Loading...
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/kthread.h>
36#include <linux/blkdev.h>
37#include <linux/sysctl.h>
38#include <linux/seq_file.h>
39#include <linux/mutex.h>
40#include <linux/buffer_head.h> /* for invalidate_bdev */
41#include <linux/poll.h>
42#include <linux/ctype.h>
43#include <linux/string.h>
44#include <linux/hdreg.h>
45#include <linux/proc_fs.h>
46#include <linux/random.h>
47#include <linux/reboot.h>
48#include <linux/file.h>
49#include <linux/compat.h>
50#include <linux/delay.h>
51#include <linux/raid/md_p.h>
52#include <linux/raid/md_u.h>
53#include <linux/slab.h>
54#include "md.h"
55#include "bitmap.h"
56
57#define DEBUG 0
58#define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60#ifndef MODULE
61static void autostart_arrays(int part);
62#endif
63
64/* pers_list is a list of registered personalities protected
65 * by pers_lock.
66 * pers_lock does extra service to protect accesses to
67 * mddev->thread when the mutex cannot be held.
68 */
69static LIST_HEAD(pers_list);
70static DEFINE_SPINLOCK(pers_lock);
71
72static void md_print_devices(void);
73
74static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
75static struct workqueue_struct *md_wq;
76static struct workqueue_struct *md_misc_wq;
77
78#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80/*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86/*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99static int sysctl_speed_limit_min = 1000;
100static int sysctl_speed_limit_max = 200000;
101static inline int speed_min(mddev_t *mddev)
102{
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105}
106
107static inline int speed_max(mddev_t *mddev)
108{
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111}
112
113static struct ctl_table_header *raid_table_header;
114
115static ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131};
132
133static ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141};
142
143static ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151};
152
153static const struct block_device_operations md_fops;
154
155static int start_readonly;
156
157/* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161static void mddev_bio_destructor(struct bio *bio)
162{
163 mddev_t *mddev, **mddevp;
164
165 mddevp = (void*)bio;
166 mddev = mddevp[-1];
167
168 bio_free(bio, mddev->bio_set);
169}
170
171struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
172 mddev_t *mddev)
173{
174 struct bio *b;
175 mddev_t **mddevp;
176
177 if (!mddev || !mddev->bio_set)
178 return bio_alloc(gfp_mask, nr_iovecs);
179
180 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
181 mddev->bio_set);
182 if (!b)
183 return NULL;
184 mddevp = (void*)b;
185 mddevp[-1] = mddev;
186 b->bi_destructor = mddev_bio_destructor;
187 return b;
188}
189EXPORT_SYMBOL_GPL(bio_alloc_mddev);
190
191struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
192 mddev_t *mddev)
193{
194 struct bio *b;
195 mddev_t **mddevp;
196
197 if (!mddev || !mddev->bio_set)
198 return bio_clone(bio, gfp_mask);
199
200 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
201 mddev->bio_set);
202 if (!b)
203 return NULL;
204 mddevp = (void*)b;
205 mddevp[-1] = mddev;
206 b->bi_destructor = mddev_bio_destructor;
207 __bio_clone(b, bio);
208 if (bio_integrity(bio)) {
209 int ret;
210
211 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
212
213 if (ret < 0) {
214 bio_put(b);
215 return NULL;
216 }
217 }
218
219 return b;
220}
221EXPORT_SYMBOL_GPL(bio_clone_mddev);
222
223void md_trim_bio(struct bio *bio, int offset, int size)
224{
225 /* 'bio' is a cloned bio which we need to trim to match
226 * the given offset and size.
227 * This requires adjusting bi_sector, bi_size, and bi_io_vec
228 */
229 int i;
230 struct bio_vec *bvec;
231 int sofar = 0;
232
233 size <<= 9;
234 if (offset == 0 && size == bio->bi_size)
235 return;
236
237 bio->bi_sector += offset;
238 bio->bi_size = size;
239 offset <<= 9;
240 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
241
242 while (bio->bi_idx < bio->bi_vcnt &&
243 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
244 /* remove this whole bio_vec */
245 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
246 bio->bi_idx++;
247 }
248 if (bio->bi_idx < bio->bi_vcnt) {
249 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
250 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
251 }
252 /* avoid any complications with bi_idx being non-zero*/
253 if (bio->bi_idx) {
254 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
255 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
256 bio->bi_vcnt -= bio->bi_idx;
257 bio->bi_idx = 0;
258 }
259 /* Make sure vcnt and last bv are not too big */
260 bio_for_each_segment(bvec, bio, i) {
261 if (sofar + bvec->bv_len > size)
262 bvec->bv_len = size - sofar;
263 if (bvec->bv_len == 0) {
264 bio->bi_vcnt = i;
265 break;
266 }
267 sofar += bvec->bv_len;
268 }
269}
270EXPORT_SYMBOL_GPL(md_trim_bio);
271
272/*
273 * We have a system wide 'event count' that is incremented
274 * on any 'interesting' event, and readers of /proc/mdstat
275 * can use 'poll' or 'select' to find out when the event
276 * count increases.
277 *
278 * Events are:
279 * start array, stop array, error, add device, remove device,
280 * start build, activate spare
281 */
282static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
283static atomic_t md_event_count;
284void md_new_event(mddev_t *mddev)
285{
286 atomic_inc(&md_event_count);
287 wake_up(&md_event_waiters);
288}
289EXPORT_SYMBOL_GPL(md_new_event);
290
291/* Alternate version that can be called from interrupts
292 * when calling sysfs_notify isn't needed.
293 */
294static void md_new_event_inintr(mddev_t *mddev)
295{
296 atomic_inc(&md_event_count);
297 wake_up(&md_event_waiters);
298}
299
300/*
301 * Enables to iterate over all existing md arrays
302 * all_mddevs_lock protects this list.
303 */
304static LIST_HEAD(all_mddevs);
305static DEFINE_SPINLOCK(all_mddevs_lock);
306
307
308/*
309 * iterates through all used mddevs in the system.
310 * We take care to grab the all_mddevs_lock whenever navigating
311 * the list, and to always hold a refcount when unlocked.
312 * Any code which breaks out of this loop while own
313 * a reference to the current mddev and must mddev_put it.
314 */
315#define for_each_mddev(mddev,tmp) \
316 \
317 for (({ spin_lock(&all_mddevs_lock); \
318 tmp = all_mddevs.next; \
319 mddev = NULL;}); \
320 ({ if (tmp != &all_mddevs) \
321 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
322 spin_unlock(&all_mddevs_lock); \
323 if (mddev) mddev_put(mddev); \
324 mddev = list_entry(tmp, mddev_t, all_mddevs); \
325 tmp != &all_mddevs;}); \
326 ({ spin_lock(&all_mddevs_lock); \
327 tmp = tmp->next;}) \
328 )
329
330
331/* Rather than calling directly into the personality make_request function,
332 * IO requests come here first so that we can check if the device is
333 * being suspended pending a reconfiguration.
334 * We hold a refcount over the call to ->make_request. By the time that
335 * call has finished, the bio has been linked into some internal structure
336 * and so is visible to ->quiesce(), so we don't need the refcount any more.
337 */
338static int md_make_request(struct request_queue *q, struct bio *bio)
339{
340 const int rw = bio_data_dir(bio);
341 mddev_t *mddev = q->queuedata;
342 int rv;
343 int cpu;
344 unsigned int sectors;
345
346 if (mddev == NULL || mddev->pers == NULL
347 || !mddev->ready) {
348 bio_io_error(bio);
349 return 0;
350 }
351 smp_rmb(); /* Ensure implications of 'active' are visible */
352 rcu_read_lock();
353 if (mddev->suspended) {
354 DEFINE_WAIT(__wait);
355 for (;;) {
356 prepare_to_wait(&mddev->sb_wait, &__wait,
357 TASK_UNINTERRUPTIBLE);
358 if (!mddev->suspended)
359 break;
360 rcu_read_unlock();
361 schedule();
362 rcu_read_lock();
363 }
364 finish_wait(&mddev->sb_wait, &__wait);
365 }
366 atomic_inc(&mddev->active_io);
367 rcu_read_unlock();
368
369 /*
370 * save the sectors now since our bio can
371 * go away inside make_request
372 */
373 sectors = bio_sectors(bio);
374 rv = mddev->pers->make_request(mddev, bio);
375
376 cpu = part_stat_lock();
377 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
378 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
379 part_stat_unlock();
380
381 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
382 wake_up(&mddev->sb_wait);
383
384 return rv;
385}
386
387/* mddev_suspend makes sure no new requests are submitted
388 * to the device, and that any requests that have been submitted
389 * are completely handled.
390 * Once ->stop is called and completes, the module will be completely
391 * unused.
392 */
393void mddev_suspend(mddev_t *mddev)
394{
395 BUG_ON(mddev->suspended);
396 mddev->suspended = 1;
397 synchronize_rcu();
398 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
399 mddev->pers->quiesce(mddev, 1);
400}
401EXPORT_SYMBOL_GPL(mddev_suspend);
402
403void mddev_resume(mddev_t *mddev)
404{
405 mddev->suspended = 0;
406 wake_up(&mddev->sb_wait);
407 mddev->pers->quiesce(mddev, 0);
408
409 md_wakeup_thread(mddev->thread);
410 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
411}
412EXPORT_SYMBOL_GPL(mddev_resume);
413
414int mddev_congested(mddev_t *mddev, int bits)
415{
416 return mddev->suspended;
417}
418EXPORT_SYMBOL(mddev_congested);
419
420/*
421 * Generic flush handling for md
422 */
423
424static void md_end_flush(struct bio *bio, int err)
425{
426 mdk_rdev_t *rdev = bio->bi_private;
427 mddev_t *mddev = rdev->mddev;
428
429 rdev_dec_pending(rdev, mddev);
430
431 if (atomic_dec_and_test(&mddev->flush_pending)) {
432 /* The pre-request flush has finished */
433 queue_work(md_wq, &mddev->flush_work);
434 }
435 bio_put(bio);
436}
437
438static void md_submit_flush_data(struct work_struct *ws);
439
440static void submit_flushes(struct work_struct *ws)
441{
442 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
443 mdk_rdev_t *rdev;
444
445 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
446 atomic_set(&mddev->flush_pending, 1);
447 rcu_read_lock();
448 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
449 if (rdev->raid_disk >= 0 &&
450 !test_bit(Faulty, &rdev->flags)) {
451 /* Take two references, one is dropped
452 * when request finishes, one after
453 * we reclaim rcu_read_lock
454 */
455 struct bio *bi;
456 atomic_inc(&rdev->nr_pending);
457 atomic_inc(&rdev->nr_pending);
458 rcu_read_unlock();
459 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
460 bi->bi_end_io = md_end_flush;
461 bi->bi_private = rdev;
462 bi->bi_bdev = rdev->bdev;
463 atomic_inc(&mddev->flush_pending);
464 submit_bio(WRITE_FLUSH, bi);
465 rcu_read_lock();
466 rdev_dec_pending(rdev, mddev);
467 }
468 rcu_read_unlock();
469 if (atomic_dec_and_test(&mddev->flush_pending))
470 queue_work(md_wq, &mddev->flush_work);
471}
472
473static void md_submit_flush_data(struct work_struct *ws)
474{
475 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
476 struct bio *bio = mddev->flush_bio;
477
478 if (bio->bi_size == 0)
479 /* an empty barrier - all done */
480 bio_endio(bio, 0);
481 else {
482 bio->bi_rw &= ~REQ_FLUSH;
483 if (mddev->pers->make_request(mddev, bio))
484 generic_make_request(bio);
485 }
486
487 mddev->flush_bio = NULL;
488 wake_up(&mddev->sb_wait);
489}
490
491void md_flush_request(mddev_t *mddev, struct bio *bio)
492{
493 spin_lock_irq(&mddev->write_lock);
494 wait_event_lock_irq(mddev->sb_wait,
495 !mddev->flush_bio,
496 mddev->write_lock, /*nothing*/);
497 mddev->flush_bio = bio;
498 spin_unlock_irq(&mddev->write_lock);
499
500 INIT_WORK(&mddev->flush_work, submit_flushes);
501 queue_work(md_wq, &mddev->flush_work);
502}
503EXPORT_SYMBOL(md_flush_request);
504
505/* Support for plugging.
506 * This mirrors the plugging support in request_queue, but does not
507 * require having a whole queue or request structures.
508 * We allocate an md_plug_cb for each md device and each thread it gets
509 * plugged on. This links tot the private plug_handle structure in the
510 * personality data where we keep a count of the number of outstanding
511 * plugs so other code can see if a plug is active.
512 */
513struct md_plug_cb {
514 struct blk_plug_cb cb;
515 mddev_t *mddev;
516};
517
518static void plugger_unplug(struct blk_plug_cb *cb)
519{
520 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
521 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
522 md_wakeup_thread(mdcb->mddev->thread);
523 kfree(mdcb);
524}
525
526/* Check that an unplug wakeup will come shortly.
527 * If not, wakeup the md thread immediately
528 */
529int mddev_check_plugged(mddev_t *mddev)
530{
531 struct blk_plug *plug = current->plug;
532 struct md_plug_cb *mdcb;
533
534 if (!plug)
535 return 0;
536
537 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
538 if (mdcb->cb.callback == plugger_unplug &&
539 mdcb->mddev == mddev) {
540 /* Already on the list, move to top */
541 if (mdcb != list_first_entry(&plug->cb_list,
542 struct md_plug_cb,
543 cb.list))
544 list_move(&mdcb->cb.list, &plug->cb_list);
545 return 1;
546 }
547 }
548 /* Not currently on the callback list */
549 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
550 if (!mdcb)
551 return 0;
552
553 mdcb->mddev = mddev;
554 mdcb->cb.callback = plugger_unplug;
555 atomic_inc(&mddev->plug_cnt);
556 list_add(&mdcb->cb.list, &plug->cb_list);
557 return 1;
558}
559EXPORT_SYMBOL_GPL(mddev_check_plugged);
560
561static inline mddev_t *mddev_get(mddev_t *mddev)
562{
563 atomic_inc(&mddev->active);
564 return mddev;
565}
566
567static void mddev_delayed_delete(struct work_struct *ws);
568
569static void mddev_put(mddev_t *mddev)
570{
571 struct bio_set *bs = NULL;
572
573 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
574 return;
575 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
576 mddev->ctime == 0 && !mddev->hold_active) {
577 /* Array is not configured at all, and not held active,
578 * so destroy it */
579 list_del(&mddev->all_mddevs);
580 bs = mddev->bio_set;
581 mddev->bio_set = NULL;
582 if (mddev->gendisk) {
583 /* We did a probe so need to clean up. Call
584 * queue_work inside the spinlock so that
585 * flush_workqueue() after mddev_find will
586 * succeed in waiting for the work to be done.
587 */
588 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
589 queue_work(md_misc_wq, &mddev->del_work);
590 } else
591 kfree(mddev);
592 }
593 spin_unlock(&all_mddevs_lock);
594 if (bs)
595 bioset_free(bs);
596}
597
598void mddev_init(mddev_t *mddev)
599{
600 mutex_init(&mddev->open_mutex);
601 mutex_init(&mddev->reconfig_mutex);
602 mutex_init(&mddev->bitmap_info.mutex);
603 INIT_LIST_HEAD(&mddev->disks);
604 INIT_LIST_HEAD(&mddev->all_mddevs);
605 init_timer(&mddev->safemode_timer);
606 atomic_set(&mddev->active, 1);
607 atomic_set(&mddev->openers, 0);
608 atomic_set(&mddev->active_io, 0);
609 atomic_set(&mddev->plug_cnt, 0);
610 spin_lock_init(&mddev->write_lock);
611 atomic_set(&mddev->flush_pending, 0);
612 init_waitqueue_head(&mddev->sb_wait);
613 init_waitqueue_head(&mddev->recovery_wait);
614 mddev->reshape_position = MaxSector;
615 mddev->resync_min = 0;
616 mddev->resync_max = MaxSector;
617 mddev->level = LEVEL_NONE;
618}
619EXPORT_SYMBOL_GPL(mddev_init);
620
621static mddev_t * mddev_find(dev_t unit)
622{
623 mddev_t *mddev, *new = NULL;
624
625 if (unit && MAJOR(unit) != MD_MAJOR)
626 unit &= ~((1<<MdpMinorShift)-1);
627
628 retry:
629 spin_lock(&all_mddevs_lock);
630
631 if (unit) {
632 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
633 if (mddev->unit == unit) {
634 mddev_get(mddev);
635 spin_unlock(&all_mddevs_lock);
636 kfree(new);
637 return mddev;
638 }
639
640 if (new) {
641 list_add(&new->all_mddevs, &all_mddevs);
642 spin_unlock(&all_mddevs_lock);
643 new->hold_active = UNTIL_IOCTL;
644 return new;
645 }
646 } else if (new) {
647 /* find an unused unit number */
648 static int next_minor = 512;
649 int start = next_minor;
650 int is_free = 0;
651 int dev = 0;
652 while (!is_free) {
653 dev = MKDEV(MD_MAJOR, next_minor);
654 next_minor++;
655 if (next_minor > MINORMASK)
656 next_minor = 0;
657 if (next_minor == start) {
658 /* Oh dear, all in use. */
659 spin_unlock(&all_mddevs_lock);
660 kfree(new);
661 return NULL;
662 }
663
664 is_free = 1;
665 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
666 if (mddev->unit == dev) {
667 is_free = 0;
668 break;
669 }
670 }
671 new->unit = dev;
672 new->md_minor = MINOR(dev);
673 new->hold_active = UNTIL_STOP;
674 list_add(&new->all_mddevs, &all_mddevs);
675 spin_unlock(&all_mddevs_lock);
676 return new;
677 }
678 spin_unlock(&all_mddevs_lock);
679
680 new = kzalloc(sizeof(*new), GFP_KERNEL);
681 if (!new)
682 return NULL;
683
684 new->unit = unit;
685 if (MAJOR(unit) == MD_MAJOR)
686 new->md_minor = MINOR(unit);
687 else
688 new->md_minor = MINOR(unit) >> MdpMinorShift;
689
690 mddev_init(new);
691
692 goto retry;
693}
694
695static inline int mddev_lock(mddev_t * mddev)
696{
697 return mutex_lock_interruptible(&mddev->reconfig_mutex);
698}
699
700static inline int mddev_is_locked(mddev_t *mddev)
701{
702 return mutex_is_locked(&mddev->reconfig_mutex);
703}
704
705static inline int mddev_trylock(mddev_t * mddev)
706{
707 return mutex_trylock(&mddev->reconfig_mutex);
708}
709
710static struct attribute_group md_redundancy_group;
711
712static void mddev_unlock(mddev_t * mddev)
713{
714 if (mddev->to_remove) {
715 /* These cannot be removed under reconfig_mutex as
716 * an access to the files will try to take reconfig_mutex
717 * while holding the file unremovable, which leads to
718 * a deadlock.
719 * So hold set sysfs_active while the remove in happeing,
720 * and anything else which might set ->to_remove or my
721 * otherwise change the sysfs namespace will fail with
722 * -EBUSY if sysfs_active is still set.
723 * We set sysfs_active under reconfig_mutex and elsewhere
724 * test it under the same mutex to ensure its correct value
725 * is seen.
726 */
727 struct attribute_group *to_remove = mddev->to_remove;
728 mddev->to_remove = NULL;
729 mddev->sysfs_active = 1;
730 mutex_unlock(&mddev->reconfig_mutex);
731
732 if (mddev->kobj.sd) {
733 if (to_remove != &md_redundancy_group)
734 sysfs_remove_group(&mddev->kobj, to_remove);
735 if (mddev->pers == NULL ||
736 mddev->pers->sync_request == NULL) {
737 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
738 if (mddev->sysfs_action)
739 sysfs_put(mddev->sysfs_action);
740 mddev->sysfs_action = NULL;
741 }
742 }
743 mddev->sysfs_active = 0;
744 } else
745 mutex_unlock(&mddev->reconfig_mutex);
746
747 /* was we've dropped the mutex we need a spinlock to
748 * make sur the thread doesn't disappear
749 */
750 spin_lock(&pers_lock);
751 md_wakeup_thread(mddev->thread);
752 spin_unlock(&pers_lock);
753}
754
755static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
756{
757 mdk_rdev_t *rdev;
758
759 list_for_each_entry(rdev, &mddev->disks, same_set)
760 if (rdev->desc_nr == nr)
761 return rdev;
762
763 return NULL;
764}
765
766static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
767{
768 mdk_rdev_t *rdev;
769
770 list_for_each_entry(rdev, &mddev->disks, same_set)
771 if (rdev->bdev->bd_dev == dev)
772 return rdev;
773
774 return NULL;
775}
776
777static struct mdk_personality *find_pers(int level, char *clevel)
778{
779 struct mdk_personality *pers;
780 list_for_each_entry(pers, &pers_list, list) {
781 if (level != LEVEL_NONE && pers->level == level)
782 return pers;
783 if (strcmp(pers->name, clevel)==0)
784 return pers;
785 }
786 return NULL;
787}
788
789/* return the offset of the super block in 512byte sectors */
790static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
791{
792 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
793 return MD_NEW_SIZE_SECTORS(num_sectors);
794}
795
796static int alloc_disk_sb(mdk_rdev_t * rdev)
797{
798 if (rdev->sb_page)
799 MD_BUG();
800
801 rdev->sb_page = alloc_page(GFP_KERNEL);
802 if (!rdev->sb_page) {
803 printk(KERN_ALERT "md: out of memory.\n");
804 return -ENOMEM;
805 }
806
807 return 0;
808}
809
810static void free_disk_sb(mdk_rdev_t * rdev)
811{
812 if (rdev->sb_page) {
813 put_page(rdev->sb_page);
814 rdev->sb_loaded = 0;
815 rdev->sb_page = NULL;
816 rdev->sb_start = 0;
817 rdev->sectors = 0;
818 }
819 if (rdev->bb_page) {
820 put_page(rdev->bb_page);
821 rdev->bb_page = NULL;
822 }
823}
824
825
826static void super_written(struct bio *bio, int error)
827{
828 mdk_rdev_t *rdev = bio->bi_private;
829 mddev_t *mddev = rdev->mddev;
830
831 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
832 printk("md: super_written gets error=%d, uptodate=%d\n",
833 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
834 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
835 md_error(mddev, rdev);
836 }
837
838 if (atomic_dec_and_test(&mddev->pending_writes))
839 wake_up(&mddev->sb_wait);
840 bio_put(bio);
841}
842
843void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
844 sector_t sector, int size, struct page *page)
845{
846 /* write first size bytes of page to sector of rdev
847 * Increment mddev->pending_writes before returning
848 * and decrement it on completion, waking up sb_wait
849 * if zero is reached.
850 * If an error occurred, call md_error
851 */
852 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
853
854 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
855 bio->bi_sector = sector;
856 bio_add_page(bio, page, size, 0);
857 bio->bi_private = rdev;
858 bio->bi_end_io = super_written;
859
860 atomic_inc(&mddev->pending_writes);
861 submit_bio(WRITE_FLUSH_FUA, bio);
862}
863
864void md_super_wait(mddev_t *mddev)
865{
866 /* wait for all superblock writes that were scheduled to complete */
867 DEFINE_WAIT(wq);
868 for(;;) {
869 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
870 if (atomic_read(&mddev->pending_writes)==0)
871 break;
872 schedule();
873 }
874 finish_wait(&mddev->sb_wait, &wq);
875}
876
877static void bi_complete(struct bio *bio, int error)
878{
879 complete((struct completion*)bio->bi_private);
880}
881
882int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
883 struct page *page, int rw, bool metadata_op)
884{
885 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
886 struct completion event;
887 int ret;
888
889 rw |= REQ_SYNC;
890
891 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
892 rdev->meta_bdev : rdev->bdev;
893 if (metadata_op)
894 bio->bi_sector = sector + rdev->sb_start;
895 else
896 bio->bi_sector = sector + rdev->data_offset;
897 bio_add_page(bio, page, size, 0);
898 init_completion(&event);
899 bio->bi_private = &event;
900 bio->bi_end_io = bi_complete;
901 submit_bio(rw, bio);
902 wait_for_completion(&event);
903
904 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
905 bio_put(bio);
906 return ret;
907}
908EXPORT_SYMBOL_GPL(sync_page_io);
909
910static int read_disk_sb(mdk_rdev_t * rdev, int size)
911{
912 char b[BDEVNAME_SIZE];
913 if (!rdev->sb_page) {
914 MD_BUG();
915 return -EINVAL;
916 }
917 if (rdev->sb_loaded)
918 return 0;
919
920
921 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
922 goto fail;
923 rdev->sb_loaded = 1;
924 return 0;
925
926fail:
927 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
928 bdevname(rdev->bdev,b));
929 return -EINVAL;
930}
931
932static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
933{
934 return sb1->set_uuid0 == sb2->set_uuid0 &&
935 sb1->set_uuid1 == sb2->set_uuid1 &&
936 sb1->set_uuid2 == sb2->set_uuid2 &&
937 sb1->set_uuid3 == sb2->set_uuid3;
938}
939
940static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
941{
942 int ret;
943 mdp_super_t *tmp1, *tmp2;
944
945 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
946 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
947
948 if (!tmp1 || !tmp2) {
949 ret = 0;
950 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
951 goto abort;
952 }
953
954 *tmp1 = *sb1;
955 *tmp2 = *sb2;
956
957 /*
958 * nr_disks is not constant
959 */
960 tmp1->nr_disks = 0;
961 tmp2->nr_disks = 0;
962
963 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
964abort:
965 kfree(tmp1);
966 kfree(tmp2);
967 return ret;
968}
969
970
971static u32 md_csum_fold(u32 csum)
972{
973 csum = (csum & 0xffff) + (csum >> 16);
974 return (csum & 0xffff) + (csum >> 16);
975}
976
977static unsigned int calc_sb_csum(mdp_super_t * sb)
978{
979 u64 newcsum = 0;
980 u32 *sb32 = (u32*)sb;
981 int i;
982 unsigned int disk_csum, csum;
983
984 disk_csum = sb->sb_csum;
985 sb->sb_csum = 0;
986
987 for (i = 0; i < MD_SB_BYTES/4 ; i++)
988 newcsum += sb32[i];
989 csum = (newcsum & 0xffffffff) + (newcsum>>32);
990
991
992#ifdef CONFIG_ALPHA
993 /* This used to use csum_partial, which was wrong for several
994 * reasons including that different results are returned on
995 * different architectures. It isn't critical that we get exactly
996 * the same return value as before (we always csum_fold before
997 * testing, and that removes any differences). However as we
998 * know that csum_partial always returned a 16bit value on
999 * alphas, do a fold to maximise conformity to previous behaviour.
1000 */
1001 sb->sb_csum = md_csum_fold(disk_csum);
1002#else
1003 sb->sb_csum = disk_csum;
1004#endif
1005 return csum;
1006}
1007
1008
1009/*
1010 * Handle superblock details.
1011 * We want to be able to handle multiple superblock formats
1012 * so we have a common interface to them all, and an array of
1013 * different handlers.
1014 * We rely on user-space to write the initial superblock, and support
1015 * reading and updating of superblocks.
1016 * Interface methods are:
1017 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1018 * loads and validates a superblock on dev.
1019 * if refdev != NULL, compare superblocks on both devices
1020 * Return:
1021 * 0 - dev has a superblock that is compatible with refdev
1022 * 1 - dev has a superblock that is compatible and newer than refdev
1023 * so dev should be used as the refdev in future
1024 * -EINVAL superblock incompatible or invalid
1025 * -othererror e.g. -EIO
1026 *
1027 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1028 * Verify that dev is acceptable into mddev.
1029 * The first time, mddev->raid_disks will be 0, and data from
1030 * dev should be merged in. Subsequent calls check that dev
1031 * is new enough. Return 0 or -EINVAL
1032 *
1033 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1034 * Update the superblock for rdev with data in mddev
1035 * This does not write to disc.
1036 *
1037 */
1038
1039struct super_type {
1040 char *name;
1041 struct module *owner;
1042 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1043 int minor_version);
1044 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1045 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1046 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
1047 sector_t num_sectors);
1048};
1049
1050/*
1051 * Check that the given mddev has no bitmap.
1052 *
1053 * This function is called from the run method of all personalities that do not
1054 * support bitmaps. It prints an error message and returns non-zero if mddev
1055 * has a bitmap. Otherwise, it returns 0.
1056 *
1057 */
1058int md_check_no_bitmap(mddev_t *mddev)
1059{
1060 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1061 return 0;
1062 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1063 mdname(mddev), mddev->pers->name);
1064 return 1;
1065}
1066EXPORT_SYMBOL(md_check_no_bitmap);
1067
1068/*
1069 * load_super for 0.90.0
1070 */
1071static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1072{
1073 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1074 mdp_super_t *sb;
1075 int ret;
1076
1077 /*
1078 * Calculate the position of the superblock (512byte sectors),
1079 * it's at the end of the disk.
1080 *
1081 * It also happens to be a multiple of 4Kb.
1082 */
1083 rdev->sb_start = calc_dev_sboffset(rdev);
1084
1085 ret = read_disk_sb(rdev, MD_SB_BYTES);
1086 if (ret) return ret;
1087
1088 ret = -EINVAL;
1089
1090 bdevname(rdev->bdev, b);
1091 sb = page_address(rdev->sb_page);
1092
1093 if (sb->md_magic != MD_SB_MAGIC) {
1094 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1095 b);
1096 goto abort;
1097 }
1098
1099 if (sb->major_version != 0 ||
1100 sb->minor_version < 90 ||
1101 sb->minor_version > 91) {
1102 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1103 sb->major_version, sb->minor_version,
1104 b);
1105 goto abort;
1106 }
1107
1108 if (sb->raid_disks <= 0)
1109 goto abort;
1110
1111 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1112 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1113 b);
1114 goto abort;
1115 }
1116
1117 rdev->preferred_minor = sb->md_minor;
1118 rdev->data_offset = 0;
1119 rdev->sb_size = MD_SB_BYTES;
1120 rdev->badblocks.shift = -1;
1121
1122 if (sb->level == LEVEL_MULTIPATH)
1123 rdev->desc_nr = -1;
1124 else
1125 rdev->desc_nr = sb->this_disk.number;
1126
1127 if (!refdev) {
1128 ret = 1;
1129 } else {
1130 __u64 ev1, ev2;
1131 mdp_super_t *refsb = page_address(refdev->sb_page);
1132 if (!uuid_equal(refsb, sb)) {
1133 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1134 b, bdevname(refdev->bdev,b2));
1135 goto abort;
1136 }
1137 if (!sb_equal(refsb, sb)) {
1138 printk(KERN_WARNING "md: %s has same UUID"
1139 " but different superblock to %s\n",
1140 b, bdevname(refdev->bdev, b2));
1141 goto abort;
1142 }
1143 ev1 = md_event(sb);
1144 ev2 = md_event(refsb);
1145 if (ev1 > ev2)
1146 ret = 1;
1147 else
1148 ret = 0;
1149 }
1150 rdev->sectors = rdev->sb_start;
1151 /* Limit to 4TB as metadata cannot record more than that */
1152 if (rdev->sectors >= (2ULL << 32))
1153 rdev->sectors = (2ULL << 32) - 2;
1154
1155 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1156 /* "this cannot possibly happen" ... */
1157 ret = -EINVAL;
1158
1159 abort:
1160 return ret;
1161}
1162
1163/*
1164 * validate_super for 0.90.0
1165 */
1166static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1167{
1168 mdp_disk_t *desc;
1169 mdp_super_t *sb = page_address(rdev->sb_page);
1170 __u64 ev1 = md_event(sb);
1171
1172 rdev->raid_disk = -1;
1173 clear_bit(Faulty, &rdev->flags);
1174 clear_bit(In_sync, &rdev->flags);
1175 clear_bit(WriteMostly, &rdev->flags);
1176
1177 if (mddev->raid_disks == 0) {
1178 mddev->major_version = 0;
1179 mddev->minor_version = sb->minor_version;
1180 mddev->patch_version = sb->patch_version;
1181 mddev->external = 0;
1182 mddev->chunk_sectors = sb->chunk_size >> 9;
1183 mddev->ctime = sb->ctime;
1184 mddev->utime = sb->utime;
1185 mddev->level = sb->level;
1186 mddev->clevel[0] = 0;
1187 mddev->layout = sb->layout;
1188 mddev->raid_disks = sb->raid_disks;
1189 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1190 mddev->events = ev1;
1191 mddev->bitmap_info.offset = 0;
1192 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1193
1194 if (mddev->minor_version >= 91) {
1195 mddev->reshape_position = sb->reshape_position;
1196 mddev->delta_disks = sb->delta_disks;
1197 mddev->new_level = sb->new_level;
1198 mddev->new_layout = sb->new_layout;
1199 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1200 } else {
1201 mddev->reshape_position = MaxSector;
1202 mddev->delta_disks = 0;
1203 mddev->new_level = mddev->level;
1204 mddev->new_layout = mddev->layout;
1205 mddev->new_chunk_sectors = mddev->chunk_sectors;
1206 }
1207
1208 if (sb->state & (1<<MD_SB_CLEAN))
1209 mddev->recovery_cp = MaxSector;
1210 else {
1211 if (sb->events_hi == sb->cp_events_hi &&
1212 sb->events_lo == sb->cp_events_lo) {
1213 mddev->recovery_cp = sb->recovery_cp;
1214 } else
1215 mddev->recovery_cp = 0;
1216 }
1217
1218 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1219 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1220 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1221 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1222
1223 mddev->max_disks = MD_SB_DISKS;
1224
1225 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1226 mddev->bitmap_info.file == NULL)
1227 mddev->bitmap_info.offset =
1228 mddev->bitmap_info.default_offset;
1229
1230 } else if (mddev->pers == NULL) {
1231 /* Insist on good event counter while assembling, except
1232 * for spares (which don't need an event count) */
1233 ++ev1;
1234 if (sb->disks[rdev->desc_nr].state & (
1235 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1236 if (ev1 < mddev->events)
1237 return -EINVAL;
1238 } else if (mddev->bitmap) {
1239 /* if adding to array with a bitmap, then we can accept an
1240 * older device ... but not too old.
1241 */
1242 if (ev1 < mddev->bitmap->events_cleared)
1243 return 0;
1244 } else {
1245 if (ev1 < mddev->events)
1246 /* just a hot-add of a new device, leave raid_disk at -1 */
1247 return 0;
1248 }
1249
1250 if (mddev->level != LEVEL_MULTIPATH) {
1251 desc = sb->disks + rdev->desc_nr;
1252
1253 if (desc->state & (1<<MD_DISK_FAULTY))
1254 set_bit(Faulty, &rdev->flags);
1255 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1256 desc->raid_disk < mddev->raid_disks */) {
1257 set_bit(In_sync, &rdev->flags);
1258 rdev->raid_disk = desc->raid_disk;
1259 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1260 /* active but not in sync implies recovery up to
1261 * reshape position. We don't know exactly where
1262 * that is, so set to zero for now */
1263 if (mddev->minor_version >= 91) {
1264 rdev->recovery_offset = 0;
1265 rdev->raid_disk = desc->raid_disk;
1266 }
1267 }
1268 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1269 set_bit(WriteMostly, &rdev->flags);
1270 } else /* MULTIPATH are always insync */
1271 set_bit(In_sync, &rdev->flags);
1272 return 0;
1273}
1274
1275/*
1276 * sync_super for 0.90.0
1277 */
1278static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1279{
1280 mdp_super_t *sb;
1281 mdk_rdev_t *rdev2;
1282 int next_spare = mddev->raid_disks;
1283
1284
1285 /* make rdev->sb match mddev data..
1286 *
1287 * 1/ zero out disks
1288 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1289 * 3/ any empty disks < next_spare become removed
1290 *
1291 * disks[0] gets initialised to REMOVED because
1292 * we cannot be sure from other fields if it has
1293 * been initialised or not.
1294 */
1295 int i;
1296 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1297
1298 rdev->sb_size = MD_SB_BYTES;
1299
1300 sb = page_address(rdev->sb_page);
1301
1302 memset(sb, 0, sizeof(*sb));
1303
1304 sb->md_magic = MD_SB_MAGIC;
1305 sb->major_version = mddev->major_version;
1306 sb->patch_version = mddev->patch_version;
1307 sb->gvalid_words = 0; /* ignored */
1308 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1309 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1310 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1311 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1312
1313 sb->ctime = mddev->ctime;
1314 sb->level = mddev->level;
1315 sb->size = mddev->dev_sectors / 2;
1316 sb->raid_disks = mddev->raid_disks;
1317 sb->md_minor = mddev->md_minor;
1318 sb->not_persistent = 0;
1319 sb->utime = mddev->utime;
1320 sb->state = 0;
1321 sb->events_hi = (mddev->events>>32);
1322 sb->events_lo = (u32)mddev->events;
1323
1324 if (mddev->reshape_position == MaxSector)
1325 sb->minor_version = 90;
1326 else {
1327 sb->minor_version = 91;
1328 sb->reshape_position = mddev->reshape_position;
1329 sb->new_level = mddev->new_level;
1330 sb->delta_disks = mddev->delta_disks;
1331 sb->new_layout = mddev->new_layout;
1332 sb->new_chunk = mddev->new_chunk_sectors << 9;
1333 }
1334 mddev->minor_version = sb->minor_version;
1335 if (mddev->in_sync)
1336 {
1337 sb->recovery_cp = mddev->recovery_cp;
1338 sb->cp_events_hi = (mddev->events>>32);
1339 sb->cp_events_lo = (u32)mddev->events;
1340 if (mddev->recovery_cp == MaxSector)
1341 sb->state = (1<< MD_SB_CLEAN);
1342 } else
1343 sb->recovery_cp = 0;
1344
1345 sb->layout = mddev->layout;
1346 sb->chunk_size = mddev->chunk_sectors << 9;
1347
1348 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1349 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1350
1351 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1352 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1353 mdp_disk_t *d;
1354 int desc_nr;
1355 int is_active = test_bit(In_sync, &rdev2->flags);
1356
1357 if (rdev2->raid_disk >= 0 &&
1358 sb->minor_version >= 91)
1359 /* we have nowhere to store the recovery_offset,
1360 * but if it is not below the reshape_position,
1361 * we can piggy-back on that.
1362 */
1363 is_active = 1;
1364 if (rdev2->raid_disk < 0 ||
1365 test_bit(Faulty, &rdev2->flags))
1366 is_active = 0;
1367 if (is_active)
1368 desc_nr = rdev2->raid_disk;
1369 else
1370 desc_nr = next_spare++;
1371 rdev2->desc_nr = desc_nr;
1372 d = &sb->disks[rdev2->desc_nr];
1373 nr_disks++;
1374 d->number = rdev2->desc_nr;
1375 d->major = MAJOR(rdev2->bdev->bd_dev);
1376 d->minor = MINOR(rdev2->bdev->bd_dev);
1377 if (is_active)
1378 d->raid_disk = rdev2->raid_disk;
1379 else
1380 d->raid_disk = rdev2->desc_nr; /* compatibility */
1381 if (test_bit(Faulty, &rdev2->flags))
1382 d->state = (1<<MD_DISK_FAULTY);
1383 else if (is_active) {
1384 d->state = (1<<MD_DISK_ACTIVE);
1385 if (test_bit(In_sync, &rdev2->flags))
1386 d->state |= (1<<MD_DISK_SYNC);
1387 active++;
1388 working++;
1389 } else {
1390 d->state = 0;
1391 spare++;
1392 working++;
1393 }
1394 if (test_bit(WriteMostly, &rdev2->flags))
1395 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1396 }
1397 /* now set the "removed" and "faulty" bits on any missing devices */
1398 for (i=0 ; i < mddev->raid_disks ; i++) {
1399 mdp_disk_t *d = &sb->disks[i];
1400 if (d->state == 0 && d->number == 0) {
1401 d->number = i;
1402 d->raid_disk = i;
1403 d->state = (1<<MD_DISK_REMOVED);
1404 d->state |= (1<<MD_DISK_FAULTY);
1405 failed++;
1406 }
1407 }
1408 sb->nr_disks = nr_disks;
1409 sb->active_disks = active;
1410 sb->working_disks = working;
1411 sb->failed_disks = failed;
1412 sb->spare_disks = spare;
1413
1414 sb->this_disk = sb->disks[rdev->desc_nr];
1415 sb->sb_csum = calc_sb_csum(sb);
1416}
1417
1418/*
1419 * rdev_size_change for 0.90.0
1420 */
1421static unsigned long long
1422super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1423{
1424 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1425 return 0; /* component must fit device */
1426 if (rdev->mddev->bitmap_info.offset)
1427 return 0; /* can't move bitmap */
1428 rdev->sb_start = calc_dev_sboffset(rdev);
1429 if (!num_sectors || num_sectors > rdev->sb_start)
1430 num_sectors = rdev->sb_start;
1431 /* Limit to 4TB as metadata cannot record more than that.
1432 * 4TB == 2^32 KB, or 2*2^32 sectors.
1433 */
1434 if (num_sectors >= (2ULL << 32))
1435 num_sectors = (2ULL << 32) - 2;
1436 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1437 rdev->sb_page);
1438 md_super_wait(rdev->mddev);
1439 return num_sectors;
1440}
1441
1442
1443/*
1444 * version 1 superblock
1445 */
1446
1447static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1448{
1449 __le32 disk_csum;
1450 u32 csum;
1451 unsigned long long newcsum;
1452 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1453 __le32 *isuper = (__le32*)sb;
1454 int i;
1455
1456 disk_csum = sb->sb_csum;
1457 sb->sb_csum = 0;
1458 newcsum = 0;
1459 for (i=0; size>=4; size -= 4 )
1460 newcsum += le32_to_cpu(*isuper++);
1461
1462 if (size == 2)
1463 newcsum += le16_to_cpu(*(__le16*) isuper);
1464
1465 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1466 sb->sb_csum = disk_csum;
1467 return cpu_to_le32(csum);
1468}
1469
1470static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1471 int acknowledged);
1472static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1473{
1474 struct mdp_superblock_1 *sb;
1475 int ret;
1476 sector_t sb_start;
1477 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1478 int bmask;
1479
1480 /*
1481 * Calculate the position of the superblock in 512byte sectors.
1482 * It is always aligned to a 4K boundary and
1483 * depeding on minor_version, it can be:
1484 * 0: At least 8K, but less than 12K, from end of device
1485 * 1: At start of device
1486 * 2: 4K from start of device.
1487 */
1488 switch(minor_version) {
1489 case 0:
1490 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1491 sb_start -= 8*2;
1492 sb_start &= ~(sector_t)(4*2-1);
1493 break;
1494 case 1:
1495 sb_start = 0;
1496 break;
1497 case 2:
1498 sb_start = 8;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503 rdev->sb_start = sb_start;
1504
1505 /* superblock is rarely larger than 1K, but it can be larger,
1506 * and it is safe to read 4k, so we do that
1507 */
1508 ret = read_disk_sb(rdev, 4096);
1509 if (ret) return ret;
1510
1511
1512 sb = page_address(rdev->sb_page);
1513
1514 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1515 sb->major_version != cpu_to_le32(1) ||
1516 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1517 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1518 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1519 return -EINVAL;
1520
1521 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1522 printk("md: invalid superblock checksum on %s\n",
1523 bdevname(rdev->bdev,b));
1524 return -EINVAL;
1525 }
1526 if (le64_to_cpu(sb->data_size) < 10) {
1527 printk("md: data_size too small on %s\n",
1528 bdevname(rdev->bdev,b));
1529 return -EINVAL;
1530 }
1531
1532 rdev->preferred_minor = 0xffff;
1533 rdev->data_offset = le64_to_cpu(sb->data_offset);
1534 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1535
1536 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1537 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1538 if (rdev->sb_size & bmask)
1539 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1540
1541 if (minor_version
1542 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1543 return -EINVAL;
1544
1545 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1546 rdev->desc_nr = -1;
1547 else
1548 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1549
1550 if (!rdev->bb_page) {
1551 rdev->bb_page = alloc_page(GFP_KERNEL);
1552 if (!rdev->bb_page)
1553 return -ENOMEM;
1554 }
1555 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1556 rdev->badblocks.count == 0) {
1557 /* need to load the bad block list.
1558 * Currently we limit it to one page.
1559 */
1560 s32 offset;
1561 sector_t bb_sector;
1562 u64 *bbp;
1563 int i;
1564 int sectors = le16_to_cpu(sb->bblog_size);
1565 if (sectors > (PAGE_SIZE / 512))
1566 return -EINVAL;
1567 offset = le32_to_cpu(sb->bblog_offset);
1568 if (offset == 0)
1569 return -EINVAL;
1570 bb_sector = (long long)offset;
1571 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1572 rdev->bb_page, READ, true))
1573 return -EIO;
1574 bbp = (u64 *)page_address(rdev->bb_page);
1575 rdev->badblocks.shift = sb->bblog_shift;
1576 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1577 u64 bb = le64_to_cpu(*bbp);
1578 int count = bb & (0x3ff);
1579 u64 sector = bb >> 10;
1580 sector <<= sb->bblog_shift;
1581 count <<= sb->bblog_shift;
1582 if (bb + 1 == 0)
1583 break;
1584 if (md_set_badblocks(&rdev->badblocks,
1585 sector, count, 1) == 0)
1586 return -EINVAL;
1587 }
1588 } else if (sb->bblog_offset == 0)
1589 rdev->badblocks.shift = -1;
1590
1591 if (!refdev) {
1592 ret = 1;
1593 } else {
1594 __u64 ev1, ev2;
1595 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1596
1597 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1598 sb->level != refsb->level ||
1599 sb->layout != refsb->layout ||
1600 sb->chunksize != refsb->chunksize) {
1601 printk(KERN_WARNING "md: %s has strangely different"
1602 " superblock to %s\n",
1603 bdevname(rdev->bdev,b),
1604 bdevname(refdev->bdev,b2));
1605 return -EINVAL;
1606 }
1607 ev1 = le64_to_cpu(sb->events);
1608 ev2 = le64_to_cpu(refsb->events);
1609
1610 if (ev1 > ev2)
1611 ret = 1;
1612 else
1613 ret = 0;
1614 }
1615 if (minor_version)
1616 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1617 le64_to_cpu(sb->data_offset);
1618 else
1619 rdev->sectors = rdev->sb_start;
1620 if (rdev->sectors < le64_to_cpu(sb->data_size))
1621 return -EINVAL;
1622 rdev->sectors = le64_to_cpu(sb->data_size);
1623 if (le64_to_cpu(sb->size) > rdev->sectors)
1624 return -EINVAL;
1625 return ret;
1626}
1627
1628static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1629{
1630 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1631 __u64 ev1 = le64_to_cpu(sb->events);
1632
1633 rdev->raid_disk = -1;
1634 clear_bit(Faulty, &rdev->flags);
1635 clear_bit(In_sync, &rdev->flags);
1636 clear_bit(WriteMostly, &rdev->flags);
1637
1638 if (mddev->raid_disks == 0) {
1639 mddev->major_version = 1;
1640 mddev->patch_version = 0;
1641 mddev->external = 0;
1642 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1643 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1644 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1645 mddev->level = le32_to_cpu(sb->level);
1646 mddev->clevel[0] = 0;
1647 mddev->layout = le32_to_cpu(sb->layout);
1648 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1649 mddev->dev_sectors = le64_to_cpu(sb->size);
1650 mddev->events = ev1;
1651 mddev->bitmap_info.offset = 0;
1652 mddev->bitmap_info.default_offset = 1024 >> 9;
1653
1654 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1655 memcpy(mddev->uuid, sb->set_uuid, 16);
1656
1657 mddev->max_disks = (4096-256)/2;
1658
1659 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1660 mddev->bitmap_info.file == NULL )
1661 mddev->bitmap_info.offset =
1662 (__s32)le32_to_cpu(sb->bitmap_offset);
1663
1664 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1665 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1666 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1667 mddev->new_level = le32_to_cpu(sb->new_level);
1668 mddev->new_layout = le32_to_cpu(sb->new_layout);
1669 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1670 } else {
1671 mddev->reshape_position = MaxSector;
1672 mddev->delta_disks = 0;
1673 mddev->new_level = mddev->level;
1674 mddev->new_layout = mddev->layout;
1675 mddev->new_chunk_sectors = mddev->chunk_sectors;
1676 }
1677
1678 } else if (mddev->pers == NULL) {
1679 /* Insist of good event counter while assembling, except for
1680 * spares (which don't need an event count) */
1681 ++ev1;
1682 if (rdev->desc_nr >= 0 &&
1683 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1684 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1685 if (ev1 < mddev->events)
1686 return -EINVAL;
1687 } else if (mddev->bitmap) {
1688 /* If adding to array with a bitmap, then we can accept an
1689 * older device, but not too old.
1690 */
1691 if (ev1 < mddev->bitmap->events_cleared)
1692 return 0;
1693 } else {
1694 if (ev1 < mddev->events)
1695 /* just a hot-add of a new device, leave raid_disk at -1 */
1696 return 0;
1697 }
1698 if (mddev->level != LEVEL_MULTIPATH) {
1699 int role;
1700 if (rdev->desc_nr < 0 ||
1701 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1702 role = 0xffff;
1703 rdev->desc_nr = -1;
1704 } else
1705 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1706 switch(role) {
1707 case 0xffff: /* spare */
1708 break;
1709 case 0xfffe: /* faulty */
1710 set_bit(Faulty, &rdev->flags);
1711 break;
1712 default:
1713 if ((le32_to_cpu(sb->feature_map) &
1714 MD_FEATURE_RECOVERY_OFFSET))
1715 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1716 else
1717 set_bit(In_sync, &rdev->flags);
1718 rdev->raid_disk = role;
1719 break;
1720 }
1721 if (sb->devflags & WriteMostly1)
1722 set_bit(WriteMostly, &rdev->flags);
1723 } else /* MULTIPATH are always insync */
1724 set_bit(In_sync, &rdev->flags);
1725
1726 return 0;
1727}
1728
1729static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 struct mdp_superblock_1 *sb;
1732 mdk_rdev_t *rdev2;
1733 int max_dev, i;
1734 /* make rdev->sb match mddev and rdev data. */
1735
1736 sb = page_address(rdev->sb_page);
1737
1738 sb->feature_map = 0;
1739 sb->pad0 = 0;
1740 sb->recovery_offset = cpu_to_le64(0);
1741 memset(sb->pad1, 0, sizeof(sb->pad1));
1742 memset(sb->pad3, 0, sizeof(sb->pad3));
1743
1744 sb->utime = cpu_to_le64((__u64)mddev->utime);
1745 sb->events = cpu_to_le64(mddev->events);
1746 if (mddev->in_sync)
1747 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748 else
1749 sb->resync_offset = cpu_to_le64(0);
1750
1751 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752
1753 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754 sb->size = cpu_to_le64(mddev->dev_sectors);
1755 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756 sb->level = cpu_to_le32(mddev->level);
1757 sb->layout = cpu_to_le32(mddev->layout);
1758
1759 if (test_bit(WriteMostly, &rdev->flags))
1760 sb->devflags |= WriteMostly1;
1761 else
1762 sb->devflags &= ~WriteMostly1;
1763
1764 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1765 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1766 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1767 }
1768
1769 if (rdev->raid_disk >= 0 &&
1770 !test_bit(In_sync, &rdev->flags)) {
1771 sb->feature_map |=
1772 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1773 sb->recovery_offset =
1774 cpu_to_le64(rdev->recovery_offset);
1775 }
1776
1777 if (mddev->reshape_position != MaxSector) {
1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1779 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1780 sb->new_layout = cpu_to_le32(mddev->new_layout);
1781 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1782 sb->new_level = cpu_to_le32(mddev->new_level);
1783 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1784 }
1785
1786 if (rdev->badblocks.count == 0)
1787 /* Nothing to do for bad blocks*/ ;
1788 else if (sb->bblog_offset == 0)
1789 /* Cannot record bad blocks on this device */
1790 md_error(mddev, rdev);
1791 else {
1792 struct badblocks *bb = &rdev->badblocks;
1793 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1794 u64 *p = bb->page;
1795 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1796 if (bb->changed) {
1797 unsigned seq;
1798
1799retry:
1800 seq = read_seqbegin(&bb->lock);
1801
1802 memset(bbp, 0xff, PAGE_SIZE);
1803
1804 for (i = 0 ; i < bb->count ; i++) {
1805 u64 internal_bb = *p++;
1806 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1807 | BB_LEN(internal_bb));
1808 *bbp++ = cpu_to_le64(store_bb);
1809 }
1810 if (read_seqretry(&bb->lock, seq))
1811 goto retry;
1812
1813 bb->sector = (rdev->sb_start +
1814 (int)le32_to_cpu(sb->bblog_offset));
1815 bb->size = le16_to_cpu(sb->bblog_size);
1816 bb->changed = 0;
1817 }
1818 }
1819
1820 max_dev = 0;
1821 list_for_each_entry(rdev2, &mddev->disks, same_set)
1822 if (rdev2->desc_nr+1 > max_dev)
1823 max_dev = rdev2->desc_nr+1;
1824
1825 if (max_dev > le32_to_cpu(sb->max_dev)) {
1826 int bmask;
1827 sb->max_dev = cpu_to_le32(max_dev);
1828 rdev->sb_size = max_dev * 2 + 256;
1829 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1830 if (rdev->sb_size & bmask)
1831 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1832 } else
1833 max_dev = le32_to_cpu(sb->max_dev);
1834
1835 for (i=0; i<max_dev;i++)
1836 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837
1838 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1839 i = rdev2->desc_nr;
1840 if (test_bit(Faulty, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1842 else if (test_bit(In_sync, &rdev2->flags))
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 else if (rdev2->raid_disk >= 0)
1845 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1846 else
1847 sb->dev_roles[i] = cpu_to_le16(0xffff);
1848 }
1849
1850 sb->sb_csum = calc_sb_1_csum(sb);
1851}
1852
1853static unsigned long long
1854super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1855{
1856 struct mdp_superblock_1 *sb;
1857 sector_t max_sectors;
1858 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1859 return 0; /* component must fit device */
1860 if (rdev->sb_start < rdev->data_offset) {
1861 /* minor versions 1 and 2; superblock before data */
1862 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1863 max_sectors -= rdev->data_offset;
1864 if (!num_sectors || num_sectors > max_sectors)
1865 num_sectors = max_sectors;
1866 } else if (rdev->mddev->bitmap_info.offset) {
1867 /* minor version 0 with bitmap we can't move */
1868 return 0;
1869 } else {
1870 /* minor version 0; superblock after data */
1871 sector_t sb_start;
1872 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1873 sb_start &= ~(sector_t)(4*2 - 1);
1874 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1875 if (!num_sectors || num_sectors > max_sectors)
1876 num_sectors = max_sectors;
1877 rdev->sb_start = sb_start;
1878 }
1879 sb = page_address(rdev->sb_page);
1880 sb->data_size = cpu_to_le64(num_sectors);
1881 sb->super_offset = rdev->sb_start;
1882 sb->sb_csum = calc_sb_1_csum(sb);
1883 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1884 rdev->sb_page);
1885 md_super_wait(rdev->mddev);
1886 return num_sectors;
1887}
1888
1889static struct super_type super_types[] = {
1890 [0] = {
1891 .name = "0.90.0",
1892 .owner = THIS_MODULE,
1893 .load_super = super_90_load,
1894 .validate_super = super_90_validate,
1895 .sync_super = super_90_sync,
1896 .rdev_size_change = super_90_rdev_size_change,
1897 },
1898 [1] = {
1899 .name = "md-1",
1900 .owner = THIS_MODULE,
1901 .load_super = super_1_load,
1902 .validate_super = super_1_validate,
1903 .sync_super = super_1_sync,
1904 .rdev_size_change = super_1_rdev_size_change,
1905 },
1906};
1907
1908static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1909{
1910 if (mddev->sync_super) {
1911 mddev->sync_super(mddev, rdev);
1912 return;
1913 }
1914
1915 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1916
1917 super_types[mddev->major_version].sync_super(mddev, rdev);
1918}
1919
1920static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1921{
1922 mdk_rdev_t *rdev, *rdev2;
1923
1924 rcu_read_lock();
1925 rdev_for_each_rcu(rdev, mddev1)
1926 rdev_for_each_rcu(rdev2, mddev2)
1927 if (rdev->bdev->bd_contains ==
1928 rdev2->bdev->bd_contains) {
1929 rcu_read_unlock();
1930 return 1;
1931 }
1932 rcu_read_unlock();
1933 return 0;
1934}
1935
1936static LIST_HEAD(pending_raid_disks);
1937
1938/*
1939 * Try to register data integrity profile for an mddev
1940 *
1941 * This is called when an array is started and after a disk has been kicked
1942 * from the array. It only succeeds if all working and active component devices
1943 * are integrity capable with matching profiles.
1944 */
1945int md_integrity_register(mddev_t *mddev)
1946{
1947 mdk_rdev_t *rdev, *reference = NULL;
1948
1949 if (list_empty(&mddev->disks))
1950 return 0; /* nothing to do */
1951 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1952 return 0; /* shouldn't register, or already is */
1953 list_for_each_entry(rdev, &mddev->disks, same_set) {
1954 /* skip spares and non-functional disks */
1955 if (test_bit(Faulty, &rdev->flags))
1956 continue;
1957 if (rdev->raid_disk < 0)
1958 continue;
1959 if (!reference) {
1960 /* Use the first rdev as the reference */
1961 reference = rdev;
1962 continue;
1963 }
1964 /* does this rdev's profile match the reference profile? */
1965 if (blk_integrity_compare(reference->bdev->bd_disk,
1966 rdev->bdev->bd_disk) < 0)
1967 return -EINVAL;
1968 }
1969 if (!reference || !bdev_get_integrity(reference->bdev))
1970 return 0;
1971 /*
1972 * All component devices are integrity capable and have matching
1973 * profiles, register the common profile for the md device.
1974 */
1975 if (blk_integrity_register(mddev->gendisk,
1976 bdev_get_integrity(reference->bdev)) != 0) {
1977 printk(KERN_ERR "md: failed to register integrity for %s\n",
1978 mdname(mddev));
1979 return -EINVAL;
1980 }
1981 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1982 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1983 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1984 mdname(mddev));
1985 return -EINVAL;
1986 }
1987 return 0;
1988}
1989EXPORT_SYMBOL(md_integrity_register);
1990
1991/* Disable data integrity if non-capable/non-matching disk is being added */
1992void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1993{
1994 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1995 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1996
1997 if (!bi_mddev) /* nothing to do */
1998 return;
1999 if (rdev->raid_disk < 0) /* skip spares */
2000 return;
2001 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2002 rdev->bdev->bd_disk) >= 0)
2003 return;
2004 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2005 blk_integrity_unregister(mddev->gendisk);
2006}
2007EXPORT_SYMBOL(md_integrity_add_rdev);
2008
2009static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
2010{
2011 char b[BDEVNAME_SIZE];
2012 struct kobject *ko;
2013 char *s;
2014 int err;
2015
2016 if (rdev->mddev) {
2017 MD_BUG();
2018 return -EINVAL;
2019 }
2020
2021 /* prevent duplicates */
2022 if (find_rdev(mddev, rdev->bdev->bd_dev))
2023 return -EEXIST;
2024
2025 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2026 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2027 rdev->sectors < mddev->dev_sectors)) {
2028 if (mddev->pers) {
2029 /* Cannot change size, so fail
2030 * If mddev->level <= 0, then we don't care
2031 * about aligning sizes (e.g. linear)
2032 */
2033 if (mddev->level > 0)
2034 return -ENOSPC;
2035 } else
2036 mddev->dev_sectors = rdev->sectors;
2037 }
2038
2039 /* Verify rdev->desc_nr is unique.
2040 * If it is -1, assign a free number, else
2041 * check number is not in use
2042 */
2043 if (rdev->desc_nr < 0) {
2044 int choice = 0;
2045 if (mddev->pers) choice = mddev->raid_disks;
2046 while (find_rdev_nr(mddev, choice))
2047 choice++;
2048 rdev->desc_nr = choice;
2049 } else {
2050 if (find_rdev_nr(mddev, rdev->desc_nr))
2051 return -EBUSY;
2052 }
2053 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2054 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2055 mdname(mddev), mddev->max_disks);
2056 return -EBUSY;
2057 }
2058 bdevname(rdev->bdev,b);
2059 while ( (s=strchr(b, '/')) != NULL)
2060 *s = '!';
2061
2062 rdev->mddev = mddev;
2063 printk(KERN_INFO "md: bind<%s>\n", b);
2064
2065 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2066 goto fail;
2067
2068 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2069 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2070 /* failure here is OK */;
2071 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2072
2073 list_add_rcu(&rdev->same_set, &mddev->disks);
2074 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2075
2076 /* May as well allow recovery to be retried once */
2077 mddev->recovery_disabled++;
2078
2079 return 0;
2080
2081 fail:
2082 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2083 b, mdname(mddev));
2084 return err;
2085}
2086
2087static void md_delayed_delete(struct work_struct *ws)
2088{
2089 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2090 kobject_del(&rdev->kobj);
2091 kobject_put(&rdev->kobj);
2092}
2093
2094static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2095{
2096 char b[BDEVNAME_SIZE];
2097 if (!rdev->mddev) {
2098 MD_BUG();
2099 return;
2100 }
2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 list_del_rcu(&rdev->same_set);
2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 rdev->mddev = NULL;
2105 sysfs_remove_link(&rdev->kobj, "block");
2106 sysfs_put(rdev->sysfs_state);
2107 rdev->sysfs_state = NULL;
2108 kfree(rdev->badblocks.page);
2109 rdev->badblocks.count = 0;
2110 rdev->badblocks.page = NULL;
2111 /* We need to delay this, otherwise we can deadlock when
2112 * writing to 'remove' to "dev/state". We also need
2113 * to delay it due to rcu usage.
2114 */
2115 synchronize_rcu();
2116 INIT_WORK(&rdev->del_work, md_delayed_delete);
2117 kobject_get(&rdev->kobj);
2118 queue_work(md_misc_wq, &rdev->del_work);
2119}
2120
2121/*
2122 * prevent the device from being mounted, repartitioned or
2123 * otherwise reused by a RAID array (or any other kernel
2124 * subsystem), by bd_claiming the device.
2125 */
2126static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2127{
2128 int err = 0;
2129 struct block_device *bdev;
2130 char b[BDEVNAME_SIZE];
2131
2132 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2133 shared ? (mdk_rdev_t *)lock_rdev : rdev);
2134 if (IS_ERR(bdev)) {
2135 printk(KERN_ERR "md: could not open %s.\n",
2136 __bdevname(dev, b));
2137 return PTR_ERR(bdev);
2138 }
2139 rdev->bdev = bdev;
2140 return err;
2141}
2142
2143static void unlock_rdev(mdk_rdev_t *rdev)
2144{
2145 struct block_device *bdev = rdev->bdev;
2146 rdev->bdev = NULL;
2147 if (!bdev)
2148 MD_BUG();
2149 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150}
2151
2152void md_autodetect_dev(dev_t dev);
2153
2154static void export_rdev(mdk_rdev_t * rdev)
2155{
2156 char b[BDEVNAME_SIZE];
2157 printk(KERN_INFO "md: export_rdev(%s)\n",
2158 bdevname(rdev->bdev,b));
2159 if (rdev->mddev)
2160 MD_BUG();
2161 free_disk_sb(rdev);
2162#ifndef MODULE
2163 if (test_bit(AutoDetected, &rdev->flags))
2164 md_autodetect_dev(rdev->bdev->bd_dev);
2165#endif
2166 unlock_rdev(rdev);
2167 kobject_put(&rdev->kobj);
2168}
2169
2170static void kick_rdev_from_array(mdk_rdev_t * rdev)
2171{
2172 unbind_rdev_from_array(rdev);
2173 export_rdev(rdev);
2174}
2175
2176static void export_array(mddev_t *mddev)
2177{
2178 mdk_rdev_t *rdev, *tmp;
2179
2180 rdev_for_each(rdev, tmp, mddev) {
2181 if (!rdev->mddev) {
2182 MD_BUG();
2183 continue;
2184 }
2185 kick_rdev_from_array(rdev);
2186 }
2187 if (!list_empty(&mddev->disks))
2188 MD_BUG();
2189 mddev->raid_disks = 0;
2190 mddev->major_version = 0;
2191}
2192
2193static void print_desc(mdp_disk_t *desc)
2194{
2195 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196 desc->major,desc->minor,desc->raid_disk,desc->state);
2197}
2198
2199static void print_sb_90(mdp_super_t *sb)
2200{
2201 int i;
2202
2203 printk(KERN_INFO
2204 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205 sb->major_version, sb->minor_version, sb->patch_version,
2206 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207 sb->ctime);
2208 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210 sb->md_minor, sb->layout, sb->chunk_size);
2211 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2212 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214 sb->failed_disks, sb->spare_disks,
2215 sb->sb_csum, (unsigned long)sb->events_lo);
2216
2217 printk(KERN_INFO);
2218 for (i = 0; i < MD_SB_DISKS; i++) {
2219 mdp_disk_t *desc;
2220
2221 desc = sb->disks + i;
2222 if (desc->number || desc->major || desc->minor ||
2223 desc->raid_disk || (desc->state && (desc->state != 4))) {
2224 printk(" D %2d: ", i);
2225 print_desc(desc);
2226 }
2227 }
2228 printk(KERN_INFO "md: THIS: ");
2229 print_desc(&sb->this_disk);
2230}
2231
2232static void print_sb_1(struct mdp_superblock_1 *sb)
2233{
2234 __u8 *uuid;
2235
2236 uuid = sb->set_uuid;
2237 printk(KERN_INFO
2238 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239 "md: Name: \"%s\" CT:%llu\n",
2240 le32_to_cpu(sb->major_version),
2241 le32_to_cpu(sb->feature_map),
2242 uuid,
2243 sb->set_name,
2244 (unsigned long long)le64_to_cpu(sb->ctime)
2245 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246
2247 uuid = sb->device_uuid;
2248 printk(KERN_INFO
2249 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250 " RO:%llu\n"
2251 "md: Dev:%08x UUID: %pU\n"
2252 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253 "md: (MaxDev:%u) \n",
2254 le32_to_cpu(sb->level),
2255 (unsigned long long)le64_to_cpu(sb->size),
2256 le32_to_cpu(sb->raid_disks),
2257 le32_to_cpu(sb->layout),
2258 le32_to_cpu(sb->chunksize),
2259 (unsigned long long)le64_to_cpu(sb->data_offset),
2260 (unsigned long long)le64_to_cpu(sb->data_size),
2261 (unsigned long long)le64_to_cpu(sb->super_offset),
2262 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2263 le32_to_cpu(sb->dev_number),
2264 uuid,
2265 sb->devflags,
2266 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267 (unsigned long long)le64_to_cpu(sb->events),
2268 (unsigned long long)le64_to_cpu(sb->resync_offset),
2269 le32_to_cpu(sb->sb_csum),
2270 le32_to_cpu(sb->max_dev)
2271 );
2272}
2273
2274static void print_rdev(mdk_rdev_t *rdev, int major_version)
2275{
2276 char b[BDEVNAME_SIZE];
2277 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280 rdev->desc_nr);
2281 if (rdev->sb_loaded) {
2282 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283 switch (major_version) {
2284 case 0:
2285 print_sb_90(page_address(rdev->sb_page));
2286 break;
2287 case 1:
2288 print_sb_1(page_address(rdev->sb_page));
2289 break;
2290 }
2291 } else
2292 printk(KERN_INFO "md: no rdev superblock!\n");
2293}
2294
2295static void md_print_devices(void)
2296{
2297 struct list_head *tmp;
2298 mdk_rdev_t *rdev;
2299 mddev_t *mddev;
2300 char b[BDEVNAME_SIZE];
2301
2302 printk("\n");
2303 printk("md: **********************************\n");
2304 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2305 printk("md: **********************************\n");
2306 for_each_mddev(mddev, tmp) {
2307
2308 if (mddev->bitmap)
2309 bitmap_print_sb(mddev->bitmap);
2310 else
2311 printk("%s: ", mdname(mddev));
2312 list_for_each_entry(rdev, &mddev->disks, same_set)
2313 printk("<%s>", bdevname(rdev->bdev,b));
2314 printk("\n");
2315
2316 list_for_each_entry(rdev, &mddev->disks, same_set)
2317 print_rdev(rdev, mddev->major_version);
2318 }
2319 printk("md: **********************************\n");
2320 printk("\n");
2321}
2322
2323
2324static void sync_sbs(mddev_t * mddev, int nospares)
2325{
2326 /* Update each superblock (in-memory image), but
2327 * if we are allowed to, skip spares which already
2328 * have the right event counter, or have one earlier
2329 * (which would mean they aren't being marked as dirty
2330 * with the rest of the array)
2331 */
2332 mdk_rdev_t *rdev;
2333 list_for_each_entry(rdev, &mddev->disks, same_set) {
2334 if (rdev->sb_events == mddev->events ||
2335 (nospares &&
2336 rdev->raid_disk < 0 &&
2337 rdev->sb_events+1 == mddev->events)) {
2338 /* Don't update this superblock */
2339 rdev->sb_loaded = 2;
2340 } else {
2341 sync_super(mddev, rdev);
2342 rdev->sb_loaded = 1;
2343 }
2344 }
2345}
2346
2347static void md_update_sb(mddev_t * mddev, int force_change)
2348{
2349 mdk_rdev_t *rdev;
2350 int sync_req;
2351 int nospares = 0;
2352 int any_badblocks_changed = 0;
2353
2354repeat:
2355 /* First make sure individual recovery_offsets are correct */
2356 list_for_each_entry(rdev, &mddev->disks, same_set) {
2357 if (rdev->raid_disk >= 0 &&
2358 mddev->delta_disks >= 0 &&
2359 !test_bit(In_sync, &rdev->flags) &&
2360 mddev->curr_resync_completed > rdev->recovery_offset)
2361 rdev->recovery_offset = mddev->curr_resync_completed;
2362
2363 }
2364 if (!mddev->persistent) {
2365 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2366 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2367 if (!mddev->external) {
2368 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2369 list_for_each_entry(rdev, &mddev->disks, same_set) {
2370 if (rdev->badblocks.changed) {
2371 md_ack_all_badblocks(&rdev->badblocks);
2372 md_error(mddev, rdev);
2373 }
2374 clear_bit(Blocked, &rdev->flags);
2375 clear_bit(BlockedBadBlocks, &rdev->flags);
2376 wake_up(&rdev->blocked_wait);
2377 }
2378 }
2379 wake_up(&mddev->sb_wait);
2380 return;
2381 }
2382
2383 spin_lock_irq(&mddev->write_lock);
2384
2385 mddev->utime = get_seconds();
2386
2387 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2388 force_change = 1;
2389 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2390 /* just a clean<-> dirty transition, possibly leave spares alone,
2391 * though if events isn't the right even/odd, we will have to do
2392 * spares after all
2393 */
2394 nospares = 1;
2395 if (force_change)
2396 nospares = 0;
2397 if (mddev->degraded)
2398 /* If the array is degraded, then skipping spares is both
2399 * dangerous and fairly pointless.
2400 * Dangerous because a device that was removed from the array
2401 * might have a event_count that still looks up-to-date,
2402 * so it can be re-added without a resync.
2403 * Pointless because if there are any spares to skip,
2404 * then a recovery will happen and soon that array won't
2405 * be degraded any more and the spare can go back to sleep then.
2406 */
2407 nospares = 0;
2408
2409 sync_req = mddev->in_sync;
2410
2411 /* If this is just a dirty<->clean transition, and the array is clean
2412 * and 'events' is odd, we can roll back to the previous clean state */
2413 if (nospares
2414 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2415 && mddev->can_decrease_events
2416 && mddev->events != 1) {
2417 mddev->events--;
2418 mddev->can_decrease_events = 0;
2419 } else {
2420 /* otherwise we have to go forward and ... */
2421 mddev->events ++;
2422 mddev->can_decrease_events = nospares;
2423 }
2424
2425 if (!mddev->events) {
2426 /*
2427 * oops, this 64-bit counter should never wrap.
2428 * Either we are in around ~1 trillion A.C., assuming
2429 * 1 reboot per second, or we have a bug:
2430 */
2431 MD_BUG();
2432 mddev->events --;
2433 }
2434
2435 list_for_each_entry(rdev, &mddev->disks, same_set) {
2436 if (rdev->badblocks.changed)
2437 any_badblocks_changed++;
2438 if (test_bit(Faulty, &rdev->flags))
2439 set_bit(FaultRecorded, &rdev->flags);
2440 }
2441
2442 sync_sbs(mddev, nospares);
2443 spin_unlock_irq(&mddev->write_lock);
2444
2445 dprintk(KERN_INFO
2446 "md: updating %s RAID superblock on device (in sync %d)\n",
2447 mdname(mddev),mddev->in_sync);
2448
2449 bitmap_update_sb(mddev->bitmap);
2450 list_for_each_entry(rdev, &mddev->disks, same_set) {
2451 char b[BDEVNAME_SIZE];
2452 dprintk(KERN_INFO "md: ");
2453 if (rdev->sb_loaded != 1)
2454 continue; /* no noise on spare devices */
2455 if (test_bit(Faulty, &rdev->flags))
2456 dprintk("(skipping faulty ");
2457
2458 dprintk("%s ", bdevname(rdev->bdev,b));
2459 if (!test_bit(Faulty, &rdev->flags)) {
2460 md_super_write(mddev,rdev,
2461 rdev->sb_start, rdev->sb_size,
2462 rdev->sb_page);
2463 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2464 bdevname(rdev->bdev,b),
2465 (unsigned long long)rdev->sb_start);
2466 rdev->sb_events = mddev->events;
2467 if (rdev->badblocks.size) {
2468 md_super_write(mddev, rdev,
2469 rdev->badblocks.sector,
2470 rdev->badblocks.size << 9,
2471 rdev->bb_page);
2472 rdev->badblocks.size = 0;
2473 }
2474
2475 } else
2476 dprintk(")\n");
2477 if (mddev->level == LEVEL_MULTIPATH)
2478 /* only need to write one superblock... */
2479 break;
2480 }
2481 md_super_wait(mddev);
2482 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2483
2484 spin_lock_irq(&mddev->write_lock);
2485 if (mddev->in_sync != sync_req ||
2486 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 /* have to write it out again */
2488 spin_unlock_irq(&mddev->write_lock);
2489 goto repeat;
2490 }
2491 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 spin_unlock_irq(&mddev->write_lock);
2493 wake_up(&mddev->sb_wait);
2494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2496
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 clear_bit(Blocked, &rdev->flags);
2500
2501 if (any_badblocks_changed)
2502 md_ack_all_badblocks(&rdev->badblocks);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2505 }
2506}
2507
2508/* words written to sysfs files may, or may not, be \n terminated.
2509 * We want to accept with case. For this we use cmd_match.
2510 */
2511static int cmd_match(const char *cmd, const char *str)
2512{
2513 /* See if cmd, written into a sysfs file, matches
2514 * str. They must either be the same, or cmd can
2515 * have a trailing newline
2516 */
2517 while (*cmd && *str && *cmd == *str) {
2518 cmd++;
2519 str++;
2520 }
2521 if (*cmd == '\n')
2522 cmd++;
2523 if (*str || *cmd)
2524 return 0;
2525 return 1;
2526}
2527
2528struct rdev_sysfs_entry {
2529 struct attribute attr;
2530 ssize_t (*show)(mdk_rdev_t *, char *);
2531 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2532};
2533
2534static ssize_t
2535state_show(mdk_rdev_t *rdev, char *page)
2536{
2537 char *sep = "";
2538 size_t len = 0;
2539
2540 if (test_bit(Faulty, &rdev->flags) ||
2541 rdev->badblocks.unacked_exist) {
2542 len+= sprintf(page+len, "%sfaulty",sep);
2543 sep = ",";
2544 }
2545 if (test_bit(In_sync, &rdev->flags)) {
2546 len += sprintf(page+len, "%sin_sync",sep);
2547 sep = ",";
2548 }
2549 if (test_bit(WriteMostly, &rdev->flags)) {
2550 len += sprintf(page+len, "%swrite_mostly",sep);
2551 sep = ",";
2552 }
2553 if (test_bit(Blocked, &rdev->flags) ||
2554 rdev->badblocks.unacked_exist) {
2555 len += sprintf(page+len, "%sblocked", sep);
2556 sep = ",";
2557 }
2558 if (!test_bit(Faulty, &rdev->flags) &&
2559 !test_bit(In_sync, &rdev->flags)) {
2560 len += sprintf(page+len, "%sspare", sep);
2561 sep = ",";
2562 }
2563 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2564 len += sprintf(page+len, "%swrite_error", sep);
2565 sep = ",";
2566 }
2567 return len+sprintf(page+len, "\n");
2568}
2569
2570static ssize_t
2571state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2572{
2573 /* can write
2574 * faulty - simulates an error
2575 * remove - disconnects the device
2576 * writemostly - sets write_mostly
2577 * -writemostly - clears write_mostly
2578 * blocked - sets the Blocked flags
2579 * -blocked - clears the Blocked and possibly simulates an error
2580 * insync - sets Insync providing device isn't active
2581 * write_error - sets WriteErrorSeen
2582 * -write_error - clears WriteErrorSeen
2583 */
2584 int err = -EINVAL;
2585 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2586 md_error(rdev->mddev, rdev);
2587 if (test_bit(Faulty, &rdev->flags))
2588 err = 0;
2589 else
2590 err = -EBUSY;
2591 } else if (cmd_match(buf, "remove")) {
2592 if (rdev->raid_disk >= 0)
2593 err = -EBUSY;
2594 else {
2595 mddev_t *mddev = rdev->mddev;
2596 kick_rdev_from_array(rdev);
2597 if (mddev->pers)
2598 md_update_sb(mddev, 1);
2599 md_new_event(mddev);
2600 err = 0;
2601 }
2602 } else if (cmd_match(buf, "writemostly")) {
2603 set_bit(WriteMostly, &rdev->flags);
2604 err = 0;
2605 } else if (cmd_match(buf, "-writemostly")) {
2606 clear_bit(WriteMostly, &rdev->flags);
2607 err = 0;
2608 } else if (cmd_match(buf, "blocked")) {
2609 set_bit(Blocked, &rdev->flags);
2610 err = 0;
2611 } else if (cmd_match(buf, "-blocked")) {
2612 if (!test_bit(Faulty, &rdev->flags) &&
2613 rdev->badblocks.unacked_exist) {
2614 /* metadata handler doesn't understand badblocks,
2615 * so we need to fail the device
2616 */
2617 md_error(rdev->mddev, rdev);
2618 }
2619 clear_bit(Blocked, &rdev->flags);
2620 clear_bit(BlockedBadBlocks, &rdev->flags);
2621 wake_up(&rdev->blocked_wait);
2622 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2623 md_wakeup_thread(rdev->mddev->thread);
2624
2625 err = 0;
2626 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2627 set_bit(In_sync, &rdev->flags);
2628 err = 0;
2629 } else if (cmd_match(buf, "write_error")) {
2630 set_bit(WriteErrorSeen, &rdev->flags);
2631 err = 0;
2632 } else if (cmd_match(buf, "-write_error")) {
2633 clear_bit(WriteErrorSeen, &rdev->flags);
2634 err = 0;
2635 }
2636 if (!err)
2637 sysfs_notify_dirent_safe(rdev->sysfs_state);
2638 return err ? err : len;
2639}
2640static struct rdev_sysfs_entry rdev_state =
2641__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2642
2643static ssize_t
2644errors_show(mdk_rdev_t *rdev, char *page)
2645{
2646 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2647}
2648
2649static ssize_t
2650errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2651{
2652 char *e;
2653 unsigned long n = simple_strtoul(buf, &e, 10);
2654 if (*buf && (*e == 0 || *e == '\n')) {
2655 atomic_set(&rdev->corrected_errors, n);
2656 return len;
2657 }
2658 return -EINVAL;
2659}
2660static struct rdev_sysfs_entry rdev_errors =
2661__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2662
2663static ssize_t
2664slot_show(mdk_rdev_t *rdev, char *page)
2665{
2666 if (rdev->raid_disk < 0)
2667 return sprintf(page, "none\n");
2668 else
2669 return sprintf(page, "%d\n", rdev->raid_disk);
2670}
2671
2672static ssize_t
2673slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2674{
2675 char *e;
2676 int err;
2677 int slot = simple_strtoul(buf, &e, 10);
2678 if (strncmp(buf, "none", 4)==0)
2679 slot = -1;
2680 else if (e==buf || (*e && *e!= '\n'))
2681 return -EINVAL;
2682 if (rdev->mddev->pers && slot == -1) {
2683 /* Setting 'slot' on an active array requires also
2684 * updating the 'rd%d' link, and communicating
2685 * with the personality with ->hot_*_disk.
2686 * For now we only support removing
2687 * failed/spare devices. This normally happens automatically,
2688 * but not when the metadata is externally managed.
2689 */
2690 if (rdev->raid_disk == -1)
2691 return -EEXIST;
2692 /* personality does all needed checks */
2693 if (rdev->mddev->pers->hot_remove_disk == NULL)
2694 return -EINVAL;
2695 err = rdev->mddev->pers->
2696 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2697 if (err)
2698 return err;
2699 sysfs_unlink_rdev(rdev->mddev, rdev);
2700 rdev->raid_disk = -1;
2701 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2702 md_wakeup_thread(rdev->mddev->thread);
2703 } else if (rdev->mddev->pers) {
2704 mdk_rdev_t *rdev2;
2705 /* Activating a spare .. or possibly reactivating
2706 * if we ever get bitmaps working here.
2707 */
2708
2709 if (rdev->raid_disk != -1)
2710 return -EBUSY;
2711
2712 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2713 return -EBUSY;
2714
2715 if (rdev->mddev->pers->hot_add_disk == NULL)
2716 return -EINVAL;
2717
2718 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2719 if (rdev2->raid_disk == slot)
2720 return -EEXIST;
2721
2722 if (slot >= rdev->mddev->raid_disks &&
2723 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2724 return -ENOSPC;
2725
2726 rdev->raid_disk = slot;
2727 if (test_bit(In_sync, &rdev->flags))
2728 rdev->saved_raid_disk = slot;
2729 else
2730 rdev->saved_raid_disk = -1;
2731 err = rdev->mddev->pers->
2732 hot_add_disk(rdev->mddev, rdev);
2733 if (err) {
2734 rdev->raid_disk = -1;
2735 return err;
2736 } else
2737 sysfs_notify_dirent_safe(rdev->sysfs_state);
2738 if (sysfs_link_rdev(rdev->mddev, rdev))
2739 /* failure here is OK */;
2740 /* don't wakeup anyone, leave that to userspace. */
2741 } else {
2742 if (slot >= rdev->mddev->raid_disks &&
2743 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2744 return -ENOSPC;
2745 rdev->raid_disk = slot;
2746 /* assume it is working */
2747 clear_bit(Faulty, &rdev->flags);
2748 clear_bit(WriteMostly, &rdev->flags);
2749 set_bit(In_sync, &rdev->flags);
2750 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751 }
2752 return len;
2753}
2754
2755
2756static struct rdev_sysfs_entry rdev_slot =
2757__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2758
2759static ssize_t
2760offset_show(mdk_rdev_t *rdev, char *page)
2761{
2762 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2763}
2764
2765static ssize_t
2766offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2767{
2768 char *e;
2769 unsigned long long offset = simple_strtoull(buf, &e, 10);
2770 if (e==buf || (*e && *e != '\n'))
2771 return -EINVAL;
2772 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2773 return -EBUSY;
2774 if (rdev->sectors && rdev->mddev->external)
2775 /* Must set offset before size, so overlap checks
2776 * can be sane */
2777 return -EBUSY;
2778 rdev->data_offset = offset;
2779 return len;
2780}
2781
2782static struct rdev_sysfs_entry rdev_offset =
2783__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2784
2785static ssize_t
2786rdev_size_show(mdk_rdev_t *rdev, char *page)
2787{
2788 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2789}
2790
2791static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2792{
2793 /* check if two start/length pairs overlap */
2794 if (s1+l1 <= s2)
2795 return 0;
2796 if (s2+l2 <= s1)
2797 return 0;
2798 return 1;
2799}
2800
2801static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2802{
2803 unsigned long long blocks;
2804 sector_t new;
2805
2806 if (strict_strtoull(buf, 10, &blocks) < 0)
2807 return -EINVAL;
2808
2809 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2810 return -EINVAL; /* sector conversion overflow */
2811
2812 new = blocks * 2;
2813 if (new != blocks * 2)
2814 return -EINVAL; /* unsigned long long to sector_t overflow */
2815
2816 *sectors = new;
2817 return 0;
2818}
2819
2820static ssize_t
2821rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2822{
2823 mddev_t *my_mddev = rdev->mddev;
2824 sector_t oldsectors = rdev->sectors;
2825 sector_t sectors;
2826
2827 if (strict_blocks_to_sectors(buf, §ors) < 0)
2828 return -EINVAL;
2829 if (my_mddev->pers && rdev->raid_disk >= 0) {
2830 if (my_mddev->persistent) {
2831 sectors = super_types[my_mddev->major_version].
2832 rdev_size_change(rdev, sectors);
2833 if (!sectors)
2834 return -EBUSY;
2835 } else if (!sectors)
2836 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2837 rdev->data_offset;
2838 }
2839 if (sectors < my_mddev->dev_sectors)
2840 return -EINVAL; /* component must fit device */
2841
2842 rdev->sectors = sectors;
2843 if (sectors > oldsectors && my_mddev->external) {
2844 /* need to check that all other rdevs with the same ->bdev
2845 * do not overlap. We need to unlock the mddev to avoid
2846 * a deadlock. We have already changed rdev->sectors, and if
2847 * we have to change it back, we will have the lock again.
2848 */
2849 mddev_t *mddev;
2850 int overlap = 0;
2851 struct list_head *tmp;
2852
2853 mddev_unlock(my_mddev);
2854 for_each_mddev(mddev, tmp) {
2855 mdk_rdev_t *rdev2;
2856
2857 mddev_lock(mddev);
2858 list_for_each_entry(rdev2, &mddev->disks, same_set)
2859 if (rdev->bdev == rdev2->bdev &&
2860 rdev != rdev2 &&
2861 overlaps(rdev->data_offset, rdev->sectors,
2862 rdev2->data_offset,
2863 rdev2->sectors)) {
2864 overlap = 1;
2865 break;
2866 }
2867 mddev_unlock(mddev);
2868 if (overlap) {
2869 mddev_put(mddev);
2870 break;
2871 }
2872 }
2873 mddev_lock(my_mddev);
2874 if (overlap) {
2875 /* Someone else could have slipped in a size
2876 * change here, but doing so is just silly.
2877 * We put oldsectors back because we *know* it is
2878 * safe, and trust userspace not to race with
2879 * itself
2880 */
2881 rdev->sectors = oldsectors;
2882 return -EBUSY;
2883 }
2884 }
2885 return len;
2886}
2887
2888static struct rdev_sysfs_entry rdev_size =
2889__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2890
2891
2892static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2893{
2894 unsigned long long recovery_start = rdev->recovery_offset;
2895
2896 if (test_bit(In_sync, &rdev->flags) ||
2897 recovery_start == MaxSector)
2898 return sprintf(page, "none\n");
2899
2900 return sprintf(page, "%llu\n", recovery_start);
2901}
2902
2903static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2904{
2905 unsigned long long recovery_start;
2906
2907 if (cmd_match(buf, "none"))
2908 recovery_start = MaxSector;
2909 else if (strict_strtoull(buf, 10, &recovery_start))
2910 return -EINVAL;
2911
2912 if (rdev->mddev->pers &&
2913 rdev->raid_disk >= 0)
2914 return -EBUSY;
2915
2916 rdev->recovery_offset = recovery_start;
2917 if (recovery_start == MaxSector)
2918 set_bit(In_sync, &rdev->flags);
2919 else
2920 clear_bit(In_sync, &rdev->flags);
2921 return len;
2922}
2923
2924static struct rdev_sysfs_entry rdev_recovery_start =
2925__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2926
2927
2928static ssize_t
2929badblocks_show(struct badblocks *bb, char *page, int unack);
2930static ssize_t
2931badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2932
2933static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2934{
2935 return badblocks_show(&rdev->badblocks, page, 0);
2936}
2937static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2938{
2939 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2940 /* Maybe that ack was all we needed */
2941 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2942 wake_up(&rdev->blocked_wait);
2943 return rv;
2944}
2945static struct rdev_sysfs_entry rdev_bad_blocks =
2946__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2947
2948
2949static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2950{
2951 return badblocks_show(&rdev->badblocks, page, 1);
2952}
2953static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2954{
2955 return badblocks_store(&rdev->badblocks, page, len, 1);
2956}
2957static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2958__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2959
2960static struct attribute *rdev_default_attrs[] = {
2961 &rdev_state.attr,
2962 &rdev_errors.attr,
2963 &rdev_slot.attr,
2964 &rdev_offset.attr,
2965 &rdev_size.attr,
2966 &rdev_recovery_start.attr,
2967 &rdev_bad_blocks.attr,
2968 &rdev_unack_bad_blocks.attr,
2969 NULL,
2970};
2971static ssize_t
2972rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2973{
2974 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2975 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2976 mddev_t *mddev = rdev->mddev;
2977 ssize_t rv;
2978
2979 if (!entry->show)
2980 return -EIO;
2981
2982 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2983 if (!rv) {
2984 if (rdev->mddev == NULL)
2985 rv = -EBUSY;
2986 else
2987 rv = entry->show(rdev, page);
2988 mddev_unlock(mddev);
2989 }
2990 return rv;
2991}
2992
2993static ssize_t
2994rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2995 const char *page, size_t length)
2996{
2997 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2998 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2999 ssize_t rv;
3000 mddev_t *mddev = rdev->mddev;
3001
3002 if (!entry->store)
3003 return -EIO;
3004 if (!capable(CAP_SYS_ADMIN))
3005 return -EACCES;
3006 rv = mddev ? mddev_lock(mddev): -EBUSY;
3007 if (!rv) {
3008 if (rdev->mddev == NULL)
3009 rv = -EBUSY;
3010 else
3011 rv = entry->store(rdev, page, length);
3012 mddev_unlock(mddev);
3013 }
3014 return rv;
3015}
3016
3017static void rdev_free(struct kobject *ko)
3018{
3019 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
3020 kfree(rdev);
3021}
3022static const struct sysfs_ops rdev_sysfs_ops = {
3023 .show = rdev_attr_show,
3024 .store = rdev_attr_store,
3025};
3026static struct kobj_type rdev_ktype = {
3027 .release = rdev_free,
3028 .sysfs_ops = &rdev_sysfs_ops,
3029 .default_attrs = rdev_default_attrs,
3030};
3031
3032int md_rdev_init(mdk_rdev_t *rdev)
3033{
3034 rdev->desc_nr = -1;
3035 rdev->saved_raid_disk = -1;
3036 rdev->raid_disk = -1;
3037 rdev->flags = 0;
3038 rdev->data_offset = 0;
3039 rdev->sb_events = 0;
3040 rdev->last_read_error.tv_sec = 0;
3041 rdev->last_read_error.tv_nsec = 0;
3042 rdev->sb_loaded = 0;
3043 rdev->bb_page = NULL;
3044 atomic_set(&rdev->nr_pending, 0);
3045 atomic_set(&rdev->read_errors, 0);
3046 atomic_set(&rdev->corrected_errors, 0);
3047
3048 INIT_LIST_HEAD(&rdev->same_set);
3049 init_waitqueue_head(&rdev->blocked_wait);
3050
3051 /* Add space to store bad block list.
3052 * This reserves the space even on arrays where it cannot
3053 * be used - I wonder if that matters
3054 */
3055 rdev->badblocks.count = 0;
3056 rdev->badblocks.shift = 0;
3057 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3058 seqlock_init(&rdev->badblocks.lock);
3059 if (rdev->badblocks.page == NULL)
3060 return -ENOMEM;
3061
3062 return 0;
3063}
3064EXPORT_SYMBOL_GPL(md_rdev_init);
3065/*
3066 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3067 *
3068 * mark the device faulty if:
3069 *
3070 * - the device is nonexistent (zero size)
3071 * - the device has no valid superblock
3072 *
3073 * a faulty rdev _never_ has rdev->sb set.
3074 */
3075static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3076{
3077 char b[BDEVNAME_SIZE];
3078 int err;
3079 mdk_rdev_t *rdev;
3080 sector_t size;
3081
3082 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3083 if (!rdev) {
3084 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3085 return ERR_PTR(-ENOMEM);
3086 }
3087
3088 err = md_rdev_init(rdev);
3089 if (err)
3090 goto abort_free;
3091 err = alloc_disk_sb(rdev);
3092 if (err)
3093 goto abort_free;
3094
3095 err = lock_rdev(rdev, newdev, super_format == -2);
3096 if (err)
3097 goto abort_free;
3098
3099 kobject_init(&rdev->kobj, &rdev_ktype);
3100
3101 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3102 if (!size) {
3103 printk(KERN_WARNING
3104 "md: %s has zero or unknown size, marking faulty!\n",
3105 bdevname(rdev->bdev,b));
3106 err = -EINVAL;
3107 goto abort_free;
3108 }
3109
3110 if (super_format >= 0) {
3111 err = super_types[super_format].
3112 load_super(rdev, NULL, super_minor);
3113 if (err == -EINVAL) {
3114 printk(KERN_WARNING
3115 "md: %s does not have a valid v%d.%d "
3116 "superblock, not importing!\n",
3117 bdevname(rdev->bdev,b),
3118 super_format, super_minor);
3119 goto abort_free;
3120 }
3121 if (err < 0) {
3122 printk(KERN_WARNING
3123 "md: could not read %s's sb, not importing!\n",
3124 bdevname(rdev->bdev,b));
3125 goto abort_free;
3126 }
3127 }
3128 if (super_format == -1)
3129 /* hot-add for 0.90, or non-persistent: so no badblocks */
3130 rdev->badblocks.shift = -1;
3131
3132 return rdev;
3133
3134abort_free:
3135 if (rdev->bdev)
3136 unlock_rdev(rdev);
3137 free_disk_sb(rdev);
3138 kfree(rdev->badblocks.page);
3139 kfree(rdev);
3140 return ERR_PTR(err);
3141}
3142
3143/*
3144 * Check a full RAID array for plausibility
3145 */
3146
3147
3148static void analyze_sbs(mddev_t * mddev)
3149{
3150 int i;
3151 mdk_rdev_t *rdev, *freshest, *tmp;
3152 char b[BDEVNAME_SIZE];
3153
3154 freshest = NULL;
3155 rdev_for_each(rdev, tmp, mddev)
3156 switch (super_types[mddev->major_version].
3157 load_super(rdev, freshest, mddev->minor_version)) {
3158 case 1:
3159 freshest = rdev;
3160 break;
3161 case 0:
3162 break;
3163 default:
3164 printk( KERN_ERR \
3165 "md: fatal superblock inconsistency in %s"
3166 " -- removing from array\n",
3167 bdevname(rdev->bdev,b));
3168 kick_rdev_from_array(rdev);
3169 }
3170
3171
3172 super_types[mddev->major_version].
3173 validate_super(mddev, freshest);
3174
3175 i = 0;
3176 rdev_for_each(rdev, tmp, mddev) {
3177 if (mddev->max_disks &&
3178 (rdev->desc_nr >= mddev->max_disks ||
3179 i > mddev->max_disks)) {
3180 printk(KERN_WARNING
3181 "md: %s: %s: only %d devices permitted\n",
3182 mdname(mddev), bdevname(rdev->bdev, b),
3183 mddev->max_disks);
3184 kick_rdev_from_array(rdev);
3185 continue;
3186 }
3187 if (rdev != freshest)
3188 if (super_types[mddev->major_version].
3189 validate_super(mddev, rdev)) {
3190 printk(KERN_WARNING "md: kicking non-fresh %s"
3191 " from array!\n",
3192 bdevname(rdev->bdev,b));
3193 kick_rdev_from_array(rdev);
3194 continue;
3195 }
3196 if (mddev->level == LEVEL_MULTIPATH) {
3197 rdev->desc_nr = i++;
3198 rdev->raid_disk = rdev->desc_nr;
3199 set_bit(In_sync, &rdev->flags);
3200 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3201 rdev->raid_disk = -1;
3202 clear_bit(In_sync, &rdev->flags);
3203 }
3204 }
3205}
3206
3207/* Read a fixed-point number.
3208 * Numbers in sysfs attributes should be in "standard" units where
3209 * possible, so time should be in seconds.
3210 * However we internally use a a much smaller unit such as
3211 * milliseconds or jiffies.
3212 * This function takes a decimal number with a possible fractional
3213 * component, and produces an integer which is the result of
3214 * multiplying that number by 10^'scale'.
3215 * all without any floating-point arithmetic.
3216 */
3217int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3218{
3219 unsigned long result = 0;
3220 long decimals = -1;
3221 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3222 if (*cp == '.')
3223 decimals = 0;
3224 else if (decimals < scale) {
3225 unsigned int value;
3226 value = *cp - '0';
3227 result = result * 10 + value;
3228 if (decimals >= 0)
3229 decimals++;
3230 }
3231 cp++;
3232 }
3233 if (*cp == '\n')
3234 cp++;
3235 if (*cp)
3236 return -EINVAL;
3237 if (decimals < 0)
3238 decimals = 0;
3239 while (decimals < scale) {
3240 result *= 10;
3241 decimals ++;
3242 }
3243 *res = result;
3244 return 0;
3245}
3246
3247
3248static void md_safemode_timeout(unsigned long data);
3249
3250static ssize_t
3251safe_delay_show(mddev_t *mddev, char *page)
3252{
3253 int msec = (mddev->safemode_delay*1000)/HZ;
3254 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3255}
3256static ssize_t
3257safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3258{
3259 unsigned long msec;
3260
3261 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3262 return -EINVAL;
3263 if (msec == 0)
3264 mddev->safemode_delay = 0;
3265 else {
3266 unsigned long old_delay = mddev->safemode_delay;
3267 mddev->safemode_delay = (msec*HZ)/1000;
3268 if (mddev->safemode_delay == 0)
3269 mddev->safemode_delay = 1;
3270 if (mddev->safemode_delay < old_delay)
3271 md_safemode_timeout((unsigned long)mddev);
3272 }
3273 return len;
3274}
3275static struct md_sysfs_entry md_safe_delay =
3276__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3277
3278static ssize_t
3279level_show(mddev_t *mddev, char *page)
3280{
3281 struct mdk_personality *p = mddev->pers;
3282 if (p)
3283 return sprintf(page, "%s\n", p->name);
3284 else if (mddev->clevel[0])
3285 return sprintf(page, "%s\n", mddev->clevel);
3286 else if (mddev->level != LEVEL_NONE)
3287 return sprintf(page, "%d\n", mddev->level);
3288 else
3289 return 0;
3290}
3291
3292static ssize_t
3293level_store(mddev_t *mddev, const char *buf, size_t len)
3294{
3295 char clevel[16];
3296 ssize_t rv = len;
3297 struct mdk_personality *pers;
3298 long level;
3299 void *priv;
3300 mdk_rdev_t *rdev;
3301
3302 if (mddev->pers == NULL) {
3303 if (len == 0)
3304 return 0;
3305 if (len >= sizeof(mddev->clevel))
3306 return -ENOSPC;
3307 strncpy(mddev->clevel, buf, len);
3308 if (mddev->clevel[len-1] == '\n')
3309 len--;
3310 mddev->clevel[len] = 0;
3311 mddev->level = LEVEL_NONE;
3312 return rv;
3313 }
3314
3315 /* request to change the personality. Need to ensure:
3316 * - array is not engaged in resync/recovery/reshape
3317 * - old personality can be suspended
3318 * - new personality will access other array.
3319 */
3320
3321 if (mddev->sync_thread ||
3322 mddev->reshape_position != MaxSector ||
3323 mddev->sysfs_active)
3324 return -EBUSY;
3325
3326 if (!mddev->pers->quiesce) {
3327 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3328 mdname(mddev), mddev->pers->name);
3329 return -EINVAL;
3330 }
3331
3332 /* Now find the new personality */
3333 if (len == 0 || len >= sizeof(clevel))
3334 return -EINVAL;
3335 strncpy(clevel, buf, len);
3336 if (clevel[len-1] == '\n')
3337 len--;
3338 clevel[len] = 0;
3339 if (strict_strtol(clevel, 10, &level))
3340 level = LEVEL_NONE;
3341
3342 if (request_module("md-%s", clevel) != 0)
3343 request_module("md-level-%s", clevel);
3344 spin_lock(&pers_lock);
3345 pers = find_pers(level, clevel);
3346 if (!pers || !try_module_get(pers->owner)) {
3347 spin_unlock(&pers_lock);
3348 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3349 return -EINVAL;
3350 }
3351 spin_unlock(&pers_lock);
3352
3353 if (pers == mddev->pers) {
3354 /* Nothing to do! */
3355 module_put(pers->owner);
3356 return rv;
3357 }
3358 if (!pers->takeover) {
3359 module_put(pers->owner);
3360 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3361 mdname(mddev), clevel);
3362 return -EINVAL;
3363 }
3364
3365 list_for_each_entry(rdev, &mddev->disks, same_set)
3366 rdev->new_raid_disk = rdev->raid_disk;
3367
3368 /* ->takeover must set new_* and/or delta_disks
3369 * if it succeeds, and may set them when it fails.
3370 */
3371 priv = pers->takeover(mddev);
3372 if (IS_ERR(priv)) {
3373 mddev->new_level = mddev->level;
3374 mddev->new_layout = mddev->layout;
3375 mddev->new_chunk_sectors = mddev->chunk_sectors;
3376 mddev->raid_disks -= mddev->delta_disks;
3377 mddev->delta_disks = 0;
3378 module_put(pers->owner);
3379 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3380 mdname(mddev), clevel);
3381 return PTR_ERR(priv);
3382 }
3383
3384 /* Looks like we have a winner */
3385 mddev_suspend(mddev);
3386 mddev->pers->stop(mddev);
3387
3388 if (mddev->pers->sync_request == NULL &&
3389 pers->sync_request != NULL) {
3390 /* need to add the md_redundancy_group */
3391 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3392 printk(KERN_WARNING
3393 "md: cannot register extra attributes for %s\n",
3394 mdname(mddev));
3395 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3396 }
3397 if (mddev->pers->sync_request != NULL &&
3398 pers->sync_request == NULL) {
3399 /* need to remove the md_redundancy_group */
3400 if (mddev->to_remove == NULL)
3401 mddev->to_remove = &md_redundancy_group;
3402 }
3403
3404 if (mddev->pers->sync_request == NULL &&
3405 mddev->external) {
3406 /* We are converting from a no-redundancy array
3407 * to a redundancy array and metadata is managed
3408 * externally so we need to be sure that writes
3409 * won't block due to a need to transition
3410 * clean->dirty
3411 * until external management is started.
3412 */
3413 mddev->in_sync = 0;
3414 mddev->safemode_delay = 0;
3415 mddev->safemode = 0;
3416 }
3417
3418 list_for_each_entry(rdev, &mddev->disks, same_set) {
3419 if (rdev->raid_disk < 0)
3420 continue;
3421 if (rdev->new_raid_disk >= mddev->raid_disks)
3422 rdev->new_raid_disk = -1;
3423 if (rdev->new_raid_disk == rdev->raid_disk)
3424 continue;
3425 sysfs_unlink_rdev(mddev, rdev);
3426 }
3427 list_for_each_entry(rdev, &mddev->disks, same_set) {
3428 if (rdev->raid_disk < 0)
3429 continue;
3430 if (rdev->new_raid_disk == rdev->raid_disk)
3431 continue;
3432 rdev->raid_disk = rdev->new_raid_disk;
3433 if (rdev->raid_disk < 0)
3434 clear_bit(In_sync, &rdev->flags);
3435 else {
3436 if (sysfs_link_rdev(mddev, rdev))
3437 printk(KERN_WARNING "md: cannot register rd%d"
3438 " for %s after level change\n",
3439 rdev->raid_disk, mdname(mddev));
3440 }
3441 }
3442
3443 module_put(mddev->pers->owner);
3444 mddev->pers = pers;
3445 mddev->private = priv;
3446 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3447 mddev->level = mddev->new_level;
3448 mddev->layout = mddev->new_layout;
3449 mddev->chunk_sectors = mddev->new_chunk_sectors;
3450 mddev->delta_disks = 0;
3451 mddev->degraded = 0;
3452 if (mddev->pers->sync_request == NULL) {
3453 /* this is now an array without redundancy, so
3454 * it must always be in_sync
3455 */
3456 mddev->in_sync = 1;
3457 del_timer_sync(&mddev->safemode_timer);
3458 }
3459 pers->run(mddev);
3460 mddev_resume(mddev);
3461 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3462 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3463 md_wakeup_thread(mddev->thread);
3464 sysfs_notify(&mddev->kobj, NULL, "level");
3465 md_new_event(mddev);
3466 return rv;
3467}
3468
3469static struct md_sysfs_entry md_level =
3470__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3471
3472
3473static ssize_t
3474layout_show(mddev_t *mddev, char *page)
3475{
3476 /* just a number, not meaningful for all levels */
3477 if (mddev->reshape_position != MaxSector &&
3478 mddev->layout != mddev->new_layout)
3479 return sprintf(page, "%d (%d)\n",
3480 mddev->new_layout, mddev->layout);
3481 return sprintf(page, "%d\n", mddev->layout);
3482}
3483
3484static ssize_t
3485layout_store(mddev_t *mddev, const char *buf, size_t len)
3486{
3487 char *e;
3488 unsigned long n = simple_strtoul(buf, &e, 10);
3489
3490 if (!*buf || (*e && *e != '\n'))
3491 return -EINVAL;
3492
3493 if (mddev->pers) {
3494 int err;
3495 if (mddev->pers->check_reshape == NULL)
3496 return -EBUSY;
3497 mddev->new_layout = n;
3498 err = mddev->pers->check_reshape(mddev);
3499 if (err) {
3500 mddev->new_layout = mddev->layout;
3501 return err;
3502 }
3503 } else {
3504 mddev->new_layout = n;
3505 if (mddev->reshape_position == MaxSector)
3506 mddev->layout = n;
3507 }
3508 return len;
3509}
3510static struct md_sysfs_entry md_layout =
3511__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3512
3513
3514static ssize_t
3515raid_disks_show(mddev_t *mddev, char *page)
3516{
3517 if (mddev->raid_disks == 0)
3518 return 0;
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->delta_disks != 0)
3521 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3522 mddev->raid_disks - mddev->delta_disks);
3523 return sprintf(page, "%d\n", mddev->raid_disks);
3524}
3525
3526static int update_raid_disks(mddev_t *mddev, int raid_disks);
3527
3528static ssize_t
3529raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3530{
3531 char *e;
3532 int rv = 0;
3533 unsigned long n = simple_strtoul(buf, &e, 10);
3534
3535 if (!*buf || (*e && *e != '\n'))
3536 return -EINVAL;
3537
3538 if (mddev->pers)
3539 rv = update_raid_disks(mddev, n);
3540 else if (mddev->reshape_position != MaxSector) {
3541 int olddisks = mddev->raid_disks - mddev->delta_disks;
3542 mddev->delta_disks = n - olddisks;
3543 mddev->raid_disks = n;
3544 } else
3545 mddev->raid_disks = n;
3546 return rv ? rv : len;
3547}
3548static struct md_sysfs_entry md_raid_disks =
3549__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3550
3551static ssize_t
3552chunk_size_show(mddev_t *mddev, char *page)
3553{
3554 if (mddev->reshape_position != MaxSector &&
3555 mddev->chunk_sectors != mddev->new_chunk_sectors)
3556 return sprintf(page, "%d (%d)\n",
3557 mddev->new_chunk_sectors << 9,
3558 mddev->chunk_sectors << 9);
3559 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3560}
3561
3562static ssize_t
3563chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3564{
3565 char *e;
3566 unsigned long n = simple_strtoul(buf, &e, 10);
3567
3568 if (!*buf || (*e && *e != '\n'))
3569 return -EINVAL;
3570
3571 if (mddev->pers) {
3572 int err;
3573 if (mddev->pers->check_reshape == NULL)
3574 return -EBUSY;
3575 mddev->new_chunk_sectors = n >> 9;
3576 err = mddev->pers->check_reshape(mddev);
3577 if (err) {
3578 mddev->new_chunk_sectors = mddev->chunk_sectors;
3579 return err;
3580 }
3581 } else {
3582 mddev->new_chunk_sectors = n >> 9;
3583 if (mddev->reshape_position == MaxSector)
3584 mddev->chunk_sectors = n >> 9;
3585 }
3586 return len;
3587}
3588static struct md_sysfs_entry md_chunk_size =
3589__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3590
3591static ssize_t
3592resync_start_show(mddev_t *mddev, char *page)
3593{
3594 if (mddev->recovery_cp == MaxSector)
3595 return sprintf(page, "none\n");
3596 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3597}
3598
3599static ssize_t
3600resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3601{
3602 char *e;
3603 unsigned long long n = simple_strtoull(buf, &e, 10);
3604
3605 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3606 return -EBUSY;
3607 if (cmd_match(buf, "none"))
3608 n = MaxSector;
3609 else if (!*buf || (*e && *e != '\n'))
3610 return -EINVAL;
3611
3612 mddev->recovery_cp = n;
3613 return len;
3614}
3615static struct md_sysfs_entry md_resync_start =
3616__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3617
3618/*
3619 * The array state can be:
3620 *
3621 * clear
3622 * No devices, no size, no level
3623 * Equivalent to STOP_ARRAY ioctl
3624 * inactive
3625 * May have some settings, but array is not active
3626 * all IO results in error
3627 * When written, doesn't tear down array, but just stops it
3628 * suspended (not supported yet)
3629 * All IO requests will block. The array can be reconfigured.
3630 * Writing this, if accepted, will block until array is quiescent
3631 * readonly
3632 * no resync can happen. no superblocks get written.
3633 * write requests fail
3634 * read-auto
3635 * like readonly, but behaves like 'clean' on a write request.
3636 *
3637 * clean - no pending writes, but otherwise active.
3638 * When written to inactive array, starts without resync
3639 * If a write request arrives then
3640 * if metadata is known, mark 'dirty' and switch to 'active'.
3641 * if not known, block and switch to write-pending
3642 * If written to an active array that has pending writes, then fails.
3643 * active
3644 * fully active: IO and resync can be happening.
3645 * When written to inactive array, starts with resync
3646 *
3647 * write-pending
3648 * clean, but writes are blocked waiting for 'active' to be written.
3649 *
3650 * active-idle
3651 * like active, but no writes have been seen for a while (100msec).
3652 *
3653 */
3654enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3655 write_pending, active_idle, bad_word};
3656static char *array_states[] = {
3657 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3658 "write-pending", "active-idle", NULL };
3659
3660static int match_word(const char *word, char **list)
3661{
3662 int n;
3663 for (n=0; list[n]; n++)
3664 if (cmd_match(word, list[n]))
3665 break;
3666 return n;
3667}
3668
3669static ssize_t
3670array_state_show(mddev_t *mddev, char *page)
3671{
3672 enum array_state st = inactive;
3673
3674 if (mddev->pers)
3675 switch(mddev->ro) {
3676 case 1:
3677 st = readonly;
3678 break;
3679 case 2:
3680 st = read_auto;
3681 break;
3682 case 0:
3683 if (mddev->in_sync)
3684 st = clean;
3685 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3686 st = write_pending;
3687 else if (mddev->safemode)
3688 st = active_idle;
3689 else
3690 st = active;
3691 }
3692 else {
3693 if (list_empty(&mddev->disks) &&
3694 mddev->raid_disks == 0 &&
3695 mddev->dev_sectors == 0)
3696 st = clear;
3697 else
3698 st = inactive;
3699 }
3700 return sprintf(page, "%s\n", array_states[st]);
3701}
3702
3703static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3704static int md_set_readonly(mddev_t * mddev, int is_open);
3705static int do_md_run(mddev_t * mddev);
3706static int restart_array(mddev_t *mddev);
3707
3708static ssize_t
3709array_state_store(mddev_t *mddev, const char *buf, size_t len)
3710{
3711 int err = -EINVAL;
3712 enum array_state st = match_word(buf, array_states);
3713 switch(st) {
3714 case bad_word:
3715 break;
3716 case clear:
3717 /* stopping an active array */
3718 if (atomic_read(&mddev->openers) > 0)
3719 return -EBUSY;
3720 err = do_md_stop(mddev, 0, 0);
3721 break;
3722 case inactive:
3723 /* stopping an active array */
3724 if (mddev->pers) {
3725 if (atomic_read(&mddev->openers) > 0)
3726 return -EBUSY;
3727 err = do_md_stop(mddev, 2, 0);
3728 } else
3729 err = 0; /* already inactive */
3730 break;
3731 case suspended:
3732 break; /* not supported yet */
3733 case readonly:
3734 if (mddev->pers)
3735 err = md_set_readonly(mddev, 0);
3736 else {
3737 mddev->ro = 1;
3738 set_disk_ro(mddev->gendisk, 1);
3739 err = do_md_run(mddev);
3740 }
3741 break;
3742 case read_auto:
3743 if (mddev->pers) {
3744 if (mddev->ro == 0)
3745 err = md_set_readonly(mddev, 0);
3746 else if (mddev->ro == 1)
3747 err = restart_array(mddev);
3748 if (err == 0) {
3749 mddev->ro = 2;
3750 set_disk_ro(mddev->gendisk, 0);
3751 }
3752 } else {
3753 mddev->ro = 2;
3754 err = do_md_run(mddev);
3755 }
3756 break;
3757 case clean:
3758 if (mddev->pers) {
3759 restart_array(mddev);
3760 spin_lock_irq(&mddev->write_lock);
3761 if (atomic_read(&mddev->writes_pending) == 0) {
3762 if (mddev->in_sync == 0) {
3763 mddev->in_sync = 1;
3764 if (mddev->safemode == 1)
3765 mddev->safemode = 0;
3766 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3767 }
3768 err = 0;
3769 } else
3770 err = -EBUSY;
3771 spin_unlock_irq(&mddev->write_lock);
3772 } else
3773 err = -EINVAL;
3774 break;
3775 case active:
3776 if (mddev->pers) {
3777 restart_array(mddev);
3778 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3779 wake_up(&mddev->sb_wait);
3780 err = 0;
3781 } else {
3782 mddev->ro = 0;
3783 set_disk_ro(mddev->gendisk, 0);
3784 err = do_md_run(mddev);
3785 }
3786 break;
3787 case write_pending:
3788 case active_idle:
3789 /* these cannot be set */
3790 break;
3791 }
3792 if (err)
3793 return err;
3794 else {
3795 sysfs_notify_dirent_safe(mddev->sysfs_state);
3796 return len;
3797 }
3798}
3799static struct md_sysfs_entry md_array_state =
3800__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3801
3802static ssize_t
3803max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3804 return sprintf(page, "%d\n",
3805 atomic_read(&mddev->max_corr_read_errors));
3806}
3807
3808static ssize_t
3809max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3810{
3811 char *e;
3812 unsigned long n = simple_strtoul(buf, &e, 10);
3813
3814 if (*buf && (*e == 0 || *e == '\n')) {
3815 atomic_set(&mddev->max_corr_read_errors, n);
3816 return len;
3817 }
3818 return -EINVAL;
3819}
3820
3821static struct md_sysfs_entry max_corr_read_errors =
3822__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3823 max_corrected_read_errors_store);
3824
3825static ssize_t
3826null_show(mddev_t *mddev, char *page)
3827{
3828 return -EINVAL;
3829}
3830
3831static ssize_t
3832new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3833{
3834 /* buf must be %d:%d\n? giving major and minor numbers */
3835 /* The new device is added to the array.
3836 * If the array has a persistent superblock, we read the
3837 * superblock to initialise info and check validity.
3838 * Otherwise, only checking done is that in bind_rdev_to_array,
3839 * which mainly checks size.
3840 */
3841 char *e;
3842 int major = simple_strtoul(buf, &e, 10);
3843 int minor;
3844 dev_t dev;
3845 mdk_rdev_t *rdev;
3846 int err;
3847
3848 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3849 return -EINVAL;
3850 minor = simple_strtoul(e+1, &e, 10);
3851 if (*e && *e != '\n')
3852 return -EINVAL;
3853 dev = MKDEV(major, minor);
3854 if (major != MAJOR(dev) ||
3855 minor != MINOR(dev))
3856 return -EOVERFLOW;
3857
3858
3859 if (mddev->persistent) {
3860 rdev = md_import_device(dev, mddev->major_version,
3861 mddev->minor_version);
3862 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3863 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3864 mdk_rdev_t, same_set);
3865 err = super_types[mddev->major_version]
3866 .load_super(rdev, rdev0, mddev->minor_version);
3867 if (err < 0)
3868 goto out;
3869 }
3870 } else if (mddev->external)
3871 rdev = md_import_device(dev, -2, -1);
3872 else
3873 rdev = md_import_device(dev, -1, -1);
3874
3875 if (IS_ERR(rdev))
3876 return PTR_ERR(rdev);
3877 err = bind_rdev_to_array(rdev, mddev);
3878 out:
3879 if (err)
3880 export_rdev(rdev);
3881 return err ? err : len;
3882}
3883
3884static struct md_sysfs_entry md_new_device =
3885__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3886
3887static ssize_t
3888bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3889{
3890 char *end;
3891 unsigned long chunk, end_chunk;
3892
3893 if (!mddev->bitmap)
3894 goto out;
3895 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3896 while (*buf) {
3897 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3898 if (buf == end) break;
3899 if (*end == '-') { /* range */
3900 buf = end + 1;
3901 end_chunk = simple_strtoul(buf, &end, 0);
3902 if (buf == end) break;
3903 }
3904 if (*end && !isspace(*end)) break;
3905 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3906 buf = skip_spaces(end);
3907 }
3908 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3909out:
3910 return len;
3911}
3912
3913static struct md_sysfs_entry md_bitmap =
3914__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3915
3916static ssize_t
3917size_show(mddev_t *mddev, char *page)
3918{
3919 return sprintf(page, "%llu\n",
3920 (unsigned long long)mddev->dev_sectors / 2);
3921}
3922
3923static int update_size(mddev_t *mddev, sector_t num_sectors);
3924
3925static ssize_t
3926size_store(mddev_t *mddev, const char *buf, size_t len)
3927{
3928 /* If array is inactive, we can reduce the component size, but
3929 * not increase it (except from 0).
3930 * If array is active, we can try an on-line resize
3931 */
3932 sector_t sectors;
3933 int err = strict_blocks_to_sectors(buf, §ors);
3934
3935 if (err < 0)
3936 return err;
3937 if (mddev->pers) {
3938 err = update_size(mddev, sectors);
3939 md_update_sb(mddev, 1);
3940 } else {
3941 if (mddev->dev_sectors == 0 ||
3942 mddev->dev_sectors > sectors)
3943 mddev->dev_sectors = sectors;
3944 else
3945 err = -ENOSPC;
3946 }
3947 return err ? err : len;
3948}
3949
3950static struct md_sysfs_entry md_size =
3951__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3952
3953
3954/* Metdata version.
3955 * This is one of
3956 * 'none' for arrays with no metadata (good luck...)
3957 * 'external' for arrays with externally managed metadata,
3958 * or N.M for internally known formats
3959 */
3960static ssize_t
3961metadata_show(mddev_t *mddev, char *page)
3962{
3963 if (mddev->persistent)
3964 return sprintf(page, "%d.%d\n",
3965 mddev->major_version, mddev->minor_version);
3966 else if (mddev->external)
3967 return sprintf(page, "external:%s\n", mddev->metadata_type);
3968 else
3969 return sprintf(page, "none\n");
3970}
3971
3972static ssize_t
3973metadata_store(mddev_t *mddev, const char *buf, size_t len)
3974{
3975 int major, minor;
3976 char *e;
3977 /* Changing the details of 'external' metadata is
3978 * always permitted. Otherwise there must be
3979 * no devices attached to the array.
3980 */
3981 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3982 ;
3983 else if (!list_empty(&mddev->disks))
3984 return -EBUSY;
3985
3986 if (cmd_match(buf, "none")) {
3987 mddev->persistent = 0;
3988 mddev->external = 0;
3989 mddev->major_version = 0;
3990 mddev->minor_version = 90;
3991 return len;
3992 }
3993 if (strncmp(buf, "external:", 9) == 0) {
3994 size_t namelen = len-9;
3995 if (namelen >= sizeof(mddev->metadata_type))
3996 namelen = sizeof(mddev->metadata_type)-1;
3997 strncpy(mddev->metadata_type, buf+9, namelen);
3998 mddev->metadata_type[namelen] = 0;
3999 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4000 mddev->metadata_type[--namelen] = 0;
4001 mddev->persistent = 0;
4002 mddev->external = 1;
4003 mddev->major_version = 0;
4004 mddev->minor_version = 90;
4005 return len;
4006 }
4007 major = simple_strtoul(buf, &e, 10);
4008 if (e==buf || *e != '.')
4009 return -EINVAL;
4010 buf = e+1;
4011 minor = simple_strtoul(buf, &e, 10);
4012 if (e==buf || (*e && *e != '\n') )
4013 return -EINVAL;
4014 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4015 return -ENOENT;
4016 mddev->major_version = major;
4017 mddev->minor_version = minor;
4018 mddev->persistent = 1;
4019 mddev->external = 0;
4020 return len;
4021}
4022
4023static struct md_sysfs_entry md_metadata =
4024__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4025
4026static ssize_t
4027action_show(mddev_t *mddev, char *page)
4028{
4029 char *type = "idle";
4030 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4031 type = "frozen";
4032 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4034 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4035 type = "reshape";
4036 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4037 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4038 type = "resync";
4039 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4040 type = "check";
4041 else
4042 type = "repair";
4043 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4044 type = "recover";
4045 }
4046 return sprintf(page, "%s\n", type);
4047}
4048
4049static void reap_sync_thread(mddev_t *mddev);
4050
4051static ssize_t
4052action_store(mddev_t *mddev, const char *page, size_t len)
4053{
4054 if (!mddev->pers || !mddev->pers->sync_request)
4055 return -EINVAL;
4056
4057 if (cmd_match(page, "frozen"))
4058 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4059 else
4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061
4062 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4063 if (mddev->sync_thread) {
4064 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4065 reap_sync_thread(mddev);
4066 }
4067 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4068 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4069 return -EBUSY;
4070 else if (cmd_match(page, "resync"))
4071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072 else if (cmd_match(page, "recover")) {
4073 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075 } else if (cmd_match(page, "reshape")) {
4076 int err;
4077 if (mddev->pers->start_reshape == NULL)
4078 return -EINVAL;
4079 err = mddev->pers->start_reshape(mddev);
4080 if (err)
4081 return err;
4082 sysfs_notify(&mddev->kobj, NULL, "degraded");
4083 } else {
4084 if (cmd_match(page, "check"))
4085 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4086 else if (!cmd_match(page, "repair"))
4087 return -EINVAL;
4088 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4089 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4090 }
4091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4092 md_wakeup_thread(mddev->thread);
4093 sysfs_notify_dirent_safe(mddev->sysfs_action);
4094 return len;
4095}
4096
4097static ssize_t
4098mismatch_cnt_show(mddev_t *mddev, char *page)
4099{
4100 return sprintf(page, "%llu\n",
4101 (unsigned long long) mddev->resync_mismatches);
4102}
4103
4104static struct md_sysfs_entry md_scan_mode =
4105__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4106
4107
4108static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4109
4110static ssize_t
4111sync_min_show(mddev_t *mddev, char *page)
4112{
4113 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4114 mddev->sync_speed_min ? "local": "system");
4115}
4116
4117static ssize_t
4118sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4119{
4120 int min;
4121 char *e;
4122 if (strncmp(buf, "system", 6)==0) {
4123 mddev->sync_speed_min = 0;
4124 return len;
4125 }
4126 min = simple_strtoul(buf, &e, 10);
4127 if (buf == e || (*e && *e != '\n') || min <= 0)
4128 return -EINVAL;
4129 mddev->sync_speed_min = min;
4130 return len;
4131}
4132
4133static struct md_sysfs_entry md_sync_min =
4134__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4135
4136static ssize_t
4137sync_max_show(mddev_t *mddev, char *page)
4138{
4139 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4140 mddev->sync_speed_max ? "local": "system");
4141}
4142
4143static ssize_t
4144sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4145{
4146 int max;
4147 char *e;
4148 if (strncmp(buf, "system", 6)==0) {
4149 mddev->sync_speed_max = 0;
4150 return len;
4151 }
4152 max = simple_strtoul(buf, &e, 10);
4153 if (buf == e || (*e && *e != '\n') || max <= 0)
4154 return -EINVAL;
4155 mddev->sync_speed_max = max;
4156 return len;
4157}
4158
4159static struct md_sysfs_entry md_sync_max =
4160__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4161
4162static ssize_t
4163degraded_show(mddev_t *mddev, char *page)
4164{
4165 return sprintf(page, "%d\n", mddev->degraded);
4166}
4167static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4168
4169static ssize_t
4170sync_force_parallel_show(mddev_t *mddev, char *page)
4171{
4172 return sprintf(page, "%d\n", mddev->parallel_resync);
4173}
4174
4175static ssize_t
4176sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4177{
4178 long n;
4179
4180 if (strict_strtol(buf, 10, &n))
4181 return -EINVAL;
4182
4183 if (n != 0 && n != 1)
4184 return -EINVAL;
4185
4186 mddev->parallel_resync = n;
4187
4188 if (mddev->sync_thread)
4189 wake_up(&resync_wait);
4190
4191 return len;
4192}
4193
4194/* force parallel resync, even with shared block devices */
4195static struct md_sysfs_entry md_sync_force_parallel =
4196__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4197 sync_force_parallel_show, sync_force_parallel_store);
4198
4199static ssize_t
4200sync_speed_show(mddev_t *mddev, char *page)
4201{
4202 unsigned long resync, dt, db;
4203 if (mddev->curr_resync == 0)
4204 return sprintf(page, "none\n");
4205 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4206 dt = (jiffies - mddev->resync_mark) / HZ;
4207 if (!dt) dt++;
4208 db = resync - mddev->resync_mark_cnt;
4209 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4210}
4211
4212static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4213
4214static ssize_t
4215sync_completed_show(mddev_t *mddev, char *page)
4216{
4217 unsigned long long max_sectors, resync;
4218
4219 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220 return sprintf(page, "none\n");
4221
4222 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4223 max_sectors = mddev->resync_max_sectors;
4224 else
4225 max_sectors = mddev->dev_sectors;
4226
4227 resync = mddev->curr_resync_completed;
4228 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4229}
4230
4231static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4232
4233static ssize_t
4234min_sync_show(mddev_t *mddev, char *page)
4235{
4236 return sprintf(page, "%llu\n",
4237 (unsigned long long)mddev->resync_min);
4238}
4239static ssize_t
4240min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4241{
4242 unsigned long long min;
4243 if (strict_strtoull(buf, 10, &min))
4244 return -EINVAL;
4245 if (min > mddev->resync_max)
4246 return -EINVAL;
4247 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4248 return -EBUSY;
4249
4250 /* Must be a multiple of chunk_size */
4251 if (mddev->chunk_sectors) {
4252 sector_t temp = min;
4253 if (sector_div(temp, mddev->chunk_sectors))
4254 return -EINVAL;
4255 }
4256 mddev->resync_min = min;
4257
4258 return len;
4259}
4260
4261static struct md_sysfs_entry md_min_sync =
4262__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4263
4264static ssize_t
4265max_sync_show(mddev_t *mddev, char *page)
4266{
4267 if (mddev->resync_max == MaxSector)
4268 return sprintf(page, "max\n");
4269 else
4270 return sprintf(page, "%llu\n",
4271 (unsigned long long)mddev->resync_max);
4272}
4273static ssize_t
4274max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4275{
4276 if (strncmp(buf, "max", 3) == 0)
4277 mddev->resync_max = MaxSector;
4278 else {
4279 unsigned long long max;
4280 if (strict_strtoull(buf, 10, &max))
4281 return -EINVAL;
4282 if (max < mddev->resync_min)
4283 return -EINVAL;
4284 if (max < mddev->resync_max &&
4285 mddev->ro == 0 &&
4286 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4287 return -EBUSY;
4288
4289 /* Must be a multiple of chunk_size */
4290 if (mddev->chunk_sectors) {
4291 sector_t temp = max;
4292 if (sector_div(temp, mddev->chunk_sectors))
4293 return -EINVAL;
4294 }
4295 mddev->resync_max = max;
4296 }
4297 wake_up(&mddev->recovery_wait);
4298 return len;
4299}
4300
4301static struct md_sysfs_entry md_max_sync =
4302__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4303
4304static ssize_t
4305suspend_lo_show(mddev_t *mddev, char *page)
4306{
4307 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4308}
4309
4310static ssize_t
4311suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4312{
4313 char *e;
4314 unsigned long long new = simple_strtoull(buf, &e, 10);
4315 unsigned long long old = mddev->suspend_lo;
4316
4317 if (mddev->pers == NULL ||
4318 mddev->pers->quiesce == NULL)
4319 return -EINVAL;
4320 if (buf == e || (*e && *e != '\n'))
4321 return -EINVAL;
4322
4323 mddev->suspend_lo = new;
4324 if (new >= old)
4325 /* Shrinking suspended region */
4326 mddev->pers->quiesce(mddev, 2);
4327 else {
4328 /* Expanding suspended region - need to wait */
4329 mddev->pers->quiesce(mddev, 1);
4330 mddev->pers->quiesce(mddev, 0);
4331 }
4332 return len;
4333}
4334static struct md_sysfs_entry md_suspend_lo =
4335__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4336
4337
4338static ssize_t
4339suspend_hi_show(mddev_t *mddev, char *page)
4340{
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4342}
4343
4344static ssize_t
4345suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4346{
4347 char *e;
4348 unsigned long long new = simple_strtoull(buf, &e, 10);
4349 unsigned long long old = mddev->suspend_hi;
4350
4351 if (mddev->pers == NULL ||
4352 mddev->pers->quiesce == NULL)
4353 return -EINVAL;
4354 if (buf == e || (*e && *e != '\n'))
4355 return -EINVAL;
4356
4357 mddev->suspend_hi = new;
4358 if (new <= old)
4359 /* Shrinking suspended region */
4360 mddev->pers->quiesce(mddev, 2);
4361 else {
4362 /* Expanding suspended region - need to wait */
4363 mddev->pers->quiesce(mddev, 1);
4364 mddev->pers->quiesce(mddev, 0);
4365 }
4366 return len;
4367}
4368static struct md_sysfs_entry md_suspend_hi =
4369__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4370
4371static ssize_t
4372reshape_position_show(mddev_t *mddev, char *page)
4373{
4374 if (mddev->reshape_position != MaxSector)
4375 return sprintf(page, "%llu\n",
4376 (unsigned long long)mddev->reshape_position);
4377 strcpy(page, "none\n");
4378 return 5;
4379}
4380
4381static ssize_t
4382reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4383{
4384 char *e;
4385 unsigned long long new = simple_strtoull(buf, &e, 10);
4386 if (mddev->pers)
4387 return -EBUSY;
4388 if (buf == e || (*e && *e != '\n'))
4389 return -EINVAL;
4390 mddev->reshape_position = new;
4391 mddev->delta_disks = 0;
4392 mddev->new_level = mddev->level;
4393 mddev->new_layout = mddev->layout;
4394 mddev->new_chunk_sectors = mddev->chunk_sectors;
4395 return len;
4396}
4397
4398static struct md_sysfs_entry md_reshape_position =
4399__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4400 reshape_position_store);
4401
4402static ssize_t
4403array_size_show(mddev_t *mddev, char *page)
4404{
4405 if (mddev->external_size)
4406 return sprintf(page, "%llu\n",
4407 (unsigned long long)mddev->array_sectors/2);
4408 else
4409 return sprintf(page, "default\n");
4410}
4411
4412static ssize_t
4413array_size_store(mddev_t *mddev, const char *buf, size_t len)
4414{
4415 sector_t sectors;
4416
4417 if (strncmp(buf, "default", 7) == 0) {
4418 if (mddev->pers)
4419 sectors = mddev->pers->size(mddev, 0, 0);
4420 else
4421 sectors = mddev->array_sectors;
4422
4423 mddev->external_size = 0;
4424 } else {
4425 if (strict_blocks_to_sectors(buf, §ors) < 0)
4426 return -EINVAL;
4427 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4428 return -E2BIG;
4429
4430 mddev->external_size = 1;
4431 }
4432
4433 mddev->array_sectors = sectors;
4434 if (mddev->pers) {
4435 set_capacity(mddev->gendisk, mddev->array_sectors);
4436 revalidate_disk(mddev->gendisk);
4437 }
4438 return len;
4439}
4440
4441static struct md_sysfs_entry md_array_size =
4442__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4443 array_size_store);
4444
4445static struct attribute *md_default_attrs[] = {
4446 &md_level.attr,
4447 &md_layout.attr,
4448 &md_raid_disks.attr,
4449 &md_chunk_size.attr,
4450 &md_size.attr,
4451 &md_resync_start.attr,
4452 &md_metadata.attr,
4453 &md_new_device.attr,
4454 &md_safe_delay.attr,
4455 &md_array_state.attr,
4456 &md_reshape_position.attr,
4457 &md_array_size.attr,
4458 &max_corr_read_errors.attr,
4459 NULL,
4460};
4461
4462static struct attribute *md_redundancy_attrs[] = {
4463 &md_scan_mode.attr,
4464 &md_mismatches.attr,
4465 &md_sync_min.attr,
4466 &md_sync_max.attr,
4467 &md_sync_speed.attr,
4468 &md_sync_force_parallel.attr,
4469 &md_sync_completed.attr,
4470 &md_min_sync.attr,
4471 &md_max_sync.attr,
4472 &md_suspend_lo.attr,
4473 &md_suspend_hi.attr,
4474 &md_bitmap.attr,
4475 &md_degraded.attr,
4476 NULL,
4477};
4478static struct attribute_group md_redundancy_group = {
4479 .name = NULL,
4480 .attrs = md_redundancy_attrs,
4481};
4482
4483
4484static ssize_t
4485md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4486{
4487 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4488 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4489 ssize_t rv;
4490
4491 if (!entry->show)
4492 return -EIO;
4493 rv = mddev_lock(mddev);
4494 if (!rv) {
4495 rv = entry->show(mddev, page);
4496 mddev_unlock(mddev);
4497 }
4498 return rv;
4499}
4500
4501static ssize_t
4502md_attr_store(struct kobject *kobj, struct attribute *attr,
4503 const char *page, size_t length)
4504{
4505 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4506 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4507 ssize_t rv;
4508
4509 if (!entry->store)
4510 return -EIO;
4511 if (!capable(CAP_SYS_ADMIN))
4512 return -EACCES;
4513 rv = mddev_lock(mddev);
4514 if (mddev->hold_active == UNTIL_IOCTL)
4515 mddev->hold_active = 0;
4516 if (!rv) {
4517 rv = entry->store(mddev, page, length);
4518 mddev_unlock(mddev);
4519 }
4520 return rv;
4521}
4522
4523static void md_free(struct kobject *ko)
4524{
4525 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4526
4527 if (mddev->sysfs_state)
4528 sysfs_put(mddev->sysfs_state);
4529
4530 if (mddev->gendisk) {
4531 del_gendisk(mddev->gendisk);
4532 put_disk(mddev->gendisk);
4533 }
4534 if (mddev->queue)
4535 blk_cleanup_queue(mddev->queue);
4536
4537 kfree(mddev);
4538}
4539
4540static const struct sysfs_ops md_sysfs_ops = {
4541 .show = md_attr_show,
4542 .store = md_attr_store,
4543};
4544static struct kobj_type md_ktype = {
4545 .release = md_free,
4546 .sysfs_ops = &md_sysfs_ops,
4547 .default_attrs = md_default_attrs,
4548};
4549
4550int mdp_major = 0;
4551
4552static void mddev_delayed_delete(struct work_struct *ws)
4553{
4554 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4555
4556 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4557 kobject_del(&mddev->kobj);
4558 kobject_put(&mddev->kobj);
4559}
4560
4561static int md_alloc(dev_t dev, char *name)
4562{
4563 static DEFINE_MUTEX(disks_mutex);
4564 mddev_t *mddev = mddev_find(dev);
4565 struct gendisk *disk;
4566 int partitioned;
4567 int shift;
4568 int unit;
4569 int error;
4570
4571 if (!mddev)
4572 return -ENODEV;
4573
4574 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4575 shift = partitioned ? MdpMinorShift : 0;
4576 unit = MINOR(mddev->unit) >> shift;
4577
4578 /* wait for any previous instance of this device to be
4579 * completely removed (mddev_delayed_delete).
4580 */
4581 flush_workqueue(md_misc_wq);
4582
4583 mutex_lock(&disks_mutex);
4584 error = -EEXIST;
4585 if (mddev->gendisk)
4586 goto abort;
4587
4588 if (name) {
4589 /* Need to ensure that 'name' is not a duplicate.
4590 */
4591 mddev_t *mddev2;
4592 spin_lock(&all_mddevs_lock);
4593
4594 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4595 if (mddev2->gendisk &&
4596 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4597 spin_unlock(&all_mddevs_lock);
4598 goto abort;
4599 }
4600 spin_unlock(&all_mddevs_lock);
4601 }
4602
4603 error = -ENOMEM;
4604 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4605 if (!mddev->queue)
4606 goto abort;
4607 mddev->queue->queuedata = mddev;
4608
4609 blk_queue_make_request(mddev->queue, md_make_request);
4610
4611 disk = alloc_disk(1 << shift);
4612 if (!disk) {
4613 blk_cleanup_queue(mddev->queue);
4614 mddev->queue = NULL;
4615 goto abort;
4616 }
4617 disk->major = MAJOR(mddev->unit);
4618 disk->first_minor = unit << shift;
4619 if (name)
4620 strcpy(disk->disk_name, name);
4621 else if (partitioned)
4622 sprintf(disk->disk_name, "md_d%d", unit);
4623 else
4624 sprintf(disk->disk_name, "md%d", unit);
4625 disk->fops = &md_fops;
4626 disk->private_data = mddev;
4627 disk->queue = mddev->queue;
4628 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4629 /* Allow extended partitions. This makes the
4630 * 'mdp' device redundant, but we can't really
4631 * remove it now.
4632 */
4633 disk->flags |= GENHD_FL_EXT_DEVT;
4634 mddev->gendisk = disk;
4635 /* As soon as we call add_disk(), another thread could get
4636 * through to md_open, so make sure it doesn't get too far
4637 */
4638 mutex_lock(&mddev->open_mutex);
4639 add_disk(disk);
4640
4641 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4642 &disk_to_dev(disk)->kobj, "%s", "md");
4643 if (error) {
4644 /* This isn't possible, but as kobject_init_and_add is marked
4645 * __must_check, we must do something with the result
4646 */
4647 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4648 disk->disk_name);
4649 error = 0;
4650 }
4651 if (mddev->kobj.sd &&
4652 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4653 printk(KERN_DEBUG "pointless warning\n");
4654 mutex_unlock(&mddev->open_mutex);
4655 abort:
4656 mutex_unlock(&disks_mutex);
4657 if (!error && mddev->kobj.sd) {
4658 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4659 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4660 }
4661 mddev_put(mddev);
4662 return error;
4663}
4664
4665static struct kobject *md_probe(dev_t dev, int *part, void *data)
4666{
4667 md_alloc(dev, NULL);
4668 return NULL;
4669}
4670
4671static int add_named_array(const char *val, struct kernel_param *kp)
4672{
4673 /* val must be "md_*" where * is not all digits.
4674 * We allocate an array with a large free minor number, and
4675 * set the name to val. val must not already be an active name.
4676 */
4677 int len = strlen(val);
4678 char buf[DISK_NAME_LEN];
4679
4680 while (len && val[len-1] == '\n')
4681 len--;
4682 if (len >= DISK_NAME_LEN)
4683 return -E2BIG;
4684 strlcpy(buf, val, len+1);
4685 if (strncmp(buf, "md_", 3) != 0)
4686 return -EINVAL;
4687 return md_alloc(0, buf);
4688}
4689
4690static void md_safemode_timeout(unsigned long data)
4691{
4692 mddev_t *mddev = (mddev_t *) data;
4693
4694 if (!atomic_read(&mddev->writes_pending)) {
4695 mddev->safemode = 1;
4696 if (mddev->external)
4697 sysfs_notify_dirent_safe(mddev->sysfs_state);
4698 }
4699 md_wakeup_thread(mddev->thread);
4700}
4701
4702static int start_dirty_degraded;
4703
4704int md_run(mddev_t *mddev)
4705{
4706 int err;
4707 mdk_rdev_t *rdev;
4708 struct mdk_personality *pers;
4709
4710 if (list_empty(&mddev->disks))
4711 /* cannot run an array with no devices.. */
4712 return -EINVAL;
4713
4714 if (mddev->pers)
4715 return -EBUSY;
4716 /* Cannot run until previous stop completes properly */
4717 if (mddev->sysfs_active)
4718 return -EBUSY;
4719
4720 /*
4721 * Analyze all RAID superblock(s)
4722 */
4723 if (!mddev->raid_disks) {
4724 if (!mddev->persistent)
4725 return -EINVAL;
4726 analyze_sbs(mddev);
4727 }
4728
4729 if (mddev->level != LEVEL_NONE)
4730 request_module("md-level-%d", mddev->level);
4731 else if (mddev->clevel[0])
4732 request_module("md-%s", mddev->clevel);
4733
4734 /*
4735 * Drop all container device buffers, from now on
4736 * the only valid external interface is through the md
4737 * device.
4738 */
4739 list_for_each_entry(rdev, &mddev->disks, same_set) {
4740 if (test_bit(Faulty, &rdev->flags))
4741 continue;
4742 sync_blockdev(rdev->bdev);
4743 invalidate_bdev(rdev->bdev);
4744
4745 /* perform some consistency tests on the device.
4746 * We don't want the data to overlap the metadata,
4747 * Internal Bitmap issues have been handled elsewhere.
4748 */
4749 if (rdev->meta_bdev) {
4750 /* Nothing to check */;
4751 } else if (rdev->data_offset < rdev->sb_start) {
4752 if (mddev->dev_sectors &&
4753 rdev->data_offset + mddev->dev_sectors
4754 > rdev->sb_start) {
4755 printk("md: %s: data overlaps metadata\n",
4756 mdname(mddev));
4757 return -EINVAL;
4758 }
4759 } else {
4760 if (rdev->sb_start + rdev->sb_size/512
4761 > rdev->data_offset) {
4762 printk("md: %s: metadata overlaps data\n",
4763 mdname(mddev));
4764 return -EINVAL;
4765 }
4766 }
4767 sysfs_notify_dirent_safe(rdev->sysfs_state);
4768 }
4769
4770 if (mddev->bio_set == NULL)
4771 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4772 sizeof(mddev_t *));
4773
4774 spin_lock(&pers_lock);
4775 pers = find_pers(mddev->level, mddev->clevel);
4776 if (!pers || !try_module_get(pers->owner)) {
4777 spin_unlock(&pers_lock);
4778 if (mddev->level != LEVEL_NONE)
4779 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4780 mddev->level);
4781 else
4782 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4783 mddev->clevel);
4784 return -EINVAL;
4785 }
4786 mddev->pers = pers;
4787 spin_unlock(&pers_lock);
4788 if (mddev->level != pers->level) {
4789 mddev->level = pers->level;
4790 mddev->new_level = pers->level;
4791 }
4792 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4793
4794 if (mddev->reshape_position != MaxSector &&
4795 pers->start_reshape == NULL) {
4796 /* This personality cannot handle reshaping... */
4797 mddev->pers = NULL;
4798 module_put(pers->owner);
4799 return -EINVAL;
4800 }
4801
4802 if (pers->sync_request) {
4803 /* Warn if this is a potentially silly
4804 * configuration.
4805 */
4806 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4807 mdk_rdev_t *rdev2;
4808 int warned = 0;
4809
4810 list_for_each_entry(rdev, &mddev->disks, same_set)
4811 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4812 if (rdev < rdev2 &&
4813 rdev->bdev->bd_contains ==
4814 rdev2->bdev->bd_contains) {
4815 printk(KERN_WARNING
4816 "%s: WARNING: %s appears to be"
4817 " on the same physical disk as"
4818 " %s.\n",
4819 mdname(mddev),
4820 bdevname(rdev->bdev,b),
4821 bdevname(rdev2->bdev,b2));
4822 warned = 1;
4823 }
4824 }
4825
4826 if (warned)
4827 printk(KERN_WARNING
4828 "True protection against single-disk"
4829 " failure might be compromised.\n");
4830 }
4831
4832 mddev->recovery = 0;
4833 /* may be over-ridden by personality */
4834 mddev->resync_max_sectors = mddev->dev_sectors;
4835
4836 mddev->ok_start_degraded = start_dirty_degraded;
4837
4838 if (start_readonly && mddev->ro == 0)
4839 mddev->ro = 2; /* read-only, but switch on first write */
4840
4841 err = mddev->pers->run(mddev);
4842 if (err)
4843 printk(KERN_ERR "md: pers->run() failed ...\n");
4844 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4845 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4846 " but 'external_size' not in effect?\n", __func__);
4847 printk(KERN_ERR
4848 "md: invalid array_size %llu > default size %llu\n",
4849 (unsigned long long)mddev->array_sectors / 2,
4850 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4851 err = -EINVAL;
4852 mddev->pers->stop(mddev);
4853 }
4854 if (err == 0 && mddev->pers->sync_request) {
4855 err = bitmap_create(mddev);
4856 if (err) {
4857 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4858 mdname(mddev), err);
4859 mddev->pers->stop(mddev);
4860 }
4861 }
4862 if (err) {
4863 module_put(mddev->pers->owner);
4864 mddev->pers = NULL;
4865 bitmap_destroy(mddev);
4866 return err;
4867 }
4868 if (mddev->pers->sync_request) {
4869 if (mddev->kobj.sd &&
4870 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4871 printk(KERN_WARNING
4872 "md: cannot register extra attributes for %s\n",
4873 mdname(mddev));
4874 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4875 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4876 mddev->ro = 0;
4877
4878 atomic_set(&mddev->writes_pending,0);
4879 atomic_set(&mddev->max_corr_read_errors,
4880 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4881 mddev->safemode = 0;
4882 mddev->safemode_timer.function = md_safemode_timeout;
4883 mddev->safemode_timer.data = (unsigned long) mddev;
4884 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4885 mddev->in_sync = 1;
4886 smp_wmb();
4887 mddev->ready = 1;
4888 list_for_each_entry(rdev, &mddev->disks, same_set)
4889 if (rdev->raid_disk >= 0)
4890 if (sysfs_link_rdev(mddev, rdev))
4891 /* failure here is OK */;
4892
4893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4894
4895 if (mddev->flags)
4896 md_update_sb(mddev, 0);
4897
4898 md_new_event(mddev);
4899 sysfs_notify_dirent_safe(mddev->sysfs_state);
4900 sysfs_notify_dirent_safe(mddev->sysfs_action);
4901 sysfs_notify(&mddev->kobj, NULL, "degraded");
4902 return 0;
4903}
4904EXPORT_SYMBOL_GPL(md_run);
4905
4906static int do_md_run(mddev_t *mddev)
4907{
4908 int err;
4909
4910 err = md_run(mddev);
4911 if (err)
4912 goto out;
4913 err = bitmap_load(mddev);
4914 if (err) {
4915 bitmap_destroy(mddev);
4916 goto out;
4917 }
4918
4919 md_wakeup_thread(mddev->thread);
4920 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4921
4922 set_capacity(mddev->gendisk, mddev->array_sectors);
4923 revalidate_disk(mddev->gendisk);
4924 mddev->changed = 1;
4925 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4926out:
4927 return err;
4928}
4929
4930static int restart_array(mddev_t *mddev)
4931{
4932 struct gendisk *disk = mddev->gendisk;
4933
4934 /* Complain if it has no devices */
4935 if (list_empty(&mddev->disks))
4936 return -ENXIO;
4937 if (!mddev->pers)
4938 return -EINVAL;
4939 if (!mddev->ro)
4940 return -EBUSY;
4941 mddev->safemode = 0;
4942 mddev->ro = 0;
4943 set_disk_ro(disk, 0);
4944 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4945 mdname(mddev));
4946 /* Kick recovery or resync if necessary */
4947 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4948 md_wakeup_thread(mddev->thread);
4949 md_wakeup_thread(mddev->sync_thread);
4950 sysfs_notify_dirent_safe(mddev->sysfs_state);
4951 return 0;
4952}
4953
4954/* similar to deny_write_access, but accounts for our holding a reference
4955 * to the file ourselves */
4956static int deny_bitmap_write_access(struct file * file)
4957{
4958 struct inode *inode = file->f_mapping->host;
4959
4960 spin_lock(&inode->i_lock);
4961 if (atomic_read(&inode->i_writecount) > 1) {
4962 spin_unlock(&inode->i_lock);
4963 return -ETXTBSY;
4964 }
4965 atomic_set(&inode->i_writecount, -1);
4966 spin_unlock(&inode->i_lock);
4967
4968 return 0;
4969}
4970
4971void restore_bitmap_write_access(struct file *file)
4972{
4973 struct inode *inode = file->f_mapping->host;
4974
4975 spin_lock(&inode->i_lock);
4976 atomic_set(&inode->i_writecount, 1);
4977 spin_unlock(&inode->i_lock);
4978}
4979
4980static void md_clean(mddev_t *mddev)
4981{
4982 mddev->array_sectors = 0;
4983 mddev->external_size = 0;
4984 mddev->dev_sectors = 0;
4985 mddev->raid_disks = 0;
4986 mddev->recovery_cp = 0;
4987 mddev->resync_min = 0;
4988 mddev->resync_max = MaxSector;
4989 mddev->reshape_position = MaxSector;
4990 mddev->external = 0;
4991 mddev->persistent = 0;
4992 mddev->level = LEVEL_NONE;
4993 mddev->clevel[0] = 0;
4994 mddev->flags = 0;
4995 mddev->ro = 0;
4996 mddev->metadata_type[0] = 0;
4997 mddev->chunk_sectors = 0;
4998 mddev->ctime = mddev->utime = 0;
4999 mddev->layout = 0;
5000 mddev->max_disks = 0;
5001 mddev->events = 0;
5002 mddev->can_decrease_events = 0;
5003 mddev->delta_disks = 0;
5004 mddev->new_level = LEVEL_NONE;
5005 mddev->new_layout = 0;
5006 mddev->new_chunk_sectors = 0;
5007 mddev->curr_resync = 0;
5008 mddev->resync_mismatches = 0;
5009 mddev->suspend_lo = mddev->suspend_hi = 0;
5010 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5011 mddev->recovery = 0;
5012 mddev->in_sync = 0;
5013 mddev->changed = 0;
5014 mddev->degraded = 0;
5015 mddev->safemode = 0;
5016 mddev->bitmap_info.offset = 0;
5017 mddev->bitmap_info.default_offset = 0;
5018 mddev->bitmap_info.chunksize = 0;
5019 mddev->bitmap_info.daemon_sleep = 0;
5020 mddev->bitmap_info.max_write_behind = 0;
5021}
5022
5023static void __md_stop_writes(mddev_t *mddev)
5024{
5025 if (mddev->sync_thread) {
5026 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5028 reap_sync_thread(mddev);
5029 }
5030
5031 del_timer_sync(&mddev->safemode_timer);
5032
5033 bitmap_flush(mddev);
5034 md_super_wait(mddev);
5035
5036 if (!mddev->in_sync || mddev->flags) {
5037 /* mark array as shutdown cleanly */
5038 mddev->in_sync = 1;
5039 md_update_sb(mddev, 1);
5040 }
5041}
5042
5043void md_stop_writes(mddev_t *mddev)
5044{
5045 mddev_lock(mddev);
5046 __md_stop_writes(mddev);
5047 mddev_unlock(mddev);
5048}
5049EXPORT_SYMBOL_GPL(md_stop_writes);
5050
5051void md_stop(mddev_t *mddev)
5052{
5053 mddev->ready = 0;
5054 mddev->pers->stop(mddev);
5055 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5056 mddev->to_remove = &md_redundancy_group;
5057 module_put(mddev->pers->owner);
5058 mddev->pers = NULL;
5059 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5060}
5061EXPORT_SYMBOL_GPL(md_stop);
5062
5063static int md_set_readonly(mddev_t *mddev, int is_open)
5064{
5065 int err = 0;
5066 mutex_lock(&mddev->open_mutex);
5067 if (atomic_read(&mddev->openers) > is_open) {
5068 printk("md: %s still in use.\n",mdname(mddev));
5069 err = -EBUSY;
5070 goto out;
5071 }
5072 if (mddev->pers) {
5073 __md_stop_writes(mddev);
5074
5075 err = -ENXIO;
5076 if (mddev->ro==1)
5077 goto out;
5078 mddev->ro = 1;
5079 set_disk_ro(mddev->gendisk, 1);
5080 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5081 sysfs_notify_dirent_safe(mddev->sysfs_state);
5082 err = 0;
5083 }
5084out:
5085 mutex_unlock(&mddev->open_mutex);
5086 return err;
5087}
5088
5089/* mode:
5090 * 0 - completely stop and dis-assemble array
5091 * 2 - stop but do not disassemble array
5092 */
5093static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5094{
5095 struct gendisk *disk = mddev->gendisk;
5096 mdk_rdev_t *rdev;
5097
5098 mutex_lock(&mddev->open_mutex);
5099 if (atomic_read(&mddev->openers) > is_open ||
5100 mddev->sysfs_active) {
5101 printk("md: %s still in use.\n",mdname(mddev));
5102 mutex_unlock(&mddev->open_mutex);
5103 return -EBUSY;
5104 }
5105
5106 if (mddev->pers) {
5107 if (mddev->ro)
5108 set_disk_ro(disk, 0);
5109
5110 __md_stop_writes(mddev);
5111 md_stop(mddev);
5112 mddev->queue->merge_bvec_fn = NULL;
5113 mddev->queue->backing_dev_info.congested_fn = NULL;
5114
5115 /* tell userspace to handle 'inactive' */
5116 sysfs_notify_dirent_safe(mddev->sysfs_state);
5117
5118 list_for_each_entry(rdev, &mddev->disks, same_set)
5119 if (rdev->raid_disk >= 0)
5120 sysfs_unlink_rdev(mddev, rdev);
5121
5122 set_capacity(disk, 0);
5123 mutex_unlock(&mddev->open_mutex);
5124 mddev->changed = 1;
5125 revalidate_disk(disk);
5126
5127 if (mddev->ro)
5128 mddev->ro = 0;
5129 } else
5130 mutex_unlock(&mddev->open_mutex);
5131 /*
5132 * Free resources if final stop
5133 */
5134 if (mode == 0) {
5135 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5136
5137 bitmap_destroy(mddev);
5138 if (mddev->bitmap_info.file) {
5139 restore_bitmap_write_access(mddev->bitmap_info.file);
5140 fput(mddev->bitmap_info.file);
5141 mddev->bitmap_info.file = NULL;
5142 }
5143 mddev->bitmap_info.offset = 0;
5144
5145 export_array(mddev);
5146
5147 md_clean(mddev);
5148 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5149 if (mddev->hold_active == UNTIL_STOP)
5150 mddev->hold_active = 0;
5151 }
5152 blk_integrity_unregister(disk);
5153 md_new_event(mddev);
5154 sysfs_notify_dirent_safe(mddev->sysfs_state);
5155 return 0;
5156}
5157
5158#ifndef MODULE
5159static void autorun_array(mddev_t *mddev)
5160{
5161 mdk_rdev_t *rdev;
5162 int err;
5163
5164 if (list_empty(&mddev->disks))
5165 return;
5166
5167 printk(KERN_INFO "md: running: ");
5168
5169 list_for_each_entry(rdev, &mddev->disks, same_set) {
5170 char b[BDEVNAME_SIZE];
5171 printk("<%s>", bdevname(rdev->bdev,b));
5172 }
5173 printk("\n");
5174
5175 err = do_md_run(mddev);
5176 if (err) {
5177 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5178 do_md_stop(mddev, 0, 0);
5179 }
5180}
5181
5182/*
5183 * lets try to run arrays based on all disks that have arrived
5184 * until now. (those are in pending_raid_disks)
5185 *
5186 * the method: pick the first pending disk, collect all disks with
5187 * the same UUID, remove all from the pending list and put them into
5188 * the 'same_array' list. Then order this list based on superblock
5189 * update time (freshest comes first), kick out 'old' disks and
5190 * compare superblocks. If everything's fine then run it.
5191 *
5192 * If "unit" is allocated, then bump its reference count
5193 */
5194static void autorun_devices(int part)
5195{
5196 mdk_rdev_t *rdev0, *rdev, *tmp;
5197 mddev_t *mddev;
5198 char b[BDEVNAME_SIZE];
5199
5200 printk(KERN_INFO "md: autorun ...\n");
5201 while (!list_empty(&pending_raid_disks)) {
5202 int unit;
5203 dev_t dev;
5204 LIST_HEAD(candidates);
5205 rdev0 = list_entry(pending_raid_disks.next,
5206 mdk_rdev_t, same_set);
5207
5208 printk(KERN_INFO "md: considering %s ...\n",
5209 bdevname(rdev0->bdev,b));
5210 INIT_LIST_HEAD(&candidates);
5211 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5212 if (super_90_load(rdev, rdev0, 0) >= 0) {
5213 printk(KERN_INFO "md: adding %s ...\n",
5214 bdevname(rdev->bdev,b));
5215 list_move(&rdev->same_set, &candidates);
5216 }
5217 /*
5218 * now we have a set of devices, with all of them having
5219 * mostly sane superblocks. It's time to allocate the
5220 * mddev.
5221 */
5222 if (part) {
5223 dev = MKDEV(mdp_major,
5224 rdev0->preferred_minor << MdpMinorShift);
5225 unit = MINOR(dev) >> MdpMinorShift;
5226 } else {
5227 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5228 unit = MINOR(dev);
5229 }
5230 if (rdev0->preferred_minor != unit) {
5231 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5232 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5233 break;
5234 }
5235
5236 md_probe(dev, NULL, NULL);
5237 mddev = mddev_find(dev);
5238 if (!mddev || !mddev->gendisk) {
5239 if (mddev)
5240 mddev_put(mddev);
5241 printk(KERN_ERR
5242 "md: cannot allocate memory for md drive.\n");
5243 break;
5244 }
5245 if (mddev_lock(mddev))
5246 printk(KERN_WARNING "md: %s locked, cannot run\n",
5247 mdname(mddev));
5248 else if (mddev->raid_disks || mddev->major_version
5249 || !list_empty(&mddev->disks)) {
5250 printk(KERN_WARNING
5251 "md: %s already running, cannot run %s\n",
5252 mdname(mddev), bdevname(rdev0->bdev,b));
5253 mddev_unlock(mddev);
5254 } else {
5255 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5256 mddev->persistent = 1;
5257 rdev_for_each_list(rdev, tmp, &candidates) {
5258 list_del_init(&rdev->same_set);
5259 if (bind_rdev_to_array(rdev, mddev))
5260 export_rdev(rdev);
5261 }
5262 autorun_array(mddev);
5263 mddev_unlock(mddev);
5264 }
5265 /* on success, candidates will be empty, on error
5266 * it won't...
5267 */
5268 rdev_for_each_list(rdev, tmp, &candidates) {
5269 list_del_init(&rdev->same_set);
5270 export_rdev(rdev);
5271 }
5272 mddev_put(mddev);
5273 }
5274 printk(KERN_INFO "md: ... autorun DONE.\n");
5275}
5276#endif /* !MODULE */
5277
5278static int get_version(void __user * arg)
5279{
5280 mdu_version_t ver;
5281
5282 ver.major = MD_MAJOR_VERSION;
5283 ver.minor = MD_MINOR_VERSION;
5284 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5285
5286 if (copy_to_user(arg, &ver, sizeof(ver)))
5287 return -EFAULT;
5288
5289 return 0;
5290}
5291
5292static int get_array_info(mddev_t * mddev, void __user * arg)
5293{
5294 mdu_array_info_t info;
5295 int nr,working,insync,failed,spare;
5296 mdk_rdev_t *rdev;
5297
5298 nr=working=insync=failed=spare=0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set) {
5300 nr++;
5301 if (test_bit(Faulty, &rdev->flags))
5302 failed++;
5303 else {
5304 working++;
5305 if (test_bit(In_sync, &rdev->flags))
5306 insync++;
5307 else
5308 spare++;
5309 }
5310 }
5311
5312 info.major_version = mddev->major_version;
5313 info.minor_version = mddev->minor_version;
5314 info.patch_version = MD_PATCHLEVEL_VERSION;
5315 info.ctime = mddev->ctime;
5316 info.level = mddev->level;
5317 info.size = mddev->dev_sectors / 2;
5318 if (info.size != mddev->dev_sectors / 2) /* overflow */
5319 info.size = -1;
5320 info.nr_disks = nr;
5321 info.raid_disks = mddev->raid_disks;
5322 info.md_minor = mddev->md_minor;
5323 info.not_persistent= !mddev->persistent;
5324
5325 info.utime = mddev->utime;
5326 info.state = 0;
5327 if (mddev->in_sync)
5328 info.state = (1<<MD_SB_CLEAN);
5329 if (mddev->bitmap && mddev->bitmap_info.offset)
5330 info.state = (1<<MD_SB_BITMAP_PRESENT);
5331 info.active_disks = insync;
5332 info.working_disks = working;
5333 info.failed_disks = failed;
5334 info.spare_disks = spare;
5335
5336 info.layout = mddev->layout;
5337 info.chunk_size = mddev->chunk_sectors << 9;
5338
5339 if (copy_to_user(arg, &info, sizeof(info)))
5340 return -EFAULT;
5341
5342 return 0;
5343}
5344
5345static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5346{
5347 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5348 char *ptr, *buf = NULL;
5349 int err = -ENOMEM;
5350
5351 if (md_allow_write(mddev))
5352 file = kmalloc(sizeof(*file), GFP_NOIO);
5353 else
5354 file = kmalloc(sizeof(*file), GFP_KERNEL);
5355
5356 if (!file)
5357 goto out;
5358
5359 /* bitmap disabled, zero the first byte and copy out */
5360 if (!mddev->bitmap || !mddev->bitmap->file) {
5361 file->pathname[0] = '\0';
5362 goto copy_out;
5363 }
5364
5365 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5366 if (!buf)
5367 goto out;
5368
5369 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5370 if (IS_ERR(ptr))
5371 goto out;
5372
5373 strcpy(file->pathname, ptr);
5374
5375copy_out:
5376 err = 0;
5377 if (copy_to_user(arg, file, sizeof(*file)))
5378 err = -EFAULT;
5379out:
5380 kfree(buf);
5381 kfree(file);
5382 return err;
5383}
5384
5385static int get_disk_info(mddev_t * mddev, void __user * arg)
5386{
5387 mdu_disk_info_t info;
5388 mdk_rdev_t *rdev;
5389
5390 if (copy_from_user(&info, arg, sizeof(info)))
5391 return -EFAULT;
5392
5393 rdev = find_rdev_nr(mddev, info.number);
5394 if (rdev) {
5395 info.major = MAJOR(rdev->bdev->bd_dev);
5396 info.minor = MINOR(rdev->bdev->bd_dev);
5397 info.raid_disk = rdev->raid_disk;
5398 info.state = 0;
5399 if (test_bit(Faulty, &rdev->flags))
5400 info.state |= (1<<MD_DISK_FAULTY);
5401 else if (test_bit(In_sync, &rdev->flags)) {
5402 info.state |= (1<<MD_DISK_ACTIVE);
5403 info.state |= (1<<MD_DISK_SYNC);
5404 }
5405 if (test_bit(WriteMostly, &rdev->flags))
5406 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5407 } else {
5408 info.major = info.minor = 0;
5409 info.raid_disk = -1;
5410 info.state = (1<<MD_DISK_REMOVED);
5411 }
5412
5413 if (copy_to_user(arg, &info, sizeof(info)))
5414 return -EFAULT;
5415
5416 return 0;
5417}
5418
5419static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5420{
5421 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5422 mdk_rdev_t *rdev;
5423 dev_t dev = MKDEV(info->major,info->minor);
5424
5425 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5426 return -EOVERFLOW;
5427
5428 if (!mddev->raid_disks) {
5429 int err;
5430 /* expecting a device which has a superblock */
5431 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5432 if (IS_ERR(rdev)) {
5433 printk(KERN_WARNING
5434 "md: md_import_device returned %ld\n",
5435 PTR_ERR(rdev));
5436 return PTR_ERR(rdev);
5437 }
5438 if (!list_empty(&mddev->disks)) {
5439 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5440 mdk_rdev_t, same_set);
5441 err = super_types[mddev->major_version]
5442 .load_super(rdev, rdev0, mddev->minor_version);
5443 if (err < 0) {
5444 printk(KERN_WARNING
5445 "md: %s has different UUID to %s\n",
5446 bdevname(rdev->bdev,b),
5447 bdevname(rdev0->bdev,b2));
5448 export_rdev(rdev);
5449 return -EINVAL;
5450 }
5451 }
5452 err = bind_rdev_to_array(rdev, mddev);
5453 if (err)
5454 export_rdev(rdev);
5455 return err;
5456 }
5457
5458 /*
5459 * add_new_disk can be used once the array is assembled
5460 * to add "hot spares". They must already have a superblock
5461 * written
5462 */
5463 if (mddev->pers) {
5464 int err;
5465 if (!mddev->pers->hot_add_disk) {
5466 printk(KERN_WARNING
5467 "%s: personality does not support diskops!\n",
5468 mdname(mddev));
5469 return -EINVAL;
5470 }
5471 if (mddev->persistent)
5472 rdev = md_import_device(dev, mddev->major_version,
5473 mddev->minor_version);
5474 else
5475 rdev = md_import_device(dev, -1, -1);
5476 if (IS_ERR(rdev)) {
5477 printk(KERN_WARNING
5478 "md: md_import_device returned %ld\n",
5479 PTR_ERR(rdev));
5480 return PTR_ERR(rdev);
5481 }
5482 /* set saved_raid_disk if appropriate */
5483 if (!mddev->persistent) {
5484 if (info->state & (1<<MD_DISK_SYNC) &&
5485 info->raid_disk < mddev->raid_disks) {
5486 rdev->raid_disk = info->raid_disk;
5487 set_bit(In_sync, &rdev->flags);
5488 } else
5489 rdev->raid_disk = -1;
5490 } else
5491 super_types[mddev->major_version].
5492 validate_super(mddev, rdev);
5493 if ((info->state & (1<<MD_DISK_SYNC)) &&
5494 (!test_bit(In_sync, &rdev->flags) ||
5495 rdev->raid_disk != info->raid_disk)) {
5496 /* This was a hot-add request, but events doesn't
5497 * match, so reject it.
5498 */
5499 export_rdev(rdev);
5500 return -EINVAL;
5501 }
5502
5503 if (test_bit(In_sync, &rdev->flags))
5504 rdev->saved_raid_disk = rdev->raid_disk;
5505 else
5506 rdev->saved_raid_disk = -1;
5507
5508 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5509 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5510 set_bit(WriteMostly, &rdev->flags);
5511 else
5512 clear_bit(WriteMostly, &rdev->flags);
5513
5514 rdev->raid_disk = -1;
5515 err = bind_rdev_to_array(rdev, mddev);
5516 if (!err && !mddev->pers->hot_remove_disk) {
5517 /* If there is hot_add_disk but no hot_remove_disk
5518 * then added disks for geometry changes,
5519 * and should be added immediately.
5520 */
5521 super_types[mddev->major_version].
5522 validate_super(mddev, rdev);
5523 err = mddev->pers->hot_add_disk(mddev, rdev);
5524 if (err)
5525 unbind_rdev_from_array(rdev);
5526 }
5527 if (err)
5528 export_rdev(rdev);
5529 else
5530 sysfs_notify_dirent_safe(rdev->sysfs_state);
5531
5532 md_update_sb(mddev, 1);
5533 if (mddev->degraded)
5534 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5536 if (!err)
5537 md_new_event(mddev);
5538 md_wakeup_thread(mddev->thread);
5539 return err;
5540 }
5541
5542 /* otherwise, add_new_disk is only allowed
5543 * for major_version==0 superblocks
5544 */
5545 if (mddev->major_version != 0) {
5546 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5547 mdname(mddev));
5548 return -EINVAL;
5549 }
5550
5551 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5552 int err;
5553 rdev = md_import_device(dev, -1, 0);
5554 if (IS_ERR(rdev)) {
5555 printk(KERN_WARNING
5556 "md: error, md_import_device() returned %ld\n",
5557 PTR_ERR(rdev));
5558 return PTR_ERR(rdev);
5559 }
5560 rdev->desc_nr = info->number;
5561 if (info->raid_disk < mddev->raid_disks)
5562 rdev->raid_disk = info->raid_disk;
5563 else
5564 rdev->raid_disk = -1;
5565
5566 if (rdev->raid_disk < mddev->raid_disks)
5567 if (info->state & (1<<MD_DISK_SYNC))
5568 set_bit(In_sync, &rdev->flags);
5569
5570 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5571 set_bit(WriteMostly, &rdev->flags);
5572
5573 if (!mddev->persistent) {
5574 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5575 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5576 } else
5577 rdev->sb_start = calc_dev_sboffset(rdev);
5578 rdev->sectors = rdev->sb_start;
5579
5580 err = bind_rdev_to_array(rdev, mddev);
5581 if (err) {
5582 export_rdev(rdev);
5583 return err;
5584 }
5585 }
5586
5587 return 0;
5588}
5589
5590static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5591{
5592 char b[BDEVNAME_SIZE];
5593 mdk_rdev_t *rdev;
5594
5595 rdev = find_rdev(mddev, dev);
5596 if (!rdev)
5597 return -ENXIO;
5598
5599 if (rdev->raid_disk >= 0)
5600 goto busy;
5601
5602 kick_rdev_from_array(rdev);
5603 md_update_sb(mddev, 1);
5604 md_new_event(mddev);
5605
5606 return 0;
5607busy:
5608 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5609 bdevname(rdev->bdev,b), mdname(mddev));
5610 return -EBUSY;
5611}
5612
5613static int hot_add_disk(mddev_t * mddev, dev_t dev)
5614{
5615 char b[BDEVNAME_SIZE];
5616 int err;
5617 mdk_rdev_t *rdev;
5618
5619 if (!mddev->pers)
5620 return -ENODEV;
5621
5622 if (mddev->major_version != 0) {
5623 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5624 " version-0 superblocks.\n",
5625 mdname(mddev));
5626 return -EINVAL;
5627 }
5628 if (!mddev->pers->hot_add_disk) {
5629 printk(KERN_WARNING
5630 "%s: personality does not support diskops!\n",
5631 mdname(mddev));
5632 return -EINVAL;
5633 }
5634
5635 rdev = md_import_device(dev, -1, 0);
5636 if (IS_ERR(rdev)) {
5637 printk(KERN_WARNING
5638 "md: error, md_import_device() returned %ld\n",
5639 PTR_ERR(rdev));
5640 return -EINVAL;
5641 }
5642
5643 if (mddev->persistent)
5644 rdev->sb_start = calc_dev_sboffset(rdev);
5645 else
5646 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5647
5648 rdev->sectors = rdev->sb_start;
5649
5650 if (test_bit(Faulty, &rdev->flags)) {
5651 printk(KERN_WARNING
5652 "md: can not hot-add faulty %s disk to %s!\n",
5653 bdevname(rdev->bdev,b), mdname(mddev));
5654 err = -EINVAL;
5655 goto abort_export;
5656 }
5657 clear_bit(In_sync, &rdev->flags);
5658 rdev->desc_nr = -1;
5659 rdev->saved_raid_disk = -1;
5660 err = bind_rdev_to_array(rdev, mddev);
5661 if (err)
5662 goto abort_export;
5663
5664 /*
5665 * The rest should better be atomic, we can have disk failures
5666 * noticed in interrupt contexts ...
5667 */
5668
5669 rdev->raid_disk = -1;
5670
5671 md_update_sb(mddev, 1);
5672
5673 /*
5674 * Kick recovery, maybe this spare has to be added to the
5675 * array immediately.
5676 */
5677 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5678 md_wakeup_thread(mddev->thread);
5679 md_new_event(mddev);
5680 return 0;
5681
5682abort_export:
5683 export_rdev(rdev);
5684 return err;
5685}
5686
5687static int set_bitmap_file(mddev_t *mddev, int fd)
5688{
5689 int err;
5690
5691 if (mddev->pers) {
5692 if (!mddev->pers->quiesce)
5693 return -EBUSY;
5694 if (mddev->recovery || mddev->sync_thread)
5695 return -EBUSY;
5696 /* we should be able to change the bitmap.. */
5697 }
5698
5699
5700 if (fd >= 0) {
5701 if (mddev->bitmap)
5702 return -EEXIST; /* cannot add when bitmap is present */
5703 mddev->bitmap_info.file = fget(fd);
5704
5705 if (mddev->bitmap_info.file == NULL) {
5706 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5707 mdname(mddev));
5708 return -EBADF;
5709 }
5710
5711 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5712 if (err) {
5713 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5714 mdname(mddev));
5715 fput(mddev->bitmap_info.file);
5716 mddev->bitmap_info.file = NULL;
5717 return err;
5718 }
5719 mddev->bitmap_info.offset = 0; /* file overrides offset */
5720 } else if (mddev->bitmap == NULL)
5721 return -ENOENT; /* cannot remove what isn't there */
5722 err = 0;
5723 if (mddev->pers) {
5724 mddev->pers->quiesce(mddev, 1);
5725 if (fd >= 0) {
5726 err = bitmap_create(mddev);
5727 if (!err)
5728 err = bitmap_load(mddev);
5729 }
5730 if (fd < 0 || err) {
5731 bitmap_destroy(mddev);
5732 fd = -1; /* make sure to put the file */
5733 }
5734 mddev->pers->quiesce(mddev, 0);
5735 }
5736 if (fd < 0) {
5737 if (mddev->bitmap_info.file) {
5738 restore_bitmap_write_access(mddev->bitmap_info.file);
5739 fput(mddev->bitmap_info.file);
5740 }
5741 mddev->bitmap_info.file = NULL;
5742 }
5743
5744 return err;
5745}
5746
5747/*
5748 * set_array_info is used two different ways
5749 * The original usage is when creating a new array.
5750 * In this usage, raid_disks is > 0 and it together with
5751 * level, size, not_persistent,layout,chunksize determine the
5752 * shape of the array.
5753 * This will always create an array with a type-0.90.0 superblock.
5754 * The newer usage is when assembling an array.
5755 * In this case raid_disks will be 0, and the major_version field is
5756 * use to determine which style super-blocks are to be found on the devices.
5757 * The minor and patch _version numbers are also kept incase the
5758 * super_block handler wishes to interpret them.
5759 */
5760static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5761{
5762
5763 if (info->raid_disks == 0) {
5764 /* just setting version number for superblock loading */
5765 if (info->major_version < 0 ||
5766 info->major_version >= ARRAY_SIZE(super_types) ||
5767 super_types[info->major_version].name == NULL) {
5768 /* maybe try to auto-load a module? */
5769 printk(KERN_INFO
5770 "md: superblock version %d not known\n",
5771 info->major_version);
5772 return -EINVAL;
5773 }
5774 mddev->major_version = info->major_version;
5775 mddev->minor_version = info->minor_version;
5776 mddev->patch_version = info->patch_version;
5777 mddev->persistent = !info->not_persistent;
5778 /* ensure mddev_put doesn't delete this now that there
5779 * is some minimal configuration.
5780 */
5781 mddev->ctime = get_seconds();
5782 return 0;
5783 }
5784 mddev->major_version = MD_MAJOR_VERSION;
5785 mddev->minor_version = MD_MINOR_VERSION;
5786 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5787 mddev->ctime = get_seconds();
5788
5789 mddev->level = info->level;
5790 mddev->clevel[0] = 0;
5791 mddev->dev_sectors = 2 * (sector_t)info->size;
5792 mddev->raid_disks = info->raid_disks;
5793 /* don't set md_minor, it is determined by which /dev/md* was
5794 * openned
5795 */
5796 if (info->state & (1<<MD_SB_CLEAN))
5797 mddev->recovery_cp = MaxSector;
5798 else
5799 mddev->recovery_cp = 0;
5800 mddev->persistent = ! info->not_persistent;
5801 mddev->external = 0;
5802
5803 mddev->layout = info->layout;
5804 mddev->chunk_sectors = info->chunk_size >> 9;
5805
5806 mddev->max_disks = MD_SB_DISKS;
5807
5808 if (mddev->persistent)
5809 mddev->flags = 0;
5810 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5811
5812 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5813 mddev->bitmap_info.offset = 0;
5814
5815 mddev->reshape_position = MaxSector;
5816
5817 /*
5818 * Generate a 128 bit UUID
5819 */
5820 get_random_bytes(mddev->uuid, 16);
5821
5822 mddev->new_level = mddev->level;
5823 mddev->new_chunk_sectors = mddev->chunk_sectors;
5824 mddev->new_layout = mddev->layout;
5825 mddev->delta_disks = 0;
5826
5827 return 0;
5828}
5829
5830void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5831{
5832 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5833
5834 if (mddev->external_size)
5835 return;
5836
5837 mddev->array_sectors = array_sectors;
5838}
5839EXPORT_SYMBOL(md_set_array_sectors);
5840
5841static int update_size(mddev_t *mddev, sector_t num_sectors)
5842{
5843 mdk_rdev_t *rdev;
5844 int rv;
5845 int fit = (num_sectors == 0);
5846
5847 if (mddev->pers->resize == NULL)
5848 return -EINVAL;
5849 /* The "num_sectors" is the number of sectors of each device that
5850 * is used. This can only make sense for arrays with redundancy.
5851 * linear and raid0 always use whatever space is available. We can only
5852 * consider changing this number if no resync or reconstruction is
5853 * happening, and if the new size is acceptable. It must fit before the
5854 * sb_start or, if that is <data_offset, it must fit before the size
5855 * of each device. If num_sectors is zero, we find the largest size
5856 * that fits.
5857 */
5858 if (mddev->sync_thread)
5859 return -EBUSY;
5860 if (mddev->bitmap)
5861 /* Sorry, cannot grow a bitmap yet, just remove it,
5862 * grow, and re-add.
5863 */
5864 return -EBUSY;
5865 list_for_each_entry(rdev, &mddev->disks, same_set) {
5866 sector_t avail = rdev->sectors;
5867
5868 if (fit && (num_sectors == 0 || num_sectors > avail))
5869 num_sectors = avail;
5870 if (avail < num_sectors)
5871 return -ENOSPC;
5872 }
5873 rv = mddev->pers->resize(mddev, num_sectors);
5874 if (!rv)
5875 revalidate_disk(mddev->gendisk);
5876 return rv;
5877}
5878
5879static int update_raid_disks(mddev_t *mddev, int raid_disks)
5880{
5881 int rv;
5882 /* change the number of raid disks */
5883 if (mddev->pers->check_reshape == NULL)
5884 return -EINVAL;
5885 if (raid_disks <= 0 ||
5886 (mddev->max_disks && raid_disks >= mddev->max_disks))
5887 return -EINVAL;
5888 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5889 return -EBUSY;
5890 mddev->delta_disks = raid_disks - mddev->raid_disks;
5891
5892 rv = mddev->pers->check_reshape(mddev);
5893 if (rv < 0)
5894 mddev->delta_disks = 0;
5895 return rv;
5896}
5897
5898
5899/*
5900 * update_array_info is used to change the configuration of an
5901 * on-line array.
5902 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5903 * fields in the info are checked against the array.
5904 * Any differences that cannot be handled will cause an error.
5905 * Normally, only one change can be managed at a time.
5906 */
5907static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5908{
5909 int rv = 0;
5910 int cnt = 0;
5911 int state = 0;
5912
5913 /* calculate expected state,ignoring low bits */
5914 if (mddev->bitmap && mddev->bitmap_info.offset)
5915 state |= (1 << MD_SB_BITMAP_PRESENT);
5916
5917 if (mddev->major_version != info->major_version ||
5918 mddev->minor_version != info->minor_version ||
5919/* mddev->patch_version != info->patch_version || */
5920 mddev->ctime != info->ctime ||
5921 mddev->level != info->level ||
5922/* mddev->layout != info->layout || */
5923 !mddev->persistent != info->not_persistent||
5924 mddev->chunk_sectors != info->chunk_size >> 9 ||
5925 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5926 ((state^info->state) & 0xfffffe00)
5927 )
5928 return -EINVAL;
5929 /* Check there is only one change */
5930 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5931 cnt++;
5932 if (mddev->raid_disks != info->raid_disks)
5933 cnt++;
5934 if (mddev->layout != info->layout)
5935 cnt++;
5936 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5937 cnt++;
5938 if (cnt == 0)
5939 return 0;
5940 if (cnt > 1)
5941 return -EINVAL;
5942
5943 if (mddev->layout != info->layout) {
5944 /* Change layout
5945 * we don't need to do anything at the md level, the
5946 * personality will take care of it all.
5947 */
5948 if (mddev->pers->check_reshape == NULL)
5949 return -EINVAL;
5950 else {
5951 mddev->new_layout = info->layout;
5952 rv = mddev->pers->check_reshape(mddev);
5953 if (rv)
5954 mddev->new_layout = mddev->layout;
5955 return rv;
5956 }
5957 }
5958 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5959 rv = update_size(mddev, (sector_t)info->size * 2);
5960
5961 if (mddev->raid_disks != info->raid_disks)
5962 rv = update_raid_disks(mddev, info->raid_disks);
5963
5964 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5965 if (mddev->pers->quiesce == NULL)
5966 return -EINVAL;
5967 if (mddev->recovery || mddev->sync_thread)
5968 return -EBUSY;
5969 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5970 /* add the bitmap */
5971 if (mddev->bitmap)
5972 return -EEXIST;
5973 if (mddev->bitmap_info.default_offset == 0)
5974 return -EINVAL;
5975 mddev->bitmap_info.offset =
5976 mddev->bitmap_info.default_offset;
5977 mddev->pers->quiesce(mddev, 1);
5978 rv = bitmap_create(mddev);
5979 if (!rv)
5980 rv = bitmap_load(mddev);
5981 if (rv)
5982 bitmap_destroy(mddev);
5983 mddev->pers->quiesce(mddev, 0);
5984 } else {
5985 /* remove the bitmap */
5986 if (!mddev->bitmap)
5987 return -ENOENT;
5988 if (mddev->bitmap->file)
5989 return -EINVAL;
5990 mddev->pers->quiesce(mddev, 1);
5991 bitmap_destroy(mddev);
5992 mddev->pers->quiesce(mddev, 0);
5993 mddev->bitmap_info.offset = 0;
5994 }
5995 }
5996 md_update_sb(mddev, 1);
5997 return rv;
5998}
5999
6000static int set_disk_faulty(mddev_t *mddev, dev_t dev)
6001{
6002 mdk_rdev_t *rdev;
6003
6004 if (mddev->pers == NULL)
6005 return -ENODEV;
6006
6007 rdev = find_rdev(mddev, dev);
6008 if (!rdev)
6009 return -ENODEV;
6010
6011 md_error(mddev, rdev);
6012 if (!test_bit(Faulty, &rdev->flags))
6013 return -EBUSY;
6014 return 0;
6015}
6016
6017/*
6018 * We have a problem here : there is no easy way to give a CHS
6019 * virtual geometry. We currently pretend that we have a 2 heads
6020 * 4 sectors (with a BIG number of cylinders...). This drives
6021 * dosfs just mad... ;-)
6022 */
6023static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6024{
6025 mddev_t *mddev = bdev->bd_disk->private_data;
6026
6027 geo->heads = 2;
6028 geo->sectors = 4;
6029 geo->cylinders = mddev->array_sectors / 8;
6030 return 0;
6031}
6032
6033static int md_ioctl(struct block_device *bdev, fmode_t mode,
6034 unsigned int cmd, unsigned long arg)
6035{
6036 int err = 0;
6037 void __user *argp = (void __user *)arg;
6038 mddev_t *mddev = NULL;
6039 int ro;
6040
6041 if (!capable(CAP_SYS_ADMIN))
6042 return -EACCES;
6043
6044 /*
6045 * Commands dealing with the RAID driver but not any
6046 * particular array:
6047 */
6048 switch (cmd)
6049 {
6050 case RAID_VERSION:
6051 err = get_version(argp);
6052 goto done;
6053
6054 case PRINT_RAID_DEBUG:
6055 err = 0;
6056 md_print_devices();
6057 goto done;
6058
6059#ifndef MODULE
6060 case RAID_AUTORUN:
6061 err = 0;
6062 autostart_arrays(arg);
6063 goto done;
6064#endif
6065 default:;
6066 }
6067
6068 /*
6069 * Commands creating/starting a new array:
6070 */
6071
6072 mddev = bdev->bd_disk->private_data;
6073
6074 if (!mddev) {
6075 BUG();
6076 goto abort;
6077 }
6078
6079 err = mddev_lock(mddev);
6080 if (err) {
6081 printk(KERN_INFO
6082 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6083 err, cmd);
6084 goto abort;
6085 }
6086
6087 switch (cmd)
6088 {
6089 case SET_ARRAY_INFO:
6090 {
6091 mdu_array_info_t info;
6092 if (!arg)
6093 memset(&info, 0, sizeof(info));
6094 else if (copy_from_user(&info, argp, sizeof(info))) {
6095 err = -EFAULT;
6096 goto abort_unlock;
6097 }
6098 if (mddev->pers) {
6099 err = update_array_info(mddev, &info);
6100 if (err) {
6101 printk(KERN_WARNING "md: couldn't update"
6102 " array info. %d\n", err);
6103 goto abort_unlock;
6104 }
6105 goto done_unlock;
6106 }
6107 if (!list_empty(&mddev->disks)) {
6108 printk(KERN_WARNING
6109 "md: array %s already has disks!\n",
6110 mdname(mddev));
6111 err = -EBUSY;
6112 goto abort_unlock;
6113 }
6114 if (mddev->raid_disks) {
6115 printk(KERN_WARNING
6116 "md: array %s already initialised!\n",
6117 mdname(mddev));
6118 err = -EBUSY;
6119 goto abort_unlock;
6120 }
6121 err = set_array_info(mddev, &info);
6122 if (err) {
6123 printk(KERN_WARNING "md: couldn't set"
6124 " array info. %d\n", err);
6125 goto abort_unlock;
6126 }
6127 }
6128 goto done_unlock;
6129
6130 default:;
6131 }
6132
6133 /*
6134 * Commands querying/configuring an existing array:
6135 */
6136 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6137 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6138 if ((!mddev->raid_disks && !mddev->external)
6139 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6140 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6141 && cmd != GET_BITMAP_FILE) {
6142 err = -ENODEV;
6143 goto abort_unlock;
6144 }
6145
6146 /*
6147 * Commands even a read-only array can execute:
6148 */
6149 switch (cmd)
6150 {
6151 case GET_ARRAY_INFO:
6152 err = get_array_info(mddev, argp);
6153 goto done_unlock;
6154
6155 case GET_BITMAP_FILE:
6156 err = get_bitmap_file(mddev, argp);
6157 goto done_unlock;
6158
6159 case GET_DISK_INFO:
6160 err = get_disk_info(mddev, argp);
6161 goto done_unlock;
6162
6163 case RESTART_ARRAY_RW:
6164 err = restart_array(mddev);
6165 goto done_unlock;
6166
6167 case STOP_ARRAY:
6168 err = do_md_stop(mddev, 0, 1);
6169 goto done_unlock;
6170
6171 case STOP_ARRAY_RO:
6172 err = md_set_readonly(mddev, 1);
6173 goto done_unlock;
6174
6175 case BLKROSET:
6176 if (get_user(ro, (int __user *)(arg))) {
6177 err = -EFAULT;
6178 goto done_unlock;
6179 }
6180 err = -EINVAL;
6181
6182 /* if the bdev is going readonly the value of mddev->ro
6183 * does not matter, no writes are coming
6184 */
6185 if (ro)
6186 goto done_unlock;
6187
6188 /* are we are already prepared for writes? */
6189 if (mddev->ro != 1)
6190 goto done_unlock;
6191
6192 /* transitioning to readauto need only happen for
6193 * arrays that call md_write_start
6194 */
6195 if (mddev->pers) {
6196 err = restart_array(mddev);
6197 if (err == 0) {
6198 mddev->ro = 2;
6199 set_disk_ro(mddev->gendisk, 0);
6200 }
6201 }
6202 goto done_unlock;
6203 }
6204
6205 /*
6206 * The remaining ioctls are changing the state of the
6207 * superblock, so we do not allow them on read-only arrays.
6208 * However non-MD ioctls (e.g. get-size) will still come through
6209 * here and hit the 'default' below, so only disallow
6210 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6211 */
6212 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6213 if (mddev->ro == 2) {
6214 mddev->ro = 0;
6215 sysfs_notify_dirent_safe(mddev->sysfs_state);
6216 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6217 md_wakeup_thread(mddev->thread);
6218 } else {
6219 err = -EROFS;
6220 goto abort_unlock;
6221 }
6222 }
6223
6224 switch (cmd)
6225 {
6226 case ADD_NEW_DISK:
6227 {
6228 mdu_disk_info_t info;
6229 if (copy_from_user(&info, argp, sizeof(info)))
6230 err = -EFAULT;
6231 else
6232 err = add_new_disk(mddev, &info);
6233 goto done_unlock;
6234 }
6235
6236 case HOT_REMOVE_DISK:
6237 err = hot_remove_disk(mddev, new_decode_dev(arg));
6238 goto done_unlock;
6239
6240 case HOT_ADD_DISK:
6241 err = hot_add_disk(mddev, new_decode_dev(arg));
6242 goto done_unlock;
6243
6244 case SET_DISK_FAULTY:
6245 err = set_disk_faulty(mddev, new_decode_dev(arg));
6246 goto done_unlock;
6247
6248 case RUN_ARRAY:
6249 err = do_md_run(mddev);
6250 goto done_unlock;
6251
6252 case SET_BITMAP_FILE:
6253 err = set_bitmap_file(mddev, (int)arg);
6254 goto done_unlock;
6255
6256 default:
6257 err = -EINVAL;
6258 goto abort_unlock;
6259 }
6260
6261done_unlock:
6262abort_unlock:
6263 if (mddev->hold_active == UNTIL_IOCTL &&
6264 err != -EINVAL)
6265 mddev->hold_active = 0;
6266 mddev_unlock(mddev);
6267
6268 return err;
6269done:
6270 if (err)
6271 MD_BUG();
6272abort:
6273 return err;
6274}
6275#ifdef CONFIG_COMPAT
6276static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6277 unsigned int cmd, unsigned long arg)
6278{
6279 switch (cmd) {
6280 case HOT_REMOVE_DISK:
6281 case HOT_ADD_DISK:
6282 case SET_DISK_FAULTY:
6283 case SET_BITMAP_FILE:
6284 /* These take in integer arg, do not convert */
6285 break;
6286 default:
6287 arg = (unsigned long)compat_ptr(arg);
6288 break;
6289 }
6290
6291 return md_ioctl(bdev, mode, cmd, arg);
6292}
6293#endif /* CONFIG_COMPAT */
6294
6295static int md_open(struct block_device *bdev, fmode_t mode)
6296{
6297 /*
6298 * Succeed if we can lock the mddev, which confirms that
6299 * it isn't being stopped right now.
6300 */
6301 mddev_t *mddev = mddev_find(bdev->bd_dev);
6302 int err;
6303
6304 if (mddev->gendisk != bdev->bd_disk) {
6305 /* we are racing with mddev_put which is discarding this
6306 * bd_disk.
6307 */
6308 mddev_put(mddev);
6309 /* Wait until bdev->bd_disk is definitely gone */
6310 flush_workqueue(md_misc_wq);
6311 /* Then retry the open from the top */
6312 return -ERESTARTSYS;
6313 }
6314 BUG_ON(mddev != bdev->bd_disk->private_data);
6315
6316 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6317 goto out;
6318
6319 err = 0;
6320 atomic_inc(&mddev->openers);
6321 mutex_unlock(&mddev->open_mutex);
6322
6323 check_disk_change(bdev);
6324 out:
6325 return err;
6326}
6327
6328static int md_release(struct gendisk *disk, fmode_t mode)
6329{
6330 mddev_t *mddev = disk->private_data;
6331
6332 BUG_ON(!mddev);
6333 atomic_dec(&mddev->openers);
6334 mddev_put(mddev);
6335
6336 return 0;
6337}
6338
6339static int md_media_changed(struct gendisk *disk)
6340{
6341 mddev_t *mddev = disk->private_data;
6342
6343 return mddev->changed;
6344}
6345
6346static int md_revalidate(struct gendisk *disk)
6347{
6348 mddev_t *mddev = disk->private_data;
6349
6350 mddev->changed = 0;
6351 return 0;
6352}
6353static const struct block_device_operations md_fops =
6354{
6355 .owner = THIS_MODULE,
6356 .open = md_open,
6357 .release = md_release,
6358 .ioctl = md_ioctl,
6359#ifdef CONFIG_COMPAT
6360 .compat_ioctl = md_compat_ioctl,
6361#endif
6362 .getgeo = md_getgeo,
6363 .media_changed = md_media_changed,
6364 .revalidate_disk= md_revalidate,
6365};
6366
6367static int md_thread(void * arg)
6368{
6369 mdk_thread_t *thread = arg;
6370
6371 /*
6372 * md_thread is a 'system-thread', it's priority should be very
6373 * high. We avoid resource deadlocks individually in each
6374 * raid personality. (RAID5 does preallocation) We also use RR and
6375 * the very same RT priority as kswapd, thus we will never get
6376 * into a priority inversion deadlock.
6377 *
6378 * we definitely have to have equal or higher priority than
6379 * bdflush, otherwise bdflush will deadlock if there are too
6380 * many dirty RAID5 blocks.
6381 */
6382
6383 allow_signal(SIGKILL);
6384 while (!kthread_should_stop()) {
6385
6386 /* We need to wait INTERRUPTIBLE so that
6387 * we don't add to the load-average.
6388 * That means we need to be sure no signals are
6389 * pending
6390 */
6391 if (signal_pending(current))
6392 flush_signals(current);
6393
6394 wait_event_interruptible_timeout
6395 (thread->wqueue,
6396 test_bit(THREAD_WAKEUP, &thread->flags)
6397 || kthread_should_stop(),
6398 thread->timeout);
6399
6400 clear_bit(THREAD_WAKEUP, &thread->flags);
6401 if (!kthread_should_stop())
6402 thread->run(thread->mddev);
6403 }
6404
6405 return 0;
6406}
6407
6408void md_wakeup_thread(mdk_thread_t *thread)
6409{
6410 if (thread) {
6411 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6412 set_bit(THREAD_WAKEUP, &thread->flags);
6413 wake_up(&thread->wqueue);
6414 }
6415}
6416
6417mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6418 const char *name)
6419{
6420 mdk_thread_t *thread;
6421
6422 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6423 if (!thread)
6424 return NULL;
6425
6426 init_waitqueue_head(&thread->wqueue);
6427
6428 thread->run = run;
6429 thread->mddev = mddev;
6430 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6431 thread->tsk = kthread_run(md_thread, thread,
6432 "%s_%s",
6433 mdname(thread->mddev),
6434 name ?: mddev->pers->name);
6435 if (IS_ERR(thread->tsk)) {
6436 kfree(thread);
6437 return NULL;
6438 }
6439 return thread;
6440}
6441
6442void md_unregister_thread(mdk_thread_t **threadp)
6443{
6444 mdk_thread_t *thread = *threadp;
6445 if (!thread)
6446 return;
6447 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6448 /* Locking ensures that mddev_unlock does not wake_up a
6449 * non-existent thread
6450 */
6451 spin_lock(&pers_lock);
6452 *threadp = NULL;
6453 spin_unlock(&pers_lock);
6454
6455 kthread_stop(thread->tsk);
6456 kfree(thread);
6457}
6458
6459void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6460{
6461 if (!mddev) {
6462 MD_BUG();
6463 return;
6464 }
6465
6466 if (!rdev || test_bit(Faulty, &rdev->flags))
6467 return;
6468
6469 if (!mddev->pers || !mddev->pers->error_handler)
6470 return;
6471 mddev->pers->error_handler(mddev,rdev);
6472 if (mddev->degraded)
6473 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6474 sysfs_notify_dirent_safe(rdev->sysfs_state);
6475 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6476 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6477 md_wakeup_thread(mddev->thread);
6478 if (mddev->event_work.func)
6479 queue_work(md_misc_wq, &mddev->event_work);
6480 md_new_event_inintr(mddev);
6481}
6482
6483/* seq_file implementation /proc/mdstat */
6484
6485static void status_unused(struct seq_file *seq)
6486{
6487 int i = 0;
6488 mdk_rdev_t *rdev;
6489
6490 seq_printf(seq, "unused devices: ");
6491
6492 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6493 char b[BDEVNAME_SIZE];
6494 i++;
6495 seq_printf(seq, "%s ",
6496 bdevname(rdev->bdev,b));
6497 }
6498 if (!i)
6499 seq_printf(seq, "<none>");
6500
6501 seq_printf(seq, "\n");
6502}
6503
6504
6505static void status_resync(struct seq_file *seq, mddev_t * mddev)
6506{
6507 sector_t max_sectors, resync, res;
6508 unsigned long dt, db;
6509 sector_t rt;
6510 int scale;
6511 unsigned int per_milli;
6512
6513 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6514
6515 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6516 max_sectors = mddev->resync_max_sectors;
6517 else
6518 max_sectors = mddev->dev_sectors;
6519
6520 /*
6521 * Should not happen.
6522 */
6523 if (!max_sectors) {
6524 MD_BUG();
6525 return;
6526 }
6527 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6528 * in a sector_t, and (max_sectors>>scale) will fit in a
6529 * u32, as those are the requirements for sector_div.
6530 * Thus 'scale' must be at least 10
6531 */
6532 scale = 10;
6533 if (sizeof(sector_t) > sizeof(unsigned long)) {
6534 while ( max_sectors/2 > (1ULL<<(scale+32)))
6535 scale++;
6536 }
6537 res = (resync>>scale)*1000;
6538 sector_div(res, (u32)((max_sectors>>scale)+1));
6539
6540 per_milli = res;
6541 {
6542 int i, x = per_milli/50, y = 20-x;
6543 seq_printf(seq, "[");
6544 for (i = 0; i < x; i++)
6545 seq_printf(seq, "=");
6546 seq_printf(seq, ">");
6547 for (i = 0; i < y; i++)
6548 seq_printf(seq, ".");
6549 seq_printf(seq, "] ");
6550 }
6551 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6552 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6553 "reshape" :
6554 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6555 "check" :
6556 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6557 "resync" : "recovery"))),
6558 per_milli/10, per_milli % 10,
6559 (unsigned long long) resync/2,
6560 (unsigned long long) max_sectors/2);
6561
6562 /*
6563 * dt: time from mark until now
6564 * db: blocks written from mark until now
6565 * rt: remaining time
6566 *
6567 * rt is a sector_t, so could be 32bit or 64bit.
6568 * So we divide before multiply in case it is 32bit and close
6569 * to the limit.
6570 * We scale the divisor (db) by 32 to avoid losing precision
6571 * near the end of resync when the number of remaining sectors
6572 * is close to 'db'.
6573 * We then divide rt by 32 after multiplying by db to compensate.
6574 * The '+1' avoids division by zero if db is very small.
6575 */
6576 dt = ((jiffies - mddev->resync_mark) / HZ);
6577 if (!dt) dt++;
6578 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6579 - mddev->resync_mark_cnt;
6580
6581 rt = max_sectors - resync; /* number of remaining sectors */
6582 sector_div(rt, db/32+1);
6583 rt *= dt;
6584 rt >>= 5;
6585
6586 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6587 ((unsigned long)rt % 60)/6);
6588
6589 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6590}
6591
6592static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6593{
6594 struct list_head *tmp;
6595 loff_t l = *pos;
6596 mddev_t *mddev;
6597
6598 if (l >= 0x10000)
6599 return NULL;
6600 if (!l--)
6601 /* header */
6602 return (void*)1;
6603
6604 spin_lock(&all_mddevs_lock);
6605 list_for_each(tmp,&all_mddevs)
6606 if (!l--) {
6607 mddev = list_entry(tmp, mddev_t, all_mddevs);
6608 mddev_get(mddev);
6609 spin_unlock(&all_mddevs_lock);
6610 return mddev;
6611 }
6612 spin_unlock(&all_mddevs_lock);
6613 if (!l--)
6614 return (void*)2;/* tail */
6615 return NULL;
6616}
6617
6618static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6619{
6620 struct list_head *tmp;
6621 mddev_t *next_mddev, *mddev = v;
6622
6623 ++*pos;
6624 if (v == (void*)2)
6625 return NULL;
6626
6627 spin_lock(&all_mddevs_lock);
6628 if (v == (void*)1)
6629 tmp = all_mddevs.next;
6630 else
6631 tmp = mddev->all_mddevs.next;
6632 if (tmp != &all_mddevs)
6633 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6634 else {
6635 next_mddev = (void*)2;
6636 *pos = 0x10000;
6637 }
6638 spin_unlock(&all_mddevs_lock);
6639
6640 if (v != (void*)1)
6641 mddev_put(mddev);
6642 return next_mddev;
6643
6644}
6645
6646static void md_seq_stop(struct seq_file *seq, void *v)
6647{
6648 mddev_t *mddev = v;
6649
6650 if (mddev && v != (void*)1 && v != (void*)2)
6651 mddev_put(mddev);
6652}
6653
6654static int md_seq_show(struct seq_file *seq, void *v)
6655{
6656 mddev_t *mddev = v;
6657 sector_t sectors;
6658 mdk_rdev_t *rdev;
6659 struct bitmap *bitmap;
6660
6661 if (v == (void*)1) {
6662 struct mdk_personality *pers;
6663 seq_printf(seq, "Personalities : ");
6664 spin_lock(&pers_lock);
6665 list_for_each_entry(pers, &pers_list, list)
6666 seq_printf(seq, "[%s] ", pers->name);
6667
6668 spin_unlock(&pers_lock);
6669 seq_printf(seq, "\n");
6670 seq->poll_event = atomic_read(&md_event_count);
6671 return 0;
6672 }
6673 if (v == (void*)2) {
6674 status_unused(seq);
6675 return 0;
6676 }
6677
6678 if (mddev_lock(mddev) < 0)
6679 return -EINTR;
6680
6681 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6682 seq_printf(seq, "%s : %sactive", mdname(mddev),
6683 mddev->pers ? "" : "in");
6684 if (mddev->pers) {
6685 if (mddev->ro==1)
6686 seq_printf(seq, " (read-only)");
6687 if (mddev->ro==2)
6688 seq_printf(seq, " (auto-read-only)");
6689 seq_printf(seq, " %s", mddev->pers->name);
6690 }
6691
6692 sectors = 0;
6693 list_for_each_entry(rdev, &mddev->disks, same_set) {
6694 char b[BDEVNAME_SIZE];
6695 seq_printf(seq, " %s[%d]",
6696 bdevname(rdev->bdev,b), rdev->desc_nr);
6697 if (test_bit(WriteMostly, &rdev->flags))
6698 seq_printf(seq, "(W)");
6699 if (test_bit(Faulty, &rdev->flags)) {
6700 seq_printf(seq, "(F)");
6701 continue;
6702 } else if (rdev->raid_disk < 0)
6703 seq_printf(seq, "(S)"); /* spare */
6704 sectors += rdev->sectors;
6705 }
6706
6707 if (!list_empty(&mddev->disks)) {
6708 if (mddev->pers)
6709 seq_printf(seq, "\n %llu blocks",
6710 (unsigned long long)
6711 mddev->array_sectors / 2);
6712 else
6713 seq_printf(seq, "\n %llu blocks",
6714 (unsigned long long)sectors / 2);
6715 }
6716 if (mddev->persistent) {
6717 if (mddev->major_version != 0 ||
6718 mddev->minor_version != 90) {
6719 seq_printf(seq," super %d.%d",
6720 mddev->major_version,
6721 mddev->minor_version);
6722 }
6723 } else if (mddev->external)
6724 seq_printf(seq, " super external:%s",
6725 mddev->metadata_type);
6726 else
6727 seq_printf(seq, " super non-persistent");
6728
6729 if (mddev->pers) {
6730 mddev->pers->status(seq, mddev);
6731 seq_printf(seq, "\n ");
6732 if (mddev->pers->sync_request) {
6733 if (mddev->curr_resync > 2) {
6734 status_resync(seq, mddev);
6735 seq_printf(seq, "\n ");
6736 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6737 seq_printf(seq, "\tresync=DELAYED\n ");
6738 else if (mddev->recovery_cp < MaxSector)
6739 seq_printf(seq, "\tresync=PENDING\n ");
6740 }
6741 } else
6742 seq_printf(seq, "\n ");
6743
6744 if ((bitmap = mddev->bitmap)) {
6745 unsigned long chunk_kb;
6746 unsigned long flags;
6747 spin_lock_irqsave(&bitmap->lock, flags);
6748 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6749 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6750 "%lu%s chunk",
6751 bitmap->pages - bitmap->missing_pages,
6752 bitmap->pages,
6753 (bitmap->pages - bitmap->missing_pages)
6754 << (PAGE_SHIFT - 10),
6755 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6756 chunk_kb ? "KB" : "B");
6757 if (bitmap->file) {
6758 seq_printf(seq, ", file: ");
6759 seq_path(seq, &bitmap->file->f_path, " \t\n");
6760 }
6761
6762 seq_printf(seq, "\n");
6763 spin_unlock_irqrestore(&bitmap->lock, flags);
6764 }
6765
6766 seq_printf(seq, "\n");
6767 }
6768 mddev_unlock(mddev);
6769
6770 return 0;
6771}
6772
6773static const struct seq_operations md_seq_ops = {
6774 .start = md_seq_start,
6775 .next = md_seq_next,
6776 .stop = md_seq_stop,
6777 .show = md_seq_show,
6778};
6779
6780static int md_seq_open(struct inode *inode, struct file *file)
6781{
6782 struct seq_file *seq;
6783 int error;
6784
6785 error = seq_open(file, &md_seq_ops);
6786 if (error)
6787 return error;
6788
6789 seq = file->private_data;
6790 seq->poll_event = atomic_read(&md_event_count);
6791 return error;
6792}
6793
6794static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6795{
6796 struct seq_file *seq = filp->private_data;
6797 int mask;
6798
6799 poll_wait(filp, &md_event_waiters, wait);
6800
6801 /* always allow read */
6802 mask = POLLIN | POLLRDNORM;
6803
6804 if (seq->poll_event != atomic_read(&md_event_count))
6805 mask |= POLLERR | POLLPRI;
6806 return mask;
6807}
6808
6809static const struct file_operations md_seq_fops = {
6810 .owner = THIS_MODULE,
6811 .open = md_seq_open,
6812 .read = seq_read,
6813 .llseek = seq_lseek,
6814 .release = seq_release_private,
6815 .poll = mdstat_poll,
6816};
6817
6818int register_md_personality(struct mdk_personality *p)
6819{
6820 spin_lock(&pers_lock);
6821 list_add_tail(&p->list, &pers_list);
6822 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6823 spin_unlock(&pers_lock);
6824 return 0;
6825}
6826
6827int unregister_md_personality(struct mdk_personality *p)
6828{
6829 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6830 spin_lock(&pers_lock);
6831 list_del_init(&p->list);
6832 spin_unlock(&pers_lock);
6833 return 0;
6834}
6835
6836static int is_mddev_idle(mddev_t *mddev, int init)
6837{
6838 mdk_rdev_t * rdev;
6839 int idle;
6840 int curr_events;
6841
6842 idle = 1;
6843 rcu_read_lock();
6844 rdev_for_each_rcu(rdev, mddev) {
6845 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6846 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6847 (int)part_stat_read(&disk->part0, sectors[1]) -
6848 atomic_read(&disk->sync_io);
6849 /* sync IO will cause sync_io to increase before the disk_stats
6850 * as sync_io is counted when a request starts, and
6851 * disk_stats is counted when it completes.
6852 * So resync activity will cause curr_events to be smaller than
6853 * when there was no such activity.
6854 * non-sync IO will cause disk_stat to increase without
6855 * increasing sync_io so curr_events will (eventually)
6856 * be larger than it was before. Once it becomes
6857 * substantially larger, the test below will cause
6858 * the array to appear non-idle, and resync will slow
6859 * down.
6860 * If there is a lot of outstanding resync activity when
6861 * we set last_event to curr_events, then all that activity
6862 * completing might cause the array to appear non-idle
6863 * and resync will be slowed down even though there might
6864 * not have been non-resync activity. This will only
6865 * happen once though. 'last_events' will soon reflect
6866 * the state where there is little or no outstanding
6867 * resync requests, and further resync activity will
6868 * always make curr_events less than last_events.
6869 *
6870 */
6871 if (init || curr_events - rdev->last_events > 64) {
6872 rdev->last_events = curr_events;
6873 idle = 0;
6874 }
6875 }
6876 rcu_read_unlock();
6877 return idle;
6878}
6879
6880void md_done_sync(mddev_t *mddev, int blocks, int ok)
6881{
6882 /* another "blocks" (512byte) blocks have been synced */
6883 atomic_sub(blocks, &mddev->recovery_active);
6884 wake_up(&mddev->recovery_wait);
6885 if (!ok) {
6886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6887 md_wakeup_thread(mddev->thread);
6888 // stop recovery, signal do_sync ....
6889 }
6890}
6891
6892
6893/* md_write_start(mddev, bi)
6894 * If we need to update some array metadata (e.g. 'active' flag
6895 * in superblock) before writing, schedule a superblock update
6896 * and wait for it to complete.
6897 */
6898void md_write_start(mddev_t *mddev, struct bio *bi)
6899{
6900 int did_change = 0;
6901 if (bio_data_dir(bi) != WRITE)
6902 return;
6903
6904 BUG_ON(mddev->ro == 1);
6905 if (mddev->ro == 2) {
6906 /* need to switch to read/write */
6907 mddev->ro = 0;
6908 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6909 md_wakeup_thread(mddev->thread);
6910 md_wakeup_thread(mddev->sync_thread);
6911 did_change = 1;
6912 }
6913 atomic_inc(&mddev->writes_pending);
6914 if (mddev->safemode == 1)
6915 mddev->safemode = 0;
6916 if (mddev->in_sync) {
6917 spin_lock_irq(&mddev->write_lock);
6918 if (mddev->in_sync) {
6919 mddev->in_sync = 0;
6920 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6921 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6922 md_wakeup_thread(mddev->thread);
6923 did_change = 1;
6924 }
6925 spin_unlock_irq(&mddev->write_lock);
6926 }
6927 if (did_change)
6928 sysfs_notify_dirent_safe(mddev->sysfs_state);
6929 wait_event(mddev->sb_wait,
6930 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6931}
6932
6933void md_write_end(mddev_t *mddev)
6934{
6935 if (atomic_dec_and_test(&mddev->writes_pending)) {
6936 if (mddev->safemode == 2)
6937 md_wakeup_thread(mddev->thread);
6938 else if (mddev->safemode_delay)
6939 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6940 }
6941}
6942
6943/* md_allow_write(mddev)
6944 * Calling this ensures that the array is marked 'active' so that writes
6945 * may proceed without blocking. It is important to call this before
6946 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6947 * Must be called with mddev_lock held.
6948 *
6949 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6950 * is dropped, so return -EAGAIN after notifying userspace.
6951 */
6952int md_allow_write(mddev_t *mddev)
6953{
6954 if (!mddev->pers)
6955 return 0;
6956 if (mddev->ro)
6957 return 0;
6958 if (!mddev->pers->sync_request)
6959 return 0;
6960
6961 spin_lock_irq(&mddev->write_lock);
6962 if (mddev->in_sync) {
6963 mddev->in_sync = 0;
6964 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6965 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6966 if (mddev->safemode_delay &&
6967 mddev->safemode == 0)
6968 mddev->safemode = 1;
6969 spin_unlock_irq(&mddev->write_lock);
6970 md_update_sb(mddev, 0);
6971 sysfs_notify_dirent_safe(mddev->sysfs_state);
6972 } else
6973 spin_unlock_irq(&mddev->write_lock);
6974
6975 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6976 return -EAGAIN;
6977 else
6978 return 0;
6979}
6980EXPORT_SYMBOL_GPL(md_allow_write);
6981
6982#define SYNC_MARKS 10
6983#define SYNC_MARK_STEP (3*HZ)
6984void md_do_sync(mddev_t *mddev)
6985{
6986 mddev_t *mddev2;
6987 unsigned int currspeed = 0,
6988 window;
6989 sector_t max_sectors,j, io_sectors;
6990 unsigned long mark[SYNC_MARKS];
6991 sector_t mark_cnt[SYNC_MARKS];
6992 int last_mark,m;
6993 struct list_head *tmp;
6994 sector_t last_check;
6995 int skipped = 0;
6996 mdk_rdev_t *rdev;
6997 char *desc;
6998
6999 /* just incase thread restarts... */
7000 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7001 return;
7002 if (mddev->ro) /* never try to sync a read-only array */
7003 return;
7004
7005 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7006 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7007 desc = "data-check";
7008 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7009 desc = "requested-resync";
7010 else
7011 desc = "resync";
7012 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7013 desc = "reshape";
7014 else
7015 desc = "recovery";
7016
7017 /* we overload curr_resync somewhat here.
7018 * 0 == not engaged in resync at all
7019 * 2 == checking that there is no conflict with another sync
7020 * 1 == like 2, but have yielded to allow conflicting resync to
7021 * commense
7022 * other == active in resync - this many blocks
7023 *
7024 * Before starting a resync we must have set curr_resync to
7025 * 2, and then checked that every "conflicting" array has curr_resync
7026 * less than ours. When we find one that is the same or higher
7027 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7028 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7029 * This will mean we have to start checking from the beginning again.
7030 *
7031 */
7032
7033 do {
7034 mddev->curr_resync = 2;
7035
7036 try_again:
7037 if (kthread_should_stop())
7038 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7039
7040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7041 goto skip;
7042 for_each_mddev(mddev2, tmp) {
7043 if (mddev2 == mddev)
7044 continue;
7045 if (!mddev->parallel_resync
7046 && mddev2->curr_resync
7047 && match_mddev_units(mddev, mddev2)) {
7048 DEFINE_WAIT(wq);
7049 if (mddev < mddev2 && mddev->curr_resync == 2) {
7050 /* arbitrarily yield */
7051 mddev->curr_resync = 1;
7052 wake_up(&resync_wait);
7053 }
7054 if (mddev > mddev2 && mddev->curr_resync == 1)
7055 /* no need to wait here, we can wait the next
7056 * time 'round when curr_resync == 2
7057 */
7058 continue;
7059 /* We need to wait 'interruptible' so as not to
7060 * contribute to the load average, and not to
7061 * be caught by 'softlockup'
7062 */
7063 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7064 if (!kthread_should_stop() &&
7065 mddev2->curr_resync >= mddev->curr_resync) {
7066 printk(KERN_INFO "md: delaying %s of %s"
7067 " until %s has finished (they"
7068 " share one or more physical units)\n",
7069 desc, mdname(mddev), mdname(mddev2));
7070 mddev_put(mddev2);
7071 if (signal_pending(current))
7072 flush_signals(current);
7073 schedule();
7074 finish_wait(&resync_wait, &wq);
7075 goto try_again;
7076 }
7077 finish_wait(&resync_wait, &wq);
7078 }
7079 }
7080 } while (mddev->curr_resync < 2);
7081
7082 j = 0;
7083 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7084 /* resync follows the size requested by the personality,
7085 * which defaults to physical size, but can be virtual size
7086 */
7087 max_sectors = mddev->resync_max_sectors;
7088 mddev->resync_mismatches = 0;
7089 /* we don't use the checkpoint if there's a bitmap */
7090 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7091 j = mddev->resync_min;
7092 else if (!mddev->bitmap)
7093 j = mddev->recovery_cp;
7094
7095 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7096 max_sectors = mddev->dev_sectors;
7097 else {
7098 /* recovery follows the physical size of devices */
7099 max_sectors = mddev->dev_sectors;
7100 j = MaxSector;
7101 rcu_read_lock();
7102 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7103 if (rdev->raid_disk >= 0 &&
7104 !test_bit(Faulty, &rdev->flags) &&
7105 !test_bit(In_sync, &rdev->flags) &&
7106 rdev->recovery_offset < j)
7107 j = rdev->recovery_offset;
7108 rcu_read_unlock();
7109 }
7110
7111 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7112 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7113 " %d KB/sec/disk.\n", speed_min(mddev));
7114 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7115 "(but not more than %d KB/sec) for %s.\n",
7116 speed_max(mddev), desc);
7117
7118 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7119
7120 io_sectors = 0;
7121 for (m = 0; m < SYNC_MARKS; m++) {
7122 mark[m] = jiffies;
7123 mark_cnt[m] = io_sectors;
7124 }
7125 last_mark = 0;
7126 mddev->resync_mark = mark[last_mark];
7127 mddev->resync_mark_cnt = mark_cnt[last_mark];
7128
7129 /*
7130 * Tune reconstruction:
7131 */
7132 window = 32*(PAGE_SIZE/512);
7133 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7134 window/2, (unsigned long long)max_sectors/2);
7135
7136 atomic_set(&mddev->recovery_active, 0);
7137 last_check = 0;
7138
7139 if (j>2) {
7140 printk(KERN_INFO
7141 "md: resuming %s of %s from checkpoint.\n",
7142 desc, mdname(mddev));
7143 mddev->curr_resync = j;
7144 }
7145 mddev->curr_resync_completed = j;
7146
7147 while (j < max_sectors) {
7148 sector_t sectors;
7149
7150 skipped = 0;
7151
7152 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7153 ((mddev->curr_resync > mddev->curr_resync_completed &&
7154 (mddev->curr_resync - mddev->curr_resync_completed)
7155 > (max_sectors >> 4)) ||
7156 (j - mddev->curr_resync_completed)*2
7157 >= mddev->resync_max - mddev->curr_resync_completed
7158 )) {
7159 /* time to update curr_resync_completed */
7160 wait_event(mddev->recovery_wait,
7161 atomic_read(&mddev->recovery_active) == 0);
7162 mddev->curr_resync_completed = j;
7163 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7164 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7165 }
7166
7167 while (j >= mddev->resync_max && !kthread_should_stop()) {
7168 /* As this condition is controlled by user-space,
7169 * we can block indefinitely, so use '_interruptible'
7170 * to avoid triggering warnings.
7171 */
7172 flush_signals(current); /* just in case */
7173 wait_event_interruptible(mddev->recovery_wait,
7174 mddev->resync_max > j
7175 || kthread_should_stop());
7176 }
7177
7178 if (kthread_should_stop())
7179 goto interrupted;
7180
7181 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7182 currspeed < speed_min(mddev));
7183 if (sectors == 0) {
7184 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7185 goto out;
7186 }
7187
7188 if (!skipped) { /* actual IO requested */
7189 io_sectors += sectors;
7190 atomic_add(sectors, &mddev->recovery_active);
7191 }
7192
7193 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7194 break;
7195
7196 j += sectors;
7197 if (j>1) mddev->curr_resync = j;
7198 mddev->curr_mark_cnt = io_sectors;
7199 if (last_check == 0)
7200 /* this is the earliest that rebuild will be
7201 * visible in /proc/mdstat
7202 */
7203 md_new_event(mddev);
7204
7205 if (last_check + window > io_sectors || j == max_sectors)
7206 continue;
7207
7208 last_check = io_sectors;
7209 repeat:
7210 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7211 /* step marks */
7212 int next = (last_mark+1) % SYNC_MARKS;
7213
7214 mddev->resync_mark = mark[next];
7215 mddev->resync_mark_cnt = mark_cnt[next];
7216 mark[next] = jiffies;
7217 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7218 last_mark = next;
7219 }
7220
7221
7222 if (kthread_should_stop())
7223 goto interrupted;
7224
7225
7226 /*
7227 * this loop exits only if either when we are slower than
7228 * the 'hard' speed limit, or the system was IO-idle for
7229 * a jiffy.
7230 * the system might be non-idle CPU-wise, but we only care
7231 * about not overloading the IO subsystem. (things like an
7232 * e2fsck being done on the RAID array should execute fast)
7233 */
7234 cond_resched();
7235
7236 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7237 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7238
7239 if (currspeed > speed_min(mddev)) {
7240 if ((currspeed > speed_max(mddev)) ||
7241 !is_mddev_idle(mddev, 0)) {
7242 msleep(500);
7243 goto repeat;
7244 }
7245 }
7246 }
7247 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7248 /*
7249 * this also signals 'finished resyncing' to md_stop
7250 */
7251 out:
7252 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7253
7254 /* tell personality that we are finished */
7255 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7256
7257 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7258 mddev->curr_resync > 2) {
7259 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7260 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7261 if (mddev->curr_resync >= mddev->recovery_cp) {
7262 printk(KERN_INFO
7263 "md: checkpointing %s of %s.\n",
7264 desc, mdname(mddev));
7265 mddev->recovery_cp = mddev->curr_resync;
7266 }
7267 } else
7268 mddev->recovery_cp = MaxSector;
7269 } else {
7270 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7271 mddev->curr_resync = MaxSector;
7272 rcu_read_lock();
7273 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7274 if (rdev->raid_disk >= 0 &&
7275 mddev->delta_disks >= 0 &&
7276 !test_bit(Faulty, &rdev->flags) &&
7277 !test_bit(In_sync, &rdev->flags) &&
7278 rdev->recovery_offset < mddev->curr_resync)
7279 rdev->recovery_offset = mddev->curr_resync;
7280 rcu_read_unlock();
7281 }
7282 }
7283 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7284
7285 skip:
7286 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7287 /* We completed so min/max setting can be forgotten if used. */
7288 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7289 mddev->resync_min = 0;
7290 mddev->resync_max = MaxSector;
7291 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7292 mddev->resync_min = mddev->curr_resync_completed;
7293 mddev->curr_resync = 0;
7294 wake_up(&resync_wait);
7295 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7296 md_wakeup_thread(mddev->thread);
7297 return;
7298
7299 interrupted:
7300 /*
7301 * got a signal, exit.
7302 */
7303 printk(KERN_INFO
7304 "md: md_do_sync() got signal ... exiting\n");
7305 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7306 goto out;
7307
7308}
7309EXPORT_SYMBOL_GPL(md_do_sync);
7310
7311static int remove_and_add_spares(mddev_t *mddev)
7312{
7313 mdk_rdev_t *rdev;
7314 int spares = 0;
7315
7316 mddev->curr_resync_completed = 0;
7317
7318 list_for_each_entry(rdev, &mddev->disks, same_set)
7319 if (rdev->raid_disk >= 0 &&
7320 !test_bit(Blocked, &rdev->flags) &&
7321 (test_bit(Faulty, &rdev->flags) ||
7322 ! test_bit(In_sync, &rdev->flags)) &&
7323 atomic_read(&rdev->nr_pending)==0) {
7324 if (mddev->pers->hot_remove_disk(
7325 mddev, rdev->raid_disk)==0) {
7326 sysfs_unlink_rdev(mddev, rdev);
7327 rdev->raid_disk = -1;
7328 }
7329 }
7330
7331 if (mddev->degraded) {
7332 list_for_each_entry(rdev, &mddev->disks, same_set) {
7333 if (rdev->raid_disk >= 0 &&
7334 !test_bit(In_sync, &rdev->flags) &&
7335 !test_bit(Faulty, &rdev->flags))
7336 spares++;
7337 if (rdev->raid_disk < 0
7338 && !test_bit(Faulty, &rdev->flags)) {
7339 rdev->recovery_offset = 0;
7340 if (mddev->pers->
7341 hot_add_disk(mddev, rdev) == 0) {
7342 if (sysfs_link_rdev(mddev, rdev))
7343 /* failure here is OK */;
7344 spares++;
7345 md_new_event(mddev);
7346 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7347 } else
7348 break;
7349 }
7350 }
7351 }
7352 return spares;
7353}
7354
7355static void reap_sync_thread(mddev_t *mddev)
7356{
7357 mdk_rdev_t *rdev;
7358
7359 /* resync has finished, collect result */
7360 md_unregister_thread(&mddev->sync_thread);
7361 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7362 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7363 /* success...*/
7364 /* activate any spares */
7365 if (mddev->pers->spare_active(mddev))
7366 sysfs_notify(&mddev->kobj, NULL,
7367 "degraded");
7368 }
7369 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7370 mddev->pers->finish_reshape)
7371 mddev->pers->finish_reshape(mddev);
7372 md_update_sb(mddev, 1);
7373
7374 /* if array is no-longer degraded, then any saved_raid_disk
7375 * information must be scrapped
7376 */
7377 if (!mddev->degraded)
7378 list_for_each_entry(rdev, &mddev->disks, same_set)
7379 rdev->saved_raid_disk = -1;
7380
7381 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7382 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7383 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7384 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7385 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7386 /* flag recovery needed just to double check */
7387 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7388 sysfs_notify_dirent_safe(mddev->sysfs_action);
7389 md_new_event(mddev);
7390 if (mddev->event_work.func)
7391 queue_work(md_misc_wq, &mddev->event_work);
7392}
7393
7394/*
7395 * This routine is regularly called by all per-raid-array threads to
7396 * deal with generic issues like resync and super-block update.
7397 * Raid personalities that don't have a thread (linear/raid0) do not
7398 * need this as they never do any recovery or update the superblock.
7399 *
7400 * It does not do any resync itself, but rather "forks" off other threads
7401 * to do that as needed.
7402 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7403 * "->recovery" and create a thread at ->sync_thread.
7404 * When the thread finishes it sets MD_RECOVERY_DONE
7405 * and wakeups up this thread which will reap the thread and finish up.
7406 * This thread also removes any faulty devices (with nr_pending == 0).
7407 *
7408 * The overall approach is:
7409 * 1/ if the superblock needs updating, update it.
7410 * 2/ If a recovery thread is running, don't do anything else.
7411 * 3/ If recovery has finished, clean up, possibly marking spares active.
7412 * 4/ If there are any faulty devices, remove them.
7413 * 5/ If array is degraded, try to add spares devices
7414 * 6/ If array has spares or is not in-sync, start a resync thread.
7415 */
7416void md_check_recovery(mddev_t *mddev)
7417{
7418 if (mddev->suspended)
7419 return;
7420
7421 if (mddev->bitmap)
7422 bitmap_daemon_work(mddev);
7423
7424 if (signal_pending(current)) {
7425 if (mddev->pers->sync_request && !mddev->external) {
7426 printk(KERN_INFO "md: %s in immediate safe mode\n",
7427 mdname(mddev));
7428 mddev->safemode = 2;
7429 }
7430 flush_signals(current);
7431 }
7432
7433 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7434 return;
7435 if ( ! (
7436 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7437 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7438 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7439 (mddev->external == 0 && mddev->safemode == 1) ||
7440 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7441 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7442 ))
7443 return;
7444
7445 if (mddev_trylock(mddev)) {
7446 int spares = 0;
7447
7448 if (mddev->ro) {
7449 /* Only thing we do on a ro array is remove
7450 * failed devices.
7451 */
7452 mdk_rdev_t *rdev;
7453 list_for_each_entry(rdev, &mddev->disks, same_set)
7454 if (rdev->raid_disk >= 0 &&
7455 !test_bit(Blocked, &rdev->flags) &&
7456 test_bit(Faulty, &rdev->flags) &&
7457 atomic_read(&rdev->nr_pending)==0) {
7458 if (mddev->pers->hot_remove_disk(
7459 mddev, rdev->raid_disk)==0) {
7460 sysfs_unlink_rdev(mddev, rdev);
7461 rdev->raid_disk = -1;
7462 }
7463 }
7464 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7465 goto unlock;
7466 }
7467
7468 if (!mddev->external) {
7469 int did_change = 0;
7470 spin_lock_irq(&mddev->write_lock);
7471 if (mddev->safemode &&
7472 !atomic_read(&mddev->writes_pending) &&
7473 !mddev->in_sync &&
7474 mddev->recovery_cp == MaxSector) {
7475 mddev->in_sync = 1;
7476 did_change = 1;
7477 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7478 }
7479 if (mddev->safemode == 1)
7480 mddev->safemode = 0;
7481 spin_unlock_irq(&mddev->write_lock);
7482 if (did_change)
7483 sysfs_notify_dirent_safe(mddev->sysfs_state);
7484 }
7485
7486 if (mddev->flags)
7487 md_update_sb(mddev, 0);
7488
7489 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7490 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7491 /* resync/recovery still happening */
7492 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7493 goto unlock;
7494 }
7495 if (mddev->sync_thread) {
7496 reap_sync_thread(mddev);
7497 goto unlock;
7498 }
7499 /* Set RUNNING before clearing NEEDED to avoid
7500 * any transients in the value of "sync_action".
7501 */
7502 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7503 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7504 /* Clear some bits that don't mean anything, but
7505 * might be left set
7506 */
7507 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7508 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7509
7510 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7511 goto unlock;
7512 /* no recovery is running.
7513 * remove any failed drives, then
7514 * add spares if possible.
7515 * Spare are also removed and re-added, to allow
7516 * the personality to fail the re-add.
7517 */
7518
7519 if (mddev->reshape_position != MaxSector) {
7520 if (mddev->pers->check_reshape == NULL ||
7521 mddev->pers->check_reshape(mddev) != 0)
7522 /* Cannot proceed */
7523 goto unlock;
7524 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7525 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7526 } else if ((spares = remove_and_add_spares(mddev))) {
7527 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7528 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7529 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7530 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7531 } else if (mddev->recovery_cp < MaxSector) {
7532 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7533 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7534 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7535 /* nothing to be done ... */
7536 goto unlock;
7537
7538 if (mddev->pers->sync_request) {
7539 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7540 /* We are adding a device or devices to an array
7541 * which has the bitmap stored on all devices.
7542 * So make sure all bitmap pages get written
7543 */
7544 bitmap_write_all(mddev->bitmap);
7545 }
7546 mddev->sync_thread = md_register_thread(md_do_sync,
7547 mddev,
7548 "resync");
7549 if (!mddev->sync_thread) {
7550 printk(KERN_ERR "%s: could not start resync"
7551 " thread...\n",
7552 mdname(mddev));
7553 /* leave the spares where they are, it shouldn't hurt */
7554 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7555 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7556 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7557 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7558 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7559 } else
7560 md_wakeup_thread(mddev->sync_thread);
7561 sysfs_notify_dirent_safe(mddev->sysfs_action);
7562 md_new_event(mddev);
7563 }
7564 unlock:
7565 if (!mddev->sync_thread) {
7566 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7567 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7568 &mddev->recovery))
7569 if (mddev->sysfs_action)
7570 sysfs_notify_dirent_safe(mddev->sysfs_action);
7571 }
7572 mddev_unlock(mddev);
7573 }
7574}
7575
7576void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7577{
7578 sysfs_notify_dirent_safe(rdev->sysfs_state);
7579 wait_event_timeout(rdev->blocked_wait,
7580 !test_bit(Blocked, &rdev->flags) &&
7581 !test_bit(BlockedBadBlocks, &rdev->flags),
7582 msecs_to_jiffies(5000));
7583 rdev_dec_pending(rdev, mddev);
7584}
7585EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7586
7587
7588/* Bad block management.
7589 * We can record which blocks on each device are 'bad' and so just
7590 * fail those blocks, or that stripe, rather than the whole device.
7591 * Entries in the bad-block table are 64bits wide. This comprises:
7592 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7593 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7594 * A 'shift' can be set so that larger blocks are tracked and
7595 * consequently larger devices can be covered.
7596 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7597 *
7598 * Locking of the bad-block table uses a seqlock so md_is_badblock
7599 * might need to retry if it is very unlucky.
7600 * We will sometimes want to check for bad blocks in a bi_end_io function,
7601 * so we use the write_seqlock_irq variant.
7602 *
7603 * When looking for a bad block we specify a range and want to
7604 * know if any block in the range is bad. So we binary-search
7605 * to the last range that starts at-or-before the given endpoint,
7606 * (or "before the sector after the target range")
7607 * then see if it ends after the given start.
7608 * We return
7609 * 0 if there are no known bad blocks in the range
7610 * 1 if there are known bad block which are all acknowledged
7611 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7612 * plus the start/length of the first bad section we overlap.
7613 */
7614int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7615 sector_t *first_bad, int *bad_sectors)
7616{
7617 int hi;
7618 int lo = 0;
7619 u64 *p = bb->page;
7620 int rv = 0;
7621 sector_t target = s + sectors;
7622 unsigned seq;
7623
7624 if (bb->shift > 0) {
7625 /* round the start down, and the end up */
7626 s >>= bb->shift;
7627 target += (1<<bb->shift) - 1;
7628 target >>= bb->shift;
7629 sectors = target - s;
7630 }
7631 /* 'target' is now the first block after the bad range */
7632
7633retry:
7634 seq = read_seqbegin(&bb->lock);
7635
7636 hi = bb->count;
7637
7638 /* Binary search between lo and hi for 'target'
7639 * i.e. for the last range that starts before 'target'
7640 */
7641 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7642 * are known not to be the last range before target.
7643 * VARIANT: hi-lo is the number of possible
7644 * ranges, and decreases until it reaches 1
7645 */
7646 while (hi - lo > 1) {
7647 int mid = (lo + hi) / 2;
7648 sector_t a = BB_OFFSET(p[mid]);
7649 if (a < target)
7650 /* This could still be the one, earlier ranges
7651 * could not. */
7652 lo = mid;
7653 else
7654 /* This and later ranges are definitely out. */
7655 hi = mid;
7656 }
7657 /* 'lo' might be the last that started before target, but 'hi' isn't */
7658 if (hi > lo) {
7659 /* need to check all range that end after 's' to see if
7660 * any are unacknowledged.
7661 */
7662 while (lo >= 0 &&
7663 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7664 if (BB_OFFSET(p[lo]) < target) {
7665 /* starts before the end, and finishes after
7666 * the start, so they must overlap
7667 */
7668 if (rv != -1 && BB_ACK(p[lo]))
7669 rv = 1;
7670 else
7671 rv = -1;
7672 *first_bad = BB_OFFSET(p[lo]);
7673 *bad_sectors = BB_LEN(p[lo]);
7674 }
7675 lo--;
7676 }
7677 }
7678
7679 if (read_seqretry(&bb->lock, seq))
7680 goto retry;
7681
7682 return rv;
7683}
7684EXPORT_SYMBOL_GPL(md_is_badblock);
7685
7686/*
7687 * Add a range of bad blocks to the table.
7688 * This might extend the table, or might contract it
7689 * if two adjacent ranges can be merged.
7690 * We binary-search to find the 'insertion' point, then
7691 * decide how best to handle it.
7692 */
7693static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7694 int acknowledged)
7695{
7696 u64 *p;
7697 int lo, hi;
7698 int rv = 1;
7699
7700 if (bb->shift < 0)
7701 /* badblocks are disabled */
7702 return 0;
7703
7704 if (bb->shift) {
7705 /* round the start down, and the end up */
7706 sector_t next = s + sectors;
7707 s >>= bb->shift;
7708 next += (1<<bb->shift) - 1;
7709 next >>= bb->shift;
7710 sectors = next - s;
7711 }
7712
7713 write_seqlock_irq(&bb->lock);
7714
7715 p = bb->page;
7716 lo = 0;
7717 hi = bb->count;
7718 /* Find the last range that starts at-or-before 's' */
7719 while (hi - lo > 1) {
7720 int mid = (lo + hi) / 2;
7721 sector_t a = BB_OFFSET(p[mid]);
7722 if (a <= s)
7723 lo = mid;
7724 else
7725 hi = mid;
7726 }
7727 if (hi > lo && BB_OFFSET(p[lo]) > s)
7728 hi = lo;
7729
7730 if (hi > lo) {
7731 /* we found a range that might merge with the start
7732 * of our new range
7733 */
7734 sector_t a = BB_OFFSET(p[lo]);
7735 sector_t e = a + BB_LEN(p[lo]);
7736 int ack = BB_ACK(p[lo]);
7737 if (e >= s) {
7738 /* Yes, we can merge with a previous range */
7739 if (s == a && s + sectors >= e)
7740 /* new range covers old */
7741 ack = acknowledged;
7742 else
7743 ack = ack && acknowledged;
7744
7745 if (e < s + sectors)
7746 e = s + sectors;
7747 if (e - a <= BB_MAX_LEN) {
7748 p[lo] = BB_MAKE(a, e-a, ack);
7749 s = e;
7750 } else {
7751 /* does not all fit in one range,
7752 * make p[lo] maximal
7753 */
7754 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7755 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7756 s = a + BB_MAX_LEN;
7757 }
7758 sectors = e - s;
7759 }
7760 }
7761 if (sectors && hi < bb->count) {
7762 /* 'hi' points to the first range that starts after 's'.
7763 * Maybe we can merge with the start of that range */
7764 sector_t a = BB_OFFSET(p[hi]);
7765 sector_t e = a + BB_LEN(p[hi]);
7766 int ack = BB_ACK(p[hi]);
7767 if (a <= s + sectors) {
7768 /* merging is possible */
7769 if (e <= s + sectors) {
7770 /* full overlap */
7771 e = s + sectors;
7772 ack = acknowledged;
7773 } else
7774 ack = ack && acknowledged;
7775
7776 a = s;
7777 if (e - a <= BB_MAX_LEN) {
7778 p[hi] = BB_MAKE(a, e-a, ack);
7779 s = e;
7780 } else {
7781 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7782 s = a + BB_MAX_LEN;
7783 }
7784 sectors = e - s;
7785 lo = hi;
7786 hi++;
7787 }
7788 }
7789 if (sectors == 0 && hi < bb->count) {
7790 /* we might be able to combine lo and hi */
7791 /* Note: 's' is at the end of 'lo' */
7792 sector_t a = BB_OFFSET(p[hi]);
7793 int lolen = BB_LEN(p[lo]);
7794 int hilen = BB_LEN(p[hi]);
7795 int newlen = lolen + hilen - (s - a);
7796 if (s >= a && newlen < BB_MAX_LEN) {
7797 /* yes, we can combine them */
7798 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7799 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7800 memmove(p + hi, p + hi + 1,
7801 (bb->count - hi - 1) * 8);
7802 bb->count--;
7803 }
7804 }
7805 while (sectors) {
7806 /* didn't merge (it all).
7807 * Need to add a range just before 'hi' */
7808 if (bb->count >= MD_MAX_BADBLOCKS) {
7809 /* No room for more */
7810 rv = 0;
7811 break;
7812 } else {
7813 int this_sectors = sectors;
7814 memmove(p + hi + 1, p + hi,
7815 (bb->count - hi) * 8);
7816 bb->count++;
7817
7818 if (this_sectors > BB_MAX_LEN)
7819 this_sectors = BB_MAX_LEN;
7820 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7821 sectors -= this_sectors;
7822 s += this_sectors;
7823 }
7824 }
7825
7826 bb->changed = 1;
7827 if (!acknowledged)
7828 bb->unacked_exist = 1;
7829 write_sequnlock_irq(&bb->lock);
7830
7831 return rv;
7832}
7833
7834int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7835 int acknowledged)
7836{
7837 int rv = md_set_badblocks(&rdev->badblocks,
7838 s + rdev->data_offset, sectors, acknowledged);
7839 if (rv) {
7840 /* Make sure they get written out promptly */
7841 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7842 md_wakeup_thread(rdev->mddev->thread);
7843 }
7844 return rv;
7845}
7846EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7847
7848/*
7849 * Remove a range of bad blocks from the table.
7850 * This may involve extending the table if we spilt a region,
7851 * but it must not fail. So if the table becomes full, we just
7852 * drop the remove request.
7853 */
7854static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7855{
7856 u64 *p;
7857 int lo, hi;
7858 sector_t target = s + sectors;
7859 int rv = 0;
7860
7861 if (bb->shift > 0) {
7862 /* When clearing we round the start up and the end down.
7863 * This should not matter as the shift should align with
7864 * the block size and no rounding should ever be needed.
7865 * However it is better the think a block is bad when it
7866 * isn't than to think a block is not bad when it is.
7867 */
7868 s += (1<<bb->shift) - 1;
7869 s >>= bb->shift;
7870 target >>= bb->shift;
7871 sectors = target - s;
7872 }
7873
7874 write_seqlock_irq(&bb->lock);
7875
7876 p = bb->page;
7877 lo = 0;
7878 hi = bb->count;
7879 /* Find the last range that starts before 'target' */
7880 while (hi - lo > 1) {
7881 int mid = (lo + hi) / 2;
7882 sector_t a = BB_OFFSET(p[mid]);
7883 if (a < target)
7884 lo = mid;
7885 else
7886 hi = mid;
7887 }
7888 if (hi > lo) {
7889 /* p[lo] is the last range that could overlap the
7890 * current range. Earlier ranges could also overlap,
7891 * but only this one can overlap the end of the range.
7892 */
7893 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7894 /* Partial overlap, leave the tail of this range */
7895 int ack = BB_ACK(p[lo]);
7896 sector_t a = BB_OFFSET(p[lo]);
7897 sector_t end = a + BB_LEN(p[lo]);
7898
7899 if (a < s) {
7900 /* we need to split this range */
7901 if (bb->count >= MD_MAX_BADBLOCKS) {
7902 rv = 0;
7903 goto out;
7904 }
7905 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7906 bb->count++;
7907 p[lo] = BB_MAKE(a, s-a, ack);
7908 lo++;
7909 }
7910 p[lo] = BB_MAKE(target, end - target, ack);
7911 /* there is no longer an overlap */
7912 hi = lo;
7913 lo--;
7914 }
7915 while (lo >= 0 &&
7916 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7917 /* This range does overlap */
7918 if (BB_OFFSET(p[lo]) < s) {
7919 /* Keep the early parts of this range. */
7920 int ack = BB_ACK(p[lo]);
7921 sector_t start = BB_OFFSET(p[lo]);
7922 p[lo] = BB_MAKE(start, s - start, ack);
7923 /* now low doesn't overlap, so.. */
7924 break;
7925 }
7926 lo--;
7927 }
7928 /* 'lo' is strictly before, 'hi' is strictly after,
7929 * anything between needs to be discarded
7930 */
7931 if (hi - lo > 1) {
7932 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7933 bb->count -= (hi - lo - 1);
7934 }
7935 }
7936
7937 bb->changed = 1;
7938out:
7939 write_sequnlock_irq(&bb->lock);
7940 return rv;
7941}
7942
7943int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7944{
7945 return md_clear_badblocks(&rdev->badblocks,
7946 s + rdev->data_offset,
7947 sectors);
7948}
7949EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7950
7951/*
7952 * Acknowledge all bad blocks in a list.
7953 * This only succeeds if ->changed is clear. It is used by
7954 * in-kernel metadata updates
7955 */
7956void md_ack_all_badblocks(struct badblocks *bb)
7957{
7958 if (bb->page == NULL || bb->changed)
7959 /* no point even trying */
7960 return;
7961 write_seqlock_irq(&bb->lock);
7962
7963 if (bb->changed == 0) {
7964 u64 *p = bb->page;
7965 int i;
7966 for (i = 0; i < bb->count ; i++) {
7967 if (!BB_ACK(p[i])) {
7968 sector_t start = BB_OFFSET(p[i]);
7969 int len = BB_LEN(p[i]);
7970 p[i] = BB_MAKE(start, len, 1);
7971 }
7972 }
7973 bb->unacked_exist = 0;
7974 }
7975 write_sequnlock_irq(&bb->lock);
7976}
7977EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7978
7979/* sysfs access to bad-blocks list.
7980 * We present two files.
7981 * 'bad-blocks' lists sector numbers and lengths of ranges that
7982 * are recorded as bad. The list is truncated to fit within
7983 * the one-page limit of sysfs.
7984 * Writing "sector length" to this file adds an acknowledged
7985 * bad block list.
7986 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7987 * been acknowledged. Writing to this file adds bad blocks
7988 * without acknowledging them. This is largely for testing.
7989 */
7990
7991static ssize_t
7992badblocks_show(struct badblocks *bb, char *page, int unack)
7993{
7994 size_t len;
7995 int i;
7996 u64 *p = bb->page;
7997 unsigned seq;
7998
7999 if (bb->shift < 0)
8000 return 0;
8001
8002retry:
8003 seq = read_seqbegin(&bb->lock);
8004
8005 len = 0;
8006 i = 0;
8007
8008 while (len < PAGE_SIZE && i < bb->count) {
8009 sector_t s = BB_OFFSET(p[i]);
8010 unsigned int length = BB_LEN(p[i]);
8011 int ack = BB_ACK(p[i]);
8012 i++;
8013
8014 if (unack && ack)
8015 continue;
8016
8017 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8018 (unsigned long long)s << bb->shift,
8019 length << bb->shift);
8020 }
8021 if (unack && len == 0)
8022 bb->unacked_exist = 0;
8023
8024 if (read_seqretry(&bb->lock, seq))
8025 goto retry;
8026
8027 return len;
8028}
8029
8030#define DO_DEBUG 1
8031
8032static ssize_t
8033badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8034{
8035 unsigned long long sector;
8036 int length;
8037 char newline;
8038#ifdef DO_DEBUG
8039 /* Allow clearing via sysfs *only* for testing/debugging.
8040 * Normally only a successful write may clear a badblock
8041 */
8042 int clear = 0;
8043 if (page[0] == '-') {
8044 clear = 1;
8045 page++;
8046 }
8047#endif /* DO_DEBUG */
8048
8049 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8050 case 3:
8051 if (newline != '\n')
8052 return -EINVAL;
8053 case 2:
8054 if (length <= 0)
8055 return -EINVAL;
8056 break;
8057 default:
8058 return -EINVAL;
8059 }
8060
8061#ifdef DO_DEBUG
8062 if (clear) {
8063 md_clear_badblocks(bb, sector, length);
8064 return len;
8065 }
8066#endif /* DO_DEBUG */
8067 if (md_set_badblocks(bb, sector, length, !unack))
8068 return len;
8069 else
8070 return -ENOSPC;
8071}
8072
8073static int md_notify_reboot(struct notifier_block *this,
8074 unsigned long code, void *x)
8075{
8076 struct list_head *tmp;
8077 mddev_t *mddev;
8078
8079 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8080
8081 printk(KERN_INFO "md: stopping all md devices.\n");
8082
8083 for_each_mddev(mddev, tmp)
8084 if (mddev_trylock(mddev)) {
8085 /* Force a switch to readonly even array
8086 * appears to still be in use. Hence
8087 * the '100'.
8088 */
8089 md_set_readonly(mddev, 100);
8090 mddev_unlock(mddev);
8091 }
8092 /*
8093 * certain more exotic SCSI devices are known to be
8094 * volatile wrt too early system reboots. While the
8095 * right place to handle this issue is the given
8096 * driver, we do want to have a safe RAID driver ...
8097 */
8098 mdelay(1000*1);
8099 }
8100 return NOTIFY_DONE;
8101}
8102
8103static struct notifier_block md_notifier = {
8104 .notifier_call = md_notify_reboot,
8105 .next = NULL,
8106 .priority = INT_MAX, /* before any real devices */
8107};
8108
8109static void md_geninit(void)
8110{
8111 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8112
8113 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8114}
8115
8116static int __init md_init(void)
8117{
8118 int ret = -ENOMEM;
8119
8120 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8121 if (!md_wq)
8122 goto err_wq;
8123
8124 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8125 if (!md_misc_wq)
8126 goto err_misc_wq;
8127
8128 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8129 goto err_md;
8130
8131 if ((ret = register_blkdev(0, "mdp")) < 0)
8132 goto err_mdp;
8133 mdp_major = ret;
8134
8135 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8136 md_probe, NULL, NULL);
8137 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8138 md_probe, NULL, NULL);
8139
8140 register_reboot_notifier(&md_notifier);
8141 raid_table_header = register_sysctl_table(raid_root_table);
8142
8143 md_geninit();
8144 return 0;
8145
8146err_mdp:
8147 unregister_blkdev(MD_MAJOR, "md");
8148err_md:
8149 destroy_workqueue(md_misc_wq);
8150err_misc_wq:
8151 destroy_workqueue(md_wq);
8152err_wq:
8153 return ret;
8154}
8155
8156#ifndef MODULE
8157
8158/*
8159 * Searches all registered partitions for autorun RAID arrays
8160 * at boot time.
8161 */
8162
8163static LIST_HEAD(all_detected_devices);
8164struct detected_devices_node {
8165 struct list_head list;
8166 dev_t dev;
8167};
8168
8169void md_autodetect_dev(dev_t dev)
8170{
8171 struct detected_devices_node *node_detected_dev;
8172
8173 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8174 if (node_detected_dev) {
8175 node_detected_dev->dev = dev;
8176 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8177 } else {
8178 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8179 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8180 }
8181}
8182
8183
8184static void autostart_arrays(int part)
8185{
8186 mdk_rdev_t *rdev;
8187 struct detected_devices_node *node_detected_dev;
8188 dev_t dev;
8189 int i_scanned, i_passed;
8190
8191 i_scanned = 0;
8192 i_passed = 0;
8193
8194 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8195
8196 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8197 i_scanned++;
8198 node_detected_dev = list_entry(all_detected_devices.next,
8199 struct detected_devices_node, list);
8200 list_del(&node_detected_dev->list);
8201 dev = node_detected_dev->dev;
8202 kfree(node_detected_dev);
8203 rdev = md_import_device(dev,0, 90);
8204 if (IS_ERR(rdev))
8205 continue;
8206
8207 if (test_bit(Faulty, &rdev->flags)) {
8208 MD_BUG();
8209 continue;
8210 }
8211 set_bit(AutoDetected, &rdev->flags);
8212 list_add(&rdev->same_set, &pending_raid_disks);
8213 i_passed++;
8214 }
8215
8216 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8217 i_scanned, i_passed);
8218
8219 autorun_devices(part);
8220}
8221
8222#endif /* !MODULE */
8223
8224static __exit void md_exit(void)
8225{
8226 mddev_t *mddev;
8227 struct list_head *tmp;
8228
8229 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8230 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8231
8232 unregister_blkdev(MD_MAJOR,"md");
8233 unregister_blkdev(mdp_major, "mdp");
8234 unregister_reboot_notifier(&md_notifier);
8235 unregister_sysctl_table(raid_table_header);
8236 remove_proc_entry("mdstat", NULL);
8237 for_each_mddev(mddev, tmp) {
8238 export_array(mddev);
8239 mddev->hold_active = 0;
8240 }
8241 destroy_workqueue(md_misc_wq);
8242 destroy_workqueue(md_wq);
8243}
8244
8245subsys_initcall(md_init);
8246module_exit(md_exit)
8247
8248static int get_ro(char *buffer, struct kernel_param *kp)
8249{
8250 return sprintf(buffer, "%d", start_readonly);
8251}
8252static int set_ro(const char *val, struct kernel_param *kp)
8253{
8254 char *e;
8255 int num = simple_strtoul(val, &e, 10);
8256 if (*val && (*e == '\0' || *e == '\n')) {
8257 start_readonly = num;
8258 return 0;
8259 }
8260 return -EINVAL;
8261}
8262
8263module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8264module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8265
8266module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8267
8268EXPORT_SYMBOL(register_md_personality);
8269EXPORT_SYMBOL(unregister_md_personality);
8270EXPORT_SYMBOL(md_error);
8271EXPORT_SYMBOL(md_done_sync);
8272EXPORT_SYMBOL(md_write_start);
8273EXPORT_SYMBOL(md_write_end);
8274EXPORT_SYMBOL(md_register_thread);
8275EXPORT_SYMBOL(md_unregister_thread);
8276EXPORT_SYMBOL(md_wakeup_thread);
8277EXPORT_SYMBOL(md_check_recovery);
8278MODULE_LICENSE("GPL");
8279MODULE_DESCRIPTION("MD RAID framework");
8280MODULE_ALIAS("md");
8281MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/kthread.h>
36#include <linux/blkdev.h>
37#include <linux/sysctl.h>
38#include <linux/seq_file.h>
39#include <linux/fs.h>
40#include <linux/poll.h>
41#include <linux/ctype.h>
42#include <linux/string.h>
43#include <linux/hdreg.h>
44#include <linux/proc_fs.h>
45#include <linux/random.h>
46#include <linux/module.h>
47#include <linux/reboot.h>
48#include <linux/file.h>
49#include <linux/compat.h>
50#include <linux/delay.h>
51#include <linux/raid/md_p.h>
52#include <linux/raid/md_u.h>
53#include <linux/slab.h>
54#include "md.h"
55#include "bitmap.h"
56
57#ifndef MODULE
58static void autostart_arrays(int part);
59#endif
60
61/* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66static LIST_HEAD(pers_list);
67static DEFINE_SPINLOCK(pers_lock);
68
69static void md_print_devices(void);
70
71static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72static struct workqueue_struct *md_wq;
73static struct workqueue_struct *md_misc_wq;
74
75#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77/*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83/*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96static int sysctl_speed_limit_min = 1000;
97static int sysctl_speed_limit_max = 200000;
98static inline int speed_min(struct mddev *mddev)
99{
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102}
103
104static inline int speed_max(struct mddev *mddev)
105{
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108}
109
110static struct ctl_table_header *raid_table_header;
111
112static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128};
129
130static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138};
139
140static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148};
149
150static const struct block_device_operations md_fops;
151
152static int start_readonly;
153
154/* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158static void mddev_bio_destructor(struct bio *bio)
159{
160 struct mddev *mddev, **mddevp;
161
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
164
165 bio_free(bio, mddev->bio_set);
166}
167
168struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
170{
171 struct bio *b;
172 struct mddev **mddevp;
173
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
176
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
185}
186EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
190{
191 struct bio *b;
192 struct mddev **mddevp;
193
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
196
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
207
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
213 }
214 }
215
216 return b;
217}
218EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220void md_trim_bio(struct bio *bio, int offset, int size)
221{
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 */
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
229
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
233
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
244 }
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 }
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
255 }
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
263 }
264 sofar += bvec->bv_len;
265 }
266}
267EXPORT_SYMBOL_GPL(md_trim_bio);
268
269/*
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
274 *
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
278 */
279static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280static atomic_t md_event_count;
281void md_new_event(struct mddev *mddev)
282{
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
285}
286EXPORT_SYMBOL_GPL(md_new_event);
287
288/* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
290 */
291static void md_new_event_inintr(struct mddev *mddev)
292{
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
295}
296
297/*
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
300 */
301static LIST_HEAD(all_mddevs);
302static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305/*
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
311 */
312#define for_each_mddev(_mddev,_tmp) \
313 \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
325 )
326
327
328/* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 */
335static void md_make_request(struct request_queue *q, struct bio *bio)
336{
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
341
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
346 }
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
359 }
360 finish_wait(&mddev->sb_wait, &__wait);
361 }
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
364
365 /*
366 * save the sectors now since our bio can
367 * go away inside make_request
368 */
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
371
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
376
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
379}
380
381/* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
386 */
387void mddev_suspend(struct mddev *mddev)
388{
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
394
395 del_timer_sync(&mddev->safemode_timer);
396}
397EXPORT_SYMBOL_GPL(mddev_suspend);
398
399void mddev_resume(struct mddev *mddev)
400{
401 mddev->suspended = 0;
402 wake_up(&mddev->sb_wait);
403 mddev->pers->quiesce(mddev, 0);
404
405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406 md_wakeup_thread(mddev->thread);
407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408}
409EXPORT_SYMBOL_GPL(mddev_resume);
410
411int mddev_congested(struct mddev *mddev, int bits)
412{
413 return mddev->suspended;
414}
415EXPORT_SYMBOL(mddev_congested);
416
417/*
418 * Generic flush handling for md
419 */
420
421static void md_end_flush(struct bio *bio, int err)
422{
423 struct md_rdev *rdev = bio->bi_private;
424 struct mddev *mddev = rdev->mddev;
425
426 rdev_dec_pending(rdev, mddev);
427
428 if (atomic_dec_and_test(&mddev->flush_pending)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq, &mddev->flush_work);
431 }
432 bio_put(bio);
433}
434
435static void md_submit_flush_data(struct work_struct *ws);
436
437static void submit_flushes(struct work_struct *ws)
438{
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct md_rdev *rdev;
441
442 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443 atomic_set(&mddev->flush_pending, 1);
444 rcu_read_lock();
445 rdev_for_each_rcu(rdev, mddev)
446 if (rdev->raid_disk >= 0 &&
447 !test_bit(Faulty, &rdev->flags)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
451 */
452 struct bio *bi;
453 atomic_inc(&rdev->nr_pending);
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457 bi->bi_end_io = md_end_flush;
458 bi->bi_private = rdev;
459 bi->bi_bdev = rdev->bdev;
460 atomic_inc(&mddev->flush_pending);
461 submit_bio(WRITE_FLUSH, bi);
462 rcu_read_lock();
463 rdev_dec_pending(rdev, mddev);
464 }
465 rcu_read_unlock();
466 if (atomic_dec_and_test(&mddev->flush_pending))
467 queue_work(md_wq, &mddev->flush_work);
468}
469
470static void md_submit_flush_data(struct work_struct *ws)
471{
472 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473 struct bio *bio = mddev->flush_bio;
474
475 if (bio->bi_size == 0)
476 /* an empty barrier - all done */
477 bio_endio(bio, 0);
478 else {
479 bio->bi_rw &= ~REQ_FLUSH;
480 mddev->pers->make_request(mddev, bio);
481 }
482
483 mddev->flush_bio = NULL;
484 wake_up(&mddev->sb_wait);
485}
486
487void md_flush_request(struct mddev *mddev, struct bio *bio)
488{
489 spin_lock_irq(&mddev->write_lock);
490 wait_event_lock_irq(mddev->sb_wait,
491 !mddev->flush_bio,
492 mddev->write_lock, /*nothing*/);
493 mddev->flush_bio = bio;
494 spin_unlock_irq(&mddev->write_lock);
495
496 INIT_WORK(&mddev->flush_work, submit_flushes);
497 queue_work(md_wq, &mddev->flush_work);
498}
499EXPORT_SYMBOL(md_flush_request);
500
501/* Support for plugging.
502 * This mirrors the plugging support in request_queue, but does not
503 * require having a whole queue or request structures.
504 * We allocate an md_plug_cb for each md device and each thread it gets
505 * plugged on. This links tot the private plug_handle structure in the
506 * personality data where we keep a count of the number of outstanding
507 * plugs so other code can see if a plug is active.
508 */
509struct md_plug_cb {
510 struct blk_plug_cb cb;
511 struct mddev *mddev;
512};
513
514static void plugger_unplug(struct blk_plug_cb *cb)
515{
516 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518 md_wakeup_thread(mdcb->mddev->thread);
519 kfree(mdcb);
520}
521
522/* Check that an unplug wakeup will come shortly.
523 * If not, wakeup the md thread immediately
524 */
525int mddev_check_plugged(struct mddev *mddev)
526{
527 struct blk_plug *plug = current->plug;
528 struct md_plug_cb *mdcb;
529
530 if (!plug)
531 return 0;
532
533 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534 if (mdcb->cb.callback == plugger_unplug &&
535 mdcb->mddev == mddev) {
536 /* Already on the list, move to top */
537 if (mdcb != list_first_entry(&plug->cb_list,
538 struct md_plug_cb,
539 cb.list))
540 list_move(&mdcb->cb.list, &plug->cb_list);
541 return 1;
542 }
543 }
544 /* Not currently on the callback list */
545 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546 if (!mdcb)
547 return 0;
548
549 mdcb->mddev = mddev;
550 mdcb->cb.callback = plugger_unplug;
551 atomic_inc(&mddev->plug_cnt);
552 list_add(&mdcb->cb.list, &plug->cb_list);
553 return 1;
554}
555EXPORT_SYMBOL_GPL(mddev_check_plugged);
556
557static inline struct mddev *mddev_get(struct mddev *mddev)
558{
559 atomic_inc(&mddev->active);
560 return mddev;
561}
562
563static void mddev_delayed_delete(struct work_struct *ws);
564
565static void mddev_put(struct mddev *mddev)
566{
567 struct bio_set *bs = NULL;
568
569 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570 return;
571 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572 mddev->ctime == 0 && !mddev->hold_active) {
573 /* Array is not configured at all, and not held active,
574 * so destroy it */
575 list_del_init(&mddev->all_mddevs);
576 bs = mddev->bio_set;
577 mddev->bio_set = NULL;
578 if (mddev->gendisk) {
579 /* We did a probe so need to clean up. Call
580 * queue_work inside the spinlock so that
581 * flush_workqueue() after mddev_find will
582 * succeed in waiting for the work to be done.
583 */
584 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585 queue_work(md_misc_wq, &mddev->del_work);
586 } else
587 kfree(mddev);
588 }
589 spin_unlock(&all_mddevs_lock);
590 if (bs)
591 bioset_free(bs);
592}
593
594void mddev_init(struct mddev *mddev)
595{
596 mutex_init(&mddev->open_mutex);
597 mutex_init(&mddev->reconfig_mutex);
598 mutex_init(&mddev->bitmap_info.mutex);
599 INIT_LIST_HEAD(&mddev->disks);
600 INIT_LIST_HEAD(&mddev->all_mddevs);
601 init_timer(&mddev->safemode_timer);
602 atomic_set(&mddev->active, 1);
603 atomic_set(&mddev->openers, 0);
604 atomic_set(&mddev->active_io, 0);
605 atomic_set(&mddev->plug_cnt, 0);
606 spin_lock_init(&mddev->write_lock);
607 atomic_set(&mddev->flush_pending, 0);
608 init_waitqueue_head(&mddev->sb_wait);
609 init_waitqueue_head(&mddev->recovery_wait);
610 mddev->reshape_position = MaxSector;
611 mddev->reshape_backwards = 0;
612 mddev->resync_min = 0;
613 mddev->resync_max = MaxSector;
614 mddev->level = LEVEL_NONE;
615}
616EXPORT_SYMBOL_GPL(mddev_init);
617
618static struct mddev * mddev_find(dev_t unit)
619{
620 struct mddev *mddev, *new = NULL;
621
622 if (unit && MAJOR(unit) != MD_MAJOR)
623 unit &= ~((1<<MdpMinorShift)-1);
624
625 retry:
626 spin_lock(&all_mddevs_lock);
627
628 if (unit) {
629 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630 if (mddev->unit == unit) {
631 mddev_get(mddev);
632 spin_unlock(&all_mddevs_lock);
633 kfree(new);
634 return mddev;
635 }
636
637 if (new) {
638 list_add(&new->all_mddevs, &all_mddevs);
639 spin_unlock(&all_mddevs_lock);
640 new->hold_active = UNTIL_IOCTL;
641 return new;
642 }
643 } else if (new) {
644 /* find an unused unit number */
645 static int next_minor = 512;
646 int start = next_minor;
647 int is_free = 0;
648 int dev = 0;
649 while (!is_free) {
650 dev = MKDEV(MD_MAJOR, next_minor);
651 next_minor++;
652 if (next_minor > MINORMASK)
653 next_minor = 0;
654 if (next_minor == start) {
655 /* Oh dear, all in use. */
656 spin_unlock(&all_mddevs_lock);
657 kfree(new);
658 return NULL;
659 }
660
661 is_free = 1;
662 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663 if (mddev->unit == dev) {
664 is_free = 0;
665 break;
666 }
667 }
668 new->unit = dev;
669 new->md_minor = MINOR(dev);
670 new->hold_active = UNTIL_STOP;
671 list_add(&new->all_mddevs, &all_mddevs);
672 spin_unlock(&all_mddevs_lock);
673 return new;
674 }
675 spin_unlock(&all_mddevs_lock);
676
677 new = kzalloc(sizeof(*new), GFP_KERNEL);
678 if (!new)
679 return NULL;
680
681 new->unit = unit;
682 if (MAJOR(unit) == MD_MAJOR)
683 new->md_minor = MINOR(unit);
684 else
685 new->md_minor = MINOR(unit) >> MdpMinorShift;
686
687 mddev_init(new);
688
689 goto retry;
690}
691
692static inline int mddev_lock(struct mddev * mddev)
693{
694 return mutex_lock_interruptible(&mddev->reconfig_mutex);
695}
696
697static inline int mddev_is_locked(struct mddev *mddev)
698{
699 return mutex_is_locked(&mddev->reconfig_mutex);
700}
701
702static inline int mddev_trylock(struct mddev * mddev)
703{
704 return mutex_trylock(&mddev->reconfig_mutex);
705}
706
707static struct attribute_group md_redundancy_group;
708
709static void mddev_unlock(struct mddev * mddev)
710{
711 if (mddev->to_remove) {
712 /* These cannot be removed under reconfig_mutex as
713 * an access to the files will try to take reconfig_mutex
714 * while holding the file unremovable, which leads to
715 * a deadlock.
716 * So hold set sysfs_active while the remove in happeing,
717 * and anything else which might set ->to_remove or my
718 * otherwise change the sysfs namespace will fail with
719 * -EBUSY if sysfs_active is still set.
720 * We set sysfs_active under reconfig_mutex and elsewhere
721 * test it under the same mutex to ensure its correct value
722 * is seen.
723 */
724 struct attribute_group *to_remove = mddev->to_remove;
725 mddev->to_remove = NULL;
726 mddev->sysfs_active = 1;
727 mutex_unlock(&mddev->reconfig_mutex);
728
729 if (mddev->kobj.sd) {
730 if (to_remove != &md_redundancy_group)
731 sysfs_remove_group(&mddev->kobj, to_remove);
732 if (mddev->pers == NULL ||
733 mddev->pers->sync_request == NULL) {
734 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735 if (mddev->sysfs_action)
736 sysfs_put(mddev->sysfs_action);
737 mddev->sysfs_action = NULL;
738 }
739 }
740 mddev->sysfs_active = 0;
741 } else
742 mutex_unlock(&mddev->reconfig_mutex);
743
744 /* As we've dropped the mutex we need a spinlock to
745 * make sure the thread doesn't disappear
746 */
747 spin_lock(&pers_lock);
748 md_wakeup_thread(mddev->thread);
749 spin_unlock(&pers_lock);
750}
751
752static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
753{
754 struct md_rdev *rdev;
755
756 rdev_for_each(rdev, mddev)
757 if (rdev->desc_nr == nr)
758 return rdev;
759
760 return NULL;
761}
762
763static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
764{
765 struct md_rdev *rdev;
766
767 rdev_for_each(rdev, mddev)
768 if (rdev->bdev->bd_dev == dev)
769 return rdev;
770
771 return NULL;
772}
773
774static struct md_personality *find_pers(int level, char *clevel)
775{
776 struct md_personality *pers;
777 list_for_each_entry(pers, &pers_list, list) {
778 if (level != LEVEL_NONE && pers->level == level)
779 return pers;
780 if (strcmp(pers->name, clevel)==0)
781 return pers;
782 }
783 return NULL;
784}
785
786/* return the offset of the super block in 512byte sectors */
787static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
788{
789 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790 return MD_NEW_SIZE_SECTORS(num_sectors);
791}
792
793static int alloc_disk_sb(struct md_rdev * rdev)
794{
795 if (rdev->sb_page)
796 MD_BUG();
797
798 rdev->sb_page = alloc_page(GFP_KERNEL);
799 if (!rdev->sb_page) {
800 printk(KERN_ALERT "md: out of memory.\n");
801 return -ENOMEM;
802 }
803
804 return 0;
805}
806
807void md_rdev_clear(struct md_rdev *rdev)
808{
809 if (rdev->sb_page) {
810 put_page(rdev->sb_page);
811 rdev->sb_loaded = 0;
812 rdev->sb_page = NULL;
813 rdev->sb_start = 0;
814 rdev->sectors = 0;
815 }
816 if (rdev->bb_page) {
817 put_page(rdev->bb_page);
818 rdev->bb_page = NULL;
819 }
820 kfree(rdev->badblocks.page);
821 rdev->badblocks.page = NULL;
822}
823EXPORT_SYMBOL_GPL(md_rdev_clear);
824
825static void super_written(struct bio *bio, int error)
826{
827 struct md_rdev *rdev = bio->bi_private;
828 struct mddev *mddev = rdev->mddev;
829
830 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
831 printk("md: super_written gets error=%d, uptodate=%d\n",
832 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
833 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
834 md_error(mddev, rdev);
835 }
836
837 if (atomic_dec_and_test(&mddev->pending_writes))
838 wake_up(&mddev->sb_wait);
839 bio_put(bio);
840}
841
842void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
843 sector_t sector, int size, struct page *page)
844{
845 /* write first size bytes of page to sector of rdev
846 * Increment mddev->pending_writes before returning
847 * and decrement it on completion, waking up sb_wait
848 * if zero is reached.
849 * If an error occurred, call md_error
850 */
851 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
852
853 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
854 bio->bi_sector = sector;
855 bio_add_page(bio, page, size, 0);
856 bio->bi_private = rdev;
857 bio->bi_end_io = super_written;
858
859 atomic_inc(&mddev->pending_writes);
860 submit_bio(WRITE_FLUSH_FUA, bio);
861}
862
863void md_super_wait(struct mddev *mddev)
864{
865 /* wait for all superblock writes that were scheduled to complete */
866 DEFINE_WAIT(wq);
867 for(;;) {
868 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
869 if (atomic_read(&mddev->pending_writes)==0)
870 break;
871 schedule();
872 }
873 finish_wait(&mddev->sb_wait, &wq);
874}
875
876static void bi_complete(struct bio *bio, int error)
877{
878 complete((struct completion*)bio->bi_private);
879}
880
881int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
882 struct page *page, int rw, bool metadata_op)
883{
884 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
885 struct completion event;
886 int ret;
887
888 rw |= REQ_SYNC;
889
890 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
891 rdev->meta_bdev : rdev->bdev;
892 if (metadata_op)
893 bio->bi_sector = sector + rdev->sb_start;
894 else if (rdev->mddev->reshape_position != MaxSector &&
895 (rdev->mddev->reshape_backwards ==
896 (sector >= rdev->mddev->reshape_position)))
897 bio->bi_sector = sector + rdev->new_data_offset;
898 else
899 bio->bi_sector = sector + rdev->data_offset;
900 bio_add_page(bio, page, size, 0);
901 init_completion(&event);
902 bio->bi_private = &event;
903 bio->bi_end_io = bi_complete;
904 submit_bio(rw, bio);
905 wait_for_completion(&event);
906
907 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
908 bio_put(bio);
909 return ret;
910}
911EXPORT_SYMBOL_GPL(sync_page_io);
912
913static int read_disk_sb(struct md_rdev * rdev, int size)
914{
915 char b[BDEVNAME_SIZE];
916 if (!rdev->sb_page) {
917 MD_BUG();
918 return -EINVAL;
919 }
920 if (rdev->sb_loaded)
921 return 0;
922
923
924 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
925 goto fail;
926 rdev->sb_loaded = 1;
927 return 0;
928
929fail:
930 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
931 bdevname(rdev->bdev,b));
932 return -EINVAL;
933}
934
935static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936{
937 return sb1->set_uuid0 == sb2->set_uuid0 &&
938 sb1->set_uuid1 == sb2->set_uuid1 &&
939 sb1->set_uuid2 == sb2->set_uuid2 &&
940 sb1->set_uuid3 == sb2->set_uuid3;
941}
942
943static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
944{
945 int ret;
946 mdp_super_t *tmp1, *tmp2;
947
948 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
949 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
950
951 if (!tmp1 || !tmp2) {
952 ret = 0;
953 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
954 goto abort;
955 }
956
957 *tmp1 = *sb1;
958 *tmp2 = *sb2;
959
960 /*
961 * nr_disks is not constant
962 */
963 tmp1->nr_disks = 0;
964 tmp2->nr_disks = 0;
965
966 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
967abort:
968 kfree(tmp1);
969 kfree(tmp2);
970 return ret;
971}
972
973
974static u32 md_csum_fold(u32 csum)
975{
976 csum = (csum & 0xffff) + (csum >> 16);
977 return (csum & 0xffff) + (csum >> 16);
978}
979
980static unsigned int calc_sb_csum(mdp_super_t * sb)
981{
982 u64 newcsum = 0;
983 u32 *sb32 = (u32*)sb;
984 int i;
985 unsigned int disk_csum, csum;
986
987 disk_csum = sb->sb_csum;
988 sb->sb_csum = 0;
989
990 for (i = 0; i < MD_SB_BYTES/4 ; i++)
991 newcsum += sb32[i];
992 csum = (newcsum & 0xffffffff) + (newcsum>>32);
993
994
995#ifdef CONFIG_ALPHA
996 /* This used to use csum_partial, which was wrong for several
997 * reasons including that different results are returned on
998 * different architectures. It isn't critical that we get exactly
999 * the same return value as before (we always csum_fold before
1000 * testing, and that removes any differences). However as we
1001 * know that csum_partial always returned a 16bit value on
1002 * alphas, do a fold to maximise conformity to previous behaviour.
1003 */
1004 sb->sb_csum = md_csum_fold(disk_csum);
1005#else
1006 sb->sb_csum = disk_csum;
1007#endif
1008 return csum;
1009}
1010
1011
1012/*
1013 * Handle superblock details.
1014 * We want to be able to handle multiple superblock formats
1015 * so we have a common interface to them all, and an array of
1016 * different handlers.
1017 * We rely on user-space to write the initial superblock, and support
1018 * reading and updating of superblocks.
1019 * Interface methods are:
1020 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1021 * loads and validates a superblock on dev.
1022 * if refdev != NULL, compare superblocks on both devices
1023 * Return:
1024 * 0 - dev has a superblock that is compatible with refdev
1025 * 1 - dev has a superblock that is compatible and newer than refdev
1026 * so dev should be used as the refdev in future
1027 * -EINVAL superblock incompatible or invalid
1028 * -othererror e.g. -EIO
1029 *
1030 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1031 * Verify that dev is acceptable into mddev.
1032 * The first time, mddev->raid_disks will be 0, and data from
1033 * dev should be merged in. Subsequent calls check that dev
1034 * is new enough. Return 0 or -EINVAL
1035 *
1036 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1037 * Update the superblock for rdev with data in mddev
1038 * This does not write to disc.
1039 *
1040 */
1041
1042struct super_type {
1043 char *name;
1044 struct module *owner;
1045 int (*load_super)(struct md_rdev *rdev,
1046 struct md_rdev *refdev,
1047 int minor_version);
1048 int (*validate_super)(struct mddev *mddev,
1049 struct md_rdev *rdev);
1050 void (*sync_super)(struct mddev *mddev,
1051 struct md_rdev *rdev);
1052 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1053 sector_t num_sectors);
1054 int (*allow_new_offset)(struct md_rdev *rdev,
1055 unsigned long long new_offset);
1056};
1057
1058/*
1059 * Check that the given mddev has no bitmap.
1060 *
1061 * This function is called from the run method of all personalities that do not
1062 * support bitmaps. It prints an error message and returns non-zero if mddev
1063 * has a bitmap. Otherwise, it returns 0.
1064 *
1065 */
1066int md_check_no_bitmap(struct mddev *mddev)
1067{
1068 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1069 return 0;
1070 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1071 mdname(mddev), mddev->pers->name);
1072 return 1;
1073}
1074EXPORT_SYMBOL(md_check_no_bitmap);
1075
1076/*
1077 * load_super for 0.90.0
1078 */
1079static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1080{
1081 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1082 mdp_super_t *sb;
1083 int ret;
1084
1085 /*
1086 * Calculate the position of the superblock (512byte sectors),
1087 * it's at the end of the disk.
1088 *
1089 * It also happens to be a multiple of 4Kb.
1090 */
1091 rdev->sb_start = calc_dev_sboffset(rdev);
1092
1093 ret = read_disk_sb(rdev, MD_SB_BYTES);
1094 if (ret) return ret;
1095
1096 ret = -EINVAL;
1097
1098 bdevname(rdev->bdev, b);
1099 sb = page_address(rdev->sb_page);
1100
1101 if (sb->md_magic != MD_SB_MAGIC) {
1102 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1103 b);
1104 goto abort;
1105 }
1106
1107 if (sb->major_version != 0 ||
1108 sb->minor_version < 90 ||
1109 sb->minor_version > 91) {
1110 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1111 sb->major_version, sb->minor_version,
1112 b);
1113 goto abort;
1114 }
1115
1116 if (sb->raid_disks <= 0)
1117 goto abort;
1118
1119 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1120 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1121 b);
1122 goto abort;
1123 }
1124
1125 rdev->preferred_minor = sb->md_minor;
1126 rdev->data_offset = 0;
1127 rdev->new_data_offset = 0;
1128 rdev->sb_size = MD_SB_BYTES;
1129 rdev->badblocks.shift = -1;
1130
1131 if (sb->level == LEVEL_MULTIPATH)
1132 rdev->desc_nr = -1;
1133 else
1134 rdev->desc_nr = sb->this_disk.number;
1135
1136 if (!refdev) {
1137 ret = 1;
1138 } else {
1139 __u64 ev1, ev2;
1140 mdp_super_t *refsb = page_address(refdev->sb_page);
1141 if (!uuid_equal(refsb, sb)) {
1142 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1143 b, bdevname(refdev->bdev,b2));
1144 goto abort;
1145 }
1146 if (!sb_equal(refsb, sb)) {
1147 printk(KERN_WARNING "md: %s has same UUID"
1148 " but different superblock to %s\n",
1149 b, bdevname(refdev->bdev, b2));
1150 goto abort;
1151 }
1152 ev1 = md_event(sb);
1153 ev2 = md_event(refsb);
1154 if (ev1 > ev2)
1155 ret = 1;
1156 else
1157 ret = 0;
1158 }
1159 rdev->sectors = rdev->sb_start;
1160 /* Limit to 4TB as metadata cannot record more than that.
1161 * (not needed for Linear and RAID0 as metadata doesn't
1162 * record this size)
1163 */
1164 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1165 rdev->sectors = (2ULL << 32) - 2;
1166
1167 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1168 /* "this cannot possibly happen" ... */
1169 ret = -EINVAL;
1170
1171 abort:
1172 return ret;
1173}
1174
1175/*
1176 * validate_super for 0.90.0
1177 */
1178static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1179{
1180 mdp_disk_t *desc;
1181 mdp_super_t *sb = page_address(rdev->sb_page);
1182 __u64 ev1 = md_event(sb);
1183
1184 rdev->raid_disk = -1;
1185 clear_bit(Faulty, &rdev->flags);
1186 clear_bit(In_sync, &rdev->flags);
1187 clear_bit(WriteMostly, &rdev->flags);
1188
1189 if (mddev->raid_disks == 0) {
1190 mddev->major_version = 0;
1191 mddev->minor_version = sb->minor_version;
1192 mddev->patch_version = sb->patch_version;
1193 mddev->external = 0;
1194 mddev->chunk_sectors = sb->chunk_size >> 9;
1195 mddev->ctime = sb->ctime;
1196 mddev->utime = sb->utime;
1197 mddev->level = sb->level;
1198 mddev->clevel[0] = 0;
1199 mddev->layout = sb->layout;
1200 mddev->raid_disks = sb->raid_disks;
1201 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1202 mddev->events = ev1;
1203 mddev->bitmap_info.offset = 0;
1204 mddev->bitmap_info.space = 0;
1205 /* bitmap can use 60 K after the 4K superblocks */
1206 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1207 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1208 mddev->reshape_backwards = 0;
1209
1210 if (mddev->minor_version >= 91) {
1211 mddev->reshape_position = sb->reshape_position;
1212 mddev->delta_disks = sb->delta_disks;
1213 mddev->new_level = sb->new_level;
1214 mddev->new_layout = sb->new_layout;
1215 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1216 if (mddev->delta_disks < 0)
1217 mddev->reshape_backwards = 1;
1218 } else {
1219 mddev->reshape_position = MaxSector;
1220 mddev->delta_disks = 0;
1221 mddev->new_level = mddev->level;
1222 mddev->new_layout = mddev->layout;
1223 mddev->new_chunk_sectors = mddev->chunk_sectors;
1224 }
1225
1226 if (sb->state & (1<<MD_SB_CLEAN))
1227 mddev->recovery_cp = MaxSector;
1228 else {
1229 if (sb->events_hi == sb->cp_events_hi &&
1230 sb->events_lo == sb->cp_events_lo) {
1231 mddev->recovery_cp = sb->recovery_cp;
1232 } else
1233 mddev->recovery_cp = 0;
1234 }
1235
1236 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1237 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1238 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1239 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1240
1241 mddev->max_disks = MD_SB_DISKS;
1242
1243 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1244 mddev->bitmap_info.file == NULL) {
1245 mddev->bitmap_info.offset =
1246 mddev->bitmap_info.default_offset;
1247 mddev->bitmap_info.space =
1248 mddev->bitmap_info.space;
1249 }
1250
1251 } else if (mddev->pers == NULL) {
1252 /* Insist on good event counter while assembling, except
1253 * for spares (which don't need an event count) */
1254 ++ev1;
1255 if (sb->disks[rdev->desc_nr].state & (
1256 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1257 if (ev1 < mddev->events)
1258 return -EINVAL;
1259 } else if (mddev->bitmap) {
1260 /* if adding to array with a bitmap, then we can accept an
1261 * older device ... but not too old.
1262 */
1263 if (ev1 < mddev->bitmap->events_cleared)
1264 return 0;
1265 } else {
1266 if (ev1 < mddev->events)
1267 /* just a hot-add of a new device, leave raid_disk at -1 */
1268 return 0;
1269 }
1270
1271 if (mddev->level != LEVEL_MULTIPATH) {
1272 desc = sb->disks + rdev->desc_nr;
1273
1274 if (desc->state & (1<<MD_DISK_FAULTY))
1275 set_bit(Faulty, &rdev->flags);
1276 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1277 desc->raid_disk < mddev->raid_disks */) {
1278 set_bit(In_sync, &rdev->flags);
1279 rdev->raid_disk = desc->raid_disk;
1280 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1281 /* active but not in sync implies recovery up to
1282 * reshape position. We don't know exactly where
1283 * that is, so set to zero for now */
1284 if (mddev->minor_version >= 91) {
1285 rdev->recovery_offset = 0;
1286 rdev->raid_disk = desc->raid_disk;
1287 }
1288 }
1289 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1290 set_bit(WriteMostly, &rdev->flags);
1291 } else /* MULTIPATH are always insync */
1292 set_bit(In_sync, &rdev->flags);
1293 return 0;
1294}
1295
1296/*
1297 * sync_super for 0.90.0
1298 */
1299static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1300{
1301 mdp_super_t *sb;
1302 struct md_rdev *rdev2;
1303 int next_spare = mddev->raid_disks;
1304
1305
1306 /* make rdev->sb match mddev data..
1307 *
1308 * 1/ zero out disks
1309 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1310 * 3/ any empty disks < next_spare become removed
1311 *
1312 * disks[0] gets initialised to REMOVED because
1313 * we cannot be sure from other fields if it has
1314 * been initialised or not.
1315 */
1316 int i;
1317 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1318
1319 rdev->sb_size = MD_SB_BYTES;
1320
1321 sb = page_address(rdev->sb_page);
1322
1323 memset(sb, 0, sizeof(*sb));
1324
1325 sb->md_magic = MD_SB_MAGIC;
1326 sb->major_version = mddev->major_version;
1327 sb->patch_version = mddev->patch_version;
1328 sb->gvalid_words = 0; /* ignored */
1329 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1330 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1331 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1332 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1333
1334 sb->ctime = mddev->ctime;
1335 sb->level = mddev->level;
1336 sb->size = mddev->dev_sectors / 2;
1337 sb->raid_disks = mddev->raid_disks;
1338 sb->md_minor = mddev->md_minor;
1339 sb->not_persistent = 0;
1340 sb->utime = mddev->utime;
1341 sb->state = 0;
1342 sb->events_hi = (mddev->events>>32);
1343 sb->events_lo = (u32)mddev->events;
1344
1345 if (mddev->reshape_position == MaxSector)
1346 sb->minor_version = 90;
1347 else {
1348 sb->minor_version = 91;
1349 sb->reshape_position = mddev->reshape_position;
1350 sb->new_level = mddev->new_level;
1351 sb->delta_disks = mddev->delta_disks;
1352 sb->new_layout = mddev->new_layout;
1353 sb->new_chunk = mddev->new_chunk_sectors << 9;
1354 }
1355 mddev->minor_version = sb->minor_version;
1356 if (mddev->in_sync)
1357 {
1358 sb->recovery_cp = mddev->recovery_cp;
1359 sb->cp_events_hi = (mddev->events>>32);
1360 sb->cp_events_lo = (u32)mddev->events;
1361 if (mddev->recovery_cp == MaxSector)
1362 sb->state = (1<< MD_SB_CLEAN);
1363 } else
1364 sb->recovery_cp = 0;
1365
1366 sb->layout = mddev->layout;
1367 sb->chunk_size = mddev->chunk_sectors << 9;
1368
1369 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1370 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1371
1372 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1373 rdev_for_each(rdev2, mddev) {
1374 mdp_disk_t *d;
1375 int desc_nr;
1376 int is_active = test_bit(In_sync, &rdev2->flags);
1377
1378 if (rdev2->raid_disk >= 0 &&
1379 sb->minor_version >= 91)
1380 /* we have nowhere to store the recovery_offset,
1381 * but if it is not below the reshape_position,
1382 * we can piggy-back on that.
1383 */
1384 is_active = 1;
1385 if (rdev2->raid_disk < 0 ||
1386 test_bit(Faulty, &rdev2->flags))
1387 is_active = 0;
1388 if (is_active)
1389 desc_nr = rdev2->raid_disk;
1390 else
1391 desc_nr = next_spare++;
1392 rdev2->desc_nr = desc_nr;
1393 d = &sb->disks[rdev2->desc_nr];
1394 nr_disks++;
1395 d->number = rdev2->desc_nr;
1396 d->major = MAJOR(rdev2->bdev->bd_dev);
1397 d->minor = MINOR(rdev2->bdev->bd_dev);
1398 if (is_active)
1399 d->raid_disk = rdev2->raid_disk;
1400 else
1401 d->raid_disk = rdev2->desc_nr; /* compatibility */
1402 if (test_bit(Faulty, &rdev2->flags))
1403 d->state = (1<<MD_DISK_FAULTY);
1404 else if (is_active) {
1405 d->state = (1<<MD_DISK_ACTIVE);
1406 if (test_bit(In_sync, &rdev2->flags))
1407 d->state |= (1<<MD_DISK_SYNC);
1408 active++;
1409 working++;
1410 } else {
1411 d->state = 0;
1412 spare++;
1413 working++;
1414 }
1415 if (test_bit(WriteMostly, &rdev2->flags))
1416 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1417 }
1418 /* now set the "removed" and "faulty" bits on any missing devices */
1419 for (i=0 ; i < mddev->raid_disks ; i++) {
1420 mdp_disk_t *d = &sb->disks[i];
1421 if (d->state == 0 && d->number == 0) {
1422 d->number = i;
1423 d->raid_disk = i;
1424 d->state = (1<<MD_DISK_REMOVED);
1425 d->state |= (1<<MD_DISK_FAULTY);
1426 failed++;
1427 }
1428 }
1429 sb->nr_disks = nr_disks;
1430 sb->active_disks = active;
1431 sb->working_disks = working;
1432 sb->failed_disks = failed;
1433 sb->spare_disks = spare;
1434
1435 sb->this_disk = sb->disks[rdev->desc_nr];
1436 sb->sb_csum = calc_sb_csum(sb);
1437}
1438
1439/*
1440 * rdev_size_change for 0.90.0
1441 */
1442static unsigned long long
1443super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1444{
1445 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1446 return 0; /* component must fit device */
1447 if (rdev->mddev->bitmap_info.offset)
1448 return 0; /* can't move bitmap */
1449 rdev->sb_start = calc_dev_sboffset(rdev);
1450 if (!num_sectors || num_sectors > rdev->sb_start)
1451 num_sectors = rdev->sb_start;
1452 /* Limit to 4TB as metadata cannot record more than that.
1453 * 4TB == 2^32 KB, or 2*2^32 sectors.
1454 */
1455 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1456 num_sectors = (2ULL << 32) - 2;
1457 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1458 rdev->sb_page);
1459 md_super_wait(rdev->mddev);
1460 return num_sectors;
1461}
1462
1463static int
1464super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1465{
1466 /* non-zero offset changes not possible with v0.90 */
1467 return new_offset == 0;
1468}
1469
1470/*
1471 * version 1 superblock
1472 */
1473
1474static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1475{
1476 __le32 disk_csum;
1477 u32 csum;
1478 unsigned long long newcsum;
1479 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1480 __le32 *isuper = (__le32*)sb;
1481 int i;
1482
1483 disk_csum = sb->sb_csum;
1484 sb->sb_csum = 0;
1485 newcsum = 0;
1486 for (i=0; size>=4; size -= 4 )
1487 newcsum += le32_to_cpu(*isuper++);
1488
1489 if (size == 2)
1490 newcsum += le16_to_cpu(*(__le16*) isuper);
1491
1492 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1493 sb->sb_csum = disk_csum;
1494 return cpu_to_le32(csum);
1495}
1496
1497static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1498 int acknowledged);
1499static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1500{
1501 struct mdp_superblock_1 *sb;
1502 int ret;
1503 sector_t sb_start;
1504 sector_t sectors;
1505 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1506 int bmask;
1507
1508 /*
1509 * Calculate the position of the superblock in 512byte sectors.
1510 * It is always aligned to a 4K boundary and
1511 * depeding on minor_version, it can be:
1512 * 0: At least 8K, but less than 12K, from end of device
1513 * 1: At start of device
1514 * 2: 4K from start of device.
1515 */
1516 switch(minor_version) {
1517 case 0:
1518 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1519 sb_start -= 8*2;
1520 sb_start &= ~(sector_t)(4*2-1);
1521 break;
1522 case 1:
1523 sb_start = 0;
1524 break;
1525 case 2:
1526 sb_start = 8;
1527 break;
1528 default:
1529 return -EINVAL;
1530 }
1531 rdev->sb_start = sb_start;
1532
1533 /* superblock is rarely larger than 1K, but it can be larger,
1534 * and it is safe to read 4k, so we do that
1535 */
1536 ret = read_disk_sb(rdev, 4096);
1537 if (ret) return ret;
1538
1539
1540 sb = page_address(rdev->sb_page);
1541
1542 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1543 sb->major_version != cpu_to_le32(1) ||
1544 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1545 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1546 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1547 return -EINVAL;
1548
1549 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1550 printk("md: invalid superblock checksum on %s\n",
1551 bdevname(rdev->bdev,b));
1552 return -EINVAL;
1553 }
1554 if (le64_to_cpu(sb->data_size) < 10) {
1555 printk("md: data_size too small on %s\n",
1556 bdevname(rdev->bdev,b));
1557 return -EINVAL;
1558 }
1559 if (sb->pad0 ||
1560 sb->pad3[0] ||
1561 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1562 /* Some padding is non-zero, might be a new feature */
1563 return -EINVAL;
1564
1565 rdev->preferred_minor = 0xffff;
1566 rdev->data_offset = le64_to_cpu(sb->data_offset);
1567 rdev->new_data_offset = rdev->data_offset;
1568 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1569 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1570 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1571 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1572
1573 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1574 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1575 if (rdev->sb_size & bmask)
1576 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1577
1578 if (minor_version
1579 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1580 return -EINVAL;
1581 if (minor_version
1582 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1583 return -EINVAL;
1584
1585 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1586 rdev->desc_nr = -1;
1587 else
1588 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1589
1590 if (!rdev->bb_page) {
1591 rdev->bb_page = alloc_page(GFP_KERNEL);
1592 if (!rdev->bb_page)
1593 return -ENOMEM;
1594 }
1595 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1596 rdev->badblocks.count == 0) {
1597 /* need to load the bad block list.
1598 * Currently we limit it to one page.
1599 */
1600 s32 offset;
1601 sector_t bb_sector;
1602 u64 *bbp;
1603 int i;
1604 int sectors = le16_to_cpu(sb->bblog_size);
1605 if (sectors > (PAGE_SIZE / 512))
1606 return -EINVAL;
1607 offset = le32_to_cpu(sb->bblog_offset);
1608 if (offset == 0)
1609 return -EINVAL;
1610 bb_sector = (long long)offset;
1611 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1612 rdev->bb_page, READ, true))
1613 return -EIO;
1614 bbp = (u64 *)page_address(rdev->bb_page);
1615 rdev->badblocks.shift = sb->bblog_shift;
1616 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1617 u64 bb = le64_to_cpu(*bbp);
1618 int count = bb & (0x3ff);
1619 u64 sector = bb >> 10;
1620 sector <<= sb->bblog_shift;
1621 count <<= sb->bblog_shift;
1622 if (bb + 1 == 0)
1623 break;
1624 if (md_set_badblocks(&rdev->badblocks,
1625 sector, count, 1) == 0)
1626 return -EINVAL;
1627 }
1628 } else if (sb->bblog_offset == 0)
1629 rdev->badblocks.shift = -1;
1630
1631 if (!refdev) {
1632 ret = 1;
1633 } else {
1634 __u64 ev1, ev2;
1635 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1636
1637 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1638 sb->level != refsb->level ||
1639 sb->layout != refsb->layout ||
1640 sb->chunksize != refsb->chunksize) {
1641 printk(KERN_WARNING "md: %s has strangely different"
1642 " superblock to %s\n",
1643 bdevname(rdev->bdev,b),
1644 bdevname(refdev->bdev,b2));
1645 return -EINVAL;
1646 }
1647 ev1 = le64_to_cpu(sb->events);
1648 ev2 = le64_to_cpu(refsb->events);
1649
1650 if (ev1 > ev2)
1651 ret = 1;
1652 else
1653 ret = 0;
1654 }
1655 if (minor_version) {
1656 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1657 sectors -= rdev->data_offset;
1658 } else
1659 sectors = rdev->sb_start;
1660 if (sectors < le64_to_cpu(sb->data_size))
1661 return -EINVAL;
1662 rdev->sectors = le64_to_cpu(sb->data_size);
1663 return ret;
1664}
1665
1666static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1669 __u64 ev1 = le64_to_cpu(sb->events);
1670
1671 rdev->raid_disk = -1;
1672 clear_bit(Faulty, &rdev->flags);
1673 clear_bit(In_sync, &rdev->flags);
1674 clear_bit(WriteMostly, &rdev->flags);
1675
1676 if (mddev->raid_disks == 0) {
1677 mddev->major_version = 1;
1678 mddev->patch_version = 0;
1679 mddev->external = 0;
1680 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1681 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1682 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1683 mddev->level = le32_to_cpu(sb->level);
1684 mddev->clevel[0] = 0;
1685 mddev->layout = le32_to_cpu(sb->layout);
1686 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1687 mddev->dev_sectors = le64_to_cpu(sb->size);
1688 mddev->events = ev1;
1689 mddev->bitmap_info.offset = 0;
1690 mddev->bitmap_info.space = 0;
1691 /* Default location for bitmap is 1K after superblock
1692 * using 3K - total of 4K
1693 */
1694 mddev->bitmap_info.default_offset = 1024 >> 9;
1695 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1696 mddev->reshape_backwards = 0;
1697
1698 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1699 memcpy(mddev->uuid, sb->set_uuid, 16);
1700
1701 mddev->max_disks = (4096-256)/2;
1702
1703 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1704 mddev->bitmap_info.file == NULL) {
1705 mddev->bitmap_info.offset =
1706 (__s32)le32_to_cpu(sb->bitmap_offset);
1707 /* Metadata doesn't record how much space is available.
1708 * For 1.0, we assume we can use up to the superblock
1709 * if before, else to 4K beyond superblock.
1710 * For others, assume no change is possible.
1711 */
1712 if (mddev->minor_version > 0)
1713 mddev->bitmap_info.space = 0;
1714 else if (mddev->bitmap_info.offset > 0)
1715 mddev->bitmap_info.space =
1716 8 - mddev->bitmap_info.offset;
1717 else
1718 mddev->bitmap_info.space =
1719 -mddev->bitmap_info.offset;
1720 }
1721
1722 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1723 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1724 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1725 mddev->new_level = le32_to_cpu(sb->new_level);
1726 mddev->new_layout = le32_to_cpu(sb->new_layout);
1727 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1728 if (mddev->delta_disks < 0 ||
1729 (mddev->delta_disks == 0 &&
1730 (le32_to_cpu(sb->feature_map)
1731 & MD_FEATURE_RESHAPE_BACKWARDS)))
1732 mddev->reshape_backwards = 1;
1733 } else {
1734 mddev->reshape_position = MaxSector;
1735 mddev->delta_disks = 0;
1736 mddev->new_level = mddev->level;
1737 mddev->new_layout = mddev->layout;
1738 mddev->new_chunk_sectors = mddev->chunk_sectors;
1739 }
1740
1741 } else if (mddev->pers == NULL) {
1742 /* Insist of good event counter while assembling, except for
1743 * spares (which don't need an event count) */
1744 ++ev1;
1745 if (rdev->desc_nr >= 0 &&
1746 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1747 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1748 if (ev1 < mddev->events)
1749 return -EINVAL;
1750 } else if (mddev->bitmap) {
1751 /* If adding to array with a bitmap, then we can accept an
1752 * older device, but not too old.
1753 */
1754 if (ev1 < mddev->bitmap->events_cleared)
1755 return 0;
1756 } else {
1757 if (ev1 < mddev->events)
1758 /* just a hot-add of a new device, leave raid_disk at -1 */
1759 return 0;
1760 }
1761 if (mddev->level != LEVEL_MULTIPATH) {
1762 int role;
1763 if (rdev->desc_nr < 0 ||
1764 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1765 role = 0xffff;
1766 rdev->desc_nr = -1;
1767 } else
1768 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1769 switch(role) {
1770 case 0xffff: /* spare */
1771 break;
1772 case 0xfffe: /* faulty */
1773 set_bit(Faulty, &rdev->flags);
1774 break;
1775 default:
1776 if ((le32_to_cpu(sb->feature_map) &
1777 MD_FEATURE_RECOVERY_OFFSET))
1778 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1779 else
1780 set_bit(In_sync, &rdev->flags);
1781 rdev->raid_disk = role;
1782 break;
1783 }
1784 if (sb->devflags & WriteMostly1)
1785 set_bit(WriteMostly, &rdev->flags);
1786 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1787 set_bit(Replacement, &rdev->flags);
1788 } else /* MULTIPATH are always insync */
1789 set_bit(In_sync, &rdev->flags);
1790
1791 return 0;
1792}
1793
1794static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1795{
1796 struct mdp_superblock_1 *sb;
1797 struct md_rdev *rdev2;
1798 int max_dev, i;
1799 /* make rdev->sb match mddev and rdev data. */
1800
1801 sb = page_address(rdev->sb_page);
1802
1803 sb->feature_map = 0;
1804 sb->pad0 = 0;
1805 sb->recovery_offset = cpu_to_le64(0);
1806 memset(sb->pad3, 0, sizeof(sb->pad3));
1807
1808 sb->utime = cpu_to_le64((__u64)mddev->utime);
1809 sb->events = cpu_to_le64(mddev->events);
1810 if (mddev->in_sync)
1811 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1812 else
1813 sb->resync_offset = cpu_to_le64(0);
1814
1815 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1816
1817 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1818 sb->size = cpu_to_le64(mddev->dev_sectors);
1819 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1820 sb->level = cpu_to_le32(mddev->level);
1821 sb->layout = cpu_to_le32(mddev->layout);
1822
1823 if (test_bit(WriteMostly, &rdev->flags))
1824 sb->devflags |= WriteMostly1;
1825 else
1826 sb->devflags &= ~WriteMostly1;
1827 sb->data_offset = cpu_to_le64(rdev->data_offset);
1828 sb->data_size = cpu_to_le64(rdev->sectors);
1829
1830 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1831 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1832 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1833 }
1834
1835 if (rdev->raid_disk >= 0 &&
1836 !test_bit(In_sync, &rdev->flags)) {
1837 sb->feature_map |=
1838 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1839 sb->recovery_offset =
1840 cpu_to_le64(rdev->recovery_offset);
1841 }
1842 if (test_bit(Replacement, &rdev->flags))
1843 sb->feature_map |=
1844 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1845
1846 if (mddev->reshape_position != MaxSector) {
1847 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1848 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1849 sb->new_layout = cpu_to_le32(mddev->new_layout);
1850 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1851 sb->new_level = cpu_to_le32(mddev->new_level);
1852 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1853 if (mddev->delta_disks == 0 &&
1854 mddev->reshape_backwards)
1855 sb->feature_map
1856 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1857 if (rdev->new_data_offset != rdev->data_offset) {
1858 sb->feature_map
1859 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1860 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1861 - rdev->data_offset));
1862 }
1863 }
1864
1865 if (rdev->badblocks.count == 0)
1866 /* Nothing to do for bad blocks*/ ;
1867 else if (sb->bblog_offset == 0)
1868 /* Cannot record bad blocks on this device */
1869 md_error(mddev, rdev);
1870 else {
1871 struct badblocks *bb = &rdev->badblocks;
1872 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1873 u64 *p = bb->page;
1874 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1875 if (bb->changed) {
1876 unsigned seq;
1877
1878retry:
1879 seq = read_seqbegin(&bb->lock);
1880
1881 memset(bbp, 0xff, PAGE_SIZE);
1882
1883 for (i = 0 ; i < bb->count ; i++) {
1884 u64 internal_bb = *p++;
1885 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1886 | BB_LEN(internal_bb));
1887 *bbp++ = cpu_to_le64(store_bb);
1888 }
1889 bb->changed = 0;
1890 if (read_seqretry(&bb->lock, seq))
1891 goto retry;
1892
1893 bb->sector = (rdev->sb_start +
1894 (int)le32_to_cpu(sb->bblog_offset));
1895 bb->size = le16_to_cpu(sb->bblog_size);
1896 }
1897 }
1898
1899 max_dev = 0;
1900 rdev_for_each(rdev2, mddev)
1901 if (rdev2->desc_nr+1 > max_dev)
1902 max_dev = rdev2->desc_nr+1;
1903
1904 if (max_dev > le32_to_cpu(sb->max_dev)) {
1905 int bmask;
1906 sb->max_dev = cpu_to_le32(max_dev);
1907 rdev->sb_size = max_dev * 2 + 256;
1908 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1909 if (rdev->sb_size & bmask)
1910 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1911 } else
1912 max_dev = le32_to_cpu(sb->max_dev);
1913
1914 for (i=0; i<max_dev;i++)
1915 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1916
1917 rdev_for_each(rdev2, mddev) {
1918 i = rdev2->desc_nr;
1919 if (test_bit(Faulty, &rdev2->flags))
1920 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1921 else if (test_bit(In_sync, &rdev2->flags))
1922 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1923 else if (rdev2->raid_disk >= 0)
1924 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1925 else
1926 sb->dev_roles[i] = cpu_to_le16(0xffff);
1927 }
1928
1929 sb->sb_csum = calc_sb_1_csum(sb);
1930}
1931
1932static unsigned long long
1933super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1934{
1935 struct mdp_superblock_1 *sb;
1936 sector_t max_sectors;
1937 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1938 return 0; /* component must fit device */
1939 if (rdev->data_offset != rdev->new_data_offset)
1940 return 0; /* too confusing */
1941 if (rdev->sb_start < rdev->data_offset) {
1942 /* minor versions 1 and 2; superblock before data */
1943 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1944 max_sectors -= rdev->data_offset;
1945 if (!num_sectors || num_sectors > max_sectors)
1946 num_sectors = max_sectors;
1947 } else if (rdev->mddev->bitmap_info.offset) {
1948 /* minor version 0 with bitmap we can't move */
1949 return 0;
1950 } else {
1951 /* minor version 0; superblock after data */
1952 sector_t sb_start;
1953 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1954 sb_start &= ~(sector_t)(4*2 - 1);
1955 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1956 if (!num_sectors || num_sectors > max_sectors)
1957 num_sectors = max_sectors;
1958 rdev->sb_start = sb_start;
1959 }
1960 sb = page_address(rdev->sb_page);
1961 sb->data_size = cpu_to_le64(num_sectors);
1962 sb->super_offset = rdev->sb_start;
1963 sb->sb_csum = calc_sb_1_csum(sb);
1964 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1965 rdev->sb_page);
1966 md_super_wait(rdev->mddev);
1967 return num_sectors;
1968
1969}
1970
1971static int
1972super_1_allow_new_offset(struct md_rdev *rdev,
1973 unsigned long long new_offset)
1974{
1975 /* All necessary checks on new >= old have been done */
1976 struct bitmap *bitmap;
1977 if (new_offset >= rdev->data_offset)
1978 return 1;
1979
1980 /* with 1.0 metadata, there is no metadata to tread on
1981 * so we can always move back */
1982 if (rdev->mddev->minor_version == 0)
1983 return 1;
1984
1985 /* otherwise we must be sure not to step on
1986 * any metadata, so stay:
1987 * 36K beyond start of superblock
1988 * beyond end of badblocks
1989 * beyond write-intent bitmap
1990 */
1991 if (rdev->sb_start + (32+4)*2 > new_offset)
1992 return 0;
1993 bitmap = rdev->mddev->bitmap;
1994 if (bitmap && !rdev->mddev->bitmap_info.file &&
1995 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1996 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1997 return 0;
1998 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1999 return 0;
2000
2001 return 1;
2002}
2003
2004static struct super_type super_types[] = {
2005 [0] = {
2006 .name = "0.90.0",
2007 .owner = THIS_MODULE,
2008 .load_super = super_90_load,
2009 .validate_super = super_90_validate,
2010 .sync_super = super_90_sync,
2011 .rdev_size_change = super_90_rdev_size_change,
2012 .allow_new_offset = super_90_allow_new_offset,
2013 },
2014 [1] = {
2015 .name = "md-1",
2016 .owner = THIS_MODULE,
2017 .load_super = super_1_load,
2018 .validate_super = super_1_validate,
2019 .sync_super = super_1_sync,
2020 .rdev_size_change = super_1_rdev_size_change,
2021 .allow_new_offset = super_1_allow_new_offset,
2022 },
2023};
2024
2025static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2026{
2027 if (mddev->sync_super) {
2028 mddev->sync_super(mddev, rdev);
2029 return;
2030 }
2031
2032 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2033
2034 super_types[mddev->major_version].sync_super(mddev, rdev);
2035}
2036
2037static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2038{
2039 struct md_rdev *rdev, *rdev2;
2040
2041 rcu_read_lock();
2042 rdev_for_each_rcu(rdev, mddev1)
2043 rdev_for_each_rcu(rdev2, mddev2)
2044 if (rdev->bdev->bd_contains ==
2045 rdev2->bdev->bd_contains) {
2046 rcu_read_unlock();
2047 return 1;
2048 }
2049 rcu_read_unlock();
2050 return 0;
2051}
2052
2053static LIST_HEAD(pending_raid_disks);
2054
2055/*
2056 * Try to register data integrity profile for an mddev
2057 *
2058 * This is called when an array is started and after a disk has been kicked
2059 * from the array. It only succeeds if all working and active component devices
2060 * are integrity capable with matching profiles.
2061 */
2062int md_integrity_register(struct mddev *mddev)
2063{
2064 struct md_rdev *rdev, *reference = NULL;
2065
2066 if (list_empty(&mddev->disks))
2067 return 0; /* nothing to do */
2068 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2069 return 0; /* shouldn't register, or already is */
2070 rdev_for_each(rdev, mddev) {
2071 /* skip spares and non-functional disks */
2072 if (test_bit(Faulty, &rdev->flags))
2073 continue;
2074 if (rdev->raid_disk < 0)
2075 continue;
2076 if (!reference) {
2077 /* Use the first rdev as the reference */
2078 reference = rdev;
2079 continue;
2080 }
2081 /* does this rdev's profile match the reference profile? */
2082 if (blk_integrity_compare(reference->bdev->bd_disk,
2083 rdev->bdev->bd_disk) < 0)
2084 return -EINVAL;
2085 }
2086 if (!reference || !bdev_get_integrity(reference->bdev))
2087 return 0;
2088 /*
2089 * All component devices are integrity capable and have matching
2090 * profiles, register the common profile for the md device.
2091 */
2092 if (blk_integrity_register(mddev->gendisk,
2093 bdev_get_integrity(reference->bdev)) != 0) {
2094 printk(KERN_ERR "md: failed to register integrity for %s\n",
2095 mdname(mddev));
2096 return -EINVAL;
2097 }
2098 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2099 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2100 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2101 mdname(mddev));
2102 return -EINVAL;
2103 }
2104 return 0;
2105}
2106EXPORT_SYMBOL(md_integrity_register);
2107
2108/* Disable data integrity if non-capable/non-matching disk is being added */
2109void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2110{
2111 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2112 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2113
2114 if (!bi_mddev) /* nothing to do */
2115 return;
2116 if (rdev->raid_disk < 0) /* skip spares */
2117 return;
2118 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2119 rdev->bdev->bd_disk) >= 0)
2120 return;
2121 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2122 blk_integrity_unregister(mddev->gendisk);
2123}
2124EXPORT_SYMBOL(md_integrity_add_rdev);
2125
2126static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2127{
2128 char b[BDEVNAME_SIZE];
2129 struct kobject *ko;
2130 char *s;
2131 int err;
2132
2133 if (rdev->mddev) {
2134 MD_BUG();
2135 return -EINVAL;
2136 }
2137
2138 /* prevent duplicates */
2139 if (find_rdev(mddev, rdev->bdev->bd_dev))
2140 return -EEXIST;
2141
2142 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2143 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2144 rdev->sectors < mddev->dev_sectors)) {
2145 if (mddev->pers) {
2146 /* Cannot change size, so fail
2147 * If mddev->level <= 0, then we don't care
2148 * about aligning sizes (e.g. linear)
2149 */
2150 if (mddev->level > 0)
2151 return -ENOSPC;
2152 } else
2153 mddev->dev_sectors = rdev->sectors;
2154 }
2155
2156 /* Verify rdev->desc_nr is unique.
2157 * If it is -1, assign a free number, else
2158 * check number is not in use
2159 */
2160 if (rdev->desc_nr < 0) {
2161 int choice = 0;
2162 if (mddev->pers) choice = mddev->raid_disks;
2163 while (find_rdev_nr(mddev, choice))
2164 choice++;
2165 rdev->desc_nr = choice;
2166 } else {
2167 if (find_rdev_nr(mddev, rdev->desc_nr))
2168 return -EBUSY;
2169 }
2170 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2171 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2172 mdname(mddev), mddev->max_disks);
2173 return -EBUSY;
2174 }
2175 bdevname(rdev->bdev,b);
2176 while ( (s=strchr(b, '/')) != NULL)
2177 *s = '!';
2178
2179 rdev->mddev = mddev;
2180 printk(KERN_INFO "md: bind<%s>\n", b);
2181
2182 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2183 goto fail;
2184
2185 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2186 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2187 /* failure here is OK */;
2188 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2189
2190 list_add_rcu(&rdev->same_set, &mddev->disks);
2191 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2192
2193 /* May as well allow recovery to be retried once */
2194 mddev->recovery_disabled++;
2195
2196 return 0;
2197
2198 fail:
2199 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2200 b, mdname(mddev));
2201 return err;
2202}
2203
2204static void md_delayed_delete(struct work_struct *ws)
2205{
2206 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2207 kobject_del(&rdev->kobj);
2208 kobject_put(&rdev->kobj);
2209}
2210
2211static void unbind_rdev_from_array(struct md_rdev * rdev)
2212{
2213 char b[BDEVNAME_SIZE];
2214 if (!rdev->mddev) {
2215 MD_BUG();
2216 return;
2217 }
2218 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2219 list_del_rcu(&rdev->same_set);
2220 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2221 rdev->mddev = NULL;
2222 sysfs_remove_link(&rdev->kobj, "block");
2223 sysfs_put(rdev->sysfs_state);
2224 rdev->sysfs_state = NULL;
2225 rdev->badblocks.count = 0;
2226 /* We need to delay this, otherwise we can deadlock when
2227 * writing to 'remove' to "dev/state". We also need
2228 * to delay it due to rcu usage.
2229 */
2230 synchronize_rcu();
2231 INIT_WORK(&rdev->del_work, md_delayed_delete);
2232 kobject_get(&rdev->kobj);
2233 queue_work(md_misc_wq, &rdev->del_work);
2234}
2235
2236/*
2237 * prevent the device from being mounted, repartitioned or
2238 * otherwise reused by a RAID array (or any other kernel
2239 * subsystem), by bd_claiming the device.
2240 */
2241static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2242{
2243 int err = 0;
2244 struct block_device *bdev;
2245 char b[BDEVNAME_SIZE];
2246
2247 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2248 shared ? (struct md_rdev *)lock_rdev : rdev);
2249 if (IS_ERR(bdev)) {
2250 printk(KERN_ERR "md: could not open %s.\n",
2251 __bdevname(dev, b));
2252 return PTR_ERR(bdev);
2253 }
2254 rdev->bdev = bdev;
2255 return err;
2256}
2257
2258static void unlock_rdev(struct md_rdev *rdev)
2259{
2260 struct block_device *bdev = rdev->bdev;
2261 rdev->bdev = NULL;
2262 if (!bdev)
2263 MD_BUG();
2264 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2265}
2266
2267void md_autodetect_dev(dev_t dev);
2268
2269static void export_rdev(struct md_rdev * rdev)
2270{
2271 char b[BDEVNAME_SIZE];
2272 printk(KERN_INFO "md: export_rdev(%s)\n",
2273 bdevname(rdev->bdev,b));
2274 if (rdev->mddev)
2275 MD_BUG();
2276 md_rdev_clear(rdev);
2277#ifndef MODULE
2278 if (test_bit(AutoDetected, &rdev->flags))
2279 md_autodetect_dev(rdev->bdev->bd_dev);
2280#endif
2281 unlock_rdev(rdev);
2282 kobject_put(&rdev->kobj);
2283}
2284
2285static void kick_rdev_from_array(struct md_rdev * rdev)
2286{
2287 unbind_rdev_from_array(rdev);
2288 export_rdev(rdev);
2289}
2290
2291static void export_array(struct mddev *mddev)
2292{
2293 struct md_rdev *rdev, *tmp;
2294
2295 rdev_for_each_safe(rdev, tmp, mddev) {
2296 if (!rdev->mddev) {
2297 MD_BUG();
2298 continue;
2299 }
2300 kick_rdev_from_array(rdev);
2301 }
2302 if (!list_empty(&mddev->disks))
2303 MD_BUG();
2304 mddev->raid_disks = 0;
2305 mddev->major_version = 0;
2306}
2307
2308static void print_desc(mdp_disk_t *desc)
2309{
2310 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2311 desc->major,desc->minor,desc->raid_disk,desc->state);
2312}
2313
2314static void print_sb_90(mdp_super_t *sb)
2315{
2316 int i;
2317
2318 printk(KERN_INFO
2319 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2320 sb->major_version, sb->minor_version, sb->patch_version,
2321 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2322 sb->ctime);
2323 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2324 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2325 sb->md_minor, sb->layout, sb->chunk_size);
2326 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2327 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2328 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2329 sb->failed_disks, sb->spare_disks,
2330 sb->sb_csum, (unsigned long)sb->events_lo);
2331
2332 printk(KERN_INFO);
2333 for (i = 0; i < MD_SB_DISKS; i++) {
2334 mdp_disk_t *desc;
2335
2336 desc = sb->disks + i;
2337 if (desc->number || desc->major || desc->minor ||
2338 desc->raid_disk || (desc->state && (desc->state != 4))) {
2339 printk(" D %2d: ", i);
2340 print_desc(desc);
2341 }
2342 }
2343 printk(KERN_INFO "md: THIS: ");
2344 print_desc(&sb->this_disk);
2345}
2346
2347static void print_sb_1(struct mdp_superblock_1 *sb)
2348{
2349 __u8 *uuid;
2350
2351 uuid = sb->set_uuid;
2352 printk(KERN_INFO
2353 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2354 "md: Name: \"%s\" CT:%llu\n",
2355 le32_to_cpu(sb->major_version),
2356 le32_to_cpu(sb->feature_map),
2357 uuid,
2358 sb->set_name,
2359 (unsigned long long)le64_to_cpu(sb->ctime)
2360 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2361
2362 uuid = sb->device_uuid;
2363 printk(KERN_INFO
2364 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2365 " RO:%llu\n"
2366 "md: Dev:%08x UUID: %pU\n"
2367 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2368 "md: (MaxDev:%u) \n",
2369 le32_to_cpu(sb->level),
2370 (unsigned long long)le64_to_cpu(sb->size),
2371 le32_to_cpu(sb->raid_disks),
2372 le32_to_cpu(sb->layout),
2373 le32_to_cpu(sb->chunksize),
2374 (unsigned long long)le64_to_cpu(sb->data_offset),
2375 (unsigned long long)le64_to_cpu(sb->data_size),
2376 (unsigned long long)le64_to_cpu(sb->super_offset),
2377 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2378 le32_to_cpu(sb->dev_number),
2379 uuid,
2380 sb->devflags,
2381 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2382 (unsigned long long)le64_to_cpu(sb->events),
2383 (unsigned long long)le64_to_cpu(sb->resync_offset),
2384 le32_to_cpu(sb->sb_csum),
2385 le32_to_cpu(sb->max_dev)
2386 );
2387}
2388
2389static void print_rdev(struct md_rdev *rdev, int major_version)
2390{
2391 char b[BDEVNAME_SIZE];
2392 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2393 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2394 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2395 rdev->desc_nr);
2396 if (rdev->sb_loaded) {
2397 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2398 switch (major_version) {
2399 case 0:
2400 print_sb_90(page_address(rdev->sb_page));
2401 break;
2402 case 1:
2403 print_sb_1(page_address(rdev->sb_page));
2404 break;
2405 }
2406 } else
2407 printk(KERN_INFO "md: no rdev superblock!\n");
2408}
2409
2410static void md_print_devices(void)
2411{
2412 struct list_head *tmp;
2413 struct md_rdev *rdev;
2414 struct mddev *mddev;
2415 char b[BDEVNAME_SIZE];
2416
2417 printk("\n");
2418 printk("md: **********************************\n");
2419 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2420 printk("md: **********************************\n");
2421 for_each_mddev(mddev, tmp) {
2422
2423 if (mddev->bitmap)
2424 bitmap_print_sb(mddev->bitmap);
2425 else
2426 printk("%s: ", mdname(mddev));
2427 rdev_for_each(rdev, mddev)
2428 printk("<%s>", bdevname(rdev->bdev,b));
2429 printk("\n");
2430
2431 rdev_for_each(rdev, mddev)
2432 print_rdev(rdev, mddev->major_version);
2433 }
2434 printk("md: **********************************\n");
2435 printk("\n");
2436}
2437
2438
2439static void sync_sbs(struct mddev * mddev, int nospares)
2440{
2441 /* Update each superblock (in-memory image), but
2442 * if we are allowed to, skip spares which already
2443 * have the right event counter, or have one earlier
2444 * (which would mean they aren't being marked as dirty
2445 * with the rest of the array)
2446 */
2447 struct md_rdev *rdev;
2448 rdev_for_each(rdev, mddev) {
2449 if (rdev->sb_events == mddev->events ||
2450 (nospares &&
2451 rdev->raid_disk < 0 &&
2452 rdev->sb_events+1 == mddev->events)) {
2453 /* Don't update this superblock */
2454 rdev->sb_loaded = 2;
2455 } else {
2456 sync_super(mddev, rdev);
2457 rdev->sb_loaded = 1;
2458 }
2459 }
2460}
2461
2462static void md_update_sb(struct mddev * mddev, int force_change)
2463{
2464 struct md_rdev *rdev;
2465 int sync_req;
2466 int nospares = 0;
2467 int any_badblocks_changed = 0;
2468
2469repeat:
2470 /* First make sure individual recovery_offsets are correct */
2471 rdev_for_each(rdev, mddev) {
2472 if (rdev->raid_disk >= 0 &&
2473 mddev->delta_disks >= 0 &&
2474 !test_bit(In_sync, &rdev->flags) &&
2475 mddev->curr_resync_completed > rdev->recovery_offset)
2476 rdev->recovery_offset = mddev->curr_resync_completed;
2477
2478 }
2479 if (!mddev->persistent) {
2480 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2481 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2482 if (!mddev->external) {
2483 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2484 rdev_for_each(rdev, mddev) {
2485 if (rdev->badblocks.changed) {
2486 rdev->badblocks.changed = 0;
2487 md_ack_all_badblocks(&rdev->badblocks);
2488 md_error(mddev, rdev);
2489 }
2490 clear_bit(Blocked, &rdev->flags);
2491 clear_bit(BlockedBadBlocks, &rdev->flags);
2492 wake_up(&rdev->blocked_wait);
2493 }
2494 }
2495 wake_up(&mddev->sb_wait);
2496 return;
2497 }
2498
2499 spin_lock_irq(&mddev->write_lock);
2500
2501 mddev->utime = get_seconds();
2502
2503 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2504 force_change = 1;
2505 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2506 /* just a clean<-> dirty transition, possibly leave spares alone,
2507 * though if events isn't the right even/odd, we will have to do
2508 * spares after all
2509 */
2510 nospares = 1;
2511 if (force_change)
2512 nospares = 0;
2513 if (mddev->degraded)
2514 /* If the array is degraded, then skipping spares is both
2515 * dangerous and fairly pointless.
2516 * Dangerous because a device that was removed from the array
2517 * might have a event_count that still looks up-to-date,
2518 * so it can be re-added without a resync.
2519 * Pointless because if there are any spares to skip,
2520 * then a recovery will happen and soon that array won't
2521 * be degraded any more and the spare can go back to sleep then.
2522 */
2523 nospares = 0;
2524
2525 sync_req = mddev->in_sync;
2526
2527 /* If this is just a dirty<->clean transition, and the array is clean
2528 * and 'events' is odd, we can roll back to the previous clean state */
2529 if (nospares
2530 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2531 && mddev->can_decrease_events
2532 && mddev->events != 1) {
2533 mddev->events--;
2534 mddev->can_decrease_events = 0;
2535 } else {
2536 /* otherwise we have to go forward and ... */
2537 mddev->events ++;
2538 mddev->can_decrease_events = nospares;
2539 }
2540
2541 if (!mddev->events) {
2542 /*
2543 * oops, this 64-bit counter should never wrap.
2544 * Either we are in around ~1 trillion A.C., assuming
2545 * 1 reboot per second, or we have a bug:
2546 */
2547 MD_BUG();
2548 mddev->events --;
2549 }
2550
2551 rdev_for_each(rdev, mddev) {
2552 if (rdev->badblocks.changed)
2553 any_badblocks_changed++;
2554 if (test_bit(Faulty, &rdev->flags))
2555 set_bit(FaultRecorded, &rdev->flags);
2556 }
2557
2558 sync_sbs(mddev, nospares);
2559 spin_unlock_irq(&mddev->write_lock);
2560
2561 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2562 mdname(mddev), mddev->in_sync);
2563
2564 bitmap_update_sb(mddev->bitmap);
2565 rdev_for_each(rdev, mddev) {
2566 char b[BDEVNAME_SIZE];
2567
2568 if (rdev->sb_loaded != 1)
2569 continue; /* no noise on spare devices */
2570
2571 if (!test_bit(Faulty, &rdev->flags) &&
2572 rdev->saved_raid_disk == -1) {
2573 md_super_write(mddev,rdev,
2574 rdev->sb_start, rdev->sb_size,
2575 rdev->sb_page);
2576 pr_debug("md: (write) %s's sb offset: %llu\n",
2577 bdevname(rdev->bdev, b),
2578 (unsigned long long)rdev->sb_start);
2579 rdev->sb_events = mddev->events;
2580 if (rdev->badblocks.size) {
2581 md_super_write(mddev, rdev,
2582 rdev->badblocks.sector,
2583 rdev->badblocks.size << 9,
2584 rdev->bb_page);
2585 rdev->badblocks.size = 0;
2586 }
2587
2588 } else if (test_bit(Faulty, &rdev->flags))
2589 pr_debug("md: %s (skipping faulty)\n",
2590 bdevname(rdev->bdev, b));
2591 else
2592 pr_debug("(skipping incremental s/r ");
2593
2594 if (mddev->level == LEVEL_MULTIPATH)
2595 /* only need to write one superblock... */
2596 break;
2597 }
2598 md_super_wait(mddev);
2599 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2600
2601 spin_lock_irq(&mddev->write_lock);
2602 if (mddev->in_sync != sync_req ||
2603 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2604 /* have to write it out again */
2605 spin_unlock_irq(&mddev->write_lock);
2606 goto repeat;
2607 }
2608 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2609 spin_unlock_irq(&mddev->write_lock);
2610 wake_up(&mddev->sb_wait);
2611 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2612 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2613
2614 rdev_for_each(rdev, mddev) {
2615 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2616 clear_bit(Blocked, &rdev->flags);
2617
2618 if (any_badblocks_changed)
2619 md_ack_all_badblocks(&rdev->badblocks);
2620 clear_bit(BlockedBadBlocks, &rdev->flags);
2621 wake_up(&rdev->blocked_wait);
2622 }
2623}
2624
2625/* words written to sysfs files may, or may not, be \n terminated.
2626 * We want to accept with case. For this we use cmd_match.
2627 */
2628static int cmd_match(const char *cmd, const char *str)
2629{
2630 /* See if cmd, written into a sysfs file, matches
2631 * str. They must either be the same, or cmd can
2632 * have a trailing newline
2633 */
2634 while (*cmd && *str && *cmd == *str) {
2635 cmd++;
2636 str++;
2637 }
2638 if (*cmd == '\n')
2639 cmd++;
2640 if (*str || *cmd)
2641 return 0;
2642 return 1;
2643}
2644
2645struct rdev_sysfs_entry {
2646 struct attribute attr;
2647 ssize_t (*show)(struct md_rdev *, char *);
2648 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2649};
2650
2651static ssize_t
2652state_show(struct md_rdev *rdev, char *page)
2653{
2654 char *sep = "";
2655 size_t len = 0;
2656
2657 if (test_bit(Faulty, &rdev->flags) ||
2658 rdev->badblocks.unacked_exist) {
2659 len+= sprintf(page+len, "%sfaulty",sep);
2660 sep = ",";
2661 }
2662 if (test_bit(In_sync, &rdev->flags)) {
2663 len += sprintf(page+len, "%sin_sync",sep);
2664 sep = ",";
2665 }
2666 if (test_bit(WriteMostly, &rdev->flags)) {
2667 len += sprintf(page+len, "%swrite_mostly",sep);
2668 sep = ",";
2669 }
2670 if (test_bit(Blocked, &rdev->flags) ||
2671 (rdev->badblocks.unacked_exist
2672 && !test_bit(Faulty, &rdev->flags))) {
2673 len += sprintf(page+len, "%sblocked", sep);
2674 sep = ",";
2675 }
2676 if (!test_bit(Faulty, &rdev->flags) &&
2677 !test_bit(In_sync, &rdev->flags)) {
2678 len += sprintf(page+len, "%sspare", sep);
2679 sep = ",";
2680 }
2681 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2682 len += sprintf(page+len, "%swrite_error", sep);
2683 sep = ",";
2684 }
2685 if (test_bit(WantReplacement, &rdev->flags)) {
2686 len += sprintf(page+len, "%swant_replacement", sep);
2687 sep = ",";
2688 }
2689 if (test_bit(Replacement, &rdev->flags)) {
2690 len += sprintf(page+len, "%sreplacement", sep);
2691 sep = ",";
2692 }
2693
2694 return len+sprintf(page+len, "\n");
2695}
2696
2697static ssize_t
2698state_store(struct md_rdev *rdev, const char *buf, size_t len)
2699{
2700 /* can write
2701 * faulty - simulates an error
2702 * remove - disconnects the device
2703 * writemostly - sets write_mostly
2704 * -writemostly - clears write_mostly
2705 * blocked - sets the Blocked flags
2706 * -blocked - clears the Blocked and possibly simulates an error
2707 * insync - sets Insync providing device isn't active
2708 * write_error - sets WriteErrorSeen
2709 * -write_error - clears WriteErrorSeen
2710 */
2711 int err = -EINVAL;
2712 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2713 md_error(rdev->mddev, rdev);
2714 if (test_bit(Faulty, &rdev->flags))
2715 err = 0;
2716 else
2717 err = -EBUSY;
2718 } else if (cmd_match(buf, "remove")) {
2719 if (rdev->raid_disk >= 0)
2720 err = -EBUSY;
2721 else {
2722 struct mddev *mddev = rdev->mddev;
2723 kick_rdev_from_array(rdev);
2724 if (mddev->pers)
2725 md_update_sb(mddev, 1);
2726 md_new_event(mddev);
2727 err = 0;
2728 }
2729 } else if (cmd_match(buf, "writemostly")) {
2730 set_bit(WriteMostly, &rdev->flags);
2731 err = 0;
2732 } else if (cmd_match(buf, "-writemostly")) {
2733 clear_bit(WriteMostly, &rdev->flags);
2734 err = 0;
2735 } else if (cmd_match(buf, "blocked")) {
2736 set_bit(Blocked, &rdev->flags);
2737 err = 0;
2738 } else if (cmd_match(buf, "-blocked")) {
2739 if (!test_bit(Faulty, &rdev->flags) &&
2740 rdev->badblocks.unacked_exist) {
2741 /* metadata handler doesn't understand badblocks,
2742 * so we need to fail the device
2743 */
2744 md_error(rdev->mddev, rdev);
2745 }
2746 clear_bit(Blocked, &rdev->flags);
2747 clear_bit(BlockedBadBlocks, &rdev->flags);
2748 wake_up(&rdev->blocked_wait);
2749 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2750 md_wakeup_thread(rdev->mddev->thread);
2751
2752 err = 0;
2753 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2754 set_bit(In_sync, &rdev->flags);
2755 err = 0;
2756 } else if (cmd_match(buf, "write_error")) {
2757 set_bit(WriteErrorSeen, &rdev->flags);
2758 err = 0;
2759 } else if (cmd_match(buf, "-write_error")) {
2760 clear_bit(WriteErrorSeen, &rdev->flags);
2761 err = 0;
2762 } else if (cmd_match(buf, "want_replacement")) {
2763 /* Any non-spare device that is not a replacement can
2764 * become want_replacement at any time, but we then need to
2765 * check if recovery is needed.
2766 */
2767 if (rdev->raid_disk >= 0 &&
2768 !test_bit(Replacement, &rdev->flags))
2769 set_bit(WantReplacement, &rdev->flags);
2770 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771 md_wakeup_thread(rdev->mddev->thread);
2772 err = 0;
2773 } else if (cmd_match(buf, "-want_replacement")) {
2774 /* Clearing 'want_replacement' is always allowed.
2775 * Once replacements starts it is too late though.
2776 */
2777 err = 0;
2778 clear_bit(WantReplacement, &rdev->flags);
2779 } else if (cmd_match(buf, "replacement")) {
2780 /* Can only set a device as a replacement when array has not
2781 * yet been started. Once running, replacement is automatic
2782 * from spares, or by assigning 'slot'.
2783 */
2784 if (rdev->mddev->pers)
2785 err = -EBUSY;
2786 else {
2787 set_bit(Replacement, &rdev->flags);
2788 err = 0;
2789 }
2790 } else if (cmd_match(buf, "-replacement")) {
2791 /* Similarly, can only clear Replacement before start */
2792 if (rdev->mddev->pers)
2793 err = -EBUSY;
2794 else {
2795 clear_bit(Replacement, &rdev->flags);
2796 err = 0;
2797 }
2798 }
2799 if (!err)
2800 sysfs_notify_dirent_safe(rdev->sysfs_state);
2801 return err ? err : len;
2802}
2803static struct rdev_sysfs_entry rdev_state =
2804__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2805
2806static ssize_t
2807errors_show(struct md_rdev *rdev, char *page)
2808{
2809 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2810}
2811
2812static ssize_t
2813errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2814{
2815 char *e;
2816 unsigned long n = simple_strtoul(buf, &e, 10);
2817 if (*buf && (*e == 0 || *e == '\n')) {
2818 atomic_set(&rdev->corrected_errors, n);
2819 return len;
2820 }
2821 return -EINVAL;
2822}
2823static struct rdev_sysfs_entry rdev_errors =
2824__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2825
2826static ssize_t
2827slot_show(struct md_rdev *rdev, char *page)
2828{
2829 if (rdev->raid_disk < 0)
2830 return sprintf(page, "none\n");
2831 else
2832 return sprintf(page, "%d\n", rdev->raid_disk);
2833}
2834
2835static ssize_t
2836slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2837{
2838 char *e;
2839 int err;
2840 int slot = simple_strtoul(buf, &e, 10);
2841 if (strncmp(buf, "none", 4)==0)
2842 slot = -1;
2843 else if (e==buf || (*e && *e!= '\n'))
2844 return -EINVAL;
2845 if (rdev->mddev->pers && slot == -1) {
2846 /* Setting 'slot' on an active array requires also
2847 * updating the 'rd%d' link, and communicating
2848 * with the personality with ->hot_*_disk.
2849 * For now we only support removing
2850 * failed/spare devices. This normally happens automatically,
2851 * but not when the metadata is externally managed.
2852 */
2853 if (rdev->raid_disk == -1)
2854 return -EEXIST;
2855 /* personality does all needed checks */
2856 if (rdev->mddev->pers->hot_remove_disk == NULL)
2857 return -EINVAL;
2858 err = rdev->mddev->pers->
2859 hot_remove_disk(rdev->mddev, rdev);
2860 if (err)
2861 return err;
2862 sysfs_unlink_rdev(rdev->mddev, rdev);
2863 rdev->raid_disk = -1;
2864 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2865 md_wakeup_thread(rdev->mddev->thread);
2866 } else if (rdev->mddev->pers) {
2867 /* Activating a spare .. or possibly reactivating
2868 * if we ever get bitmaps working here.
2869 */
2870
2871 if (rdev->raid_disk != -1)
2872 return -EBUSY;
2873
2874 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2875 return -EBUSY;
2876
2877 if (rdev->mddev->pers->hot_add_disk == NULL)
2878 return -EINVAL;
2879
2880 if (slot >= rdev->mddev->raid_disks &&
2881 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2882 return -ENOSPC;
2883
2884 rdev->raid_disk = slot;
2885 if (test_bit(In_sync, &rdev->flags))
2886 rdev->saved_raid_disk = slot;
2887 else
2888 rdev->saved_raid_disk = -1;
2889 clear_bit(In_sync, &rdev->flags);
2890 err = rdev->mddev->pers->
2891 hot_add_disk(rdev->mddev, rdev);
2892 if (err) {
2893 rdev->raid_disk = -1;
2894 return err;
2895 } else
2896 sysfs_notify_dirent_safe(rdev->sysfs_state);
2897 if (sysfs_link_rdev(rdev->mddev, rdev))
2898 /* failure here is OK */;
2899 /* don't wakeup anyone, leave that to userspace. */
2900 } else {
2901 if (slot >= rdev->mddev->raid_disks &&
2902 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2903 return -ENOSPC;
2904 rdev->raid_disk = slot;
2905 /* assume it is working */
2906 clear_bit(Faulty, &rdev->flags);
2907 clear_bit(WriteMostly, &rdev->flags);
2908 set_bit(In_sync, &rdev->flags);
2909 sysfs_notify_dirent_safe(rdev->sysfs_state);
2910 }
2911 return len;
2912}
2913
2914
2915static struct rdev_sysfs_entry rdev_slot =
2916__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2917
2918static ssize_t
2919offset_show(struct md_rdev *rdev, char *page)
2920{
2921 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2922}
2923
2924static ssize_t
2925offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2926{
2927 unsigned long long offset;
2928 if (strict_strtoull(buf, 10, &offset) < 0)
2929 return -EINVAL;
2930 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2931 return -EBUSY;
2932 if (rdev->sectors && rdev->mddev->external)
2933 /* Must set offset before size, so overlap checks
2934 * can be sane */
2935 return -EBUSY;
2936 rdev->data_offset = offset;
2937 rdev->new_data_offset = offset;
2938 return len;
2939}
2940
2941static struct rdev_sysfs_entry rdev_offset =
2942__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2943
2944static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2945{
2946 return sprintf(page, "%llu\n",
2947 (unsigned long long)rdev->new_data_offset);
2948}
2949
2950static ssize_t new_offset_store(struct md_rdev *rdev,
2951 const char *buf, size_t len)
2952{
2953 unsigned long long new_offset;
2954 struct mddev *mddev = rdev->mddev;
2955
2956 if (strict_strtoull(buf, 10, &new_offset) < 0)
2957 return -EINVAL;
2958
2959 if (mddev->sync_thread)
2960 return -EBUSY;
2961 if (new_offset == rdev->data_offset)
2962 /* reset is always permitted */
2963 ;
2964 else if (new_offset > rdev->data_offset) {
2965 /* must not push array size beyond rdev_sectors */
2966 if (new_offset - rdev->data_offset
2967 + mddev->dev_sectors > rdev->sectors)
2968 return -E2BIG;
2969 }
2970 /* Metadata worries about other space details. */
2971
2972 /* decreasing the offset is inconsistent with a backwards
2973 * reshape.
2974 */
2975 if (new_offset < rdev->data_offset &&
2976 mddev->reshape_backwards)
2977 return -EINVAL;
2978 /* Increasing offset is inconsistent with forwards
2979 * reshape. reshape_direction should be set to
2980 * 'backwards' first.
2981 */
2982 if (new_offset > rdev->data_offset &&
2983 !mddev->reshape_backwards)
2984 return -EINVAL;
2985
2986 if (mddev->pers && mddev->persistent &&
2987 !super_types[mddev->major_version]
2988 .allow_new_offset(rdev, new_offset))
2989 return -E2BIG;
2990 rdev->new_data_offset = new_offset;
2991 if (new_offset > rdev->data_offset)
2992 mddev->reshape_backwards = 1;
2993 else if (new_offset < rdev->data_offset)
2994 mddev->reshape_backwards = 0;
2995
2996 return len;
2997}
2998static struct rdev_sysfs_entry rdev_new_offset =
2999__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3000
3001static ssize_t
3002rdev_size_show(struct md_rdev *rdev, char *page)
3003{
3004 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3005}
3006
3007static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3008{
3009 /* check if two start/length pairs overlap */
3010 if (s1+l1 <= s2)
3011 return 0;
3012 if (s2+l2 <= s1)
3013 return 0;
3014 return 1;
3015}
3016
3017static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3018{
3019 unsigned long long blocks;
3020 sector_t new;
3021
3022 if (strict_strtoull(buf, 10, &blocks) < 0)
3023 return -EINVAL;
3024
3025 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3026 return -EINVAL; /* sector conversion overflow */
3027
3028 new = blocks * 2;
3029 if (new != blocks * 2)
3030 return -EINVAL; /* unsigned long long to sector_t overflow */
3031
3032 *sectors = new;
3033 return 0;
3034}
3035
3036static ssize_t
3037rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3038{
3039 struct mddev *my_mddev = rdev->mddev;
3040 sector_t oldsectors = rdev->sectors;
3041 sector_t sectors;
3042
3043 if (strict_blocks_to_sectors(buf, §ors) < 0)
3044 return -EINVAL;
3045 if (rdev->data_offset != rdev->new_data_offset)
3046 return -EINVAL; /* too confusing */
3047 if (my_mddev->pers && rdev->raid_disk >= 0) {
3048 if (my_mddev->persistent) {
3049 sectors = super_types[my_mddev->major_version].
3050 rdev_size_change(rdev, sectors);
3051 if (!sectors)
3052 return -EBUSY;
3053 } else if (!sectors)
3054 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3055 rdev->data_offset;
3056 }
3057 if (sectors < my_mddev->dev_sectors)
3058 return -EINVAL; /* component must fit device */
3059
3060 rdev->sectors = sectors;
3061 if (sectors > oldsectors && my_mddev->external) {
3062 /* need to check that all other rdevs with the same ->bdev
3063 * do not overlap. We need to unlock the mddev to avoid
3064 * a deadlock. We have already changed rdev->sectors, and if
3065 * we have to change it back, we will have the lock again.
3066 */
3067 struct mddev *mddev;
3068 int overlap = 0;
3069 struct list_head *tmp;
3070
3071 mddev_unlock(my_mddev);
3072 for_each_mddev(mddev, tmp) {
3073 struct md_rdev *rdev2;
3074
3075 mddev_lock(mddev);
3076 rdev_for_each(rdev2, mddev)
3077 if (rdev->bdev == rdev2->bdev &&
3078 rdev != rdev2 &&
3079 overlaps(rdev->data_offset, rdev->sectors,
3080 rdev2->data_offset,
3081 rdev2->sectors)) {
3082 overlap = 1;
3083 break;
3084 }
3085 mddev_unlock(mddev);
3086 if (overlap) {
3087 mddev_put(mddev);
3088 break;
3089 }
3090 }
3091 mddev_lock(my_mddev);
3092 if (overlap) {
3093 /* Someone else could have slipped in a size
3094 * change here, but doing so is just silly.
3095 * We put oldsectors back because we *know* it is
3096 * safe, and trust userspace not to race with
3097 * itself
3098 */
3099 rdev->sectors = oldsectors;
3100 return -EBUSY;
3101 }
3102 }
3103 return len;
3104}
3105
3106static struct rdev_sysfs_entry rdev_size =
3107__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3108
3109
3110static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3111{
3112 unsigned long long recovery_start = rdev->recovery_offset;
3113
3114 if (test_bit(In_sync, &rdev->flags) ||
3115 recovery_start == MaxSector)
3116 return sprintf(page, "none\n");
3117
3118 return sprintf(page, "%llu\n", recovery_start);
3119}
3120
3121static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3122{
3123 unsigned long long recovery_start;
3124
3125 if (cmd_match(buf, "none"))
3126 recovery_start = MaxSector;
3127 else if (strict_strtoull(buf, 10, &recovery_start))
3128 return -EINVAL;
3129
3130 if (rdev->mddev->pers &&
3131 rdev->raid_disk >= 0)
3132 return -EBUSY;
3133
3134 rdev->recovery_offset = recovery_start;
3135 if (recovery_start == MaxSector)
3136 set_bit(In_sync, &rdev->flags);
3137 else
3138 clear_bit(In_sync, &rdev->flags);
3139 return len;
3140}
3141
3142static struct rdev_sysfs_entry rdev_recovery_start =
3143__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3144
3145
3146static ssize_t
3147badblocks_show(struct badblocks *bb, char *page, int unack);
3148static ssize_t
3149badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3150
3151static ssize_t bb_show(struct md_rdev *rdev, char *page)
3152{
3153 return badblocks_show(&rdev->badblocks, page, 0);
3154}
3155static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3156{
3157 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3158 /* Maybe that ack was all we needed */
3159 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3160 wake_up(&rdev->blocked_wait);
3161 return rv;
3162}
3163static struct rdev_sysfs_entry rdev_bad_blocks =
3164__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3165
3166
3167static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3168{
3169 return badblocks_show(&rdev->badblocks, page, 1);
3170}
3171static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3172{
3173 return badblocks_store(&rdev->badblocks, page, len, 1);
3174}
3175static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3176__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3177
3178static struct attribute *rdev_default_attrs[] = {
3179 &rdev_state.attr,
3180 &rdev_errors.attr,
3181 &rdev_slot.attr,
3182 &rdev_offset.attr,
3183 &rdev_new_offset.attr,
3184 &rdev_size.attr,
3185 &rdev_recovery_start.attr,
3186 &rdev_bad_blocks.attr,
3187 &rdev_unack_bad_blocks.attr,
3188 NULL,
3189};
3190static ssize_t
3191rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3192{
3193 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3194 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3195 struct mddev *mddev = rdev->mddev;
3196 ssize_t rv;
3197
3198 if (!entry->show)
3199 return -EIO;
3200
3201 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3202 if (!rv) {
3203 if (rdev->mddev == NULL)
3204 rv = -EBUSY;
3205 else
3206 rv = entry->show(rdev, page);
3207 mddev_unlock(mddev);
3208 }
3209 return rv;
3210}
3211
3212static ssize_t
3213rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3214 const char *page, size_t length)
3215{
3216 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3217 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3218 ssize_t rv;
3219 struct mddev *mddev = rdev->mddev;
3220
3221 if (!entry->store)
3222 return -EIO;
3223 if (!capable(CAP_SYS_ADMIN))
3224 return -EACCES;
3225 rv = mddev ? mddev_lock(mddev): -EBUSY;
3226 if (!rv) {
3227 if (rdev->mddev == NULL)
3228 rv = -EBUSY;
3229 else
3230 rv = entry->store(rdev, page, length);
3231 mddev_unlock(mddev);
3232 }
3233 return rv;
3234}
3235
3236static void rdev_free(struct kobject *ko)
3237{
3238 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3239 kfree(rdev);
3240}
3241static const struct sysfs_ops rdev_sysfs_ops = {
3242 .show = rdev_attr_show,
3243 .store = rdev_attr_store,
3244};
3245static struct kobj_type rdev_ktype = {
3246 .release = rdev_free,
3247 .sysfs_ops = &rdev_sysfs_ops,
3248 .default_attrs = rdev_default_attrs,
3249};
3250
3251int md_rdev_init(struct md_rdev *rdev)
3252{
3253 rdev->desc_nr = -1;
3254 rdev->saved_raid_disk = -1;
3255 rdev->raid_disk = -1;
3256 rdev->flags = 0;
3257 rdev->data_offset = 0;
3258 rdev->new_data_offset = 0;
3259 rdev->sb_events = 0;
3260 rdev->last_read_error.tv_sec = 0;
3261 rdev->last_read_error.tv_nsec = 0;
3262 rdev->sb_loaded = 0;
3263 rdev->bb_page = NULL;
3264 atomic_set(&rdev->nr_pending, 0);
3265 atomic_set(&rdev->read_errors, 0);
3266 atomic_set(&rdev->corrected_errors, 0);
3267
3268 INIT_LIST_HEAD(&rdev->same_set);
3269 init_waitqueue_head(&rdev->blocked_wait);
3270
3271 /* Add space to store bad block list.
3272 * This reserves the space even on arrays where it cannot
3273 * be used - I wonder if that matters
3274 */
3275 rdev->badblocks.count = 0;
3276 rdev->badblocks.shift = 0;
3277 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3278 seqlock_init(&rdev->badblocks.lock);
3279 if (rdev->badblocks.page == NULL)
3280 return -ENOMEM;
3281
3282 return 0;
3283}
3284EXPORT_SYMBOL_GPL(md_rdev_init);
3285/*
3286 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3287 *
3288 * mark the device faulty if:
3289 *
3290 * - the device is nonexistent (zero size)
3291 * - the device has no valid superblock
3292 *
3293 * a faulty rdev _never_ has rdev->sb set.
3294 */
3295static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3296{
3297 char b[BDEVNAME_SIZE];
3298 int err;
3299 struct md_rdev *rdev;
3300 sector_t size;
3301
3302 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3303 if (!rdev) {
3304 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3305 return ERR_PTR(-ENOMEM);
3306 }
3307
3308 err = md_rdev_init(rdev);
3309 if (err)
3310 goto abort_free;
3311 err = alloc_disk_sb(rdev);
3312 if (err)
3313 goto abort_free;
3314
3315 err = lock_rdev(rdev, newdev, super_format == -2);
3316 if (err)
3317 goto abort_free;
3318
3319 kobject_init(&rdev->kobj, &rdev_ktype);
3320
3321 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3322 if (!size) {
3323 printk(KERN_WARNING
3324 "md: %s has zero or unknown size, marking faulty!\n",
3325 bdevname(rdev->bdev,b));
3326 err = -EINVAL;
3327 goto abort_free;
3328 }
3329
3330 if (super_format >= 0) {
3331 err = super_types[super_format].
3332 load_super(rdev, NULL, super_minor);
3333 if (err == -EINVAL) {
3334 printk(KERN_WARNING
3335 "md: %s does not have a valid v%d.%d "
3336 "superblock, not importing!\n",
3337 bdevname(rdev->bdev,b),
3338 super_format, super_minor);
3339 goto abort_free;
3340 }
3341 if (err < 0) {
3342 printk(KERN_WARNING
3343 "md: could not read %s's sb, not importing!\n",
3344 bdevname(rdev->bdev,b));
3345 goto abort_free;
3346 }
3347 }
3348 if (super_format == -1)
3349 /* hot-add for 0.90, or non-persistent: so no badblocks */
3350 rdev->badblocks.shift = -1;
3351
3352 return rdev;
3353
3354abort_free:
3355 if (rdev->bdev)
3356 unlock_rdev(rdev);
3357 md_rdev_clear(rdev);
3358 kfree(rdev);
3359 return ERR_PTR(err);
3360}
3361
3362/*
3363 * Check a full RAID array for plausibility
3364 */
3365
3366
3367static void analyze_sbs(struct mddev * mddev)
3368{
3369 int i;
3370 struct md_rdev *rdev, *freshest, *tmp;
3371 char b[BDEVNAME_SIZE];
3372
3373 freshest = NULL;
3374 rdev_for_each_safe(rdev, tmp, mddev)
3375 switch (super_types[mddev->major_version].
3376 load_super(rdev, freshest, mddev->minor_version)) {
3377 case 1:
3378 freshest = rdev;
3379 break;
3380 case 0:
3381 break;
3382 default:
3383 printk( KERN_ERR \
3384 "md: fatal superblock inconsistency in %s"
3385 " -- removing from array\n",
3386 bdevname(rdev->bdev,b));
3387 kick_rdev_from_array(rdev);
3388 }
3389
3390
3391 super_types[mddev->major_version].
3392 validate_super(mddev, freshest);
3393
3394 i = 0;
3395 rdev_for_each_safe(rdev, tmp, mddev) {
3396 if (mddev->max_disks &&
3397 (rdev->desc_nr >= mddev->max_disks ||
3398 i > mddev->max_disks)) {
3399 printk(KERN_WARNING
3400 "md: %s: %s: only %d devices permitted\n",
3401 mdname(mddev), bdevname(rdev->bdev, b),
3402 mddev->max_disks);
3403 kick_rdev_from_array(rdev);
3404 continue;
3405 }
3406 if (rdev != freshest)
3407 if (super_types[mddev->major_version].
3408 validate_super(mddev, rdev)) {
3409 printk(KERN_WARNING "md: kicking non-fresh %s"
3410 " from array!\n",
3411 bdevname(rdev->bdev,b));
3412 kick_rdev_from_array(rdev);
3413 continue;
3414 }
3415 if (mddev->level == LEVEL_MULTIPATH) {
3416 rdev->desc_nr = i++;
3417 rdev->raid_disk = rdev->desc_nr;
3418 set_bit(In_sync, &rdev->flags);
3419 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3420 rdev->raid_disk = -1;
3421 clear_bit(In_sync, &rdev->flags);
3422 }
3423 }
3424}
3425
3426/* Read a fixed-point number.
3427 * Numbers in sysfs attributes should be in "standard" units where
3428 * possible, so time should be in seconds.
3429 * However we internally use a a much smaller unit such as
3430 * milliseconds or jiffies.
3431 * This function takes a decimal number with a possible fractional
3432 * component, and produces an integer which is the result of
3433 * multiplying that number by 10^'scale'.
3434 * all without any floating-point arithmetic.
3435 */
3436int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3437{
3438 unsigned long result = 0;
3439 long decimals = -1;
3440 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3441 if (*cp == '.')
3442 decimals = 0;
3443 else if (decimals < scale) {
3444 unsigned int value;
3445 value = *cp - '0';
3446 result = result * 10 + value;
3447 if (decimals >= 0)
3448 decimals++;
3449 }
3450 cp++;
3451 }
3452 if (*cp == '\n')
3453 cp++;
3454 if (*cp)
3455 return -EINVAL;
3456 if (decimals < 0)
3457 decimals = 0;
3458 while (decimals < scale) {
3459 result *= 10;
3460 decimals ++;
3461 }
3462 *res = result;
3463 return 0;
3464}
3465
3466
3467static void md_safemode_timeout(unsigned long data);
3468
3469static ssize_t
3470safe_delay_show(struct mddev *mddev, char *page)
3471{
3472 int msec = (mddev->safemode_delay*1000)/HZ;
3473 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3474}
3475static ssize_t
3476safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3477{
3478 unsigned long msec;
3479
3480 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3481 return -EINVAL;
3482 if (msec == 0)
3483 mddev->safemode_delay = 0;
3484 else {
3485 unsigned long old_delay = mddev->safemode_delay;
3486 mddev->safemode_delay = (msec*HZ)/1000;
3487 if (mddev->safemode_delay == 0)
3488 mddev->safemode_delay = 1;
3489 if (mddev->safemode_delay < old_delay)
3490 md_safemode_timeout((unsigned long)mddev);
3491 }
3492 return len;
3493}
3494static struct md_sysfs_entry md_safe_delay =
3495__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3496
3497static ssize_t
3498level_show(struct mddev *mddev, char *page)
3499{
3500 struct md_personality *p = mddev->pers;
3501 if (p)
3502 return sprintf(page, "%s\n", p->name);
3503 else if (mddev->clevel[0])
3504 return sprintf(page, "%s\n", mddev->clevel);
3505 else if (mddev->level != LEVEL_NONE)
3506 return sprintf(page, "%d\n", mddev->level);
3507 else
3508 return 0;
3509}
3510
3511static ssize_t
3512level_store(struct mddev *mddev, const char *buf, size_t len)
3513{
3514 char clevel[16];
3515 ssize_t rv = len;
3516 struct md_personality *pers;
3517 long level;
3518 void *priv;
3519 struct md_rdev *rdev;
3520
3521 if (mddev->pers == NULL) {
3522 if (len == 0)
3523 return 0;
3524 if (len >= sizeof(mddev->clevel))
3525 return -ENOSPC;
3526 strncpy(mddev->clevel, buf, len);
3527 if (mddev->clevel[len-1] == '\n')
3528 len--;
3529 mddev->clevel[len] = 0;
3530 mddev->level = LEVEL_NONE;
3531 return rv;
3532 }
3533
3534 /* request to change the personality. Need to ensure:
3535 * - array is not engaged in resync/recovery/reshape
3536 * - old personality can be suspended
3537 * - new personality will access other array.
3538 */
3539
3540 if (mddev->sync_thread ||
3541 mddev->reshape_position != MaxSector ||
3542 mddev->sysfs_active)
3543 return -EBUSY;
3544
3545 if (!mddev->pers->quiesce) {
3546 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3547 mdname(mddev), mddev->pers->name);
3548 return -EINVAL;
3549 }
3550
3551 /* Now find the new personality */
3552 if (len == 0 || len >= sizeof(clevel))
3553 return -EINVAL;
3554 strncpy(clevel, buf, len);
3555 if (clevel[len-1] == '\n')
3556 len--;
3557 clevel[len] = 0;
3558 if (strict_strtol(clevel, 10, &level))
3559 level = LEVEL_NONE;
3560
3561 if (request_module("md-%s", clevel) != 0)
3562 request_module("md-level-%s", clevel);
3563 spin_lock(&pers_lock);
3564 pers = find_pers(level, clevel);
3565 if (!pers || !try_module_get(pers->owner)) {
3566 spin_unlock(&pers_lock);
3567 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3568 return -EINVAL;
3569 }
3570 spin_unlock(&pers_lock);
3571
3572 if (pers == mddev->pers) {
3573 /* Nothing to do! */
3574 module_put(pers->owner);
3575 return rv;
3576 }
3577 if (!pers->takeover) {
3578 module_put(pers->owner);
3579 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3580 mdname(mddev), clevel);
3581 return -EINVAL;
3582 }
3583
3584 rdev_for_each(rdev, mddev)
3585 rdev->new_raid_disk = rdev->raid_disk;
3586
3587 /* ->takeover must set new_* and/or delta_disks
3588 * if it succeeds, and may set them when it fails.
3589 */
3590 priv = pers->takeover(mddev);
3591 if (IS_ERR(priv)) {
3592 mddev->new_level = mddev->level;
3593 mddev->new_layout = mddev->layout;
3594 mddev->new_chunk_sectors = mddev->chunk_sectors;
3595 mddev->raid_disks -= mddev->delta_disks;
3596 mddev->delta_disks = 0;
3597 mddev->reshape_backwards = 0;
3598 module_put(pers->owner);
3599 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3600 mdname(mddev), clevel);
3601 return PTR_ERR(priv);
3602 }
3603
3604 /* Looks like we have a winner */
3605 mddev_suspend(mddev);
3606 mddev->pers->stop(mddev);
3607
3608 if (mddev->pers->sync_request == NULL &&
3609 pers->sync_request != NULL) {
3610 /* need to add the md_redundancy_group */
3611 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3612 printk(KERN_WARNING
3613 "md: cannot register extra attributes for %s\n",
3614 mdname(mddev));
3615 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3616 }
3617 if (mddev->pers->sync_request != NULL &&
3618 pers->sync_request == NULL) {
3619 /* need to remove the md_redundancy_group */
3620 if (mddev->to_remove == NULL)
3621 mddev->to_remove = &md_redundancy_group;
3622 }
3623
3624 if (mddev->pers->sync_request == NULL &&
3625 mddev->external) {
3626 /* We are converting from a no-redundancy array
3627 * to a redundancy array and metadata is managed
3628 * externally so we need to be sure that writes
3629 * won't block due to a need to transition
3630 * clean->dirty
3631 * until external management is started.
3632 */
3633 mddev->in_sync = 0;
3634 mddev->safemode_delay = 0;
3635 mddev->safemode = 0;
3636 }
3637
3638 rdev_for_each(rdev, mddev) {
3639 if (rdev->raid_disk < 0)
3640 continue;
3641 if (rdev->new_raid_disk >= mddev->raid_disks)
3642 rdev->new_raid_disk = -1;
3643 if (rdev->new_raid_disk == rdev->raid_disk)
3644 continue;
3645 sysfs_unlink_rdev(mddev, rdev);
3646 }
3647 rdev_for_each(rdev, mddev) {
3648 if (rdev->raid_disk < 0)
3649 continue;
3650 if (rdev->new_raid_disk == rdev->raid_disk)
3651 continue;
3652 rdev->raid_disk = rdev->new_raid_disk;
3653 if (rdev->raid_disk < 0)
3654 clear_bit(In_sync, &rdev->flags);
3655 else {
3656 if (sysfs_link_rdev(mddev, rdev))
3657 printk(KERN_WARNING "md: cannot register rd%d"
3658 " for %s after level change\n",
3659 rdev->raid_disk, mdname(mddev));
3660 }
3661 }
3662
3663 module_put(mddev->pers->owner);
3664 mddev->pers = pers;
3665 mddev->private = priv;
3666 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3667 mddev->level = mddev->new_level;
3668 mddev->layout = mddev->new_layout;
3669 mddev->chunk_sectors = mddev->new_chunk_sectors;
3670 mddev->delta_disks = 0;
3671 mddev->reshape_backwards = 0;
3672 mddev->degraded = 0;
3673 if (mddev->pers->sync_request == NULL) {
3674 /* this is now an array without redundancy, so
3675 * it must always be in_sync
3676 */
3677 mddev->in_sync = 1;
3678 del_timer_sync(&mddev->safemode_timer);
3679 }
3680 pers->run(mddev);
3681 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3682 mddev_resume(mddev);
3683 sysfs_notify(&mddev->kobj, NULL, "level");
3684 md_new_event(mddev);
3685 return rv;
3686}
3687
3688static struct md_sysfs_entry md_level =
3689__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3690
3691
3692static ssize_t
3693layout_show(struct mddev *mddev, char *page)
3694{
3695 /* just a number, not meaningful for all levels */
3696 if (mddev->reshape_position != MaxSector &&
3697 mddev->layout != mddev->new_layout)
3698 return sprintf(page, "%d (%d)\n",
3699 mddev->new_layout, mddev->layout);
3700 return sprintf(page, "%d\n", mddev->layout);
3701}
3702
3703static ssize_t
3704layout_store(struct mddev *mddev, const char *buf, size_t len)
3705{
3706 char *e;
3707 unsigned long n = simple_strtoul(buf, &e, 10);
3708
3709 if (!*buf || (*e && *e != '\n'))
3710 return -EINVAL;
3711
3712 if (mddev->pers) {
3713 int err;
3714 if (mddev->pers->check_reshape == NULL)
3715 return -EBUSY;
3716 mddev->new_layout = n;
3717 err = mddev->pers->check_reshape(mddev);
3718 if (err) {
3719 mddev->new_layout = mddev->layout;
3720 return err;
3721 }
3722 } else {
3723 mddev->new_layout = n;
3724 if (mddev->reshape_position == MaxSector)
3725 mddev->layout = n;
3726 }
3727 return len;
3728}
3729static struct md_sysfs_entry md_layout =
3730__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3731
3732
3733static ssize_t
3734raid_disks_show(struct mddev *mddev, char *page)
3735{
3736 if (mddev->raid_disks == 0)
3737 return 0;
3738 if (mddev->reshape_position != MaxSector &&
3739 mddev->delta_disks != 0)
3740 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3741 mddev->raid_disks - mddev->delta_disks);
3742 return sprintf(page, "%d\n", mddev->raid_disks);
3743}
3744
3745static int update_raid_disks(struct mddev *mddev, int raid_disks);
3746
3747static ssize_t
3748raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3749{
3750 char *e;
3751 int rv = 0;
3752 unsigned long n = simple_strtoul(buf, &e, 10);
3753
3754 if (!*buf || (*e && *e != '\n'))
3755 return -EINVAL;
3756
3757 if (mddev->pers)
3758 rv = update_raid_disks(mddev, n);
3759 else if (mddev->reshape_position != MaxSector) {
3760 struct md_rdev *rdev;
3761 int olddisks = mddev->raid_disks - mddev->delta_disks;
3762
3763 rdev_for_each(rdev, mddev) {
3764 if (olddisks < n &&
3765 rdev->data_offset < rdev->new_data_offset)
3766 return -EINVAL;
3767 if (olddisks > n &&
3768 rdev->data_offset > rdev->new_data_offset)
3769 return -EINVAL;
3770 }
3771 mddev->delta_disks = n - olddisks;
3772 mddev->raid_disks = n;
3773 mddev->reshape_backwards = (mddev->delta_disks < 0);
3774 } else
3775 mddev->raid_disks = n;
3776 return rv ? rv : len;
3777}
3778static struct md_sysfs_entry md_raid_disks =
3779__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3780
3781static ssize_t
3782chunk_size_show(struct mddev *mddev, char *page)
3783{
3784 if (mddev->reshape_position != MaxSector &&
3785 mddev->chunk_sectors != mddev->new_chunk_sectors)
3786 return sprintf(page, "%d (%d)\n",
3787 mddev->new_chunk_sectors << 9,
3788 mddev->chunk_sectors << 9);
3789 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3790}
3791
3792static ssize_t
3793chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3794{
3795 char *e;
3796 unsigned long n = simple_strtoul(buf, &e, 10);
3797
3798 if (!*buf || (*e && *e != '\n'))
3799 return -EINVAL;
3800
3801 if (mddev->pers) {
3802 int err;
3803 if (mddev->pers->check_reshape == NULL)
3804 return -EBUSY;
3805 mddev->new_chunk_sectors = n >> 9;
3806 err = mddev->pers->check_reshape(mddev);
3807 if (err) {
3808 mddev->new_chunk_sectors = mddev->chunk_sectors;
3809 return err;
3810 }
3811 } else {
3812 mddev->new_chunk_sectors = n >> 9;
3813 if (mddev->reshape_position == MaxSector)
3814 mddev->chunk_sectors = n >> 9;
3815 }
3816 return len;
3817}
3818static struct md_sysfs_entry md_chunk_size =
3819__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3820
3821static ssize_t
3822resync_start_show(struct mddev *mddev, char *page)
3823{
3824 if (mddev->recovery_cp == MaxSector)
3825 return sprintf(page, "none\n");
3826 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3827}
3828
3829static ssize_t
3830resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3831{
3832 char *e;
3833 unsigned long long n = simple_strtoull(buf, &e, 10);
3834
3835 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3836 return -EBUSY;
3837 if (cmd_match(buf, "none"))
3838 n = MaxSector;
3839 else if (!*buf || (*e && *e != '\n'))
3840 return -EINVAL;
3841
3842 mddev->recovery_cp = n;
3843 return len;
3844}
3845static struct md_sysfs_entry md_resync_start =
3846__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3847
3848/*
3849 * The array state can be:
3850 *
3851 * clear
3852 * No devices, no size, no level
3853 * Equivalent to STOP_ARRAY ioctl
3854 * inactive
3855 * May have some settings, but array is not active
3856 * all IO results in error
3857 * When written, doesn't tear down array, but just stops it
3858 * suspended (not supported yet)
3859 * All IO requests will block. The array can be reconfigured.
3860 * Writing this, if accepted, will block until array is quiescent
3861 * readonly
3862 * no resync can happen. no superblocks get written.
3863 * write requests fail
3864 * read-auto
3865 * like readonly, but behaves like 'clean' on a write request.
3866 *
3867 * clean - no pending writes, but otherwise active.
3868 * When written to inactive array, starts without resync
3869 * If a write request arrives then
3870 * if metadata is known, mark 'dirty' and switch to 'active'.
3871 * if not known, block and switch to write-pending
3872 * If written to an active array that has pending writes, then fails.
3873 * active
3874 * fully active: IO and resync can be happening.
3875 * When written to inactive array, starts with resync
3876 *
3877 * write-pending
3878 * clean, but writes are blocked waiting for 'active' to be written.
3879 *
3880 * active-idle
3881 * like active, but no writes have been seen for a while (100msec).
3882 *
3883 */
3884enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3885 write_pending, active_idle, bad_word};
3886static char *array_states[] = {
3887 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3888 "write-pending", "active-idle", NULL };
3889
3890static int match_word(const char *word, char **list)
3891{
3892 int n;
3893 for (n=0; list[n]; n++)
3894 if (cmd_match(word, list[n]))
3895 break;
3896 return n;
3897}
3898
3899static ssize_t
3900array_state_show(struct mddev *mddev, char *page)
3901{
3902 enum array_state st = inactive;
3903
3904 if (mddev->pers)
3905 switch(mddev->ro) {
3906 case 1:
3907 st = readonly;
3908 break;
3909 case 2:
3910 st = read_auto;
3911 break;
3912 case 0:
3913 if (mddev->in_sync)
3914 st = clean;
3915 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3916 st = write_pending;
3917 else if (mddev->safemode)
3918 st = active_idle;
3919 else
3920 st = active;
3921 }
3922 else {
3923 if (list_empty(&mddev->disks) &&
3924 mddev->raid_disks == 0 &&
3925 mddev->dev_sectors == 0)
3926 st = clear;
3927 else
3928 st = inactive;
3929 }
3930 return sprintf(page, "%s\n", array_states[st]);
3931}
3932
3933static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3934static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3935static int do_md_run(struct mddev * mddev);
3936static int restart_array(struct mddev *mddev);
3937
3938static ssize_t
3939array_state_store(struct mddev *mddev, const char *buf, size_t len)
3940{
3941 int err = -EINVAL;
3942 enum array_state st = match_word(buf, array_states);
3943 switch(st) {
3944 case bad_word:
3945 break;
3946 case clear:
3947 /* stopping an active array */
3948 if (atomic_read(&mddev->openers) > 0)
3949 return -EBUSY;
3950 err = do_md_stop(mddev, 0, NULL);
3951 break;
3952 case inactive:
3953 /* stopping an active array */
3954 if (mddev->pers) {
3955 if (atomic_read(&mddev->openers) > 0)
3956 return -EBUSY;
3957 err = do_md_stop(mddev, 2, NULL);
3958 } else
3959 err = 0; /* already inactive */
3960 break;
3961 case suspended:
3962 break; /* not supported yet */
3963 case readonly:
3964 if (mddev->pers)
3965 err = md_set_readonly(mddev, NULL);
3966 else {
3967 mddev->ro = 1;
3968 set_disk_ro(mddev->gendisk, 1);
3969 err = do_md_run(mddev);
3970 }
3971 break;
3972 case read_auto:
3973 if (mddev->pers) {
3974 if (mddev->ro == 0)
3975 err = md_set_readonly(mddev, NULL);
3976 else if (mddev->ro == 1)
3977 err = restart_array(mddev);
3978 if (err == 0) {
3979 mddev->ro = 2;
3980 set_disk_ro(mddev->gendisk, 0);
3981 }
3982 } else {
3983 mddev->ro = 2;
3984 err = do_md_run(mddev);
3985 }
3986 break;
3987 case clean:
3988 if (mddev->pers) {
3989 restart_array(mddev);
3990 spin_lock_irq(&mddev->write_lock);
3991 if (atomic_read(&mddev->writes_pending) == 0) {
3992 if (mddev->in_sync == 0) {
3993 mddev->in_sync = 1;
3994 if (mddev->safemode == 1)
3995 mddev->safemode = 0;
3996 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3997 }
3998 err = 0;
3999 } else
4000 err = -EBUSY;
4001 spin_unlock_irq(&mddev->write_lock);
4002 } else
4003 err = -EINVAL;
4004 break;
4005 case active:
4006 if (mddev->pers) {
4007 restart_array(mddev);
4008 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4009 wake_up(&mddev->sb_wait);
4010 err = 0;
4011 } else {
4012 mddev->ro = 0;
4013 set_disk_ro(mddev->gendisk, 0);
4014 err = do_md_run(mddev);
4015 }
4016 break;
4017 case write_pending:
4018 case active_idle:
4019 /* these cannot be set */
4020 break;
4021 }
4022 if (err)
4023 return err;
4024 else {
4025 if (mddev->hold_active == UNTIL_IOCTL)
4026 mddev->hold_active = 0;
4027 sysfs_notify_dirent_safe(mddev->sysfs_state);
4028 return len;
4029 }
4030}
4031static struct md_sysfs_entry md_array_state =
4032__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4033
4034static ssize_t
4035max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4036 return sprintf(page, "%d\n",
4037 atomic_read(&mddev->max_corr_read_errors));
4038}
4039
4040static ssize_t
4041max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4042{
4043 char *e;
4044 unsigned long n = simple_strtoul(buf, &e, 10);
4045
4046 if (*buf && (*e == 0 || *e == '\n')) {
4047 atomic_set(&mddev->max_corr_read_errors, n);
4048 return len;
4049 }
4050 return -EINVAL;
4051}
4052
4053static struct md_sysfs_entry max_corr_read_errors =
4054__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4055 max_corrected_read_errors_store);
4056
4057static ssize_t
4058null_show(struct mddev *mddev, char *page)
4059{
4060 return -EINVAL;
4061}
4062
4063static ssize_t
4064new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4065{
4066 /* buf must be %d:%d\n? giving major and minor numbers */
4067 /* The new device is added to the array.
4068 * If the array has a persistent superblock, we read the
4069 * superblock to initialise info and check validity.
4070 * Otherwise, only checking done is that in bind_rdev_to_array,
4071 * which mainly checks size.
4072 */
4073 char *e;
4074 int major = simple_strtoul(buf, &e, 10);
4075 int minor;
4076 dev_t dev;
4077 struct md_rdev *rdev;
4078 int err;
4079
4080 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4081 return -EINVAL;
4082 minor = simple_strtoul(e+1, &e, 10);
4083 if (*e && *e != '\n')
4084 return -EINVAL;
4085 dev = MKDEV(major, minor);
4086 if (major != MAJOR(dev) ||
4087 minor != MINOR(dev))
4088 return -EOVERFLOW;
4089
4090
4091 if (mddev->persistent) {
4092 rdev = md_import_device(dev, mddev->major_version,
4093 mddev->minor_version);
4094 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4095 struct md_rdev *rdev0
4096 = list_entry(mddev->disks.next,
4097 struct md_rdev, same_set);
4098 err = super_types[mddev->major_version]
4099 .load_super(rdev, rdev0, mddev->minor_version);
4100 if (err < 0)
4101 goto out;
4102 }
4103 } else if (mddev->external)
4104 rdev = md_import_device(dev, -2, -1);
4105 else
4106 rdev = md_import_device(dev, -1, -1);
4107
4108 if (IS_ERR(rdev))
4109 return PTR_ERR(rdev);
4110 err = bind_rdev_to_array(rdev, mddev);
4111 out:
4112 if (err)
4113 export_rdev(rdev);
4114 return err ? err : len;
4115}
4116
4117static struct md_sysfs_entry md_new_device =
4118__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4119
4120static ssize_t
4121bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4122{
4123 char *end;
4124 unsigned long chunk, end_chunk;
4125
4126 if (!mddev->bitmap)
4127 goto out;
4128 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4129 while (*buf) {
4130 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4131 if (buf == end) break;
4132 if (*end == '-') { /* range */
4133 buf = end + 1;
4134 end_chunk = simple_strtoul(buf, &end, 0);
4135 if (buf == end) break;
4136 }
4137 if (*end && !isspace(*end)) break;
4138 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4139 buf = skip_spaces(end);
4140 }
4141 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4142out:
4143 return len;
4144}
4145
4146static struct md_sysfs_entry md_bitmap =
4147__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4148
4149static ssize_t
4150size_show(struct mddev *mddev, char *page)
4151{
4152 return sprintf(page, "%llu\n",
4153 (unsigned long long)mddev->dev_sectors / 2);
4154}
4155
4156static int update_size(struct mddev *mddev, sector_t num_sectors);
4157
4158static ssize_t
4159size_store(struct mddev *mddev, const char *buf, size_t len)
4160{
4161 /* If array is inactive, we can reduce the component size, but
4162 * not increase it (except from 0).
4163 * If array is active, we can try an on-line resize
4164 */
4165 sector_t sectors;
4166 int err = strict_blocks_to_sectors(buf, §ors);
4167
4168 if (err < 0)
4169 return err;
4170 if (mddev->pers) {
4171 err = update_size(mddev, sectors);
4172 md_update_sb(mddev, 1);
4173 } else {
4174 if (mddev->dev_sectors == 0 ||
4175 mddev->dev_sectors > sectors)
4176 mddev->dev_sectors = sectors;
4177 else
4178 err = -ENOSPC;
4179 }
4180 return err ? err : len;
4181}
4182
4183static struct md_sysfs_entry md_size =
4184__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4185
4186
4187/* Metdata version.
4188 * This is one of
4189 * 'none' for arrays with no metadata (good luck...)
4190 * 'external' for arrays with externally managed metadata,
4191 * or N.M for internally known formats
4192 */
4193static ssize_t
4194metadata_show(struct mddev *mddev, char *page)
4195{
4196 if (mddev->persistent)
4197 return sprintf(page, "%d.%d\n",
4198 mddev->major_version, mddev->minor_version);
4199 else if (mddev->external)
4200 return sprintf(page, "external:%s\n", mddev->metadata_type);
4201 else
4202 return sprintf(page, "none\n");
4203}
4204
4205static ssize_t
4206metadata_store(struct mddev *mddev, const char *buf, size_t len)
4207{
4208 int major, minor;
4209 char *e;
4210 /* Changing the details of 'external' metadata is
4211 * always permitted. Otherwise there must be
4212 * no devices attached to the array.
4213 */
4214 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4215 ;
4216 else if (!list_empty(&mddev->disks))
4217 return -EBUSY;
4218
4219 if (cmd_match(buf, "none")) {
4220 mddev->persistent = 0;
4221 mddev->external = 0;
4222 mddev->major_version = 0;
4223 mddev->minor_version = 90;
4224 return len;
4225 }
4226 if (strncmp(buf, "external:", 9) == 0) {
4227 size_t namelen = len-9;
4228 if (namelen >= sizeof(mddev->metadata_type))
4229 namelen = sizeof(mddev->metadata_type)-1;
4230 strncpy(mddev->metadata_type, buf+9, namelen);
4231 mddev->metadata_type[namelen] = 0;
4232 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4233 mddev->metadata_type[--namelen] = 0;
4234 mddev->persistent = 0;
4235 mddev->external = 1;
4236 mddev->major_version = 0;
4237 mddev->minor_version = 90;
4238 return len;
4239 }
4240 major = simple_strtoul(buf, &e, 10);
4241 if (e==buf || *e != '.')
4242 return -EINVAL;
4243 buf = e+1;
4244 minor = simple_strtoul(buf, &e, 10);
4245 if (e==buf || (*e && *e != '\n') )
4246 return -EINVAL;
4247 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4248 return -ENOENT;
4249 mddev->major_version = major;
4250 mddev->minor_version = minor;
4251 mddev->persistent = 1;
4252 mddev->external = 0;
4253 return len;
4254}
4255
4256static struct md_sysfs_entry md_metadata =
4257__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4258
4259static ssize_t
4260action_show(struct mddev *mddev, char *page)
4261{
4262 char *type = "idle";
4263 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4264 type = "frozen";
4265 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4266 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4267 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4268 type = "reshape";
4269 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4270 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4271 type = "resync";
4272 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4273 type = "check";
4274 else
4275 type = "repair";
4276 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4277 type = "recover";
4278 }
4279 return sprintf(page, "%s\n", type);
4280}
4281
4282static void reap_sync_thread(struct mddev *mddev);
4283
4284static ssize_t
4285action_store(struct mddev *mddev, const char *page, size_t len)
4286{
4287 if (!mddev->pers || !mddev->pers->sync_request)
4288 return -EINVAL;
4289
4290 if (cmd_match(page, "frozen"))
4291 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4292 else
4293 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4294
4295 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4296 if (mddev->sync_thread) {
4297 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4298 reap_sync_thread(mddev);
4299 }
4300 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4301 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4302 return -EBUSY;
4303 else if (cmd_match(page, "resync"))
4304 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4305 else if (cmd_match(page, "recover")) {
4306 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4307 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4308 } else if (cmd_match(page, "reshape")) {
4309 int err;
4310 if (mddev->pers->start_reshape == NULL)
4311 return -EINVAL;
4312 err = mddev->pers->start_reshape(mddev);
4313 if (err)
4314 return err;
4315 sysfs_notify(&mddev->kobj, NULL, "degraded");
4316 } else {
4317 if (cmd_match(page, "check"))
4318 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4319 else if (!cmd_match(page, "repair"))
4320 return -EINVAL;
4321 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4322 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323 }
4324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4325 md_wakeup_thread(mddev->thread);
4326 sysfs_notify_dirent_safe(mddev->sysfs_action);
4327 return len;
4328}
4329
4330static ssize_t
4331mismatch_cnt_show(struct mddev *mddev, char *page)
4332{
4333 return sprintf(page, "%llu\n",
4334 (unsigned long long) mddev->resync_mismatches);
4335}
4336
4337static struct md_sysfs_entry md_scan_mode =
4338__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4339
4340
4341static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4342
4343static ssize_t
4344sync_min_show(struct mddev *mddev, char *page)
4345{
4346 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4347 mddev->sync_speed_min ? "local": "system");
4348}
4349
4350static ssize_t
4351sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4352{
4353 int min;
4354 char *e;
4355 if (strncmp(buf, "system", 6)==0) {
4356 mddev->sync_speed_min = 0;
4357 return len;
4358 }
4359 min = simple_strtoul(buf, &e, 10);
4360 if (buf == e || (*e && *e != '\n') || min <= 0)
4361 return -EINVAL;
4362 mddev->sync_speed_min = min;
4363 return len;
4364}
4365
4366static struct md_sysfs_entry md_sync_min =
4367__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4368
4369static ssize_t
4370sync_max_show(struct mddev *mddev, char *page)
4371{
4372 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4373 mddev->sync_speed_max ? "local": "system");
4374}
4375
4376static ssize_t
4377sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4378{
4379 int max;
4380 char *e;
4381 if (strncmp(buf, "system", 6)==0) {
4382 mddev->sync_speed_max = 0;
4383 return len;
4384 }
4385 max = simple_strtoul(buf, &e, 10);
4386 if (buf == e || (*e && *e != '\n') || max <= 0)
4387 return -EINVAL;
4388 mddev->sync_speed_max = max;
4389 return len;
4390}
4391
4392static struct md_sysfs_entry md_sync_max =
4393__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4394
4395static ssize_t
4396degraded_show(struct mddev *mddev, char *page)
4397{
4398 return sprintf(page, "%d\n", mddev->degraded);
4399}
4400static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4401
4402static ssize_t
4403sync_force_parallel_show(struct mddev *mddev, char *page)
4404{
4405 return sprintf(page, "%d\n", mddev->parallel_resync);
4406}
4407
4408static ssize_t
4409sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4410{
4411 long n;
4412
4413 if (strict_strtol(buf, 10, &n))
4414 return -EINVAL;
4415
4416 if (n != 0 && n != 1)
4417 return -EINVAL;
4418
4419 mddev->parallel_resync = n;
4420
4421 if (mddev->sync_thread)
4422 wake_up(&resync_wait);
4423
4424 return len;
4425}
4426
4427/* force parallel resync, even with shared block devices */
4428static struct md_sysfs_entry md_sync_force_parallel =
4429__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4430 sync_force_parallel_show, sync_force_parallel_store);
4431
4432static ssize_t
4433sync_speed_show(struct mddev *mddev, char *page)
4434{
4435 unsigned long resync, dt, db;
4436 if (mddev->curr_resync == 0)
4437 return sprintf(page, "none\n");
4438 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4439 dt = (jiffies - mddev->resync_mark) / HZ;
4440 if (!dt) dt++;
4441 db = resync - mddev->resync_mark_cnt;
4442 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4443}
4444
4445static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4446
4447static ssize_t
4448sync_completed_show(struct mddev *mddev, char *page)
4449{
4450 unsigned long long max_sectors, resync;
4451
4452 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4453 return sprintf(page, "none\n");
4454
4455 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4456 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4457 max_sectors = mddev->resync_max_sectors;
4458 else
4459 max_sectors = mddev->dev_sectors;
4460
4461 resync = mddev->curr_resync_completed;
4462 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4463}
4464
4465static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4466
4467static ssize_t
4468min_sync_show(struct mddev *mddev, char *page)
4469{
4470 return sprintf(page, "%llu\n",
4471 (unsigned long long)mddev->resync_min);
4472}
4473static ssize_t
4474min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4475{
4476 unsigned long long min;
4477 if (strict_strtoull(buf, 10, &min))
4478 return -EINVAL;
4479 if (min > mddev->resync_max)
4480 return -EINVAL;
4481 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4482 return -EBUSY;
4483
4484 /* Must be a multiple of chunk_size */
4485 if (mddev->chunk_sectors) {
4486 sector_t temp = min;
4487 if (sector_div(temp, mddev->chunk_sectors))
4488 return -EINVAL;
4489 }
4490 mddev->resync_min = min;
4491
4492 return len;
4493}
4494
4495static struct md_sysfs_entry md_min_sync =
4496__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4497
4498static ssize_t
4499max_sync_show(struct mddev *mddev, char *page)
4500{
4501 if (mddev->resync_max == MaxSector)
4502 return sprintf(page, "max\n");
4503 else
4504 return sprintf(page, "%llu\n",
4505 (unsigned long long)mddev->resync_max);
4506}
4507static ssize_t
4508max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4509{
4510 if (strncmp(buf, "max", 3) == 0)
4511 mddev->resync_max = MaxSector;
4512 else {
4513 unsigned long long max;
4514 if (strict_strtoull(buf, 10, &max))
4515 return -EINVAL;
4516 if (max < mddev->resync_min)
4517 return -EINVAL;
4518 if (max < mddev->resync_max &&
4519 mddev->ro == 0 &&
4520 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4521 return -EBUSY;
4522
4523 /* Must be a multiple of chunk_size */
4524 if (mddev->chunk_sectors) {
4525 sector_t temp = max;
4526 if (sector_div(temp, mddev->chunk_sectors))
4527 return -EINVAL;
4528 }
4529 mddev->resync_max = max;
4530 }
4531 wake_up(&mddev->recovery_wait);
4532 return len;
4533}
4534
4535static struct md_sysfs_entry md_max_sync =
4536__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4537
4538static ssize_t
4539suspend_lo_show(struct mddev *mddev, char *page)
4540{
4541 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4542}
4543
4544static ssize_t
4545suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4546{
4547 char *e;
4548 unsigned long long new = simple_strtoull(buf, &e, 10);
4549 unsigned long long old = mddev->suspend_lo;
4550
4551 if (mddev->pers == NULL ||
4552 mddev->pers->quiesce == NULL)
4553 return -EINVAL;
4554 if (buf == e || (*e && *e != '\n'))
4555 return -EINVAL;
4556
4557 mddev->suspend_lo = new;
4558 if (new >= old)
4559 /* Shrinking suspended region */
4560 mddev->pers->quiesce(mddev, 2);
4561 else {
4562 /* Expanding suspended region - need to wait */
4563 mddev->pers->quiesce(mddev, 1);
4564 mddev->pers->quiesce(mddev, 0);
4565 }
4566 return len;
4567}
4568static struct md_sysfs_entry md_suspend_lo =
4569__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4570
4571
4572static ssize_t
4573suspend_hi_show(struct mddev *mddev, char *page)
4574{
4575 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4576}
4577
4578static ssize_t
4579suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4580{
4581 char *e;
4582 unsigned long long new = simple_strtoull(buf, &e, 10);
4583 unsigned long long old = mddev->suspend_hi;
4584
4585 if (mddev->pers == NULL ||
4586 mddev->pers->quiesce == NULL)
4587 return -EINVAL;
4588 if (buf == e || (*e && *e != '\n'))
4589 return -EINVAL;
4590
4591 mddev->suspend_hi = new;
4592 if (new <= old)
4593 /* Shrinking suspended region */
4594 mddev->pers->quiesce(mddev, 2);
4595 else {
4596 /* Expanding suspended region - need to wait */
4597 mddev->pers->quiesce(mddev, 1);
4598 mddev->pers->quiesce(mddev, 0);
4599 }
4600 return len;
4601}
4602static struct md_sysfs_entry md_suspend_hi =
4603__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4604
4605static ssize_t
4606reshape_position_show(struct mddev *mddev, char *page)
4607{
4608 if (mddev->reshape_position != MaxSector)
4609 return sprintf(page, "%llu\n",
4610 (unsigned long long)mddev->reshape_position);
4611 strcpy(page, "none\n");
4612 return 5;
4613}
4614
4615static ssize_t
4616reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4617{
4618 struct md_rdev *rdev;
4619 char *e;
4620 unsigned long long new = simple_strtoull(buf, &e, 10);
4621 if (mddev->pers)
4622 return -EBUSY;
4623 if (buf == e || (*e && *e != '\n'))
4624 return -EINVAL;
4625 mddev->reshape_position = new;
4626 mddev->delta_disks = 0;
4627 mddev->reshape_backwards = 0;
4628 mddev->new_level = mddev->level;
4629 mddev->new_layout = mddev->layout;
4630 mddev->new_chunk_sectors = mddev->chunk_sectors;
4631 rdev_for_each(rdev, mddev)
4632 rdev->new_data_offset = rdev->data_offset;
4633 return len;
4634}
4635
4636static struct md_sysfs_entry md_reshape_position =
4637__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4638 reshape_position_store);
4639
4640static ssize_t
4641reshape_direction_show(struct mddev *mddev, char *page)
4642{
4643 return sprintf(page, "%s\n",
4644 mddev->reshape_backwards ? "backwards" : "forwards");
4645}
4646
4647static ssize_t
4648reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4649{
4650 int backwards = 0;
4651 if (cmd_match(buf, "forwards"))
4652 backwards = 0;
4653 else if (cmd_match(buf, "backwards"))
4654 backwards = 1;
4655 else
4656 return -EINVAL;
4657 if (mddev->reshape_backwards == backwards)
4658 return len;
4659
4660 /* check if we are allowed to change */
4661 if (mddev->delta_disks)
4662 return -EBUSY;
4663
4664 if (mddev->persistent &&
4665 mddev->major_version == 0)
4666 return -EINVAL;
4667
4668 mddev->reshape_backwards = backwards;
4669 return len;
4670}
4671
4672static struct md_sysfs_entry md_reshape_direction =
4673__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4674 reshape_direction_store);
4675
4676static ssize_t
4677array_size_show(struct mddev *mddev, char *page)
4678{
4679 if (mddev->external_size)
4680 return sprintf(page, "%llu\n",
4681 (unsigned long long)mddev->array_sectors/2);
4682 else
4683 return sprintf(page, "default\n");
4684}
4685
4686static ssize_t
4687array_size_store(struct mddev *mddev, const char *buf, size_t len)
4688{
4689 sector_t sectors;
4690
4691 if (strncmp(buf, "default", 7) == 0) {
4692 if (mddev->pers)
4693 sectors = mddev->pers->size(mddev, 0, 0);
4694 else
4695 sectors = mddev->array_sectors;
4696
4697 mddev->external_size = 0;
4698 } else {
4699 if (strict_blocks_to_sectors(buf, §ors) < 0)
4700 return -EINVAL;
4701 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4702 return -E2BIG;
4703
4704 mddev->external_size = 1;
4705 }
4706
4707 mddev->array_sectors = sectors;
4708 if (mddev->pers) {
4709 set_capacity(mddev->gendisk, mddev->array_sectors);
4710 revalidate_disk(mddev->gendisk);
4711 }
4712 return len;
4713}
4714
4715static struct md_sysfs_entry md_array_size =
4716__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4717 array_size_store);
4718
4719static struct attribute *md_default_attrs[] = {
4720 &md_level.attr,
4721 &md_layout.attr,
4722 &md_raid_disks.attr,
4723 &md_chunk_size.attr,
4724 &md_size.attr,
4725 &md_resync_start.attr,
4726 &md_metadata.attr,
4727 &md_new_device.attr,
4728 &md_safe_delay.attr,
4729 &md_array_state.attr,
4730 &md_reshape_position.attr,
4731 &md_reshape_direction.attr,
4732 &md_array_size.attr,
4733 &max_corr_read_errors.attr,
4734 NULL,
4735};
4736
4737static struct attribute *md_redundancy_attrs[] = {
4738 &md_scan_mode.attr,
4739 &md_mismatches.attr,
4740 &md_sync_min.attr,
4741 &md_sync_max.attr,
4742 &md_sync_speed.attr,
4743 &md_sync_force_parallel.attr,
4744 &md_sync_completed.attr,
4745 &md_min_sync.attr,
4746 &md_max_sync.attr,
4747 &md_suspend_lo.attr,
4748 &md_suspend_hi.attr,
4749 &md_bitmap.attr,
4750 &md_degraded.attr,
4751 NULL,
4752};
4753static struct attribute_group md_redundancy_group = {
4754 .name = NULL,
4755 .attrs = md_redundancy_attrs,
4756};
4757
4758
4759static ssize_t
4760md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4761{
4762 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4763 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4764 ssize_t rv;
4765
4766 if (!entry->show)
4767 return -EIO;
4768 spin_lock(&all_mddevs_lock);
4769 if (list_empty(&mddev->all_mddevs)) {
4770 spin_unlock(&all_mddevs_lock);
4771 return -EBUSY;
4772 }
4773 mddev_get(mddev);
4774 spin_unlock(&all_mddevs_lock);
4775
4776 rv = mddev_lock(mddev);
4777 if (!rv) {
4778 rv = entry->show(mddev, page);
4779 mddev_unlock(mddev);
4780 }
4781 mddev_put(mddev);
4782 return rv;
4783}
4784
4785static ssize_t
4786md_attr_store(struct kobject *kobj, struct attribute *attr,
4787 const char *page, size_t length)
4788{
4789 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4790 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4791 ssize_t rv;
4792
4793 if (!entry->store)
4794 return -EIO;
4795 if (!capable(CAP_SYS_ADMIN))
4796 return -EACCES;
4797 spin_lock(&all_mddevs_lock);
4798 if (list_empty(&mddev->all_mddevs)) {
4799 spin_unlock(&all_mddevs_lock);
4800 return -EBUSY;
4801 }
4802 mddev_get(mddev);
4803 spin_unlock(&all_mddevs_lock);
4804 rv = mddev_lock(mddev);
4805 if (!rv) {
4806 rv = entry->store(mddev, page, length);
4807 mddev_unlock(mddev);
4808 }
4809 mddev_put(mddev);
4810 return rv;
4811}
4812
4813static void md_free(struct kobject *ko)
4814{
4815 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4816
4817 if (mddev->sysfs_state)
4818 sysfs_put(mddev->sysfs_state);
4819
4820 if (mddev->gendisk) {
4821 del_gendisk(mddev->gendisk);
4822 put_disk(mddev->gendisk);
4823 }
4824 if (mddev->queue)
4825 blk_cleanup_queue(mddev->queue);
4826
4827 kfree(mddev);
4828}
4829
4830static const struct sysfs_ops md_sysfs_ops = {
4831 .show = md_attr_show,
4832 .store = md_attr_store,
4833};
4834static struct kobj_type md_ktype = {
4835 .release = md_free,
4836 .sysfs_ops = &md_sysfs_ops,
4837 .default_attrs = md_default_attrs,
4838};
4839
4840int mdp_major = 0;
4841
4842static void mddev_delayed_delete(struct work_struct *ws)
4843{
4844 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4845
4846 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4847 kobject_del(&mddev->kobj);
4848 kobject_put(&mddev->kobj);
4849}
4850
4851static int md_alloc(dev_t dev, char *name)
4852{
4853 static DEFINE_MUTEX(disks_mutex);
4854 struct mddev *mddev = mddev_find(dev);
4855 struct gendisk *disk;
4856 int partitioned;
4857 int shift;
4858 int unit;
4859 int error;
4860
4861 if (!mddev)
4862 return -ENODEV;
4863
4864 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4865 shift = partitioned ? MdpMinorShift : 0;
4866 unit = MINOR(mddev->unit) >> shift;
4867
4868 /* wait for any previous instance of this device to be
4869 * completely removed (mddev_delayed_delete).
4870 */
4871 flush_workqueue(md_misc_wq);
4872
4873 mutex_lock(&disks_mutex);
4874 error = -EEXIST;
4875 if (mddev->gendisk)
4876 goto abort;
4877
4878 if (name) {
4879 /* Need to ensure that 'name' is not a duplicate.
4880 */
4881 struct mddev *mddev2;
4882 spin_lock(&all_mddevs_lock);
4883
4884 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4885 if (mddev2->gendisk &&
4886 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4887 spin_unlock(&all_mddevs_lock);
4888 goto abort;
4889 }
4890 spin_unlock(&all_mddevs_lock);
4891 }
4892
4893 error = -ENOMEM;
4894 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4895 if (!mddev->queue)
4896 goto abort;
4897 mddev->queue->queuedata = mddev;
4898
4899 blk_queue_make_request(mddev->queue, md_make_request);
4900 blk_set_stacking_limits(&mddev->queue->limits);
4901
4902 disk = alloc_disk(1 << shift);
4903 if (!disk) {
4904 blk_cleanup_queue(mddev->queue);
4905 mddev->queue = NULL;
4906 goto abort;
4907 }
4908 disk->major = MAJOR(mddev->unit);
4909 disk->first_minor = unit << shift;
4910 if (name)
4911 strcpy(disk->disk_name, name);
4912 else if (partitioned)
4913 sprintf(disk->disk_name, "md_d%d", unit);
4914 else
4915 sprintf(disk->disk_name, "md%d", unit);
4916 disk->fops = &md_fops;
4917 disk->private_data = mddev;
4918 disk->queue = mddev->queue;
4919 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4920 /* Allow extended partitions. This makes the
4921 * 'mdp' device redundant, but we can't really
4922 * remove it now.
4923 */
4924 disk->flags |= GENHD_FL_EXT_DEVT;
4925 mddev->gendisk = disk;
4926 /* As soon as we call add_disk(), another thread could get
4927 * through to md_open, so make sure it doesn't get too far
4928 */
4929 mutex_lock(&mddev->open_mutex);
4930 add_disk(disk);
4931
4932 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4933 &disk_to_dev(disk)->kobj, "%s", "md");
4934 if (error) {
4935 /* This isn't possible, but as kobject_init_and_add is marked
4936 * __must_check, we must do something with the result
4937 */
4938 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4939 disk->disk_name);
4940 error = 0;
4941 }
4942 if (mddev->kobj.sd &&
4943 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4944 printk(KERN_DEBUG "pointless warning\n");
4945 mutex_unlock(&mddev->open_mutex);
4946 abort:
4947 mutex_unlock(&disks_mutex);
4948 if (!error && mddev->kobj.sd) {
4949 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4950 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4951 }
4952 mddev_put(mddev);
4953 return error;
4954}
4955
4956static struct kobject *md_probe(dev_t dev, int *part, void *data)
4957{
4958 md_alloc(dev, NULL);
4959 return NULL;
4960}
4961
4962static int add_named_array(const char *val, struct kernel_param *kp)
4963{
4964 /* val must be "md_*" where * is not all digits.
4965 * We allocate an array with a large free minor number, and
4966 * set the name to val. val must not already be an active name.
4967 */
4968 int len = strlen(val);
4969 char buf[DISK_NAME_LEN];
4970
4971 while (len && val[len-1] == '\n')
4972 len--;
4973 if (len >= DISK_NAME_LEN)
4974 return -E2BIG;
4975 strlcpy(buf, val, len+1);
4976 if (strncmp(buf, "md_", 3) != 0)
4977 return -EINVAL;
4978 return md_alloc(0, buf);
4979}
4980
4981static void md_safemode_timeout(unsigned long data)
4982{
4983 struct mddev *mddev = (struct mddev *) data;
4984
4985 if (!atomic_read(&mddev->writes_pending)) {
4986 mddev->safemode = 1;
4987 if (mddev->external)
4988 sysfs_notify_dirent_safe(mddev->sysfs_state);
4989 }
4990 md_wakeup_thread(mddev->thread);
4991}
4992
4993static int start_dirty_degraded;
4994
4995int md_run(struct mddev *mddev)
4996{
4997 int err;
4998 struct md_rdev *rdev;
4999 struct md_personality *pers;
5000
5001 if (list_empty(&mddev->disks))
5002 /* cannot run an array with no devices.. */
5003 return -EINVAL;
5004
5005 if (mddev->pers)
5006 return -EBUSY;
5007 /* Cannot run until previous stop completes properly */
5008 if (mddev->sysfs_active)
5009 return -EBUSY;
5010
5011 /*
5012 * Analyze all RAID superblock(s)
5013 */
5014 if (!mddev->raid_disks) {
5015 if (!mddev->persistent)
5016 return -EINVAL;
5017 analyze_sbs(mddev);
5018 }
5019
5020 if (mddev->level != LEVEL_NONE)
5021 request_module("md-level-%d", mddev->level);
5022 else if (mddev->clevel[0])
5023 request_module("md-%s", mddev->clevel);
5024
5025 /*
5026 * Drop all container device buffers, from now on
5027 * the only valid external interface is through the md
5028 * device.
5029 */
5030 rdev_for_each(rdev, mddev) {
5031 if (test_bit(Faulty, &rdev->flags))
5032 continue;
5033 sync_blockdev(rdev->bdev);
5034 invalidate_bdev(rdev->bdev);
5035
5036 /* perform some consistency tests on the device.
5037 * We don't want the data to overlap the metadata,
5038 * Internal Bitmap issues have been handled elsewhere.
5039 */
5040 if (rdev->meta_bdev) {
5041 /* Nothing to check */;
5042 } else if (rdev->data_offset < rdev->sb_start) {
5043 if (mddev->dev_sectors &&
5044 rdev->data_offset + mddev->dev_sectors
5045 > rdev->sb_start) {
5046 printk("md: %s: data overlaps metadata\n",
5047 mdname(mddev));
5048 return -EINVAL;
5049 }
5050 } else {
5051 if (rdev->sb_start + rdev->sb_size/512
5052 > rdev->data_offset) {
5053 printk("md: %s: metadata overlaps data\n",
5054 mdname(mddev));
5055 return -EINVAL;
5056 }
5057 }
5058 sysfs_notify_dirent_safe(rdev->sysfs_state);
5059 }
5060
5061 if (mddev->bio_set == NULL)
5062 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5063 sizeof(struct mddev *));
5064
5065 spin_lock(&pers_lock);
5066 pers = find_pers(mddev->level, mddev->clevel);
5067 if (!pers || !try_module_get(pers->owner)) {
5068 spin_unlock(&pers_lock);
5069 if (mddev->level != LEVEL_NONE)
5070 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5071 mddev->level);
5072 else
5073 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5074 mddev->clevel);
5075 return -EINVAL;
5076 }
5077 mddev->pers = pers;
5078 spin_unlock(&pers_lock);
5079 if (mddev->level != pers->level) {
5080 mddev->level = pers->level;
5081 mddev->new_level = pers->level;
5082 }
5083 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5084
5085 if (mddev->reshape_position != MaxSector &&
5086 pers->start_reshape == NULL) {
5087 /* This personality cannot handle reshaping... */
5088 mddev->pers = NULL;
5089 module_put(pers->owner);
5090 return -EINVAL;
5091 }
5092
5093 if (pers->sync_request) {
5094 /* Warn if this is a potentially silly
5095 * configuration.
5096 */
5097 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5098 struct md_rdev *rdev2;
5099 int warned = 0;
5100
5101 rdev_for_each(rdev, mddev)
5102 rdev_for_each(rdev2, mddev) {
5103 if (rdev < rdev2 &&
5104 rdev->bdev->bd_contains ==
5105 rdev2->bdev->bd_contains) {
5106 printk(KERN_WARNING
5107 "%s: WARNING: %s appears to be"
5108 " on the same physical disk as"
5109 " %s.\n",
5110 mdname(mddev),
5111 bdevname(rdev->bdev,b),
5112 bdevname(rdev2->bdev,b2));
5113 warned = 1;
5114 }
5115 }
5116
5117 if (warned)
5118 printk(KERN_WARNING
5119 "True protection against single-disk"
5120 " failure might be compromised.\n");
5121 }
5122
5123 mddev->recovery = 0;
5124 /* may be over-ridden by personality */
5125 mddev->resync_max_sectors = mddev->dev_sectors;
5126
5127 mddev->ok_start_degraded = start_dirty_degraded;
5128
5129 if (start_readonly && mddev->ro == 0)
5130 mddev->ro = 2; /* read-only, but switch on first write */
5131
5132 err = mddev->pers->run(mddev);
5133 if (err)
5134 printk(KERN_ERR "md: pers->run() failed ...\n");
5135 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5136 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5137 " but 'external_size' not in effect?\n", __func__);
5138 printk(KERN_ERR
5139 "md: invalid array_size %llu > default size %llu\n",
5140 (unsigned long long)mddev->array_sectors / 2,
5141 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5142 err = -EINVAL;
5143 mddev->pers->stop(mddev);
5144 }
5145 if (err == 0 && mddev->pers->sync_request &&
5146 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5147 err = bitmap_create(mddev);
5148 if (err) {
5149 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5150 mdname(mddev), err);
5151 mddev->pers->stop(mddev);
5152 }
5153 }
5154 if (err) {
5155 module_put(mddev->pers->owner);
5156 mddev->pers = NULL;
5157 bitmap_destroy(mddev);
5158 return err;
5159 }
5160 if (mddev->pers->sync_request) {
5161 if (mddev->kobj.sd &&
5162 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5163 printk(KERN_WARNING
5164 "md: cannot register extra attributes for %s\n",
5165 mdname(mddev));
5166 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5167 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5168 mddev->ro = 0;
5169
5170 atomic_set(&mddev->writes_pending,0);
5171 atomic_set(&mddev->max_corr_read_errors,
5172 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5173 mddev->safemode = 0;
5174 mddev->safemode_timer.function = md_safemode_timeout;
5175 mddev->safemode_timer.data = (unsigned long) mddev;
5176 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5177 mddev->in_sync = 1;
5178 smp_wmb();
5179 mddev->ready = 1;
5180 rdev_for_each(rdev, mddev)
5181 if (rdev->raid_disk >= 0)
5182 if (sysfs_link_rdev(mddev, rdev))
5183 /* failure here is OK */;
5184
5185 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5186
5187 if (mddev->flags)
5188 md_update_sb(mddev, 0);
5189
5190 md_new_event(mddev);
5191 sysfs_notify_dirent_safe(mddev->sysfs_state);
5192 sysfs_notify_dirent_safe(mddev->sysfs_action);
5193 sysfs_notify(&mddev->kobj, NULL, "degraded");
5194 return 0;
5195}
5196EXPORT_SYMBOL_GPL(md_run);
5197
5198static int do_md_run(struct mddev *mddev)
5199{
5200 int err;
5201
5202 err = md_run(mddev);
5203 if (err)
5204 goto out;
5205 err = bitmap_load(mddev);
5206 if (err) {
5207 bitmap_destroy(mddev);
5208 goto out;
5209 }
5210
5211 md_wakeup_thread(mddev->thread);
5212 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5213
5214 set_capacity(mddev->gendisk, mddev->array_sectors);
5215 revalidate_disk(mddev->gendisk);
5216 mddev->changed = 1;
5217 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5218out:
5219 return err;
5220}
5221
5222static int restart_array(struct mddev *mddev)
5223{
5224 struct gendisk *disk = mddev->gendisk;
5225
5226 /* Complain if it has no devices */
5227 if (list_empty(&mddev->disks))
5228 return -ENXIO;
5229 if (!mddev->pers)
5230 return -EINVAL;
5231 if (!mddev->ro)
5232 return -EBUSY;
5233 mddev->safemode = 0;
5234 mddev->ro = 0;
5235 set_disk_ro(disk, 0);
5236 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5237 mdname(mddev));
5238 /* Kick recovery or resync if necessary */
5239 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5240 md_wakeup_thread(mddev->thread);
5241 md_wakeup_thread(mddev->sync_thread);
5242 sysfs_notify_dirent_safe(mddev->sysfs_state);
5243 return 0;
5244}
5245
5246/* similar to deny_write_access, but accounts for our holding a reference
5247 * to the file ourselves */
5248static int deny_bitmap_write_access(struct file * file)
5249{
5250 struct inode *inode = file->f_mapping->host;
5251
5252 spin_lock(&inode->i_lock);
5253 if (atomic_read(&inode->i_writecount) > 1) {
5254 spin_unlock(&inode->i_lock);
5255 return -ETXTBSY;
5256 }
5257 atomic_set(&inode->i_writecount, -1);
5258 spin_unlock(&inode->i_lock);
5259
5260 return 0;
5261}
5262
5263void restore_bitmap_write_access(struct file *file)
5264{
5265 struct inode *inode = file->f_mapping->host;
5266
5267 spin_lock(&inode->i_lock);
5268 atomic_set(&inode->i_writecount, 1);
5269 spin_unlock(&inode->i_lock);
5270}
5271
5272static void md_clean(struct mddev *mddev)
5273{
5274 mddev->array_sectors = 0;
5275 mddev->external_size = 0;
5276 mddev->dev_sectors = 0;
5277 mddev->raid_disks = 0;
5278 mddev->recovery_cp = 0;
5279 mddev->resync_min = 0;
5280 mddev->resync_max = MaxSector;
5281 mddev->reshape_position = MaxSector;
5282 mddev->external = 0;
5283 mddev->persistent = 0;
5284 mddev->level = LEVEL_NONE;
5285 mddev->clevel[0] = 0;
5286 mddev->flags = 0;
5287 mddev->ro = 0;
5288 mddev->metadata_type[0] = 0;
5289 mddev->chunk_sectors = 0;
5290 mddev->ctime = mddev->utime = 0;
5291 mddev->layout = 0;
5292 mddev->max_disks = 0;
5293 mddev->events = 0;
5294 mddev->can_decrease_events = 0;
5295 mddev->delta_disks = 0;
5296 mddev->reshape_backwards = 0;
5297 mddev->new_level = LEVEL_NONE;
5298 mddev->new_layout = 0;
5299 mddev->new_chunk_sectors = 0;
5300 mddev->curr_resync = 0;
5301 mddev->resync_mismatches = 0;
5302 mddev->suspend_lo = mddev->suspend_hi = 0;
5303 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5304 mddev->recovery = 0;
5305 mddev->in_sync = 0;
5306 mddev->changed = 0;
5307 mddev->degraded = 0;
5308 mddev->safemode = 0;
5309 mddev->merge_check_needed = 0;
5310 mddev->bitmap_info.offset = 0;
5311 mddev->bitmap_info.default_offset = 0;
5312 mddev->bitmap_info.default_space = 0;
5313 mddev->bitmap_info.chunksize = 0;
5314 mddev->bitmap_info.daemon_sleep = 0;
5315 mddev->bitmap_info.max_write_behind = 0;
5316}
5317
5318static void __md_stop_writes(struct mddev *mddev)
5319{
5320 if (mddev->sync_thread) {
5321 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5322 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5323 reap_sync_thread(mddev);
5324 }
5325
5326 del_timer_sync(&mddev->safemode_timer);
5327
5328 bitmap_flush(mddev);
5329 md_super_wait(mddev);
5330
5331 if (!mddev->in_sync || mddev->flags) {
5332 /* mark array as shutdown cleanly */
5333 mddev->in_sync = 1;
5334 md_update_sb(mddev, 1);
5335 }
5336}
5337
5338void md_stop_writes(struct mddev *mddev)
5339{
5340 mddev_lock(mddev);
5341 __md_stop_writes(mddev);
5342 mddev_unlock(mddev);
5343}
5344EXPORT_SYMBOL_GPL(md_stop_writes);
5345
5346void md_stop(struct mddev *mddev)
5347{
5348 mddev->ready = 0;
5349 mddev->pers->stop(mddev);
5350 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5351 mddev->to_remove = &md_redundancy_group;
5352 module_put(mddev->pers->owner);
5353 mddev->pers = NULL;
5354 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5355}
5356EXPORT_SYMBOL_GPL(md_stop);
5357
5358static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5359{
5360 int err = 0;
5361 mutex_lock(&mddev->open_mutex);
5362 if (atomic_read(&mddev->openers) > !!bdev) {
5363 printk("md: %s still in use.\n",mdname(mddev));
5364 err = -EBUSY;
5365 goto out;
5366 }
5367 if (bdev)
5368 sync_blockdev(bdev);
5369 if (mddev->pers) {
5370 __md_stop_writes(mddev);
5371
5372 err = -ENXIO;
5373 if (mddev->ro==1)
5374 goto out;
5375 mddev->ro = 1;
5376 set_disk_ro(mddev->gendisk, 1);
5377 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5378 sysfs_notify_dirent_safe(mddev->sysfs_state);
5379 err = 0;
5380 }
5381out:
5382 mutex_unlock(&mddev->open_mutex);
5383 return err;
5384}
5385
5386/* mode:
5387 * 0 - completely stop and dis-assemble array
5388 * 2 - stop but do not disassemble array
5389 */
5390static int do_md_stop(struct mddev * mddev, int mode,
5391 struct block_device *bdev)
5392{
5393 struct gendisk *disk = mddev->gendisk;
5394 struct md_rdev *rdev;
5395
5396 mutex_lock(&mddev->open_mutex);
5397 if (atomic_read(&mddev->openers) > !!bdev ||
5398 mddev->sysfs_active) {
5399 printk("md: %s still in use.\n",mdname(mddev));
5400 mutex_unlock(&mddev->open_mutex);
5401 return -EBUSY;
5402 }
5403 if (bdev)
5404 /* It is possible IO was issued on some other
5405 * open file which was closed before we took ->open_mutex.
5406 * As that was not the last close __blkdev_put will not
5407 * have called sync_blockdev, so we must.
5408 */
5409 sync_blockdev(bdev);
5410
5411 if (mddev->pers) {
5412 if (mddev->ro)
5413 set_disk_ro(disk, 0);
5414
5415 __md_stop_writes(mddev);
5416 md_stop(mddev);
5417 mddev->queue->merge_bvec_fn = NULL;
5418 mddev->queue->backing_dev_info.congested_fn = NULL;
5419
5420 /* tell userspace to handle 'inactive' */
5421 sysfs_notify_dirent_safe(mddev->sysfs_state);
5422
5423 rdev_for_each(rdev, mddev)
5424 if (rdev->raid_disk >= 0)
5425 sysfs_unlink_rdev(mddev, rdev);
5426
5427 set_capacity(disk, 0);
5428 mutex_unlock(&mddev->open_mutex);
5429 mddev->changed = 1;
5430 revalidate_disk(disk);
5431
5432 if (mddev->ro)
5433 mddev->ro = 0;
5434 } else
5435 mutex_unlock(&mddev->open_mutex);
5436 /*
5437 * Free resources if final stop
5438 */
5439 if (mode == 0) {
5440 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5441
5442 bitmap_destroy(mddev);
5443 if (mddev->bitmap_info.file) {
5444 restore_bitmap_write_access(mddev->bitmap_info.file);
5445 fput(mddev->bitmap_info.file);
5446 mddev->bitmap_info.file = NULL;
5447 }
5448 mddev->bitmap_info.offset = 0;
5449
5450 export_array(mddev);
5451
5452 md_clean(mddev);
5453 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5454 if (mddev->hold_active == UNTIL_STOP)
5455 mddev->hold_active = 0;
5456 }
5457 blk_integrity_unregister(disk);
5458 md_new_event(mddev);
5459 sysfs_notify_dirent_safe(mddev->sysfs_state);
5460 return 0;
5461}
5462
5463#ifndef MODULE
5464static void autorun_array(struct mddev *mddev)
5465{
5466 struct md_rdev *rdev;
5467 int err;
5468
5469 if (list_empty(&mddev->disks))
5470 return;
5471
5472 printk(KERN_INFO "md: running: ");
5473
5474 rdev_for_each(rdev, mddev) {
5475 char b[BDEVNAME_SIZE];
5476 printk("<%s>", bdevname(rdev->bdev,b));
5477 }
5478 printk("\n");
5479
5480 err = do_md_run(mddev);
5481 if (err) {
5482 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5483 do_md_stop(mddev, 0, NULL);
5484 }
5485}
5486
5487/*
5488 * lets try to run arrays based on all disks that have arrived
5489 * until now. (those are in pending_raid_disks)
5490 *
5491 * the method: pick the first pending disk, collect all disks with
5492 * the same UUID, remove all from the pending list and put them into
5493 * the 'same_array' list. Then order this list based on superblock
5494 * update time (freshest comes first), kick out 'old' disks and
5495 * compare superblocks. If everything's fine then run it.
5496 *
5497 * If "unit" is allocated, then bump its reference count
5498 */
5499static void autorun_devices(int part)
5500{
5501 struct md_rdev *rdev0, *rdev, *tmp;
5502 struct mddev *mddev;
5503 char b[BDEVNAME_SIZE];
5504
5505 printk(KERN_INFO "md: autorun ...\n");
5506 while (!list_empty(&pending_raid_disks)) {
5507 int unit;
5508 dev_t dev;
5509 LIST_HEAD(candidates);
5510 rdev0 = list_entry(pending_raid_disks.next,
5511 struct md_rdev, same_set);
5512
5513 printk(KERN_INFO "md: considering %s ...\n",
5514 bdevname(rdev0->bdev,b));
5515 INIT_LIST_HEAD(&candidates);
5516 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5517 if (super_90_load(rdev, rdev0, 0) >= 0) {
5518 printk(KERN_INFO "md: adding %s ...\n",
5519 bdevname(rdev->bdev,b));
5520 list_move(&rdev->same_set, &candidates);
5521 }
5522 /*
5523 * now we have a set of devices, with all of them having
5524 * mostly sane superblocks. It's time to allocate the
5525 * mddev.
5526 */
5527 if (part) {
5528 dev = MKDEV(mdp_major,
5529 rdev0->preferred_minor << MdpMinorShift);
5530 unit = MINOR(dev) >> MdpMinorShift;
5531 } else {
5532 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5533 unit = MINOR(dev);
5534 }
5535 if (rdev0->preferred_minor != unit) {
5536 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5537 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5538 break;
5539 }
5540
5541 md_probe(dev, NULL, NULL);
5542 mddev = mddev_find(dev);
5543 if (!mddev || !mddev->gendisk) {
5544 if (mddev)
5545 mddev_put(mddev);
5546 printk(KERN_ERR
5547 "md: cannot allocate memory for md drive.\n");
5548 break;
5549 }
5550 if (mddev_lock(mddev))
5551 printk(KERN_WARNING "md: %s locked, cannot run\n",
5552 mdname(mddev));
5553 else if (mddev->raid_disks || mddev->major_version
5554 || !list_empty(&mddev->disks)) {
5555 printk(KERN_WARNING
5556 "md: %s already running, cannot run %s\n",
5557 mdname(mddev), bdevname(rdev0->bdev,b));
5558 mddev_unlock(mddev);
5559 } else {
5560 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5561 mddev->persistent = 1;
5562 rdev_for_each_list(rdev, tmp, &candidates) {
5563 list_del_init(&rdev->same_set);
5564 if (bind_rdev_to_array(rdev, mddev))
5565 export_rdev(rdev);
5566 }
5567 autorun_array(mddev);
5568 mddev_unlock(mddev);
5569 }
5570 /* on success, candidates will be empty, on error
5571 * it won't...
5572 */
5573 rdev_for_each_list(rdev, tmp, &candidates) {
5574 list_del_init(&rdev->same_set);
5575 export_rdev(rdev);
5576 }
5577 mddev_put(mddev);
5578 }
5579 printk(KERN_INFO "md: ... autorun DONE.\n");
5580}
5581#endif /* !MODULE */
5582
5583static int get_version(void __user * arg)
5584{
5585 mdu_version_t ver;
5586
5587 ver.major = MD_MAJOR_VERSION;
5588 ver.minor = MD_MINOR_VERSION;
5589 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5590
5591 if (copy_to_user(arg, &ver, sizeof(ver)))
5592 return -EFAULT;
5593
5594 return 0;
5595}
5596
5597static int get_array_info(struct mddev * mddev, void __user * arg)
5598{
5599 mdu_array_info_t info;
5600 int nr,working,insync,failed,spare;
5601 struct md_rdev *rdev;
5602
5603 nr=working=insync=failed=spare=0;
5604 rdev_for_each(rdev, mddev) {
5605 nr++;
5606 if (test_bit(Faulty, &rdev->flags))
5607 failed++;
5608 else {
5609 working++;
5610 if (test_bit(In_sync, &rdev->flags))
5611 insync++;
5612 else
5613 spare++;
5614 }
5615 }
5616
5617 info.major_version = mddev->major_version;
5618 info.minor_version = mddev->minor_version;
5619 info.patch_version = MD_PATCHLEVEL_VERSION;
5620 info.ctime = mddev->ctime;
5621 info.level = mddev->level;
5622 info.size = mddev->dev_sectors / 2;
5623 if (info.size != mddev->dev_sectors / 2) /* overflow */
5624 info.size = -1;
5625 info.nr_disks = nr;
5626 info.raid_disks = mddev->raid_disks;
5627 info.md_minor = mddev->md_minor;
5628 info.not_persistent= !mddev->persistent;
5629
5630 info.utime = mddev->utime;
5631 info.state = 0;
5632 if (mddev->in_sync)
5633 info.state = (1<<MD_SB_CLEAN);
5634 if (mddev->bitmap && mddev->bitmap_info.offset)
5635 info.state = (1<<MD_SB_BITMAP_PRESENT);
5636 info.active_disks = insync;
5637 info.working_disks = working;
5638 info.failed_disks = failed;
5639 info.spare_disks = spare;
5640
5641 info.layout = mddev->layout;
5642 info.chunk_size = mddev->chunk_sectors << 9;
5643
5644 if (copy_to_user(arg, &info, sizeof(info)))
5645 return -EFAULT;
5646
5647 return 0;
5648}
5649
5650static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5651{
5652 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5653 char *ptr, *buf = NULL;
5654 int err = -ENOMEM;
5655
5656 if (md_allow_write(mddev))
5657 file = kmalloc(sizeof(*file), GFP_NOIO);
5658 else
5659 file = kmalloc(sizeof(*file), GFP_KERNEL);
5660
5661 if (!file)
5662 goto out;
5663
5664 /* bitmap disabled, zero the first byte and copy out */
5665 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5666 file->pathname[0] = '\0';
5667 goto copy_out;
5668 }
5669
5670 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5671 if (!buf)
5672 goto out;
5673
5674 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5675 buf, sizeof(file->pathname));
5676 if (IS_ERR(ptr))
5677 goto out;
5678
5679 strcpy(file->pathname, ptr);
5680
5681copy_out:
5682 err = 0;
5683 if (copy_to_user(arg, file, sizeof(*file)))
5684 err = -EFAULT;
5685out:
5686 kfree(buf);
5687 kfree(file);
5688 return err;
5689}
5690
5691static int get_disk_info(struct mddev * mddev, void __user * arg)
5692{
5693 mdu_disk_info_t info;
5694 struct md_rdev *rdev;
5695
5696 if (copy_from_user(&info, arg, sizeof(info)))
5697 return -EFAULT;
5698
5699 rdev = find_rdev_nr(mddev, info.number);
5700 if (rdev) {
5701 info.major = MAJOR(rdev->bdev->bd_dev);
5702 info.minor = MINOR(rdev->bdev->bd_dev);
5703 info.raid_disk = rdev->raid_disk;
5704 info.state = 0;
5705 if (test_bit(Faulty, &rdev->flags))
5706 info.state |= (1<<MD_DISK_FAULTY);
5707 else if (test_bit(In_sync, &rdev->flags)) {
5708 info.state |= (1<<MD_DISK_ACTIVE);
5709 info.state |= (1<<MD_DISK_SYNC);
5710 }
5711 if (test_bit(WriteMostly, &rdev->flags))
5712 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5713 } else {
5714 info.major = info.minor = 0;
5715 info.raid_disk = -1;
5716 info.state = (1<<MD_DISK_REMOVED);
5717 }
5718
5719 if (copy_to_user(arg, &info, sizeof(info)))
5720 return -EFAULT;
5721
5722 return 0;
5723}
5724
5725static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5726{
5727 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5728 struct md_rdev *rdev;
5729 dev_t dev = MKDEV(info->major,info->minor);
5730
5731 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5732 return -EOVERFLOW;
5733
5734 if (!mddev->raid_disks) {
5735 int err;
5736 /* expecting a device which has a superblock */
5737 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5738 if (IS_ERR(rdev)) {
5739 printk(KERN_WARNING
5740 "md: md_import_device returned %ld\n",
5741 PTR_ERR(rdev));
5742 return PTR_ERR(rdev);
5743 }
5744 if (!list_empty(&mddev->disks)) {
5745 struct md_rdev *rdev0
5746 = list_entry(mddev->disks.next,
5747 struct md_rdev, same_set);
5748 err = super_types[mddev->major_version]
5749 .load_super(rdev, rdev0, mddev->minor_version);
5750 if (err < 0) {
5751 printk(KERN_WARNING
5752 "md: %s has different UUID to %s\n",
5753 bdevname(rdev->bdev,b),
5754 bdevname(rdev0->bdev,b2));
5755 export_rdev(rdev);
5756 return -EINVAL;
5757 }
5758 }
5759 err = bind_rdev_to_array(rdev, mddev);
5760 if (err)
5761 export_rdev(rdev);
5762 return err;
5763 }
5764
5765 /*
5766 * add_new_disk can be used once the array is assembled
5767 * to add "hot spares". They must already have a superblock
5768 * written
5769 */
5770 if (mddev->pers) {
5771 int err;
5772 if (!mddev->pers->hot_add_disk) {
5773 printk(KERN_WARNING
5774 "%s: personality does not support diskops!\n",
5775 mdname(mddev));
5776 return -EINVAL;
5777 }
5778 if (mddev->persistent)
5779 rdev = md_import_device(dev, mddev->major_version,
5780 mddev->minor_version);
5781 else
5782 rdev = md_import_device(dev, -1, -1);
5783 if (IS_ERR(rdev)) {
5784 printk(KERN_WARNING
5785 "md: md_import_device returned %ld\n",
5786 PTR_ERR(rdev));
5787 return PTR_ERR(rdev);
5788 }
5789 /* set saved_raid_disk if appropriate */
5790 if (!mddev->persistent) {
5791 if (info->state & (1<<MD_DISK_SYNC) &&
5792 info->raid_disk < mddev->raid_disks) {
5793 rdev->raid_disk = info->raid_disk;
5794 set_bit(In_sync, &rdev->flags);
5795 } else
5796 rdev->raid_disk = -1;
5797 } else
5798 super_types[mddev->major_version].
5799 validate_super(mddev, rdev);
5800 if ((info->state & (1<<MD_DISK_SYNC)) &&
5801 rdev->raid_disk != info->raid_disk) {
5802 /* This was a hot-add request, but events doesn't
5803 * match, so reject it.
5804 */
5805 export_rdev(rdev);
5806 return -EINVAL;
5807 }
5808
5809 if (test_bit(In_sync, &rdev->flags))
5810 rdev->saved_raid_disk = rdev->raid_disk;
5811 else
5812 rdev->saved_raid_disk = -1;
5813
5814 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5815 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5816 set_bit(WriteMostly, &rdev->flags);
5817 else
5818 clear_bit(WriteMostly, &rdev->flags);
5819
5820 rdev->raid_disk = -1;
5821 err = bind_rdev_to_array(rdev, mddev);
5822 if (!err && !mddev->pers->hot_remove_disk) {
5823 /* If there is hot_add_disk but no hot_remove_disk
5824 * then added disks for geometry changes,
5825 * and should be added immediately.
5826 */
5827 super_types[mddev->major_version].
5828 validate_super(mddev, rdev);
5829 err = mddev->pers->hot_add_disk(mddev, rdev);
5830 if (err)
5831 unbind_rdev_from_array(rdev);
5832 }
5833 if (err)
5834 export_rdev(rdev);
5835 else
5836 sysfs_notify_dirent_safe(rdev->sysfs_state);
5837
5838 md_update_sb(mddev, 1);
5839 if (mddev->degraded)
5840 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5841 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5842 if (!err)
5843 md_new_event(mddev);
5844 md_wakeup_thread(mddev->thread);
5845 return err;
5846 }
5847
5848 /* otherwise, add_new_disk is only allowed
5849 * for major_version==0 superblocks
5850 */
5851 if (mddev->major_version != 0) {
5852 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5853 mdname(mddev));
5854 return -EINVAL;
5855 }
5856
5857 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5858 int err;
5859 rdev = md_import_device(dev, -1, 0);
5860 if (IS_ERR(rdev)) {
5861 printk(KERN_WARNING
5862 "md: error, md_import_device() returned %ld\n",
5863 PTR_ERR(rdev));
5864 return PTR_ERR(rdev);
5865 }
5866 rdev->desc_nr = info->number;
5867 if (info->raid_disk < mddev->raid_disks)
5868 rdev->raid_disk = info->raid_disk;
5869 else
5870 rdev->raid_disk = -1;
5871
5872 if (rdev->raid_disk < mddev->raid_disks)
5873 if (info->state & (1<<MD_DISK_SYNC))
5874 set_bit(In_sync, &rdev->flags);
5875
5876 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5877 set_bit(WriteMostly, &rdev->flags);
5878
5879 if (!mddev->persistent) {
5880 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5881 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5882 } else
5883 rdev->sb_start = calc_dev_sboffset(rdev);
5884 rdev->sectors = rdev->sb_start;
5885
5886 err = bind_rdev_to_array(rdev, mddev);
5887 if (err) {
5888 export_rdev(rdev);
5889 return err;
5890 }
5891 }
5892
5893 return 0;
5894}
5895
5896static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5897{
5898 char b[BDEVNAME_SIZE];
5899 struct md_rdev *rdev;
5900
5901 rdev = find_rdev(mddev, dev);
5902 if (!rdev)
5903 return -ENXIO;
5904
5905 if (rdev->raid_disk >= 0)
5906 goto busy;
5907
5908 kick_rdev_from_array(rdev);
5909 md_update_sb(mddev, 1);
5910 md_new_event(mddev);
5911
5912 return 0;
5913busy:
5914 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5915 bdevname(rdev->bdev,b), mdname(mddev));
5916 return -EBUSY;
5917}
5918
5919static int hot_add_disk(struct mddev * mddev, dev_t dev)
5920{
5921 char b[BDEVNAME_SIZE];
5922 int err;
5923 struct md_rdev *rdev;
5924
5925 if (!mddev->pers)
5926 return -ENODEV;
5927
5928 if (mddev->major_version != 0) {
5929 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5930 " version-0 superblocks.\n",
5931 mdname(mddev));
5932 return -EINVAL;
5933 }
5934 if (!mddev->pers->hot_add_disk) {
5935 printk(KERN_WARNING
5936 "%s: personality does not support diskops!\n",
5937 mdname(mddev));
5938 return -EINVAL;
5939 }
5940
5941 rdev = md_import_device(dev, -1, 0);
5942 if (IS_ERR(rdev)) {
5943 printk(KERN_WARNING
5944 "md: error, md_import_device() returned %ld\n",
5945 PTR_ERR(rdev));
5946 return -EINVAL;
5947 }
5948
5949 if (mddev->persistent)
5950 rdev->sb_start = calc_dev_sboffset(rdev);
5951 else
5952 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5953
5954 rdev->sectors = rdev->sb_start;
5955
5956 if (test_bit(Faulty, &rdev->flags)) {
5957 printk(KERN_WARNING
5958 "md: can not hot-add faulty %s disk to %s!\n",
5959 bdevname(rdev->bdev,b), mdname(mddev));
5960 err = -EINVAL;
5961 goto abort_export;
5962 }
5963 clear_bit(In_sync, &rdev->flags);
5964 rdev->desc_nr = -1;
5965 rdev->saved_raid_disk = -1;
5966 err = bind_rdev_to_array(rdev, mddev);
5967 if (err)
5968 goto abort_export;
5969
5970 /*
5971 * The rest should better be atomic, we can have disk failures
5972 * noticed in interrupt contexts ...
5973 */
5974
5975 rdev->raid_disk = -1;
5976
5977 md_update_sb(mddev, 1);
5978
5979 /*
5980 * Kick recovery, maybe this spare has to be added to the
5981 * array immediately.
5982 */
5983 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5984 md_wakeup_thread(mddev->thread);
5985 md_new_event(mddev);
5986 return 0;
5987
5988abort_export:
5989 export_rdev(rdev);
5990 return err;
5991}
5992
5993static int set_bitmap_file(struct mddev *mddev, int fd)
5994{
5995 int err;
5996
5997 if (mddev->pers) {
5998 if (!mddev->pers->quiesce)
5999 return -EBUSY;
6000 if (mddev->recovery || mddev->sync_thread)
6001 return -EBUSY;
6002 /* we should be able to change the bitmap.. */
6003 }
6004
6005
6006 if (fd >= 0) {
6007 if (mddev->bitmap)
6008 return -EEXIST; /* cannot add when bitmap is present */
6009 mddev->bitmap_info.file = fget(fd);
6010
6011 if (mddev->bitmap_info.file == NULL) {
6012 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6013 mdname(mddev));
6014 return -EBADF;
6015 }
6016
6017 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6018 if (err) {
6019 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6020 mdname(mddev));
6021 fput(mddev->bitmap_info.file);
6022 mddev->bitmap_info.file = NULL;
6023 return err;
6024 }
6025 mddev->bitmap_info.offset = 0; /* file overrides offset */
6026 } else if (mddev->bitmap == NULL)
6027 return -ENOENT; /* cannot remove what isn't there */
6028 err = 0;
6029 if (mddev->pers) {
6030 mddev->pers->quiesce(mddev, 1);
6031 if (fd >= 0) {
6032 err = bitmap_create(mddev);
6033 if (!err)
6034 err = bitmap_load(mddev);
6035 }
6036 if (fd < 0 || err) {
6037 bitmap_destroy(mddev);
6038 fd = -1; /* make sure to put the file */
6039 }
6040 mddev->pers->quiesce(mddev, 0);
6041 }
6042 if (fd < 0) {
6043 if (mddev->bitmap_info.file) {
6044 restore_bitmap_write_access(mddev->bitmap_info.file);
6045 fput(mddev->bitmap_info.file);
6046 }
6047 mddev->bitmap_info.file = NULL;
6048 }
6049
6050 return err;
6051}
6052
6053/*
6054 * set_array_info is used two different ways
6055 * The original usage is when creating a new array.
6056 * In this usage, raid_disks is > 0 and it together with
6057 * level, size, not_persistent,layout,chunksize determine the
6058 * shape of the array.
6059 * This will always create an array with a type-0.90.0 superblock.
6060 * The newer usage is when assembling an array.
6061 * In this case raid_disks will be 0, and the major_version field is
6062 * use to determine which style super-blocks are to be found on the devices.
6063 * The minor and patch _version numbers are also kept incase the
6064 * super_block handler wishes to interpret them.
6065 */
6066static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6067{
6068
6069 if (info->raid_disks == 0) {
6070 /* just setting version number for superblock loading */
6071 if (info->major_version < 0 ||
6072 info->major_version >= ARRAY_SIZE(super_types) ||
6073 super_types[info->major_version].name == NULL) {
6074 /* maybe try to auto-load a module? */
6075 printk(KERN_INFO
6076 "md: superblock version %d not known\n",
6077 info->major_version);
6078 return -EINVAL;
6079 }
6080 mddev->major_version = info->major_version;
6081 mddev->minor_version = info->minor_version;
6082 mddev->patch_version = info->patch_version;
6083 mddev->persistent = !info->not_persistent;
6084 /* ensure mddev_put doesn't delete this now that there
6085 * is some minimal configuration.
6086 */
6087 mddev->ctime = get_seconds();
6088 return 0;
6089 }
6090 mddev->major_version = MD_MAJOR_VERSION;
6091 mddev->minor_version = MD_MINOR_VERSION;
6092 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6093 mddev->ctime = get_seconds();
6094
6095 mddev->level = info->level;
6096 mddev->clevel[0] = 0;
6097 mddev->dev_sectors = 2 * (sector_t)info->size;
6098 mddev->raid_disks = info->raid_disks;
6099 /* don't set md_minor, it is determined by which /dev/md* was
6100 * openned
6101 */
6102 if (info->state & (1<<MD_SB_CLEAN))
6103 mddev->recovery_cp = MaxSector;
6104 else
6105 mddev->recovery_cp = 0;
6106 mddev->persistent = ! info->not_persistent;
6107 mddev->external = 0;
6108
6109 mddev->layout = info->layout;
6110 mddev->chunk_sectors = info->chunk_size >> 9;
6111
6112 mddev->max_disks = MD_SB_DISKS;
6113
6114 if (mddev->persistent)
6115 mddev->flags = 0;
6116 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6117
6118 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6119 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6120 mddev->bitmap_info.offset = 0;
6121
6122 mddev->reshape_position = MaxSector;
6123
6124 /*
6125 * Generate a 128 bit UUID
6126 */
6127 get_random_bytes(mddev->uuid, 16);
6128
6129 mddev->new_level = mddev->level;
6130 mddev->new_chunk_sectors = mddev->chunk_sectors;
6131 mddev->new_layout = mddev->layout;
6132 mddev->delta_disks = 0;
6133 mddev->reshape_backwards = 0;
6134
6135 return 0;
6136}
6137
6138void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6139{
6140 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6141
6142 if (mddev->external_size)
6143 return;
6144
6145 mddev->array_sectors = array_sectors;
6146}
6147EXPORT_SYMBOL(md_set_array_sectors);
6148
6149static int update_size(struct mddev *mddev, sector_t num_sectors)
6150{
6151 struct md_rdev *rdev;
6152 int rv;
6153 int fit = (num_sectors == 0);
6154
6155 if (mddev->pers->resize == NULL)
6156 return -EINVAL;
6157 /* The "num_sectors" is the number of sectors of each device that
6158 * is used. This can only make sense for arrays with redundancy.
6159 * linear and raid0 always use whatever space is available. We can only
6160 * consider changing this number if no resync or reconstruction is
6161 * happening, and if the new size is acceptable. It must fit before the
6162 * sb_start or, if that is <data_offset, it must fit before the size
6163 * of each device. If num_sectors is zero, we find the largest size
6164 * that fits.
6165 */
6166 if (mddev->sync_thread)
6167 return -EBUSY;
6168
6169 rdev_for_each(rdev, mddev) {
6170 sector_t avail = rdev->sectors;
6171
6172 if (fit && (num_sectors == 0 || num_sectors > avail))
6173 num_sectors = avail;
6174 if (avail < num_sectors)
6175 return -ENOSPC;
6176 }
6177 rv = mddev->pers->resize(mddev, num_sectors);
6178 if (!rv)
6179 revalidate_disk(mddev->gendisk);
6180 return rv;
6181}
6182
6183static int update_raid_disks(struct mddev *mddev, int raid_disks)
6184{
6185 int rv;
6186 struct md_rdev *rdev;
6187 /* change the number of raid disks */
6188 if (mddev->pers->check_reshape == NULL)
6189 return -EINVAL;
6190 if (raid_disks <= 0 ||
6191 (mddev->max_disks && raid_disks >= mddev->max_disks))
6192 return -EINVAL;
6193 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6194 return -EBUSY;
6195
6196 rdev_for_each(rdev, mddev) {
6197 if (mddev->raid_disks < raid_disks &&
6198 rdev->data_offset < rdev->new_data_offset)
6199 return -EINVAL;
6200 if (mddev->raid_disks > raid_disks &&
6201 rdev->data_offset > rdev->new_data_offset)
6202 return -EINVAL;
6203 }
6204
6205 mddev->delta_disks = raid_disks - mddev->raid_disks;
6206 if (mddev->delta_disks < 0)
6207 mddev->reshape_backwards = 1;
6208 else if (mddev->delta_disks > 0)
6209 mddev->reshape_backwards = 0;
6210
6211 rv = mddev->pers->check_reshape(mddev);
6212 if (rv < 0) {
6213 mddev->delta_disks = 0;
6214 mddev->reshape_backwards = 0;
6215 }
6216 return rv;
6217}
6218
6219
6220/*
6221 * update_array_info is used to change the configuration of an
6222 * on-line array.
6223 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6224 * fields in the info are checked against the array.
6225 * Any differences that cannot be handled will cause an error.
6226 * Normally, only one change can be managed at a time.
6227 */
6228static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6229{
6230 int rv = 0;
6231 int cnt = 0;
6232 int state = 0;
6233
6234 /* calculate expected state,ignoring low bits */
6235 if (mddev->bitmap && mddev->bitmap_info.offset)
6236 state |= (1 << MD_SB_BITMAP_PRESENT);
6237
6238 if (mddev->major_version != info->major_version ||
6239 mddev->minor_version != info->minor_version ||
6240/* mddev->patch_version != info->patch_version || */
6241 mddev->ctime != info->ctime ||
6242 mddev->level != info->level ||
6243/* mddev->layout != info->layout || */
6244 !mddev->persistent != info->not_persistent||
6245 mddev->chunk_sectors != info->chunk_size >> 9 ||
6246 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6247 ((state^info->state) & 0xfffffe00)
6248 )
6249 return -EINVAL;
6250 /* Check there is only one change */
6251 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6252 cnt++;
6253 if (mddev->raid_disks != info->raid_disks)
6254 cnt++;
6255 if (mddev->layout != info->layout)
6256 cnt++;
6257 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6258 cnt++;
6259 if (cnt == 0)
6260 return 0;
6261 if (cnt > 1)
6262 return -EINVAL;
6263
6264 if (mddev->layout != info->layout) {
6265 /* Change layout
6266 * we don't need to do anything at the md level, the
6267 * personality will take care of it all.
6268 */
6269 if (mddev->pers->check_reshape == NULL)
6270 return -EINVAL;
6271 else {
6272 mddev->new_layout = info->layout;
6273 rv = mddev->pers->check_reshape(mddev);
6274 if (rv)
6275 mddev->new_layout = mddev->layout;
6276 return rv;
6277 }
6278 }
6279 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6280 rv = update_size(mddev, (sector_t)info->size * 2);
6281
6282 if (mddev->raid_disks != info->raid_disks)
6283 rv = update_raid_disks(mddev, info->raid_disks);
6284
6285 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6286 if (mddev->pers->quiesce == NULL)
6287 return -EINVAL;
6288 if (mddev->recovery || mddev->sync_thread)
6289 return -EBUSY;
6290 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6291 /* add the bitmap */
6292 if (mddev->bitmap)
6293 return -EEXIST;
6294 if (mddev->bitmap_info.default_offset == 0)
6295 return -EINVAL;
6296 mddev->bitmap_info.offset =
6297 mddev->bitmap_info.default_offset;
6298 mddev->bitmap_info.space =
6299 mddev->bitmap_info.default_space;
6300 mddev->pers->quiesce(mddev, 1);
6301 rv = bitmap_create(mddev);
6302 if (!rv)
6303 rv = bitmap_load(mddev);
6304 if (rv)
6305 bitmap_destroy(mddev);
6306 mddev->pers->quiesce(mddev, 0);
6307 } else {
6308 /* remove the bitmap */
6309 if (!mddev->bitmap)
6310 return -ENOENT;
6311 if (mddev->bitmap->storage.file)
6312 return -EINVAL;
6313 mddev->pers->quiesce(mddev, 1);
6314 bitmap_destroy(mddev);
6315 mddev->pers->quiesce(mddev, 0);
6316 mddev->bitmap_info.offset = 0;
6317 }
6318 }
6319 md_update_sb(mddev, 1);
6320 return rv;
6321}
6322
6323static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6324{
6325 struct md_rdev *rdev;
6326
6327 if (mddev->pers == NULL)
6328 return -ENODEV;
6329
6330 rdev = find_rdev(mddev, dev);
6331 if (!rdev)
6332 return -ENODEV;
6333
6334 md_error(mddev, rdev);
6335 if (!test_bit(Faulty, &rdev->flags))
6336 return -EBUSY;
6337 return 0;
6338}
6339
6340/*
6341 * We have a problem here : there is no easy way to give a CHS
6342 * virtual geometry. We currently pretend that we have a 2 heads
6343 * 4 sectors (with a BIG number of cylinders...). This drives
6344 * dosfs just mad... ;-)
6345 */
6346static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6347{
6348 struct mddev *mddev = bdev->bd_disk->private_data;
6349
6350 geo->heads = 2;
6351 geo->sectors = 4;
6352 geo->cylinders = mddev->array_sectors / 8;
6353 return 0;
6354}
6355
6356static int md_ioctl(struct block_device *bdev, fmode_t mode,
6357 unsigned int cmd, unsigned long arg)
6358{
6359 int err = 0;
6360 void __user *argp = (void __user *)arg;
6361 struct mddev *mddev = NULL;
6362 int ro;
6363
6364 switch (cmd) {
6365 case RAID_VERSION:
6366 case GET_ARRAY_INFO:
6367 case GET_DISK_INFO:
6368 break;
6369 default:
6370 if (!capable(CAP_SYS_ADMIN))
6371 return -EACCES;
6372 }
6373
6374 /*
6375 * Commands dealing with the RAID driver but not any
6376 * particular array:
6377 */
6378 switch (cmd)
6379 {
6380 case RAID_VERSION:
6381 err = get_version(argp);
6382 goto done;
6383
6384 case PRINT_RAID_DEBUG:
6385 err = 0;
6386 md_print_devices();
6387 goto done;
6388
6389#ifndef MODULE
6390 case RAID_AUTORUN:
6391 err = 0;
6392 autostart_arrays(arg);
6393 goto done;
6394#endif
6395 default:;
6396 }
6397
6398 /*
6399 * Commands creating/starting a new array:
6400 */
6401
6402 mddev = bdev->bd_disk->private_data;
6403
6404 if (!mddev) {
6405 BUG();
6406 goto abort;
6407 }
6408
6409 err = mddev_lock(mddev);
6410 if (err) {
6411 printk(KERN_INFO
6412 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6413 err, cmd);
6414 goto abort;
6415 }
6416
6417 switch (cmd)
6418 {
6419 case SET_ARRAY_INFO:
6420 {
6421 mdu_array_info_t info;
6422 if (!arg)
6423 memset(&info, 0, sizeof(info));
6424 else if (copy_from_user(&info, argp, sizeof(info))) {
6425 err = -EFAULT;
6426 goto abort_unlock;
6427 }
6428 if (mddev->pers) {
6429 err = update_array_info(mddev, &info);
6430 if (err) {
6431 printk(KERN_WARNING "md: couldn't update"
6432 " array info. %d\n", err);
6433 goto abort_unlock;
6434 }
6435 goto done_unlock;
6436 }
6437 if (!list_empty(&mddev->disks)) {
6438 printk(KERN_WARNING
6439 "md: array %s already has disks!\n",
6440 mdname(mddev));
6441 err = -EBUSY;
6442 goto abort_unlock;
6443 }
6444 if (mddev->raid_disks) {
6445 printk(KERN_WARNING
6446 "md: array %s already initialised!\n",
6447 mdname(mddev));
6448 err = -EBUSY;
6449 goto abort_unlock;
6450 }
6451 err = set_array_info(mddev, &info);
6452 if (err) {
6453 printk(KERN_WARNING "md: couldn't set"
6454 " array info. %d\n", err);
6455 goto abort_unlock;
6456 }
6457 }
6458 goto done_unlock;
6459
6460 default:;
6461 }
6462
6463 /*
6464 * Commands querying/configuring an existing array:
6465 */
6466 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6467 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6468 if ((!mddev->raid_disks && !mddev->external)
6469 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6470 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6471 && cmd != GET_BITMAP_FILE) {
6472 err = -ENODEV;
6473 goto abort_unlock;
6474 }
6475
6476 /*
6477 * Commands even a read-only array can execute:
6478 */
6479 switch (cmd)
6480 {
6481 case GET_ARRAY_INFO:
6482 err = get_array_info(mddev, argp);
6483 goto done_unlock;
6484
6485 case GET_BITMAP_FILE:
6486 err = get_bitmap_file(mddev, argp);
6487 goto done_unlock;
6488
6489 case GET_DISK_INFO:
6490 err = get_disk_info(mddev, argp);
6491 goto done_unlock;
6492
6493 case RESTART_ARRAY_RW:
6494 err = restart_array(mddev);
6495 goto done_unlock;
6496
6497 case STOP_ARRAY:
6498 err = do_md_stop(mddev, 0, bdev);
6499 goto done_unlock;
6500
6501 case STOP_ARRAY_RO:
6502 err = md_set_readonly(mddev, bdev);
6503 goto done_unlock;
6504
6505 case BLKROSET:
6506 if (get_user(ro, (int __user *)(arg))) {
6507 err = -EFAULT;
6508 goto done_unlock;
6509 }
6510 err = -EINVAL;
6511
6512 /* if the bdev is going readonly the value of mddev->ro
6513 * does not matter, no writes are coming
6514 */
6515 if (ro)
6516 goto done_unlock;
6517
6518 /* are we are already prepared for writes? */
6519 if (mddev->ro != 1)
6520 goto done_unlock;
6521
6522 /* transitioning to readauto need only happen for
6523 * arrays that call md_write_start
6524 */
6525 if (mddev->pers) {
6526 err = restart_array(mddev);
6527 if (err == 0) {
6528 mddev->ro = 2;
6529 set_disk_ro(mddev->gendisk, 0);
6530 }
6531 }
6532 goto done_unlock;
6533 }
6534
6535 /*
6536 * The remaining ioctls are changing the state of the
6537 * superblock, so we do not allow them on read-only arrays.
6538 * However non-MD ioctls (e.g. get-size) will still come through
6539 * here and hit the 'default' below, so only disallow
6540 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6541 */
6542 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6543 if (mddev->ro == 2) {
6544 mddev->ro = 0;
6545 sysfs_notify_dirent_safe(mddev->sysfs_state);
6546 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6547 md_wakeup_thread(mddev->thread);
6548 } else {
6549 err = -EROFS;
6550 goto abort_unlock;
6551 }
6552 }
6553
6554 switch (cmd)
6555 {
6556 case ADD_NEW_DISK:
6557 {
6558 mdu_disk_info_t info;
6559 if (copy_from_user(&info, argp, sizeof(info)))
6560 err = -EFAULT;
6561 else
6562 err = add_new_disk(mddev, &info);
6563 goto done_unlock;
6564 }
6565
6566 case HOT_REMOVE_DISK:
6567 err = hot_remove_disk(mddev, new_decode_dev(arg));
6568 goto done_unlock;
6569
6570 case HOT_ADD_DISK:
6571 err = hot_add_disk(mddev, new_decode_dev(arg));
6572 goto done_unlock;
6573
6574 case SET_DISK_FAULTY:
6575 err = set_disk_faulty(mddev, new_decode_dev(arg));
6576 goto done_unlock;
6577
6578 case RUN_ARRAY:
6579 err = do_md_run(mddev);
6580 goto done_unlock;
6581
6582 case SET_BITMAP_FILE:
6583 err = set_bitmap_file(mddev, (int)arg);
6584 goto done_unlock;
6585
6586 default:
6587 err = -EINVAL;
6588 goto abort_unlock;
6589 }
6590
6591done_unlock:
6592abort_unlock:
6593 if (mddev->hold_active == UNTIL_IOCTL &&
6594 err != -EINVAL)
6595 mddev->hold_active = 0;
6596 mddev_unlock(mddev);
6597
6598 return err;
6599done:
6600 if (err)
6601 MD_BUG();
6602abort:
6603 return err;
6604}
6605#ifdef CONFIG_COMPAT
6606static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6607 unsigned int cmd, unsigned long arg)
6608{
6609 switch (cmd) {
6610 case HOT_REMOVE_DISK:
6611 case HOT_ADD_DISK:
6612 case SET_DISK_FAULTY:
6613 case SET_BITMAP_FILE:
6614 /* These take in integer arg, do not convert */
6615 break;
6616 default:
6617 arg = (unsigned long)compat_ptr(arg);
6618 break;
6619 }
6620
6621 return md_ioctl(bdev, mode, cmd, arg);
6622}
6623#endif /* CONFIG_COMPAT */
6624
6625static int md_open(struct block_device *bdev, fmode_t mode)
6626{
6627 /*
6628 * Succeed if we can lock the mddev, which confirms that
6629 * it isn't being stopped right now.
6630 */
6631 struct mddev *mddev = mddev_find(bdev->bd_dev);
6632 int err;
6633
6634 if (!mddev)
6635 return -ENODEV;
6636
6637 if (mddev->gendisk != bdev->bd_disk) {
6638 /* we are racing with mddev_put which is discarding this
6639 * bd_disk.
6640 */
6641 mddev_put(mddev);
6642 /* Wait until bdev->bd_disk is definitely gone */
6643 flush_workqueue(md_misc_wq);
6644 /* Then retry the open from the top */
6645 return -ERESTARTSYS;
6646 }
6647 BUG_ON(mddev != bdev->bd_disk->private_data);
6648
6649 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6650 goto out;
6651
6652 err = 0;
6653 atomic_inc(&mddev->openers);
6654 mutex_unlock(&mddev->open_mutex);
6655
6656 check_disk_change(bdev);
6657 out:
6658 return err;
6659}
6660
6661static int md_release(struct gendisk *disk, fmode_t mode)
6662{
6663 struct mddev *mddev = disk->private_data;
6664
6665 BUG_ON(!mddev);
6666 atomic_dec(&mddev->openers);
6667 mddev_put(mddev);
6668
6669 return 0;
6670}
6671
6672static int md_media_changed(struct gendisk *disk)
6673{
6674 struct mddev *mddev = disk->private_data;
6675
6676 return mddev->changed;
6677}
6678
6679static int md_revalidate(struct gendisk *disk)
6680{
6681 struct mddev *mddev = disk->private_data;
6682
6683 mddev->changed = 0;
6684 return 0;
6685}
6686static const struct block_device_operations md_fops =
6687{
6688 .owner = THIS_MODULE,
6689 .open = md_open,
6690 .release = md_release,
6691 .ioctl = md_ioctl,
6692#ifdef CONFIG_COMPAT
6693 .compat_ioctl = md_compat_ioctl,
6694#endif
6695 .getgeo = md_getgeo,
6696 .media_changed = md_media_changed,
6697 .revalidate_disk= md_revalidate,
6698};
6699
6700static int md_thread(void * arg)
6701{
6702 struct md_thread *thread = arg;
6703
6704 /*
6705 * md_thread is a 'system-thread', it's priority should be very
6706 * high. We avoid resource deadlocks individually in each
6707 * raid personality. (RAID5 does preallocation) We also use RR and
6708 * the very same RT priority as kswapd, thus we will never get
6709 * into a priority inversion deadlock.
6710 *
6711 * we definitely have to have equal or higher priority than
6712 * bdflush, otherwise bdflush will deadlock if there are too
6713 * many dirty RAID5 blocks.
6714 */
6715
6716 allow_signal(SIGKILL);
6717 while (!kthread_should_stop()) {
6718
6719 /* We need to wait INTERRUPTIBLE so that
6720 * we don't add to the load-average.
6721 * That means we need to be sure no signals are
6722 * pending
6723 */
6724 if (signal_pending(current))
6725 flush_signals(current);
6726
6727 wait_event_interruptible_timeout
6728 (thread->wqueue,
6729 test_bit(THREAD_WAKEUP, &thread->flags)
6730 || kthread_should_stop(),
6731 thread->timeout);
6732
6733 clear_bit(THREAD_WAKEUP, &thread->flags);
6734 if (!kthread_should_stop())
6735 thread->run(thread->mddev);
6736 }
6737
6738 return 0;
6739}
6740
6741void md_wakeup_thread(struct md_thread *thread)
6742{
6743 if (thread) {
6744 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6745 set_bit(THREAD_WAKEUP, &thread->flags);
6746 wake_up(&thread->wqueue);
6747 }
6748}
6749
6750struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6751 const char *name)
6752{
6753 struct md_thread *thread;
6754
6755 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6756 if (!thread)
6757 return NULL;
6758
6759 init_waitqueue_head(&thread->wqueue);
6760
6761 thread->run = run;
6762 thread->mddev = mddev;
6763 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6764 thread->tsk = kthread_run(md_thread, thread,
6765 "%s_%s",
6766 mdname(thread->mddev),
6767 name);
6768 if (IS_ERR(thread->tsk)) {
6769 kfree(thread);
6770 return NULL;
6771 }
6772 return thread;
6773}
6774
6775void md_unregister_thread(struct md_thread **threadp)
6776{
6777 struct md_thread *thread = *threadp;
6778 if (!thread)
6779 return;
6780 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6781 /* Locking ensures that mddev_unlock does not wake_up a
6782 * non-existent thread
6783 */
6784 spin_lock(&pers_lock);
6785 *threadp = NULL;
6786 spin_unlock(&pers_lock);
6787
6788 kthread_stop(thread->tsk);
6789 kfree(thread);
6790}
6791
6792void md_error(struct mddev *mddev, struct md_rdev *rdev)
6793{
6794 if (!mddev) {
6795 MD_BUG();
6796 return;
6797 }
6798
6799 if (!rdev || test_bit(Faulty, &rdev->flags))
6800 return;
6801
6802 if (!mddev->pers || !mddev->pers->error_handler)
6803 return;
6804 mddev->pers->error_handler(mddev,rdev);
6805 if (mddev->degraded)
6806 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6807 sysfs_notify_dirent_safe(rdev->sysfs_state);
6808 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6809 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6810 md_wakeup_thread(mddev->thread);
6811 if (mddev->event_work.func)
6812 queue_work(md_misc_wq, &mddev->event_work);
6813 md_new_event_inintr(mddev);
6814}
6815
6816/* seq_file implementation /proc/mdstat */
6817
6818static void status_unused(struct seq_file *seq)
6819{
6820 int i = 0;
6821 struct md_rdev *rdev;
6822
6823 seq_printf(seq, "unused devices: ");
6824
6825 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6826 char b[BDEVNAME_SIZE];
6827 i++;
6828 seq_printf(seq, "%s ",
6829 bdevname(rdev->bdev,b));
6830 }
6831 if (!i)
6832 seq_printf(seq, "<none>");
6833
6834 seq_printf(seq, "\n");
6835}
6836
6837
6838static void status_resync(struct seq_file *seq, struct mddev * mddev)
6839{
6840 sector_t max_sectors, resync, res;
6841 unsigned long dt, db;
6842 sector_t rt;
6843 int scale;
6844 unsigned int per_milli;
6845
6846 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6847
6848 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6849 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6850 max_sectors = mddev->resync_max_sectors;
6851 else
6852 max_sectors = mddev->dev_sectors;
6853
6854 /*
6855 * Should not happen.
6856 */
6857 if (!max_sectors) {
6858 MD_BUG();
6859 return;
6860 }
6861 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6862 * in a sector_t, and (max_sectors>>scale) will fit in a
6863 * u32, as those are the requirements for sector_div.
6864 * Thus 'scale' must be at least 10
6865 */
6866 scale = 10;
6867 if (sizeof(sector_t) > sizeof(unsigned long)) {
6868 while ( max_sectors/2 > (1ULL<<(scale+32)))
6869 scale++;
6870 }
6871 res = (resync>>scale)*1000;
6872 sector_div(res, (u32)((max_sectors>>scale)+1));
6873
6874 per_milli = res;
6875 {
6876 int i, x = per_milli/50, y = 20-x;
6877 seq_printf(seq, "[");
6878 for (i = 0; i < x; i++)
6879 seq_printf(seq, "=");
6880 seq_printf(seq, ">");
6881 for (i = 0; i < y; i++)
6882 seq_printf(seq, ".");
6883 seq_printf(seq, "] ");
6884 }
6885 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6886 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6887 "reshape" :
6888 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6889 "check" :
6890 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6891 "resync" : "recovery"))),
6892 per_milli/10, per_milli % 10,
6893 (unsigned long long) resync/2,
6894 (unsigned long long) max_sectors/2);
6895
6896 /*
6897 * dt: time from mark until now
6898 * db: blocks written from mark until now
6899 * rt: remaining time
6900 *
6901 * rt is a sector_t, so could be 32bit or 64bit.
6902 * So we divide before multiply in case it is 32bit and close
6903 * to the limit.
6904 * We scale the divisor (db) by 32 to avoid losing precision
6905 * near the end of resync when the number of remaining sectors
6906 * is close to 'db'.
6907 * We then divide rt by 32 after multiplying by db to compensate.
6908 * The '+1' avoids division by zero if db is very small.
6909 */
6910 dt = ((jiffies - mddev->resync_mark) / HZ);
6911 if (!dt) dt++;
6912 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6913 - mddev->resync_mark_cnt;
6914
6915 rt = max_sectors - resync; /* number of remaining sectors */
6916 sector_div(rt, db/32+1);
6917 rt *= dt;
6918 rt >>= 5;
6919
6920 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6921 ((unsigned long)rt % 60)/6);
6922
6923 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6924}
6925
6926static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6927{
6928 struct list_head *tmp;
6929 loff_t l = *pos;
6930 struct mddev *mddev;
6931
6932 if (l >= 0x10000)
6933 return NULL;
6934 if (!l--)
6935 /* header */
6936 return (void*)1;
6937
6938 spin_lock(&all_mddevs_lock);
6939 list_for_each(tmp,&all_mddevs)
6940 if (!l--) {
6941 mddev = list_entry(tmp, struct mddev, all_mddevs);
6942 mddev_get(mddev);
6943 spin_unlock(&all_mddevs_lock);
6944 return mddev;
6945 }
6946 spin_unlock(&all_mddevs_lock);
6947 if (!l--)
6948 return (void*)2;/* tail */
6949 return NULL;
6950}
6951
6952static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6953{
6954 struct list_head *tmp;
6955 struct mddev *next_mddev, *mddev = v;
6956
6957 ++*pos;
6958 if (v == (void*)2)
6959 return NULL;
6960
6961 spin_lock(&all_mddevs_lock);
6962 if (v == (void*)1)
6963 tmp = all_mddevs.next;
6964 else
6965 tmp = mddev->all_mddevs.next;
6966 if (tmp != &all_mddevs)
6967 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6968 else {
6969 next_mddev = (void*)2;
6970 *pos = 0x10000;
6971 }
6972 spin_unlock(&all_mddevs_lock);
6973
6974 if (v != (void*)1)
6975 mddev_put(mddev);
6976 return next_mddev;
6977
6978}
6979
6980static void md_seq_stop(struct seq_file *seq, void *v)
6981{
6982 struct mddev *mddev = v;
6983
6984 if (mddev && v != (void*)1 && v != (void*)2)
6985 mddev_put(mddev);
6986}
6987
6988static int md_seq_show(struct seq_file *seq, void *v)
6989{
6990 struct mddev *mddev = v;
6991 sector_t sectors;
6992 struct md_rdev *rdev;
6993
6994 if (v == (void*)1) {
6995 struct md_personality *pers;
6996 seq_printf(seq, "Personalities : ");
6997 spin_lock(&pers_lock);
6998 list_for_each_entry(pers, &pers_list, list)
6999 seq_printf(seq, "[%s] ", pers->name);
7000
7001 spin_unlock(&pers_lock);
7002 seq_printf(seq, "\n");
7003 seq->poll_event = atomic_read(&md_event_count);
7004 return 0;
7005 }
7006 if (v == (void*)2) {
7007 status_unused(seq);
7008 return 0;
7009 }
7010
7011 if (mddev_lock(mddev) < 0)
7012 return -EINTR;
7013
7014 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7015 seq_printf(seq, "%s : %sactive", mdname(mddev),
7016 mddev->pers ? "" : "in");
7017 if (mddev->pers) {
7018 if (mddev->ro==1)
7019 seq_printf(seq, " (read-only)");
7020 if (mddev->ro==2)
7021 seq_printf(seq, " (auto-read-only)");
7022 seq_printf(seq, " %s", mddev->pers->name);
7023 }
7024
7025 sectors = 0;
7026 rdev_for_each(rdev, mddev) {
7027 char b[BDEVNAME_SIZE];
7028 seq_printf(seq, " %s[%d]",
7029 bdevname(rdev->bdev,b), rdev->desc_nr);
7030 if (test_bit(WriteMostly, &rdev->flags))
7031 seq_printf(seq, "(W)");
7032 if (test_bit(Faulty, &rdev->flags)) {
7033 seq_printf(seq, "(F)");
7034 continue;
7035 }
7036 if (rdev->raid_disk < 0)
7037 seq_printf(seq, "(S)"); /* spare */
7038 if (test_bit(Replacement, &rdev->flags))
7039 seq_printf(seq, "(R)");
7040 sectors += rdev->sectors;
7041 }
7042
7043 if (!list_empty(&mddev->disks)) {
7044 if (mddev->pers)
7045 seq_printf(seq, "\n %llu blocks",
7046 (unsigned long long)
7047 mddev->array_sectors / 2);
7048 else
7049 seq_printf(seq, "\n %llu blocks",
7050 (unsigned long long)sectors / 2);
7051 }
7052 if (mddev->persistent) {
7053 if (mddev->major_version != 0 ||
7054 mddev->minor_version != 90) {
7055 seq_printf(seq," super %d.%d",
7056 mddev->major_version,
7057 mddev->minor_version);
7058 }
7059 } else if (mddev->external)
7060 seq_printf(seq, " super external:%s",
7061 mddev->metadata_type);
7062 else
7063 seq_printf(seq, " super non-persistent");
7064
7065 if (mddev->pers) {
7066 mddev->pers->status(seq, mddev);
7067 seq_printf(seq, "\n ");
7068 if (mddev->pers->sync_request) {
7069 if (mddev->curr_resync > 2) {
7070 status_resync(seq, mddev);
7071 seq_printf(seq, "\n ");
7072 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7073 seq_printf(seq, "\tresync=DELAYED\n ");
7074 else if (mddev->recovery_cp < MaxSector)
7075 seq_printf(seq, "\tresync=PENDING\n ");
7076 }
7077 } else
7078 seq_printf(seq, "\n ");
7079
7080 bitmap_status(seq, mddev->bitmap);
7081
7082 seq_printf(seq, "\n");
7083 }
7084 mddev_unlock(mddev);
7085
7086 return 0;
7087}
7088
7089static const struct seq_operations md_seq_ops = {
7090 .start = md_seq_start,
7091 .next = md_seq_next,
7092 .stop = md_seq_stop,
7093 .show = md_seq_show,
7094};
7095
7096static int md_seq_open(struct inode *inode, struct file *file)
7097{
7098 struct seq_file *seq;
7099 int error;
7100
7101 error = seq_open(file, &md_seq_ops);
7102 if (error)
7103 return error;
7104
7105 seq = file->private_data;
7106 seq->poll_event = atomic_read(&md_event_count);
7107 return error;
7108}
7109
7110static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7111{
7112 struct seq_file *seq = filp->private_data;
7113 int mask;
7114
7115 poll_wait(filp, &md_event_waiters, wait);
7116
7117 /* always allow read */
7118 mask = POLLIN | POLLRDNORM;
7119
7120 if (seq->poll_event != atomic_read(&md_event_count))
7121 mask |= POLLERR | POLLPRI;
7122 return mask;
7123}
7124
7125static const struct file_operations md_seq_fops = {
7126 .owner = THIS_MODULE,
7127 .open = md_seq_open,
7128 .read = seq_read,
7129 .llseek = seq_lseek,
7130 .release = seq_release_private,
7131 .poll = mdstat_poll,
7132};
7133
7134int register_md_personality(struct md_personality *p)
7135{
7136 spin_lock(&pers_lock);
7137 list_add_tail(&p->list, &pers_list);
7138 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7139 spin_unlock(&pers_lock);
7140 return 0;
7141}
7142
7143int unregister_md_personality(struct md_personality *p)
7144{
7145 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7146 spin_lock(&pers_lock);
7147 list_del_init(&p->list);
7148 spin_unlock(&pers_lock);
7149 return 0;
7150}
7151
7152static int is_mddev_idle(struct mddev *mddev, int init)
7153{
7154 struct md_rdev * rdev;
7155 int idle;
7156 int curr_events;
7157
7158 idle = 1;
7159 rcu_read_lock();
7160 rdev_for_each_rcu(rdev, mddev) {
7161 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7162 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7163 (int)part_stat_read(&disk->part0, sectors[1]) -
7164 atomic_read(&disk->sync_io);
7165 /* sync IO will cause sync_io to increase before the disk_stats
7166 * as sync_io is counted when a request starts, and
7167 * disk_stats is counted when it completes.
7168 * So resync activity will cause curr_events to be smaller than
7169 * when there was no such activity.
7170 * non-sync IO will cause disk_stat to increase without
7171 * increasing sync_io so curr_events will (eventually)
7172 * be larger than it was before. Once it becomes
7173 * substantially larger, the test below will cause
7174 * the array to appear non-idle, and resync will slow
7175 * down.
7176 * If there is a lot of outstanding resync activity when
7177 * we set last_event to curr_events, then all that activity
7178 * completing might cause the array to appear non-idle
7179 * and resync will be slowed down even though there might
7180 * not have been non-resync activity. This will only
7181 * happen once though. 'last_events' will soon reflect
7182 * the state where there is little or no outstanding
7183 * resync requests, and further resync activity will
7184 * always make curr_events less than last_events.
7185 *
7186 */
7187 if (init || curr_events - rdev->last_events > 64) {
7188 rdev->last_events = curr_events;
7189 idle = 0;
7190 }
7191 }
7192 rcu_read_unlock();
7193 return idle;
7194}
7195
7196void md_done_sync(struct mddev *mddev, int blocks, int ok)
7197{
7198 /* another "blocks" (512byte) blocks have been synced */
7199 atomic_sub(blocks, &mddev->recovery_active);
7200 wake_up(&mddev->recovery_wait);
7201 if (!ok) {
7202 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7203 md_wakeup_thread(mddev->thread);
7204 // stop recovery, signal do_sync ....
7205 }
7206}
7207
7208
7209/* md_write_start(mddev, bi)
7210 * If we need to update some array metadata (e.g. 'active' flag
7211 * in superblock) before writing, schedule a superblock update
7212 * and wait for it to complete.
7213 */
7214void md_write_start(struct mddev *mddev, struct bio *bi)
7215{
7216 int did_change = 0;
7217 if (bio_data_dir(bi) != WRITE)
7218 return;
7219
7220 BUG_ON(mddev->ro == 1);
7221 if (mddev->ro == 2) {
7222 /* need to switch to read/write */
7223 mddev->ro = 0;
7224 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7225 md_wakeup_thread(mddev->thread);
7226 md_wakeup_thread(mddev->sync_thread);
7227 did_change = 1;
7228 }
7229 atomic_inc(&mddev->writes_pending);
7230 if (mddev->safemode == 1)
7231 mddev->safemode = 0;
7232 if (mddev->in_sync) {
7233 spin_lock_irq(&mddev->write_lock);
7234 if (mddev->in_sync) {
7235 mddev->in_sync = 0;
7236 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7237 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7238 md_wakeup_thread(mddev->thread);
7239 did_change = 1;
7240 }
7241 spin_unlock_irq(&mddev->write_lock);
7242 }
7243 if (did_change)
7244 sysfs_notify_dirent_safe(mddev->sysfs_state);
7245 wait_event(mddev->sb_wait,
7246 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7247}
7248
7249void md_write_end(struct mddev *mddev)
7250{
7251 if (atomic_dec_and_test(&mddev->writes_pending)) {
7252 if (mddev->safemode == 2)
7253 md_wakeup_thread(mddev->thread);
7254 else if (mddev->safemode_delay)
7255 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7256 }
7257}
7258
7259/* md_allow_write(mddev)
7260 * Calling this ensures that the array is marked 'active' so that writes
7261 * may proceed without blocking. It is important to call this before
7262 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7263 * Must be called with mddev_lock held.
7264 *
7265 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7266 * is dropped, so return -EAGAIN after notifying userspace.
7267 */
7268int md_allow_write(struct mddev *mddev)
7269{
7270 if (!mddev->pers)
7271 return 0;
7272 if (mddev->ro)
7273 return 0;
7274 if (!mddev->pers->sync_request)
7275 return 0;
7276
7277 spin_lock_irq(&mddev->write_lock);
7278 if (mddev->in_sync) {
7279 mddev->in_sync = 0;
7280 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7281 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7282 if (mddev->safemode_delay &&
7283 mddev->safemode == 0)
7284 mddev->safemode = 1;
7285 spin_unlock_irq(&mddev->write_lock);
7286 md_update_sb(mddev, 0);
7287 sysfs_notify_dirent_safe(mddev->sysfs_state);
7288 } else
7289 spin_unlock_irq(&mddev->write_lock);
7290
7291 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7292 return -EAGAIN;
7293 else
7294 return 0;
7295}
7296EXPORT_SYMBOL_GPL(md_allow_write);
7297
7298#define SYNC_MARKS 10
7299#define SYNC_MARK_STEP (3*HZ)
7300void md_do_sync(struct mddev *mddev)
7301{
7302 struct mddev *mddev2;
7303 unsigned int currspeed = 0,
7304 window;
7305 sector_t max_sectors,j, io_sectors;
7306 unsigned long mark[SYNC_MARKS];
7307 sector_t mark_cnt[SYNC_MARKS];
7308 int last_mark,m;
7309 struct list_head *tmp;
7310 sector_t last_check;
7311 int skipped = 0;
7312 struct md_rdev *rdev;
7313 char *desc;
7314 struct blk_plug plug;
7315
7316 /* just incase thread restarts... */
7317 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7318 return;
7319 if (mddev->ro) /* never try to sync a read-only array */
7320 return;
7321
7322 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7323 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7324 desc = "data-check";
7325 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7326 desc = "requested-resync";
7327 else
7328 desc = "resync";
7329 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7330 desc = "reshape";
7331 else
7332 desc = "recovery";
7333
7334 /* we overload curr_resync somewhat here.
7335 * 0 == not engaged in resync at all
7336 * 2 == checking that there is no conflict with another sync
7337 * 1 == like 2, but have yielded to allow conflicting resync to
7338 * commense
7339 * other == active in resync - this many blocks
7340 *
7341 * Before starting a resync we must have set curr_resync to
7342 * 2, and then checked that every "conflicting" array has curr_resync
7343 * less than ours. When we find one that is the same or higher
7344 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7345 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7346 * This will mean we have to start checking from the beginning again.
7347 *
7348 */
7349
7350 do {
7351 mddev->curr_resync = 2;
7352
7353 try_again:
7354 if (kthread_should_stop())
7355 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7356
7357 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7358 goto skip;
7359 for_each_mddev(mddev2, tmp) {
7360 if (mddev2 == mddev)
7361 continue;
7362 if (!mddev->parallel_resync
7363 && mddev2->curr_resync
7364 && match_mddev_units(mddev, mddev2)) {
7365 DEFINE_WAIT(wq);
7366 if (mddev < mddev2 && mddev->curr_resync == 2) {
7367 /* arbitrarily yield */
7368 mddev->curr_resync = 1;
7369 wake_up(&resync_wait);
7370 }
7371 if (mddev > mddev2 && mddev->curr_resync == 1)
7372 /* no need to wait here, we can wait the next
7373 * time 'round when curr_resync == 2
7374 */
7375 continue;
7376 /* We need to wait 'interruptible' so as not to
7377 * contribute to the load average, and not to
7378 * be caught by 'softlockup'
7379 */
7380 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7381 if (!kthread_should_stop() &&
7382 mddev2->curr_resync >= mddev->curr_resync) {
7383 printk(KERN_INFO "md: delaying %s of %s"
7384 " until %s has finished (they"
7385 " share one or more physical units)\n",
7386 desc, mdname(mddev), mdname(mddev2));
7387 mddev_put(mddev2);
7388 if (signal_pending(current))
7389 flush_signals(current);
7390 schedule();
7391 finish_wait(&resync_wait, &wq);
7392 goto try_again;
7393 }
7394 finish_wait(&resync_wait, &wq);
7395 }
7396 }
7397 } while (mddev->curr_resync < 2);
7398
7399 j = 0;
7400 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7401 /* resync follows the size requested by the personality,
7402 * which defaults to physical size, but can be virtual size
7403 */
7404 max_sectors = mddev->resync_max_sectors;
7405 mddev->resync_mismatches = 0;
7406 /* we don't use the checkpoint if there's a bitmap */
7407 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7408 j = mddev->resync_min;
7409 else if (!mddev->bitmap)
7410 j = mddev->recovery_cp;
7411
7412 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7413 max_sectors = mddev->resync_max_sectors;
7414 else {
7415 /* recovery follows the physical size of devices */
7416 max_sectors = mddev->dev_sectors;
7417 j = MaxSector;
7418 rcu_read_lock();
7419 rdev_for_each_rcu(rdev, mddev)
7420 if (rdev->raid_disk >= 0 &&
7421 !test_bit(Faulty, &rdev->flags) &&
7422 !test_bit(In_sync, &rdev->flags) &&
7423 rdev->recovery_offset < j)
7424 j = rdev->recovery_offset;
7425 rcu_read_unlock();
7426 }
7427
7428 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7429 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7430 " %d KB/sec/disk.\n", speed_min(mddev));
7431 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7432 "(but not more than %d KB/sec) for %s.\n",
7433 speed_max(mddev), desc);
7434
7435 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7436
7437 io_sectors = 0;
7438 for (m = 0; m < SYNC_MARKS; m++) {
7439 mark[m] = jiffies;
7440 mark_cnt[m] = io_sectors;
7441 }
7442 last_mark = 0;
7443 mddev->resync_mark = mark[last_mark];
7444 mddev->resync_mark_cnt = mark_cnt[last_mark];
7445
7446 /*
7447 * Tune reconstruction:
7448 */
7449 window = 32*(PAGE_SIZE/512);
7450 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7451 window/2, (unsigned long long)max_sectors/2);
7452
7453 atomic_set(&mddev->recovery_active, 0);
7454 last_check = 0;
7455
7456 if (j>2) {
7457 printk(KERN_INFO
7458 "md: resuming %s of %s from checkpoint.\n",
7459 desc, mdname(mddev));
7460 mddev->curr_resync = j;
7461 }
7462 mddev->curr_resync_completed = j;
7463
7464 blk_start_plug(&plug);
7465 while (j < max_sectors) {
7466 sector_t sectors;
7467
7468 skipped = 0;
7469
7470 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7471 ((mddev->curr_resync > mddev->curr_resync_completed &&
7472 (mddev->curr_resync - mddev->curr_resync_completed)
7473 > (max_sectors >> 4)) ||
7474 (j - mddev->curr_resync_completed)*2
7475 >= mddev->resync_max - mddev->curr_resync_completed
7476 )) {
7477 /* time to update curr_resync_completed */
7478 wait_event(mddev->recovery_wait,
7479 atomic_read(&mddev->recovery_active) == 0);
7480 mddev->curr_resync_completed = j;
7481 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7482 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7483 }
7484
7485 while (j >= mddev->resync_max && !kthread_should_stop()) {
7486 /* As this condition is controlled by user-space,
7487 * we can block indefinitely, so use '_interruptible'
7488 * to avoid triggering warnings.
7489 */
7490 flush_signals(current); /* just in case */
7491 wait_event_interruptible(mddev->recovery_wait,
7492 mddev->resync_max > j
7493 || kthread_should_stop());
7494 }
7495
7496 if (kthread_should_stop())
7497 goto interrupted;
7498
7499 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7500 currspeed < speed_min(mddev));
7501 if (sectors == 0) {
7502 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7503 goto out;
7504 }
7505
7506 if (!skipped) { /* actual IO requested */
7507 io_sectors += sectors;
7508 atomic_add(sectors, &mddev->recovery_active);
7509 }
7510
7511 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7512 break;
7513
7514 j += sectors;
7515 if (j>1) mddev->curr_resync = j;
7516 mddev->curr_mark_cnt = io_sectors;
7517 if (last_check == 0)
7518 /* this is the earliest that rebuild will be
7519 * visible in /proc/mdstat
7520 */
7521 md_new_event(mddev);
7522
7523 if (last_check + window > io_sectors || j == max_sectors)
7524 continue;
7525
7526 last_check = io_sectors;
7527 repeat:
7528 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7529 /* step marks */
7530 int next = (last_mark+1) % SYNC_MARKS;
7531
7532 mddev->resync_mark = mark[next];
7533 mddev->resync_mark_cnt = mark_cnt[next];
7534 mark[next] = jiffies;
7535 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7536 last_mark = next;
7537 }
7538
7539
7540 if (kthread_should_stop())
7541 goto interrupted;
7542
7543
7544 /*
7545 * this loop exits only if either when we are slower than
7546 * the 'hard' speed limit, or the system was IO-idle for
7547 * a jiffy.
7548 * the system might be non-idle CPU-wise, but we only care
7549 * about not overloading the IO subsystem. (things like an
7550 * e2fsck being done on the RAID array should execute fast)
7551 */
7552 cond_resched();
7553
7554 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7555 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7556
7557 if (currspeed > speed_min(mddev)) {
7558 if ((currspeed > speed_max(mddev)) ||
7559 !is_mddev_idle(mddev, 0)) {
7560 msleep(500);
7561 goto repeat;
7562 }
7563 }
7564 }
7565 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7566 /*
7567 * this also signals 'finished resyncing' to md_stop
7568 */
7569 out:
7570 blk_finish_plug(&plug);
7571 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7572
7573 /* tell personality that we are finished */
7574 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7575
7576 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7577 mddev->curr_resync > 2) {
7578 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7579 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7580 if (mddev->curr_resync >= mddev->recovery_cp) {
7581 printk(KERN_INFO
7582 "md: checkpointing %s of %s.\n",
7583 desc, mdname(mddev));
7584 mddev->recovery_cp =
7585 mddev->curr_resync_completed;
7586 }
7587 } else
7588 mddev->recovery_cp = MaxSector;
7589 } else {
7590 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7591 mddev->curr_resync = MaxSector;
7592 rcu_read_lock();
7593 rdev_for_each_rcu(rdev, mddev)
7594 if (rdev->raid_disk >= 0 &&
7595 mddev->delta_disks >= 0 &&
7596 !test_bit(Faulty, &rdev->flags) &&
7597 !test_bit(In_sync, &rdev->flags) &&
7598 rdev->recovery_offset < mddev->curr_resync)
7599 rdev->recovery_offset = mddev->curr_resync;
7600 rcu_read_unlock();
7601 }
7602 }
7603 skip:
7604 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7605
7606 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7607 /* We completed so min/max setting can be forgotten if used. */
7608 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7609 mddev->resync_min = 0;
7610 mddev->resync_max = MaxSector;
7611 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7612 mddev->resync_min = mddev->curr_resync_completed;
7613 mddev->curr_resync = 0;
7614 wake_up(&resync_wait);
7615 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7616 md_wakeup_thread(mddev->thread);
7617 return;
7618
7619 interrupted:
7620 /*
7621 * got a signal, exit.
7622 */
7623 printk(KERN_INFO
7624 "md: md_do_sync() got signal ... exiting\n");
7625 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7626 goto out;
7627
7628}
7629EXPORT_SYMBOL_GPL(md_do_sync);
7630
7631static int remove_and_add_spares(struct mddev *mddev)
7632{
7633 struct md_rdev *rdev;
7634 int spares = 0;
7635 int removed = 0;
7636
7637 mddev->curr_resync_completed = 0;
7638
7639 rdev_for_each(rdev, mddev)
7640 if (rdev->raid_disk >= 0 &&
7641 !test_bit(Blocked, &rdev->flags) &&
7642 (test_bit(Faulty, &rdev->flags) ||
7643 ! test_bit(In_sync, &rdev->flags)) &&
7644 atomic_read(&rdev->nr_pending)==0) {
7645 if (mddev->pers->hot_remove_disk(
7646 mddev, rdev) == 0) {
7647 sysfs_unlink_rdev(mddev, rdev);
7648 rdev->raid_disk = -1;
7649 removed++;
7650 }
7651 }
7652 if (removed)
7653 sysfs_notify(&mddev->kobj, NULL,
7654 "degraded");
7655
7656
7657 rdev_for_each(rdev, mddev) {
7658 if (rdev->raid_disk >= 0 &&
7659 !test_bit(In_sync, &rdev->flags) &&
7660 !test_bit(Faulty, &rdev->flags))
7661 spares++;
7662 if (rdev->raid_disk < 0
7663 && !test_bit(Faulty, &rdev->flags)) {
7664 rdev->recovery_offset = 0;
7665 if (mddev->pers->
7666 hot_add_disk(mddev, rdev) == 0) {
7667 if (sysfs_link_rdev(mddev, rdev))
7668 /* failure here is OK */;
7669 spares++;
7670 md_new_event(mddev);
7671 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7672 }
7673 }
7674 }
7675 if (removed)
7676 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7677 return spares;
7678}
7679
7680static void reap_sync_thread(struct mddev *mddev)
7681{
7682 struct md_rdev *rdev;
7683
7684 /* resync has finished, collect result */
7685 md_unregister_thread(&mddev->sync_thread);
7686 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7687 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7688 /* success...*/
7689 /* activate any spares */
7690 if (mddev->pers->spare_active(mddev)) {
7691 sysfs_notify(&mddev->kobj, NULL,
7692 "degraded");
7693 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7694 }
7695 }
7696 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7697 mddev->pers->finish_reshape)
7698 mddev->pers->finish_reshape(mddev);
7699
7700 /* If array is no-longer degraded, then any saved_raid_disk
7701 * information must be scrapped. Also if any device is now
7702 * In_sync we must scrape the saved_raid_disk for that device
7703 * do the superblock for an incrementally recovered device
7704 * written out.
7705 */
7706 rdev_for_each(rdev, mddev)
7707 if (!mddev->degraded ||
7708 test_bit(In_sync, &rdev->flags))
7709 rdev->saved_raid_disk = -1;
7710
7711 md_update_sb(mddev, 1);
7712 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7713 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7714 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7715 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7716 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7717 /* flag recovery needed just to double check */
7718 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7719 sysfs_notify_dirent_safe(mddev->sysfs_action);
7720 md_new_event(mddev);
7721 if (mddev->event_work.func)
7722 queue_work(md_misc_wq, &mddev->event_work);
7723}
7724
7725/*
7726 * This routine is regularly called by all per-raid-array threads to
7727 * deal with generic issues like resync and super-block update.
7728 * Raid personalities that don't have a thread (linear/raid0) do not
7729 * need this as they never do any recovery or update the superblock.
7730 *
7731 * It does not do any resync itself, but rather "forks" off other threads
7732 * to do that as needed.
7733 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7734 * "->recovery" and create a thread at ->sync_thread.
7735 * When the thread finishes it sets MD_RECOVERY_DONE
7736 * and wakeups up this thread which will reap the thread and finish up.
7737 * This thread also removes any faulty devices (with nr_pending == 0).
7738 *
7739 * The overall approach is:
7740 * 1/ if the superblock needs updating, update it.
7741 * 2/ If a recovery thread is running, don't do anything else.
7742 * 3/ If recovery has finished, clean up, possibly marking spares active.
7743 * 4/ If there are any faulty devices, remove them.
7744 * 5/ If array is degraded, try to add spares devices
7745 * 6/ If array has spares or is not in-sync, start a resync thread.
7746 */
7747void md_check_recovery(struct mddev *mddev)
7748{
7749 if (mddev->suspended)
7750 return;
7751
7752 if (mddev->bitmap)
7753 bitmap_daemon_work(mddev);
7754
7755 if (signal_pending(current)) {
7756 if (mddev->pers->sync_request && !mddev->external) {
7757 printk(KERN_INFO "md: %s in immediate safe mode\n",
7758 mdname(mddev));
7759 mddev->safemode = 2;
7760 }
7761 flush_signals(current);
7762 }
7763
7764 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7765 return;
7766 if ( ! (
7767 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7768 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7769 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7770 (mddev->external == 0 && mddev->safemode == 1) ||
7771 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7772 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7773 ))
7774 return;
7775
7776 if (mddev_trylock(mddev)) {
7777 int spares = 0;
7778
7779 if (mddev->ro) {
7780 /* Only thing we do on a ro array is remove
7781 * failed devices.
7782 */
7783 struct md_rdev *rdev;
7784 rdev_for_each(rdev, mddev)
7785 if (rdev->raid_disk >= 0 &&
7786 !test_bit(Blocked, &rdev->flags) &&
7787 test_bit(Faulty, &rdev->flags) &&
7788 atomic_read(&rdev->nr_pending)==0) {
7789 if (mddev->pers->hot_remove_disk(
7790 mddev, rdev) == 0) {
7791 sysfs_unlink_rdev(mddev, rdev);
7792 rdev->raid_disk = -1;
7793 }
7794 }
7795 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7796 goto unlock;
7797 }
7798
7799 if (!mddev->external) {
7800 int did_change = 0;
7801 spin_lock_irq(&mddev->write_lock);
7802 if (mddev->safemode &&
7803 !atomic_read(&mddev->writes_pending) &&
7804 !mddev->in_sync &&
7805 mddev->recovery_cp == MaxSector) {
7806 mddev->in_sync = 1;
7807 did_change = 1;
7808 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7809 }
7810 if (mddev->safemode == 1)
7811 mddev->safemode = 0;
7812 spin_unlock_irq(&mddev->write_lock);
7813 if (did_change)
7814 sysfs_notify_dirent_safe(mddev->sysfs_state);
7815 }
7816
7817 if (mddev->flags)
7818 md_update_sb(mddev, 0);
7819
7820 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7821 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7822 /* resync/recovery still happening */
7823 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7824 goto unlock;
7825 }
7826 if (mddev->sync_thread) {
7827 reap_sync_thread(mddev);
7828 goto unlock;
7829 }
7830 /* Set RUNNING before clearing NEEDED to avoid
7831 * any transients in the value of "sync_action".
7832 */
7833 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7834 /* Clear some bits that don't mean anything, but
7835 * might be left set
7836 */
7837 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7838 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7839
7840 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7841 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7842 goto unlock;
7843 /* no recovery is running.
7844 * remove any failed drives, then
7845 * add spares if possible.
7846 * Spare are also removed and re-added, to allow
7847 * the personality to fail the re-add.
7848 */
7849
7850 if (mddev->reshape_position != MaxSector) {
7851 if (mddev->pers->check_reshape == NULL ||
7852 mddev->pers->check_reshape(mddev) != 0)
7853 /* Cannot proceed */
7854 goto unlock;
7855 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7856 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7857 } else if ((spares = remove_and_add_spares(mddev))) {
7858 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7859 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7860 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7862 } else if (mddev->recovery_cp < MaxSector) {
7863 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7864 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7865 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7866 /* nothing to be done ... */
7867 goto unlock;
7868
7869 if (mddev->pers->sync_request) {
7870 if (spares) {
7871 /* We are adding a device or devices to an array
7872 * which has the bitmap stored on all devices.
7873 * So make sure all bitmap pages get written
7874 */
7875 bitmap_write_all(mddev->bitmap);
7876 }
7877 mddev->sync_thread = md_register_thread(md_do_sync,
7878 mddev,
7879 "resync");
7880 if (!mddev->sync_thread) {
7881 printk(KERN_ERR "%s: could not start resync"
7882 " thread...\n",
7883 mdname(mddev));
7884 /* leave the spares where they are, it shouldn't hurt */
7885 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7886 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7887 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7888 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7889 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7890 } else
7891 md_wakeup_thread(mddev->sync_thread);
7892 sysfs_notify_dirent_safe(mddev->sysfs_action);
7893 md_new_event(mddev);
7894 }
7895 unlock:
7896 if (!mddev->sync_thread) {
7897 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7898 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7899 &mddev->recovery))
7900 if (mddev->sysfs_action)
7901 sysfs_notify_dirent_safe(mddev->sysfs_action);
7902 }
7903 mddev_unlock(mddev);
7904 }
7905}
7906
7907void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7908{
7909 sysfs_notify_dirent_safe(rdev->sysfs_state);
7910 wait_event_timeout(rdev->blocked_wait,
7911 !test_bit(Blocked, &rdev->flags) &&
7912 !test_bit(BlockedBadBlocks, &rdev->flags),
7913 msecs_to_jiffies(5000));
7914 rdev_dec_pending(rdev, mddev);
7915}
7916EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7917
7918void md_finish_reshape(struct mddev *mddev)
7919{
7920 /* called be personality module when reshape completes. */
7921 struct md_rdev *rdev;
7922
7923 rdev_for_each(rdev, mddev) {
7924 if (rdev->data_offset > rdev->new_data_offset)
7925 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7926 else
7927 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7928 rdev->data_offset = rdev->new_data_offset;
7929 }
7930}
7931EXPORT_SYMBOL(md_finish_reshape);
7932
7933/* Bad block management.
7934 * We can record which blocks on each device are 'bad' and so just
7935 * fail those blocks, or that stripe, rather than the whole device.
7936 * Entries in the bad-block table are 64bits wide. This comprises:
7937 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7938 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7939 * A 'shift' can be set so that larger blocks are tracked and
7940 * consequently larger devices can be covered.
7941 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7942 *
7943 * Locking of the bad-block table uses a seqlock so md_is_badblock
7944 * might need to retry if it is very unlucky.
7945 * We will sometimes want to check for bad blocks in a bi_end_io function,
7946 * so we use the write_seqlock_irq variant.
7947 *
7948 * When looking for a bad block we specify a range and want to
7949 * know if any block in the range is bad. So we binary-search
7950 * to the last range that starts at-or-before the given endpoint,
7951 * (or "before the sector after the target range")
7952 * then see if it ends after the given start.
7953 * We return
7954 * 0 if there are no known bad blocks in the range
7955 * 1 if there are known bad block which are all acknowledged
7956 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7957 * plus the start/length of the first bad section we overlap.
7958 */
7959int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7960 sector_t *first_bad, int *bad_sectors)
7961{
7962 int hi;
7963 int lo = 0;
7964 u64 *p = bb->page;
7965 int rv = 0;
7966 sector_t target = s + sectors;
7967 unsigned seq;
7968
7969 if (bb->shift > 0) {
7970 /* round the start down, and the end up */
7971 s >>= bb->shift;
7972 target += (1<<bb->shift) - 1;
7973 target >>= bb->shift;
7974 sectors = target - s;
7975 }
7976 /* 'target' is now the first block after the bad range */
7977
7978retry:
7979 seq = read_seqbegin(&bb->lock);
7980
7981 hi = bb->count;
7982
7983 /* Binary search between lo and hi for 'target'
7984 * i.e. for the last range that starts before 'target'
7985 */
7986 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7987 * are known not to be the last range before target.
7988 * VARIANT: hi-lo is the number of possible
7989 * ranges, and decreases until it reaches 1
7990 */
7991 while (hi - lo > 1) {
7992 int mid = (lo + hi) / 2;
7993 sector_t a = BB_OFFSET(p[mid]);
7994 if (a < target)
7995 /* This could still be the one, earlier ranges
7996 * could not. */
7997 lo = mid;
7998 else
7999 /* This and later ranges are definitely out. */
8000 hi = mid;
8001 }
8002 /* 'lo' might be the last that started before target, but 'hi' isn't */
8003 if (hi > lo) {
8004 /* need to check all range that end after 's' to see if
8005 * any are unacknowledged.
8006 */
8007 while (lo >= 0 &&
8008 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8009 if (BB_OFFSET(p[lo]) < target) {
8010 /* starts before the end, and finishes after
8011 * the start, so they must overlap
8012 */
8013 if (rv != -1 && BB_ACK(p[lo]))
8014 rv = 1;
8015 else
8016 rv = -1;
8017 *first_bad = BB_OFFSET(p[lo]);
8018 *bad_sectors = BB_LEN(p[lo]);
8019 }
8020 lo--;
8021 }
8022 }
8023
8024 if (read_seqretry(&bb->lock, seq))
8025 goto retry;
8026
8027 return rv;
8028}
8029EXPORT_SYMBOL_GPL(md_is_badblock);
8030
8031/*
8032 * Add a range of bad blocks to the table.
8033 * This might extend the table, or might contract it
8034 * if two adjacent ranges can be merged.
8035 * We binary-search to find the 'insertion' point, then
8036 * decide how best to handle it.
8037 */
8038static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8039 int acknowledged)
8040{
8041 u64 *p;
8042 int lo, hi;
8043 int rv = 1;
8044
8045 if (bb->shift < 0)
8046 /* badblocks are disabled */
8047 return 0;
8048
8049 if (bb->shift) {
8050 /* round the start down, and the end up */
8051 sector_t next = s + sectors;
8052 s >>= bb->shift;
8053 next += (1<<bb->shift) - 1;
8054 next >>= bb->shift;
8055 sectors = next - s;
8056 }
8057
8058 write_seqlock_irq(&bb->lock);
8059
8060 p = bb->page;
8061 lo = 0;
8062 hi = bb->count;
8063 /* Find the last range that starts at-or-before 's' */
8064 while (hi - lo > 1) {
8065 int mid = (lo + hi) / 2;
8066 sector_t a = BB_OFFSET(p[mid]);
8067 if (a <= s)
8068 lo = mid;
8069 else
8070 hi = mid;
8071 }
8072 if (hi > lo && BB_OFFSET(p[lo]) > s)
8073 hi = lo;
8074
8075 if (hi > lo) {
8076 /* we found a range that might merge with the start
8077 * of our new range
8078 */
8079 sector_t a = BB_OFFSET(p[lo]);
8080 sector_t e = a + BB_LEN(p[lo]);
8081 int ack = BB_ACK(p[lo]);
8082 if (e >= s) {
8083 /* Yes, we can merge with a previous range */
8084 if (s == a && s + sectors >= e)
8085 /* new range covers old */
8086 ack = acknowledged;
8087 else
8088 ack = ack && acknowledged;
8089
8090 if (e < s + sectors)
8091 e = s + sectors;
8092 if (e - a <= BB_MAX_LEN) {
8093 p[lo] = BB_MAKE(a, e-a, ack);
8094 s = e;
8095 } else {
8096 /* does not all fit in one range,
8097 * make p[lo] maximal
8098 */
8099 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8100 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8101 s = a + BB_MAX_LEN;
8102 }
8103 sectors = e - s;
8104 }
8105 }
8106 if (sectors && hi < bb->count) {
8107 /* 'hi' points to the first range that starts after 's'.
8108 * Maybe we can merge with the start of that range */
8109 sector_t a = BB_OFFSET(p[hi]);
8110 sector_t e = a + BB_LEN(p[hi]);
8111 int ack = BB_ACK(p[hi]);
8112 if (a <= s + sectors) {
8113 /* merging is possible */
8114 if (e <= s + sectors) {
8115 /* full overlap */
8116 e = s + sectors;
8117 ack = acknowledged;
8118 } else
8119 ack = ack && acknowledged;
8120
8121 a = s;
8122 if (e - a <= BB_MAX_LEN) {
8123 p[hi] = BB_MAKE(a, e-a, ack);
8124 s = e;
8125 } else {
8126 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8127 s = a + BB_MAX_LEN;
8128 }
8129 sectors = e - s;
8130 lo = hi;
8131 hi++;
8132 }
8133 }
8134 if (sectors == 0 && hi < bb->count) {
8135 /* we might be able to combine lo and hi */
8136 /* Note: 's' is at the end of 'lo' */
8137 sector_t a = BB_OFFSET(p[hi]);
8138 int lolen = BB_LEN(p[lo]);
8139 int hilen = BB_LEN(p[hi]);
8140 int newlen = lolen + hilen - (s - a);
8141 if (s >= a && newlen < BB_MAX_LEN) {
8142 /* yes, we can combine them */
8143 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8144 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8145 memmove(p + hi, p + hi + 1,
8146 (bb->count - hi - 1) * 8);
8147 bb->count--;
8148 }
8149 }
8150 while (sectors) {
8151 /* didn't merge (it all).
8152 * Need to add a range just before 'hi' */
8153 if (bb->count >= MD_MAX_BADBLOCKS) {
8154 /* No room for more */
8155 rv = 0;
8156 break;
8157 } else {
8158 int this_sectors = sectors;
8159 memmove(p + hi + 1, p + hi,
8160 (bb->count - hi) * 8);
8161 bb->count++;
8162
8163 if (this_sectors > BB_MAX_LEN)
8164 this_sectors = BB_MAX_LEN;
8165 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8166 sectors -= this_sectors;
8167 s += this_sectors;
8168 }
8169 }
8170
8171 bb->changed = 1;
8172 if (!acknowledged)
8173 bb->unacked_exist = 1;
8174 write_sequnlock_irq(&bb->lock);
8175
8176 return rv;
8177}
8178
8179int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8180 int is_new)
8181{
8182 int rv;
8183 if (is_new)
8184 s += rdev->new_data_offset;
8185 else
8186 s += rdev->data_offset;
8187 rv = md_set_badblocks(&rdev->badblocks,
8188 s, sectors, 0);
8189 if (rv) {
8190 /* Make sure they get written out promptly */
8191 sysfs_notify_dirent_safe(rdev->sysfs_state);
8192 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8193 md_wakeup_thread(rdev->mddev->thread);
8194 }
8195 return rv;
8196}
8197EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8198
8199/*
8200 * Remove a range of bad blocks from the table.
8201 * This may involve extending the table if we spilt a region,
8202 * but it must not fail. So if the table becomes full, we just
8203 * drop the remove request.
8204 */
8205static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8206{
8207 u64 *p;
8208 int lo, hi;
8209 sector_t target = s + sectors;
8210 int rv = 0;
8211
8212 if (bb->shift > 0) {
8213 /* When clearing we round the start up and the end down.
8214 * This should not matter as the shift should align with
8215 * the block size and no rounding should ever be needed.
8216 * However it is better the think a block is bad when it
8217 * isn't than to think a block is not bad when it is.
8218 */
8219 s += (1<<bb->shift) - 1;
8220 s >>= bb->shift;
8221 target >>= bb->shift;
8222 sectors = target - s;
8223 }
8224
8225 write_seqlock_irq(&bb->lock);
8226
8227 p = bb->page;
8228 lo = 0;
8229 hi = bb->count;
8230 /* Find the last range that starts before 'target' */
8231 while (hi - lo > 1) {
8232 int mid = (lo + hi) / 2;
8233 sector_t a = BB_OFFSET(p[mid]);
8234 if (a < target)
8235 lo = mid;
8236 else
8237 hi = mid;
8238 }
8239 if (hi > lo) {
8240 /* p[lo] is the last range that could overlap the
8241 * current range. Earlier ranges could also overlap,
8242 * but only this one can overlap the end of the range.
8243 */
8244 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8245 /* Partial overlap, leave the tail of this range */
8246 int ack = BB_ACK(p[lo]);
8247 sector_t a = BB_OFFSET(p[lo]);
8248 sector_t end = a + BB_LEN(p[lo]);
8249
8250 if (a < s) {
8251 /* we need to split this range */
8252 if (bb->count >= MD_MAX_BADBLOCKS) {
8253 rv = 0;
8254 goto out;
8255 }
8256 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8257 bb->count++;
8258 p[lo] = BB_MAKE(a, s-a, ack);
8259 lo++;
8260 }
8261 p[lo] = BB_MAKE(target, end - target, ack);
8262 /* there is no longer an overlap */
8263 hi = lo;
8264 lo--;
8265 }
8266 while (lo >= 0 &&
8267 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8268 /* This range does overlap */
8269 if (BB_OFFSET(p[lo]) < s) {
8270 /* Keep the early parts of this range. */
8271 int ack = BB_ACK(p[lo]);
8272 sector_t start = BB_OFFSET(p[lo]);
8273 p[lo] = BB_MAKE(start, s - start, ack);
8274 /* now low doesn't overlap, so.. */
8275 break;
8276 }
8277 lo--;
8278 }
8279 /* 'lo' is strictly before, 'hi' is strictly after,
8280 * anything between needs to be discarded
8281 */
8282 if (hi - lo > 1) {
8283 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8284 bb->count -= (hi - lo - 1);
8285 }
8286 }
8287
8288 bb->changed = 1;
8289out:
8290 write_sequnlock_irq(&bb->lock);
8291 return rv;
8292}
8293
8294int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8295 int is_new)
8296{
8297 if (is_new)
8298 s += rdev->new_data_offset;
8299 else
8300 s += rdev->data_offset;
8301 return md_clear_badblocks(&rdev->badblocks,
8302 s, sectors);
8303}
8304EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8305
8306/*
8307 * Acknowledge all bad blocks in a list.
8308 * This only succeeds if ->changed is clear. It is used by
8309 * in-kernel metadata updates
8310 */
8311void md_ack_all_badblocks(struct badblocks *bb)
8312{
8313 if (bb->page == NULL || bb->changed)
8314 /* no point even trying */
8315 return;
8316 write_seqlock_irq(&bb->lock);
8317
8318 if (bb->changed == 0 && bb->unacked_exist) {
8319 u64 *p = bb->page;
8320 int i;
8321 for (i = 0; i < bb->count ; i++) {
8322 if (!BB_ACK(p[i])) {
8323 sector_t start = BB_OFFSET(p[i]);
8324 int len = BB_LEN(p[i]);
8325 p[i] = BB_MAKE(start, len, 1);
8326 }
8327 }
8328 bb->unacked_exist = 0;
8329 }
8330 write_sequnlock_irq(&bb->lock);
8331}
8332EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8333
8334/* sysfs access to bad-blocks list.
8335 * We present two files.
8336 * 'bad-blocks' lists sector numbers and lengths of ranges that
8337 * are recorded as bad. The list is truncated to fit within
8338 * the one-page limit of sysfs.
8339 * Writing "sector length" to this file adds an acknowledged
8340 * bad block list.
8341 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8342 * been acknowledged. Writing to this file adds bad blocks
8343 * without acknowledging them. This is largely for testing.
8344 */
8345
8346static ssize_t
8347badblocks_show(struct badblocks *bb, char *page, int unack)
8348{
8349 size_t len;
8350 int i;
8351 u64 *p = bb->page;
8352 unsigned seq;
8353
8354 if (bb->shift < 0)
8355 return 0;
8356
8357retry:
8358 seq = read_seqbegin(&bb->lock);
8359
8360 len = 0;
8361 i = 0;
8362
8363 while (len < PAGE_SIZE && i < bb->count) {
8364 sector_t s = BB_OFFSET(p[i]);
8365 unsigned int length = BB_LEN(p[i]);
8366 int ack = BB_ACK(p[i]);
8367 i++;
8368
8369 if (unack && ack)
8370 continue;
8371
8372 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8373 (unsigned long long)s << bb->shift,
8374 length << bb->shift);
8375 }
8376 if (unack && len == 0)
8377 bb->unacked_exist = 0;
8378
8379 if (read_seqretry(&bb->lock, seq))
8380 goto retry;
8381
8382 return len;
8383}
8384
8385#define DO_DEBUG 1
8386
8387static ssize_t
8388badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8389{
8390 unsigned long long sector;
8391 int length;
8392 char newline;
8393#ifdef DO_DEBUG
8394 /* Allow clearing via sysfs *only* for testing/debugging.
8395 * Normally only a successful write may clear a badblock
8396 */
8397 int clear = 0;
8398 if (page[0] == '-') {
8399 clear = 1;
8400 page++;
8401 }
8402#endif /* DO_DEBUG */
8403
8404 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8405 case 3:
8406 if (newline != '\n')
8407 return -EINVAL;
8408 case 2:
8409 if (length <= 0)
8410 return -EINVAL;
8411 break;
8412 default:
8413 return -EINVAL;
8414 }
8415
8416#ifdef DO_DEBUG
8417 if (clear) {
8418 md_clear_badblocks(bb, sector, length);
8419 return len;
8420 }
8421#endif /* DO_DEBUG */
8422 if (md_set_badblocks(bb, sector, length, !unack))
8423 return len;
8424 else
8425 return -ENOSPC;
8426}
8427
8428static int md_notify_reboot(struct notifier_block *this,
8429 unsigned long code, void *x)
8430{
8431 struct list_head *tmp;
8432 struct mddev *mddev;
8433 int need_delay = 0;
8434
8435 for_each_mddev(mddev, tmp) {
8436 if (mddev_trylock(mddev)) {
8437 if (mddev->pers)
8438 __md_stop_writes(mddev);
8439 mddev->safemode = 2;
8440 mddev_unlock(mddev);
8441 }
8442 need_delay = 1;
8443 }
8444 /*
8445 * certain more exotic SCSI devices are known to be
8446 * volatile wrt too early system reboots. While the
8447 * right place to handle this issue is the given
8448 * driver, we do want to have a safe RAID driver ...
8449 */
8450 if (need_delay)
8451 mdelay(1000*1);
8452
8453 return NOTIFY_DONE;
8454}
8455
8456static struct notifier_block md_notifier = {
8457 .notifier_call = md_notify_reboot,
8458 .next = NULL,
8459 .priority = INT_MAX, /* before any real devices */
8460};
8461
8462static void md_geninit(void)
8463{
8464 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8465
8466 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8467}
8468
8469static int __init md_init(void)
8470{
8471 int ret = -ENOMEM;
8472
8473 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8474 if (!md_wq)
8475 goto err_wq;
8476
8477 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8478 if (!md_misc_wq)
8479 goto err_misc_wq;
8480
8481 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8482 goto err_md;
8483
8484 if ((ret = register_blkdev(0, "mdp")) < 0)
8485 goto err_mdp;
8486 mdp_major = ret;
8487
8488 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8489 md_probe, NULL, NULL);
8490 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8491 md_probe, NULL, NULL);
8492
8493 register_reboot_notifier(&md_notifier);
8494 raid_table_header = register_sysctl_table(raid_root_table);
8495
8496 md_geninit();
8497 return 0;
8498
8499err_mdp:
8500 unregister_blkdev(MD_MAJOR, "md");
8501err_md:
8502 destroy_workqueue(md_misc_wq);
8503err_misc_wq:
8504 destroy_workqueue(md_wq);
8505err_wq:
8506 return ret;
8507}
8508
8509#ifndef MODULE
8510
8511/*
8512 * Searches all registered partitions for autorun RAID arrays
8513 * at boot time.
8514 */
8515
8516static LIST_HEAD(all_detected_devices);
8517struct detected_devices_node {
8518 struct list_head list;
8519 dev_t dev;
8520};
8521
8522void md_autodetect_dev(dev_t dev)
8523{
8524 struct detected_devices_node *node_detected_dev;
8525
8526 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8527 if (node_detected_dev) {
8528 node_detected_dev->dev = dev;
8529 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8530 } else {
8531 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8532 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8533 }
8534}
8535
8536
8537static void autostart_arrays(int part)
8538{
8539 struct md_rdev *rdev;
8540 struct detected_devices_node *node_detected_dev;
8541 dev_t dev;
8542 int i_scanned, i_passed;
8543
8544 i_scanned = 0;
8545 i_passed = 0;
8546
8547 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8548
8549 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8550 i_scanned++;
8551 node_detected_dev = list_entry(all_detected_devices.next,
8552 struct detected_devices_node, list);
8553 list_del(&node_detected_dev->list);
8554 dev = node_detected_dev->dev;
8555 kfree(node_detected_dev);
8556 rdev = md_import_device(dev,0, 90);
8557 if (IS_ERR(rdev))
8558 continue;
8559
8560 if (test_bit(Faulty, &rdev->flags)) {
8561 MD_BUG();
8562 continue;
8563 }
8564 set_bit(AutoDetected, &rdev->flags);
8565 list_add(&rdev->same_set, &pending_raid_disks);
8566 i_passed++;
8567 }
8568
8569 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8570 i_scanned, i_passed);
8571
8572 autorun_devices(part);
8573}
8574
8575#endif /* !MODULE */
8576
8577static __exit void md_exit(void)
8578{
8579 struct mddev *mddev;
8580 struct list_head *tmp;
8581
8582 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8583 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8584
8585 unregister_blkdev(MD_MAJOR,"md");
8586 unregister_blkdev(mdp_major, "mdp");
8587 unregister_reboot_notifier(&md_notifier);
8588 unregister_sysctl_table(raid_table_header);
8589 remove_proc_entry("mdstat", NULL);
8590 for_each_mddev(mddev, tmp) {
8591 export_array(mddev);
8592 mddev->hold_active = 0;
8593 }
8594 destroy_workqueue(md_misc_wq);
8595 destroy_workqueue(md_wq);
8596}
8597
8598subsys_initcall(md_init);
8599module_exit(md_exit)
8600
8601static int get_ro(char *buffer, struct kernel_param *kp)
8602{
8603 return sprintf(buffer, "%d", start_readonly);
8604}
8605static int set_ro(const char *val, struct kernel_param *kp)
8606{
8607 char *e;
8608 int num = simple_strtoul(val, &e, 10);
8609 if (*val && (*e == '\0' || *e == '\n')) {
8610 start_readonly = num;
8611 return 0;
8612 }
8613 return -EINVAL;
8614}
8615
8616module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8617module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8618
8619module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8620
8621EXPORT_SYMBOL(register_md_personality);
8622EXPORT_SYMBOL(unregister_md_personality);
8623EXPORT_SYMBOL(md_error);
8624EXPORT_SYMBOL(md_done_sync);
8625EXPORT_SYMBOL(md_write_start);
8626EXPORT_SYMBOL(md_write_end);
8627EXPORT_SYMBOL(md_register_thread);
8628EXPORT_SYMBOL(md_unregister_thread);
8629EXPORT_SYMBOL(md_wakeup_thread);
8630EXPORT_SYMBOL(md_check_recovery);
8631MODULE_LICENSE("GPL");
8632MODULE_DESCRIPTION("MD RAID framework");
8633MODULE_ALIAS("md");
8634MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);