	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1508		return -ENODEV;
1509
1510	md = mmc_blk_alloc(card);
1511	if (IS_ERR(md))
1512		return PTR_ERR(md);
1513
1514	err = mmc_blk_set_blksize(md, card);
1515	if (err)
1516		goto out;
1517
1518	string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1519			cap_str, sizeof(cap_str));
1520	printk(KERN_INFO "%s: %s %s %s %s\n",
1521		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1522		cap_str, md->read_only ? "(ro)" : "");
1523
1524	if (mmc_blk_alloc_parts(card, md))
1525		goto out;
1526
1527	mmc_set_drvdata(card, md);
1528	mmc_fixup_device(card, blk_fixups);
1529
1530	if (mmc_add_disk(md))
1531		goto out;
1532
1533	list_for_each_entry(part_md, &md->part, part) {
1534		if (mmc_add_disk(part_md))
1535			goto out;
1536	}
1537	return 0;
1538
1539 out:
1540	mmc_blk_remove_parts(card, md);
1541	mmc_blk_remove_req(md);
1542	return err;
1543}
1544
1545static void mmc_blk_remove(struct mmc_card *card)
1546{
1547	struct mmc_blk_data *md = mmc_get_drvdata(card);
1548
1549	mmc_blk_remove_parts(card, md);
1550	mmc_claim_host(card->host);
1551	mmc_blk_part_switch(card, md);
1552	mmc_release_host(card->host);
1553	mmc_blk_remove_req(md);
1554	mmc_set_drvdata(card, NULL);
1555}
1556
1557#ifdef CONFIG_PM
1558static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1559{
1560	struct mmc_blk_data *part_md;
1561	struct mmc_blk_data *md = mmc_get_drvdata(card);
1562
1563	if (md) {
1564		mmc_queue_suspend(&md->queue);
1565		list_for_each_entry(part_md, &md->part, part) {
1566			mmc_queue_suspend(&part_md->queue);
1567		}
1568	}
1569	return 0;
1570}
1571
1572static int mmc_blk_resume(struct mmc_card *card)
1573{
1574	struct mmc_blk_data *part_md;
1575	struct mmc_blk_data *md = mmc_get_drvdata(card);
1576
1577	if (md) {
1578		mmc_blk_set_blksize(md, card);
1579
1580		/*
1581		 * Resume involves the card going into idle state,
1582		 * so current partition is always the main one.
1583		 */
1584		md->part_curr = md->part_type;
1585		mmc_queue_resume(&md->queue);
1586		list_for_each_entry(part_md, &md->part, part) {
1587			mmc_queue_resume(&part_md->queue);
1588		}
1589	}
1590	return 0;
1591}
1592#else
1593#define	mmc_blk_suspend	NULL
1594#define mmc_blk_resume	NULL
1595#endif
1596
1597static struct mmc_driver mmc_driver = {
1598	.drv		= {
1599		.name	= "mmcblk",
1600	},
1601	.probe		= mmc_blk_probe,
1602	.remove		= mmc_blk_remove,
1603	.suspend	= mmc_blk_suspend,
1604	.resume		= mmc_blk_resume,
1605};
1606
1607static int __init mmc_blk_init(void)
1608{
1609	int res;
1610
1611	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1612		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1613
1614	max_devices = 256 / perdev_minors;
1615
1616	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1617	if (res)
1618		goto out;
1619
1620	res = mmc_register_driver(&mmc_driver);
1621	if (res)
1622		goto out2;
1623
1624	return 0;
1625 out2:
1626	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1627 out:
1628	return res;
1629}
1630
1631static void __exit mmc_blk_exit(void)
1632{
1633	mmc_unregister_driver(&mmc_driver);
1634	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1635}
1636
1637module_init(mmc_blk_init);
1638module_exit(mmc_blk_exit);
1639
1640MODULE_LICENSE("GPL");
1641MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1642