Loading...
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/kthread.h>
36#include <linux/blkdev.h>
37#include <linux/sysctl.h>
38#include <linux/seq_file.h>
39#include <linux/mutex.h>
40#include <linux/buffer_head.h> /* for invalidate_bdev */
41#include <linux/poll.h>
42#include <linux/ctype.h>
43#include <linux/string.h>
44#include <linux/hdreg.h>
45#include <linux/proc_fs.h>
46#include <linux/random.h>
47#include <linux/reboot.h>
48#include <linux/file.h>
49#include <linux/compat.h>
50#include <linux/delay.h>
51#include <linux/raid/md_p.h>
52#include <linux/raid/md_u.h>
53#include <linux/slab.h>
54#include "md.h"
55#include "bitmap.h"
56
57#define DEBUG 0
58#define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60#ifndef MODULE
61static void autostart_arrays(int part);
62#endif
63
64/* pers_list is a list of registered personalities protected
65 * by pers_lock.
66 * pers_lock does extra service to protect accesses to
67 * mddev->thread when the mutex cannot be held.
68 */
69static LIST_HEAD(pers_list);
70static DEFINE_SPINLOCK(pers_lock);
71
72static void md_print_devices(void);
73
74static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
75static struct workqueue_struct *md_wq;
76static struct workqueue_struct *md_misc_wq;
77
78#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80/*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86/*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99static int sysctl_speed_limit_min = 1000;
100static int sysctl_speed_limit_max = 200000;
101static inline int speed_min(mddev_t *mddev)
102{
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105}
106
107static inline int speed_max(mddev_t *mddev)
108{
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111}
112
113static struct ctl_table_header *raid_table_header;
114
115static ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131};
132
133static ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141};
142
143static ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151};
152
153static const struct block_device_operations md_fops;
154
155static int start_readonly;
156
157/* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161static void mddev_bio_destructor(struct bio *bio)
162{
163 mddev_t *mddev, **mddevp;
164
165 mddevp = (void*)bio;
166 mddev = mddevp[-1];
167
168 bio_free(bio, mddev->bio_set);
169}
170
171struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
172 mddev_t *mddev)
173{
174 struct bio *b;
175 mddev_t **mddevp;
176
177 if (!mddev || !mddev->bio_set)
178 return bio_alloc(gfp_mask, nr_iovecs);
179
180 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
181 mddev->bio_set);
182 if (!b)
183 return NULL;
184 mddevp = (void*)b;
185 mddevp[-1] = mddev;
186 b->bi_destructor = mddev_bio_destructor;
187 return b;
188}
189EXPORT_SYMBOL_GPL(bio_alloc_mddev);
190
191struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
192 mddev_t *mddev)
193{
194 struct bio *b;
195 mddev_t **mddevp;
196
197 if (!mddev || !mddev->bio_set)
198 return bio_clone(bio, gfp_mask);
199
200 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
201 mddev->bio_set);
202 if (!b)
203 return NULL;
204 mddevp = (void*)b;
205 mddevp[-1] = mddev;
206 b->bi_destructor = mddev_bio_destructor;
207 __bio_clone(b, bio);
208 if (bio_integrity(bio)) {
209 int ret;
210
211 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
212
213 if (ret < 0) {
214 bio_put(b);
215 return NULL;
216 }
217 }
218
219 return b;
220}
221EXPORT_SYMBOL_GPL(bio_clone_mddev);
222
223void md_trim_bio(struct bio *bio, int offset, int size)
224{
225 /* 'bio' is a cloned bio which we need to trim to match
226 * the given offset and size.
227 * This requires adjusting bi_sector, bi_size, and bi_io_vec
228 */
229 int i;
230 struct bio_vec *bvec;
231 int sofar = 0;
232
233 size <<= 9;
234 if (offset == 0 && size == bio->bi_size)
235 return;
236
237 bio->bi_sector += offset;
238 bio->bi_size = size;
239 offset <<= 9;
240 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
241
242 while (bio->bi_idx < bio->bi_vcnt &&
243 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
244 /* remove this whole bio_vec */
245 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
246 bio->bi_idx++;
247 }
248 if (bio->bi_idx < bio->bi_vcnt) {
249 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
250 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
251 }
252 /* avoid any complications with bi_idx being non-zero*/
253 if (bio->bi_idx) {
254 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
255 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
256 bio->bi_vcnt -= bio->bi_idx;
257 bio->bi_idx = 0;
258 }
259 /* Make sure vcnt and last bv are not too big */
260 bio_for_each_segment(bvec, bio, i) {
261 if (sofar + bvec->bv_len > size)
262 bvec->bv_len = size - sofar;
263 if (bvec->bv_len == 0) {
264 bio->bi_vcnt = i;
265 break;
266 }
267 sofar += bvec->bv_len;
268 }
269}
270EXPORT_SYMBOL_GPL(md_trim_bio);
271
272/*
273 * We have a system wide 'event count' that is incremented
274 * on any 'interesting' event, and readers of /proc/mdstat
275 * can use 'poll' or 'select' to find out when the event
276 * count increases.
277 *
278 * Events are:
279 * start array, stop array, error, add device, remove device,
280 * start build, activate spare
281 */
282static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
283static atomic_t md_event_count;
284void md_new_event(mddev_t *mddev)
285{
286 atomic_inc(&md_event_count);
287 wake_up(&md_event_waiters);
288}
289EXPORT_SYMBOL_GPL(md_new_event);
290
291/* Alternate version that can be called from interrupts
292 * when calling sysfs_notify isn't needed.
293 */
294static void md_new_event_inintr(mddev_t *mddev)
295{
296 atomic_inc(&md_event_count);
297 wake_up(&md_event_waiters);
298}
299
300/*
301 * Enables to iterate over all existing md arrays
302 * all_mddevs_lock protects this list.
303 */
304static LIST_HEAD(all_mddevs);
305static DEFINE_SPINLOCK(all_mddevs_lock);
306
307
308/*
309 * iterates through all used mddevs in the system.
310 * We take care to grab the all_mddevs_lock whenever navigating
311 * the list, and to always hold a refcount when unlocked.
312 * Any code which breaks out of this loop while own
313 * a reference to the current mddev and must mddev_put it.
314 */
315#define for_each_mddev(mddev,tmp) \
316 \
317 for (({ spin_lock(&all_mddevs_lock); \
318 tmp = all_mddevs.next; \
319 mddev = NULL;}); \
320 ({ if (tmp != &all_mddevs) \
321 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
322 spin_unlock(&all_mddevs_lock); \
323 if (mddev) mddev_put(mddev); \
324 mddev = list_entry(tmp, mddev_t, all_mddevs); \
325 tmp != &all_mddevs;}); \
326 ({ spin_lock(&all_mddevs_lock); \
327 tmp = tmp->next;}) \
328 )
329
330
331/* Rather than calling directly into the personality make_request function,
332 * IO requests come here first so that we can check if the device is
333 * being suspended pending a reconfiguration.
334 * We hold a refcount over the call to ->make_request. By the time that
335 * call has finished, the bio has been linked into some internal structure
336 * and so is visible to ->quiesce(), so we don't need the refcount any more.
337 */
338static int md_make_request(struct request_queue *q, struct bio *bio)
339{
340 const int rw = bio_data_dir(bio);
341 mddev_t *mddev = q->queuedata;
342 int rv;
343 int cpu;
344 unsigned int sectors;
345
346 if (mddev == NULL || mddev->pers == NULL
347 || !mddev->ready) {
348 bio_io_error(bio);
349 return 0;
350 }
351 smp_rmb(); /* Ensure implications of 'active' are visible */
352 rcu_read_lock();
353 if (mddev->suspended) {
354 DEFINE_WAIT(__wait);
355 for (;;) {
356 prepare_to_wait(&mddev->sb_wait, &__wait,
357 TASK_UNINTERRUPTIBLE);
358 if (!mddev->suspended)
359 break;
360 rcu_read_unlock();
361 schedule();
362 rcu_read_lock();
363 }
364 finish_wait(&mddev->sb_wait, &__wait);
365 }
366 atomic_inc(&mddev->active_io);
367 rcu_read_unlock();
368
369 /*
370 * save the sectors now since our bio can
371 * go away inside make_request
372 */
373 sectors = bio_sectors(bio);
374 rv = mddev->pers->make_request(mddev, bio);
375
376 cpu = part_stat_lock();
377 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
378 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
379 part_stat_unlock();
380
381 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
382 wake_up(&mddev->sb_wait);
383
384 return rv;
385}
386
387/* mddev_suspend makes sure no new requests are submitted
388 * to the device, and that any requests that have been submitted
389 * are completely handled.
390 * Once ->stop is called and completes, the module will be completely
391 * unused.
392 */
393void mddev_suspend(mddev_t *mddev)
394{
395 BUG_ON(mddev->suspended);
396 mddev->suspended = 1;
397 synchronize_rcu();
398 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
399 mddev->pers->quiesce(mddev, 1);
400}
401EXPORT_SYMBOL_GPL(mddev_suspend);
402
403void mddev_resume(mddev_t *mddev)
404{
405 mddev->suspended = 0;
406 wake_up(&mddev->sb_wait);
407 mddev->pers->quiesce(mddev, 0);
408
409 md_wakeup_thread(mddev->thread);
410 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
411}
412EXPORT_SYMBOL_GPL(mddev_resume);
413
414int mddev_congested(mddev_t *mddev, int bits)
415{
416 return mddev->suspended;
417}
418EXPORT_SYMBOL(mddev_congested);
419
420/*
421 * Generic flush handling for md
422 */
423
424static void md_end_flush(struct bio *bio, int err)
425{
426 mdk_rdev_t *rdev = bio->bi_private;
427 mddev_t *mddev = rdev->mddev;
428
429 rdev_dec_pending(rdev, mddev);
430
431 if (atomic_dec_and_test(&mddev->flush_pending)) {
432 /* The pre-request flush has finished */
433 queue_work(md_wq, &mddev->flush_work);
434 }
435 bio_put(bio);
436}
437
438static void md_submit_flush_data(struct work_struct *ws);
439
440static void submit_flushes(struct work_struct *ws)
441{
442 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
443 mdk_rdev_t *rdev;
444
445 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
446 atomic_set(&mddev->flush_pending, 1);
447 rcu_read_lock();
448 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
449 if (rdev->raid_disk >= 0 &&
450 !test_bit(Faulty, &rdev->flags)) {
451 /* Take two references, one is dropped
452 * when request finishes, one after
453 * we reclaim rcu_read_lock
454 */
455 struct bio *bi;
456 atomic_inc(&rdev->nr_pending);
457 atomic_inc(&rdev->nr_pending);
458 rcu_read_unlock();
459 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
460 bi->bi_end_io = md_end_flush;
461 bi->bi_private = rdev;
462 bi->bi_bdev = rdev->bdev;
463 atomic_inc(&mddev->flush_pending);
464 submit_bio(WRITE_FLUSH, bi);
465 rcu_read_lock();
466 rdev_dec_pending(rdev, mddev);
467 }
468 rcu_read_unlock();
469 if (atomic_dec_and_test(&mddev->flush_pending))
470 queue_work(md_wq, &mddev->flush_work);
471}
472
473static void md_submit_flush_data(struct work_struct *ws)
474{
475 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
476 struct bio *bio = mddev->flush_bio;
477
478 if (bio->bi_size == 0)
479 /* an empty barrier - all done */
480 bio_endio(bio, 0);
481 else {
482 bio->bi_rw &= ~REQ_FLUSH;
483 if (mddev->pers->make_request(mddev, bio))
484 generic_make_request(bio);
485 }
486
487 mddev->flush_bio = NULL;
488 wake_up(&mddev->sb_wait);
489}
490
491void md_flush_request(mddev_t *mddev, struct bio *bio)
492{
493 spin_lock_irq(&mddev->write_lock);
494 wait_event_lock_irq(mddev->sb_wait,
495 !mddev->flush_bio,
496 mddev->write_lock, /*nothing*/);
497 mddev->flush_bio = bio;
498 spin_unlock_irq(&mddev->write_lock);
499
500 INIT_WORK(&mddev->flush_work, submit_flushes);
501 queue_work(md_wq, &mddev->flush_work);
502}
503EXPORT_SYMBOL(md_flush_request);
504
505/* Support for plugging.
506 * This mirrors the plugging support in request_queue, but does not
507 * require having a whole queue or request structures.
508 * We allocate an md_plug_cb for each md device and each thread it gets
509 * plugged on. This links tot the private plug_handle structure in the
510 * personality data where we keep a count of the number of outstanding
511 * plugs so other code can see if a plug is active.
512 */
513struct md_plug_cb {
514 struct blk_plug_cb cb;
515 mddev_t *mddev;
516};
517
518static void plugger_unplug(struct blk_plug_cb *cb)
519{
520 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
521 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
522 md_wakeup_thread(mdcb->mddev->thread);
523 kfree(mdcb);
524}
525
526/* Check that an unplug wakeup will come shortly.
527 * If not, wakeup the md thread immediately
528 */
529int mddev_check_plugged(mddev_t *mddev)
530{
531 struct blk_plug *plug = current->plug;
532 struct md_plug_cb *mdcb;
533
534 if (!plug)
535 return 0;
536
537 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
538 if (mdcb->cb.callback == plugger_unplug &&
539 mdcb->mddev == mddev) {
540 /* Already on the list, move to top */
541 if (mdcb != list_first_entry(&plug->cb_list,
542 struct md_plug_cb,
543 cb.list))
544 list_move(&mdcb->cb.list, &plug->cb_list);
545 return 1;
546 }
547 }
548 /* Not currently on the callback list */
549 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
550 if (!mdcb)
551 return 0;
552
553 mdcb->mddev = mddev;
554 mdcb->cb.callback = plugger_unplug;
555 atomic_inc(&mddev->plug_cnt);
556 list_add(&mdcb->cb.list, &plug->cb_list);
557 return 1;
558}
559EXPORT_SYMBOL_GPL(mddev_check_plugged);
560
561static inline mddev_t *mddev_get(mddev_t *mddev)
562{
563 atomic_inc(&mddev->active);
564 return mddev;
565}
566
567static void mddev_delayed_delete(struct work_struct *ws);
568
569static void mddev_put(mddev_t *mddev)
570{
571 struct bio_set *bs = NULL;
572
573 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
574 return;
575 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
576 mddev->ctime == 0 && !mddev->hold_active) {
577 /* Array is not configured at all, and not held active,
578 * so destroy it */
579 list_del(&mddev->all_mddevs);
580 bs = mddev->bio_set;
581 mddev->bio_set = NULL;
582 if (mddev->gendisk) {
583 /* We did a probe so need to clean up. Call
584 * queue_work inside the spinlock so that
585 * flush_workqueue() after mddev_find will
586 * succeed in waiting for the work to be done.
587 */
588 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
589 queue_work(md_misc_wq, &mddev->del_work);
590 } else
591 kfree(mddev);
592 }
593 spin_unlock(&all_mddevs_lock);
594 if (bs)
595 bioset_free(bs);
596}
597
598void mddev_init(mddev_t *mddev)
599{
600 mutex_init(&mddev->open_mutex);
601 mutex_init(&mddev->reconfig_mutex);
602 mutex_init(&mddev->bitmap_info.mutex);
603 INIT_LIST_HEAD(&mddev->disks);
604 INIT_LIST_HEAD(&mddev->all_mddevs);
605 init_timer(&mddev->safemode_timer);
606 atomic_set(&mddev->active, 1);
607 atomic_set(&mddev->openers, 0);
608 atomic_set(&mddev->active_io, 0);
609 atomic_set(&mddev->plug_cnt, 0);
610 spin_lock_init(&mddev->write_lock);
611 atomic_set(&mddev->flush_pending, 0);
612 init_waitqueue_head(&mddev->sb_wait);
613 init_waitqueue_head(&mddev->recovery_wait);
614 mddev->reshape_position = MaxSector;
615 mddev->resync_min = 0;
616 mddev->resync_max = MaxSector;
617 mddev->level = LEVEL_NONE;
618}
619EXPORT_SYMBOL_GPL(mddev_init);
620
621static mddev_t * mddev_find(dev_t unit)
622{
623 mddev_t *mddev, *new = NULL;
624
625 if (unit && MAJOR(unit) != MD_MAJOR)
626 unit &= ~((1<<MdpMinorShift)-1);
627
628 retry:
629 spin_lock(&all_mddevs_lock);
630
631 if (unit) {
632 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
633 if (mddev->unit == unit) {
634 mddev_get(mddev);
635 spin_unlock(&all_mddevs_lock);
636 kfree(new);
637 return mddev;
638 }
639
640 if (new) {
641 list_add(&new->all_mddevs, &all_mddevs);
642 spin_unlock(&all_mddevs_lock);
643 new->hold_active = UNTIL_IOCTL;
644 return new;
645 }
646 } else if (new) {
647 /* find an unused unit number */
648 static int next_minor = 512;
649 int start = next_minor;
650 int is_free = 0;
651 int dev = 0;
652 while (!is_free) {
653 dev = MKDEV(MD_MAJOR, next_minor);
654 next_minor++;
655 if (next_minor > MINORMASK)
656 next_minor = 0;
657 if (next_minor == start) {
658 /* Oh dear, all in use. */
659 spin_unlock(&all_mddevs_lock);
660 kfree(new);
661 return NULL;
662 }
663
664 is_free = 1;
665 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
666 if (mddev->unit == dev) {
667 is_free = 0;
668 break;
669 }
670 }
671 new->unit = dev;
672 new->md_minor = MINOR(dev);
673 new->hold_active = UNTIL_STOP;
674 list_add(&new->all_mddevs, &all_mddevs);
675 spin_unlock(&all_mddevs_lock);
676 return new;
677 }
678 spin_unlock(&all_mddevs_lock);
679
680 new = kzalloc(sizeof(*new), GFP_KERNEL);
681 if (!new)
682 return NULL;
683
684 new->unit = unit;
685 if (MAJOR(unit) == MD_MAJOR)
686 new->md_minor = MINOR(unit);
687 else
688 new->md_minor = MINOR(unit) >> MdpMinorShift;
689
690 mddev_init(new);
691
692 goto retry;
693}
694
695static inline int mddev_lock(mddev_t * mddev)
696{
697 return mutex_lock_interruptible(&mddev->reconfig_mutex);
698}
699
700static inline int mddev_is_locked(mddev_t *mddev)
701{
702 return mutex_is_locked(&mddev->reconfig_mutex);
703}
704
705static inline int mddev_trylock(mddev_t * mddev)
706{
707 return mutex_trylock(&mddev->reconfig_mutex);
708}
709
710static struct attribute_group md_redundancy_group;
711
712static void mddev_unlock(mddev_t * mddev)
713{
714 if (mddev->to_remove) {
715 /* These cannot be removed under reconfig_mutex as
716 * an access to the files will try to take reconfig_mutex
717 * while holding the file unremovable, which leads to
718 * a deadlock.
719 * So hold set sysfs_active while the remove in happeing,
720 * and anything else which might set ->to_remove or my
721 * otherwise change the sysfs namespace will fail with
722 * -EBUSY if sysfs_active is still set.
723 * We set sysfs_active under reconfig_mutex and elsewhere
724 * test it under the same mutex to ensure its correct value
725 * is seen.
726 */
727 struct attribute_group *to_remove = mddev->to_remove;
728 mddev->to_remove = NULL;
729 mddev->sysfs_active = 1;
730 mutex_unlock(&mddev->reconfig_mutex);
731
732 if (mddev->kobj.sd) {
733 if (to_remove != &md_redundancy_group)
734 sysfs_remove_group(&mddev->kobj, to_remove);
735 if (mddev->pers == NULL ||
736 mddev->pers->sync_request == NULL) {
737 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
738 if (mddev->sysfs_action)
739 sysfs_put(mddev->sysfs_action);
740 mddev->sysfs_action = NULL;
741 }
742 }
743 mddev->sysfs_active = 0;
744 } else
745 mutex_unlock(&mddev->reconfig_mutex);
746
747 /* was we've dropped the mutex we need a spinlock to
748 * make sur the thread doesn't disappear
749 */
750 spin_lock(&pers_lock);
751 md_wakeup_thread(mddev->thread);
752 spin_unlock(&pers_lock);
753}
754
755static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
756{
757 mdk_rdev_t *rdev;
758
759 list_for_each_entry(rdev, &mddev->disks, same_set)
760 if (rdev->desc_nr == nr)
761 return rdev;
762
763 return NULL;
764}
765
766static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
767{
768 mdk_rdev_t *rdev;
769
770 list_for_each_entry(rdev, &mddev->disks, same_set)
771 if (rdev->bdev->bd_dev == dev)
772 return rdev;
773
774 return NULL;
775}
776
777static struct mdk_personality *find_pers(int level, char *clevel)
778{
779 struct mdk_personality *pers;
780 list_for_each_entry(pers, &pers_list, list) {
781 if (level != LEVEL_NONE && pers->level == level)
782 return pers;
783 if (strcmp(pers->name, clevel)==0)
784 return pers;
785 }
786 return NULL;
787}
788
789/* return the offset of the super block in 512byte sectors */
790static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
791{
792 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
793 return MD_NEW_SIZE_SECTORS(num_sectors);
794}
795
796static int alloc_disk_sb(mdk_rdev_t * rdev)
797{
798 if (rdev->sb_page)
799 MD_BUG();
800
801 rdev->sb_page = alloc_page(GFP_KERNEL);
802 if (!rdev->sb_page) {
803 printk(KERN_ALERT "md: out of memory.\n");
804 return -ENOMEM;
805 }
806
807 return 0;
808}
809
810static void free_disk_sb(mdk_rdev_t * rdev)
811{
812 if (rdev->sb_page) {
813 put_page(rdev->sb_page);
814 rdev->sb_loaded = 0;
815 rdev->sb_page = NULL;
816 rdev->sb_start = 0;
817 rdev->sectors = 0;
818 }
819 if (rdev->bb_page) {
820 put_page(rdev->bb_page);
821 rdev->bb_page = NULL;
822 }
823}
824
825
826static void super_written(struct bio *bio, int error)
827{
828 mdk_rdev_t *rdev = bio->bi_private;
829 mddev_t *mddev = rdev->mddev;
830
831 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
832 printk("md: super_written gets error=%d, uptodate=%d\n",
833 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
834 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
835 md_error(mddev, rdev);
836 }
837
838 if (atomic_dec_and_test(&mddev->pending_writes))
839 wake_up(&mddev->sb_wait);
840 bio_put(bio);
841}
842
843void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
844 sector_t sector, int size, struct page *page)
845{
846 /* write first size bytes of page to sector of rdev
847 * Increment mddev->pending_writes before returning
848 * and decrement it on completion, waking up sb_wait
849 * if zero is reached.
850 * If an error occurred, call md_error
851 */
852 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
853
854 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
855 bio->bi_sector = sector;
856 bio_add_page(bio, page, size, 0);
857 bio->bi_private = rdev;
858 bio->bi_end_io = super_written;
859
860 atomic_inc(&mddev->pending_writes);
861 submit_bio(WRITE_FLUSH_FUA, bio);
862}
863
864void md_super_wait(mddev_t *mddev)
865{
866 /* wait for all superblock writes that were scheduled to complete */
867 DEFINE_WAIT(wq);
868 for(;;) {
869 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
870 if (atomic_read(&mddev->pending_writes)==0)
871 break;
872 schedule();
873 }
874 finish_wait(&mddev->sb_wait, &wq);
875}
876
877static void bi_complete(struct bio *bio, int error)
878{
879 complete((struct completion*)bio->bi_private);
880}
881
882int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
883 struct page *page, int rw, bool metadata_op)
884{
885 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
886 struct completion event;
887 int ret;
888
889 rw |= REQ_SYNC;
890
891 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
892 rdev->meta_bdev : rdev->bdev;
893 if (metadata_op)
894 bio->bi_sector = sector + rdev->sb_start;
895 else
896 bio->bi_sector = sector + rdev->data_offset;
897 bio_add_page(bio, page, size, 0);
898 init_completion(&event);
899 bio->bi_private = &event;
900 bio->bi_end_io = bi_complete;
901 submit_bio(rw, bio);
902 wait_for_completion(&event);
903
904 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
905 bio_put(bio);
906 return ret;
907}
908EXPORT_SYMBOL_GPL(sync_page_io);
909
910static int read_disk_sb(mdk_rdev_t * rdev, int size)
911{
912 char b[BDEVNAME_SIZE];
913 if (!rdev->sb_page) {
914 MD_BUG();
915 return -EINVAL;
916 }
917 if (rdev->sb_loaded)
918 return 0;
919
920
921 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
922 goto fail;
923 rdev->sb_loaded = 1;
924 return 0;
925
926fail:
927 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
928 bdevname(rdev->bdev,b));
929 return -EINVAL;
930}
931
932static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
933{
934 return sb1->set_uuid0 == sb2->set_uuid0 &&
935 sb1->set_uuid1 == sb2->set_uuid1 &&
936 sb1->set_uuid2 == sb2->set_uuid2 &&
937 sb1->set_uuid3 == sb2->set_uuid3;
938}
939
940static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
941{
942 int ret;
943 mdp_super_t *tmp1, *tmp2;
944
945 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
946 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
947
948 if (!tmp1 || !tmp2) {
949 ret = 0;
950 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
951 goto abort;
952 }
953
954 *tmp1 = *sb1;
955 *tmp2 = *sb2;
956
957 /*
958 * nr_disks is not constant
959 */
960 tmp1->nr_disks = 0;
961 tmp2->nr_disks = 0;
962
963 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
964abort:
965 kfree(tmp1);
966 kfree(tmp2);
967 return ret;
968}
969
970
971static u32 md_csum_fold(u32 csum)
972{
973 csum = (csum & 0xffff) + (csum >> 16);
974 return (csum & 0xffff) + (csum >> 16);
975}
976
977static unsigned int calc_sb_csum(mdp_super_t * sb)
978{
979 u64 newcsum = 0;
980 u32 *sb32 = (u32*)sb;
981 int i;
982 unsigned int disk_csum, csum;
983
984 disk_csum = sb->sb_csum;
985 sb->sb_csum = 0;
986
987 for (i = 0; i < MD_SB_BYTES/4 ; i++)
988 newcsum += sb32[i];
989 csum = (newcsum & 0xffffffff) + (newcsum>>32);
990
991
992#ifdef CONFIG_ALPHA
993 /* This used to use csum_partial, which was wrong for several
994 * reasons including that different results are returned on
995 * different architectures. It isn't critical that we get exactly
996 * the same return value as before (we always csum_fold before
997 * testing, and that removes any differences). However as we
998 * know that csum_partial always returned a 16bit value on
999 * alphas, do a fold to maximise conformity to previous behaviour.
1000 */
1001 sb->sb_csum = md_csum_fold(disk_csum);
1002#else
1003 sb->sb_csum = disk_csum;
1004#endif
1005 return csum;
1006}
1007
1008
1009/*
1010 * Handle superblock details.
1011 * We want to be able to handle multiple superblock formats
1012 * so we have a common interface to them all, and an array of
1013 * different handlers.
1014 * We rely on user-space to write the initial superblock, and support
1015 * reading and updating of superblocks.
1016 * Interface methods are:
1017 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1018 * loads and validates a superblock on dev.
1019 * if refdev != NULL, compare superblocks on both devices
1020 * Return:
1021 * 0 - dev has a superblock that is compatible with refdev
1022 * 1 - dev has a superblock that is compatible and newer than refdev
1023 * so dev should be used as the refdev in future
1024 * -EINVAL superblock incompatible or invalid
1025 * -othererror e.g. -EIO
1026 *
1027 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1028 * Verify that dev is acceptable into mddev.
1029 * The first time, mddev->raid_disks will be 0, and data from
1030 * dev should be merged in. Subsequent calls check that dev
1031 * is new enough. Return 0 or -EINVAL
1032 *
1033 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1034 * Update the superblock for rdev with data in mddev
1035 * This does not write to disc.
1036 *
1037 */
1038
1039struct super_type {
1040 char *name;
1041 struct module *owner;
1042 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1043 int minor_version);
1044 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1045 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1046 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
1047 sector_t num_sectors);
1048};
1049
1050/*
1051 * Check that the given mddev has no bitmap.
1052 *
1053 * This function is called from the run method of all personalities that do not
1054 * support bitmaps. It prints an error message and returns non-zero if mddev
1055 * has a bitmap. Otherwise, it returns 0.
1056 *
1057 */
1058int md_check_no_bitmap(mddev_t *mddev)
1059{
1060 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1061 return 0;
1062 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1063 mdname(mddev), mddev->pers->name);
1064 return 1;
1065}
1066EXPORT_SYMBOL(md_check_no_bitmap);
1067
1068/*
1069 * load_super for 0.90.0
1070 */
1071static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1072{
1073 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1074 mdp_super_t *sb;
1075 int ret;
1076
1077 /*
1078 * Calculate the position of the superblock (512byte sectors),
1079 * it's at the end of the disk.
1080 *
1081 * It also happens to be a multiple of 4Kb.
1082 */
1083 rdev->sb_start = calc_dev_sboffset(rdev);
1084
1085 ret = read_disk_sb(rdev, MD_SB_BYTES);
1086 if (ret) return ret;
1087
1088 ret = -EINVAL;
1089
1090 bdevname(rdev->bdev, b);
1091 sb = page_address(rdev->sb_page);
1092
1093 if (sb->md_magic != MD_SB_MAGIC) {
1094 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1095 b);
1096 goto abort;
1097 }
1098
1099 if (sb->major_version != 0 ||
1100 sb->minor_version < 90 ||
1101 sb->minor_version > 91) {
1102 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1103 sb->major_version, sb->minor_version,
1104 b);
1105 goto abort;
1106 }
1107
1108 if (sb->raid_disks <= 0)
1109 goto abort;
1110
1111 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1112 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1113 b);
1114 goto abort;
1115 }
1116
1117 rdev->preferred_minor = sb->md_minor;
1118 rdev->data_offset = 0;
1119 rdev->sb_size = MD_SB_BYTES;
1120 rdev->badblocks.shift = -1;
1121
1122 if (sb->level == LEVEL_MULTIPATH)
1123 rdev->desc_nr = -1;
1124 else
1125 rdev->desc_nr = sb->this_disk.number;
1126
1127 if (!refdev) {
1128 ret = 1;
1129 } else {
1130 __u64 ev1, ev2;
1131 mdp_super_t *refsb = page_address(refdev->sb_page);
1132 if (!uuid_equal(refsb, sb)) {
1133 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1134 b, bdevname(refdev->bdev,b2));
1135 goto abort;
1136 }
1137 if (!sb_equal(refsb, sb)) {
1138 printk(KERN_WARNING "md: %s has same UUID"
1139 " but different superblock to %s\n",
1140 b, bdevname(refdev->bdev, b2));
1141 goto abort;
1142 }
1143 ev1 = md_event(sb);
1144 ev2 = md_event(refsb);
1145 if (ev1 > ev2)
1146 ret = 1;
1147 else
1148 ret = 0;
1149 }
1150 rdev->sectors = rdev->sb_start;
1151 /* Limit to 4TB as metadata cannot record more than that */
1152 if (rdev->sectors >= (2ULL << 32))
1153 rdev->sectors = (2ULL << 32) - 2;
1154
1155 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1156 /* "this cannot possibly happen" ... */
1157 ret = -EINVAL;
1158
1159 abort:
1160 return ret;
1161}
1162
1163/*
1164 * validate_super for 0.90.0
1165 */
1166static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1167{
1168 mdp_disk_t *desc;
1169 mdp_super_t *sb = page_address(rdev->sb_page);
1170 __u64 ev1 = md_event(sb);
1171
1172 rdev->raid_disk = -1;
1173 clear_bit(Faulty, &rdev->flags);
1174 clear_bit(In_sync, &rdev->flags);
1175 clear_bit(WriteMostly, &rdev->flags);
1176
1177 if (mddev->raid_disks == 0) {
1178 mddev->major_version = 0;
1179 mddev->minor_version = sb->minor_version;
1180 mddev->patch_version = sb->patch_version;
1181 mddev->external = 0;
1182 mddev->chunk_sectors = sb->chunk_size >> 9;
1183 mddev->ctime = sb->ctime;
1184 mddev->utime = sb->utime;
1185 mddev->level = sb->level;
1186 mddev->clevel[0] = 0;
1187 mddev->layout = sb->layout;
1188 mddev->raid_disks = sb->raid_disks;
1189 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1190 mddev->events = ev1;
1191 mddev->bitmap_info.offset = 0;
1192 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1193
1194 if (mddev->minor_version >= 91) {
1195 mddev->reshape_position = sb->reshape_position;
1196 mddev->delta_disks = sb->delta_disks;
1197 mddev->new_level = sb->new_level;
1198 mddev->new_layout = sb->new_layout;
1199 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1200 } else {
1201 mddev->reshape_position = MaxSector;
1202 mddev->delta_disks = 0;
1203 mddev->new_level = mddev->level;
1204 mddev->new_layout = mddev->layout;
1205 mddev->new_chunk_sectors = mddev->chunk_sectors;
1206 }
1207
1208 if (sb->state & (1<<MD_SB_CLEAN))
1209 mddev->recovery_cp = MaxSector;
1210 else {
1211 if (sb->events_hi == sb->cp_events_hi &&
1212 sb->events_lo == sb->cp_events_lo) {
1213 mddev->recovery_cp = sb->recovery_cp;
1214 } else
1215 mddev->recovery_cp = 0;
1216 }
1217
1218 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1219 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1220 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1221 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1222
1223 mddev->max_disks = MD_SB_DISKS;
1224
1225 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1226 mddev->bitmap_info.file == NULL)
1227 mddev->bitmap_info.offset =
1228 mddev->bitmap_info.default_offset;
1229
1230 } else if (mddev->pers == NULL) {
1231 /* Insist on good event counter while assembling, except
1232 * for spares (which don't need an event count) */
1233 ++ev1;
1234 if (sb->disks[rdev->desc_nr].state & (
1235 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1236 if (ev1 < mddev->events)
1237 return -EINVAL;
1238 } else if (mddev->bitmap) {
1239 /* if adding to array with a bitmap, then we can accept an
1240 * older device ... but not too old.
1241 */
1242 if (ev1 < mddev->bitmap->events_cleared)
1243 return 0;
1244 } else {
1245 if (ev1 < mddev->events)
1246 /* just a hot-add of a new device, leave raid_disk at -1 */
1247 return 0;
1248 }
1249
1250 if (mddev->level != LEVEL_MULTIPATH) {
1251 desc = sb->disks + rdev->desc_nr;
1252
1253 if (desc->state & (1<<MD_DISK_FAULTY))
1254 set_bit(Faulty, &rdev->flags);
1255 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1256 desc->raid_disk < mddev->raid_disks */) {
1257 set_bit(In_sync, &rdev->flags);
1258 rdev->raid_disk = desc->raid_disk;
1259 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1260 /* active but not in sync implies recovery up to
1261 * reshape position. We don't know exactly where
1262 * that is, so set to zero for now */
1263 if (mddev->minor_version >= 91) {
1264 rdev->recovery_offset = 0;
1265 rdev->raid_disk = desc->raid_disk;
1266 }
1267 }
1268 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1269 set_bit(WriteMostly, &rdev->flags);
1270 } else /* MULTIPATH are always insync */
1271 set_bit(In_sync, &rdev->flags);
1272 return 0;
1273}
1274
1275/*
1276 * sync_super for 0.90.0
1277 */
1278static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1279{
1280 mdp_super_t *sb;
1281 mdk_rdev_t *rdev2;
1282 int next_spare = mddev->raid_disks;
1283
1284
1285 /* make rdev->sb match mddev data..
1286 *
1287 * 1/ zero out disks
1288 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1289 * 3/ any empty disks < next_spare become removed
1290 *
1291 * disks[0] gets initialised to REMOVED because
1292 * we cannot be sure from other fields if it has
1293 * been initialised or not.
1294 */
1295 int i;
1296 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1297
1298 rdev->sb_size = MD_SB_BYTES;
1299
1300 sb = page_address(rdev->sb_page);
1301
1302 memset(sb, 0, sizeof(*sb));
1303
1304 sb->md_magic = MD_SB_MAGIC;
1305 sb->major_version = mddev->major_version;
1306 sb->patch_version = mddev->patch_version;
1307 sb->gvalid_words = 0; /* ignored */
1308 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1309 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1310 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1311 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1312
1313 sb->ctime = mddev->ctime;
1314 sb->level = mddev->level;
1315 sb->size = mddev->dev_sectors / 2;
1316 sb->raid_disks = mddev->raid_disks;
1317 sb->md_minor = mddev->md_minor;
1318 sb->not_persistent = 0;
1319 sb->utime = mddev->utime;
1320 sb->state = 0;
1321 sb->events_hi = (mddev->events>>32);
1322 sb->events_lo = (u32)mddev->events;
1323
1324 if (mddev->reshape_position == MaxSector)
1325 sb->minor_version = 90;
1326 else {
1327 sb->minor_version = 91;
1328 sb->reshape_position = mddev->reshape_position;
1329 sb->new_level = mddev->new_level;
1330 sb->delta_disks = mddev->delta_disks;
1331 sb->new_layout = mddev->new_layout;
1332 sb->new_chunk = mddev->new_chunk_sectors << 9;
1333 }
1334 mddev->minor_version = sb->minor_version;
1335 if (mddev->in_sync)
1336 {
1337 sb->recovery_cp = mddev->recovery_cp;
1338 sb->cp_events_hi = (mddev->events>>32);
1339 sb->cp_events_lo = (u32)mddev->events;
1340 if (mddev->recovery_cp == MaxSector)
1341 sb->state = (1<< MD_SB_CLEAN);
1342 } else
1343 sb->recovery_cp = 0;
1344
1345 sb->layout = mddev->layout;
1346 sb->chunk_size = mddev->chunk_sectors << 9;
1347
1348 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1349 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1350
1351 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1352 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1353 mdp_disk_t *d;
1354 int desc_nr;
1355 int is_active = test_bit(In_sync, &rdev2->flags);
1356
1357 if (rdev2->raid_disk >= 0 &&
1358 sb->minor_version >= 91)
1359 /* we have nowhere to store the recovery_offset,
1360 * but if it is not below the reshape_position,
1361 * we can piggy-back on that.
1362 */
1363 is_active = 1;
1364 if (rdev2->raid_disk < 0 ||
1365 test_bit(Faulty, &rdev2->flags))
1366 is_active = 0;
1367 if (is_active)
1368 desc_nr = rdev2->raid_disk;
1369 else
1370 desc_nr = next_spare++;
1371 rdev2->desc_nr = desc_nr;
1372 d = &sb->disks[rdev2->desc_nr];
1373 nr_disks++;
1374 d->number = rdev2->desc_nr;
1375 d->major = MAJOR(rdev2->bdev->bd_dev);
1376 d->minor = MINOR(rdev2->bdev->bd_dev);
1377 if (is_active)
1378 d->raid_disk = rdev2->raid_disk;
1379 else
1380 d->raid_disk = rdev2->desc_nr; /* compatibility */
1381 if (test_bit(Faulty, &rdev2->flags))
1382 d->state = (1<<MD_DISK_FAULTY);
1383 else if (is_active) {
1384 d->state = (1<<MD_DISK_ACTIVE);
1385 if (test_bit(In_sync, &rdev2->flags))
1386 d->state |= (1<<MD_DISK_SYNC);
1387 active++;
1388 working++;
1389 } else {
1390 d->state = 0;
1391 spare++;
1392 working++;
1393 }
1394 if (test_bit(WriteMostly, &rdev2->flags))
1395 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1396 }
1397 /* now set the "removed" and "faulty" bits on any missing devices */
1398 for (i=0 ; i < mddev->raid_disks ; i++) {
1399 mdp_disk_t *d = &sb->disks[i];
1400 if (d->state == 0 && d->number == 0) {
1401 d->number = i;
1402 d->raid_disk = i;
1403 d->state = (1<<MD_DISK_REMOVED);
1404 d->state |= (1<<MD_DISK_FAULTY);
1405 failed++;
1406 }
1407 }
1408 sb->nr_disks = nr_disks;
1409 sb->active_disks = active;
1410 sb->working_disks = working;
1411 sb->failed_disks = failed;
1412 sb->spare_disks = spare;
1413
1414 sb->this_disk = sb->disks[rdev->desc_nr];
1415 sb->sb_csum = calc_sb_csum(sb);
1416}
1417
1418/*
1419 * rdev_size_change for 0.90.0
1420 */
1421static unsigned long long
1422super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1423{
1424 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1425 return 0; /* component must fit device */
1426 if (rdev->mddev->bitmap_info.offset)
1427 return 0; /* can't move bitmap */
1428 rdev->sb_start = calc_dev_sboffset(rdev);
1429 if (!num_sectors || num_sectors > rdev->sb_start)
1430 num_sectors = rdev->sb_start;
1431 /* Limit to 4TB as metadata cannot record more than that.
1432 * 4TB == 2^32 KB, or 2*2^32 sectors.
1433 */
1434 if (num_sectors >= (2ULL << 32))
1435 num_sectors = (2ULL << 32) - 2;
1436 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1437 rdev->sb_page);
1438 md_super_wait(rdev->mddev);
1439 return num_sectors;
1440}
1441
1442
1443/*
1444 * version 1 superblock
1445 */
1446
1447static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1448{
1449 __le32 disk_csum;
1450 u32 csum;
1451 unsigned long long newcsum;
1452 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1453 __le32 *isuper = (__le32*)sb;
1454 int i;
1455
1456 disk_csum = sb->sb_csum;
1457 sb->sb_csum = 0;
1458 newcsum = 0;
1459 for (i=0; size>=4; size -= 4 )
1460 newcsum += le32_to_cpu(*isuper++);
1461
1462 if (size == 2)
1463 newcsum += le16_to_cpu(*(__le16*) isuper);
1464
1465 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1466 sb->sb_csum = disk_csum;
1467 return cpu_to_le32(csum);
1468}
1469
1470static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1471 int acknowledged);
1472static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1473{
1474 struct mdp_superblock_1 *sb;
1475 int ret;
1476 sector_t sb_start;
1477 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1478 int bmask;
1479
1480 /*
1481 * Calculate the position of the superblock in 512byte sectors.
1482 * It is always aligned to a 4K boundary and
1483 * depeding on minor_version, it can be:
1484 * 0: At least 8K, but less than 12K, from end of device
1485 * 1: At start of device
1486 * 2: 4K from start of device.
1487 */
1488 switch(minor_version) {
1489 case 0:
1490 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1491 sb_start -= 8*2;
1492 sb_start &= ~(sector_t)(4*2-1);
1493 break;
1494 case 1:
1495 sb_start = 0;
1496 break;
1497 case 2:
1498 sb_start = 8;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503 rdev->sb_start = sb_start;
1504
1505 /* superblock is rarely larger than 1K, but it can be larger,
1506 * and it is safe to read 4k, so we do that
1507 */
1508 ret = read_disk_sb(rdev, 4096);
1509 if (ret) return ret;
1510
1511
1512 sb = page_address(rdev->sb_page);
1513
1514 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1515 sb->major_version != cpu_to_le32(1) ||
1516 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1517 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1518 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1519 return -EINVAL;
1520
1521 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1522 printk("md: invalid superblock checksum on %s\n",
1523 bdevname(rdev->bdev,b));
1524 return -EINVAL;
1525 }
1526 if (le64_to_cpu(sb->data_size) < 10) {
1527 printk("md: data_size too small on %s\n",
1528 bdevname(rdev->bdev,b));
1529 return -EINVAL;
1530 }
1531
1532 rdev->preferred_minor = 0xffff;
1533 rdev->data_offset = le64_to_cpu(sb->data_offset);
1534 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1535
1536 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1537 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1538 if (rdev->sb_size & bmask)
1539 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1540
1541 if (minor_version
1542 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1543 return -EINVAL;
1544
1545 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1546 rdev->desc_nr = -1;
1547 else
1548 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1549
1550 if (!rdev->bb_page) {
1551 rdev->bb_page = alloc_page(GFP_KERNEL);
1552 if (!rdev->bb_page)
1553 return -ENOMEM;
1554 }
1555 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1556 rdev->badblocks.count == 0) {
1557 /* need to load the bad block list.
1558 * Currently we limit it to one page.
1559 */
1560 s32 offset;
1561 sector_t bb_sector;
1562 u64 *bbp;
1563 int i;
1564 int sectors = le16_to_cpu(sb->bblog_size);
1565 if (sectors > (PAGE_SIZE / 512))
1566 return -EINVAL;
1567 offset = le32_to_cpu(sb->bblog_offset);
1568 if (offset == 0)
1569 return -EINVAL;
1570 bb_sector = (long long)offset;
1571 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1572 rdev->bb_page, READ, true))
1573 return -EIO;
1574 bbp = (u64 *)page_address(rdev->bb_page);
1575 rdev->badblocks.shift = sb->bblog_shift;
1576 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1577 u64 bb = le64_to_cpu(*bbp);
1578 int count = bb & (0x3ff);
1579 u64 sector = bb >> 10;
1580 sector <<= sb->bblog_shift;
1581 count <<= sb->bblog_shift;
1582 if (bb + 1 == 0)
1583 break;
1584 if (md_set_badblocks(&rdev->badblocks,
1585 sector, count, 1) == 0)
1586 return -EINVAL;
1587 }
1588 } else if (sb->bblog_offset == 0)
1589 rdev->badblocks.shift = -1;
1590
1591 if (!refdev) {
1592 ret = 1;
1593 } else {
1594 __u64 ev1, ev2;
1595 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1596
1597 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1598 sb->level != refsb->level ||
1599 sb->layout != refsb->layout ||
1600 sb->chunksize != refsb->chunksize) {
1601 printk(KERN_WARNING "md: %s has strangely different"
1602 " superblock to %s\n",
1603 bdevname(rdev->bdev,b),
1604 bdevname(refdev->bdev,b2));
1605 return -EINVAL;
1606 }
1607 ev1 = le64_to_cpu(sb->events);
1608 ev2 = le64_to_cpu(refsb->events);
1609
1610 if (ev1 > ev2)
1611 ret = 1;
1612 else
1613 ret = 0;
1614 }
1615 if (minor_version)
1616 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1617 le64_to_cpu(sb->data_offset);
1618 else
1619 rdev->sectors = rdev->sb_start;
1620 if (rdev->sectors < le64_to_cpu(sb->data_size))
1621 return -EINVAL;
1622 rdev->sectors = le64_to_cpu(sb->data_size);
1623 if (le64_to_cpu(sb->size) > rdev->sectors)
1624 return -EINVAL;
1625 return ret;
1626}
1627
1628static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1629{
1630 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1631 __u64 ev1 = le64_to_cpu(sb->events);
1632
1633 rdev->raid_disk = -1;
1634 clear_bit(Faulty, &rdev->flags);
1635 clear_bit(In_sync, &rdev->flags);
1636 clear_bit(WriteMostly, &rdev->flags);
1637
1638 if (mddev->raid_disks == 0) {
1639 mddev->major_version = 1;
1640 mddev->patch_version = 0;
1641 mddev->external = 0;
1642 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1643 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1644 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1645 mddev->level = le32_to_cpu(sb->level);
1646 mddev->clevel[0] = 0;
1647 mddev->layout = le32_to_cpu(sb->layout);
1648 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1649 mddev->dev_sectors = le64_to_cpu(sb->size);
1650 mddev->events = ev1;
1651 mddev->bitmap_info.offset = 0;
1652 mddev->bitmap_info.default_offset = 1024 >> 9;
1653
1654 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1655 memcpy(mddev->uuid, sb->set_uuid, 16);
1656
1657 mddev->max_disks = (4096-256)/2;
1658
1659 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1660 mddev->bitmap_info.file == NULL )
1661 mddev->bitmap_info.offset =
1662 (__s32)le32_to_cpu(sb->bitmap_offset);
1663
1664 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1665 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1666 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1667 mddev->new_level = le32_to_cpu(sb->new_level);
1668 mddev->new_layout = le32_to_cpu(sb->new_layout);
1669 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1670 } else {
1671 mddev->reshape_position = MaxSector;
1672 mddev->delta_disks = 0;
1673 mddev->new_level = mddev->level;
1674 mddev->new_layout = mddev->layout;
1675 mddev->new_chunk_sectors = mddev->chunk_sectors;
1676 }
1677
1678 } else if (mddev->pers == NULL) {
1679 /* Insist of good event counter while assembling, except for
1680 * spares (which don't need an event count) */
1681 ++ev1;
1682 if (rdev->desc_nr >= 0 &&
1683 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1684 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1685 if (ev1 < mddev->events)
1686 return -EINVAL;
1687 } else if (mddev->bitmap) {
1688 /* If adding to array with a bitmap, then we can accept an
1689 * older device, but not too old.
1690 */
1691 if (ev1 < mddev->bitmap->events_cleared)
1692 return 0;
1693 } else {
1694 if (ev1 < mddev->events)
1695 /* just a hot-add of a new device, leave raid_disk at -1 */
1696 return 0;
1697 }
1698 if (mddev->level != LEVEL_MULTIPATH) {
1699 int role;
1700 if (rdev->desc_nr < 0 ||
1701 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1702 role = 0xffff;
1703 rdev->desc_nr = -1;
1704 } else
1705 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1706 switch(role) {
1707 case 0xffff: /* spare */
1708 break;
1709 case 0xfffe: /* faulty */
1710 set_bit(Faulty, &rdev->flags);
1711 break;
1712 default:
1713 if ((le32_to_cpu(sb->feature_map) &
1714 MD_FEATURE_RECOVERY_OFFSET))
1715 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1716 else
1717 set_bit(In_sync, &rdev->flags);
1718 rdev->raid_disk = role;
1719 break;
1720 }
1721 if (sb->devflags & WriteMostly1)
1722 set_bit(WriteMostly, &rdev->flags);
1723 } else /* MULTIPATH are always insync */
1724 set_bit(In_sync, &rdev->flags);
1725
1726 return 0;
1727}
1728
1729static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 struct mdp_superblock_1 *sb;
1732 mdk_rdev_t *rdev2;
1733 int max_dev, i;
1734 /* make rdev->sb match mddev and rdev data. */
1735
1736 sb = page_address(rdev->sb_page);
1737
1738 sb->feature_map = 0;
1739 sb->pad0 = 0;
1740 sb->recovery_offset = cpu_to_le64(0);
1741 memset(sb->pad1, 0, sizeof(sb->pad1));
1742 memset(sb->pad3, 0, sizeof(sb->pad3));
1743
1744 sb->utime = cpu_to_le64((__u64)mddev->utime);
1745 sb->events = cpu_to_le64(mddev->events);
1746 if (mddev->in_sync)
1747 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748 else
1749 sb->resync_offset = cpu_to_le64(0);
1750
1751 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752
1753 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754 sb->size = cpu_to_le64(mddev->dev_sectors);
1755 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756 sb->level = cpu_to_le32(mddev->level);
1757 sb->layout = cpu_to_le32(mddev->layout);
1758
1759 if (test_bit(WriteMostly, &rdev->flags))
1760 sb->devflags |= WriteMostly1;
1761 else
1762 sb->devflags &= ~WriteMostly1;
1763
1764 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1765 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1766 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1767 }
1768
1769 if (rdev->raid_disk >= 0 &&
1770 !test_bit(In_sync, &rdev->flags)) {
1771 sb->feature_map |=
1772 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1773 sb->recovery_offset =
1774 cpu_to_le64(rdev->recovery_offset);
1775 }
1776
1777 if (mddev->reshape_position != MaxSector) {
1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1779 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1780 sb->new_layout = cpu_to_le32(mddev->new_layout);
1781 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1782 sb->new_level = cpu_to_le32(mddev->new_level);
1783 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1784 }
1785
1786 if (rdev->badblocks.count == 0)
1787 /* Nothing to do for bad blocks*/ ;
1788 else if (sb->bblog_offset == 0)
1789 /* Cannot record bad blocks on this device */
1790 md_error(mddev, rdev);
1791 else {
1792 struct badblocks *bb = &rdev->badblocks;
1793 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1794 u64 *p = bb->page;
1795 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1796 if (bb->changed) {
1797 unsigned seq;
1798
1799retry:
1800 seq = read_seqbegin(&bb->lock);
1801
1802 memset(bbp, 0xff, PAGE_SIZE);
1803
1804 for (i = 0 ; i < bb->count ; i++) {
1805 u64 internal_bb = *p++;
1806 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1807 | BB_LEN(internal_bb));
1808 *bbp++ = cpu_to_le64(store_bb);
1809 }
1810 if (read_seqretry(&bb->lock, seq))
1811 goto retry;
1812
1813 bb->sector = (rdev->sb_start +
1814 (int)le32_to_cpu(sb->bblog_offset));
1815 bb->size = le16_to_cpu(sb->bblog_size);
1816 bb->changed = 0;
1817 }
1818 }
1819
1820 max_dev = 0;
1821 list_for_each_entry(rdev2, &mddev->disks, same_set)
1822 if (rdev2->desc_nr+1 > max_dev)
1823 max_dev = rdev2->desc_nr+1;
1824
1825 if (max_dev > le32_to_cpu(sb->max_dev)) {
1826 int bmask;
1827 sb->max_dev = cpu_to_le32(max_dev);
1828 rdev->sb_size = max_dev * 2 + 256;
1829 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1830 if (rdev->sb_size & bmask)
1831 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1832 } else
1833 max_dev = le32_to_cpu(sb->max_dev);
1834
1835 for (i=0; i<max_dev;i++)
1836 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837
1838 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1839 i = rdev2->desc_nr;
1840 if (test_bit(Faulty, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1842 else if (test_bit(In_sync, &rdev2->flags))
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 else if (rdev2->raid_disk >= 0)
1845 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1846 else
1847 sb->dev_roles[i] = cpu_to_le16(0xffff);
1848 }
1849
1850 sb->sb_csum = calc_sb_1_csum(sb);
1851}
1852
1853static unsigned long long
1854super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1855{
1856 struct mdp_superblock_1 *sb;
1857 sector_t max_sectors;
1858 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1859 return 0; /* component must fit device */
1860 if (rdev->sb_start < rdev->data_offset) {
1861 /* minor versions 1 and 2; superblock before data */
1862 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1863 max_sectors -= rdev->data_offset;
1864 if (!num_sectors || num_sectors > max_sectors)
1865 num_sectors = max_sectors;
1866 } else if (rdev->mddev->bitmap_info.offset) {
1867 /* minor version 0 with bitmap we can't move */
1868 return 0;
1869 } else {
1870 /* minor version 0; superblock after data */
1871 sector_t sb_start;
1872 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1873 sb_start &= ~(sector_t)(4*2 - 1);
1874 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1875 if (!num_sectors || num_sectors > max_sectors)
1876 num_sectors = max_sectors;
1877 rdev->sb_start = sb_start;
1878 }
1879 sb = page_address(rdev->sb_page);
1880 sb->data_size = cpu_to_le64(num_sectors);
1881 sb->super_offset = rdev->sb_start;
1882 sb->sb_csum = calc_sb_1_csum(sb);
1883 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1884 rdev->sb_page);
1885 md_super_wait(rdev->mddev);
1886 return num_sectors;
1887}
1888
1889static struct super_type super_types[] = {
1890 [0] = {
1891 .name = "0.90.0",
1892 .owner = THIS_MODULE,
1893 .load_super = super_90_load,
1894 .validate_super = super_90_validate,
1895 .sync_super = super_90_sync,
1896 .rdev_size_change = super_90_rdev_size_change,
1897 },
1898 [1] = {
1899 .name = "md-1",
1900 .owner = THIS_MODULE,
1901 .load_super = super_1_load,
1902 .validate_super = super_1_validate,
1903 .sync_super = super_1_sync,
1904 .rdev_size_change = super_1_rdev_size_change,
1905 },
1906};
1907
1908static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1909{
1910 if (mddev->sync_super) {
1911 mddev->sync_super(mddev, rdev);
1912 return;
1913 }
1914
1915 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1916
1917 super_types[mddev->major_version].sync_super(mddev, rdev);
1918}
1919
1920static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1921{
1922 mdk_rdev_t *rdev, *rdev2;
1923
1924 rcu_read_lock();
1925 rdev_for_each_rcu(rdev, mddev1)
1926 rdev_for_each_rcu(rdev2, mddev2)
1927 if (rdev->bdev->bd_contains ==
1928 rdev2->bdev->bd_contains) {
1929 rcu_read_unlock();
1930 return 1;
1931 }
1932 rcu_read_unlock();
1933 return 0;
1934}
1935
1936static LIST_HEAD(pending_raid_disks);
1937
1938/*
1939 * Try to register data integrity profile for an mddev
1940 *
1941 * This is called when an array is started and after a disk has been kicked
1942 * from the array. It only succeeds if all working and active component devices
1943 * are integrity capable with matching profiles.
1944 */
1945int md_integrity_register(mddev_t *mddev)
1946{
1947 mdk_rdev_t *rdev, *reference = NULL;
1948
1949 if (list_empty(&mddev->disks))
1950 return 0; /* nothing to do */
1951 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1952 return 0; /* shouldn't register, or already is */
1953 list_for_each_entry(rdev, &mddev->disks, same_set) {
1954 /* skip spares and non-functional disks */
1955 if (test_bit(Faulty, &rdev->flags))
1956 continue;
1957 if (rdev->raid_disk < 0)
1958 continue;
1959 if (!reference) {
1960 /* Use the first rdev as the reference */
1961 reference = rdev;
1962 continue;
1963 }
1964 /* does this rdev's profile match the reference profile? */
1965 if (blk_integrity_compare(reference->bdev->bd_disk,
1966 rdev->bdev->bd_disk) < 0)
1967 return -EINVAL;
1968 }
1969 if (!reference || !bdev_get_integrity(reference->bdev))
1970 return 0;
1971 /*
1972 * All component devices are integrity capable and have matching
1973 * profiles, register the common profile for the md device.
1974 */
1975 if (blk_integrity_register(mddev->gendisk,
1976 bdev_get_integrity(reference->bdev)) != 0) {
1977 printk(KERN_ERR "md: failed to register integrity for %s\n",
1978 mdname(mddev));
1979 return -EINVAL;
1980 }
1981 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1982 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1983 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1984 mdname(mddev));
1985 return -EINVAL;
1986 }
1987 return 0;
1988}
1989EXPORT_SYMBOL(md_integrity_register);
1990
1991/* Disable data integrity if non-capable/non-matching disk is being added */
1992void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1993{
1994 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1995 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1996
1997 if (!bi_mddev) /* nothing to do */
1998 return;
1999 if (rdev->raid_disk < 0) /* skip spares */
2000 return;
2001 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2002 rdev->bdev->bd_disk) >= 0)
2003 return;
2004 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2005 blk_integrity_unregister(mddev->gendisk);
2006}
2007EXPORT_SYMBOL(md_integrity_add_rdev);
2008
2009static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
2010{
2011 char b[BDEVNAME_SIZE];
2012 struct kobject *ko;
2013 char *s;
2014 int err;
2015
2016 if (rdev->mddev) {
2017 MD_BUG();
2018 return -EINVAL;
2019 }
2020
2021 /* prevent duplicates */
2022 if (find_rdev(mddev, rdev->bdev->bd_dev))
2023 return -EEXIST;
2024
2025 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2026 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2027 rdev->sectors < mddev->dev_sectors)) {
2028 if (mddev->pers) {
2029 /* Cannot change size, so fail
2030 * If mddev->level <= 0, then we don't care
2031 * about aligning sizes (e.g. linear)
2032 */
2033 if (mddev->level > 0)
2034 return -ENOSPC;
2035 } else
2036 mddev->dev_sectors = rdev->sectors;
2037 }
2038
2039 /* Verify rdev->desc_nr is unique.
2040 * If it is -1, assign a free number, else
2041 * check number is not in use
2042 */
2043 if (rdev->desc_nr < 0) {
2044 int choice = 0;
2045 if (mddev->pers) choice = mddev->raid_disks;
2046 while (find_rdev_nr(mddev, choice))
2047 choice++;
2048 rdev->desc_nr = choice;
2049 } else {
2050 if (find_rdev_nr(mddev, rdev->desc_nr))
2051 return -EBUSY;
2052 }
2053 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2054 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2055 mdname(mddev), mddev->max_disks);
2056 return -EBUSY;
2057 }
2058 bdevname(rdev->bdev,b);
2059 while ( (s=strchr(b, '/')) != NULL)
2060 *s = '!';
2061
2062 rdev->mddev = mddev;
2063 printk(KERN_INFO "md: bind<%s>\n", b);
2064
2065 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2066 goto fail;
2067
2068 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2069 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2070 /* failure here is OK */;
2071 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2072
2073 list_add_rcu(&rdev->same_set, &mddev->disks);
2074 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2075
2076 /* May as well allow recovery to be retried once */
2077 mddev->recovery_disabled++;
2078
2079 return 0;
2080
2081 fail:
2082 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2083 b, mdname(mddev));
2084 return err;
2085}
2086
2087static void md_delayed_delete(struct work_struct *ws)
2088{
2089 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2090 kobject_del(&rdev->kobj);
2091 kobject_put(&rdev->kobj);
2092}
2093
2094static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2095{
2096 char b[BDEVNAME_SIZE];
2097 if (!rdev->mddev) {
2098 MD_BUG();
2099 return;
2100 }
2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 list_del_rcu(&rdev->same_set);
2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 rdev->mddev = NULL;
2105 sysfs_remove_link(&rdev->kobj, "block");
2106 sysfs_put(rdev->sysfs_state);
2107 rdev->sysfs_state = NULL;
2108 kfree(rdev->badblocks.page);
2109 rdev->badblocks.count = 0;
2110 rdev->badblocks.page = NULL;
2111 /* We need to delay this, otherwise we can deadlock when
2112 * writing to 'remove' to "dev/state". We also need
2113 * to delay it due to rcu usage.
2114 */
2115 synchronize_rcu();
2116 INIT_WORK(&rdev->del_work, md_delayed_delete);
2117 kobject_get(&rdev->kobj);
2118 queue_work(md_misc_wq, &rdev->del_work);
2119}
2120
2121/*
2122 * prevent the device from being mounted, repartitioned or
2123 * otherwise reused by a RAID array (or any other kernel
2124 * subsystem), by bd_claiming the device.
2125 */
2126static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2127{
2128 int err = 0;
2129 struct block_device *bdev;
2130 char b[BDEVNAME_SIZE];
2131
2132 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2133 shared ? (mdk_rdev_t *)lock_rdev : rdev);
2134 if (IS_ERR(bdev)) {
2135 printk(KERN_ERR "md: could not open %s.\n",
2136 __bdevname(dev, b));
2137 return PTR_ERR(bdev);
2138 }
2139 rdev->bdev = bdev;
2140 return err;
2141}
2142
2143static void unlock_rdev(mdk_rdev_t *rdev)
2144{
2145 struct block_device *bdev = rdev->bdev;
2146 rdev->bdev = NULL;
2147 if (!bdev)
2148 MD_BUG();
2149 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150}
2151
2152void md_autodetect_dev(dev_t dev);
2153
2154static void export_rdev(mdk_rdev_t * rdev)
2155{
2156 char b[BDEVNAME_SIZE];
2157 printk(KERN_INFO "md: export_rdev(%s)\n",
2158 bdevname(rdev->bdev,b));
2159 if (rdev->mddev)
2160 MD_BUG();
2161 free_disk_sb(rdev);
2162#ifndef MODULE
2163 if (test_bit(AutoDetected, &rdev->flags))
2164 md_autodetect_dev(rdev->bdev->bd_dev);
2165#endif
2166 unlock_rdev(rdev);
2167 kobject_put(&rdev->kobj);
2168}
2169
2170static void kick_rdev_from_array(mdk_rdev_t * rdev)
2171{
2172 unbind_rdev_from_array(rdev);
2173 export_rdev(rdev);
2174}
2175
2176static void export_array(mddev_t *mddev)
2177{
2178 mdk_rdev_t *rdev, *tmp;
2179
2180 rdev_for_each(rdev, tmp, mddev) {
2181 if (!rdev->mddev) {
2182 MD_BUG();
2183 continue;
2184 }
2185 kick_rdev_from_array(rdev);
2186 }
2187 if (!list_empty(&mddev->disks))
2188 MD_BUG();
2189 mddev->raid_disks = 0;
2190 mddev->major_version = 0;
2191}
2192
2193static void print_desc(mdp_disk_t *desc)
2194{
2195 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196 desc->major,desc->minor,desc->raid_disk,desc->state);
2197}
2198
2199static void print_sb_90(mdp_super_t *sb)
2200{
2201 int i;
2202
2203 printk(KERN_INFO
2204 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205 sb->major_version, sb->minor_version, sb->patch_version,
2206 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207 sb->ctime);
2208 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210 sb->md_minor, sb->layout, sb->chunk_size);
2211 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2212 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214 sb->failed_disks, sb->spare_disks,
2215 sb->sb_csum, (unsigned long)sb->events_lo);
2216
2217 printk(KERN_INFO);
2218 for (i = 0; i < MD_SB_DISKS; i++) {
2219 mdp_disk_t *desc;
2220
2221 desc = sb->disks + i;
2222 if (desc->number || desc->major || desc->minor ||
2223 desc->raid_disk || (desc->state && (desc->state != 4))) {
2224 printk(" D %2d: ", i);
2225 print_desc(desc);
2226 }
2227 }
2228 printk(KERN_INFO "md: THIS: ");
2229 print_desc(&sb->this_disk);
2230}
2231
2232static void print_sb_1(struct mdp_superblock_1 *sb)
2233{
2234 __u8 *uuid;
2235
2236 uuid = sb->set_uuid;
2237 printk(KERN_INFO
2238 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239 "md: Name: \"%s\" CT:%llu\n",
2240 le32_to_cpu(sb->major_version),
2241 le32_to_cpu(sb->feature_map),
2242 uuid,
2243 sb->set_name,
2244 (unsigned long long)le64_to_cpu(sb->ctime)
2245 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246
2247 uuid = sb->device_uuid;
2248 printk(KERN_INFO
2249 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250 " RO:%llu\n"
2251 "md: Dev:%08x UUID: %pU\n"
2252 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253 "md: (MaxDev:%u) \n",
2254 le32_to_cpu(sb->level),
2255 (unsigned long long)le64_to_cpu(sb->size),
2256 le32_to_cpu(sb->raid_disks),
2257 le32_to_cpu(sb->layout),
2258 le32_to_cpu(sb->chunksize),
2259 (unsigned long long)le64_to_cpu(sb->data_offset),
2260 (unsigned long long)le64_to_cpu(sb->data_size),
2261 (unsigned long long)le64_to_cpu(sb->super_offset),
2262 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2263 le32_to_cpu(sb->dev_number),
2264 uuid,
2265 sb->devflags,
2266 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267 (unsigned long long)le64_to_cpu(sb->events),
2268 (unsigned long long)le64_to_cpu(sb->resync_offset),
2269 le32_to_cpu(sb->sb_csum),
2270 le32_to_cpu(sb->max_dev)
2271 );
2272}
2273
2274static void print_rdev(mdk_rdev_t *rdev, int major_version)
2275{
2276 char b[BDEVNAME_SIZE];
2277 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280 rdev->desc_nr);
2281 if (rdev->sb_loaded) {
2282 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283 switch (major_version) {
2284 case 0:
2285 print_sb_90(page_address(rdev->sb_page));
2286 break;
2287 case 1:
2288 print_sb_1(page_address(rdev->sb_page));
2289 break;
2290 }
2291 } else
2292 printk(KERN_INFO "md: no rdev superblock!\n");
2293}
2294
2295static void md_print_devices(void)
2296{
2297 struct list_head *tmp;
2298 mdk_rdev_t *rdev;
2299 mddev_t *mddev;
2300 char b[BDEVNAME_SIZE];
2301
2302 printk("\n");
2303 printk("md: **********************************\n");
2304 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2305 printk("md: **********************************\n");
2306 for_each_mddev(mddev, tmp) {
2307
2308 if (mddev->bitmap)
2309 bitmap_print_sb(mddev->bitmap);
2310 else
2311 printk("%s: ", mdname(mddev));
2312 list_for_each_entry(rdev, &mddev->disks, same_set)
2313 printk("<%s>", bdevname(rdev->bdev,b));
2314 printk("\n");
2315
2316 list_for_each_entry(rdev, &mddev->disks, same_set)
2317 print_rdev(rdev, mddev->major_version);
2318 }
2319 printk("md: **********************************\n");
2320 printk("\n");
2321}
2322
2323
2324static void sync_sbs(mddev_t * mddev, int nospares)
2325{
2326 /* Update each superblock (in-memory image), but
2327 * if we are allowed to, skip spares which already
2328 * have the right event counter, or have one earlier
2329 * (which would mean they aren't being marked as dirty
2330 * with the rest of the array)
2331 */
2332 mdk_rdev_t *rdev;
2333 list_for_each_entry(rdev, &mddev->disks, same_set) {
2334 if (rdev->sb_events == mddev->events ||
2335 (nospares &&
2336 rdev->raid_disk < 0 &&
2337 rdev->sb_events+1 == mddev->events)) {
2338 /* Don't update this superblock */
2339 rdev->sb_loaded = 2;
2340 } else {
2341 sync_super(mddev, rdev);
2342 rdev->sb_loaded = 1;
2343 }
2344 }
2345}
2346
2347static void md_update_sb(mddev_t * mddev, int force_change)
2348{
2349 mdk_rdev_t *rdev;
2350 int sync_req;
2351 int nospares = 0;
2352 int any_badblocks_changed = 0;
2353
2354repeat:
2355 /* First make sure individual recovery_offsets are correct */
2356 list_for_each_entry(rdev, &mddev->disks, same_set) {
2357 if (rdev->raid_disk >= 0 &&
2358 mddev->delta_disks >= 0 &&
2359 !test_bit(In_sync, &rdev->flags) &&
2360 mddev->curr_resync_completed > rdev->recovery_offset)
2361 rdev->recovery_offset = mddev->curr_resync_completed;
2362
2363 }
2364 if (!mddev->persistent) {
2365 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2366 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2367 if (!mddev->external) {
2368 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2369 list_for_each_entry(rdev, &mddev->disks, same_set) {
2370 if (rdev->badblocks.changed) {
2371 md_ack_all_badblocks(&rdev->badblocks);
2372 md_error(mddev, rdev);
2373 }
2374 clear_bit(Blocked, &rdev->flags);
2375 clear_bit(BlockedBadBlocks, &rdev->flags);
2376 wake_up(&rdev->blocked_wait);
2377 }
2378 }
2379 wake_up(&mddev->sb_wait);
2380 return;
2381 }
2382
2383 spin_lock_irq(&mddev->write_lock);
2384
2385 mddev->utime = get_seconds();
2386
2387 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2388 force_change = 1;
2389 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2390 /* just a clean<-> dirty transition, possibly leave spares alone,
2391 * though if events isn't the right even/odd, we will have to do
2392 * spares after all
2393 */
2394 nospares = 1;
2395 if (force_change)
2396 nospares = 0;
2397 if (mddev->degraded)
2398 /* If the array is degraded, then skipping spares is both
2399 * dangerous and fairly pointless.
2400 * Dangerous because a device that was removed from the array
2401 * might have a event_count that still looks up-to-date,
2402 * so it can be re-added without a resync.
2403 * Pointless because if there are any spares to skip,
2404 * then a recovery will happen and soon that array won't
2405 * be degraded any more and the spare can go back to sleep then.
2406 */
2407 nospares = 0;
2408
2409 sync_req = mddev->in_sync;
2410
2411 /* If this is just a dirty<->clean transition, and the array is clean
2412 * and 'events' is odd, we can roll back to the previous clean state */
2413 if (nospares
2414 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2415 && mddev->can_decrease_events
2416 && mddev->events != 1) {
2417 mddev->events--;
2418 mddev->can_decrease_events = 0;
2419 } else {
2420 /* otherwise we have to go forward and ... */
2421 mddev->events ++;
2422 mddev->can_decrease_events = nospares;
2423 }
2424
2425 if (!mddev->events) {
2426 /*
2427 * oops, this 64-bit counter should never wrap.
2428 * Either we are in around ~1 trillion A.C., assuming
2429 * 1 reboot per second, or we have a bug:
2430 */
2431 MD_BUG();
2432 mddev->events --;
2433 }
2434
2435 list_for_each_entry(rdev, &mddev->disks, same_set) {
2436 if (rdev->badblocks.changed)
2437 any_badblocks_changed++;
2438 if (test_bit(Faulty, &rdev->flags))
2439 set_bit(FaultRecorded, &rdev->flags);
2440 }
2441
2442 sync_sbs(mddev, nospares);
2443 spin_unlock_irq(&mddev->write_lock);
2444
2445 dprintk(KERN_INFO
2446 "md: updating %s RAID superblock on device (in sync %d)\n",
2447 mdname(mddev),mddev->in_sync);
2448
2449 bitmap_update_sb(mddev->bitmap);
2450 list_for_each_entry(rdev, &mddev->disks, same_set) {
2451 char b[BDEVNAME_SIZE];
2452 dprintk(KERN_INFO "md: ");
2453 if (rdev->sb_loaded != 1)
2454 continue; /* no noise on spare devices */
2455 if (test_bit(Faulty, &rdev->flags))
2456 dprintk("(skipping faulty ");
2457
2458 dprintk("%s ", bdevname(rdev->bdev,b));
2459 if (!test_bit(Faulty, &rdev->flags)) {
2460 md_super_write(mddev,rdev,
2461 rdev->sb_start, rdev->sb_size,
2462 rdev->sb_page);
2463 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2464 bdevname(rdev->bdev,b),
2465 (unsigned long long)rdev->sb_start);
2466 rdev->sb_events = mddev->events;
2467 if (rdev->badblocks.size) {
2468 md_super_write(mddev, rdev,
2469 rdev->badblocks.sector,
2470 rdev->badblocks.size << 9,
2471 rdev->bb_page);
2472 rdev->badblocks.size = 0;
2473 }
2474
2475 } else
2476 dprintk(")\n");
2477 if (mddev->level == LEVEL_MULTIPATH)
2478 /* only need to write one superblock... */
2479 break;
2480 }
2481 md_super_wait(mddev);
2482 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2483
2484 spin_lock_irq(&mddev->write_lock);
2485 if (mddev->in_sync != sync_req ||
2486 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 /* have to write it out again */
2488 spin_unlock_irq(&mddev->write_lock);
2489 goto repeat;
2490 }
2491 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 spin_unlock_irq(&mddev->write_lock);
2493 wake_up(&mddev->sb_wait);
2494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2496
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 clear_bit(Blocked, &rdev->flags);
2500
2501 if (any_badblocks_changed)
2502 md_ack_all_badblocks(&rdev->badblocks);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2505 }
2506}
2507
2508/* words written to sysfs files may, or may not, be \n terminated.
2509 * We want to accept with case. For this we use cmd_match.
2510 */
2511static int cmd_match(const char *cmd, const char *str)
2512{
2513 /* See if cmd, written into a sysfs file, matches
2514 * str. They must either be the same, or cmd can
2515 * have a trailing newline
2516 */
2517 while (*cmd && *str && *cmd == *str) {
2518 cmd++;
2519 str++;
2520 }
2521 if (*cmd == '\n')
2522 cmd++;
2523 if (*str || *cmd)
2524 return 0;
2525 return 1;
2526}
2527
2528struct rdev_sysfs_entry {
2529 struct attribute attr;
2530 ssize_t (*show)(mdk_rdev_t *, char *);
2531 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2532};
2533
2534static ssize_t
2535state_show(mdk_rdev_t *rdev, char *page)
2536{
2537 char *sep = "";
2538 size_t len = 0;
2539
2540 if (test_bit(Faulty, &rdev->flags) ||
2541 rdev->badblocks.unacked_exist) {
2542 len+= sprintf(page+len, "%sfaulty",sep);
2543 sep = ",";
2544 }
2545 if (test_bit(In_sync, &rdev->flags)) {
2546 len += sprintf(page+len, "%sin_sync",sep);
2547 sep = ",";
2548 }
2549 if (test_bit(WriteMostly, &rdev->flags)) {
2550 len += sprintf(page+len, "%swrite_mostly",sep);
2551 sep = ",";
2552 }
2553 if (test_bit(Blocked, &rdev->flags) ||
2554 rdev->badblocks.unacked_exist) {
2555 len += sprintf(page+len, "%sblocked", sep);
2556 sep = ",";
2557 }
2558 if (!test_bit(Faulty, &rdev->flags) &&
2559 !test_bit(In_sync, &rdev->flags)) {
2560 len += sprintf(page+len, "%sspare", sep);
2561 sep = ",";
2562 }
2563 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2564 len += sprintf(page+len, "%swrite_error", sep);
2565 sep = ",";
2566 }
2567 return len+sprintf(page+len, "\n");
2568}
2569
2570static ssize_t
2571state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2572{
2573 /* can write
2574 * faulty - simulates an error
2575 * remove - disconnects the device
2576 * writemostly - sets write_mostly
2577 * -writemostly - clears write_mostly
2578 * blocked - sets the Blocked flags
2579 * -blocked - clears the Blocked and possibly simulates an error
2580 * insync - sets Insync providing device isn't active
2581 * write_error - sets WriteErrorSeen
2582 * -write_error - clears WriteErrorSeen
2583 */
2584 int err = -EINVAL;
2585 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2586 md_error(rdev->mddev, rdev);
2587 if (test_bit(Faulty, &rdev->flags))
2588 err = 0;
2589 else
2590 err = -EBUSY;
2591 } else if (cmd_match(buf, "remove")) {
2592 if (rdev->raid_disk >= 0)
2593 err = -EBUSY;
2594 else {
2595 mddev_t *mddev = rdev->mddev;
2596 kick_rdev_from_array(rdev);
2597 if (mddev->pers)
2598 md_update_sb(mddev, 1);
2599 md_new_event(mddev);
2600 err = 0;
2601 }
2602 } else if (cmd_match(buf, "writemostly")) {
2603 set_bit(WriteMostly, &rdev->flags);
2604 err = 0;
2605 } else if (cmd_match(buf, "-writemostly")) {
2606 clear_bit(WriteMostly, &rdev->flags);
2607 err = 0;
2608 } else if (cmd_match(buf, "blocked")) {
2609 set_bit(Blocked, &rdev->flags);
2610 err = 0;
2611 } else if (cmd_match(buf, "-blocked")) {
2612 if (!test_bit(Faulty, &rdev->flags) &&
2613 rdev->badblocks.unacked_exist) {
2614 /* metadata handler doesn't understand badblocks,
2615 * so we need to fail the device
2616 */
2617 md_error(rdev->mddev, rdev);
2618 }
2619 clear_bit(Blocked, &rdev->flags);
2620 clear_bit(BlockedBadBlocks, &rdev->flags);
2621 wake_up(&rdev->blocked_wait);
2622 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2623 md_wakeup_thread(rdev->mddev->thread);
2624
2625 err = 0;
2626 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2627 set_bit(In_sync, &rdev->flags);
2628 err = 0;
2629 } else if (cmd_match(buf, "write_error")) {
2630 set_bit(WriteErrorSeen, &rdev->flags);
2631 err = 0;
2632 } else if (cmd_match(buf, "-write_error")) {
2633 clear_bit(WriteErrorSeen, &rdev->flags);
2634 err = 0;
2635 }
2636 if (!err)
2637 sysfs_notify_dirent_safe(rdev->sysfs_state);
2638 return err ? err : len;
2639}
2640static struct rdev_sysfs_entry rdev_state =
2641__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2642
2643static ssize_t
2644errors_show(mdk_rdev_t *rdev, char *page)
2645{
2646 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2647}
2648
2649static ssize_t
2650errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2651{
2652 char *e;
2653 unsigned long n = simple_strtoul(buf, &e, 10);
2654 if (*buf && (*e == 0 || *e == '\n')) {
2655 atomic_set(&rdev->corrected_errors, n);
2656 return len;
2657 }
2658 return -EINVAL;
2659}
2660static struct rdev_sysfs_entry rdev_errors =
2661__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2662
2663static ssize_t
2664slot_show(mdk_rdev_t *rdev, char *page)
2665{
2666 if (rdev->raid_disk < 0)
2667 return sprintf(page, "none\n");
2668 else
2669 return sprintf(page, "%d\n", rdev->raid_disk);
2670}
2671
2672static ssize_t
2673slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2674{
2675 char *e;
2676 int err;
2677 int slot = simple_strtoul(buf, &e, 10);
2678 if (strncmp(buf, "none", 4)==0)
2679 slot = -1;
2680 else if (e==buf || (*e && *e!= '\n'))
2681 return -EINVAL;
2682 if (rdev->mddev->pers && slot == -1) {
2683 /* Setting 'slot' on an active array requires also
2684 * updating the 'rd%d' link, and communicating
2685 * with the personality with ->hot_*_disk.
2686 * For now we only support removing
2687 * failed/spare devices. This normally happens automatically,
2688 * but not when the metadata is externally managed.
2689 */
2690 if (rdev->raid_disk == -1)
2691 return -EEXIST;
2692 /* personality does all needed checks */
2693 if (rdev->mddev->pers->hot_remove_disk == NULL)
2694 return -EINVAL;
2695 err = rdev->mddev->pers->
2696 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2697 if (err)
2698 return err;
2699 sysfs_unlink_rdev(rdev->mddev, rdev);
2700 rdev->raid_disk = -1;
2701 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2702 md_wakeup_thread(rdev->mddev->thread);
2703 } else if (rdev->mddev->pers) {
2704 mdk_rdev_t *rdev2;
2705 /* Activating a spare .. or possibly reactivating
2706 * if we ever get bitmaps working here.
2707 */
2708
2709 if (rdev->raid_disk != -1)
2710 return -EBUSY;
2711
2712 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2713 return -EBUSY;
2714
2715 if (rdev->mddev->pers->hot_add_disk == NULL)
2716 return -EINVAL;
2717
2718 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2719 if (rdev2->raid_disk == slot)
2720 return -EEXIST;
2721
2722 if (slot >= rdev->mddev->raid_disks &&
2723 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2724 return -ENOSPC;
2725
2726 rdev->raid_disk = slot;
2727 if (test_bit(In_sync, &rdev->flags))
2728 rdev->saved_raid_disk = slot;
2729 else
2730 rdev->saved_raid_disk = -1;
2731 err = rdev->mddev->pers->
2732 hot_add_disk(rdev->mddev, rdev);
2733 if (err) {
2734 rdev->raid_disk = -1;
2735 return err;
2736 } else
2737 sysfs_notify_dirent_safe(rdev->sysfs_state);
2738 if (sysfs_link_rdev(rdev->mddev, rdev))
2739 /* failure here is OK */;
2740 /* don't wakeup anyone, leave that to userspace. */
2741 } else {
2742 if (slot >= rdev->mddev->raid_disks &&
2743 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2744 return -ENOSPC;
2745 rdev->raid_disk = slot;
2746 /* assume it is working */
2747 clear_bit(Faulty, &rdev->flags);
2748 clear_bit(WriteMostly, &rdev->flags);
2749 set_bit(In_sync, &rdev->flags);
2750 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751 }
2752 return len;
2753}
2754
2755
2756static struct rdev_sysfs_entry rdev_slot =
2757__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2758
2759static ssize_t
2760offset_show(mdk_rdev_t *rdev, char *page)
2761{
2762 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2763}
2764
2765static ssize_t
2766offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2767{
2768 char *e;
2769 unsigned long long offset = simple_strtoull(buf, &e, 10);
2770 if (e==buf || (*e && *e != '\n'))
2771 return -EINVAL;
2772 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2773 return -EBUSY;
2774 if (rdev->sectors && rdev->mddev->external)
2775 /* Must set offset before size, so overlap checks
2776 * can be sane */
2777 return -EBUSY;
2778 rdev->data_offset = offset;
2779 return len;
2780}
2781
2782static struct rdev_sysfs_entry rdev_offset =
2783__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2784
2785static ssize_t
2786rdev_size_show(mdk_rdev_t *rdev, char *page)
2787{
2788 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2789}
2790
2791static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2792{
2793 /* check if two start/length pairs overlap */
2794 if (s1+l1 <= s2)
2795 return 0;
2796 if (s2+l2 <= s1)
2797 return 0;
2798 return 1;
2799}
2800
2801static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2802{
2803 unsigned long long blocks;
2804 sector_t new;
2805
2806 if (strict_strtoull(buf, 10, &blocks) < 0)
2807 return -EINVAL;
2808
2809 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2810 return -EINVAL; /* sector conversion overflow */
2811
2812 new = blocks * 2;
2813 if (new != blocks * 2)
2814 return -EINVAL; /* unsigned long long to sector_t overflow */
2815
2816 *sectors = new;
2817 return 0;
2818}
2819
2820static ssize_t
2821rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2822{
2823 mddev_t *my_mddev = rdev->mddev;
2824 sector_t oldsectors = rdev->sectors;
2825 sector_t sectors;
2826
2827 if (strict_blocks_to_sectors(buf, §ors) < 0)
2828 return -EINVAL;
2829 if (my_mddev->pers && rdev->raid_disk >= 0) {
2830 if (my_mddev->persistent) {
2831 sectors = super_types[my_mddev->major_version].
2832 rdev_size_change(rdev, sectors);
2833 if (!sectors)
2834 return -EBUSY;
2835 } else if (!sectors)
2836 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2837 rdev->data_offset;
2838 }
2839 if (sectors < my_mddev->dev_sectors)
2840 return -EINVAL; /* component must fit device */
2841
2842 rdev->sectors = sectors;
2843 if (sectors > oldsectors && my_mddev->external) {
2844 /* need to check that all other rdevs with the same ->bdev
2845 * do not overlap. We need to unlock the mddev to avoid
2846 * a deadlock. We have already changed rdev->sectors, and if
2847 * we have to change it back, we will have the lock again.
2848 */
2849 mddev_t *mddev;
2850 int overlap = 0;
2851 struct list_head *tmp;
2852
2853 mddev_unlock(my_mddev);
2854 for_each_mddev(mddev, tmp) {
2855 mdk_rdev_t *rdev2;
2856
2857 mddev_lock(mddev);
2858 list_for_each_entry(rdev2, &mddev->disks, same_set)
2859 if (rdev->bdev == rdev2->bdev &&
2860 rdev != rdev2 &&
2861 overlaps(rdev->data_offset, rdev->sectors,
2862 rdev2->data_offset,
2863 rdev2->sectors)) {
2864 overlap = 1;
2865 break;
2866 }
2867 mddev_unlock(mddev);
2868 if (overlap) {
2869 mddev_put(mddev);
2870 break;
2871 }
2872 }
2873 mddev_lock(my_mddev);
2874 if (overlap) {
2875 /* Someone else could have slipped in a size
2876 * change here, but doing so is just silly.
2877 * We put oldsectors back because we *know* it is
2878 * safe, and trust userspace not to race with
2879 * itself
2880 */
2881 rdev->sectors = oldsectors;
2882 return -EBUSY;
2883 }
2884 }
2885 return len;
2886}
2887
2888static struct rdev_sysfs_entry rdev_size =
2889__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2890
2891
2892static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2893{
2894 unsigned long long recovery_start = rdev->recovery_offset;
2895
2896 if (test_bit(In_sync, &rdev->flags) ||
2897 recovery_start == MaxSector)
2898 return sprintf(page, "none\n");
2899
2900 return sprintf(page, "%llu\n", recovery_start);
2901}
2902
2903static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2904{
2905 unsigned long long recovery_start;
2906
2907 if (cmd_match(buf, "none"))
2908 recovery_start = MaxSector;
2909 else if (strict_strtoull(buf, 10, &recovery_start))
2910 return -EINVAL;
2911
2912 if (rdev->mddev->pers &&
2913 rdev->raid_disk >= 0)
2914 return -EBUSY;
2915
2916 rdev->recovery_offset = recovery_start;
2917 if (recovery_start == MaxSector)
2918 set_bit(In_sync, &rdev->flags);
2919 else
2920 clear_bit(In_sync, &rdev->flags);
2921 return len;
2922}
2923
2924static struct rdev_sysfs_entry rdev_recovery_start =
2925__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2926
2927
2928static ssize_t
2929badblocks_show(struct badblocks *bb, char *page, int unack);
2930static ssize_t
2931badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2932
2933static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2934{
2935 return badblocks_show(&rdev->badblocks, page, 0);
2936}
2937static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2938{
2939 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2940 /* Maybe that ack was all we needed */
2941 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2942 wake_up(&rdev->blocked_wait);
2943 return rv;
2944}
2945static struct rdev_sysfs_entry rdev_bad_blocks =
2946__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2947
2948
2949static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2950{
2951 return badblocks_show(&rdev->badblocks, page, 1);
2952}
2953static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2954{
2955 return badblocks_store(&rdev->badblocks, page, len, 1);
2956}
2957static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2958__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2959
2960static struct attribute *rdev_default_attrs[] = {
2961 &rdev_state.attr,
2962 &rdev_errors.attr,
2963 &rdev_slot.attr,
2964 &rdev_offset.attr,
2965 &rdev_size.attr,
2966 &rdev_recovery_start.attr,
2967 &rdev_bad_blocks.attr,
2968 &rdev_unack_bad_blocks.attr,
2969 NULL,
2970};
2971static ssize_t
2972rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2973{
2974 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2975 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2976 mddev_t *mddev = rdev->mddev;
2977 ssize_t rv;
2978
2979 if (!entry->show)
2980 return -EIO;
2981
2982 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2983 if (!rv) {
2984 if (rdev->mddev == NULL)
2985 rv = -EBUSY;
2986 else
2987 rv = entry->show(rdev, page);
2988 mddev_unlock(mddev);
2989 }
2990 return rv;
2991}
2992
2993static ssize_t
2994rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2995 const char *page, size_t length)
2996{
2997 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2998 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2999 ssize_t rv;
3000 mddev_t *mddev = rdev->mddev;
3001
3002 if (!entry->store)
3003 return -EIO;
3004 if (!capable(CAP_SYS_ADMIN))
3005 return -EACCES;
3006 rv = mddev ? mddev_lock(mddev): -EBUSY;
3007 if (!rv) {
3008 if (rdev->mddev == NULL)
3009 rv = -EBUSY;
3010 else
3011 rv = entry->store(rdev, page, length);
3012 mddev_unlock(mddev);
3013 }
3014 return rv;
3015}
3016
3017static void rdev_free(struct kobject *ko)
3018{
3019 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
3020 kfree(rdev);
3021}
3022static const struct sysfs_ops rdev_sysfs_ops = {
3023 .show = rdev_attr_show,
3024 .store = rdev_attr_store,
3025};
3026static struct kobj_type rdev_ktype = {
3027 .release = rdev_free,
3028 .sysfs_ops = &rdev_sysfs_ops,
3029 .default_attrs = rdev_default_attrs,
3030};
3031
3032int md_rdev_init(mdk_rdev_t *rdev)
3033{
3034 rdev->desc_nr = -1;
3035 rdev->saved_raid_disk = -1;
3036 rdev->raid_disk = -1;
3037 rdev->flags = 0;
3038 rdev->data_offset = 0;
3039 rdev->sb_events = 0;
3040 rdev->last_read_error.tv_sec = 0;
3041 rdev->last_read_error.tv_nsec = 0;
3042 rdev->sb_loaded = 0;
3043 rdev->bb_page = NULL;
3044 atomic_set(&rdev->nr_pending, 0);
3045 atomic_set(&rdev->read_errors, 0);
3046 atomic_set(&rdev->corrected_errors, 0);
3047
3048 INIT_LIST_HEAD(&rdev->same_set);
3049 init_waitqueue_head(&rdev->blocked_wait);
3050
3051 /* Add space to store bad block list.
3052 * This reserves the space even on arrays where it cannot
3053 * be used - I wonder if that matters
3054 */
3055 rdev->badblocks.count = 0;
3056 rdev->badblocks.shift = 0;
3057 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3058 seqlock_init(&rdev->badblocks.lock);
3059 if (rdev->badblocks.page == NULL)
3060 return -ENOMEM;
3061
3062 return 0;
3063}
3064EXPORT_SYMBOL_GPL(md_rdev_init);
3065/*
3066 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3067 *
3068 * mark the device faulty if:
3069 *
3070 * - the device is nonexistent (zero size)
3071 * - the device has no valid superblock
3072 *
3073 * a faulty rdev _never_ has rdev->sb set.
3074 */
3075static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3076{
3077 char b[BDEVNAME_SIZE];
3078 int err;
3079 mdk_rdev_t *rdev;
3080 sector_t size;
3081
3082 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3083 if (!rdev) {
3084 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3085 return ERR_PTR(-ENOMEM);
3086 }
3087
3088 err = md_rdev_init(rdev);
3089 if (err)
3090 goto abort_free;
3091 err = alloc_disk_sb(rdev);
3092 if (err)
3093 goto abort_free;
3094
3095 err = lock_rdev(rdev, newdev, super_format == -2);
3096 if (err)
3097 goto abort_free;
3098
3099 kobject_init(&rdev->kobj, &rdev_ktype);
3100
3101 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3102 if (!size) {
3103 printk(KERN_WARNING
3104 "md: %s has zero or unknown size, marking faulty!\n",
3105 bdevname(rdev->bdev,b));
3106 err = -EINVAL;
3107 goto abort_free;
3108 }
3109
3110 if (super_format >= 0) {
3111 err = super_types[super_format].
3112 load_super(rdev, NULL, super_minor);
3113 if (err == -EINVAL) {
3114 printk(KERN_WARNING
3115 "md: %s does not have a valid v%d.%d "
3116 "superblock, not importing!\n",
3117 bdevname(rdev->bdev,b),
3118 super_format, super_minor);
3119 goto abort_free;
3120 }
3121 if (err < 0) {
3122 printk(KERN_WARNING
3123 "md: could not read %s's sb, not importing!\n",
3124 bdevname(rdev->bdev,b));
3125 goto abort_free;
3126 }
3127 }
3128 if (super_format == -1)
3129 /* hot-add for 0.90, or non-persistent: so no badblocks */
3130 rdev->badblocks.shift = -1;
3131
3132 return rdev;
3133
3134abort_free:
3135 if (rdev->bdev)
3136 unlock_rdev(rdev);
3137 free_disk_sb(rdev);
3138 kfree(rdev->badblocks.page);
3139 kfree(rdev);
3140 return ERR_PTR(err);
3141}
3142
3143/*
3144 * Check a full RAID array for plausibility
3145 */
3146
3147
3148static void analyze_sbs(mddev_t * mddev)
3149{
3150 int i;
3151 mdk_rdev_t *rdev, *freshest, *tmp;
3152 char b[BDEVNAME_SIZE];
3153
3154 freshest = NULL;
3155 rdev_for_each(rdev, tmp, mddev)
3156 switch (super_types[mddev->major_version].
3157 load_super(rdev, freshest, mddev->minor_version)) {
3158 case 1:
3159 freshest = rdev;
3160 break;
3161 case 0:
3162 break;
3163 default:
3164 printk( KERN_ERR \
3165 "md: fatal superblock inconsistency in %s"
3166 " -- removing from array\n",
3167 bdevname(rdev->bdev,b));
3168 kick_rdev_from_array(rdev);
3169 }
3170
3171
3172 super_types[mddev->major_version].
3173 validate_super(mddev, freshest);
3174
3175 i = 0;
3176 rdev_for_each(rdev, tmp, mddev) {
3177 if (mddev->max_disks &&
3178 (rdev->desc_nr >= mddev->max_disks ||
3179 i > mddev->max_disks)) {
3180 printk(KERN_WARNING
3181 "md: %s: %s: only %d devices permitted\n",
3182 mdname(mddev), bdevname(rdev->bdev, b),
3183 mddev->max_disks);
3184 kick_rdev_from_array(rdev);
3185 continue;
3186 }
3187 if (rdev != freshest)
3188 if (super_types[mddev->major_version].
3189 validate_super(mddev, rdev)) {
3190 printk(KERN_WARNING "md: kicking non-fresh %s"
3191 " from array!\n",
3192 bdevname(rdev->bdev,b));
3193 kick_rdev_from_array(rdev);
3194 continue;
3195 }
3196 if (mddev->level == LEVEL_MULTIPATH) {
3197 rdev->desc_nr = i++;
3198 rdev->raid_disk = rdev->desc_nr;
3199 set_bit(In_sync, &rdev->flags);
3200 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3201 rdev->raid_disk = -1;
3202 clear_bit(In_sync, &rdev->flags);
3203 }
3204 }
3205}
3206
3207/* Read a fixed-point number.
3208 * Numbers in sysfs attributes should be in "standard" units where
3209 * possible, so time should be in seconds.
3210 * However we internally use a a much smaller unit such as
3211 * milliseconds or jiffies.
3212 * This function takes a decimal number with a possible fractional
3213 * component, and produces an integer which is the result of
3214 * multiplying that number by 10^'scale'.
3215 * all without any floating-point arithmetic.
3216 */
3217int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3218{
3219 unsigned long result = 0;
3220 long decimals = -1;
3221 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3222 if (*cp == '.')
3223 decimals = 0;
3224 else if (decimals < scale) {
3225 unsigned int value;
3226 value = *cp - '0';
3227 result = result * 10 + value;
3228 if (decimals >= 0)
3229 decimals++;
3230 }
3231 cp++;
3232 }
3233 if (*cp == '\n')
3234 cp++;
3235 if (*cp)
3236 return -EINVAL;
3237 if (decimals < 0)
3238 decimals = 0;
3239 while (decimals < scale) {
3240 result *= 10;
3241 decimals ++;
3242 }
3243 *res = result;
3244 return 0;
3245}
3246
3247
3248static void md_safemode_timeout(unsigned long data);
3249
3250static ssize_t
3251safe_delay_show(mddev_t *mddev, char *page)
3252{
3253 int msec = (mddev->safemode_delay*1000)/HZ;
3254 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3255}
3256static ssize_t
3257safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3258{
3259 unsigned long msec;
3260
3261 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3262 return -EINVAL;
3263 if (msec == 0)
3264 mddev->safemode_delay = 0;
3265 else {
3266 unsigned long old_delay = mddev->safemode_delay;
3267 mddev->safemode_delay = (msec*HZ)/1000;
3268 if (mddev->safemode_delay == 0)
3269 mddev->safemode_delay = 1;
3270 if (mddev->safemode_delay < old_delay)
3271 md_safemode_timeout((unsigned long)mddev);
3272 }
3273 return len;
3274}
3275static struct md_sysfs_entry md_safe_delay =
3276__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3277
3278static ssize_t
3279level_show(mddev_t *mddev, char *page)
3280{
3281 struct mdk_personality *p = mddev->pers;
3282 if (p)
3283 return sprintf(page, "%s\n", p->name);
3284 else if (mddev->clevel[0])
3285 return sprintf(page, "%s\n", mddev->clevel);
3286 else if (mddev->level != LEVEL_NONE)
3287 return sprintf(page, "%d\n", mddev->level);
3288 else
3289 return 0;
3290}
3291
3292static ssize_t
3293level_store(mddev_t *mddev, const char *buf, size_t len)
3294{
3295 char clevel[16];
3296 ssize_t rv = len;
3297 struct mdk_personality *pers;
3298 long level;
3299 void *priv;
3300 mdk_rdev_t *rdev;
3301
3302 if (mddev->pers == NULL) {
3303 if (len == 0)
3304 return 0;
3305 if (len >= sizeof(mddev->clevel))
3306 return -ENOSPC;
3307 strncpy(mddev->clevel, buf, len);
3308 if (mddev->clevel[len-1] == '\n')
3309 len--;
3310 mddev->clevel[len] = 0;
3311 mddev->level = LEVEL_NONE;
3312 return rv;
3313 }
3314
3315 /* request to change the personality. Need to ensure:
3316 * - array is not engaged in resync/recovery/reshape
3317 * - old personality can be suspended
3318 * - new personality will access other array.
3319 */
3320
3321 if (mddev->sync_thread ||
3322 mddev->reshape_position != MaxSector ||
3323 mddev->sysfs_active)
3324 return -EBUSY;
3325
3326 if (!mddev->pers->quiesce) {
3327 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3328 mdname(mddev), mddev->pers->name);
3329 return -EINVAL;
3330 }
3331
3332 /* Now find the new personality */
3333 if (len == 0 || len >= sizeof(clevel))
3334 return -EINVAL;
3335 strncpy(clevel, buf, len);
3336 if (clevel[len-1] == '\n')
3337 len--;
3338 clevel[len] = 0;
3339 if (strict_strtol(clevel, 10, &level))
3340 level = LEVEL_NONE;
3341
3342 if (request_module("md-%s", clevel) != 0)
3343 request_module("md-level-%s", clevel);
3344 spin_lock(&pers_lock);
3345 pers = find_pers(level, clevel);
3346 if (!pers || !try_module_get(pers->owner)) {
3347 spin_unlock(&pers_lock);
3348 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3349 return -EINVAL;
3350 }
3351 spin_unlock(&pers_lock);
3352
3353 if (pers == mddev->pers) {
3354 /* Nothing to do! */
3355 module_put(pers->owner);
3356 return rv;
3357 }
3358 if (!pers->takeover) {
3359 module_put(pers->owner);
3360 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3361 mdname(mddev), clevel);
3362 return -EINVAL;
3363 }
3364
3365 list_for_each_entry(rdev, &mddev->disks, same_set)
3366 rdev->new_raid_disk = rdev->raid_disk;
3367
3368 /* ->takeover must set new_* and/or delta_disks
3369 * if it succeeds, and may set them when it fails.
3370 */
3371 priv = pers->takeover(mddev);
3372 if (IS_ERR(priv)) {
3373 mddev->new_level = mddev->level;
3374 mddev->new_layout = mddev->layout;
3375 mddev->new_chunk_sectors = mddev->chunk_sectors;
3376 mddev->raid_disks -= mddev->delta_disks;
3377 mddev->delta_disks = 0;
3378 module_put(pers->owner);
3379 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3380 mdname(mddev), clevel);
3381 return PTR_ERR(priv);
3382 }
3383
3384 /* Looks like we have a winner */
3385 mddev_suspend(mddev);
3386 mddev->pers->stop(mddev);
3387
3388 if (mddev->pers->sync_request == NULL &&
3389 pers->sync_request != NULL) {
3390 /* need to add the md_redundancy_group */
3391 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3392 printk(KERN_WARNING
3393 "md: cannot register extra attributes for %s\n",
3394 mdname(mddev));
3395 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3396 }
3397 if (mddev->pers->sync_request != NULL &&
3398 pers->sync_request == NULL) {
3399 /* need to remove the md_redundancy_group */
3400 if (mddev->to_remove == NULL)
3401 mddev->to_remove = &md_redundancy_group;
3402 }
3403
3404 if (mddev->pers->sync_request == NULL &&
3405 mddev->external) {
3406 /* We are converting from a no-redundancy array
3407 * to a redundancy array and metadata is managed
3408 * externally so we need to be sure that writes
3409 * won't block due to a need to transition
3410 * clean->dirty
3411 * until external management is started.
3412 */
3413 mddev->in_sync = 0;
3414 mddev->safemode_delay = 0;
3415 mddev->safemode = 0;
3416 }
3417
3418 list_for_each_entry(rdev, &mddev->disks, same_set) {
3419 if (rdev->raid_disk < 0)
3420 continue;
3421 if (rdev->new_raid_disk >= mddev->raid_disks)
3422 rdev->new_raid_disk = -1;
3423 if (rdev->new_raid_disk == rdev->raid_disk)
3424 continue;
3425 sysfs_unlink_rdev(mddev, rdev);
3426 }
3427 list_for_each_entry(rdev, &mddev->disks, same_set) {
3428 if (rdev->raid_disk < 0)
3429 continue;
3430 if (rdev->new_raid_disk == rdev->raid_disk)
3431 continue;
3432 rdev->raid_disk = rdev->new_raid_disk;
3433 if (rdev->raid_disk < 0)
3434 clear_bit(In_sync, &rdev->flags);
3435 else {
3436 if (sysfs_link_rdev(mddev, rdev))
3437 printk(KERN_WARNING "md: cannot register rd%d"
3438 " for %s after level change\n",
3439 rdev->raid_disk, mdname(mddev));
3440 }
3441 }
3442
3443 module_put(mddev->pers->owner);
3444 mddev->pers = pers;
3445 mddev->private = priv;
3446 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3447 mddev->level = mddev->new_level;
3448 mddev->layout = mddev->new_layout;
3449 mddev->chunk_sectors = mddev->new_chunk_sectors;
3450 mddev->delta_disks = 0;
3451 mddev->degraded = 0;
3452 if (mddev->pers->sync_request == NULL) {
3453 /* this is now an array without redundancy, so
3454 * it must always be in_sync
3455 */
3456 mddev->in_sync = 1;
3457 del_timer_sync(&mddev->safemode_timer);
3458 }
3459 pers->run(mddev);
3460 mddev_resume(mddev);
3461 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3462 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3463 md_wakeup_thread(mddev->thread);
3464 sysfs_notify(&mddev->kobj, NULL, "level");
3465 md_new_event(mddev);
3466 return rv;
3467}
3468
3469static struct md_sysfs_entry md_level =
3470__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3471
3472
3473static ssize_t
3474layout_show(mddev_t *mddev, char *page)
3475{
3476 /* just a number, not meaningful for all levels */
3477 if (mddev->reshape_position != MaxSector &&
3478 mddev->layout != mddev->new_layout)
3479 return sprintf(page, "%d (%d)\n",
3480 mddev->new_layout, mddev->layout);
3481 return sprintf(page, "%d\n", mddev->layout);
3482}
3483
3484static ssize_t
3485layout_store(mddev_t *mddev, const char *buf, size_t len)
3486{
3487 char *e;
3488 unsigned long n = simple_strtoul(buf, &e, 10);
3489
3490 if (!*buf || (*e && *e != '\n'))
3491 return -EINVAL;
3492
3493 if (mddev->pers) {
3494 int err;
3495 if (mddev->pers->check_reshape == NULL)
3496 return -EBUSY;
3497 mddev->new_layout = n;
3498 err = mddev->pers->check_reshape(mddev);
3499 if (err) {
3500 mddev->new_layout = mddev->layout;
3501 return err;
3502 }
3503 } else {
3504 mddev->new_layout = n;
3505 if (mddev->reshape_position == MaxSector)
3506 mddev->layout = n;
3507 }
3508 return len;
3509}
3510static struct md_sysfs_entry md_layout =
3511__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3512
3513
3514static ssize_t
3515raid_disks_show(mddev_t *mddev, char *page)
3516{
3517 if (mddev->raid_disks == 0)
3518 return 0;
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->delta_disks != 0)
3521 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3522 mddev->raid_disks - mddev->delta_disks);
3523 return sprintf(page, "%d\n", mddev->raid_disks);
3524}
3525
3526static int update_raid_disks(mddev_t *mddev, int raid_disks);
3527
3528static ssize_t
3529raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3530{
3531 char *e;
3532 int rv = 0;
3533 unsigned long n = simple_strtoul(buf, &e, 10);
3534
3535 if (!*buf || (*e && *e != '\n'))
3536 return -EINVAL;
3537
3538 if (mddev->pers)
3539 rv = update_raid_disks(mddev, n);
3540 else if (mddev->reshape_position != MaxSector) {
3541 int olddisks = mddev->raid_disks - mddev->delta_disks;
3542 mddev->delta_disks = n - olddisks;
3543 mddev->raid_disks = n;
3544 } else
3545 mddev->raid_disks = n;
3546 return rv ? rv : len;
3547}
3548static struct md_sysfs_entry md_raid_disks =
3549__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3550
3551static ssize_t
3552chunk_size_show(mddev_t *mddev, char *page)
3553{
3554 if (mddev->reshape_position != MaxSector &&
3555 mddev->chunk_sectors != mddev->new_chunk_sectors)
3556 return sprintf(page, "%d (%d)\n",
3557 mddev->new_chunk_sectors << 9,
3558 mddev->chunk_sectors << 9);
3559 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3560}
3561
3562static ssize_t
3563chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3564{
3565 char *e;
3566 unsigned long n = simple_strtoul(buf, &e, 10);
3567
3568 if (!*buf || (*e && *e != '\n'))
3569 return -EINVAL;
3570
3571 if (mddev->pers) {
3572 int err;
3573 if (mddev->pers->check_reshape == NULL)
3574 return -EBUSY;
3575 mddev->new_chunk_sectors = n >> 9;
3576 err = mddev->pers->check_reshape(mddev);
3577 if (err) {
3578 mddev->new_chunk_sectors = mddev->chunk_sectors;
3579 return err;
3580 }
3581 } else {
3582 mddev->new_chunk_sectors = n >> 9;
3583 if (mddev->reshape_position == MaxSector)
3584 mddev->chunk_sectors = n >> 9;
3585 }
3586 return len;
3587}
3588static struct md_sysfs_entry md_chunk_size =
3589__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3590
3591static ssize_t
3592resync_start_show(mddev_t *mddev, char *page)
3593{
3594 if (mddev->recovery_cp == MaxSector)
3595 return sprintf(page, "none\n");
3596 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3597}
3598
3599static ssize_t
3600resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3601{
3602 char *e;
3603 unsigned long long n = simple_strtoull(buf, &e, 10);
3604
3605 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3606 return -EBUSY;
3607 if (cmd_match(buf, "none"))
3608 n = MaxSector;
3609 else if (!*buf || (*e && *e != '\n'))
3610 return -EINVAL;
3611
3612 mddev->recovery_cp = n;
3613 return len;
3614}
3615static struct md_sysfs_entry md_resync_start =
3616__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3617
3618/*
3619 * The array state can be:
3620 *
3621 * clear
3622 * No devices, no size, no level
3623 * Equivalent to STOP_ARRAY ioctl
3624 * inactive
3625 * May have some settings, but array is not active
3626 * all IO results in error
3627 * When written, doesn't tear down array, but just stops it
3628 * suspended (not supported yet)
3629 * All IO requests will block. The array can be reconfigured.
3630 * Writing this, if accepted, will block until array is quiescent
3631 * readonly
3632 * no resync can happen. no superblocks get written.
3633 * write requests fail
3634 * read-auto
3635 * like readonly, but behaves like 'clean' on a write request.
3636 *
3637 * clean - no pending writes, but otherwise active.
3638 * When written to inactive array, starts without resync
3639 * If a write request arrives then
3640 * if metadata is known, mark 'dirty' and switch to 'active'.
3641 * if not known, block and switch to write-pending
3642 * If written to an active array that has pending writes, then fails.
3643 * active
3644 * fully active: IO and resync can be happening.
3645 * When written to inactive array, starts with resync
3646 *
3647 * write-pending
3648 * clean, but writes are blocked waiting for 'active' to be written.
3649 *
3650 * active-idle
3651 * like active, but no writes have been seen for a while (100msec).
3652 *
3653 */
3654enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3655 write_pending, active_idle, bad_word};
3656static char *array_states[] = {
3657 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3658 "write-pending", "active-idle", NULL };
3659
3660static int match_word(const char *word, char **list)
3661{
3662 int n;
3663 for (n=0; list[n]; n++)
3664 if (cmd_match(word, list[n]))
3665 break;
3666 return n;
3667}
3668
3669static ssize_t
3670array_state_show(mddev_t *mddev, char *page)
3671{
3672 enum array_state st = inactive;
3673
3674 if (mddev->pers)
3675 switch(mddev->ro) {
3676 case 1:
3677 st = readonly;
3678 break;
3679 case 2:
3680 st = read_auto;
3681 break;
3682 case 0:
3683 if (mddev->in_sync)
3684 st = clean;
3685 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3686 st = write_pending;
3687 else if (mddev->safemode)
3688 st = active_idle;
3689 else
3690 st = active;
3691 }
3692 else {
3693 if (list_empty(&mddev->disks) &&
3694 mddev->raid_disks == 0 &&
3695 mddev->dev_sectors == 0)
3696 st = clear;
3697 else
3698 st = inactive;
3699 }
3700 return sprintf(page, "%s\n", array_states[st]);
3701}
3702
3703static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3704static int md_set_readonly(mddev_t * mddev, int is_open);
3705static int do_md_run(mddev_t * mddev);
3706static int restart_array(mddev_t *mddev);
3707
3708static ssize_t
3709array_state_store(mddev_t *mddev, const char *buf, size_t len)
3710{
3711 int err = -EINVAL;
3712 enum array_state st = match_word(buf, array_states);
3713 switch(st) {
3714 case bad_word:
3715 break;
3716 case clear:
3717 /* stopping an active array */
3718 if (atomic_read(&mddev->openers) > 0)
3719 return -EBUSY;
3720 err = do_md_stop(mddev, 0, 0);
3721 break;
3722 case inactive:
3723 /* stopping an active array */
3724 if (mddev->pers) {
3725 if (atomic_read(&mddev->openers) > 0)
3726 return -EBUSY;
3727 err = do_md_stop(mddev, 2, 0);
3728 } else
3729 err = 0; /* already inactive */
3730 break;
3731 case suspended:
3732 break; /* not supported yet */
3733 case readonly:
3734 if (mddev->pers)
3735 err = md_set_readonly(mddev, 0);
3736 else {
3737 mddev->ro = 1;
3738 set_disk_ro(mddev->gendisk, 1);
3739 err = do_md_run(mddev);
3740 }
3741 break;
3742 case read_auto:
3743 if (mddev->pers) {
3744 if (mddev->ro == 0)
3745 err = md_set_readonly(mddev, 0);
3746 else if (mddev->ro == 1)
3747 err = restart_array(mddev);
3748 if (err == 0) {
3749 mddev->ro = 2;
3750 set_disk_ro(mddev->gendisk, 0);
3751 }
3752 } else {
3753 mddev->ro = 2;
3754 err = do_md_run(mddev);
3755 }
3756 break;
3757 case clean:
3758 if (mddev->pers) {
3759 restart_array(mddev);
3760 spin_lock_irq(&mddev->write_lock);
3761 if (atomic_read(&mddev->writes_pending) == 0) {
3762 if (mddev->in_sync == 0) {
3763 mddev->in_sync = 1;
3764 if (mddev->safemode == 1)
3765 mddev->safemode = 0;
3766 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3767 }
3768 err = 0;
3769 } else
3770 err = -EBUSY;
3771 spin_unlock_irq(&mddev->write_lock);
3772 } else
3773 err = -EINVAL;
3774 break;
3775 case active:
3776 if (mddev->pers) {
3777 restart_array(mddev);
3778 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3779 wake_up(&mddev->sb_wait);
3780 err = 0;
3781 } else {
3782 mddev->ro = 0;
3783 set_disk_ro(mddev->gendisk, 0);
3784 err = do_md_run(mddev);
3785 }
3786 break;
3787 case write_pending:
3788 case active_idle:
3789 /* these cannot be set */
3790 break;
3791 }
3792 if (err)
3793 return err;
3794 else {
3795 sysfs_notify_dirent_safe(mddev->sysfs_state);
3796 return len;
3797 }
3798}
3799static struct md_sysfs_entry md_array_state =
3800__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3801
3802static ssize_t
3803max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3804 return sprintf(page, "%d\n",
3805 atomic_read(&mddev->max_corr_read_errors));
3806}
3807
3808static ssize_t
3809max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3810{
3811 char *e;
3812 unsigned long n = simple_strtoul(buf, &e, 10);
3813
3814 if (*buf && (*e == 0 || *e == '\n')) {
3815 atomic_set(&mddev->max_corr_read_errors, n);
3816 return len;
3817 }
3818 return -EINVAL;
3819}
3820
3821static struct md_sysfs_entry max_corr_read_errors =
3822__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3823 max_corrected_read_errors_store);
3824
3825static ssize_t
3826null_show(mddev_t *mddev, char *page)
3827{
3828 return -EINVAL;
3829}
3830
3831static ssize_t
3832new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3833{
3834 /* buf must be %d:%d\n? giving major and minor numbers */
3835 /* The new device is added to the array.
3836 * If the array has a persistent superblock, we read the
3837 * superblock to initialise info and check validity.
3838 * Otherwise, only checking done is that in bind_rdev_to_array,
3839 * which mainly checks size.
3840 */
3841 char *e;
3842 int major = simple_strtoul(buf, &e, 10);
3843 int minor;
3844 dev_t dev;
3845 mdk_rdev_t *rdev;
3846 int err;
3847
3848 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3849 return -EINVAL;
3850 minor = simple_strtoul(e+1, &e, 10);
3851 if (*e && *e != '\n')
3852 return -EINVAL;
3853 dev = MKDEV(major, minor);
3854 if (major != MAJOR(dev) ||
3855 minor != MINOR(dev))
3856 return -EOVERFLOW;
3857
3858
3859 if (mddev->persistent) {
3860 rdev = md_import_device(dev, mddev->major_version,
3861 mddev->minor_version);
3862 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3863 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3864 mdk_rdev_t, same_set);
3865 err = super_types[mddev->major_version]
3866 .load_super(rdev, rdev0, mddev->minor_version);
3867 if (err < 0)
3868 goto out;
3869 }
3870 } else if (mddev->external)
3871 rdev = md_import_device(dev, -2, -1);
3872 else
3873 rdev = md_import_device(dev, -1, -1);
3874
3875 if (IS_ERR(rdev))
3876 return PTR_ERR(rdev);
3877 err = bind_rdev_to_array(rdev, mddev);
3878 out:
3879 if (err)
3880 export_rdev(rdev);
3881 return err ? err : len;
3882}
3883
3884static struct md_sysfs_entry md_new_device =
3885__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3886
3887static ssize_t
3888bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3889{
3890 char *end;
3891 unsigned long chunk, end_chunk;
3892
3893 if (!mddev->bitmap)
3894 goto out;
3895 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3896 while (*buf) {
3897 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3898 if (buf == end) break;
3899 if (*end == '-') { /* range */
3900 buf = end + 1;
3901 end_chunk = simple_strtoul(buf, &end, 0);
3902 if (buf == end) break;
3903 }
3904 if (*end && !isspace(*end)) break;
3905 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3906 buf = skip_spaces(end);
3907 }
3908 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3909out:
3910 return len;
3911}
3912
3913static struct md_sysfs_entry md_bitmap =
3914__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3915
3916static ssize_t
3917size_show(mddev_t *mddev, char *page)
3918{
3919 return sprintf(page, "%llu\n",
3920 (unsigned long long)mddev->dev_sectors / 2);
3921}
3922
3923static int update_size(mddev_t *mddev, sector_t num_sectors);
3924
3925static ssize_t
3926size_store(mddev_t *mddev, const char *buf, size_t len)
3927{
3928 /* If array is inactive, we can reduce the component size, but
3929 * not increase it (except from 0).
3930 * If array is active, we can try an on-line resize
3931 */
3932 sector_t sectors;
3933 int err = strict_blocks_to_sectors(buf, §ors);
3934
3935 if (err < 0)
3936 return err;
3937 if (mddev->pers) {
3938 err = update_size(mddev, sectors);
3939 md_update_sb(mddev, 1);
3940 } else {
3941 if (mddev->dev_sectors == 0 ||
3942 mddev->dev_sectors > sectors)
3943 mddev->dev_sectors = sectors;
3944 else
3945 err = -ENOSPC;
3946 }
3947 return err ? err : len;
3948}
3949
3950static struct md_sysfs_entry md_size =
3951__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3952
3953
3954/* Metdata version.
3955 * This is one of
3956 * 'none' for arrays with no metadata (good luck...)
3957 * 'external' for arrays with externally managed metadata,
3958 * or N.M for internally known formats
3959 */
3960static ssize_t
3961metadata_show(mddev_t *mddev, char *page)
3962{
3963 if (mddev->persistent)
3964 return sprintf(page, "%d.%d\n",
3965 mddev->major_version, mddev->minor_version);
3966 else if (mddev->external)
3967 return sprintf(page, "external:%s\n", mddev->metadata_type);
3968 else
3969 return sprintf(page, "none\n");
3970}
3971
3972static ssize_t
3973metadata_store(mddev_t *mddev, const char *buf, size_t len)
3974{
3975 int major, minor;
3976 char *e;
3977 /* Changing the details of 'external' metadata is
3978 * always permitted. Otherwise there must be
3979 * no devices attached to the array.
3980 */
3981 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3982 ;
3983 else if (!list_empty(&mddev->disks))
3984 return -EBUSY;
3985
3986 if (cmd_match(buf, "none")) {
3987 mddev->persistent = 0;
3988 mddev->external = 0;
3989 mddev->major_version = 0;
3990 mddev->minor_version = 90;
3991 return len;
3992 }
3993 if (strncmp(buf, "external:", 9) == 0) {
3994 size_t namelen = len-9;
3995 if (namelen >= sizeof(mddev->metadata_type))
3996 namelen = sizeof(mddev->metadata_type)-1;
3997 strncpy(mddev->metadata_type, buf+9, namelen);
3998 mddev->metadata_type[namelen] = 0;
3999 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4000 mddev->metadata_type[--namelen] = 0;
4001 mddev->persistent = 0;
4002 mddev->external = 1;
4003 mddev->major_version = 0;
4004 mddev->minor_version = 90;
4005 return len;
4006 }
4007 major = simple_strtoul(buf, &e, 10);
4008 if (e==buf || *e != '.')
4009 return -EINVAL;
4010 buf = e+1;
4011 minor = simple_strtoul(buf, &e, 10);
4012 if (e==buf || (*e && *e != '\n') )
4013 return -EINVAL;
4014 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4015 return -ENOENT;
4016 mddev->major_version = major;
4017 mddev->minor_version = minor;
4018 mddev->persistent = 1;
4019 mddev->external = 0;
4020 return len;
4021}
4022
4023static struct md_sysfs_entry md_metadata =
4024__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4025
4026static ssize_t
4027action_show(mddev_t *mddev, char *page)
4028{
4029 char *type = "idle";
4030 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4031 type = "frozen";
4032 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4034 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4035 type = "reshape";
4036 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4037 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4038 type = "resync";
4039 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4040 type = "check";
4041 else
4042 type = "repair";
4043 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4044 type = "recover";
4045 }
4046 return sprintf(page, "%s\n", type);
4047}
4048
4049static void reap_sync_thread(mddev_t *mddev);
4050
4051static ssize_t
4052action_store(mddev_t *mddev, const char *page, size_t len)
4053{
4054 if (!mddev->pers || !mddev->pers->sync_request)
4055 return -EINVAL;
4056
4057 if (cmd_match(page, "frozen"))
4058 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4059 else
4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061
4062 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4063 if (mddev->sync_thread) {
4064 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4065 reap_sync_thread(mddev);
4066 }
4067 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4068 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4069 return -EBUSY;
4070 else if (cmd_match(page, "resync"))
4071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072 else if (cmd_match(page, "recover")) {
4073 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075 } else if (cmd_match(page, "reshape")) {
4076 int err;
4077 if (mddev->pers->start_reshape == NULL)
4078 return -EINVAL;
4079 err = mddev->pers->start_reshape(mddev);
4080 if (err)
4081 return err;
4082 sysfs_notify(&mddev->kobj, NULL, "degraded");
4083 } else {
4084 if (cmd_match(page, "check"))
4085 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4086 else if (!cmd_match(page, "repair"))
4087 return -EINVAL;
4088 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4089 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4090 }
4091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4092 md_wakeup_thread(mddev->thread);
4093 sysfs_notify_dirent_safe(mddev->sysfs_action);
4094 return len;
4095}
4096
4097static ssize_t
4098mismatch_cnt_show(mddev_t *mddev, char *page)
4099{
4100 return sprintf(page, "%llu\n",
4101 (unsigned long long) mddev->resync_mismatches);
4102}
4103
4104static struct md_sysfs_entry md_scan_mode =
4105__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4106
4107
4108static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4109
4110static ssize_t
4111sync_min_show(mddev_t *mddev, char *page)
4112{
4113 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4114 mddev->sync_speed_min ? "local": "system");
4115}
4116
4117static ssize_t
4118sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4119{
4120 int min;
4121 char *e;
4122 if (strncmp(buf, "system", 6)==0) {
4123 mddev->sync_speed_min = 0;
4124 return len;
4125 }
4126 min = simple_strtoul(buf, &e, 10);
4127 if (buf == e || (*e && *e != '\n') || min <= 0)
4128 return -EINVAL;
4129 mddev->sync_speed_min = min;
4130 return len;
4131}
4132
4133static struct md_sysfs_entry md_sync_min =
4134__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4135
4136static ssize_t
4137sync_max_show(mddev_t *mddev, char *page)
4138{
4139 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4140 mddev->sync_speed_max ? "local": "system");
4141}
4142
4143static ssize_t
4144sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4145{
4146 int max;
4147 char *e;
4148 if (strncmp(buf, "system", 6)==0) {
4149 mddev->sync_speed_max = 0;
4150 return len;
4151 }
4152 max = simple_strtoul(buf, &e, 10);
4153 if (buf == e || (*e && *e != '\n') || max <= 0)
4154 return -EINVAL;
4155 mddev->sync_speed_max = max;
4156 return len;
4157}
4158
4159static struct md_sysfs_entry md_sync_max =
4160__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4161
4162static ssize_t
4163degraded_show(mddev_t *mddev, char *page)
4164{
4165 return sprintf(page, "%d\n", mddev->degraded);
4166}
4167static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4168
4169static ssize_t
4170sync_force_parallel_show(mddev_t *mddev, char *page)
4171{
4172 return sprintf(page, "%d\n", mddev->parallel_resync);
4173}
4174
4175static ssize_t
4176sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4177{
4178 long n;
4179
4180 if (strict_strtol(buf, 10, &n))
4181 return -EINVAL;
4182
4183 if (n != 0 && n != 1)
4184 return -EINVAL;
4185
4186 mddev->parallel_resync = n;
4187
4188 if (mddev->sync_thread)
4189 wake_up(&resync_wait);
4190
4191 return len;
4192}
4193
4194/* force parallel resync, even with shared block devices */
4195static struct md_sysfs_entry md_sync_force_parallel =
4196__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4197 sync_force_parallel_show, sync_force_parallel_store);
4198
4199static ssize_t
4200sync_speed_show(mddev_t *mddev, char *page)
4201{
4202 unsigned long resync, dt, db;
4203 if (mddev->curr_resync == 0)
4204 return sprintf(page, "none\n");
4205 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4206 dt = (jiffies - mddev->resync_mark) / HZ;
4207 if (!dt) dt++;
4208 db = resync - mddev->resync_mark_cnt;
4209 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4210}
4211
4212static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4213
4214static ssize_t
4215sync_completed_show(mddev_t *mddev, char *page)
4216{
4217 unsigned long long max_sectors, resync;
4218
4219 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220 return sprintf(page, "none\n");
4221
4222 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4223 max_sectors = mddev->resync_max_sectors;
4224 else
4225 max_sectors = mddev->dev_sectors;
4226
4227 resync = mddev->curr_resync_completed;
4228 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4229}
4230
4231static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4232
4233static ssize_t
4234min_sync_show(mddev_t *mddev, char *page)
4235{
4236 return sprintf(page, "%llu\n",
4237 (unsigned long long)mddev->resync_min);
4238}
4239static ssize_t
4240min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4241{
4242 unsigned long long min;
4243 if (strict_strtoull(buf, 10, &min))
4244 return -EINVAL;
4245 if (min > mddev->resync_max)
4246 return -EINVAL;
4247 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4248 return -EBUSY;
4249
4250 /* Must be a multiple of chunk_size */
4251 if (mddev->chunk_sectors) {
4252 sector_t temp = min;
4253 if (sector_div(temp, mddev->chunk_sectors))
4254 return -EINVAL;
4255 }
4256 mddev->resync_min = min;
4257
4258 return len;
4259}
4260
4261static struct md_sysfs_entry md_min_sync =
4262__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4263
4264static ssize_t
4265max_sync_show(mddev_t *mddev, char *page)
4266{
4267 if (mddev->resync_max == MaxSector)
4268 return sprintf(page, "max\n");
4269 else
4270 return sprintf(page, "%llu\n",
4271 (unsigned long long)mddev->resync_max);
4272}
4273static ssize_t
4274max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4275{
4276 if (strncmp(buf, "max", 3) == 0)
4277 mddev->resync_max = MaxSector;
4278 else {
4279 unsigned long long max;
4280 if (strict_strtoull(buf, 10, &max))
4281 return -EINVAL;
4282 if (max < mddev->resync_min)
4283 return -EINVAL;
4284 if (max < mddev->resync_max &&
4285 mddev->ro == 0 &&
4286 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4287 return -EBUSY;
4288
4289 /* Must be a multiple of chunk_size */
4290 if (mddev->chunk_sectors) {
4291 sector_t temp = max;
4292 if (sector_div(temp, mddev->chunk_sectors))
4293 return -EINVAL;
4294 }
4295 mddev->resync_max = max;
4296 }
4297 wake_up(&mddev->recovery_wait);
4298 return len;
4299}
4300
4301static struct md_sysfs_entry md_max_sync =
4302__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4303
4304static ssize_t
4305suspend_lo_show(mddev_t *mddev, char *page)
4306{
4307 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4308}
4309
4310static ssize_t
4311suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4312{
4313 char *e;
4314 unsigned long long new = simple_strtoull(buf, &e, 10);
4315 unsigned long long old = mddev->suspend_lo;
4316
4317 if (mddev->pers == NULL ||
4318 mddev->pers->quiesce == NULL)
4319 return -EINVAL;
4320 if (buf == e || (*e && *e != '\n'))
4321 return -EINVAL;
4322
4323 mddev->suspend_lo = new;
4324 if (new >= old)
4325 /* Shrinking suspended region */
4326 mddev->pers->quiesce(mddev, 2);
4327 else {
4328 /* Expanding suspended region - need to wait */
4329 mddev->pers->quiesce(mddev, 1);
4330 mddev->pers->quiesce(mddev, 0);
4331 }
4332 return len;
4333}
4334static struct md_sysfs_entry md_suspend_lo =
4335__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4336
4337
4338static ssize_t
4339suspend_hi_show(mddev_t *mddev, char *page)
4340{
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4342}
4343
4344static ssize_t
4345suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4346{
4347 char *e;
4348 unsigned long long new = simple_strtoull(buf, &e, 10);
4349 unsigned long long old = mddev->suspend_hi;
4350
4351 if (mddev->pers == NULL ||
4352 mddev->pers->quiesce == NULL)
4353 return -EINVAL;
4354 if (buf == e || (*e && *e != '\n'))
4355 return -EINVAL;
4356
4357 mddev->suspend_hi = new;
4358 if (new <= old)
4359 /* Shrinking suspended region */
4360 mddev->pers->quiesce(mddev, 2);
4361 else {
4362 /* Expanding suspended region - need to wait */
4363 mddev->pers->quiesce(mddev, 1);
4364 mddev->pers->quiesce(mddev, 0);
4365 }
4366 return len;
4367}
4368static struct md_sysfs_entry md_suspend_hi =
4369__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4370
4371static ssize_t
4372reshape_position_show(mddev_t *mddev, char *page)
4373{
4374 if (mddev->reshape_position != MaxSector)
4375 return sprintf(page, "%llu\n",
4376 (unsigned long long)mddev->reshape_position);
4377 strcpy(page, "none\n");
4378 return 5;
4379}
4380
4381static ssize_t
4382reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4383{
4384 char *e;
4385 unsigned long long new = simple_strtoull(buf, &e, 10);
4386 if (mddev->pers)
4387 return -EBUSY;
4388 if (buf == e || (*e && *e != '\n'))
4389 return -EINVAL;
4390 mddev->reshape_position = new;
4391 mddev->delta_disks = 0;
4392 mddev->new_level = mddev->level;
4393 mddev->new_layout = mddev->layout;
4394 mddev->new_chunk_sectors = mddev->chunk_sectors;
4395 return len;
4396}
4397
4398static struct md_sysfs_entry md_reshape_position =
4399__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4400 reshape_position_store);
4401
4402static ssize_t
4403array_size_show(mddev_t *mddev, char *page)
4404{
4405 if (mddev->external_size)
4406 return sprintf(page, "%llu\n",
4407 (unsigned long long)mddev->array_sectors/2);
4408 else
4409 return sprintf(page, "default\n");
4410}
4411
4412static ssize_t
4413array_size_store(mddev_t *mddev, const char *buf, size_t len)
4414{
4415 sector_t sectors;
4416
4417 if (strncmp(buf, "default", 7) == 0) {
4418 if (mddev->pers)
4419 sectors = mddev->pers->size(mddev, 0, 0);
4420 else
4421 sectors = mddev->array_sectors;
4422
4423 mddev->external_size = 0;
4424 } else {
4425 if (strict_blocks_to_sectors(buf, §ors) < 0)
4426 return -EINVAL;
4427 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4428 return -E2BIG;
4429
4430 mddev->external_size = 1;
4431 }
4432
4433 mddev->array_sectors = sectors;
4434 if (mddev->pers) {
4435 set_capacity(mddev->gendisk, mddev->array_sectors);
4436 revalidate_disk(mddev->gendisk);
4437 }
4438 return len;
4439}
4440
4441static struct md_sysfs_entry md_array_size =
4442__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4443 array_size_store);
4444
4445static struct attribute *md_default_attrs[] = {
4446 &md_level.attr,
4447 &md_layout.attr,
4448 &md_raid_disks.attr,
4449 &md_chunk_size.attr,
4450 &md_size.attr,
4451 &md_resync_start.attr,
4452 &md_metadata.attr,
4453 &md_new_device.attr,
4454 &md_safe_delay.attr,
4455 &md_array_state.attr,
4456 &md_reshape_position.attr,
4457 &md_array_size.attr,
4458 &max_corr_read_errors.attr,
4459 NULL,
4460};
4461
4462static struct attribute *md_redundancy_attrs[] = {
4463 &md_scan_mode.attr,
4464 &md_mismatches.attr,
4465 &md_sync_min.attr,
4466 &md_sync_max.attr,
4467 &md_sync_speed.attr,
4468 &md_sync_force_parallel.attr,
4469 &md_sync_completed.attr,
4470 &md_min_sync.attr,
4471 &md_max_sync.attr,
4472 &md_suspend_lo.attr,
4473 &md_suspend_hi.attr,
4474 &md_bitmap.attr,
4475 &md_degraded.attr,
4476 NULL,
4477};
4478static struct attribute_group md_redundancy_group = {
4479 .name = NULL,
4480 .attrs = md_redundancy_attrs,
4481};
4482
4483
4484static ssize_t
4485md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4486{
4487 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4488 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4489 ssize_t rv;
4490
4491 if (!entry->show)
4492 return -EIO;
4493 rv = mddev_lock(mddev);
4494 if (!rv) {
4495 rv = entry->show(mddev, page);
4496 mddev_unlock(mddev);
4497 }
4498 return rv;
4499}
4500
4501static ssize_t
4502md_attr_store(struct kobject *kobj, struct attribute *attr,
4503 const char *page, size_t length)
4504{
4505 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4506 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4507 ssize_t rv;
4508
4509 if (!entry->store)
4510 return -EIO;
4511 if (!capable(CAP_SYS_ADMIN))
4512 return -EACCES;
4513 rv = mddev_lock(mddev);
4514 if (mddev->hold_active == UNTIL_IOCTL)
4515 mddev->hold_active = 0;
4516 if (!rv) {
4517 rv = entry->store(mddev, page, length);
4518 mddev_unlock(mddev);
4519 }
4520 return rv;
4521}
4522
4523static void md_free(struct kobject *ko)
4524{
4525 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4526
4527 if (mddev->sysfs_state)
4528 sysfs_put(mddev->sysfs_state);
4529
4530 if (mddev->gendisk) {
4531 del_gendisk(mddev->gendisk);
4532 put_disk(mddev->gendisk);
4533 }
4534 if (mddev->queue)
4535 blk_cleanup_queue(mddev->queue);
4536
4537 kfree(mddev);
4538}
4539
4540static const struct sysfs_ops md_sysfs_ops = {
4541 .show = md_attr_show,
4542 .store = md_attr_store,
4543};
4544static struct kobj_type md_ktype = {
4545 .release = md_free,
4546 .sysfs_ops = &md_sysfs_ops,
4547 .default_attrs = md_default_attrs,
4548};
4549
4550int mdp_major = 0;
4551
4552static void mddev_delayed_delete(struct work_struct *ws)
4553{
4554 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4555
4556 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4557 kobject_del(&mddev->kobj);
4558 kobject_put(&mddev->kobj);
4559}
4560
4561static int md_alloc(dev_t dev, char *name)
4562{
4563 static DEFINE_MUTEX(disks_mutex);
4564 mddev_t *mddev = mddev_find(dev);
4565 struct gendisk *disk;
4566 int partitioned;
4567 int shift;
4568 int unit;
4569 int error;
4570
4571 if (!mddev)
4572 return -ENODEV;
4573
4574 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4575 shift = partitioned ? MdpMinorShift : 0;
4576 unit = MINOR(mddev->unit) >> shift;
4577
4578 /* wait for any previous instance of this device to be
4579 * completely removed (mddev_delayed_delete).
4580 */
4581 flush_workqueue(md_misc_wq);
4582
4583 mutex_lock(&disks_mutex);
4584 error = -EEXIST;
4585 if (mddev->gendisk)
4586 goto abort;
4587
4588 if (name) {
4589 /* Need to ensure that 'name' is not a duplicate.
4590 */
4591 mddev_t *mddev2;
4592 spin_lock(&all_mddevs_lock);
4593
4594 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4595 if (mddev2->gendisk &&
4596 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4597 spin_unlock(&all_mddevs_lock);
4598 goto abort;
4599 }
4600 spin_unlock(&all_mddevs_lock);
4601 }
4602
4603 error = -ENOMEM;
4604 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4605 if (!mddev->queue)
4606 goto abort;
4607 mddev->queue->queuedata = mddev;
4608
4609 blk_queue_make_request(mddev->queue, md_make_request);
4610
4611 disk = alloc_disk(1 << shift);
4612 if (!disk) {
4613 blk_cleanup_queue(mddev->queue);
4614 mddev->queue = NULL;
4615 goto abort;
4616 }
4617 disk->major = MAJOR(mddev->unit);
4618 disk->first_minor = unit << shift;
4619 if (name)
4620 strcpy(disk->disk_name, name);
4621 else if (partitioned)
4622 sprintf(disk->disk_name, "md_d%d", unit);
4623 else
4624 sprintf(disk->disk_name, "md%d", unit);
4625 disk->fops = &md_fops;
4626 disk->private_data = mddev;
4627 disk->queue = mddev->queue;
4628 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4629 /* Allow extended partitions. This makes the
4630 * 'mdp' device redundant, but we can't really
4631 * remove it now.
4632 */
4633 disk->flags |= GENHD_FL_EXT_DEVT;
4634 mddev->gendisk = disk;
4635 /* As soon as we call add_disk(), another thread could get
4636 * through to md_open, so make sure it doesn't get too far
4637 */
4638 mutex_lock(&mddev->open_mutex);
4639 add_disk(disk);
4640
4641 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4642 &disk_to_dev(disk)->kobj, "%s", "md");
4643 if (error) {
4644 /* This isn't possible, but as kobject_init_and_add is marked
4645 * __must_check, we must do something with the result
4646 */
4647 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4648 disk->disk_name);
4649 error = 0;
4650 }
4651 if (mddev->kobj.sd &&
4652 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4653 printk(KERN_DEBUG "pointless warning\n");
4654 mutex_unlock(&mddev->open_mutex);
4655 abort:
4656 mutex_unlock(&disks_mutex);
4657 if (!error && mddev->kobj.sd) {
4658 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4659 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4660 }
4661 mddev_put(mddev);
4662 return error;
4663}
4664
4665static struct kobject *md_probe(dev_t dev, int *part, void *data)
4666{
4667 md_alloc(dev, NULL);
4668 return NULL;
4669}
4670
4671static int add_named_array(const char *val, struct kernel_param *kp)
4672{
4673 /* val must be "md_*" where * is not all digits.
4674 * We allocate an array with a large free minor number, and
4675 * set the name to val. val must not already be an active name.
4676 */
4677 int len = strlen(val);
4678 char buf[DISK_NAME_LEN];
4679
4680 while (len && val[len-1] == '\n')
4681 len--;
4682 if (len >= DISK_NAME_LEN)
4683 return -E2BIG;
4684 strlcpy(buf, val, len+1);
4685 if (strncmp(buf, "md_", 3) != 0)
4686 return -EINVAL;
4687 return md_alloc(0, buf);
4688}
4689
4690static void md_safemode_timeout(unsigned long data)
4691{
4692 mddev_t *mddev = (mddev_t *) data;
4693
4694 if (!atomic_read(&mddev->writes_pending)) {
4695 mddev->safemode = 1;
4696 if (mddev->external)
4697 sysfs_notify_dirent_safe(mddev->sysfs_state);
4698 }
4699 md_wakeup_thread(mddev->thread);
4700}
4701
4702static int start_dirty_degraded;
4703
4704int md_run(mddev_t *mddev)
4705{
4706 int err;
4707 mdk_rdev_t *rdev;
4708 struct mdk_personality *pers;
4709
4710 if (list_empty(&mddev->disks))
4711 /* cannot run an array with no devices.. */
4712 return -EINVAL;
4713
4714 if (mddev->pers)
4715 return -EBUSY;
4716 /* Cannot run until previous stop completes properly */
4717 if (mddev->sysfs_active)
4718 return -EBUSY;
4719
4720 /*
4721 * Analyze all RAID superblock(s)
4722 */
4723 if (!mddev->raid_disks) {
4724 if (!mddev->persistent)
4725 return -EINVAL;
4726 analyze_sbs(mddev);
4727 }
4728
4729 if (mddev->level != LEVEL_NONE)
4730 request_module("md-level-%d", mddev->level);
4731 else if (mddev->clevel[0])
4732 request_module("md-%s", mddev->clevel);
4733
4734 /*
4735 * Drop all container device buffers, from now on
4736 * the only valid external interface is through the md
4737 * device.
4738 */
4739 list_for_each_entry(rdev, &mddev->disks, same_set) {
4740 if (test_bit(Faulty, &rdev->flags))
4741 continue;
4742 sync_blockdev(rdev->bdev);
4743 invalidate_bdev(rdev->bdev);
4744
4745 /* perform some consistency tests on the device.
4746 * We don't want the data to overlap the metadata,
4747 * Internal Bitmap issues have been handled elsewhere.
4748 */
4749 if (rdev->meta_bdev) {
4750 /* Nothing to check */;
4751 } else if (rdev->data_offset < rdev->sb_start) {
4752 if (mddev->dev_sectors &&
4753 rdev->data_offset + mddev->dev_sectors
4754 > rdev->sb_start) {
4755 printk("md: %s: data overlaps metadata\n",
4756 mdname(mddev));
4757 return -EINVAL;
4758 }
4759 } else {
4760 if (rdev->sb_start + rdev->sb_size/512
4761 > rdev->data_offset) {
4762 printk("md: %s: metadata overlaps data\n",
4763 mdname(mddev));
4764 return -EINVAL;
4765 }
4766 }
4767 sysfs_notify_dirent_safe(rdev->sysfs_state);
4768 }
4769
4770 if (mddev->bio_set == NULL)
4771 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4772 sizeof(mddev_t *));
4773
4774 spin_lock(&pers_lock);
4775 pers = find_pers(mddev->level, mddev->clevel);
4776 if (!pers || !try_module_get(pers->owner)) {
4777 spin_unlock(&pers_lock);
4778 if (mddev->level != LEVEL_NONE)
4779 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4780 mddev->level);
4781 else
4782 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4783 mddev->clevel);
4784 return -EINVAL;
4785 }
4786 mddev->pers = pers;
4787 spin_unlock(&pers_lock);
4788 if (mddev->level != pers->level) {
4789 mddev->level = pers->level;
4790 mddev->new_level = pers->level;
4791 }
4792 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4793
4794 if (mddev->reshape_position != MaxSector &&
4795 pers->start_reshape == NULL) {
4796 /* This personality cannot handle reshaping... */
4797 mddev->pers = NULL;
4798 module_put(pers->owner);
4799 return -EINVAL;
4800 }
4801
4802 if (pers->sync_request) {
4803 /* Warn if this is a potentially silly
4804 * configuration.
4805 */
4806 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4807 mdk_rdev_t *rdev2;
4808 int warned = 0;
4809
4810 list_for_each_entry(rdev, &mddev->disks, same_set)
4811 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4812 if (rdev < rdev2 &&
4813 rdev->bdev->bd_contains ==
4814 rdev2->bdev->bd_contains) {
4815 printk(KERN_WARNING
4816 "%s: WARNING: %s appears to be"
4817 " on the same physical disk as"
4818 " %s.\n",
4819 mdname(mddev),
4820 bdevname(rdev->bdev,b),
4821 bdevname(rdev2->bdev,b2));
4822 warned = 1;
4823 }
4824 }
4825
4826 if (warned)
4827 printk(KERN_WARNING
4828 "True protection against single-disk"
4829 " failure might be compromised.\n");
4830 }
4831
4832 mddev->recovery = 0;
4833 /* may be over-ridden by personality */
4834 mddev->resync_max_sectors = mddev->dev_sectors;
4835
4836 mddev->ok_start_degraded = start_dirty_degraded;
4837
4838 if (start_readonly && mddev->ro == 0)
4839 mddev->ro = 2; /* read-only, but switch on first write */
4840
4841 err = mddev->pers->run(mddev);
4842 if (err)
4843 printk(KERN_ERR "md: pers->run() failed ...\n");
4844 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4845 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4846 " but 'external_size' not in effect?\n", __func__);
4847 printk(KERN_ERR
4848 "md: invalid array_size %llu > default size %llu\n",
4849 (unsigned long long)mddev->array_sectors / 2,
4850 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4851 err = -EINVAL;
4852 mddev->pers->stop(mddev);
4853 }
4854 if (err == 0 && mddev->pers->sync_request) {
4855 err = bitmap_create(mddev);
4856 if (err) {
4857 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4858 mdname(mddev), err);
4859 mddev->pers->stop(mddev);
4860 }
4861 }
4862 if (err) {
4863 module_put(mddev->pers->owner);
4864 mddev->pers = NULL;
4865 bitmap_destroy(mddev);
4866 return err;
4867 }
4868 if (mddev->pers->sync_request) {
4869 if (mddev->kobj.sd &&
4870 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4871 printk(KERN_WARNING
4872 "md: cannot register extra attributes for %s\n",
4873 mdname(mddev));
4874 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4875 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4876 mddev->ro = 0;
4877
4878 atomic_set(&mddev->writes_pending,0);
4879 atomic_set(&mddev->max_corr_read_errors,
4880 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4881 mddev->safemode = 0;
4882 mddev->safemode_timer.function = md_safemode_timeout;
4883 mddev->safemode_timer.data = (unsigned long) mddev;
4884 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4885 mddev->in_sync = 1;
4886 smp_wmb();
4887 mddev->ready = 1;
4888 list_for_each_entry(rdev, &mddev->disks, same_set)
4889 if (rdev->raid_disk >= 0)
4890 if (sysfs_link_rdev(mddev, rdev))
4891 /* failure here is OK */;
4892
4893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4894
4895 if (mddev->flags)
4896 md_update_sb(mddev, 0);
4897
4898 md_new_event(mddev);
4899 sysfs_notify_dirent_safe(mddev->sysfs_state);
4900 sysfs_notify_dirent_safe(mddev->sysfs_action);
4901 sysfs_notify(&mddev->kobj, NULL, "degraded");
4902 return 0;
4903}
4904EXPORT_SYMBOL_GPL(md_run);
4905
4906static int do_md_run(mddev_t *mddev)
4907{
4908 int err;
4909
4910 err = md_run(mddev);
4911 if (err)
4912 goto out;
4913 err = bitmap_load(mddev);
4914 if (err) {
4915 bitmap_destroy(mddev);
4916 goto out;
4917 }
4918
4919 md_wakeup_thread(mddev->thread);
4920 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4921
4922 set_capacity(mddev->gendisk, mddev->array_sectors);
4923 revalidate_disk(mddev->gendisk);
4924 mddev->changed = 1;
4925 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4926out:
4927 return err;
4928}
4929
4930static int restart_array(mddev_t *mddev)
4931{
4932 struct gendisk *disk = mddev->gendisk;
4933
4934 /* Complain if it has no devices */
4935 if (list_empty(&mddev->disks))
4936 return -ENXIO;
4937 if (!mddev->pers)
4938 return -EINVAL;
4939 if (!mddev->ro)
4940 return -EBUSY;
4941 mddev->safemode = 0;
4942 mddev->ro = 0;
4943 set_disk_ro(disk, 0);
4944 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4945 mdname(mddev));
4946 /* Kick recovery or resync if necessary */
4947 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4948 md_wakeup_thread(mddev->thread);
4949 md_wakeup_thread(mddev->sync_thread);
4950 sysfs_notify_dirent_safe(mddev->sysfs_state);
4951 return 0;
4952}
4953
4954/* similar to deny_write_access, but accounts for our holding a reference
4955 * to the file ourselves */
4956static int deny_bitmap_write_access(struct file * file)
4957{
4958 struct inode *inode = file->f_mapping->host;
4959
4960 spin_lock(&inode->i_lock);
4961 if (atomic_read(&inode->i_writecount) > 1) {
4962 spin_unlock(&inode->i_lock);
4963 return -ETXTBSY;
4964 }
4965 atomic_set(&inode->i_writecount, -1);
4966 spin_unlock(&inode->i_lock);
4967
4968 return 0;
4969}
4970
4971void restore_bitmap_write_access(struct file *file)
4972{
4973 struct inode *inode = file->f_mapping->host;
4974
4975 spin_lock(&inode->i_lock);
4976 atomic_set(&inode->i_writecount, 1);
4977 spin_unlock(&inode->i_lock);
4978}
4979
4980static void md_clean(mddev_t *mddev)
4981{
4982 mddev->array_sectors = 0;
4983 mddev->external_size = 0;
4984 mddev->dev_sectors = 0;
4985 mddev->raid_disks = 0;
4986 mddev->recovery_cp = 0;
4987 mddev->resync_min = 0;
4988 mddev->resync_max = MaxSector;
4989 mddev->reshape_position = MaxSector;
4990 mddev->external = 0;
4991 mddev->persistent = 0;
4992 mddev->level = LEVEL_NONE;
4993 mddev->clevel[0] = 0;
4994 mddev->flags = 0;
4995 mddev->ro = 0;
4996 mddev->metadata_type[0] = 0;
4997 mddev->chunk_sectors = 0;
4998 mddev->ctime = mddev->utime = 0;
4999 mddev->layout = 0;
5000 mddev->max_disks = 0;
5001 mddev->events = 0;
5002 mddev->can_decrease_events = 0;
5003 mddev->delta_disks = 0;
5004 mddev->new_level = LEVEL_NONE;
5005 mddev->new_layout = 0;
5006 mddev->new_chunk_sectors = 0;
5007 mddev->curr_resync = 0;
5008 mddev->resync_mismatches = 0;
5009 mddev->suspend_lo = mddev->suspend_hi = 0;
5010 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5011 mddev->recovery = 0;
5012 mddev->in_sync = 0;
5013 mddev->changed = 0;
5014 mddev->degraded = 0;
5015 mddev->safemode = 0;
5016 mddev->bitmap_info.offset = 0;
5017 mddev->bitmap_info.default_offset = 0;
5018 mddev->bitmap_info.chunksize = 0;
5019 mddev->bitmap_info.daemon_sleep = 0;
5020 mddev->bitmap_info.max_write_behind = 0;
5021}
5022
5023static void __md_stop_writes(mddev_t *mddev)
5024{
5025 if (mddev->sync_thread) {
5026 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5028 reap_sync_thread(mddev);
5029 }
5030
5031 del_timer_sync(&mddev->safemode_timer);
5032
5033 bitmap_flush(mddev);
5034 md_super_wait(mddev);
5035
5036 if (!mddev->in_sync || mddev->flags) {
5037 /* mark array as shutdown cleanly */
5038 mddev->in_sync = 1;
5039 md_update_sb(mddev, 1);
5040 }
5041}
5042
5043void md_stop_writes(mddev_t *mddev)
5044{
5045 mddev_lock(mddev);
5046 __md_stop_writes(mddev);
5047 mddev_unlock(mddev);
5048}
5049EXPORT_SYMBOL_GPL(md_stop_writes);
5050
5051void md_stop(mddev_t *mddev)
5052{
5053 mddev->ready = 0;
5054 mddev->pers->stop(mddev);
5055 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5056 mddev->to_remove = &md_redundancy_group;
5057 module_put(mddev->pers->owner);
5058 mddev->pers = NULL;
5059 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5060}
5061EXPORT_SYMBOL_GPL(md_stop);
5062
5063static int md_set_readonly(mddev_t *mddev, int is_open)
5064{
5065 int err = 0;
5066 mutex_lock(&mddev->open_mutex);
5067 if (atomic_read(&mddev->openers) > is_open) {
5068 printk("md: %s still in use.\n",mdname(mddev));
5069 err = -EBUSY;
5070 goto out;
5071 }
5072 if (mddev->pers) {
5073 __md_stop_writes(mddev);
5074
5075 err = -ENXIO;
5076 if (mddev->ro==1)
5077 goto out;
5078 mddev->ro = 1;
5079 set_disk_ro(mddev->gendisk, 1);
5080 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5081 sysfs_notify_dirent_safe(mddev->sysfs_state);
5082 err = 0;
5083 }
5084out:
5085 mutex_unlock(&mddev->open_mutex);
5086 return err;
5087}
5088
5089/* mode:
5090 * 0 - completely stop and dis-assemble array
5091 * 2 - stop but do not disassemble array
5092 */
5093static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5094{
5095 struct gendisk *disk = mddev->gendisk;
5096 mdk_rdev_t *rdev;
5097
5098 mutex_lock(&mddev->open_mutex);
5099 if (atomic_read(&mddev->openers) > is_open ||
5100 mddev->sysfs_active) {
5101 printk("md: %s still in use.\n",mdname(mddev));
5102 mutex_unlock(&mddev->open_mutex);
5103 return -EBUSY;
5104 }
5105
5106 if (mddev->pers) {
5107 if (mddev->ro)
5108 set_disk_ro(disk, 0);
5109
5110 __md_stop_writes(mddev);
5111 md_stop(mddev);
5112 mddev->queue->merge_bvec_fn = NULL;
5113 mddev->queue->backing_dev_info.congested_fn = NULL;
5114
5115 /* tell userspace to handle 'inactive' */
5116 sysfs_notify_dirent_safe(mddev->sysfs_state);
5117
5118 list_for_each_entry(rdev, &mddev->disks, same_set)
5119 if (rdev->raid_disk >= 0)
5120 sysfs_unlink_rdev(mddev, rdev);
5121
5122 set_capacity(disk, 0);
5123 mutex_unlock(&mddev->open_mutex);
5124 mddev->changed = 1;
5125 revalidate_disk(disk);
5126
5127 if (mddev->ro)
5128 mddev->ro = 0;
5129 } else
5130 mutex_unlock(&mddev->open_mutex);
5131 /*
5132 * Free resources if final stop
5133 */
5134 if (mode == 0) {
5135 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5136
5137 bitmap_destroy(mddev);
5138 if (mddev->bitmap_info.file) {
5139 restore_bitmap_write_access(mddev->bitmap_info.file);
5140 fput(mddev->bitmap_info.file);
5141 mddev->bitmap_info.file = NULL;
5142 }
5143 mddev->bitmap_info.offset = 0;
5144
5145 export_array(mddev);
5146
5147 md_clean(mddev);
5148 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5149 if (mddev->hold_active == UNTIL_STOP)
5150 mddev->hold_active = 0;
5151 }
5152 blk_integrity_unregister(disk);
5153 md_new_event(mddev);
5154 sysfs_notify_dirent_safe(mddev->sysfs_state);
5155 return 0;
5156}
5157
5158#ifndef MODULE
5159static void autorun_array(mddev_t *mddev)
5160{
5161 mdk_rdev_t *rdev;
5162 int err;
5163
5164 if (list_empty(&mddev->disks))
5165 return;
5166
5167 printk(KERN_INFO "md: running: ");
5168
5169 list_for_each_entry(rdev, &mddev->disks, same_set) {
5170 char b[BDEVNAME_SIZE];
5171 printk("<%s>", bdevname(rdev->bdev,b));
5172 }
5173 printk("\n");
5174
5175 err = do_md_run(mddev);
5176 if (err) {
5177 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5178 do_md_stop(mddev, 0, 0);
5179 }
5180}
5181
5182/*
5183 * lets try to run arrays based on all disks that have arrived
5184 * until now. (those are in pending_raid_disks)
5185 *
5186 * the method: pick the first pending disk, collect all disks with
5187 * the same UUID, remove all from the pending list and put them into
5188 * the 'same_array' list. Then order this list based on superblock
5189 * update time (freshest comes first), kick out 'old' disks and
5190 * compare superblocks. If everything's fine then run it.
5191 *
5192 * If "unit" is allocated, then bump its reference count
5193 */
5194static void autorun_devices(int part)
5195{
5196 mdk_rdev_t *rdev0, *rdev, *tmp;
5197 mddev_t *mddev;
5198 char b[BDEVNAME_SIZE];
5199
5200 printk(KERN_INFO "md: autorun ...\n");
5201 while (!list_empty(&pending_raid_disks)) {
5202 int unit;
5203 dev_t dev;
5204 LIST_HEAD(candidates);
5205 rdev0 = list_entry(pending_raid_disks.next,
5206 mdk_rdev_t, same_set);
5207
5208 printk(KERN_INFO "md: considering %s ...\n",
5209 bdevname(rdev0->bdev,b));
5210 INIT_LIST_HEAD(&candidates);
5211 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5212 if (super_90_load(rdev, rdev0, 0) >= 0) {
5213 printk(KERN_INFO "md: adding %s ...\n",
5214 bdevname(rdev->bdev,b));
5215 list_move(&rdev->same_set, &candidates);
5216 }
5217 /*
5218 * now we have a set of devices, with all of them having
5219 * mostly sane superblocks. It's time to allocate the
5220 * mddev.
5221 */
5222 if (part) {
5223 dev = MKDEV(mdp_major,
5224 rdev0->preferred_minor << MdpMinorShift);
5225 unit = MINOR(dev) >> MdpMinorShift;
5226 } else {
5227 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5228 unit = MINOR(dev);
5229 }
5230 if (rdev0->preferred_minor != unit) {
5231 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5232 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5233 break;
5234 }
5235
5236 md_probe(dev, NULL, NULL);
5237 mddev = mddev_find(dev);
5238 if (!mddev || !mddev->gendisk) {
5239 if (mddev)
5240 mddev_put(mddev);
5241 printk(KERN_ERR
5242 "md: cannot allocate memory for md drive.\n");
5243 break;
5244 }
5245 if (mddev_lock(mddev))
5246 printk(KERN_WARNING "md: %s locked, cannot run\n",
5247 mdname(mddev));
5248 else if (mddev->raid_disks || mddev->major_version
5249 || !list_empty(&mddev->disks)) {
5250 printk(KERN_WARNING
5251 "md: %s already running, cannot run %s\n",
5252 mdname(mddev), bdevname(rdev0->bdev,b));
5253 mddev_unlock(mddev);
5254 } else {
5255 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5256 mddev->persistent = 1;
5257 rdev_for_each_list(rdev, tmp, &candidates) {
5258 list_del_init(&rdev->same_set);
5259 if (bind_rdev_to_array(rdev, mddev))
5260 export_rdev(rdev);
5261 }
5262 autorun_array(mddev);
5263 mddev_unlock(mddev);
5264 }
5265 /* on success, candidates will be empty, on error
5266 * it won't...
5267 */
5268 rdev_for_each_list(rdev, tmp, &candidates) {
5269 list_del_init(&rdev->same_set);
5270 export_rdev(rdev);
5271 }
5272 mddev_put(mddev);
5273 }
5274 printk(KERN_INFO "md: ... autorun DONE.\n");
5275}
5276#endif /* !MODULE */
5277
5278static int get_version(void __user * arg)
5279{
5280 mdu_version_t ver;
5281
5282 ver.major = MD_MAJOR_VERSION;
5283 ver.minor = MD_MINOR_VERSION;
5284 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5285
5286 if (copy_to_user(arg, &ver, sizeof(ver)))
5287 return -EFAULT;
5288
5289 return 0;
5290}
5291
5292static int get_array_info(mddev_t * mddev, void __user * arg)
5293{
5294 mdu_array_info_t info;
5295 int nr,working,insync,failed,spare;
5296 mdk_rdev_t *rdev;
5297
5298 nr=working=insync=failed=spare=0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set) {
5300 nr++;
5301 if (test_bit(Faulty, &rdev->flags))
5302 failed++;
5303 else {
5304 working++;
5305 if (test_bit(In_sync, &rdev->flags))
5306 insync++;
5307 else
5308 spare++;
5309 }
5310 }
5311
5312 info.major_version = mddev->major_version;
5313 info.minor_version = mddev->minor_version;
5314 info.patch_version = MD_PATCHLEVEL_VERSION;
5315 info.ctime = mddev->ctime;
5316 info.level = mddev->level;
5317 info.size = mddev->dev_sectors / 2;
5318 if (info.size != mddev->dev_sectors / 2) /* overflow */
5319 info.size = -1;
5320 info.nr_disks = nr;
5321 info.raid_disks = mddev->raid_disks;
5322 info.md_minor = mddev->md_minor;
5323 info.not_persistent= !mddev->persistent;
5324
5325 info.utime = mddev->utime;
5326 info.state = 0;
5327 if (mddev->in_sync)
5328 info.state = (1<<MD_SB_CLEAN);
5329 if (mddev->bitmap && mddev->bitmap_info.offset)
5330 info.state = (1<<MD_SB_BITMAP_PRESENT);
5331 info.active_disks = insync;
5332 info.working_disks = working;
5333 info.failed_disks = failed;
5334 info.spare_disks = spare;
5335
5336 info.layout = mddev->layout;
5337 info.chunk_size = mddev->chunk_sectors << 9;
5338
5339 if (copy_to_user(arg, &info, sizeof(info)))
5340 return -EFAULT;
5341
5342 return 0;
5343}
5344
5345static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5346{
5347 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5348 char *ptr, *buf = NULL;
5349 int err = -ENOMEM;
5350
5351 if (md_allow_write(mddev))
5352 file = kmalloc(sizeof(*file), GFP_NOIO);
5353 else
5354 file = kmalloc(sizeof(*file), GFP_KERNEL);
5355
5356 if (!file)
5357 goto out;
5358
5359 /* bitmap disabled, zero the first byte and copy out */
5360 if (!mddev->bitmap || !mddev->bitmap->file) {
5361 file->pathname[0] = '\0';
5362 goto copy_out;
5363 }
5364
5365 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5366 if (!buf)
5367 goto out;
5368
5369 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5370 if (IS_ERR(ptr))
5371 goto out;
5372
5373 strcpy(file->pathname, ptr);
5374
5375copy_out:
5376 err = 0;
5377 if (copy_to_user(arg, file, sizeof(*file)))
5378 err = -EFAULT;
5379out:
5380 kfree(buf);
5381 kfree(file);
5382 return err;
5383}
5384
5385static int get_disk_info(mddev_t * mddev, void __user * arg)
5386{
5387 mdu_disk_info_t info;
5388 mdk_rdev_t *rdev;
5389
5390 if (copy_from_user(&info, arg, sizeof(info)))
5391 return -EFAULT;
5392
5393 rdev = find_rdev_nr(mddev, info.number);
5394 if (rdev) {
5395 info.major = MAJOR(rdev->bdev->bd_dev);
5396 info.minor = MINOR(rdev->bdev->bd_dev);
5397 info.raid_disk = rdev->raid_disk;
5398 info.state = 0;
5399 if (test_bit(Faulty, &rdev->flags))
5400 info.state |= (1<<MD_DISK_FAULTY);
5401 else if (test_bit(In_sync, &rdev->flags)) {
5402 info.state |= (1<<MD_DISK_ACTIVE);
5403 info.state |= (1<<MD_DISK_SYNC);
5404 }
5405 if (test_bit(WriteMostly, &rdev->flags))
5406 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5407 } else {
5408 info.major = info.minor = 0;
5409 info.raid_disk = -1;
5410 info.state = (1<<MD_DISK_REMOVED);
5411 }
5412
5413 if (copy_to_user(arg, &info, sizeof(info)))
5414 return -EFAULT;
5415
5416 return 0;
5417}
5418
5419static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5420{
5421 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5422 mdk_rdev_t *rdev;
5423 dev_t dev = MKDEV(info->major,info->minor);
5424
5425 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5426 return -EOVERFLOW;
5427
5428 if (!mddev->raid_disks) {
5429 int err;
5430 /* expecting a device which has a superblock */
5431 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5432 if (IS_ERR(rdev)) {
5433 printk(KERN_WARNING
5434 "md: md_import_device returned %ld\n",
5435 PTR_ERR(rdev));
5436 return PTR_ERR(rdev);
5437 }
5438 if (!list_empty(&mddev->disks)) {
5439 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5440 mdk_rdev_t, same_set);
5441 err = super_types[mddev->major_version]
5442 .load_super(rdev, rdev0, mddev->minor_version);
5443 if (err < 0) {
5444 printk(KERN_WARNING
5445 "md: %s has different UUID to %s\n",
5446 bdevname(rdev->bdev,b),
5447 bdevname(rdev0->bdev,b2));
5448 export_rdev(rdev);
5449 return -EINVAL;
5450 }
5451 }
5452 err = bind_rdev_to_array(rdev, mddev);
5453 if (err)
5454 export_rdev(rdev);
5455 return err;
5456 }
5457
5458 /*
5459 * add_new_disk can be used once the array is assembled
5460 * to add "hot spares". They must already have a superblock
5461 * written
5462 */
5463 if (mddev->pers) {
5464 int err;
5465 if (!mddev->pers->hot_add_disk) {
5466 printk(KERN_WARNING
5467 "%s: personality does not support diskops!\n",
5468 mdname(mddev));
5469 return -EINVAL;
5470 }
5471 if (mddev->persistent)
5472 rdev = md_import_device(dev, mddev->major_version,
5473 mddev->minor_version);
5474 else
5475 rdev = md_import_device(dev, -1, -1);
5476 if (IS_ERR(rdev)) {
5477 printk(KERN_WARNING
5478 "md: md_import_device returned %ld\n",
5479 PTR_ERR(rdev));
5480 return PTR_ERR(rdev);
5481 }
5482 /* set saved_raid_disk if appropriate */
5483 if (!mddev->persistent) {
5484 if (info->state & (1<<MD_DISK_SYNC) &&
5485 info->raid_disk < mddev->raid_disks) {
5486 rdev->raid_disk = info->raid_disk;
5487 set_bit(In_sync, &rdev->flags);
5488 } else
5489 rdev->raid_disk = -1;
5490 } else
5491 super_types[mddev->major_version].
5492 validate_super(mddev, rdev);
5493 if ((info->state & (1<<MD_DISK_SYNC)) &&
5494 (!test_bit(In_sync, &rdev->flags) ||
5495 rdev->raid_disk != info->raid_disk)) {
5496 /* This was a hot-add request, but events doesn't
5497 * match, so reject it.
5498 */
5499 export_rdev(rdev);
5500 return -EINVAL;
5501 }
5502
5503 if (test_bit(In_sync, &rdev->flags))
5504 rdev->saved_raid_disk = rdev->raid_disk;
5505 else
5506 rdev->saved_raid_disk = -1;
5507
5508 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5509 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5510 set_bit(WriteMostly, &rdev->flags);
5511 else
5512 clear_bit(WriteMostly, &rdev->flags);
5513
5514 rdev->raid_disk = -1;
5515 err = bind_rdev_to_array(rdev, mddev);
5516 if (!err && !mddev->pers->hot_remove_disk) {
5517 /* If there is hot_add_disk but no hot_remove_disk
5518 * then added disks for geometry changes,
5519 * and should be added immediately.
5520 */
5521 super_types[mddev->major_version].
5522 validate_super(mddev, rdev);
5523 err = mddev->pers->hot_add_disk(mddev, rdev);
5524 if (err)
5525 unbind_rdev_from_array(rdev);
5526 }
5527 if (err)
5528 export_rdev(rdev);
5529 else
5530 sysfs_notify_dirent_safe(rdev->sysfs_state);
5531
5532 md_update_sb(mddev, 1);
5533 if (mddev->degraded)
5534 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5536 if (!err)
5537 md_new_event(mddev);
5538 md_wakeup_thread(mddev->thread);
5539 return err;
5540 }
5541
5542 /* otherwise, add_new_disk is only allowed
5543 * for major_version==0 superblocks
5544 */
5545 if (mddev->major_version != 0) {
5546 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5547 mdname(mddev));
5548 return -EINVAL;
5549 }
5550
5551 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5552 int err;
5553 rdev = md_import_device(dev, -1, 0);
5554 if (IS_ERR(rdev)) {
5555 printk(KERN_WARNING
5556 "md: error, md_import_device() returned %ld\n",
5557 PTR_ERR(rdev));
5558 return PTR_ERR(rdev);
5559 }
5560 rdev->desc_nr = info->number;
5561 if (info->raid_disk < mddev->raid_disks)
5562 rdev->raid_disk = info->raid_disk;
5563 else
5564 rdev->raid_disk = -1;
5565
5566 if (rdev->raid_disk < mddev->raid_disks)
5567 if (info->state & (1<<MD_DISK_SYNC))
5568 set_bit(In_sync, &rdev->flags);
5569
5570 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5571 set_bit(WriteMostly, &rdev->flags);
5572
5573 if (!mddev->persistent) {
5574 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5575 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5576 } else
5577 rdev->sb_start = calc_dev_sboffset(rdev);
5578 rdev->sectors = rdev->sb_start;
5579
5580 err = bind_rdev_to_array(rdev, mddev);
5581 if (err) {
5582 export_rdev(rdev);
5583 return err;
5584 }
5585 }
5586
5587 return 0;
5588}
5589
5590static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5591{
5592 char b[BDEVNAME_SIZE];
5593 mdk_rdev_t *rdev;
5594
5595 rdev = find_rdev(mddev, dev);
5596 if (!rdev)
5597 return -ENXIO;
5598
5599 if (rdev->raid_disk >= 0)
5600 goto busy;
5601
5602 kick_rdev_from_array(rdev);
5603 md_update_sb(mddev, 1);
5604 md_new_event(mddev);
5605
5606 return 0;
5607busy:
5608 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5609 bdevname(rdev->bdev,b), mdname(mddev));
5610 return -EBUSY;
5611}
5612
5613static int hot_add_disk(mddev_t * mddev, dev_t dev)
5614{
5615 char b[BDEVNAME_SIZE];
5616 int err;
5617 mdk_rdev_t *rdev;
5618
5619 if (!mddev->pers)
5620 return -ENODEV;
5621
5622 if (mddev->major_version != 0) {
5623 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5624 " version-0 superblocks.\n",
5625 mdname(mddev));
5626 return -EINVAL;
5627 }
5628 if (!mddev->pers->hot_add_disk) {
5629 printk(KERN_WARNING
5630 "%s: personality does not support diskops!\n",
5631 mdname(mddev));
5632 return -EINVAL;
5633 }
5634
5635 rdev = md_import_device(dev, -1, 0);
5636 if (IS_ERR(rdev)) {
5637 printk(KERN_WARNING
5638 "md: error, md_import_device() returned %ld\n",
5639 PTR_ERR(rdev));
5640 return -EINVAL;
5641 }
5642
5643 if (mddev->persistent)
5644 rdev->sb_start = calc_dev_sboffset(rdev);
5645 else
5646 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5647
5648 rdev->sectors = rdev->sb_start;
5649
5650 if (test_bit(Faulty, &rdev->flags)) {
5651 printk(KERN_WARNING
5652 "md: can not hot-add faulty %s disk to %s!\n",
5653 bdevname(rdev->bdev,b), mdname(mddev));
5654 err = -EINVAL;
5655 goto abort_export;
5656 }
5657 clear_bit(In_sync, &rdev->flags);
5658 rdev->desc_nr = -1;
5659 rdev->saved_raid_disk = -1;
5660 err = bind_rdev_to_array(rdev, mddev);
5661 if (err)
5662 goto abort_export;
5663
5664 /*
5665 * The rest should better be atomic, we can have disk failures
5666 * noticed in interrupt contexts ...
5667 */
5668
5669 rdev->raid_disk = -1;
5670
5671 md_update_sb(mddev, 1);
5672
5673 /*
5674 * Kick recovery, maybe this spare has to be added to the
5675 * array immediately.
5676 */
5677 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5678 md_wakeup_thread(mddev->thread);
5679 md_new_event(mddev);
5680 return 0;
5681
5682abort_export:
5683 export_rdev(rdev);
5684 return err;
5685}
5686
5687static int set_bitmap_file(mddev_t *mddev, int fd)
5688{
5689 int err;
5690
5691 if (mddev->pers) {
5692 if (!mddev->pers->quiesce)
5693 return -EBUSY;
5694 if (mddev->recovery || mddev->sync_thread)
5695 return -EBUSY;
5696 /* we should be able to change the bitmap.. */
5697 }
5698
5699
5700 if (fd >= 0) {
5701 if (mddev->bitmap)
5702 return -EEXIST; /* cannot add when bitmap is present */
5703 mddev->bitmap_info.file = fget(fd);
5704
5705 if (mddev->bitmap_info.file == NULL) {
5706 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5707 mdname(mddev));
5708 return -EBADF;
5709 }
5710
5711 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5712 if (err) {
5713 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5714 mdname(mddev));
5715 fput(mddev->bitmap_info.file);
5716 mddev->bitmap_info.file = NULL;
5717 return err;
5718 }
5719 mddev->bitmap_info.offset = 0; /* file overrides offset */
5720 } else if (mddev->bitmap == NULL)
5721 return -ENOENT; /* cannot remove what isn't there */
5722 err = 0;
5723 if (mddev->pers) {
5724 mddev->pers->quiesce(mddev, 1);
5725 if (fd >= 0) {
5726 err = bitmap_create(mddev);
5727 if (!err)
5728 err = bitmap_load(mddev);
5729 }
5730 if (fd < 0 || err) {
5731 bitmap_destroy(mddev);
5732 fd = -1; /* make sure to put the file */
5733 }
5734 mddev->pers->quiesce(mddev, 0);
5735 }
5736 if (fd < 0) {
5737 if (mddev->bitmap_info.file) {
5738 restore_bitmap_write_access(mddev->bitmap_info.file);
5739 fput(mddev->bitmap_info.file);
5740 }
5741 mddev->bitmap_info.file = NULL;
5742 }
5743
5744 return err;
5745}
5746
5747/*
5748 * set_array_info is used two different ways
5749 * The original usage is when creating a new array.
5750 * In this usage, raid_disks is > 0 and it together with
5751 * level, size, not_persistent,layout,chunksize determine the
5752 * shape of the array.
5753 * This will always create an array with a type-0.90.0 superblock.
5754 * The newer usage is when assembling an array.
5755 * In this case raid_disks will be 0, and the major_version field is
5756 * use to determine which style super-blocks are to be found on the devices.
5757 * The minor and patch _version numbers are also kept incase the
5758 * super_block handler wishes to interpret them.
5759 */
5760static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5761{
5762
5763 if (info->raid_disks == 0) {
5764 /* just setting version number for superblock loading */
5765 if (info->major_version < 0 ||
5766 info->major_version >= ARRAY_SIZE(super_types) ||
5767 super_types[info->major_version].name == NULL) {
5768 /* maybe try to auto-load a module? */
5769 printk(KERN_INFO
5770 "md: superblock version %d not known\n",
5771 info->major_version);
5772 return -EINVAL;
5773 }
5774 mddev->major_version = info->major_version;
5775 mddev->minor_version = info->minor_version;
5776 mddev->patch_version = info->patch_version;
5777 mddev->persistent = !info->not_persistent;
5778 /* ensure mddev_put doesn't delete this now that there
5779 * is some minimal configuration.
5780 */
5781 mddev->ctime = get_seconds();
5782 return 0;
5783 }
5784 mddev->major_version = MD_MAJOR_VERSION;
5785 mddev->minor_version = MD_MINOR_VERSION;
5786 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5787 mddev->ctime = get_seconds();
5788
5789 mddev->level = info->level;
5790 mddev->clevel[0] = 0;
5791 mddev->dev_sectors = 2 * (sector_t)info->size;
5792 mddev->raid_disks = info->raid_disks;
5793 /* don't set md_minor, it is determined by which /dev/md* was
5794 * openned
5795 */
5796 if (info->state & (1<<MD_SB_CLEAN))
5797 mddev->recovery_cp = MaxSector;
5798 else
5799 mddev->recovery_cp = 0;
5800 mddev->persistent = ! info->not_persistent;
5801 mddev->external = 0;
5802
5803 mddev->layout = info->layout;
5804 mddev->chunk_sectors = info->chunk_size >> 9;
5805
5806 mddev->max_disks = MD_SB_DISKS;
5807
5808 if (mddev->persistent)
5809 mddev->flags = 0;
5810 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5811
5812 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5813 mddev->bitmap_info.offset = 0;
5814
5815 mddev->reshape_position = MaxSector;
5816
5817 /*
5818 * Generate a 128 bit UUID
5819 */
5820 get_random_bytes(mddev->uuid, 16);
5821
5822 mddev->new_level = mddev->level;
5823 mddev->new_chunk_sectors = mddev->chunk_sectors;
5824 mddev->new_layout = mddev->layout;
5825 mddev->delta_disks = 0;
5826
5827 return 0;
5828}
5829
5830void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5831{
5832 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5833
5834 if (mddev->external_size)
5835 return;
5836
5837 mddev->array_sectors = array_sectors;
5838}
5839EXPORT_SYMBOL(md_set_array_sectors);
5840
5841static int update_size(mddev_t *mddev, sector_t num_sectors)
5842{
5843 mdk_rdev_t *rdev;
5844 int rv;
5845 int fit = (num_sectors == 0);
5846
5847 if (mddev->pers->resize == NULL)
5848 return -EINVAL;
5849 /* The "num_sectors" is the number of sectors of each device that
5850 * is used. This can only make sense for arrays with redundancy.
5851 * linear and raid0 always use whatever space is available. We can only
5852 * consider changing this number if no resync or reconstruction is
5853 * happening, and if the new size is acceptable. It must fit before the
5854 * sb_start or, if that is <data_offset, it must fit before the size
5855 * of each device. If num_sectors is zero, we find the largest size
5856 * that fits.
5857 */
5858 if (mddev->sync_thread)
5859 return -EBUSY;
5860 if (mddev->bitmap)
5861 /* Sorry, cannot grow a bitmap yet, just remove it,
5862 * grow, and re-add.
5863 */
5864 return -EBUSY;
5865 list_for_each_entry(rdev, &mddev->disks, same_set) {
5866 sector_t avail = rdev->sectors;
5867
5868 if (fit && (num_sectors == 0 || num_sectors > avail))
5869 num_sectors = avail;
5870 if (avail < num_sectors)
5871 return -ENOSPC;
5872 }
5873 rv = mddev->pers->resize(mddev, num_sectors);
5874 if (!rv)
5875 revalidate_disk(mddev->gendisk);
5876 return rv;
5877}
5878
5879static int update_raid_disks(mddev_t *mddev, int raid_disks)
5880{
5881 int rv;
5882 /* change the number of raid disks */
5883 if (mddev->pers->check_reshape == NULL)
5884 return -EINVAL;
5885 if (raid_disks <= 0 ||
5886 (mddev->max_disks && raid_disks >= mddev->max_disks))
5887 return -EINVAL;
5888 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5889 return -EBUSY;
5890 mddev->delta_disks = raid_disks - mddev->raid_disks;
5891
5892 rv = mddev->pers->check_reshape(mddev);
5893 if (rv < 0)
5894 mddev->delta_disks = 0;
5895 return rv;
5896}
5897
5898
5899/*
5900 * update_array_info is used to change the configuration of an
5901 * on-line array.
5902 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5903 * fields in the info are checked against the array.
5904 * Any differences that cannot be handled will cause an error.
5905 * Normally, only one change can be managed at a time.
5906 */
5907static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5908{
5909 int rv = 0;
5910 int cnt = 0;
5911 int state = 0;
5912
5913 /* calculate expected state,ignoring low bits */
5914 if (mddev->bitmap && mddev->bitmap_info.offset)
5915 state |= (1 << MD_SB_BITMAP_PRESENT);
5916
5917 if (mddev->major_version != info->major_version ||
5918 mddev->minor_version != info->minor_version ||
5919/* mddev->patch_version != info->patch_version || */
5920 mddev->ctime != info->ctime ||
5921 mddev->level != info->level ||
5922/* mddev->layout != info->layout || */
5923 !mddev->persistent != info->not_persistent||
5924 mddev->chunk_sectors != info->chunk_size >> 9 ||
5925 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5926 ((state^info->state) & 0xfffffe00)
5927 )
5928 return -EINVAL;
5929 /* Check there is only one change */
5930 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5931 cnt++;
5932 if (mddev->raid_disks != info->raid_disks)
5933 cnt++;
5934 if (mddev->layout != info->layout)
5935 cnt++;
5936 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5937 cnt++;
5938 if (cnt == 0)
5939 return 0;
5940 if (cnt > 1)
5941 return -EINVAL;
5942
5943 if (mddev->layout != info->layout) {
5944 /* Change layout
5945 * we don't need to do anything at the md level, the
5946 * personality will take care of it all.
5947 */
5948 if (mddev->pers->check_reshape == NULL)
5949 return -EINVAL;
5950 else {
5951 mddev->new_layout = info->layout;
5952 rv = mddev->pers->check_reshape(mddev);
5953 if (rv)
5954 mddev->new_layout = mddev->layout;
5955 return rv;
5956 }
5957 }
5958 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5959 rv = update_size(mddev, (sector_t)info->size * 2);
5960
5961 if (mddev->raid_disks != info->raid_disks)
5962 rv = update_raid_disks(mddev, info->raid_disks);
5963
5964 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5965 if (mddev->pers->quiesce == NULL)
5966 return -EINVAL;
5967 if (mddev->recovery || mddev->sync_thread)
5968 return -EBUSY;
5969 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5970 /* add the bitmap */
5971 if (mddev->bitmap)
5972 return -EEXIST;
5973 if (mddev->bitmap_info.default_offset == 0)
5974 return -EINVAL;
5975 mddev->bitmap_info.offset =
5976 mddev->bitmap_info.default_offset;
5977 mddev->pers->quiesce(mddev, 1);
5978 rv = bitmap_create(mddev);
5979 if (!rv)
5980 rv = bitmap_load(mddev);
5981 if (rv)
5982 bitmap_destroy(mddev);
5983 mddev->pers->quiesce(mddev, 0);
5984 } else {
5985 /* remove the bitmap */
5986 if (!mddev->bitmap)
5987 return -ENOENT;
5988 if (mddev->bitmap->file)
5989 return -EINVAL;
5990 mddev->pers->quiesce(mddev, 1);
5991 bitmap_destroy(mddev);
5992 mddev->pers->quiesce(mddev, 0);
5993 mddev->bitmap_info.offset = 0;
5994 }
5995 }
5996 md_update_sb(mddev, 1);
5997 return rv;
5998}
5999
6000static int set_disk_faulty(mddev_t *mddev, dev_t dev)
6001{
6002 mdk_rdev_t *rdev;
6003
6004 if (mddev->pers == NULL)
6005 return -ENODEV;
6006
6007 rdev = find_rdev(mddev, dev);
6008 if (!rdev)
6009 return -ENODEV;
6010
6011 md_error(mddev, rdev);
6012 if (!test_bit(Faulty, &rdev->flags))
6013 return -EBUSY;
6014 return 0;
6015}
6016
6017/*
6018 * We have a problem here : there is no easy way to give a CHS
6019 * virtual geometry. We currently pretend that we have a 2 heads
6020 * 4 sectors (with a BIG number of cylinders...). This drives
6021 * dosfs just mad... ;-)
6022 */
6023static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6024{
6025 mddev_t *mddev = bdev->bd_disk->private_data;
6026
6027 geo->heads = 2;
6028 geo->sectors = 4;
6029 geo->cylinders = mddev->array_sectors / 8;
6030 return 0;
6031}
6032
6033static int md_ioctl(struct block_device *bdev, fmode_t mode,
6034 unsigned int cmd, unsigned long arg)
6035{
6036 int err = 0;
6037 void __user *argp = (void __user *)arg;
6038 mddev_t *mddev = NULL;
6039 int ro;
6040
6041 if (!capable(CAP_SYS_ADMIN))
6042 return -EACCES;
6043
6044 /*
6045 * Commands dealing with the RAID driver but not any
6046 * particular array:
6047 */
6048 switch (cmd)
6049 {
6050 case RAID_VERSION:
6051 err = get_version(argp);
6052 goto done;
6053
6054 case PRINT_RAID_DEBUG:
6055 err = 0;
6056 md_print_devices();
6057 goto done;
6058
6059#ifndef MODULE
6060 case RAID_AUTORUN:
6061 err = 0;
6062 autostart_arrays(arg);
6063 goto done;
6064#endif
6065 default:;
6066 }
6067
6068 /*
6069 * Commands creating/starting a new array:
6070 */
6071
6072 mddev = bdev->bd_disk->private_data;
6073
6074 if (!mddev) {
6075 BUG();
6076 goto abort;
6077 }
6078
6079 err = mddev_lock(mddev);
6080 if (err) {
6081 printk(KERN_INFO
6082 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6083 err, cmd);
6084 goto abort;
6085 }
6086
6087 switch (cmd)
6088 {
6089 case SET_ARRAY_INFO:
6090 {
6091 mdu_array_info_t info;
6092 if (!arg)
6093 memset(&info, 0, sizeof(info));
6094 else if (copy_from_user(&info, argp, sizeof(info))) {
6095 err = -EFAULT;
6096 goto abort_unlock;
6097 }
6098 if (mddev->pers) {
6099 err = update_array_info(mddev, &info);
6100 if (err) {
6101 printk(KERN_WARNING "md: couldn't update"
6102 " array info. %d\n", err);
6103 goto abort_unlock;
6104 }
6105 goto done_unlock;
6106 }
6107 if (!list_empty(&mddev->disks)) {
6108 printk(KERN_WARNING
6109 "md: array %s already has disks!\n",
6110 mdname(mddev));
6111 err = -EBUSY;
6112 goto abort_unlock;
6113 }
6114 if (mddev->raid_disks) {
6115 printk(KERN_WARNING
6116 "md: array %s already initialised!\n",
6117 mdname(mddev));
6118 err = -EBUSY;
6119 goto abort_unlock;
6120 }
6121 err = set_array_info(mddev, &info);
6122 if (err) {
6123 printk(KERN_WARNING "md: couldn't set"
6124 " array info. %d\n", err);
6125 goto abort_unlock;
6126 }
6127 }
6128 goto done_unlock;
6129
6130 default:;
6131 }
6132
6133 /*
6134 * Commands querying/configuring an existing array:
6135 */
6136 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6137 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6138 if ((!mddev->raid_disks && !mddev->external)
6139 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6140 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6141 && cmd != GET_BITMAP_FILE) {
6142 err = -ENODEV;
6143 goto abort_unlock;
6144 }
6145
6146 /*
6147 * Commands even a read-only array can execute:
6148 */
6149 switch (cmd)
6150 {
6151 case GET_ARRAY_INFO:
6152 err = get_array_info(mddev, argp);
6153 goto done_unlock;
6154
6155 case GET_BITMAP_FILE:
6156 err = get_bitmap_file(mddev, argp);
6157 goto done_unlock;
6158
6159 case GET_DISK_INFO:
6160 err = get_disk_info(mddev, argp);
6161 goto done_unlock;
6162
6163 case RESTART_ARRAY_RW:
6164 err = restart_array(mddev);
6165 goto done_unlock;
6166
6167 case STOP_ARRAY:
6168 err = do_md_stop(mddev, 0, 1);
6169 goto done_unlock;
6170
6171 case STOP_ARRAY_RO:
6172 err = md_set_readonly(mddev, 1);
6173 goto done_unlock;
6174
6175 case BLKROSET:
6176 if (get_user(ro, (int __user *)(arg))) {
6177 err = -EFAULT;
6178 goto done_unlock;
6179 }
6180 err = -EINVAL;
6181
6182 /* if the bdev is going readonly the value of mddev->ro
6183 * does not matter, no writes are coming
6184 */
6185 if (ro)
6186 goto done_unlock;
6187
6188 /* are we are already prepared for writes? */
6189 if (mddev->ro != 1)
6190 goto done_unlock;
6191
6192 /* transitioning to readauto need only happen for
6193 * arrays that call md_write_start
6194 */
6195 if (mddev->pers) {
6196 err = restart_array(mddev);
6197 if (err == 0) {
6198 mddev->ro = 2;
6199 set_disk_ro(mddev->gendisk, 0);
6200 }
6201 }
6202 goto done_unlock;
6203 }
6204
6205 /*
6206 * The remaining ioctls are changing the state of the
6207 * superblock, so we do not allow them on read-only arrays.
6208 * However non-MD ioctls (e.g. get-size) will still come through
6209 * here and hit the 'default' below, so only disallow
6210 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6211 */
6212 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6213 if (mddev->ro == 2) {
6214 mddev->ro = 0;
6215 sysfs_notify_dirent_safe(mddev->sysfs_state);
6216 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6217 md_wakeup_thread(mddev->thread);
6218 } else {
6219 err = -EROFS;
6220 goto abort_unlock;
6221 }
6222 }
6223
6224 switch (cmd)
6225 {
6226 case ADD_NEW_DISK:
6227 {
6228 mdu_disk_info_t info;
6229 if (copy_from_user(&info, argp, sizeof(info)))
6230 err = -EFAULT;
6231 else
6232 err = add_new_disk(mddev, &info);
6233 goto done_unlock;
6234 }
6235
6236 case HOT_REMOVE_DISK:
6237 err = hot_remove_disk(mddev, new_decode_dev(arg));
6238 goto done_unlock;
6239
6240 case HOT_ADD_DISK:
6241 err = hot_add_disk(mddev, new_decode_dev(arg));
6242 goto done_unlock;
6243
6244 case SET_DISK_FAULTY:
6245 err = set_disk_faulty(mddev, new_decode_dev(arg));
6246 goto done_unlock;
6247
6248 case RUN_ARRAY:
6249 err = do_md_run(mddev);
6250 goto done_unlock;
6251
6252 case SET_BITMAP_FILE:
6253 err = set_bitmap_file(mddev, (int)arg);
6254 goto done_unlock;
6255
6256 default:
6257 err = -EINVAL;
6258 goto abort_unlock;
6259 }
6260
6261done_unlock:
6262abort_unlock:
6263 if (mddev->hold_active == UNTIL_IOCTL &&
6264 err != -EINVAL)
6265 mddev->hold_active = 0;
6266 mddev_unlock(mddev);
6267
6268 return err;
6269done:
6270 if (err)
6271 MD_BUG();
6272abort:
6273 return err;
6274}
6275#ifdef CONFIG_COMPAT
6276static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6277 unsigned int cmd, unsigned long arg)
6278{
6279 switch (cmd) {
6280 case HOT_REMOVE_DISK:
6281 case HOT_ADD_DISK:
6282 case SET_DISK_FAULTY:
6283 case SET_BITMAP_FILE:
6284 /* These take in integer arg, do not convert */
6285 break;
6286 default:
6287 arg = (unsigned long)compat_ptr(arg);
6288 break;
6289 }
6290
6291 return md_ioctl(bdev, mode, cmd, arg);
6292}
6293#endif /* CONFIG_COMPAT */
6294
6295static int md_open(struct block_device *bdev, fmode_t mode)
6296{
6297 /*
6298 * Succeed if we can lock the mddev, which confirms that
6299 * it isn't being stopped right now.
6300 */
6301 mddev_t *mddev = mddev_find(bdev->bd_dev);
6302 int err;
6303
6304 if (mddev->gendisk != bdev->bd_disk) {
6305 /* we are racing with mddev_put which is discarding this
6306 * bd_disk.
6307 */
6308 mddev_put(mddev);
6309 /* Wait until bdev->bd_disk is definitely gone */
6310 flush_workqueue(md_misc_wq);
6311 /* Then retry the open from the top */
6312 return -ERESTARTSYS;
6313 }
6314 BUG_ON(mddev != bdev->bd_disk->private_data);
6315
6316 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6317 goto out;
6318
6319 err = 0;
6320 atomic_inc(&mddev->openers);
6321 mutex_unlock(&mddev->open_mutex);
6322
6323 check_disk_change(bdev);
6324 out:
6325 return err;
6326}
6327
6328static int md_release(struct gendisk *disk, fmode_t mode)
6329{
6330 mddev_t *mddev = disk->private_data;
6331
6332 BUG_ON(!mddev);
6333 atomic_dec(&mddev->openers);
6334 mddev_put(mddev);
6335
6336 return 0;
6337}
6338
6339static int md_media_changed(struct gendisk *disk)
6340{
6341 mddev_t *mddev = disk->private_data;
6342
6343 return mddev->changed;
6344}
6345
6346static int md_revalidate(struct gendisk *disk)
6347{
6348 mddev_t *mddev = disk->private_data;
6349
6350 mddev->changed = 0;
6351 return 0;
6352}
6353static const struct block_device_operations md_fops =
6354{
6355 .owner = THIS_MODULE,
6356 .open = md_open,
6357 .release = md_release,
6358 .ioctl = md_ioctl,
6359#ifdef CONFIG_COMPAT
6360 .compat_ioctl = md_compat_ioctl,
6361#endif
6362 .getgeo = md_getgeo,
6363 .media_changed = md_media_changed,
6364 .revalidate_disk= md_revalidate,
6365};
6366
6367static int md_thread(void * arg)
6368{
6369 mdk_thread_t *thread = arg;
6370
6371 /*
6372 * md_thread is a 'system-thread', it's priority should be very
6373 * high. We avoid resource deadlocks individually in each
6374 * raid personality. (RAID5 does preallocation) We also use RR and
6375 * the very same RT priority as kswapd, thus we will never get
6376 * into a priority inversion deadlock.
6377 *
6378 * we definitely have to have equal or higher priority than
6379 * bdflush, otherwise bdflush will deadlock if there are too
6380 * many dirty RAID5 blocks.
6381 */
6382
6383 allow_signal(SIGKILL);
6384 while (!kthread_should_stop()) {
6385
6386 /* We need to wait INTERRUPTIBLE so that
6387 * we don't add to the load-average.
6388 * That means we need to be sure no signals are
6389 * pending
6390 */
6391 if (signal_pending(current))
6392 flush_signals(current);
6393
6394 wait_event_interruptible_timeout
6395 (thread->wqueue,
6396 test_bit(THREAD_WAKEUP, &thread->flags)
6397 || kthread_should_stop(),
6398 thread->timeout);
6399
6400 clear_bit(THREAD_WAKEUP, &thread->flags);
6401 if (!kthread_should_stop())
6402 thread->run(thread->mddev);
6403 }
6404
6405 return 0;
6406}
6407
6408void md_wakeup_thread(mdk_thread_t *thread)
6409{
6410 if (thread) {
6411 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6412 set_bit(THREAD_WAKEUP, &thread->flags);
6413 wake_up(&thread->wqueue);
6414 }
6415}
6416
6417mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6418 const char *name)
6419{
6420 mdk_thread_t *thread;
6421
6422 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6423 if (!thread)
6424 return NULL;
6425
6426 init_waitqueue_head(&thread->wqueue);
6427
6428 thread->run = run;
6429 thread->mddev = mddev;
6430 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6431 thread->tsk = kthread_run(md_thread, thread,
6432 "%s_%s",
6433 mdname(thread->mddev),
6434 name ?: mddev->pers->name);
6435 if (IS_ERR(thread->tsk)) {
6436 kfree(thread);
6437 return NULL;
6438 }
6439 return thread;
6440}
6441
6442void md_unregister_thread(mdk_thread_t **threadp)
6443{
6444 mdk_thread_t *thread = *threadp;
6445 if (!thread)
6446 return;
6447 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6448 /* Locking ensures that mddev_unlock does not wake_up a
6449 * non-existent thread
6450 */
6451 spin_lock(&pers_lock);
6452 *threadp = NULL;
6453 spin_unlock(&pers_lock);
6454
6455 kthread_stop(thread->tsk);
6456 kfree(thread);
6457}
6458
6459void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6460{
6461 if (!mddev) {
6462 MD_BUG();
6463 return;
6464 }
6465
6466 if (!rdev || test_bit(Faulty, &rdev->flags))
6467 return;
6468
6469 if (!mddev->pers || !mddev->pers->error_handler)
6470 return;
6471 mddev->pers->error_handler(mddev,rdev);
6472 if (mddev->degraded)
6473 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6474 sysfs_notify_dirent_safe(rdev->sysfs_state);
6475 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6476 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6477 md_wakeup_thread(mddev->thread);
6478 if (mddev->event_work.func)
6479 queue_work(md_misc_wq, &mddev->event_work);
6480 md_new_event_inintr(mddev);
6481}
6482
6483/* seq_file implementation /proc/mdstat */
6484
6485static void status_unused(struct seq_file *seq)
6486{
6487 int i = 0;
6488 mdk_rdev_t *rdev;
6489
6490 seq_printf(seq, "unused devices: ");
6491
6492 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6493 char b[BDEVNAME_SIZE];
6494 i++;
6495 seq_printf(seq, "%s ",
6496 bdevname(rdev->bdev,b));
6497 }
6498 if (!i)
6499 seq_printf(seq, "<none>");
6500
6501 seq_printf(seq, "\n");
6502}
6503
6504
6505static void status_resync(struct seq_file *seq, mddev_t * mddev)
6506{
6507 sector_t max_sectors, resync, res;
6508 unsigned long dt, db;
6509 sector_t rt;
6510 int scale;
6511 unsigned int per_milli;
6512
6513 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6514
6515 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6516 max_sectors = mddev->resync_max_sectors;
6517 else
6518 max_sectors = mddev->dev_sectors;
6519
6520 /*
6521 * Should not happen.
6522 */
6523 if (!max_sectors) {
6524 MD_BUG();
6525 return;
6526 }
6527 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6528 * in a sector_t, and (max_sectors>>scale) will fit in a
6529 * u32, as those are the requirements for sector_div.
6530 * Thus 'scale' must be at least 10
6531 */
6532 scale = 10;
6533 if (sizeof(sector_t) > sizeof(unsigned long)) {
6534 while ( max_sectors/2 > (1ULL<<(scale+32)))
6535 scale++;
6536 }
6537 res = (resync>>scale)*1000;
6538 sector_div(res, (u32)((max_sectors>>scale)+1));
6539
6540 per_milli = res;
6541 {
6542 int i, x = per_milli/50, y = 20-x;
6543 seq_printf(seq, "[");
6544 for (i = 0; i < x; i++)
6545 seq_printf(seq, "=");
6546 seq_printf(seq, ">");
6547 for (i = 0; i < y; i++)
6548 seq_printf(seq, ".");
6549 seq_printf(seq, "] ");
6550 }
6551 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6552 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6553 "reshape" :
6554 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6555 "check" :
6556 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6557 "resync" : "recovery"))),
6558 per_milli/10, per_milli % 10,
6559 (unsigned long long) resync/2,
6560 (unsigned long long) max_sectors/2);
6561
6562 /*
6563 * dt: time from mark until now
6564 * db: blocks written from mark until now
6565 * rt: remaining time
6566 *
6567 * rt is a sector_t, so could be 32bit or 64bit.
6568 * So we divide before multiply in case it is 32bit and close
6569 * to the limit.
6570 * We scale the divisor (db) by 32 to avoid losing precision
6571 * near the end of resync when the number of remaining sectors
6572 * is close to 'db'.
6573 * We then divide rt by 32 after multiplying by db to compensate.
6574 * The '+1' avoids division by zero if db is very small.
6575 */
6576 dt = ((jiffies - mddev->resync_mark) / HZ);
6577 if (!dt) dt++;
6578 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6579 - mddev->resync_mark_cnt;
6580
6581 rt = max_sectors - resync; /* number of remaining sectors */
6582 sector_div(rt, db/32+1);
6583 rt *= dt;
6584 rt >>= 5;
6585
6586 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6587 ((unsigned long)rt % 60)/6);
6588
6589 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6590}
6591
6592static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6593{
6594 struct list_head *tmp;
6595 loff_t l = *pos;
6596 mddev_t *mddev;
6597
6598 if (l >= 0x10000)
6599 return NULL;
6600 if (!l--)
6601 /* header */
6602 return (void*)1;
6603
6604 spin_lock(&all_mddevs_lock);
6605 list_for_each(tmp,&all_mddevs)
6606 if (!l--) {
6607 mddev = list_entry(tmp, mddev_t, all_mddevs);
6608 mddev_get(mddev);
6609 spin_unlock(&all_mddevs_lock);
6610 return mddev;
6611 }
6612 spin_unlock(&all_mddevs_lock);
6613 if (!l--)
6614 return (void*)2;/* tail */
6615 return NULL;
6616}
6617
6618static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6619{
6620 struct list_head *tmp;
6621 mddev_t *next_mddev, *mddev = v;
6622
6623 ++*pos;
6624 if (v == (void*)2)
6625 return NULL;
6626
6627 spin_lock(&all_mddevs_lock);
6628 if (v == (void*)1)
6629 tmp = all_mddevs.next;
6630 else
6631 tmp = mddev->all_mddevs.next;
6632 if (tmp != &all_mddevs)
6633 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6634 else {
6635 next_mddev = (void*)2;
6636 *pos = 0x10000;
6637 }
6638 spin_unlock(&all_mddevs_lock);
6639
6640 if (v != (void*)1)
6641 mddev_put(mddev);
6642 return next_mddev;
6643
6644}
6645
6646static void md_seq_stop(struct seq_file *seq, void *v)
6647{
6648 mddev_t *mddev = v;
6649
6650 if (mddev && v != (void*)1 && v != (void*)2)
6651 mddev_put(mddev);
6652}
6653
6654static int md_seq_show(struct seq_file *seq, void *v)
6655{
6656 mddev_t *mddev = v;
6657 sector_t sectors;
6658 mdk_rdev_t *rdev;
6659 struct bitmap *bitmap;
6660
6661 if (v == (void*)1) {
6662 struct mdk_personality *pers;
6663 seq_printf(seq, "Personalities : ");
6664 spin_lock(&pers_lock);
6665 list_for_each_entry(pers, &pers_list, list)
6666 seq_printf(seq, "[%s] ", pers->name);
6667
6668 spin_unlock(&pers_lock);
6669 seq_printf(seq, "\n");
6670 seq->poll_event = atomic_read(&md_event_count);
6671 return 0;
6672 }
6673 if (v == (void*)2) {
6674 status_unused(seq);
6675 return 0;
6676 }
6677
6678 if (mddev_lock(mddev) < 0)
6679 return -EINTR;
6680
6681 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6682 seq_printf(seq, "%s : %sactive", mdname(mddev),
6683 mddev->pers ? "" : "in");
6684 if (mddev->pers) {
6685 if (mddev->ro==1)
6686 seq_printf(seq, " (read-only)");
6687 if (mddev->ro==2)
6688 seq_printf(seq, " (auto-read-only)");
6689 seq_printf(seq, " %s", mddev->pers->name);
6690 }
6691
6692 sectors = 0;
6693 list_for_each_entry(rdev, &mddev->disks, same_set) {
6694 char b[BDEVNAME_SIZE];
6695 seq_printf(seq, " %s[%d]",
6696 bdevname(rdev->bdev,b), rdev->desc_nr);
6697 if (test_bit(WriteMostly, &rdev->flags))
6698 seq_printf(seq, "(W)");
6699 if (test_bit(Faulty, &rdev->flags)) {
6700 seq_printf(seq, "(F)");
6701 continue;
6702 } else if (rdev->raid_disk < 0)
6703 seq_printf(seq, "(S)"); /* spare */
6704 sectors += rdev->sectors;
6705 }
6706
6707 if (!list_empty(&mddev->disks)) {
6708 if (mddev->pers)
6709 seq_printf(seq, "\n %llu blocks",
6710 (unsigned long long)
6711 mddev->array_sectors / 2);
6712 else
6713 seq_printf(seq, "\n %llu blocks",
6714 (unsigned long long)sectors / 2);
6715 }
6716 if (mddev->persistent) {
6717 if (mddev->major_version != 0 ||
6718 mddev->minor_version != 90) {
6719 seq_printf(seq," super %d.%d",
6720 mddev->major_version,
6721 mddev->minor_version);
6722 }
6723 } else if (mddev->external)
6724 seq_printf(seq, " super external:%s",
6725 mddev->metadata_type);
6726 else
6727 seq_printf(seq, " super non-persistent");
6728
6729 if (mddev->pers) {
6730 mddev->pers->status(seq, mddev);
6731 seq_printf(seq, "\n ");
6732 if (mddev->pers->sync_request) {
6733 if (mddev->curr_resync > 2) {
6734 status_resync(seq, mddev);
6735 seq_printf(seq, "\n ");
6736 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6737 seq_printf(seq, "\tresync=DELAYED\n ");
6738 else if (mddev->recovery_cp < MaxSector)
6739 seq_printf(seq, "\tresync=PENDING\n ");
6740 }
6741 } else
6742 seq_printf(seq, "\n ");
6743
6744 if ((bitmap = mddev->bitmap)) {
6745 unsigned long chunk_kb;
6746 unsigned long flags;
6747 spin_lock_irqsave(&bitmap->lock, flags);
6748 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6749 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6750 "%lu%s chunk",
6751 bitmap->pages - bitmap->missing_pages,
6752 bitmap->pages,
6753 (bitmap->pages - bitmap->missing_pages)
6754 << (PAGE_SHIFT - 10),
6755 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6756 chunk_kb ? "KB" : "B");
6757 if (bitmap->file) {
6758 seq_printf(seq, ", file: ");
6759 seq_path(seq, &bitmap->file->f_path, " \t\n");
6760 }
6761
6762 seq_printf(seq, "\n");
6763 spin_unlock_irqrestore(&bitmap->lock, flags);
6764 }
6765
6766 seq_printf(seq, "\n");
6767 }
6768 mddev_unlock(mddev);
6769
6770 return 0;
6771}
6772
6773static const struct seq_operations md_seq_ops = {
6774 .start = md_seq_start,
6775 .next = md_seq_next,
6776 .stop = md_seq_stop,
6777 .show = md_seq_show,
6778};
6779
6780static int md_seq_open(struct inode *inode, struct file *file)
6781{
6782 struct seq_file *seq;
6783 int error;
6784
6785 error = seq_open(file, &md_seq_ops);
6786 if (error)
6787 return error;
6788
6789 seq = file->private_data;
6790 seq->poll_event = atomic_read(&md_event_count);
6791 return error;
6792}
6793
6794static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6795{
6796 struct seq_file *seq = filp->private_data;
6797 int mask;
6798
6799 poll_wait(filp, &md_event_waiters, wait);
6800
6801 /* always allow read */
6802 mask = POLLIN | POLLRDNORM;
6803
6804 if (seq->poll_event != atomic_read(&md_event_count))
6805 mask |= POLLERR | POLLPRI;
6806 return mask;
6807}
6808
6809static const struct file_operations md_seq_fops = {
6810 .owner = THIS_MODULE,
6811 .open = md_seq_open,
6812 .read = seq_read,
6813 .llseek = seq_lseek,
6814 .release = seq_release_private,
6815 .poll = mdstat_poll,
6816};
6817
6818int register_md_personality(struct mdk_personality *p)
6819{
6820 spin_lock(&pers_lock);
6821 list_add_tail(&p->list, &pers_list);
6822 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6823 spin_unlock(&pers_lock);
6824 return 0;
6825}
6826
6827int unregister_md_personality(struct mdk_personality *p)
6828{
6829 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6830 spin_lock(&pers_lock);
6831 list_del_init(&p->list);
6832 spin_unlock(&pers_lock);
6833 return 0;
6834}
6835
6836static int is_mddev_idle(mddev_t *mddev, int init)
6837{
6838 mdk_rdev_t * rdev;
6839 int idle;
6840 int curr_events;
6841
6842 idle = 1;
6843 rcu_read_lock();
6844 rdev_for_each_rcu(rdev, mddev) {
6845 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6846 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6847 (int)part_stat_read(&disk->part0, sectors[1]) -
6848 atomic_read(&disk->sync_io);
6849 /* sync IO will cause sync_io to increase before the disk_stats
6850 * as sync_io is counted when a request starts, and
6851 * disk_stats is counted when it completes.
6852 * So resync activity will cause curr_events to be smaller than
6853 * when there was no such activity.
6854 * non-sync IO will cause disk_stat to increase without
6855 * increasing sync_io so curr_events will (eventually)
6856 * be larger than it was before. Once it becomes
6857 * substantially larger, the test below will cause
6858 * the array to appear non-idle, and resync will slow
6859 * down.
6860 * If there is a lot of outstanding resync activity when
6861 * we set last_event to curr_events, then all that activity
6862 * completing might cause the array to appear non-idle
6863 * and resync will be slowed down even though there might
6864 * not have been non-resync activity. This will only
6865 * happen once though. 'last_events' will soon reflect
6866 * the state where there is little or no outstanding
6867 * resync requests, and further resync activity will
6868 * always make curr_events less than last_events.
6869 *
6870 */
6871 if (init || curr_events - rdev->last_events > 64) {
6872 rdev->last_events = curr_events;
6873 idle = 0;
6874 }
6875 }
6876 rcu_read_unlock();
6877 return idle;
6878}
6879
6880void md_done_sync(mddev_t *mddev, int blocks, int ok)
6881{
6882 /* another "blocks" (512byte) blocks have been synced */
6883 atomic_sub(blocks, &mddev->recovery_active);
6884 wake_up(&mddev->recovery_wait);
6885 if (!ok) {
6886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6887 md_wakeup_thread(mddev->thread);
6888 // stop recovery, signal do_sync ....
6889 }
6890}
6891
6892
6893/* md_write_start(mddev, bi)
6894 * If we need to update some array metadata (e.g. 'active' flag
6895 * in superblock) before writing, schedule a superblock update
6896 * and wait for it to complete.
6897 */
6898void md_write_start(mddev_t *mddev, struct bio *bi)
6899{
6900 int did_change = 0;
6901 if (bio_data_dir(bi) != WRITE)
6902 return;
6903
6904 BUG_ON(mddev->ro == 1);
6905 if (mddev->ro == 2) {
6906 /* need to switch to read/write */
6907 mddev->ro = 0;
6908 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6909 md_wakeup_thread(mddev->thread);
6910 md_wakeup_thread(mddev->sync_thread);
6911 did_change = 1;
6912 }
6913 atomic_inc(&mddev->writes_pending);
6914 if (mddev->safemode == 1)
6915 mddev->safemode = 0;
6916 if (mddev->in_sync) {
6917 spin_lock_irq(&mddev->write_lock);
6918 if (mddev->in_sync) {
6919 mddev->in_sync = 0;
6920 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6921 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6922 md_wakeup_thread(mddev->thread);
6923 did_change = 1;
6924 }
6925 spin_unlock_irq(&mddev->write_lock);
6926 }
6927 if (did_change)
6928 sysfs_notify_dirent_safe(mddev->sysfs_state);
6929 wait_event(mddev->sb_wait,
6930 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6931}
6932
6933void md_write_end(mddev_t *mddev)
6934{
6935 if (atomic_dec_and_test(&mddev->writes_pending)) {
6936 if (mddev->safemode == 2)
6937 md_wakeup_thread(mddev->thread);
6938 else if (mddev->safemode_delay)
6939 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6940 }
6941}
6942
6943/* md_allow_write(mddev)
6944 * Calling this ensures that the array is marked 'active' so that writes
6945 * may proceed without blocking. It is important to call this before
6946 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6947 * Must be called with mddev_lock held.
6948 *
6949 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6950 * is dropped, so return -EAGAIN after notifying userspace.
6951 */
6952int md_allow_write(mddev_t *mddev)
6953{
6954 if (!mddev->pers)
6955 return 0;
6956 if (mddev->ro)
6957 return 0;
6958 if (!mddev->pers->sync_request)
6959 return 0;
6960
6961 spin_lock_irq(&mddev->write_lock);
6962 if (mddev->in_sync) {
6963 mddev->in_sync = 0;
6964 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6965 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6966 if (mddev->safemode_delay &&
6967 mddev->safemode == 0)
6968 mddev->safemode = 1;
6969 spin_unlock_irq(&mddev->write_lock);
6970 md_update_sb(mddev, 0);
6971 sysfs_notify_dirent_safe(mddev->sysfs_state);
6972 } else
6973 spin_unlock_irq(&mddev->write_lock);
6974
6975 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6976 return -EAGAIN;
6977 else
6978 return 0;
6979}
6980EXPORT_SYMBOL_GPL(md_allow_write);
6981
6982#define SYNC_MARKS 10
6983#define SYNC_MARK_STEP (3*HZ)
6984void md_do_sync(mddev_t *mddev)
6985{
6986 mddev_t *mddev2;
6987 unsigned int currspeed = 0,
6988 window;
6989 sector_t max_sectors,j, io_sectors;
6990 unsigned long mark[SYNC_MARKS];
6991 sector_t mark_cnt[SYNC_MARKS];
6992 int last_mark,m;
6993 struct list_head *tmp;
6994 sector_t last_check;
6995 int skipped = 0;
6996 mdk_rdev_t *rdev;
6997 char *desc;
6998
6999 /* just incase thread restarts... */
7000 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7001 return;
7002 if (mddev->ro) /* never try to sync a read-only array */
7003 return;
7004
7005 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7006 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7007 desc = "data-check";
7008 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7009 desc = "requested-resync";
7010 else
7011 desc = "resync";
7012 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7013 desc = "reshape";
7014 else
7015 desc = "recovery";
7016
7017 /* we overload curr_resync somewhat here.
7018 * 0 == not engaged in resync at all
7019 * 2 == checking that there is no conflict with another sync
7020 * 1 == like 2, but have yielded to allow conflicting resync to
7021 * commense
7022 * other == active in resync - this many blocks
7023 *
7024 * Before starting a resync we must have set curr_resync to
7025 * 2, and then checked that every "conflicting" array has curr_resync
7026 * less than ours. When we find one that is the same or higher
7027 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7028 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7029 * This will mean we have to start checking from the beginning again.
7030 *
7031 */
7032
7033 do {
7034 mddev->curr_resync = 2;
7035
7036 try_again:
7037 if (kthread_should_stop())
7038 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7039
7040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7041 goto skip;
7042 for_each_mddev(mddev2, tmp) {
7043 if (mddev2 == mddev)
7044 continue;
7045 if (!mddev->parallel_resync
7046 && mddev2->curr_resync
7047 && match_mddev_units(mddev, mddev2)) {
7048 DEFINE_WAIT(wq);
7049 if (mddev < mddev2 && mddev->curr_resync == 2) {
7050 /* arbitrarily yield */
7051 mddev->curr_resync = 1;
7052 wake_up(&resync_wait);
7053 }
7054 if (mddev > mddev2 && mddev->curr_resync == 1)
7055 /* no need to wait here, we can wait the next
7056 * time 'round when curr_resync == 2
7057 */
7058 continue;
7059 /* We need to wait 'interruptible' so as not to
7060 * contribute to the load average, and not to
7061 * be caught by 'softlockup'
7062 */
7063 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7064 if (!kthread_should_stop() &&
7065 mddev2->curr_resync >= mddev->curr_resync) {
7066 printk(KERN_INFO "md: delaying %s of %s"
7067 " until %s has finished (they"
7068 " share one or more physical units)\n",
7069 desc, mdname(mddev), mdname(mddev2));
7070 mddev_put(mddev2);
7071 if (signal_pending(current))
7072 flush_signals(current);
7073 schedule();
7074 finish_wait(&resync_wait, &wq);
7075 goto try_again;
7076 }
7077 finish_wait(&resync_wait, &wq);
7078 }
7079 }
7080 } while (mddev->curr_resync < 2);
7081
7082 j = 0;
7083 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7084 /* resync follows the size requested by the personality,
7085 * which defaults to physical size, but can be virtual size
7086 */
7087 max_sectors = mddev->resync_max_sectors;
7088 mddev->resync_mismatches = 0;
7089 /* we don't use the checkpoint if there's a bitmap */
7090 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7091 j = mddev->resync_min;
7092 else if (!mddev->bitmap)
7093 j = mddev->recovery_cp;
7094
7095 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7096 max_sectors = mddev->dev_sectors;
7097 else {
7098 /* recovery follows the physical size of devices */
7099 max_sectors = mddev->dev_sectors;
7100 j = MaxSector;
7101 rcu_read_lock();
7102 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7103 if (rdev->raid_disk >= 0 &&
7104 !test_bit(Faulty, &rdev->flags) &&
7105 !test_bit(In_sync, &rdev->flags) &&
7106 rdev->recovery_offset < j)
7107 j = rdev->recovery_offset;
7108 rcu_read_unlock();
7109 }
7110
7111 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7112 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7113 " %d KB/sec/disk.\n", speed_min(mddev));
7114 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7115 "(but not more than %d KB/sec) for %s.\n",
7116 speed_max(mddev), desc);
7117
7118 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7119
7120 io_sectors = 0;
7121 for (m = 0; m < SYNC_MARKS; m++) {
7122 mark[m] = jiffies;
7123 mark_cnt[m] = io_sectors;
7124 }
7125 last_mark = 0;
7126 mddev->resync_mark = mark[last_mark];
7127 mddev->resync_mark_cnt = mark_cnt[last_mark];
7128
7129 /*
7130 * Tune reconstruction:
7131 */
7132 window = 32*(PAGE_SIZE/512);
7133 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7134 window/2, (unsigned long long)max_sectors/2);
7135
7136 atomic_set(&mddev->recovery_active, 0);
7137 last_check = 0;
7138
7139 if (j>2) {
7140 printk(KERN_INFO
7141 "md: resuming %s of %s from checkpoint.\n",
7142 desc, mdname(mddev));
7143 mddev->curr_resync = j;
7144 }
7145 mddev->curr_resync_completed = j;
7146
7147 while (j < max_sectors) {
7148 sector_t sectors;
7149
7150 skipped = 0;
7151
7152 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7153 ((mddev->curr_resync > mddev->curr_resync_completed &&
7154 (mddev->curr_resync - mddev->curr_resync_completed)
7155 > (max_sectors >> 4)) ||
7156 (j - mddev->curr_resync_completed)*2
7157 >= mddev->resync_max - mddev->curr_resync_completed
7158 )) {
7159 /* time to update curr_resync_completed */
7160 wait_event(mddev->recovery_wait,
7161 atomic_read(&mddev->recovery_active) == 0);
7162 mddev->curr_resync_completed = j;
7163 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7164 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7165 }
7166
7167 while (j >= mddev->resync_max && !kthread_should_stop()) {
7168 /* As this condition is controlled by user-space,
7169 * we can block indefinitely, so use '_interruptible'
7170 * to avoid triggering warnings.
7171 */
7172 flush_signals(current); /* just in case */
7173 wait_event_interruptible(mddev->recovery_wait,
7174 mddev->resync_max > j
7175 || kthread_should_stop());
7176 }
7177
7178 if (kthread_should_stop())
7179 goto interrupted;
7180
7181 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7182 currspeed < speed_min(mddev));
7183 if (sectors == 0) {
7184 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7185 goto out;
7186 }
7187
7188 if (!skipped) { /* actual IO requested */
7189 io_sectors += sectors;
7190 atomic_add(sectors, &mddev->recovery_active);
7191 }
7192
7193 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7194 break;
7195
7196 j += sectors;
7197 if (j>1) mddev->curr_resync = j;
7198 mddev->curr_mark_cnt = io_sectors;
7199 if (last_check == 0)
7200 /* this is the earliest that rebuild will be
7201 * visible in /proc/mdstat
7202 */
7203 md_new_event(mddev);
7204
7205 if (last_check + window > io_sectors || j == max_sectors)
7206 continue;
7207
7208 last_check = io_sectors;
7209 repeat:
7210 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7211 /* step marks */
7212 int next = (last_mark+1) % SYNC_MARKS;
7213
7214 mddev->resync_mark = mark[next];
7215 mddev->resync_mark_cnt = mark_cnt[next];
7216 mark[next] = jiffies;
7217 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7218 last_mark = next;
7219 }
7220
7221
7222 if (kthread_should_stop())
7223 goto interrupted;
7224
7225
7226 /*
7227 * this loop exits only if either when we are slower than
7228 * the 'hard' speed limit, or the system was IO-idle for
7229 * a jiffy.
7230 * the system might be non-idle CPU-wise, but we only care
7231 * about not overloading the IO subsystem. (things like an
7232 * e2fsck being done on the RAID array should execute fast)
7233 */
7234 cond_resched();
7235
7236 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7237 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7238
7239 if (currspeed > speed_min(mddev)) {
7240 if ((currspeed > speed_max(mddev)) ||
7241 !is_mddev_idle(mddev, 0)) {
7242 msleep(500);
7243 goto repeat;
7244 }
7245 }
7246 }
7247 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7248 /*
7249 * this also signals 'finished resyncing' to md_stop
7250 */
7251 out:
7252 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7253
7254 /* tell personality that we are finished */
7255 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7256
7257 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7258 mddev->curr_resync > 2) {
7259 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7260 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7261 if (mddev->curr_resync >= mddev->recovery_cp) {
7262 printk(KERN_INFO
7263 "md: checkpointing %s of %s.\n",
7264 desc, mdname(mddev));
7265 mddev->recovery_cp = mddev->curr_resync;
7266 }
7267 } else
7268 mddev->recovery_cp = MaxSector;
7269 } else {
7270 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7271 mddev->curr_resync = MaxSector;
7272 rcu_read_lock();
7273 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7274 if (rdev->raid_disk >= 0 &&
7275 mddev->delta_disks >= 0 &&
7276 !test_bit(Faulty, &rdev->flags) &&
7277 !test_bit(In_sync, &rdev->flags) &&
7278 rdev->recovery_offset < mddev->curr_resync)
7279 rdev->recovery_offset = mddev->curr_resync;
7280 rcu_read_unlock();
7281 }
7282 }
7283 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7284
7285 skip:
7286 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7287 /* We completed so min/max setting can be forgotten if used. */
7288 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7289 mddev->resync_min = 0;
7290 mddev->resync_max = MaxSector;
7291 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7292 mddev->resync_min = mddev->curr_resync_completed;
7293 mddev->curr_resync = 0;
7294 wake_up(&resync_wait);
7295 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7296 md_wakeup_thread(mddev->thread);
7297 return;
7298
7299 interrupted:
7300 /*
7301 * got a signal, exit.
7302 */
7303 printk(KERN_INFO
7304 "md: md_do_sync() got signal ... exiting\n");
7305 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7306 goto out;
7307
7308}
7309EXPORT_SYMBOL_GPL(md_do_sync);
7310
7311static int remove_and_add_spares(mddev_t *mddev)
7312{
7313 mdk_rdev_t *rdev;
7314 int spares = 0;
7315
7316 mddev->curr_resync_completed = 0;
7317
7318 list_for_each_entry(rdev, &mddev->disks, same_set)
7319 if (rdev->raid_disk >= 0 &&
7320 !test_bit(Blocked, &rdev->flags) &&
7321 (test_bit(Faulty, &rdev->flags) ||
7322 ! test_bit(In_sync, &rdev->flags)) &&
7323 atomic_read(&rdev->nr_pending)==0) {
7324 if (mddev->pers->hot_remove_disk(
7325 mddev, rdev->raid_disk)==0) {
7326 sysfs_unlink_rdev(mddev, rdev);
7327 rdev->raid_disk = -1;
7328 }
7329 }
7330
7331 if (mddev->degraded) {
7332 list_for_each_entry(rdev, &mddev->disks, same_set) {
7333 if (rdev->raid_disk >= 0 &&
7334 !test_bit(In_sync, &rdev->flags) &&
7335 !test_bit(Faulty, &rdev->flags))
7336 spares++;
7337 if (rdev->raid_disk < 0
7338 && !test_bit(Faulty, &rdev->flags)) {
7339 rdev->recovery_offset = 0;
7340 if (mddev->pers->
7341 hot_add_disk(mddev, rdev) == 0) {
7342 if (sysfs_link_rdev(mddev, rdev))
7343 /* failure here is OK */;
7344 spares++;
7345 md_new_event(mddev);
7346 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7347 } else
7348 break;
7349 }
7350 }
7351 }
7352 return spares;
7353}
7354
7355static void reap_sync_thread(mddev_t *mddev)
7356{
7357 mdk_rdev_t *rdev;
7358
7359 /* resync has finished, collect result */
7360 md_unregister_thread(&mddev->sync_thread);
7361 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7362 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7363 /* success...*/
7364 /* activate any spares */
7365 if (mddev->pers->spare_active(mddev))
7366 sysfs_notify(&mddev->kobj, NULL,
7367 "degraded");
7368 }
7369 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7370 mddev->pers->finish_reshape)
7371 mddev->pers->finish_reshape(mddev);
7372 md_update_sb(mddev, 1);
7373
7374 /* if array is no-longer degraded, then any saved_raid_disk
7375 * information must be scrapped
7376 */
7377 if (!mddev->degraded)
7378 list_for_each_entry(rdev, &mddev->disks, same_set)
7379 rdev->saved_raid_disk = -1;
7380
7381 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7382 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7383 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7384 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7385 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7386 /* flag recovery needed just to double check */
7387 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7388 sysfs_notify_dirent_safe(mddev->sysfs_action);
7389 md_new_event(mddev);
7390 if (mddev->event_work.func)
7391 queue_work(md_misc_wq, &mddev->event_work);
7392}
7393
7394/*
7395 * This routine is regularly called by all per-raid-array threads to
7396 * deal with generic issues like resync and super-block update.
7397 * Raid personalities that don't have a thread (linear/raid0) do not
7398 * need this as they never do any recovery or update the superblock.
7399 *
7400 * It does not do any resync itself, but rather "forks" off other threads
7401 * to do that as needed.
7402 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7403 * "->recovery" and create a thread at ->sync_thread.
7404 * When the thread finishes it sets MD_RECOVERY_DONE
7405 * and wakeups up this thread which will reap the thread and finish up.
7406 * This thread also removes any faulty devices (with nr_pending == 0).
7407 *
7408 * The overall approach is:
7409 * 1/ if the superblock needs updating, update it.
7410 * 2/ If a recovery thread is running, don't do anything else.
7411 * 3/ If recovery has finished, clean up, possibly marking spares active.
7412 * 4/ If there are any faulty devices, remove them.
7413 * 5/ If array is degraded, try to add spares devices
7414 * 6/ If array has spares or is not in-sync, start a resync thread.
7415 */
7416void md_check_recovery(mddev_t *mddev)
7417{
7418 if (mddev->suspended)
7419 return;
7420
7421 if (mddev->bitmap)
7422 bitmap_daemon_work(mddev);
7423
7424 if (signal_pending(current)) {
7425 if (mddev->pers->sync_request && !mddev->external) {
7426 printk(KERN_INFO "md: %s in immediate safe mode\n",
7427 mdname(mddev));
7428 mddev->safemode = 2;
7429 }
7430 flush_signals(current);
7431 }
7432
7433 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7434 return;
7435 if ( ! (
7436 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7437 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7438 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7439 (mddev->external == 0 && mddev->safemode == 1) ||
7440 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7441 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7442 ))
7443 return;
7444
7445 if (mddev_trylock(mddev)) {
7446 int spares = 0;
7447
7448 if (mddev->ro) {
7449 /* Only thing we do on a ro array is remove
7450 * failed devices.
7451 */
7452 mdk_rdev_t *rdev;
7453 list_for_each_entry(rdev, &mddev->disks, same_set)
7454 if (rdev->raid_disk >= 0 &&
7455 !test_bit(Blocked, &rdev->flags) &&
7456 test_bit(Faulty, &rdev->flags) &&
7457 atomic_read(&rdev->nr_pending)==0) {
7458 if (mddev->pers->hot_remove_disk(
7459 mddev, rdev->raid_disk)==0) {
7460 sysfs_unlink_rdev(mddev, rdev);
7461 rdev->raid_disk = -1;
7462 }
7463 }
7464 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7465 goto unlock;
7466 }
7467
7468 if (!mddev->external) {
7469 int did_change = 0;
7470 spin_lock_irq(&mddev->write_lock);
7471 if (mddev->safemode &&
7472 !atomic_read(&mddev->writes_pending) &&
7473 !mddev->in_sync &&
7474 mddev->recovery_cp == MaxSector) {
7475 mddev->in_sync = 1;
7476 did_change = 1;
7477 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7478 }
7479 if (mddev->safemode == 1)
7480 mddev->safemode = 0;
7481 spin_unlock_irq(&mddev->write_lock);
7482 if (did_change)
7483 sysfs_notify_dirent_safe(mddev->sysfs_state);
7484 }
7485
7486 if (mddev->flags)
7487 md_update_sb(mddev, 0);
7488
7489 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7490 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7491 /* resync/recovery still happening */
7492 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7493 goto unlock;
7494 }
7495 if (mddev->sync_thread) {
7496 reap_sync_thread(mddev);
7497 goto unlock;
7498 }
7499 /* Set RUNNING before clearing NEEDED to avoid
7500 * any transients in the value of "sync_action".
7501 */
7502 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7503 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7504 /* Clear some bits that don't mean anything, but
7505 * might be left set
7506 */
7507 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7508 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7509
7510 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7511 goto unlock;
7512 /* no recovery is running.
7513 * remove any failed drives, then
7514 * add spares if possible.
7515 * Spare are also removed and re-added, to allow
7516 * the personality to fail the re-add.
7517 */
7518
7519 if (mddev->reshape_position != MaxSector) {
7520 if (mddev->pers->check_reshape == NULL ||
7521 mddev->pers->check_reshape(mddev) != 0)
7522 /* Cannot proceed */
7523 goto unlock;
7524 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7525 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7526 } else if ((spares = remove_and_add_spares(mddev))) {
7527 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7528 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7529 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7530 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7531 } else if (mddev->recovery_cp < MaxSector) {
7532 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7533 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7534 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7535 /* nothing to be done ... */
7536 goto unlock;
7537
7538 if (mddev->pers->sync_request) {
7539 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7540 /* We are adding a device or devices to an array
7541 * which has the bitmap stored on all devices.
7542 * So make sure all bitmap pages get written
7543 */
7544 bitmap_write_all(mddev->bitmap);
7545 }
7546 mddev->sync_thread = md_register_thread(md_do_sync,
7547 mddev,
7548 "resync");
7549 if (!mddev->sync_thread) {
7550 printk(KERN_ERR "%s: could not start resync"
7551 " thread...\n",
7552 mdname(mddev));
7553 /* leave the spares where they are, it shouldn't hurt */
7554 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7555 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7556 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7557 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7558 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7559 } else
7560 md_wakeup_thread(mddev->sync_thread);
7561 sysfs_notify_dirent_safe(mddev->sysfs_action);
7562 md_new_event(mddev);
7563 }
7564 unlock:
7565 if (!mddev->sync_thread) {
7566 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7567 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7568 &mddev->recovery))
7569 if (mddev->sysfs_action)
7570 sysfs_notify_dirent_safe(mddev->sysfs_action);
7571 }
7572 mddev_unlock(mddev);
7573 }
7574}
7575
7576void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7577{
7578 sysfs_notify_dirent_safe(rdev->sysfs_state);
7579 wait_event_timeout(rdev->blocked_wait,
7580 !test_bit(Blocked, &rdev->flags) &&
7581 !test_bit(BlockedBadBlocks, &rdev->flags),
7582 msecs_to_jiffies(5000));
7583 rdev_dec_pending(rdev, mddev);
7584}
7585EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7586
7587
7588/* Bad block management.
7589 * We can record which blocks on each device are 'bad' and so just
7590 * fail those blocks, or that stripe, rather than the whole device.
7591 * Entries in the bad-block table are 64bits wide. This comprises:
7592 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7593 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7594 * A 'shift' can be set so that larger blocks are tracked and
7595 * consequently larger devices can be covered.
7596 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7597 *
7598 * Locking of the bad-block table uses a seqlock so md_is_badblock
7599 * might need to retry if it is very unlucky.
7600 * We will sometimes want to check for bad blocks in a bi_end_io function,
7601 * so we use the write_seqlock_irq variant.
7602 *
7603 * When looking for a bad block we specify a range and want to
7604 * know if any block in the range is bad. So we binary-search
7605 * to the last range that starts at-or-before the given endpoint,
7606 * (or "before the sector after the target range")
7607 * then see if it ends after the given start.
7608 * We return
7609 * 0 if there are no known bad blocks in the range
7610 * 1 if there are known bad block which are all acknowledged
7611 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7612 * plus the start/length of the first bad section we overlap.
7613 */
7614int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7615 sector_t *first_bad, int *bad_sectors)
7616{
7617 int hi;
7618 int lo = 0;
7619 u64 *p = bb->page;
7620 int rv = 0;
7621 sector_t target = s + sectors;
7622 unsigned seq;
7623
7624 if (bb->shift > 0) {
7625 /* round the start down, and the end up */
7626 s >>= bb->shift;
7627 target += (1<<bb->shift) - 1;
7628 target >>= bb->shift;
7629 sectors = target - s;
7630 }
7631 /* 'target' is now the first block after the bad range */
7632
7633retry:
7634 seq = read_seqbegin(&bb->lock);
7635
7636 hi = bb->count;
7637
7638 /* Binary search between lo and hi for 'target'
7639 * i.e. for the last range that starts before 'target'
7640 */
7641 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7642 * are known not to be the last range before target.
7643 * VARIANT: hi-lo is the number of possible
7644 * ranges, and decreases until it reaches 1
7645 */
7646 while (hi - lo > 1) {
7647 int mid = (lo + hi) / 2;
7648 sector_t a = BB_OFFSET(p[mid]);
7649 if (a < target)
7650 /* This could still be the one, earlier ranges
7651 * could not. */
7652 lo = mid;
7653 else
7654 /* This and later ranges are definitely out. */
7655 hi = mid;
7656 }
7657 /* 'lo' might be the last that started before target, but 'hi' isn't */
7658 if (hi > lo) {
7659 /* need to check all range that end after 's' to see if
7660 * any are unacknowledged.
7661 */
7662 while (lo >= 0 &&
7663 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7664 if (BB_OFFSET(p[lo]) < target) {
7665 /* starts before the end, and finishes after
7666 * the start, so they must overlap
7667 */
7668 if (rv != -1 && BB_ACK(p[lo]))
7669 rv = 1;
7670 else
7671 rv = -1;
7672 *first_bad = BB_OFFSET(p[lo]);
7673 *bad_sectors = BB_LEN(p[lo]);
7674 }
7675 lo--;
7676 }
7677 }
7678
7679 if (read_seqretry(&bb->lock, seq))
7680 goto retry;
7681
7682 return rv;
7683}
7684EXPORT_SYMBOL_GPL(md_is_badblock);
7685
7686/*
7687 * Add a range of bad blocks to the table.
7688 * This might extend the table, or might contract it
7689 * if two adjacent ranges can be merged.
7690 * We binary-search to find the 'insertion' point, then
7691 * decide how best to handle it.
7692 */
7693static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7694 int acknowledged)
7695{
7696 u64 *p;
7697 int lo, hi;
7698 int rv = 1;
7699
7700 if (bb->shift < 0)
7701 /* badblocks are disabled */
7702 return 0;
7703
7704 if (bb->shift) {
7705 /* round the start down, and the end up */
7706 sector_t next = s + sectors;
7707 s >>= bb->shift;
7708 next += (1<<bb->shift) - 1;
7709 next >>= bb->shift;
7710 sectors = next - s;
7711 }
7712
7713 write_seqlock_irq(&bb->lock);
7714
7715 p = bb->page;
7716 lo = 0;
7717 hi = bb->count;
7718 /* Find the last range that starts at-or-before 's' */
7719 while (hi - lo > 1) {
7720 int mid = (lo + hi) / 2;
7721 sector_t a = BB_OFFSET(p[mid]);
7722 if (a <= s)
7723 lo = mid;
7724 else
7725 hi = mid;
7726 }
7727 if (hi > lo && BB_OFFSET(p[lo]) > s)
7728 hi = lo;
7729
7730 if (hi > lo) {
7731 /* we found a range that might merge with the start
7732 * of our new range
7733 */
7734 sector_t a = BB_OFFSET(p[lo]);
7735 sector_t e = a + BB_LEN(p[lo]);
7736 int ack = BB_ACK(p[lo]);
7737 if (e >= s) {
7738 /* Yes, we can merge with a previous range */
7739 if (s == a && s + sectors >= e)
7740 /* new range covers old */
7741 ack = acknowledged;
7742 else
7743 ack = ack && acknowledged;
7744
7745 if (e < s + sectors)
7746 e = s + sectors;
7747 if (e - a <= BB_MAX_LEN) {
7748 p[lo] = BB_MAKE(a, e-a, ack);
7749 s = e;
7750 } else {
7751 /* does not all fit in one range,
7752 * make p[lo] maximal
7753 */
7754 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7755 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7756 s = a + BB_MAX_LEN;
7757 }
7758 sectors = e - s;
7759 }
7760 }
7761 if (sectors && hi < bb->count) {
7762 /* 'hi' points to the first range that starts after 's'.
7763 * Maybe we can merge with the start of that range */
7764 sector_t a = BB_OFFSET(p[hi]);
7765 sector_t e = a + BB_LEN(p[hi]);
7766 int ack = BB_ACK(p[hi]);
7767 if (a <= s + sectors) {
7768 /* merging is possible */
7769 if (e <= s + sectors) {
7770 /* full overlap */
7771 e = s + sectors;
7772 ack = acknowledged;
7773 } else
7774 ack = ack && acknowledged;
7775
7776 a = s;
7777 if (e - a <= BB_MAX_LEN) {
7778 p[hi] = BB_MAKE(a, e-a, ack);
7779 s = e;
7780 } else {
7781 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7782 s = a + BB_MAX_LEN;
7783 }
7784 sectors = e - s;
7785 lo = hi;
7786 hi++;
7787 }
7788 }
7789 if (sectors == 0 && hi < bb->count) {
7790 /* we might be able to combine lo and hi */
7791 /* Note: 's' is at the end of 'lo' */
7792 sector_t a = BB_OFFSET(p[hi]);
7793 int lolen = BB_LEN(p[lo]);
7794 int hilen = BB_LEN(p[hi]);
7795 int newlen = lolen + hilen - (s - a);
7796 if (s >= a && newlen < BB_MAX_LEN) {
7797 /* yes, we can combine them */
7798 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7799 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7800 memmove(p + hi, p + hi + 1,
7801 (bb->count - hi - 1) * 8);
7802 bb->count--;
7803 }
7804 }
7805 while (sectors) {
7806 /* didn't merge (it all).
7807 * Need to add a range just before 'hi' */
7808 if (bb->count >= MD_MAX_BADBLOCKS) {
7809 /* No room for more */
7810 rv = 0;
7811 break;
7812 } else {
7813 int this_sectors = sectors;
7814 memmove(p + hi + 1, p + hi,
7815 (bb->count - hi) * 8);
7816 bb->count++;
7817
7818 if (this_sectors > BB_MAX_LEN)
7819 this_sectors = BB_MAX_LEN;
7820 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7821 sectors -= this_sectors;
7822 s += this_sectors;
7823 }
7824 }
7825
7826 bb->changed = 1;
7827 if (!acknowledged)
7828 bb->unacked_exist = 1;
7829 write_sequnlock_irq(&bb->lock);
7830
7831 return rv;
7832}
7833
7834int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7835 int acknowledged)
7836{
7837 int rv = md_set_badblocks(&rdev->badblocks,
7838 s + rdev->data_offset, sectors, acknowledged);
7839 if (rv) {
7840 /* Make sure they get written out promptly */
7841 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7842 md_wakeup_thread(rdev->mddev->thread);
7843 }
7844 return rv;
7845}
7846EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7847
7848/*
7849 * Remove a range of bad blocks from the table.
7850 * This may involve extending the table if we spilt a region,
7851 * but it must not fail. So if the table becomes full, we just
7852 * drop the remove request.
7853 */
7854static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7855{
7856 u64 *p;
7857 int lo, hi;
7858 sector_t target = s + sectors;
7859 int rv = 0;
7860
7861 if (bb->shift > 0) {
7862 /* When clearing we round the start up and the end down.
7863 * This should not matter as the shift should align with
7864 * the block size and no rounding should ever be needed.
7865 * However it is better the think a block is bad when it
7866 * isn't than to think a block is not bad when it is.
7867 */
7868 s += (1<<bb->shift) - 1;
7869 s >>= bb->shift;
7870 target >>= bb->shift;
7871 sectors = target - s;
7872 }
7873
7874 write_seqlock_irq(&bb->lock);
7875
7876 p = bb->page;
7877 lo = 0;
7878 hi = bb->count;
7879 /* Find the last range that starts before 'target' */
7880 while (hi - lo > 1) {
7881 int mid = (lo + hi) / 2;
7882 sector_t a = BB_OFFSET(p[mid]);
7883 if (a < target)
7884 lo = mid;
7885 else
7886 hi = mid;
7887 }
7888 if (hi > lo) {
7889 /* p[lo] is the last range that could overlap the
7890 * current range. Earlier ranges could also overlap,
7891 * but only this one can overlap the end of the range.
7892 */
7893 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7894 /* Partial overlap, leave the tail of this range */
7895 int ack = BB_ACK(p[lo]);
7896 sector_t a = BB_OFFSET(p[lo]);
7897 sector_t end = a + BB_LEN(p[lo]);
7898
7899 if (a < s) {
7900 /* we need to split this range */
7901 if (bb->count >= MD_MAX_BADBLOCKS) {
7902 rv = 0;
7903 goto out;
7904 }
7905 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7906 bb->count++;
7907 p[lo] = BB_MAKE(a, s-a, ack);
7908 lo++;
7909 }
7910 p[lo] = BB_MAKE(target, end - target, ack);
7911 /* there is no longer an overlap */
7912 hi = lo;
7913 lo--;
7914 }
7915 while (lo >= 0 &&
7916 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7917 /* This range does overlap */
7918 if (BB_OFFSET(p[lo]) < s) {
7919 /* Keep the early parts of this range. */
7920 int ack = BB_ACK(p[lo]);
7921 sector_t start = BB_OFFSET(p[lo]);
7922 p[lo] = BB_MAKE(start, s - start, ack);
7923 /* now low doesn't overlap, so.. */
7924 break;
7925 }
7926 lo--;
7927 }
7928 /* 'lo' is strictly before, 'hi' is strictly after,
7929 * anything between needs to be discarded
7930 */
7931 if (hi - lo > 1) {
7932 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7933 bb->count -= (hi - lo - 1);
7934 }
7935 }
7936
7937 bb->changed = 1;
7938out:
7939 write_sequnlock_irq(&bb->lock);
7940 return rv;
7941}
7942
7943int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7944{
7945 return md_clear_badblocks(&rdev->badblocks,
7946 s + rdev->data_offset,
7947 sectors);
7948}
7949EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7950
7951/*
7952 * Acknowledge all bad blocks in a list.
7953 * This only succeeds if ->changed is clear. It is used by
7954 * in-kernel metadata updates
7955 */
7956void md_ack_all_badblocks(struct badblocks *bb)
7957{
7958 if (bb->page == NULL || bb->changed)
7959 /* no point even trying */
7960 return;
7961 write_seqlock_irq(&bb->lock);
7962
7963 if (bb->changed == 0) {
7964 u64 *p = bb->page;
7965 int i;
7966 for (i = 0; i < bb->count ; i++) {
7967 if (!BB_ACK(p[i])) {
7968 sector_t start = BB_OFFSET(p[i]);
7969 int len = BB_LEN(p[i]);
7970 p[i] = BB_MAKE(start, len, 1);
7971 }
7972 }
7973 bb->unacked_exist = 0;
7974 }
7975 write_sequnlock_irq(&bb->lock);
7976}
7977EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7978
7979/* sysfs access to bad-blocks list.
7980 * We present two files.
7981 * 'bad-blocks' lists sector numbers and lengths of ranges that
7982 * are recorded as bad. The list is truncated to fit within
7983 * the one-page limit of sysfs.
7984 * Writing "sector length" to this file adds an acknowledged
7985 * bad block list.
7986 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7987 * been acknowledged. Writing to this file adds bad blocks
7988 * without acknowledging them. This is largely for testing.
7989 */
7990
7991static ssize_t
7992badblocks_show(struct badblocks *bb, char *page, int unack)
7993{
7994 size_t len;
7995 int i;
7996 u64 *p = bb->page;
7997 unsigned seq;
7998
7999 if (bb->shift < 0)
8000 return 0;
8001
8002retry:
8003 seq = read_seqbegin(&bb->lock);
8004
8005 len = 0;
8006 i = 0;
8007
8008 while (len < PAGE_SIZE && i < bb->count) {
8009 sector_t s = BB_OFFSET(p[i]);
8010 unsigned int length = BB_LEN(p[i]);
8011 int ack = BB_ACK(p[i]);
8012 i++;
8013
8014 if (unack && ack)
8015 continue;
8016
8017 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8018 (unsigned long long)s << bb->shift,
8019 length << bb->shift);
8020 }
8021 if (unack && len == 0)
8022 bb->unacked_exist = 0;
8023
8024 if (read_seqretry(&bb->lock, seq))
8025 goto retry;
8026
8027 return len;
8028}
8029
8030#define DO_DEBUG 1
8031
8032static ssize_t
8033badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8034{
8035 unsigned long long sector;
8036 int length;
8037 char newline;
8038#ifdef DO_DEBUG
8039 /* Allow clearing via sysfs *only* for testing/debugging.
8040 * Normally only a successful write may clear a badblock
8041 */
8042 int clear = 0;
8043 if (page[0] == '-') {
8044 clear = 1;
8045 page++;
8046 }
8047#endif /* DO_DEBUG */
8048
8049 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8050 case 3:
8051 if (newline != '\n')
8052 return -EINVAL;
8053 case 2:
8054 if (length <= 0)
8055 return -EINVAL;
8056 break;
8057 default:
8058 return -EINVAL;
8059 }
8060
8061#ifdef DO_DEBUG
8062 if (clear) {
8063 md_clear_badblocks(bb, sector, length);
8064 return len;
8065 }
8066#endif /* DO_DEBUG */
8067 if (md_set_badblocks(bb, sector, length, !unack))
8068 return len;
8069 else
8070 return -ENOSPC;
8071}
8072
8073static int md_notify_reboot(struct notifier_block *this,
8074 unsigned long code, void *x)
8075{
8076 struct list_head *tmp;
8077 mddev_t *mddev;
8078
8079 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8080
8081 printk(KERN_INFO "md: stopping all md devices.\n");
8082
8083 for_each_mddev(mddev, tmp)
8084 if (mddev_trylock(mddev)) {
8085 /* Force a switch to readonly even array
8086 * appears to still be in use. Hence
8087 * the '100'.
8088 */
8089 md_set_readonly(mddev, 100);
8090 mddev_unlock(mddev);
8091 }
8092 /*
8093 * certain more exotic SCSI devices are known to be
8094 * volatile wrt too early system reboots. While the
8095 * right place to handle this issue is the given
8096 * driver, we do want to have a safe RAID driver ...
8097 */
8098 mdelay(1000*1);
8099 }
8100 return NOTIFY_DONE;
8101}
8102
8103static struct notifier_block md_notifier = {
8104 .notifier_call = md_notify_reboot,
8105 .next = NULL,
8106 .priority = INT_MAX, /* before any real devices */
8107};
8108
8109static void md_geninit(void)
8110{
8111 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8112
8113 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8114}
8115
8116static int __init md_init(void)
8117{
8118 int ret = -ENOMEM;
8119
8120 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8121 if (!md_wq)
8122 goto err_wq;
8123
8124 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8125 if (!md_misc_wq)
8126 goto err_misc_wq;
8127
8128 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8129 goto err_md;
8130
8131 if ((ret = register_blkdev(0, "mdp")) < 0)
8132 goto err_mdp;
8133 mdp_major = ret;
8134
8135 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8136 md_probe, NULL, NULL);
8137 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8138 md_probe, NULL, NULL);
8139
8140 register_reboot_notifier(&md_notifier);
8141 raid_table_header = register_sysctl_table(raid_root_table);
8142
8143 md_geninit();
8144 return 0;
8145
8146err_mdp:
8147 unregister_blkdev(MD_MAJOR, "md");
8148err_md:
8149 destroy_workqueue(md_misc_wq);
8150err_misc_wq:
8151 destroy_workqueue(md_wq);
8152err_wq:
8153 return ret;
8154}
8155
8156#ifndef MODULE
8157
8158/*
8159 * Searches all registered partitions for autorun RAID arrays
8160 * at boot time.
8161 */
8162
8163static LIST_HEAD(all_detected_devices);
8164struct detected_devices_node {
8165 struct list_head list;
8166 dev_t dev;
8167};
8168
8169void md_autodetect_dev(dev_t dev)
8170{
8171 struct detected_devices_node *node_detected_dev;
8172
8173 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8174 if (node_detected_dev) {
8175 node_detected_dev->dev = dev;
8176 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8177 } else {
8178 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8179 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8180 }
8181}
8182
8183
8184static void autostart_arrays(int part)
8185{
8186 mdk_rdev_t *rdev;
8187 struct detected_devices_node *node_detected_dev;
8188 dev_t dev;
8189 int i_scanned, i_passed;
8190
8191 i_scanned = 0;
8192 i_passed = 0;
8193
8194 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8195
8196 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8197 i_scanned++;
8198 node_detected_dev = list_entry(all_detected_devices.next,
8199 struct detected_devices_node, list);
8200 list_del(&node_detected_dev->list);
8201 dev = node_detected_dev->dev;
8202 kfree(node_detected_dev);
8203 rdev = md_import_device(dev,0, 90);
8204 if (IS_ERR(rdev))
8205 continue;
8206
8207 if (test_bit(Faulty, &rdev->flags)) {
8208 MD_BUG();
8209 continue;
8210 }
8211 set_bit(AutoDetected, &rdev->flags);
8212 list_add(&rdev->same_set, &pending_raid_disks);
8213 i_passed++;
8214 }
8215
8216 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8217 i_scanned, i_passed);
8218
8219 autorun_devices(part);
8220}
8221
8222#endif /* !MODULE */
8223
8224static __exit void md_exit(void)
8225{
8226 mddev_t *mddev;
8227 struct list_head *tmp;
8228
8229 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8230 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8231
8232 unregister_blkdev(MD_MAJOR,"md");
8233 unregister_blkdev(mdp_major, "mdp");
8234 unregister_reboot_notifier(&md_notifier);
8235 unregister_sysctl_table(raid_table_header);
8236 remove_proc_entry("mdstat", NULL);
8237 for_each_mddev(mddev, tmp) {
8238 export_array(mddev);
8239 mddev->hold_active = 0;
8240 }
8241 destroy_workqueue(md_misc_wq);
8242 destroy_workqueue(md_wq);
8243}
8244
8245subsys_initcall(md_init);
8246module_exit(md_exit)
8247
8248static int get_ro(char *buffer, struct kernel_param *kp)
8249{
8250 return sprintf(buffer, "%d", start_readonly);
8251}
8252static int set_ro(const char *val, struct kernel_param *kp)
8253{
8254 char *e;
8255 int num = simple_strtoul(val, &e, 10);
8256 if (*val && (*e == '\0' || *e == '\n')) {
8257 start_readonly = num;
8258 return 0;
8259 }
8260 return -EINVAL;
8261}
8262
8263module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8264module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8265
8266module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8267
8268EXPORT_SYMBOL(register_md_personality);
8269EXPORT_SYMBOL(unregister_md_personality);
8270EXPORT_SYMBOL(md_error);
8271EXPORT_SYMBOL(md_done_sync);
8272EXPORT_SYMBOL(md_write_start);
8273EXPORT_SYMBOL(md_write_end);
8274EXPORT_SYMBOL(md_register_thread);
8275EXPORT_SYMBOL(md_unregister_thread);
8276EXPORT_SYMBOL(md_wakeup_thread);
8277EXPORT_SYMBOL(md_check_recovery);
8278MODULE_LICENSE("GPL");
8279MODULE_DESCRIPTION("MD RAID framework");
8280MODULE_ALIAS("md");
8281MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45*/
46
47#include <linux/kthread.h>
48#include <linux/blkdev.h>
49#include <linux/badblocks.h>
50#include <linux/sysctl.h>
51#include <linux/seq_file.h>
52#include <linux/fs.h>
53#include <linux/poll.h>
54#include <linux/ctype.h>
55#include <linux/string.h>
56#include <linux/hdreg.h>
57#include <linux/proc_fs.h>
58#include <linux/random.h>
59#include <linux/module.h>
60#include <linux/reboot.h>
61#include <linux/file.h>
62#include <linux/compat.h>
63#include <linux/delay.h>
64#include <linux/raid/md_p.h>
65#include <linux/raid/md_u.h>
66#include <linux/slab.h>
67#include <trace/events/block.h>
68#include "md.h"
69#include "bitmap.h"
70#include "md-cluster.h"
71
72#ifndef MODULE
73static void autostart_arrays(int part);
74#endif
75
76/* pers_list is a list of registered personalities protected
77 * by pers_lock.
78 * pers_lock does extra service to protect accesses to
79 * mddev->thread when the mutex cannot be held.
80 */
81static LIST_HEAD(pers_list);
82static DEFINE_SPINLOCK(pers_lock);
83
84struct md_cluster_operations *md_cluster_ops;
85EXPORT_SYMBOL(md_cluster_ops);
86struct module *md_cluster_mod;
87EXPORT_SYMBOL(md_cluster_mod);
88
89static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
90static struct workqueue_struct *md_wq;
91static struct workqueue_struct *md_misc_wq;
92
93static int remove_and_add_spares(struct mddev *mddev,
94 struct md_rdev *this);
95static void mddev_detach(struct mddev *mddev);
96
97/*
98 * Default number of read corrections we'll attempt on an rdev
99 * before ejecting it from the array. We divide the read error
100 * count by 2 for every hour elapsed between read errors.
101 */
102#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
103/*
104 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
105 * is 1000 KB/sec, so the extra system load does not show up that much.
106 * Increase it if you want to have more _guaranteed_ speed. Note that
107 * the RAID driver will use the maximum available bandwidth if the IO
108 * subsystem is idle. There is also an 'absolute maximum' reconstruction
109 * speed limit - in case reconstruction slows down your system despite
110 * idle IO detection.
111 *
112 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
113 * or /sys/block/mdX/md/sync_speed_{min,max}
114 */
115
116static int sysctl_speed_limit_min = 1000;
117static int sysctl_speed_limit_max = 200000;
118static inline int speed_min(struct mddev *mddev)
119{
120 return mddev->sync_speed_min ?
121 mddev->sync_speed_min : sysctl_speed_limit_min;
122}
123
124static inline int speed_max(struct mddev *mddev)
125{
126 return mddev->sync_speed_max ?
127 mddev->sync_speed_max : sysctl_speed_limit_max;
128}
129
130static struct ctl_table_header *raid_table_header;
131
132static struct ctl_table raid_table[] = {
133 {
134 .procname = "speed_limit_min",
135 .data = &sysctl_speed_limit_min,
136 .maxlen = sizeof(int),
137 .mode = S_IRUGO|S_IWUSR,
138 .proc_handler = proc_dointvec,
139 },
140 {
141 .procname = "speed_limit_max",
142 .data = &sysctl_speed_limit_max,
143 .maxlen = sizeof(int),
144 .mode = S_IRUGO|S_IWUSR,
145 .proc_handler = proc_dointvec,
146 },
147 { }
148};
149
150static struct ctl_table raid_dir_table[] = {
151 {
152 .procname = "raid",
153 .maxlen = 0,
154 .mode = S_IRUGO|S_IXUGO,
155 .child = raid_table,
156 },
157 { }
158};
159
160static struct ctl_table raid_root_table[] = {
161 {
162 .procname = "dev",
163 .maxlen = 0,
164 .mode = 0555,
165 .child = raid_dir_table,
166 },
167 { }
168};
169
170static const struct block_device_operations md_fops;
171
172static int start_readonly;
173
174/* bio_clone_mddev
175 * like bio_clone, but with a local bio set
176 */
177
178struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
179 struct mddev *mddev)
180{
181 struct bio *b;
182
183 if (!mddev || !mddev->bio_set)
184 return bio_alloc(gfp_mask, nr_iovecs);
185
186 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
187 if (!b)
188 return NULL;
189 return b;
190}
191EXPORT_SYMBOL_GPL(bio_alloc_mddev);
192
193struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
194 struct mddev *mddev)
195{
196 if (!mddev || !mddev->bio_set)
197 return bio_clone(bio, gfp_mask);
198
199 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
200}
201EXPORT_SYMBOL_GPL(bio_clone_mddev);
202
203/*
204 * We have a system wide 'event count' that is incremented
205 * on any 'interesting' event, and readers of /proc/mdstat
206 * can use 'poll' or 'select' to find out when the event
207 * count increases.
208 *
209 * Events are:
210 * start array, stop array, error, add device, remove device,
211 * start build, activate spare
212 */
213static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
214static atomic_t md_event_count;
215void md_new_event(struct mddev *mddev)
216{
217 atomic_inc(&md_event_count);
218 wake_up(&md_event_waiters);
219}
220EXPORT_SYMBOL_GPL(md_new_event);
221
222/*
223 * Enables to iterate over all existing md arrays
224 * all_mddevs_lock protects this list.
225 */
226static LIST_HEAD(all_mddevs);
227static DEFINE_SPINLOCK(all_mddevs_lock);
228
229/*
230 * iterates through all used mddevs in the system.
231 * We take care to grab the all_mddevs_lock whenever navigating
232 * the list, and to always hold a refcount when unlocked.
233 * Any code which breaks out of this loop while own
234 * a reference to the current mddev and must mddev_put it.
235 */
236#define for_each_mddev(_mddev,_tmp) \
237 \
238 for (({ spin_lock(&all_mddevs_lock); \
239 _tmp = all_mddevs.next; \
240 _mddev = NULL;}); \
241 ({ if (_tmp != &all_mddevs) \
242 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
243 spin_unlock(&all_mddevs_lock); \
244 if (_mddev) mddev_put(_mddev); \
245 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
246 _tmp != &all_mddevs;}); \
247 ({ spin_lock(&all_mddevs_lock); \
248 _tmp = _tmp->next;}) \
249 )
250
251/* Rather than calling directly into the personality make_request function,
252 * IO requests come here first so that we can check if the device is
253 * being suspended pending a reconfiguration.
254 * We hold a refcount over the call to ->make_request. By the time that
255 * call has finished, the bio has been linked into some internal structure
256 * and so is visible to ->quiesce(), so we don't need the refcount any more.
257 */
258static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
259{
260 const int rw = bio_data_dir(bio);
261 struct mddev *mddev = q->queuedata;
262 unsigned int sectors;
263 int cpu;
264
265 blk_queue_split(q, &bio, q->bio_split);
266
267 if (mddev == NULL || mddev->pers == NULL) {
268 bio_io_error(bio);
269 return BLK_QC_T_NONE;
270 }
271 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
272 if (bio_sectors(bio) != 0)
273 bio->bi_error = -EROFS;
274 bio_endio(bio);
275 return BLK_QC_T_NONE;
276 }
277 smp_rmb(); /* Ensure implications of 'active' are visible */
278 rcu_read_lock();
279 if (mddev->suspended) {
280 DEFINE_WAIT(__wait);
281 for (;;) {
282 prepare_to_wait(&mddev->sb_wait, &__wait,
283 TASK_UNINTERRUPTIBLE);
284 if (!mddev->suspended)
285 break;
286 rcu_read_unlock();
287 schedule();
288 rcu_read_lock();
289 }
290 finish_wait(&mddev->sb_wait, &__wait);
291 }
292 atomic_inc(&mddev->active_io);
293 rcu_read_unlock();
294
295 /*
296 * save the sectors now since our bio can
297 * go away inside make_request
298 */
299 sectors = bio_sectors(bio);
300 /* bio could be mergeable after passing to underlayer */
301 bio->bi_opf &= ~REQ_NOMERGE;
302 mddev->pers->make_request(mddev, bio);
303
304 cpu = part_stat_lock();
305 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
306 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
307 part_stat_unlock();
308
309 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
310 wake_up(&mddev->sb_wait);
311
312 return BLK_QC_T_NONE;
313}
314
315/* mddev_suspend makes sure no new requests are submitted
316 * to the device, and that any requests that have been submitted
317 * are completely handled.
318 * Once mddev_detach() is called and completes, the module will be
319 * completely unused.
320 */
321void mddev_suspend(struct mddev *mddev)
322{
323 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
324 if (mddev->suspended++)
325 return;
326 synchronize_rcu();
327 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
328 mddev->pers->quiesce(mddev, 1);
329
330 del_timer_sync(&mddev->safemode_timer);
331}
332EXPORT_SYMBOL_GPL(mddev_suspend);
333
334void mddev_resume(struct mddev *mddev)
335{
336 if (--mddev->suspended)
337 return;
338 wake_up(&mddev->sb_wait);
339 mddev->pers->quiesce(mddev, 0);
340
341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
342 md_wakeup_thread(mddev->thread);
343 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
344}
345EXPORT_SYMBOL_GPL(mddev_resume);
346
347int mddev_congested(struct mddev *mddev, int bits)
348{
349 struct md_personality *pers = mddev->pers;
350 int ret = 0;
351
352 rcu_read_lock();
353 if (mddev->suspended)
354 ret = 1;
355 else if (pers && pers->congested)
356 ret = pers->congested(mddev, bits);
357 rcu_read_unlock();
358 return ret;
359}
360EXPORT_SYMBOL_GPL(mddev_congested);
361static int md_congested(void *data, int bits)
362{
363 struct mddev *mddev = data;
364 return mddev_congested(mddev, bits);
365}
366
367/*
368 * Generic flush handling for md
369 */
370
371static void md_end_flush(struct bio *bio)
372{
373 struct md_rdev *rdev = bio->bi_private;
374 struct mddev *mddev = rdev->mddev;
375
376 rdev_dec_pending(rdev, mddev);
377
378 if (atomic_dec_and_test(&mddev->flush_pending)) {
379 /* The pre-request flush has finished */
380 queue_work(md_wq, &mddev->flush_work);
381 }
382 bio_put(bio);
383}
384
385static void md_submit_flush_data(struct work_struct *ws);
386
387static void submit_flushes(struct work_struct *ws)
388{
389 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
390 struct md_rdev *rdev;
391
392 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
393 atomic_set(&mddev->flush_pending, 1);
394 rcu_read_lock();
395 rdev_for_each_rcu(rdev, mddev)
396 if (rdev->raid_disk >= 0 &&
397 !test_bit(Faulty, &rdev->flags)) {
398 /* Take two references, one is dropped
399 * when request finishes, one after
400 * we reclaim rcu_read_lock
401 */
402 struct bio *bi;
403 atomic_inc(&rdev->nr_pending);
404 atomic_inc(&rdev->nr_pending);
405 rcu_read_unlock();
406 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
407 bi->bi_end_io = md_end_flush;
408 bi->bi_private = rdev;
409 bi->bi_bdev = rdev->bdev;
410 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
411 atomic_inc(&mddev->flush_pending);
412 submit_bio(bi);
413 rcu_read_lock();
414 rdev_dec_pending(rdev, mddev);
415 }
416 rcu_read_unlock();
417 if (atomic_dec_and_test(&mddev->flush_pending))
418 queue_work(md_wq, &mddev->flush_work);
419}
420
421static void md_submit_flush_data(struct work_struct *ws)
422{
423 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
424 struct bio *bio = mddev->flush_bio;
425
426 if (bio->bi_iter.bi_size == 0)
427 /* an empty barrier - all done */
428 bio_endio(bio);
429 else {
430 bio->bi_opf &= ~REQ_PREFLUSH;
431 mddev->pers->make_request(mddev, bio);
432 }
433
434 mddev->flush_bio = NULL;
435 wake_up(&mddev->sb_wait);
436}
437
438void md_flush_request(struct mddev *mddev, struct bio *bio)
439{
440 spin_lock_irq(&mddev->lock);
441 wait_event_lock_irq(mddev->sb_wait,
442 !mddev->flush_bio,
443 mddev->lock);
444 mddev->flush_bio = bio;
445 spin_unlock_irq(&mddev->lock);
446
447 INIT_WORK(&mddev->flush_work, submit_flushes);
448 queue_work(md_wq, &mddev->flush_work);
449}
450EXPORT_SYMBOL(md_flush_request);
451
452void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
453{
454 struct mddev *mddev = cb->data;
455 md_wakeup_thread(mddev->thread);
456 kfree(cb);
457}
458EXPORT_SYMBOL(md_unplug);
459
460static inline struct mddev *mddev_get(struct mddev *mddev)
461{
462 atomic_inc(&mddev->active);
463 return mddev;
464}
465
466static void mddev_delayed_delete(struct work_struct *ws);
467
468static void mddev_put(struct mddev *mddev)
469{
470 struct bio_set *bs = NULL;
471
472 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
473 return;
474 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
475 mddev->ctime == 0 && !mddev->hold_active) {
476 /* Array is not configured at all, and not held active,
477 * so destroy it */
478 list_del_init(&mddev->all_mddevs);
479 bs = mddev->bio_set;
480 mddev->bio_set = NULL;
481 if (mddev->gendisk) {
482 /* We did a probe so need to clean up. Call
483 * queue_work inside the spinlock so that
484 * flush_workqueue() after mddev_find will
485 * succeed in waiting for the work to be done.
486 */
487 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
488 queue_work(md_misc_wq, &mddev->del_work);
489 } else
490 kfree(mddev);
491 }
492 spin_unlock(&all_mddevs_lock);
493 if (bs)
494 bioset_free(bs);
495}
496
497static void md_safemode_timeout(unsigned long data);
498
499void mddev_init(struct mddev *mddev)
500{
501 mutex_init(&mddev->open_mutex);
502 mutex_init(&mddev->reconfig_mutex);
503 mutex_init(&mddev->bitmap_info.mutex);
504 INIT_LIST_HEAD(&mddev->disks);
505 INIT_LIST_HEAD(&mddev->all_mddevs);
506 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
507 (unsigned long) mddev);
508 atomic_set(&mddev->active, 1);
509 atomic_set(&mddev->openers, 0);
510 atomic_set(&mddev->active_io, 0);
511 spin_lock_init(&mddev->lock);
512 atomic_set(&mddev->flush_pending, 0);
513 init_waitqueue_head(&mddev->sb_wait);
514 init_waitqueue_head(&mddev->recovery_wait);
515 mddev->reshape_position = MaxSector;
516 mddev->reshape_backwards = 0;
517 mddev->last_sync_action = "none";
518 mddev->resync_min = 0;
519 mddev->resync_max = MaxSector;
520 mddev->level = LEVEL_NONE;
521}
522EXPORT_SYMBOL_GPL(mddev_init);
523
524static struct mddev *mddev_find(dev_t unit)
525{
526 struct mddev *mddev, *new = NULL;
527
528 if (unit && MAJOR(unit) != MD_MAJOR)
529 unit &= ~((1<<MdpMinorShift)-1);
530
531 retry:
532 spin_lock(&all_mddevs_lock);
533
534 if (unit) {
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == unit) {
537 mddev_get(mddev);
538 spin_unlock(&all_mddevs_lock);
539 kfree(new);
540 return mddev;
541 }
542
543 if (new) {
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 new->hold_active = UNTIL_IOCTL;
547 return new;
548 }
549 } else if (new) {
550 /* find an unused unit number */
551 static int next_minor = 512;
552 int start = next_minor;
553 int is_free = 0;
554 int dev = 0;
555 while (!is_free) {
556 dev = MKDEV(MD_MAJOR, next_minor);
557 next_minor++;
558 if (next_minor > MINORMASK)
559 next_minor = 0;
560 if (next_minor == start) {
561 /* Oh dear, all in use. */
562 spin_unlock(&all_mddevs_lock);
563 kfree(new);
564 return NULL;
565 }
566
567 is_free = 1;
568 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
569 if (mddev->unit == dev) {
570 is_free = 0;
571 break;
572 }
573 }
574 new->unit = dev;
575 new->md_minor = MINOR(dev);
576 new->hold_active = UNTIL_STOP;
577 list_add(&new->all_mddevs, &all_mddevs);
578 spin_unlock(&all_mddevs_lock);
579 return new;
580 }
581 spin_unlock(&all_mddevs_lock);
582
583 new = kzalloc(sizeof(*new), GFP_KERNEL);
584 if (!new)
585 return NULL;
586
587 new->unit = unit;
588 if (MAJOR(unit) == MD_MAJOR)
589 new->md_minor = MINOR(unit);
590 else
591 new->md_minor = MINOR(unit) >> MdpMinorShift;
592
593 mddev_init(new);
594
595 goto retry;
596}
597
598static struct attribute_group md_redundancy_group;
599
600void mddev_unlock(struct mddev *mddev)
601{
602 if (mddev->to_remove) {
603 /* These cannot be removed under reconfig_mutex as
604 * an access to the files will try to take reconfig_mutex
605 * while holding the file unremovable, which leads to
606 * a deadlock.
607 * So hold set sysfs_active while the remove in happeing,
608 * and anything else which might set ->to_remove or my
609 * otherwise change the sysfs namespace will fail with
610 * -EBUSY if sysfs_active is still set.
611 * We set sysfs_active under reconfig_mutex and elsewhere
612 * test it under the same mutex to ensure its correct value
613 * is seen.
614 */
615 struct attribute_group *to_remove = mddev->to_remove;
616 mddev->to_remove = NULL;
617 mddev->sysfs_active = 1;
618 mutex_unlock(&mddev->reconfig_mutex);
619
620 if (mddev->kobj.sd) {
621 if (to_remove != &md_redundancy_group)
622 sysfs_remove_group(&mddev->kobj, to_remove);
623 if (mddev->pers == NULL ||
624 mddev->pers->sync_request == NULL) {
625 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
626 if (mddev->sysfs_action)
627 sysfs_put(mddev->sysfs_action);
628 mddev->sysfs_action = NULL;
629 }
630 }
631 mddev->sysfs_active = 0;
632 } else
633 mutex_unlock(&mddev->reconfig_mutex);
634
635 /* As we've dropped the mutex we need a spinlock to
636 * make sure the thread doesn't disappear
637 */
638 spin_lock(&pers_lock);
639 md_wakeup_thread(mddev->thread);
640 spin_unlock(&pers_lock);
641}
642EXPORT_SYMBOL_GPL(mddev_unlock);
643
644struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
645{
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653}
654EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
655
656static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
657{
658 struct md_rdev *rdev;
659
660 rdev_for_each(rdev, mddev)
661 if (rdev->bdev->bd_dev == dev)
662 return rdev;
663
664 return NULL;
665}
666
667static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
668{
669 struct md_rdev *rdev;
670
671 rdev_for_each_rcu(rdev, mddev)
672 if (rdev->bdev->bd_dev == dev)
673 return rdev;
674
675 return NULL;
676}
677
678static struct md_personality *find_pers(int level, char *clevel)
679{
680 struct md_personality *pers;
681 list_for_each_entry(pers, &pers_list, list) {
682 if (level != LEVEL_NONE && pers->level == level)
683 return pers;
684 if (strcmp(pers->name, clevel)==0)
685 return pers;
686 }
687 return NULL;
688}
689
690/* return the offset of the super block in 512byte sectors */
691static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
692{
693 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
694 return MD_NEW_SIZE_SECTORS(num_sectors);
695}
696
697static int alloc_disk_sb(struct md_rdev *rdev)
698{
699 rdev->sb_page = alloc_page(GFP_KERNEL);
700 if (!rdev->sb_page)
701 return -ENOMEM;
702 return 0;
703}
704
705void md_rdev_clear(struct md_rdev *rdev)
706{
707 if (rdev->sb_page) {
708 put_page(rdev->sb_page);
709 rdev->sb_loaded = 0;
710 rdev->sb_page = NULL;
711 rdev->sb_start = 0;
712 rdev->sectors = 0;
713 }
714 if (rdev->bb_page) {
715 put_page(rdev->bb_page);
716 rdev->bb_page = NULL;
717 }
718 badblocks_exit(&rdev->badblocks);
719}
720EXPORT_SYMBOL_GPL(md_rdev_clear);
721
722static void super_written(struct bio *bio)
723{
724 struct md_rdev *rdev = bio->bi_private;
725 struct mddev *mddev = rdev->mddev;
726
727 if (bio->bi_error) {
728 pr_err("md: super_written gets error=%d\n", bio->bi_error);
729 md_error(mddev, rdev);
730 if (!test_bit(Faulty, &rdev->flags)
731 && (bio->bi_opf & MD_FAILFAST)) {
732 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
733 set_bit(LastDev, &rdev->flags);
734 }
735 } else
736 clear_bit(LastDev, &rdev->flags);
737
738 if (atomic_dec_and_test(&mddev->pending_writes))
739 wake_up(&mddev->sb_wait);
740 rdev_dec_pending(rdev, mddev);
741 bio_put(bio);
742}
743
744void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
745 sector_t sector, int size, struct page *page)
746{
747 /* write first size bytes of page to sector of rdev
748 * Increment mddev->pending_writes before returning
749 * and decrement it on completion, waking up sb_wait
750 * if zero is reached.
751 * If an error occurred, call md_error
752 */
753 struct bio *bio;
754 int ff = 0;
755
756 if (test_bit(Faulty, &rdev->flags))
757 return;
758
759 bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
760
761 atomic_inc(&rdev->nr_pending);
762
763 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
764 bio->bi_iter.bi_sector = sector;
765 bio_add_page(bio, page, size, 0);
766 bio->bi_private = rdev;
767 bio->bi_end_io = super_written;
768
769 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
770 test_bit(FailFast, &rdev->flags) &&
771 !test_bit(LastDev, &rdev->flags))
772 ff = MD_FAILFAST;
773 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_FUA | ff;
774
775 atomic_inc(&mddev->pending_writes);
776 submit_bio(bio);
777}
778
779int md_super_wait(struct mddev *mddev)
780{
781 /* wait for all superblock writes that were scheduled to complete */
782 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
783 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
784 return -EAGAIN;
785 return 0;
786}
787
788int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
789 struct page *page, int op, int op_flags, bool metadata_op)
790{
791 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
792 int ret;
793
794 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
795 rdev->meta_bdev : rdev->bdev;
796 bio_set_op_attrs(bio, op, op_flags);
797 if (metadata_op)
798 bio->bi_iter.bi_sector = sector + rdev->sb_start;
799 else if (rdev->mddev->reshape_position != MaxSector &&
800 (rdev->mddev->reshape_backwards ==
801 (sector >= rdev->mddev->reshape_position)))
802 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
803 else
804 bio->bi_iter.bi_sector = sector + rdev->data_offset;
805 bio_add_page(bio, page, size, 0);
806
807 submit_bio_wait(bio);
808
809 ret = !bio->bi_error;
810 bio_put(bio);
811 return ret;
812}
813EXPORT_SYMBOL_GPL(sync_page_io);
814
815static int read_disk_sb(struct md_rdev *rdev, int size)
816{
817 char b[BDEVNAME_SIZE];
818
819 if (rdev->sb_loaded)
820 return 0;
821
822 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
823 goto fail;
824 rdev->sb_loaded = 1;
825 return 0;
826
827fail:
828 pr_err("md: disabled device %s, could not read superblock.\n",
829 bdevname(rdev->bdev,b));
830 return -EINVAL;
831}
832
833static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
834{
835 return sb1->set_uuid0 == sb2->set_uuid0 &&
836 sb1->set_uuid1 == sb2->set_uuid1 &&
837 sb1->set_uuid2 == sb2->set_uuid2 &&
838 sb1->set_uuid3 == sb2->set_uuid3;
839}
840
841static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842{
843 int ret;
844 mdp_super_t *tmp1, *tmp2;
845
846 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
847 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
848
849 if (!tmp1 || !tmp2) {
850 ret = 0;
851 goto abort;
852 }
853
854 *tmp1 = *sb1;
855 *tmp2 = *sb2;
856
857 /*
858 * nr_disks is not constant
859 */
860 tmp1->nr_disks = 0;
861 tmp2->nr_disks = 0;
862
863 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
864abort:
865 kfree(tmp1);
866 kfree(tmp2);
867 return ret;
868}
869
870static u32 md_csum_fold(u32 csum)
871{
872 csum = (csum & 0xffff) + (csum >> 16);
873 return (csum & 0xffff) + (csum >> 16);
874}
875
876static unsigned int calc_sb_csum(mdp_super_t *sb)
877{
878 u64 newcsum = 0;
879 u32 *sb32 = (u32*)sb;
880 int i;
881 unsigned int disk_csum, csum;
882
883 disk_csum = sb->sb_csum;
884 sb->sb_csum = 0;
885
886 for (i = 0; i < MD_SB_BYTES/4 ; i++)
887 newcsum += sb32[i];
888 csum = (newcsum & 0xffffffff) + (newcsum>>32);
889
890#ifdef CONFIG_ALPHA
891 /* This used to use csum_partial, which was wrong for several
892 * reasons including that different results are returned on
893 * different architectures. It isn't critical that we get exactly
894 * the same return value as before (we always csum_fold before
895 * testing, and that removes any differences). However as we
896 * know that csum_partial always returned a 16bit value on
897 * alphas, do a fold to maximise conformity to previous behaviour.
898 */
899 sb->sb_csum = md_csum_fold(disk_csum);
900#else
901 sb->sb_csum = disk_csum;
902#endif
903 return csum;
904}
905
906/*
907 * Handle superblock details.
908 * We want to be able to handle multiple superblock formats
909 * so we have a common interface to them all, and an array of
910 * different handlers.
911 * We rely on user-space to write the initial superblock, and support
912 * reading and updating of superblocks.
913 * Interface methods are:
914 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
915 * loads and validates a superblock on dev.
916 * if refdev != NULL, compare superblocks on both devices
917 * Return:
918 * 0 - dev has a superblock that is compatible with refdev
919 * 1 - dev has a superblock that is compatible and newer than refdev
920 * so dev should be used as the refdev in future
921 * -EINVAL superblock incompatible or invalid
922 * -othererror e.g. -EIO
923 *
924 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
925 * Verify that dev is acceptable into mddev.
926 * The first time, mddev->raid_disks will be 0, and data from
927 * dev should be merged in. Subsequent calls check that dev
928 * is new enough. Return 0 or -EINVAL
929 *
930 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
931 * Update the superblock for rdev with data in mddev
932 * This does not write to disc.
933 *
934 */
935
936struct super_type {
937 char *name;
938 struct module *owner;
939 int (*load_super)(struct md_rdev *rdev,
940 struct md_rdev *refdev,
941 int minor_version);
942 int (*validate_super)(struct mddev *mddev,
943 struct md_rdev *rdev);
944 void (*sync_super)(struct mddev *mddev,
945 struct md_rdev *rdev);
946 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
947 sector_t num_sectors);
948 int (*allow_new_offset)(struct md_rdev *rdev,
949 unsigned long long new_offset);
950};
951
952/*
953 * Check that the given mddev has no bitmap.
954 *
955 * This function is called from the run method of all personalities that do not
956 * support bitmaps. It prints an error message and returns non-zero if mddev
957 * has a bitmap. Otherwise, it returns 0.
958 *
959 */
960int md_check_no_bitmap(struct mddev *mddev)
961{
962 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
963 return 0;
964 pr_warn("%s: bitmaps are not supported for %s\n",
965 mdname(mddev), mddev->pers->name);
966 return 1;
967}
968EXPORT_SYMBOL(md_check_no_bitmap);
969
970/*
971 * load_super for 0.90.0
972 */
973static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
974{
975 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
976 mdp_super_t *sb;
977 int ret;
978
979 /*
980 * Calculate the position of the superblock (512byte sectors),
981 * it's at the end of the disk.
982 *
983 * It also happens to be a multiple of 4Kb.
984 */
985 rdev->sb_start = calc_dev_sboffset(rdev);
986
987 ret = read_disk_sb(rdev, MD_SB_BYTES);
988 if (ret)
989 return ret;
990
991 ret = -EINVAL;
992
993 bdevname(rdev->bdev, b);
994 sb = page_address(rdev->sb_page);
995
996 if (sb->md_magic != MD_SB_MAGIC) {
997 pr_warn("md: invalid raid superblock magic on %s\n", b);
998 goto abort;
999 }
1000
1001 if (sb->major_version != 0 ||
1002 sb->minor_version < 90 ||
1003 sb->minor_version > 91) {
1004 pr_warn("Bad version number %d.%d on %s\n",
1005 sb->major_version, sb->minor_version, b);
1006 goto abort;
1007 }
1008
1009 if (sb->raid_disks <= 0)
1010 goto abort;
1011
1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 pr_warn("md: invalid superblock checksum on %s\n", b);
1014 goto abort;
1015 }
1016
1017 rdev->preferred_minor = sb->md_minor;
1018 rdev->data_offset = 0;
1019 rdev->new_data_offset = 0;
1020 rdev->sb_size = MD_SB_BYTES;
1021 rdev->badblocks.shift = -1;
1022
1023 if (sb->level == LEVEL_MULTIPATH)
1024 rdev->desc_nr = -1;
1025 else
1026 rdev->desc_nr = sb->this_disk.number;
1027
1028 if (!refdev) {
1029 ret = 1;
1030 } else {
1031 __u64 ev1, ev2;
1032 mdp_super_t *refsb = page_address(refdev->sb_page);
1033 if (!uuid_equal(refsb, sb)) {
1034 pr_warn("md: %s has different UUID to %s\n",
1035 b, bdevname(refdev->bdev,b2));
1036 goto abort;
1037 }
1038 if (!sb_equal(refsb, sb)) {
1039 pr_warn("md: %s has same UUID but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051 /* Limit to 4TB as metadata cannot record more than that.
1052 * (not needed for Linear and RAID0 as metadata doesn't
1053 * record this size)
1054 */
1055 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1056 sb->level >= 1)
1057 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1058
1059 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1060 /* "this cannot possibly happen" ... */
1061 ret = -EINVAL;
1062
1063 abort:
1064 return ret;
1065}
1066
1067/*
1068 * validate_super for 0.90.0
1069 */
1070static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1071{
1072 mdp_disk_t *desc;
1073 mdp_super_t *sb = page_address(rdev->sb_page);
1074 __u64 ev1 = md_event(sb);
1075
1076 rdev->raid_disk = -1;
1077 clear_bit(Faulty, &rdev->flags);
1078 clear_bit(In_sync, &rdev->flags);
1079 clear_bit(Bitmap_sync, &rdev->flags);
1080 clear_bit(WriteMostly, &rdev->flags);
1081
1082 if (mddev->raid_disks == 0) {
1083 mddev->major_version = 0;
1084 mddev->minor_version = sb->minor_version;
1085 mddev->patch_version = sb->patch_version;
1086 mddev->external = 0;
1087 mddev->chunk_sectors = sb->chunk_size >> 9;
1088 mddev->ctime = sb->ctime;
1089 mddev->utime = sb->utime;
1090 mddev->level = sb->level;
1091 mddev->clevel[0] = 0;
1092 mddev->layout = sb->layout;
1093 mddev->raid_disks = sb->raid_disks;
1094 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1095 mddev->events = ev1;
1096 mddev->bitmap_info.offset = 0;
1097 mddev->bitmap_info.space = 0;
1098 /* bitmap can use 60 K after the 4K superblocks */
1099 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1100 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1101 mddev->reshape_backwards = 0;
1102
1103 if (mddev->minor_version >= 91) {
1104 mddev->reshape_position = sb->reshape_position;
1105 mddev->delta_disks = sb->delta_disks;
1106 mddev->new_level = sb->new_level;
1107 mddev->new_layout = sb->new_layout;
1108 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1109 if (mddev->delta_disks < 0)
1110 mddev->reshape_backwards = 1;
1111 } else {
1112 mddev->reshape_position = MaxSector;
1113 mddev->delta_disks = 0;
1114 mddev->new_level = mddev->level;
1115 mddev->new_layout = mddev->layout;
1116 mddev->new_chunk_sectors = mddev->chunk_sectors;
1117 }
1118
1119 if (sb->state & (1<<MD_SB_CLEAN))
1120 mddev->recovery_cp = MaxSector;
1121 else {
1122 if (sb->events_hi == sb->cp_events_hi &&
1123 sb->events_lo == sb->cp_events_lo) {
1124 mddev->recovery_cp = sb->recovery_cp;
1125 } else
1126 mddev->recovery_cp = 0;
1127 }
1128
1129 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1130 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1131 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1132 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1133
1134 mddev->max_disks = MD_SB_DISKS;
1135
1136 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1137 mddev->bitmap_info.file == NULL) {
1138 mddev->bitmap_info.offset =
1139 mddev->bitmap_info.default_offset;
1140 mddev->bitmap_info.space =
1141 mddev->bitmap_info.default_space;
1142 }
1143
1144 } else if (mddev->pers == NULL) {
1145 /* Insist on good event counter while assembling, except
1146 * for spares (which don't need an event count) */
1147 ++ev1;
1148 if (sb->disks[rdev->desc_nr].state & (
1149 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1150 if (ev1 < mddev->events)
1151 return -EINVAL;
1152 } else if (mddev->bitmap) {
1153 /* if adding to array with a bitmap, then we can accept an
1154 * older device ... but not too old.
1155 */
1156 if (ev1 < mddev->bitmap->events_cleared)
1157 return 0;
1158 if (ev1 < mddev->events)
1159 set_bit(Bitmap_sync, &rdev->flags);
1160 } else {
1161 if (ev1 < mddev->events)
1162 /* just a hot-add of a new device, leave raid_disk at -1 */
1163 return 0;
1164 }
1165
1166 if (mddev->level != LEVEL_MULTIPATH) {
1167 desc = sb->disks + rdev->desc_nr;
1168
1169 if (desc->state & (1<<MD_DISK_FAULTY))
1170 set_bit(Faulty, &rdev->flags);
1171 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1172 desc->raid_disk < mddev->raid_disks */) {
1173 set_bit(In_sync, &rdev->flags);
1174 rdev->raid_disk = desc->raid_disk;
1175 rdev->saved_raid_disk = desc->raid_disk;
1176 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1177 /* active but not in sync implies recovery up to
1178 * reshape position. We don't know exactly where
1179 * that is, so set to zero for now */
1180 if (mddev->minor_version >= 91) {
1181 rdev->recovery_offset = 0;
1182 rdev->raid_disk = desc->raid_disk;
1183 }
1184 }
1185 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1186 set_bit(WriteMostly, &rdev->flags);
1187 if (desc->state & (1<<MD_DISK_FAILFAST))
1188 set_bit(FailFast, &rdev->flags);
1189 } else /* MULTIPATH are always insync */
1190 set_bit(In_sync, &rdev->flags);
1191 return 0;
1192}
1193
1194/*
1195 * sync_super for 0.90.0
1196 */
1197static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1198{
1199 mdp_super_t *sb;
1200 struct md_rdev *rdev2;
1201 int next_spare = mddev->raid_disks;
1202
1203 /* make rdev->sb match mddev data..
1204 *
1205 * 1/ zero out disks
1206 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1207 * 3/ any empty disks < next_spare become removed
1208 *
1209 * disks[0] gets initialised to REMOVED because
1210 * we cannot be sure from other fields if it has
1211 * been initialised or not.
1212 */
1213 int i;
1214 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1215
1216 rdev->sb_size = MD_SB_BYTES;
1217
1218 sb = page_address(rdev->sb_page);
1219
1220 memset(sb, 0, sizeof(*sb));
1221
1222 sb->md_magic = MD_SB_MAGIC;
1223 sb->major_version = mddev->major_version;
1224 sb->patch_version = mddev->patch_version;
1225 sb->gvalid_words = 0; /* ignored */
1226 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1227 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1228 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1229 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1230
1231 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1232 sb->level = mddev->level;
1233 sb->size = mddev->dev_sectors / 2;
1234 sb->raid_disks = mddev->raid_disks;
1235 sb->md_minor = mddev->md_minor;
1236 sb->not_persistent = 0;
1237 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1238 sb->state = 0;
1239 sb->events_hi = (mddev->events>>32);
1240 sb->events_lo = (u32)mddev->events;
1241
1242 if (mddev->reshape_position == MaxSector)
1243 sb->minor_version = 90;
1244 else {
1245 sb->minor_version = 91;
1246 sb->reshape_position = mddev->reshape_position;
1247 sb->new_level = mddev->new_level;
1248 sb->delta_disks = mddev->delta_disks;
1249 sb->new_layout = mddev->new_layout;
1250 sb->new_chunk = mddev->new_chunk_sectors << 9;
1251 }
1252 mddev->minor_version = sb->minor_version;
1253 if (mddev->in_sync)
1254 {
1255 sb->recovery_cp = mddev->recovery_cp;
1256 sb->cp_events_hi = (mddev->events>>32);
1257 sb->cp_events_lo = (u32)mddev->events;
1258 if (mddev->recovery_cp == MaxSector)
1259 sb->state = (1<< MD_SB_CLEAN);
1260 } else
1261 sb->recovery_cp = 0;
1262
1263 sb->layout = mddev->layout;
1264 sb->chunk_size = mddev->chunk_sectors << 9;
1265
1266 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1267 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1268
1269 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1270 rdev_for_each(rdev2, mddev) {
1271 mdp_disk_t *d;
1272 int desc_nr;
1273 int is_active = test_bit(In_sync, &rdev2->flags);
1274
1275 if (rdev2->raid_disk >= 0 &&
1276 sb->minor_version >= 91)
1277 /* we have nowhere to store the recovery_offset,
1278 * but if it is not below the reshape_position,
1279 * we can piggy-back on that.
1280 */
1281 is_active = 1;
1282 if (rdev2->raid_disk < 0 ||
1283 test_bit(Faulty, &rdev2->flags))
1284 is_active = 0;
1285 if (is_active)
1286 desc_nr = rdev2->raid_disk;
1287 else
1288 desc_nr = next_spare++;
1289 rdev2->desc_nr = desc_nr;
1290 d = &sb->disks[rdev2->desc_nr];
1291 nr_disks++;
1292 d->number = rdev2->desc_nr;
1293 d->major = MAJOR(rdev2->bdev->bd_dev);
1294 d->minor = MINOR(rdev2->bdev->bd_dev);
1295 if (is_active)
1296 d->raid_disk = rdev2->raid_disk;
1297 else
1298 d->raid_disk = rdev2->desc_nr; /* compatibility */
1299 if (test_bit(Faulty, &rdev2->flags))
1300 d->state = (1<<MD_DISK_FAULTY);
1301 else if (is_active) {
1302 d->state = (1<<MD_DISK_ACTIVE);
1303 if (test_bit(In_sync, &rdev2->flags))
1304 d->state |= (1<<MD_DISK_SYNC);
1305 active++;
1306 working++;
1307 } else {
1308 d->state = 0;
1309 spare++;
1310 working++;
1311 }
1312 if (test_bit(WriteMostly, &rdev2->flags))
1313 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1314 if (test_bit(FailFast, &rdev2->flags))
1315 d->state |= (1<<MD_DISK_FAILFAST);
1316 }
1317 /* now set the "removed" and "faulty" bits on any missing devices */
1318 for (i=0 ; i < mddev->raid_disks ; i++) {
1319 mdp_disk_t *d = &sb->disks[i];
1320 if (d->state == 0 && d->number == 0) {
1321 d->number = i;
1322 d->raid_disk = i;
1323 d->state = (1<<MD_DISK_REMOVED);
1324 d->state |= (1<<MD_DISK_FAULTY);
1325 failed++;
1326 }
1327 }
1328 sb->nr_disks = nr_disks;
1329 sb->active_disks = active;
1330 sb->working_disks = working;
1331 sb->failed_disks = failed;
1332 sb->spare_disks = spare;
1333
1334 sb->this_disk = sb->disks[rdev->desc_nr];
1335 sb->sb_csum = calc_sb_csum(sb);
1336}
1337
1338/*
1339 * rdev_size_change for 0.90.0
1340 */
1341static unsigned long long
1342super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1343{
1344 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1345 return 0; /* component must fit device */
1346 if (rdev->mddev->bitmap_info.offset)
1347 return 0; /* can't move bitmap */
1348 rdev->sb_start = calc_dev_sboffset(rdev);
1349 if (!num_sectors || num_sectors > rdev->sb_start)
1350 num_sectors = rdev->sb_start;
1351 /* Limit to 4TB as metadata cannot record more than that.
1352 * 4TB == 2^32 KB, or 2*2^32 sectors.
1353 */
1354 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1355 rdev->mddev->level >= 1)
1356 num_sectors = (sector_t)(2ULL << 32) - 2;
1357 do {
1358 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1359 rdev->sb_page);
1360 } while (md_super_wait(rdev->mddev) < 0);
1361 return num_sectors;
1362}
1363
1364static int
1365super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1366{
1367 /* non-zero offset changes not possible with v0.90 */
1368 return new_offset == 0;
1369}
1370
1371/*
1372 * version 1 superblock
1373 */
1374
1375static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1376{
1377 __le32 disk_csum;
1378 u32 csum;
1379 unsigned long long newcsum;
1380 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1381 __le32 *isuper = (__le32*)sb;
1382
1383 disk_csum = sb->sb_csum;
1384 sb->sb_csum = 0;
1385 newcsum = 0;
1386 for (; size >= 4; size -= 4)
1387 newcsum += le32_to_cpu(*isuper++);
1388
1389 if (size == 2)
1390 newcsum += le16_to_cpu(*(__le16*) isuper);
1391
1392 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1393 sb->sb_csum = disk_csum;
1394 return cpu_to_le32(csum);
1395}
1396
1397static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1398{
1399 struct mdp_superblock_1 *sb;
1400 int ret;
1401 sector_t sb_start;
1402 sector_t sectors;
1403 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1404 int bmask;
1405
1406 /*
1407 * Calculate the position of the superblock in 512byte sectors.
1408 * It is always aligned to a 4K boundary and
1409 * depeding on minor_version, it can be:
1410 * 0: At least 8K, but less than 12K, from end of device
1411 * 1: At start of device
1412 * 2: 4K from start of device.
1413 */
1414 switch(minor_version) {
1415 case 0:
1416 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1417 sb_start -= 8*2;
1418 sb_start &= ~(sector_t)(4*2-1);
1419 break;
1420 case 1:
1421 sb_start = 0;
1422 break;
1423 case 2:
1424 sb_start = 8;
1425 break;
1426 default:
1427 return -EINVAL;
1428 }
1429 rdev->sb_start = sb_start;
1430
1431 /* superblock is rarely larger than 1K, but it can be larger,
1432 * and it is safe to read 4k, so we do that
1433 */
1434 ret = read_disk_sb(rdev, 4096);
1435 if (ret) return ret;
1436
1437 sb = page_address(rdev->sb_page);
1438
1439 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1440 sb->major_version != cpu_to_le32(1) ||
1441 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1442 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1443 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1444 return -EINVAL;
1445
1446 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1447 pr_warn("md: invalid superblock checksum on %s\n",
1448 bdevname(rdev->bdev,b));
1449 return -EINVAL;
1450 }
1451 if (le64_to_cpu(sb->data_size) < 10) {
1452 pr_warn("md: data_size too small on %s\n",
1453 bdevname(rdev->bdev,b));
1454 return -EINVAL;
1455 }
1456 if (sb->pad0 ||
1457 sb->pad3[0] ||
1458 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1459 /* Some padding is non-zero, might be a new feature */
1460 return -EINVAL;
1461
1462 rdev->preferred_minor = 0xffff;
1463 rdev->data_offset = le64_to_cpu(sb->data_offset);
1464 rdev->new_data_offset = rdev->data_offset;
1465 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1466 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1467 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1468 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1469
1470 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1471 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1472 if (rdev->sb_size & bmask)
1473 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1474
1475 if (minor_version
1476 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1477 return -EINVAL;
1478 if (minor_version
1479 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1480 return -EINVAL;
1481
1482 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1483 rdev->desc_nr = -1;
1484 else
1485 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1486
1487 if (!rdev->bb_page) {
1488 rdev->bb_page = alloc_page(GFP_KERNEL);
1489 if (!rdev->bb_page)
1490 return -ENOMEM;
1491 }
1492 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1493 rdev->badblocks.count == 0) {
1494 /* need to load the bad block list.
1495 * Currently we limit it to one page.
1496 */
1497 s32 offset;
1498 sector_t bb_sector;
1499 u64 *bbp;
1500 int i;
1501 int sectors = le16_to_cpu(sb->bblog_size);
1502 if (sectors > (PAGE_SIZE / 512))
1503 return -EINVAL;
1504 offset = le32_to_cpu(sb->bblog_offset);
1505 if (offset == 0)
1506 return -EINVAL;
1507 bb_sector = (long long)offset;
1508 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1509 rdev->bb_page, REQ_OP_READ, 0, true))
1510 return -EIO;
1511 bbp = (u64 *)page_address(rdev->bb_page);
1512 rdev->badblocks.shift = sb->bblog_shift;
1513 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1514 u64 bb = le64_to_cpu(*bbp);
1515 int count = bb & (0x3ff);
1516 u64 sector = bb >> 10;
1517 sector <<= sb->bblog_shift;
1518 count <<= sb->bblog_shift;
1519 if (bb + 1 == 0)
1520 break;
1521 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1522 return -EINVAL;
1523 }
1524 } else if (sb->bblog_offset != 0)
1525 rdev->badblocks.shift = 0;
1526
1527 if (!refdev) {
1528 ret = 1;
1529 } else {
1530 __u64 ev1, ev2;
1531 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1532
1533 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1534 sb->level != refsb->level ||
1535 sb->layout != refsb->layout ||
1536 sb->chunksize != refsb->chunksize) {
1537 pr_warn("md: %s has strangely different superblock to %s\n",
1538 bdevname(rdev->bdev,b),
1539 bdevname(refdev->bdev,b2));
1540 return -EINVAL;
1541 }
1542 ev1 = le64_to_cpu(sb->events);
1543 ev2 = le64_to_cpu(refsb->events);
1544
1545 if (ev1 > ev2)
1546 ret = 1;
1547 else
1548 ret = 0;
1549 }
1550 if (minor_version) {
1551 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1552 sectors -= rdev->data_offset;
1553 } else
1554 sectors = rdev->sb_start;
1555 if (sectors < le64_to_cpu(sb->data_size))
1556 return -EINVAL;
1557 rdev->sectors = le64_to_cpu(sb->data_size);
1558 return ret;
1559}
1560
1561static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1562{
1563 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1564 __u64 ev1 = le64_to_cpu(sb->events);
1565
1566 rdev->raid_disk = -1;
1567 clear_bit(Faulty, &rdev->flags);
1568 clear_bit(In_sync, &rdev->flags);
1569 clear_bit(Bitmap_sync, &rdev->flags);
1570 clear_bit(WriteMostly, &rdev->flags);
1571
1572 if (mddev->raid_disks == 0) {
1573 mddev->major_version = 1;
1574 mddev->patch_version = 0;
1575 mddev->external = 0;
1576 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1577 mddev->ctime = le64_to_cpu(sb->ctime);
1578 mddev->utime = le64_to_cpu(sb->utime);
1579 mddev->level = le32_to_cpu(sb->level);
1580 mddev->clevel[0] = 0;
1581 mddev->layout = le32_to_cpu(sb->layout);
1582 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1583 mddev->dev_sectors = le64_to_cpu(sb->size);
1584 mddev->events = ev1;
1585 mddev->bitmap_info.offset = 0;
1586 mddev->bitmap_info.space = 0;
1587 /* Default location for bitmap is 1K after superblock
1588 * using 3K - total of 4K
1589 */
1590 mddev->bitmap_info.default_offset = 1024 >> 9;
1591 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1592 mddev->reshape_backwards = 0;
1593
1594 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1595 memcpy(mddev->uuid, sb->set_uuid, 16);
1596
1597 mddev->max_disks = (4096-256)/2;
1598
1599 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1600 mddev->bitmap_info.file == NULL) {
1601 mddev->bitmap_info.offset =
1602 (__s32)le32_to_cpu(sb->bitmap_offset);
1603 /* Metadata doesn't record how much space is available.
1604 * For 1.0, we assume we can use up to the superblock
1605 * if before, else to 4K beyond superblock.
1606 * For others, assume no change is possible.
1607 */
1608 if (mddev->minor_version > 0)
1609 mddev->bitmap_info.space = 0;
1610 else if (mddev->bitmap_info.offset > 0)
1611 mddev->bitmap_info.space =
1612 8 - mddev->bitmap_info.offset;
1613 else
1614 mddev->bitmap_info.space =
1615 -mddev->bitmap_info.offset;
1616 }
1617
1618 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1619 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1620 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1621 mddev->new_level = le32_to_cpu(sb->new_level);
1622 mddev->new_layout = le32_to_cpu(sb->new_layout);
1623 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1624 if (mddev->delta_disks < 0 ||
1625 (mddev->delta_disks == 0 &&
1626 (le32_to_cpu(sb->feature_map)
1627 & MD_FEATURE_RESHAPE_BACKWARDS)))
1628 mddev->reshape_backwards = 1;
1629 } else {
1630 mddev->reshape_position = MaxSector;
1631 mddev->delta_disks = 0;
1632 mddev->new_level = mddev->level;
1633 mddev->new_layout = mddev->layout;
1634 mddev->new_chunk_sectors = mddev->chunk_sectors;
1635 }
1636
1637 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1638 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1639 } else if (mddev->pers == NULL) {
1640 /* Insist of good event counter while assembling, except for
1641 * spares (which don't need an event count) */
1642 ++ev1;
1643 if (rdev->desc_nr >= 0 &&
1644 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1645 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1646 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1647 if (ev1 < mddev->events)
1648 return -EINVAL;
1649 } else if (mddev->bitmap) {
1650 /* If adding to array with a bitmap, then we can accept an
1651 * older device, but not too old.
1652 */
1653 if (ev1 < mddev->bitmap->events_cleared)
1654 return 0;
1655 if (ev1 < mddev->events)
1656 set_bit(Bitmap_sync, &rdev->flags);
1657 } else {
1658 if (ev1 < mddev->events)
1659 /* just a hot-add of a new device, leave raid_disk at -1 */
1660 return 0;
1661 }
1662 if (mddev->level != LEVEL_MULTIPATH) {
1663 int role;
1664 if (rdev->desc_nr < 0 ||
1665 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1666 role = MD_DISK_ROLE_SPARE;
1667 rdev->desc_nr = -1;
1668 } else
1669 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1670 switch(role) {
1671 case MD_DISK_ROLE_SPARE: /* spare */
1672 break;
1673 case MD_DISK_ROLE_FAULTY: /* faulty */
1674 set_bit(Faulty, &rdev->flags);
1675 break;
1676 case MD_DISK_ROLE_JOURNAL: /* journal device */
1677 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1678 /* journal device without journal feature */
1679 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1680 return -EINVAL;
1681 }
1682 set_bit(Journal, &rdev->flags);
1683 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1684 rdev->raid_disk = 0;
1685 break;
1686 default:
1687 rdev->saved_raid_disk = role;
1688 if ((le32_to_cpu(sb->feature_map) &
1689 MD_FEATURE_RECOVERY_OFFSET)) {
1690 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1691 if (!(le32_to_cpu(sb->feature_map) &
1692 MD_FEATURE_RECOVERY_BITMAP))
1693 rdev->saved_raid_disk = -1;
1694 } else
1695 set_bit(In_sync, &rdev->flags);
1696 rdev->raid_disk = role;
1697 break;
1698 }
1699 if (sb->devflags & WriteMostly1)
1700 set_bit(WriteMostly, &rdev->flags);
1701 if (sb->devflags & FailFast1)
1702 set_bit(FailFast, &rdev->flags);
1703 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1704 set_bit(Replacement, &rdev->flags);
1705 } else /* MULTIPATH are always insync */
1706 set_bit(In_sync, &rdev->flags);
1707
1708 return 0;
1709}
1710
1711static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1712{
1713 struct mdp_superblock_1 *sb;
1714 struct md_rdev *rdev2;
1715 int max_dev, i;
1716 /* make rdev->sb match mddev and rdev data. */
1717
1718 sb = page_address(rdev->sb_page);
1719
1720 sb->feature_map = 0;
1721 sb->pad0 = 0;
1722 sb->recovery_offset = cpu_to_le64(0);
1723 memset(sb->pad3, 0, sizeof(sb->pad3));
1724
1725 sb->utime = cpu_to_le64((__u64)mddev->utime);
1726 sb->events = cpu_to_le64(mddev->events);
1727 if (mddev->in_sync)
1728 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1729 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1730 sb->resync_offset = cpu_to_le64(MaxSector);
1731 else
1732 sb->resync_offset = cpu_to_le64(0);
1733
1734 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1735
1736 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1737 sb->size = cpu_to_le64(mddev->dev_sectors);
1738 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1739 sb->level = cpu_to_le32(mddev->level);
1740 sb->layout = cpu_to_le32(mddev->layout);
1741 if (test_bit(FailFast, &rdev->flags))
1742 sb->devflags |= FailFast1;
1743 else
1744 sb->devflags &= ~FailFast1;
1745
1746 if (test_bit(WriteMostly, &rdev->flags))
1747 sb->devflags |= WriteMostly1;
1748 else
1749 sb->devflags &= ~WriteMostly1;
1750 sb->data_offset = cpu_to_le64(rdev->data_offset);
1751 sb->data_size = cpu_to_le64(rdev->sectors);
1752
1753 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1754 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1755 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1756 }
1757
1758 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1759 !test_bit(In_sync, &rdev->flags)) {
1760 sb->feature_map |=
1761 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1762 sb->recovery_offset =
1763 cpu_to_le64(rdev->recovery_offset);
1764 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1765 sb->feature_map |=
1766 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1767 }
1768 /* Note: recovery_offset and journal_tail share space */
1769 if (test_bit(Journal, &rdev->flags))
1770 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1771 if (test_bit(Replacement, &rdev->flags))
1772 sb->feature_map |=
1773 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774
1775 if (mddev->reshape_position != MaxSector) {
1776 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 sb->new_level = cpu_to_le32(mddev->new_level);
1781 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782 if (mddev->delta_disks == 0 &&
1783 mddev->reshape_backwards)
1784 sb->feature_map
1785 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1786 if (rdev->new_data_offset != rdev->data_offset) {
1787 sb->feature_map
1788 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1789 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1790 - rdev->data_offset));
1791 }
1792 }
1793
1794 if (mddev_is_clustered(mddev))
1795 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1796
1797 if (rdev->badblocks.count == 0)
1798 /* Nothing to do for bad blocks*/ ;
1799 else if (sb->bblog_offset == 0)
1800 /* Cannot record bad blocks on this device */
1801 md_error(mddev, rdev);
1802 else {
1803 struct badblocks *bb = &rdev->badblocks;
1804 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1805 u64 *p = bb->page;
1806 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1807 if (bb->changed) {
1808 unsigned seq;
1809
1810retry:
1811 seq = read_seqbegin(&bb->lock);
1812
1813 memset(bbp, 0xff, PAGE_SIZE);
1814
1815 for (i = 0 ; i < bb->count ; i++) {
1816 u64 internal_bb = p[i];
1817 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1818 | BB_LEN(internal_bb));
1819 bbp[i] = cpu_to_le64(store_bb);
1820 }
1821 bb->changed = 0;
1822 if (read_seqretry(&bb->lock, seq))
1823 goto retry;
1824
1825 bb->sector = (rdev->sb_start +
1826 (int)le32_to_cpu(sb->bblog_offset));
1827 bb->size = le16_to_cpu(sb->bblog_size);
1828 }
1829 }
1830
1831 max_dev = 0;
1832 rdev_for_each(rdev2, mddev)
1833 if (rdev2->desc_nr+1 > max_dev)
1834 max_dev = rdev2->desc_nr+1;
1835
1836 if (max_dev > le32_to_cpu(sb->max_dev)) {
1837 int bmask;
1838 sb->max_dev = cpu_to_le32(max_dev);
1839 rdev->sb_size = max_dev * 2 + 256;
1840 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1841 if (rdev->sb_size & bmask)
1842 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1843 } else
1844 max_dev = le32_to_cpu(sb->max_dev);
1845
1846 for (i=0; i<max_dev;i++)
1847 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1848
1849 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1850 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1851
1852 rdev_for_each(rdev2, mddev) {
1853 i = rdev2->desc_nr;
1854 if (test_bit(Faulty, &rdev2->flags))
1855 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1856 else if (test_bit(In_sync, &rdev2->flags))
1857 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1858 else if (test_bit(Journal, &rdev2->flags))
1859 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1860 else if (rdev2->raid_disk >= 0)
1861 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1862 else
1863 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1864 }
1865
1866 sb->sb_csum = calc_sb_1_csum(sb);
1867}
1868
1869static unsigned long long
1870super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1871{
1872 struct mdp_superblock_1 *sb;
1873 sector_t max_sectors;
1874 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1875 return 0; /* component must fit device */
1876 if (rdev->data_offset != rdev->new_data_offset)
1877 return 0; /* too confusing */
1878 if (rdev->sb_start < rdev->data_offset) {
1879 /* minor versions 1 and 2; superblock before data */
1880 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1881 max_sectors -= rdev->data_offset;
1882 if (!num_sectors || num_sectors > max_sectors)
1883 num_sectors = max_sectors;
1884 } else if (rdev->mddev->bitmap_info.offset) {
1885 /* minor version 0 with bitmap we can't move */
1886 return 0;
1887 } else {
1888 /* minor version 0; superblock after data */
1889 sector_t sb_start;
1890 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1891 sb_start &= ~(sector_t)(4*2 - 1);
1892 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1893 if (!num_sectors || num_sectors > max_sectors)
1894 num_sectors = max_sectors;
1895 rdev->sb_start = sb_start;
1896 }
1897 sb = page_address(rdev->sb_page);
1898 sb->data_size = cpu_to_le64(num_sectors);
1899 sb->super_offset = rdev->sb_start;
1900 sb->sb_csum = calc_sb_1_csum(sb);
1901 do {
1902 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1903 rdev->sb_page);
1904 } while (md_super_wait(rdev->mddev) < 0);
1905 return num_sectors;
1906
1907}
1908
1909static int
1910super_1_allow_new_offset(struct md_rdev *rdev,
1911 unsigned long long new_offset)
1912{
1913 /* All necessary checks on new >= old have been done */
1914 struct bitmap *bitmap;
1915 if (new_offset >= rdev->data_offset)
1916 return 1;
1917
1918 /* with 1.0 metadata, there is no metadata to tread on
1919 * so we can always move back */
1920 if (rdev->mddev->minor_version == 0)
1921 return 1;
1922
1923 /* otherwise we must be sure not to step on
1924 * any metadata, so stay:
1925 * 36K beyond start of superblock
1926 * beyond end of badblocks
1927 * beyond write-intent bitmap
1928 */
1929 if (rdev->sb_start + (32+4)*2 > new_offset)
1930 return 0;
1931 bitmap = rdev->mddev->bitmap;
1932 if (bitmap && !rdev->mddev->bitmap_info.file &&
1933 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1934 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1935 return 0;
1936 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1937 return 0;
1938
1939 return 1;
1940}
1941
1942static struct super_type super_types[] = {
1943 [0] = {
1944 .name = "0.90.0",
1945 .owner = THIS_MODULE,
1946 .load_super = super_90_load,
1947 .validate_super = super_90_validate,
1948 .sync_super = super_90_sync,
1949 .rdev_size_change = super_90_rdev_size_change,
1950 .allow_new_offset = super_90_allow_new_offset,
1951 },
1952 [1] = {
1953 .name = "md-1",
1954 .owner = THIS_MODULE,
1955 .load_super = super_1_load,
1956 .validate_super = super_1_validate,
1957 .sync_super = super_1_sync,
1958 .rdev_size_change = super_1_rdev_size_change,
1959 .allow_new_offset = super_1_allow_new_offset,
1960 },
1961};
1962
1963static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1964{
1965 if (mddev->sync_super) {
1966 mddev->sync_super(mddev, rdev);
1967 return;
1968 }
1969
1970 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1971
1972 super_types[mddev->major_version].sync_super(mddev, rdev);
1973}
1974
1975static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1976{
1977 struct md_rdev *rdev, *rdev2;
1978
1979 rcu_read_lock();
1980 rdev_for_each_rcu(rdev, mddev1) {
1981 if (test_bit(Faulty, &rdev->flags) ||
1982 test_bit(Journal, &rdev->flags) ||
1983 rdev->raid_disk == -1)
1984 continue;
1985 rdev_for_each_rcu(rdev2, mddev2) {
1986 if (test_bit(Faulty, &rdev2->flags) ||
1987 test_bit(Journal, &rdev2->flags) ||
1988 rdev2->raid_disk == -1)
1989 continue;
1990 if (rdev->bdev->bd_contains ==
1991 rdev2->bdev->bd_contains) {
1992 rcu_read_unlock();
1993 return 1;
1994 }
1995 }
1996 }
1997 rcu_read_unlock();
1998 return 0;
1999}
2000
2001static LIST_HEAD(pending_raid_disks);
2002
2003/*
2004 * Try to register data integrity profile for an mddev
2005 *
2006 * This is called when an array is started and after a disk has been kicked
2007 * from the array. It only succeeds if all working and active component devices
2008 * are integrity capable with matching profiles.
2009 */
2010int md_integrity_register(struct mddev *mddev)
2011{
2012 struct md_rdev *rdev, *reference = NULL;
2013
2014 if (list_empty(&mddev->disks))
2015 return 0; /* nothing to do */
2016 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2017 return 0; /* shouldn't register, or already is */
2018 rdev_for_each(rdev, mddev) {
2019 /* skip spares and non-functional disks */
2020 if (test_bit(Faulty, &rdev->flags))
2021 continue;
2022 if (rdev->raid_disk < 0)
2023 continue;
2024 if (!reference) {
2025 /* Use the first rdev as the reference */
2026 reference = rdev;
2027 continue;
2028 }
2029 /* does this rdev's profile match the reference profile? */
2030 if (blk_integrity_compare(reference->bdev->bd_disk,
2031 rdev->bdev->bd_disk) < 0)
2032 return -EINVAL;
2033 }
2034 if (!reference || !bdev_get_integrity(reference->bdev))
2035 return 0;
2036 /*
2037 * All component devices are integrity capable and have matching
2038 * profiles, register the common profile for the md device.
2039 */
2040 blk_integrity_register(mddev->gendisk,
2041 bdev_get_integrity(reference->bdev));
2042
2043 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2044 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2045 pr_err("md: failed to create integrity pool for %s\n",
2046 mdname(mddev));
2047 return -EINVAL;
2048 }
2049 return 0;
2050}
2051EXPORT_SYMBOL(md_integrity_register);
2052
2053/*
2054 * Attempt to add an rdev, but only if it is consistent with the current
2055 * integrity profile
2056 */
2057int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2058{
2059 struct blk_integrity *bi_rdev;
2060 struct blk_integrity *bi_mddev;
2061 char name[BDEVNAME_SIZE];
2062
2063 if (!mddev->gendisk)
2064 return 0;
2065
2066 bi_rdev = bdev_get_integrity(rdev->bdev);
2067 bi_mddev = blk_get_integrity(mddev->gendisk);
2068
2069 if (!bi_mddev) /* nothing to do */
2070 return 0;
2071
2072 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2073 pr_err("%s: incompatible integrity profile for %s\n",
2074 mdname(mddev), bdevname(rdev->bdev, name));
2075 return -ENXIO;
2076 }
2077
2078 return 0;
2079}
2080EXPORT_SYMBOL(md_integrity_add_rdev);
2081
2082static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2083{
2084 char b[BDEVNAME_SIZE];
2085 struct kobject *ko;
2086 int err;
2087
2088 /* prevent duplicates */
2089 if (find_rdev(mddev, rdev->bdev->bd_dev))
2090 return -EEXIST;
2091
2092 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2093 if (!test_bit(Journal, &rdev->flags) &&
2094 rdev->sectors &&
2095 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2096 if (mddev->pers) {
2097 /* Cannot change size, so fail
2098 * If mddev->level <= 0, then we don't care
2099 * about aligning sizes (e.g. linear)
2100 */
2101 if (mddev->level > 0)
2102 return -ENOSPC;
2103 } else
2104 mddev->dev_sectors = rdev->sectors;
2105 }
2106
2107 /* Verify rdev->desc_nr is unique.
2108 * If it is -1, assign a free number, else
2109 * check number is not in use
2110 */
2111 rcu_read_lock();
2112 if (rdev->desc_nr < 0) {
2113 int choice = 0;
2114 if (mddev->pers)
2115 choice = mddev->raid_disks;
2116 while (md_find_rdev_nr_rcu(mddev, choice))
2117 choice++;
2118 rdev->desc_nr = choice;
2119 } else {
2120 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2121 rcu_read_unlock();
2122 return -EBUSY;
2123 }
2124 }
2125 rcu_read_unlock();
2126 if (!test_bit(Journal, &rdev->flags) &&
2127 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2128 pr_warn("md: %s: array is limited to %d devices\n",
2129 mdname(mddev), mddev->max_disks);
2130 return -EBUSY;
2131 }
2132 bdevname(rdev->bdev,b);
2133 strreplace(b, '/', '!');
2134
2135 rdev->mddev = mddev;
2136 pr_debug("md: bind<%s>\n", b);
2137
2138 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2139 goto fail;
2140
2141 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2142 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2143 /* failure here is OK */;
2144 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2145
2146 list_add_rcu(&rdev->same_set, &mddev->disks);
2147 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2148
2149 /* May as well allow recovery to be retried once */
2150 mddev->recovery_disabled++;
2151
2152 return 0;
2153
2154 fail:
2155 pr_warn("md: failed to register dev-%s for %s\n",
2156 b, mdname(mddev));
2157 return err;
2158}
2159
2160static void md_delayed_delete(struct work_struct *ws)
2161{
2162 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2163 kobject_del(&rdev->kobj);
2164 kobject_put(&rdev->kobj);
2165}
2166
2167static void unbind_rdev_from_array(struct md_rdev *rdev)
2168{
2169 char b[BDEVNAME_SIZE];
2170
2171 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2172 list_del_rcu(&rdev->same_set);
2173 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2174 rdev->mddev = NULL;
2175 sysfs_remove_link(&rdev->kobj, "block");
2176 sysfs_put(rdev->sysfs_state);
2177 rdev->sysfs_state = NULL;
2178 rdev->badblocks.count = 0;
2179 /* We need to delay this, otherwise we can deadlock when
2180 * writing to 'remove' to "dev/state". We also need
2181 * to delay it due to rcu usage.
2182 */
2183 synchronize_rcu();
2184 INIT_WORK(&rdev->del_work, md_delayed_delete);
2185 kobject_get(&rdev->kobj);
2186 queue_work(md_misc_wq, &rdev->del_work);
2187}
2188
2189/*
2190 * prevent the device from being mounted, repartitioned or
2191 * otherwise reused by a RAID array (or any other kernel
2192 * subsystem), by bd_claiming the device.
2193 */
2194static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2195{
2196 int err = 0;
2197 struct block_device *bdev;
2198 char b[BDEVNAME_SIZE];
2199
2200 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2201 shared ? (struct md_rdev *)lock_rdev : rdev);
2202 if (IS_ERR(bdev)) {
2203 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2204 return PTR_ERR(bdev);
2205 }
2206 rdev->bdev = bdev;
2207 return err;
2208}
2209
2210static void unlock_rdev(struct md_rdev *rdev)
2211{
2212 struct block_device *bdev = rdev->bdev;
2213 rdev->bdev = NULL;
2214 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2215}
2216
2217void md_autodetect_dev(dev_t dev);
2218
2219static void export_rdev(struct md_rdev *rdev)
2220{
2221 char b[BDEVNAME_SIZE];
2222
2223 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2224 md_rdev_clear(rdev);
2225#ifndef MODULE
2226 if (test_bit(AutoDetected, &rdev->flags))
2227 md_autodetect_dev(rdev->bdev->bd_dev);
2228#endif
2229 unlock_rdev(rdev);
2230 kobject_put(&rdev->kobj);
2231}
2232
2233void md_kick_rdev_from_array(struct md_rdev *rdev)
2234{
2235 unbind_rdev_from_array(rdev);
2236 export_rdev(rdev);
2237}
2238EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2239
2240static void export_array(struct mddev *mddev)
2241{
2242 struct md_rdev *rdev;
2243
2244 while (!list_empty(&mddev->disks)) {
2245 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2246 same_set);
2247 md_kick_rdev_from_array(rdev);
2248 }
2249 mddev->raid_disks = 0;
2250 mddev->major_version = 0;
2251}
2252
2253static void sync_sbs(struct mddev *mddev, int nospares)
2254{
2255 /* Update each superblock (in-memory image), but
2256 * if we are allowed to, skip spares which already
2257 * have the right event counter, or have one earlier
2258 * (which would mean they aren't being marked as dirty
2259 * with the rest of the array)
2260 */
2261 struct md_rdev *rdev;
2262 rdev_for_each(rdev, mddev) {
2263 if (rdev->sb_events == mddev->events ||
2264 (nospares &&
2265 rdev->raid_disk < 0 &&
2266 rdev->sb_events+1 == mddev->events)) {
2267 /* Don't update this superblock */
2268 rdev->sb_loaded = 2;
2269 } else {
2270 sync_super(mddev, rdev);
2271 rdev->sb_loaded = 1;
2272 }
2273 }
2274}
2275
2276static bool does_sb_need_changing(struct mddev *mddev)
2277{
2278 struct md_rdev *rdev;
2279 struct mdp_superblock_1 *sb;
2280 int role;
2281
2282 /* Find a good rdev */
2283 rdev_for_each(rdev, mddev)
2284 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2285 break;
2286
2287 /* No good device found. */
2288 if (!rdev)
2289 return false;
2290
2291 sb = page_address(rdev->sb_page);
2292 /* Check if a device has become faulty or a spare become active */
2293 rdev_for_each(rdev, mddev) {
2294 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2295 /* Device activated? */
2296 if (role == 0xffff && rdev->raid_disk >=0 &&
2297 !test_bit(Faulty, &rdev->flags))
2298 return true;
2299 /* Device turned faulty? */
2300 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2301 return true;
2302 }
2303
2304 /* Check if any mddev parameters have changed */
2305 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2306 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2307 (mddev->layout != le64_to_cpu(sb->layout)) ||
2308 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2309 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2310 return true;
2311
2312 return false;
2313}
2314
2315void md_update_sb(struct mddev *mddev, int force_change)
2316{
2317 struct md_rdev *rdev;
2318 int sync_req;
2319 int nospares = 0;
2320 int any_badblocks_changed = 0;
2321 int ret = -1;
2322
2323 if (mddev->ro) {
2324 if (force_change)
2325 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2326 return;
2327 }
2328
2329repeat:
2330 if (mddev_is_clustered(mddev)) {
2331 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2332 force_change = 1;
2333 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2334 nospares = 1;
2335 ret = md_cluster_ops->metadata_update_start(mddev);
2336 /* Has someone else has updated the sb */
2337 if (!does_sb_need_changing(mddev)) {
2338 if (ret == 0)
2339 md_cluster_ops->metadata_update_cancel(mddev);
2340 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2341 BIT(MD_SB_CHANGE_DEVS) |
2342 BIT(MD_SB_CHANGE_CLEAN));
2343 return;
2344 }
2345 }
2346
2347 /* First make sure individual recovery_offsets are correct */
2348 rdev_for_each(rdev, mddev) {
2349 if (rdev->raid_disk >= 0 &&
2350 mddev->delta_disks >= 0 &&
2351 !test_bit(Journal, &rdev->flags) &&
2352 !test_bit(In_sync, &rdev->flags) &&
2353 mddev->curr_resync_completed > rdev->recovery_offset)
2354 rdev->recovery_offset = mddev->curr_resync_completed;
2355
2356 }
2357 if (!mddev->persistent) {
2358 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2359 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2360 if (!mddev->external) {
2361 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2362 rdev_for_each(rdev, mddev) {
2363 if (rdev->badblocks.changed) {
2364 rdev->badblocks.changed = 0;
2365 ack_all_badblocks(&rdev->badblocks);
2366 md_error(mddev, rdev);
2367 }
2368 clear_bit(Blocked, &rdev->flags);
2369 clear_bit(BlockedBadBlocks, &rdev->flags);
2370 wake_up(&rdev->blocked_wait);
2371 }
2372 }
2373 wake_up(&mddev->sb_wait);
2374 return;
2375 }
2376
2377 spin_lock(&mddev->lock);
2378
2379 mddev->utime = ktime_get_real_seconds();
2380
2381 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2382 force_change = 1;
2383 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2384 /* just a clean<-> dirty transition, possibly leave spares alone,
2385 * though if events isn't the right even/odd, we will have to do
2386 * spares after all
2387 */
2388 nospares = 1;
2389 if (force_change)
2390 nospares = 0;
2391 if (mddev->degraded)
2392 /* If the array is degraded, then skipping spares is both
2393 * dangerous and fairly pointless.
2394 * Dangerous because a device that was removed from the array
2395 * might have a event_count that still looks up-to-date,
2396 * so it can be re-added without a resync.
2397 * Pointless because if there are any spares to skip,
2398 * then a recovery will happen and soon that array won't
2399 * be degraded any more and the spare can go back to sleep then.
2400 */
2401 nospares = 0;
2402
2403 sync_req = mddev->in_sync;
2404
2405 /* If this is just a dirty<->clean transition, and the array is clean
2406 * and 'events' is odd, we can roll back to the previous clean state */
2407 if (nospares
2408 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2409 && mddev->can_decrease_events
2410 && mddev->events != 1) {
2411 mddev->events--;
2412 mddev->can_decrease_events = 0;
2413 } else {
2414 /* otherwise we have to go forward and ... */
2415 mddev->events ++;
2416 mddev->can_decrease_events = nospares;
2417 }
2418
2419 /*
2420 * This 64-bit counter should never wrap.
2421 * Either we are in around ~1 trillion A.C., assuming
2422 * 1 reboot per second, or we have a bug...
2423 */
2424 WARN_ON(mddev->events == 0);
2425
2426 rdev_for_each(rdev, mddev) {
2427 if (rdev->badblocks.changed)
2428 any_badblocks_changed++;
2429 if (test_bit(Faulty, &rdev->flags))
2430 set_bit(FaultRecorded, &rdev->flags);
2431 }
2432
2433 sync_sbs(mddev, nospares);
2434 spin_unlock(&mddev->lock);
2435
2436 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2437 mdname(mddev), mddev->in_sync);
2438
2439 if (mddev->queue)
2440 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2441rewrite:
2442 bitmap_update_sb(mddev->bitmap);
2443 rdev_for_each(rdev, mddev) {
2444 char b[BDEVNAME_SIZE];
2445
2446 if (rdev->sb_loaded != 1)
2447 continue; /* no noise on spare devices */
2448
2449 if (!test_bit(Faulty, &rdev->flags)) {
2450 md_super_write(mddev,rdev,
2451 rdev->sb_start, rdev->sb_size,
2452 rdev->sb_page);
2453 pr_debug("md: (write) %s's sb offset: %llu\n",
2454 bdevname(rdev->bdev, b),
2455 (unsigned long long)rdev->sb_start);
2456 rdev->sb_events = mddev->events;
2457 if (rdev->badblocks.size) {
2458 md_super_write(mddev, rdev,
2459 rdev->badblocks.sector,
2460 rdev->badblocks.size << 9,
2461 rdev->bb_page);
2462 rdev->badblocks.size = 0;
2463 }
2464
2465 } else
2466 pr_debug("md: %s (skipping faulty)\n",
2467 bdevname(rdev->bdev, b));
2468
2469 if (mddev->level == LEVEL_MULTIPATH)
2470 /* only need to write one superblock... */
2471 break;
2472 }
2473 if (md_super_wait(mddev) < 0)
2474 goto rewrite;
2475 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2476
2477 if (mddev_is_clustered(mddev) && ret == 0)
2478 md_cluster_ops->metadata_update_finish(mddev);
2479
2480 if (mddev->in_sync != sync_req ||
2481 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2482 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2483 /* have to write it out again */
2484 goto repeat;
2485 wake_up(&mddev->sb_wait);
2486 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2487 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2488
2489 rdev_for_each(rdev, mddev) {
2490 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2491 clear_bit(Blocked, &rdev->flags);
2492
2493 if (any_badblocks_changed)
2494 ack_all_badblocks(&rdev->badblocks);
2495 clear_bit(BlockedBadBlocks, &rdev->flags);
2496 wake_up(&rdev->blocked_wait);
2497 }
2498}
2499EXPORT_SYMBOL(md_update_sb);
2500
2501static int add_bound_rdev(struct md_rdev *rdev)
2502{
2503 struct mddev *mddev = rdev->mddev;
2504 int err = 0;
2505 bool add_journal = test_bit(Journal, &rdev->flags);
2506
2507 if (!mddev->pers->hot_remove_disk || add_journal) {
2508 /* If there is hot_add_disk but no hot_remove_disk
2509 * then added disks for geometry changes,
2510 * and should be added immediately.
2511 */
2512 super_types[mddev->major_version].
2513 validate_super(mddev, rdev);
2514 if (add_journal)
2515 mddev_suspend(mddev);
2516 err = mddev->pers->hot_add_disk(mddev, rdev);
2517 if (add_journal)
2518 mddev_resume(mddev);
2519 if (err) {
2520 md_kick_rdev_from_array(rdev);
2521 return err;
2522 }
2523 }
2524 sysfs_notify_dirent_safe(rdev->sysfs_state);
2525
2526 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2527 if (mddev->degraded)
2528 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2529 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2530 md_new_event(mddev);
2531 md_wakeup_thread(mddev->thread);
2532 return 0;
2533}
2534
2535/* words written to sysfs files may, or may not, be \n terminated.
2536 * We want to accept with case. For this we use cmd_match.
2537 */
2538static int cmd_match(const char *cmd, const char *str)
2539{
2540 /* See if cmd, written into a sysfs file, matches
2541 * str. They must either be the same, or cmd can
2542 * have a trailing newline
2543 */
2544 while (*cmd && *str && *cmd == *str) {
2545 cmd++;
2546 str++;
2547 }
2548 if (*cmd == '\n')
2549 cmd++;
2550 if (*str || *cmd)
2551 return 0;
2552 return 1;
2553}
2554
2555struct rdev_sysfs_entry {
2556 struct attribute attr;
2557 ssize_t (*show)(struct md_rdev *, char *);
2558 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2559};
2560
2561static ssize_t
2562state_show(struct md_rdev *rdev, char *page)
2563{
2564 char *sep = ",";
2565 size_t len = 0;
2566 unsigned long flags = ACCESS_ONCE(rdev->flags);
2567
2568 if (test_bit(Faulty, &flags) ||
2569 (!test_bit(ExternalBbl, &flags) &&
2570 rdev->badblocks.unacked_exist))
2571 len += sprintf(page+len, "faulty%s", sep);
2572 if (test_bit(In_sync, &flags))
2573 len += sprintf(page+len, "in_sync%s", sep);
2574 if (test_bit(Journal, &flags))
2575 len += sprintf(page+len, "journal%s", sep);
2576 if (test_bit(WriteMostly, &flags))
2577 len += sprintf(page+len, "write_mostly%s", sep);
2578 if (test_bit(Blocked, &flags) ||
2579 (rdev->badblocks.unacked_exist
2580 && !test_bit(Faulty, &flags)))
2581 len += sprintf(page+len, "blocked%s", sep);
2582 if (!test_bit(Faulty, &flags) &&
2583 !test_bit(Journal, &flags) &&
2584 !test_bit(In_sync, &flags))
2585 len += sprintf(page+len, "spare%s", sep);
2586 if (test_bit(WriteErrorSeen, &flags))
2587 len += sprintf(page+len, "write_error%s", sep);
2588 if (test_bit(WantReplacement, &flags))
2589 len += sprintf(page+len, "want_replacement%s", sep);
2590 if (test_bit(Replacement, &flags))
2591 len += sprintf(page+len, "replacement%s", sep);
2592 if (test_bit(ExternalBbl, &flags))
2593 len += sprintf(page+len, "external_bbl%s", sep);
2594 if (test_bit(FailFast, &flags))
2595 len += sprintf(page+len, "failfast%s", sep);
2596
2597 if (len)
2598 len -= strlen(sep);
2599
2600 return len+sprintf(page+len, "\n");
2601}
2602
2603static ssize_t
2604state_store(struct md_rdev *rdev, const char *buf, size_t len)
2605{
2606 /* can write
2607 * faulty - simulates an error
2608 * remove - disconnects the device
2609 * writemostly - sets write_mostly
2610 * -writemostly - clears write_mostly
2611 * blocked - sets the Blocked flags
2612 * -blocked - clears the Blocked and possibly simulates an error
2613 * insync - sets Insync providing device isn't active
2614 * -insync - clear Insync for a device with a slot assigned,
2615 * so that it gets rebuilt based on bitmap
2616 * write_error - sets WriteErrorSeen
2617 * -write_error - clears WriteErrorSeen
2618 * {,-}failfast - set/clear FailFast
2619 */
2620 int err = -EINVAL;
2621 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2622 md_error(rdev->mddev, rdev);
2623 if (test_bit(Faulty, &rdev->flags))
2624 err = 0;
2625 else
2626 err = -EBUSY;
2627 } else if (cmd_match(buf, "remove")) {
2628 if (rdev->mddev->pers) {
2629 clear_bit(Blocked, &rdev->flags);
2630 remove_and_add_spares(rdev->mddev, rdev);
2631 }
2632 if (rdev->raid_disk >= 0)
2633 err = -EBUSY;
2634 else {
2635 struct mddev *mddev = rdev->mddev;
2636 err = 0;
2637 if (mddev_is_clustered(mddev))
2638 err = md_cluster_ops->remove_disk(mddev, rdev);
2639
2640 if (err == 0) {
2641 md_kick_rdev_from_array(rdev);
2642 if (mddev->pers) {
2643 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2644 md_wakeup_thread(mddev->thread);
2645 }
2646 md_new_event(mddev);
2647 }
2648 }
2649 } else if (cmd_match(buf, "writemostly")) {
2650 set_bit(WriteMostly, &rdev->flags);
2651 err = 0;
2652 } else if (cmd_match(buf, "-writemostly")) {
2653 clear_bit(WriteMostly, &rdev->flags);
2654 err = 0;
2655 } else if (cmd_match(buf, "blocked")) {
2656 set_bit(Blocked, &rdev->flags);
2657 err = 0;
2658 } else if (cmd_match(buf, "-blocked")) {
2659 if (!test_bit(Faulty, &rdev->flags) &&
2660 !test_bit(ExternalBbl, &rdev->flags) &&
2661 rdev->badblocks.unacked_exist) {
2662 /* metadata handler doesn't understand badblocks,
2663 * so we need to fail the device
2664 */
2665 md_error(rdev->mddev, rdev);
2666 }
2667 clear_bit(Blocked, &rdev->flags);
2668 clear_bit(BlockedBadBlocks, &rdev->flags);
2669 wake_up(&rdev->blocked_wait);
2670 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2671 md_wakeup_thread(rdev->mddev->thread);
2672
2673 err = 0;
2674 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2675 set_bit(In_sync, &rdev->flags);
2676 err = 0;
2677 } else if (cmd_match(buf, "failfast")) {
2678 set_bit(FailFast, &rdev->flags);
2679 err = 0;
2680 } else if (cmd_match(buf, "-failfast")) {
2681 clear_bit(FailFast, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2684 !test_bit(Journal, &rdev->flags)) {
2685 if (rdev->mddev->pers == NULL) {
2686 clear_bit(In_sync, &rdev->flags);
2687 rdev->saved_raid_disk = rdev->raid_disk;
2688 rdev->raid_disk = -1;
2689 err = 0;
2690 }
2691 } else if (cmd_match(buf, "write_error")) {
2692 set_bit(WriteErrorSeen, &rdev->flags);
2693 err = 0;
2694 } else if (cmd_match(buf, "-write_error")) {
2695 clear_bit(WriteErrorSeen, &rdev->flags);
2696 err = 0;
2697 } else if (cmd_match(buf, "want_replacement")) {
2698 /* Any non-spare device that is not a replacement can
2699 * become want_replacement at any time, but we then need to
2700 * check if recovery is needed.
2701 */
2702 if (rdev->raid_disk >= 0 &&
2703 !test_bit(Journal, &rdev->flags) &&
2704 !test_bit(Replacement, &rdev->flags))
2705 set_bit(WantReplacement, &rdev->flags);
2706 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2707 md_wakeup_thread(rdev->mddev->thread);
2708 err = 0;
2709 } else if (cmd_match(buf, "-want_replacement")) {
2710 /* Clearing 'want_replacement' is always allowed.
2711 * Once replacements starts it is too late though.
2712 */
2713 err = 0;
2714 clear_bit(WantReplacement, &rdev->flags);
2715 } else if (cmd_match(buf, "replacement")) {
2716 /* Can only set a device as a replacement when array has not
2717 * yet been started. Once running, replacement is automatic
2718 * from spares, or by assigning 'slot'.
2719 */
2720 if (rdev->mddev->pers)
2721 err = -EBUSY;
2722 else {
2723 set_bit(Replacement, &rdev->flags);
2724 err = 0;
2725 }
2726 } else if (cmd_match(buf, "-replacement")) {
2727 /* Similarly, can only clear Replacement before start */
2728 if (rdev->mddev->pers)
2729 err = -EBUSY;
2730 else {
2731 clear_bit(Replacement, &rdev->flags);
2732 err = 0;
2733 }
2734 } else if (cmd_match(buf, "re-add")) {
2735 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2736 /* clear_bit is performed _after_ all the devices
2737 * have their local Faulty bit cleared. If any writes
2738 * happen in the meantime in the local node, they
2739 * will land in the local bitmap, which will be synced
2740 * by this node eventually
2741 */
2742 if (!mddev_is_clustered(rdev->mddev) ||
2743 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2744 clear_bit(Faulty, &rdev->flags);
2745 err = add_bound_rdev(rdev);
2746 }
2747 } else
2748 err = -EBUSY;
2749 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2750 set_bit(ExternalBbl, &rdev->flags);
2751 rdev->badblocks.shift = 0;
2752 err = 0;
2753 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2754 clear_bit(ExternalBbl, &rdev->flags);
2755 err = 0;
2756 }
2757 if (!err)
2758 sysfs_notify_dirent_safe(rdev->sysfs_state);
2759 return err ? err : len;
2760}
2761static struct rdev_sysfs_entry rdev_state =
2762__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2763
2764static ssize_t
2765errors_show(struct md_rdev *rdev, char *page)
2766{
2767 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2768}
2769
2770static ssize_t
2771errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2772{
2773 unsigned int n;
2774 int rv;
2775
2776 rv = kstrtouint(buf, 10, &n);
2777 if (rv < 0)
2778 return rv;
2779 atomic_set(&rdev->corrected_errors, n);
2780 return len;
2781}
2782static struct rdev_sysfs_entry rdev_errors =
2783__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2784
2785static ssize_t
2786slot_show(struct md_rdev *rdev, char *page)
2787{
2788 if (test_bit(Journal, &rdev->flags))
2789 return sprintf(page, "journal\n");
2790 else if (rdev->raid_disk < 0)
2791 return sprintf(page, "none\n");
2792 else
2793 return sprintf(page, "%d\n", rdev->raid_disk);
2794}
2795
2796static ssize_t
2797slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2798{
2799 int slot;
2800 int err;
2801
2802 if (test_bit(Journal, &rdev->flags))
2803 return -EBUSY;
2804 if (strncmp(buf, "none", 4)==0)
2805 slot = -1;
2806 else {
2807 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2808 if (err < 0)
2809 return err;
2810 }
2811 if (rdev->mddev->pers && slot == -1) {
2812 /* Setting 'slot' on an active array requires also
2813 * updating the 'rd%d' link, and communicating
2814 * with the personality with ->hot_*_disk.
2815 * For now we only support removing
2816 * failed/spare devices. This normally happens automatically,
2817 * but not when the metadata is externally managed.
2818 */
2819 if (rdev->raid_disk == -1)
2820 return -EEXIST;
2821 /* personality does all needed checks */
2822 if (rdev->mddev->pers->hot_remove_disk == NULL)
2823 return -EINVAL;
2824 clear_bit(Blocked, &rdev->flags);
2825 remove_and_add_spares(rdev->mddev, rdev);
2826 if (rdev->raid_disk >= 0)
2827 return -EBUSY;
2828 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2829 md_wakeup_thread(rdev->mddev->thread);
2830 } else if (rdev->mddev->pers) {
2831 /* Activating a spare .. or possibly reactivating
2832 * if we ever get bitmaps working here.
2833 */
2834 int err;
2835
2836 if (rdev->raid_disk != -1)
2837 return -EBUSY;
2838
2839 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2840 return -EBUSY;
2841
2842 if (rdev->mddev->pers->hot_add_disk == NULL)
2843 return -EINVAL;
2844
2845 if (slot >= rdev->mddev->raid_disks &&
2846 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2847 return -ENOSPC;
2848
2849 rdev->raid_disk = slot;
2850 if (test_bit(In_sync, &rdev->flags))
2851 rdev->saved_raid_disk = slot;
2852 else
2853 rdev->saved_raid_disk = -1;
2854 clear_bit(In_sync, &rdev->flags);
2855 clear_bit(Bitmap_sync, &rdev->flags);
2856 err = rdev->mddev->pers->
2857 hot_add_disk(rdev->mddev, rdev);
2858 if (err) {
2859 rdev->raid_disk = -1;
2860 return err;
2861 } else
2862 sysfs_notify_dirent_safe(rdev->sysfs_state);
2863 if (sysfs_link_rdev(rdev->mddev, rdev))
2864 /* failure here is OK */;
2865 /* don't wakeup anyone, leave that to userspace. */
2866 } else {
2867 if (slot >= rdev->mddev->raid_disks &&
2868 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2869 return -ENOSPC;
2870 rdev->raid_disk = slot;
2871 /* assume it is working */
2872 clear_bit(Faulty, &rdev->flags);
2873 clear_bit(WriteMostly, &rdev->flags);
2874 set_bit(In_sync, &rdev->flags);
2875 sysfs_notify_dirent_safe(rdev->sysfs_state);
2876 }
2877 return len;
2878}
2879
2880static struct rdev_sysfs_entry rdev_slot =
2881__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2882
2883static ssize_t
2884offset_show(struct md_rdev *rdev, char *page)
2885{
2886 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2887}
2888
2889static ssize_t
2890offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2891{
2892 unsigned long long offset;
2893 if (kstrtoull(buf, 10, &offset) < 0)
2894 return -EINVAL;
2895 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2896 return -EBUSY;
2897 if (rdev->sectors && rdev->mddev->external)
2898 /* Must set offset before size, so overlap checks
2899 * can be sane */
2900 return -EBUSY;
2901 rdev->data_offset = offset;
2902 rdev->new_data_offset = offset;
2903 return len;
2904}
2905
2906static struct rdev_sysfs_entry rdev_offset =
2907__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2908
2909static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2910{
2911 return sprintf(page, "%llu\n",
2912 (unsigned long long)rdev->new_data_offset);
2913}
2914
2915static ssize_t new_offset_store(struct md_rdev *rdev,
2916 const char *buf, size_t len)
2917{
2918 unsigned long long new_offset;
2919 struct mddev *mddev = rdev->mddev;
2920
2921 if (kstrtoull(buf, 10, &new_offset) < 0)
2922 return -EINVAL;
2923
2924 if (mddev->sync_thread ||
2925 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2926 return -EBUSY;
2927 if (new_offset == rdev->data_offset)
2928 /* reset is always permitted */
2929 ;
2930 else if (new_offset > rdev->data_offset) {
2931 /* must not push array size beyond rdev_sectors */
2932 if (new_offset - rdev->data_offset
2933 + mddev->dev_sectors > rdev->sectors)
2934 return -E2BIG;
2935 }
2936 /* Metadata worries about other space details. */
2937
2938 /* decreasing the offset is inconsistent with a backwards
2939 * reshape.
2940 */
2941 if (new_offset < rdev->data_offset &&
2942 mddev->reshape_backwards)
2943 return -EINVAL;
2944 /* Increasing offset is inconsistent with forwards
2945 * reshape. reshape_direction should be set to
2946 * 'backwards' first.
2947 */
2948 if (new_offset > rdev->data_offset &&
2949 !mddev->reshape_backwards)
2950 return -EINVAL;
2951
2952 if (mddev->pers && mddev->persistent &&
2953 !super_types[mddev->major_version]
2954 .allow_new_offset(rdev, new_offset))
2955 return -E2BIG;
2956 rdev->new_data_offset = new_offset;
2957 if (new_offset > rdev->data_offset)
2958 mddev->reshape_backwards = 1;
2959 else if (new_offset < rdev->data_offset)
2960 mddev->reshape_backwards = 0;
2961
2962 return len;
2963}
2964static struct rdev_sysfs_entry rdev_new_offset =
2965__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2966
2967static ssize_t
2968rdev_size_show(struct md_rdev *rdev, char *page)
2969{
2970 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2971}
2972
2973static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2974{
2975 /* check if two start/length pairs overlap */
2976 if (s1+l1 <= s2)
2977 return 0;
2978 if (s2+l2 <= s1)
2979 return 0;
2980 return 1;
2981}
2982
2983static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2984{
2985 unsigned long long blocks;
2986 sector_t new;
2987
2988 if (kstrtoull(buf, 10, &blocks) < 0)
2989 return -EINVAL;
2990
2991 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2992 return -EINVAL; /* sector conversion overflow */
2993
2994 new = blocks * 2;
2995 if (new != blocks * 2)
2996 return -EINVAL; /* unsigned long long to sector_t overflow */
2997
2998 *sectors = new;
2999 return 0;
3000}
3001
3002static ssize_t
3003rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3004{
3005 struct mddev *my_mddev = rdev->mddev;
3006 sector_t oldsectors = rdev->sectors;
3007 sector_t sectors;
3008
3009 if (test_bit(Journal, &rdev->flags))
3010 return -EBUSY;
3011 if (strict_blocks_to_sectors(buf, §ors) < 0)
3012 return -EINVAL;
3013 if (rdev->data_offset != rdev->new_data_offset)
3014 return -EINVAL; /* too confusing */
3015 if (my_mddev->pers && rdev->raid_disk >= 0) {
3016 if (my_mddev->persistent) {
3017 sectors = super_types[my_mddev->major_version].
3018 rdev_size_change(rdev, sectors);
3019 if (!sectors)
3020 return -EBUSY;
3021 } else if (!sectors)
3022 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3023 rdev->data_offset;
3024 if (!my_mddev->pers->resize)
3025 /* Cannot change size for RAID0 or Linear etc */
3026 return -EINVAL;
3027 }
3028 if (sectors < my_mddev->dev_sectors)
3029 return -EINVAL; /* component must fit device */
3030
3031 rdev->sectors = sectors;
3032 if (sectors > oldsectors && my_mddev->external) {
3033 /* Need to check that all other rdevs with the same
3034 * ->bdev do not overlap. 'rcu' is sufficient to walk
3035 * the rdev lists safely.
3036 * This check does not provide a hard guarantee, it
3037 * just helps avoid dangerous mistakes.
3038 */
3039 struct mddev *mddev;
3040 int overlap = 0;
3041 struct list_head *tmp;
3042
3043 rcu_read_lock();
3044 for_each_mddev(mddev, tmp) {
3045 struct md_rdev *rdev2;
3046
3047 rdev_for_each(rdev2, mddev)
3048 if (rdev->bdev == rdev2->bdev &&
3049 rdev != rdev2 &&
3050 overlaps(rdev->data_offset, rdev->sectors,
3051 rdev2->data_offset,
3052 rdev2->sectors)) {
3053 overlap = 1;
3054 break;
3055 }
3056 if (overlap) {
3057 mddev_put(mddev);
3058 break;
3059 }
3060 }
3061 rcu_read_unlock();
3062 if (overlap) {
3063 /* Someone else could have slipped in a size
3064 * change here, but doing so is just silly.
3065 * We put oldsectors back because we *know* it is
3066 * safe, and trust userspace not to race with
3067 * itself
3068 */
3069 rdev->sectors = oldsectors;
3070 return -EBUSY;
3071 }
3072 }
3073 return len;
3074}
3075
3076static struct rdev_sysfs_entry rdev_size =
3077__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3078
3079static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3080{
3081 unsigned long long recovery_start = rdev->recovery_offset;
3082
3083 if (test_bit(In_sync, &rdev->flags) ||
3084 recovery_start == MaxSector)
3085 return sprintf(page, "none\n");
3086
3087 return sprintf(page, "%llu\n", recovery_start);
3088}
3089
3090static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3091{
3092 unsigned long long recovery_start;
3093
3094 if (cmd_match(buf, "none"))
3095 recovery_start = MaxSector;
3096 else if (kstrtoull(buf, 10, &recovery_start))
3097 return -EINVAL;
3098
3099 if (rdev->mddev->pers &&
3100 rdev->raid_disk >= 0)
3101 return -EBUSY;
3102
3103 rdev->recovery_offset = recovery_start;
3104 if (recovery_start == MaxSector)
3105 set_bit(In_sync, &rdev->flags);
3106 else
3107 clear_bit(In_sync, &rdev->flags);
3108 return len;
3109}
3110
3111static struct rdev_sysfs_entry rdev_recovery_start =
3112__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3113
3114/* sysfs access to bad-blocks list.
3115 * We present two files.
3116 * 'bad-blocks' lists sector numbers and lengths of ranges that
3117 * are recorded as bad. The list is truncated to fit within
3118 * the one-page limit of sysfs.
3119 * Writing "sector length" to this file adds an acknowledged
3120 * bad block list.
3121 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3122 * been acknowledged. Writing to this file adds bad blocks
3123 * without acknowledging them. This is largely for testing.
3124 */
3125static ssize_t bb_show(struct md_rdev *rdev, char *page)
3126{
3127 return badblocks_show(&rdev->badblocks, page, 0);
3128}
3129static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3130{
3131 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3132 /* Maybe that ack was all we needed */
3133 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3134 wake_up(&rdev->blocked_wait);
3135 return rv;
3136}
3137static struct rdev_sysfs_entry rdev_bad_blocks =
3138__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3139
3140static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3141{
3142 return badblocks_show(&rdev->badblocks, page, 1);
3143}
3144static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3145{
3146 return badblocks_store(&rdev->badblocks, page, len, 1);
3147}
3148static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3149__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3150
3151static struct attribute *rdev_default_attrs[] = {
3152 &rdev_state.attr,
3153 &rdev_errors.attr,
3154 &rdev_slot.attr,
3155 &rdev_offset.attr,
3156 &rdev_new_offset.attr,
3157 &rdev_size.attr,
3158 &rdev_recovery_start.attr,
3159 &rdev_bad_blocks.attr,
3160 &rdev_unack_bad_blocks.attr,
3161 NULL,
3162};
3163static ssize_t
3164rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3165{
3166 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3167 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3168
3169 if (!entry->show)
3170 return -EIO;
3171 if (!rdev->mddev)
3172 return -EBUSY;
3173 return entry->show(rdev, page);
3174}
3175
3176static ssize_t
3177rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3178 const char *page, size_t length)
3179{
3180 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3181 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3182 ssize_t rv;
3183 struct mddev *mddev = rdev->mddev;
3184
3185 if (!entry->store)
3186 return -EIO;
3187 if (!capable(CAP_SYS_ADMIN))
3188 return -EACCES;
3189 rv = mddev ? mddev_lock(mddev): -EBUSY;
3190 if (!rv) {
3191 if (rdev->mddev == NULL)
3192 rv = -EBUSY;
3193 else
3194 rv = entry->store(rdev, page, length);
3195 mddev_unlock(mddev);
3196 }
3197 return rv;
3198}
3199
3200static void rdev_free(struct kobject *ko)
3201{
3202 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3203 kfree(rdev);
3204}
3205static const struct sysfs_ops rdev_sysfs_ops = {
3206 .show = rdev_attr_show,
3207 .store = rdev_attr_store,
3208};
3209static struct kobj_type rdev_ktype = {
3210 .release = rdev_free,
3211 .sysfs_ops = &rdev_sysfs_ops,
3212 .default_attrs = rdev_default_attrs,
3213};
3214
3215int md_rdev_init(struct md_rdev *rdev)
3216{
3217 rdev->desc_nr = -1;
3218 rdev->saved_raid_disk = -1;
3219 rdev->raid_disk = -1;
3220 rdev->flags = 0;
3221 rdev->data_offset = 0;
3222 rdev->new_data_offset = 0;
3223 rdev->sb_events = 0;
3224 rdev->last_read_error = 0;
3225 rdev->sb_loaded = 0;
3226 rdev->bb_page = NULL;
3227 atomic_set(&rdev->nr_pending, 0);
3228 atomic_set(&rdev->read_errors, 0);
3229 atomic_set(&rdev->corrected_errors, 0);
3230
3231 INIT_LIST_HEAD(&rdev->same_set);
3232 init_waitqueue_head(&rdev->blocked_wait);
3233
3234 /* Add space to store bad block list.
3235 * This reserves the space even on arrays where it cannot
3236 * be used - I wonder if that matters
3237 */
3238 return badblocks_init(&rdev->badblocks, 0);
3239}
3240EXPORT_SYMBOL_GPL(md_rdev_init);
3241/*
3242 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3243 *
3244 * mark the device faulty if:
3245 *
3246 * - the device is nonexistent (zero size)
3247 * - the device has no valid superblock
3248 *
3249 * a faulty rdev _never_ has rdev->sb set.
3250 */
3251static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3252{
3253 char b[BDEVNAME_SIZE];
3254 int err;
3255 struct md_rdev *rdev;
3256 sector_t size;
3257
3258 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3259 if (!rdev)
3260 return ERR_PTR(-ENOMEM);
3261
3262 err = md_rdev_init(rdev);
3263 if (err)
3264 goto abort_free;
3265 err = alloc_disk_sb(rdev);
3266 if (err)
3267 goto abort_free;
3268
3269 err = lock_rdev(rdev, newdev, super_format == -2);
3270 if (err)
3271 goto abort_free;
3272
3273 kobject_init(&rdev->kobj, &rdev_ktype);
3274
3275 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3276 if (!size) {
3277 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3278 bdevname(rdev->bdev,b));
3279 err = -EINVAL;
3280 goto abort_free;
3281 }
3282
3283 if (super_format >= 0) {
3284 err = super_types[super_format].
3285 load_super(rdev, NULL, super_minor);
3286 if (err == -EINVAL) {
3287 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3288 bdevname(rdev->bdev,b),
3289 super_format, super_minor);
3290 goto abort_free;
3291 }
3292 if (err < 0) {
3293 pr_warn("md: could not read %s's sb, not importing!\n",
3294 bdevname(rdev->bdev,b));
3295 goto abort_free;
3296 }
3297 }
3298
3299 return rdev;
3300
3301abort_free:
3302 if (rdev->bdev)
3303 unlock_rdev(rdev);
3304 md_rdev_clear(rdev);
3305 kfree(rdev);
3306 return ERR_PTR(err);
3307}
3308
3309/*
3310 * Check a full RAID array for plausibility
3311 */
3312
3313static void analyze_sbs(struct mddev *mddev)
3314{
3315 int i;
3316 struct md_rdev *rdev, *freshest, *tmp;
3317 char b[BDEVNAME_SIZE];
3318
3319 freshest = NULL;
3320 rdev_for_each_safe(rdev, tmp, mddev)
3321 switch (super_types[mddev->major_version].
3322 load_super(rdev, freshest, mddev->minor_version)) {
3323 case 1:
3324 freshest = rdev;
3325 break;
3326 case 0:
3327 break;
3328 default:
3329 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3330 bdevname(rdev->bdev,b));
3331 md_kick_rdev_from_array(rdev);
3332 }
3333
3334 super_types[mddev->major_version].
3335 validate_super(mddev, freshest);
3336
3337 i = 0;
3338 rdev_for_each_safe(rdev, tmp, mddev) {
3339 if (mddev->max_disks &&
3340 (rdev->desc_nr >= mddev->max_disks ||
3341 i > mddev->max_disks)) {
3342 pr_warn("md: %s: %s: only %d devices permitted\n",
3343 mdname(mddev), bdevname(rdev->bdev, b),
3344 mddev->max_disks);
3345 md_kick_rdev_from_array(rdev);
3346 continue;
3347 }
3348 if (rdev != freshest) {
3349 if (super_types[mddev->major_version].
3350 validate_super(mddev, rdev)) {
3351 pr_warn("md: kicking non-fresh %s from array!\n",
3352 bdevname(rdev->bdev,b));
3353 md_kick_rdev_from_array(rdev);
3354 continue;
3355 }
3356 }
3357 if (mddev->level == LEVEL_MULTIPATH) {
3358 rdev->desc_nr = i++;
3359 rdev->raid_disk = rdev->desc_nr;
3360 set_bit(In_sync, &rdev->flags);
3361 } else if (rdev->raid_disk >=
3362 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3363 !test_bit(Journal, &rdev->flags)) {
3364 rdev->raid_disk = -1;
3365 clear_bit(In_sync, &rdev->flags);
3366 }
3367 }
3368}
3369
3370/* Read a fixed-point number.
3371 * Numbers in sysfs attributes should be in "standard" units where
3372 * possible, so time should be in seconds.
3373 * However we internally use a a much smaller unit such as
3374 * milliseconds or jiffies.
3375 * This function takes a decimal number with a possible fractional
3376 * component, and produces an integer which is the result of
3377 * multiplying that number by 10^'scale'.
3378 * all without any floating-point arithmetic.
3379 */
3380int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3381{
3382 unsigned long result = 0;
3383 long decimals = -1;
3384 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3385 if (*cp == '.')
3386 decimals = 0;
3387 else if (decimals < scale) {
3388 unsigned int value;
3389 value = *cp - '0';
3390 result = result * 10 + value;
3391 if (decimals >= 0)
3392 decimals++;
3393 }
3394 cp++;
3395 }
3396 if (*cp == '\n')
3397 cp++;
3398 if (*cp)
3399 return -EINVAL;
3400 if (decimals < 0)
3401 decimals = 0;
3402 while (decimals < scale) {
3403 result *= 10;
3404 decimals ++;
3405 }
3406 *res = result;
3407 return 0;
3408}
3409
3410static ssize_t
3411safe_delay_show(struct mddev *mddev, char *page)
3412{
3413 int msec = (mddev->safemode_delay*1000)/HZ;
3414 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3415}
3416static ssize_t
3417safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3418{
3419 unsigned long msec;
3420
3421 if (mddev_is_clustered(mddev)) {
3422 pr_warn("md: Safemode is disabled for clustered mode\n");
3423 return -EINVAL;
3424 }
3425
3426 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3427 return -EINVAL;
3428 if (msec == 0)
3429 mddev->safemode_delay = 0;
3430 else {
3431 unsigned long old_delay = mddev->safemode_delay;
3432 unsigned long new_delay = (msec*HZ)/1000;
3433
3434 if (new_delay == 0)
3435 new_delay = 1;
3436 mddev->safemode_delay = new_delay;
3437 if (new_delay < old_delay || old_delay == 0)
3438 mod_timer(&mddev->safemode_timer, jiffies+1);
3439 }
3440 return len;
3441}
3442static struct md_sysfs_entry md_safe_delay =
3443__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3444
3445static ssize_t
3446level_show(struct mddev *mddev, char *page)
3447{
3448 struct md_personality *p;
3449 int ret;
3450 spin_lock(&mddev->lock);
3451 p = mddev->pers;
3452 if (p)
3453 ret = sprintf(page, "%s\n", p->name);
3454 else if (mddev->clevel[0])
3455 ret = sprintf(page, "%s\n", mddev->clevel);
3456 else if (mddev->level != LEVEL_NONE)
3457 ret = sprintf(page, "%d\n", mddev->level);
3458 else
3459 ret = 0;
3460 spin_unlock(&mddev->lock);
3461 return ret;
3462}
3463
3464static ssize_t
3465level_store(struct mddev *mddev, const char *buf, size_t len)
3466{
3467 char clevel[16];
3468 ssize_t rv;
3469 size_t slen = len;
3470 struct md_personality *pers, *oldpers;
3471 long level;
3472 void *priv, *oldpriv;
3473 struct md_rdev *rdev;
3474
3475 if (slen == 0 || slen >= sizeof(clevel))
3476 return -EINVAL;
3477
3478 rv = mddev_lock(mddev);
3479 if (rv)
3480 return rv;
3481
3482 if (mddev->pers == NULL) {
3483 strncpy(mddev->clevel, buf, slen);
3484 if (mddev->clevel[slen-1] == '\n')
3485 slen--;
3486 mddev->clevel[slen] = 0;
3487 mddev->level = LEVEL_NONE;
3488 rv = len;
3489 goto out_unlock;
3490 }
3491 rv = -EROFS;
3492 if (mddev->ro)
3493 goto out_unlock;
3494
3495 /* request to change the personality. Need to ensure:
3496 * - array is not engaged in resync/recovery/reshape
3497 * - old personality can be suspended
3498 * - new personality will access other array.
3499 */
3500
3501 rv = -EBUSY;
3502 if (mddev->sync_thread ||
3503 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3504 mddev->reshape_position != MaxSector ||
3505 mddev->sysfs_active)
3506 goto out_unlock;
3507
3508 rv = -EINVAL;
3509 if (!mddev->pers->quiesce) {
3510 pr_warn("md: %s: %s does not support online personality change\n",
3511 mdname(mddev), mddev->pers->name);
3512 goto out_unlock;
3513 }
3514
3515 /* Now find the new personality */
3516 strncpy(clevel, buf, slen);
3517 if (clevel[slen-1] == '\n')
3518 slen--;
3519 clevel[slen] = 0;
3520 if (kstrtol(clevel, 10, &level))
3521 level = LEVEL_NONE;
3522
3523 if (request_module("md-%s", clevel) != 0)
3524 request_module("md-level-%s", clevel);
3525 spin_lock(&pers_lock);
3526 pers = find_pers(level, clevel);
3527 if (!pers || !try_module_get(pers->owner)) {
3528 spin_unlock(&pers_lock);
3529 pr_warn("md: personality %s not loaded\n", clevel);
3530 rv = -EINVAL;
3531 goto out_unlock;
3532 }
3533 spin_unlock(&pers_lock);
3534
3535 if (pers == mddev->pers) {
3536 /* Nothing to do! */
3537 module_put(pers->owner);
3538 rv = len;
3539 goto out_unlock;
3540 }
3541 if (!pers->takeover) {
3542 module_put(pers->owner);
3543 pr_warn("md: %s: %s does not support personality takeover\n",
3544 mdname(mddev), clevel);
3545 rv = -EINVAL;
3546 goto out_unlock;
3547 }
3548
3549 rdev_for_each(rdev, mddev)
3550 rdev->new_raid_disk = rdev->raid_disk;
3551
3552 /* ->takeover must set new_* and/or delta_disks
3553 * if it succeeds, and may set them when it fails.
3554 */
3555 priv = pers->takeover(mddev);
3556 if (IS_ERR(priv)) {
3557 mddev->new_level = mddev->level;
3558 mddev->new_layout = mddev->layout;
3559 mddev->new_chunk_sectors = mddev->chunk_sectors;
3560 mddev->raid_disks -= mddev->delta_disks;
3561 mddev->delta_disks = 0;
3562 mddev->reshape_backwards = 0;
3563 module_put(pers->owner);
3564 pr_warn("md: %s: %s would not accept array\n",
3565 mdname(mddev), clevel);
3566 rv = PTR_ERR(priv);
3567 goto out_unlock;
3568 }
3569
3570 /* Looks like we have a winner */
3571 mddev_suspend(mddev);
3572 mddev_detach(mddev);
3573
3574 spin_lock(&mddev->lock);
3575 oldpers = mddev->pers;
3576 oldpriv = mddev->private;
3577 mddev->pers = pers;
3578 mddev->private = priv;
3579 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3580 mddev->level = mddev->new_level;
3581 mddev->layout = mddev->new_layout;
3582 mddev->chunk_sectors = mddev->new_chunk_sectors;
3583 mddev->delta_disks = 0;
3584 mddev->reshape_backwards = 0;
3585 mddev->degraded = 0;
3586 spin_unlock(&mddev->lock);
3587
3588 if (oldpers->sync_request == NULL &&
3589 mddev->external) {
3590 /* We are converting from a no-redundancy array
3591 * to a redundancy array and metadata is managed
3592 * externally so we need to be sure that writes
3593 * won't block due to a need to transition
3594 * clean->dirty
3595 * until external management is started.
3596 */
3597 mddev->in_sync = 0;
3598 mddev->safemode_delay = 0;
3599 mddev->safemode = 0;
3600 }
3601
3602 oldpers->free(mddev, oldpriv);
3603
3604 if (oldpers->sync_request == NULL &&
3605 pers->sync_request != NULL) {
3606 /* need to add the md_redundancy_group */
3607 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3608 pr_warn("md: cannot register extra attributes for %s\n",
3609 mdname(mddev));
3610 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3611 }
3612 if (oldpers->sync_request != NULL &&
3613 pers->sync_request == NULL) {
3614 /* need to remove the md_redundancy_group */
3615 if (mddev->to_remove == NULL)
3616 mddev->to_remove = &md_redundancy_group;
3617 }
3618
3619 module_put(oldpers->owner);
3620
3621 rdev_for_each(rdev, mddev) {
3622 if (rdev->raid_disk < 0)
3623 continue;
3624 if (rdev->new_raid_disk >= mddev->raid_disks)
3625 rdev->new_raid_disk = -1;
3626 if (rdev->new_raid_disk == rdev->raid_disk)
3627 continue;
3628 sysfs_unlink_rdev(mddev, rdev);
3629 }
3630 rdev_for_each(rdev, mddev) {
3631 if (rdev->raid_disk < 0)
3632 continue;
3633 if (rdev->new_raid_disk == rdev->raid_disk)
3634 continue;
3635 rdev->raid_disk = rdev->new_raid_disk;
3636 if (rdev->raid_disk < 0)
3637 clear_bit(In_sync, &rdev->flags);
3638 else {
3639 if (sysfs_link_rdev(mddev, rdev))
3640 pr_warn("md: cannot register rd%d for %s after level change\n",
3641 rdev->raid_disk, mdname(mddev));
3642 }
3643 }
3644
3645 if (pers->sync_request == NULL) {
3646 /* this is now an array without redundancy, so
3647 * it must always be in_sync
3648 */
3649 mddev->in_sync = 1;
3650 del_timer_sync(&mddev->safemode_timer);
3651 }
3652 blk_set_stacking_limits(&mddev->queue->limits);
3653 pers->run(mddev);
3654 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3655 mddev_resume(mddev);
3656 if (!mddev->thread)
3657 md_update_sb(mddev, 1);
3658 sysfs_notify(&mddev->kobj, NULL, "level");
3659 md_new_event(mddev);
3660 rv = len;
3661out_unlock:
3662 mddev_unlock(mddev);
3663 return rv;
3664}
3665
3666static struct md_sysfs_entry md_level =
3667__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3668
3669static ssize_t
3670layout_show(struct mddev *mddev, char *page)
3671{
3672 /* just a number, not meaningful for all levels */
3673 if (mddev->reshape_position != MaxSector &&
3674 mddev->layout != mddev->new_layout)
3675 return sprintf(page, "%d (%d)\n",
3676 mddev->new_layout, mddev->layout);
3677 return sprintf(page, "%d\n", mddev->layout);
3678}
3679
3680static ssize_t
3681layout_store(struct mddev *mddev, const char *buf, size_t len)
3682{
3683 unsigned int n;
3684 int err;
3685
3686 err = kstrtouint(buf, 10, &n);
3687 if (err < 0)
3688 return err;
3689 err = mddev_lock(mddev);
3690 if (err)
3691 return err;
3692
3693 if (mddev->pers) {
3694 if (mddev->pers->check_reshape == NULL)
3695 err = -EBUSY;
3696 else if (mddev->ro)
3697 err = -EROFS;
3698 else {
3699 mddev->new_layout = n;
3700 err = mddev->pers->check_reshape(mddev);
3701 if (err)
3702 mddev->new_layout = mddev->layout;
3703 }
3704 } else {
3705 mddev->new_layout = n;
3706 if (mddev->reshape_position == MaxSector)
3707 mddev->layout = n;
3708 }
3709 mddev_unlock(mddev);
3710 return err ?: len;
3711}
3712static struct md_sysfs_entry md_layout =
3713__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3714
3715static ssize_t
3716raid_disks_show(struct mddev *mddev, char *page)
3717{
3718 if (mddev->raid_disks == 0)
3719 return 0;
3720 if (mddev->reshape_position != MaxSector &&
3721 mddev->delta_disks != 0)
3722 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3723 mddev->raid_disks - mddev->delta_disks);
3724 return sprintf(page, "%d\n", mddev->raid_disks);
3725}
3726
3727static int update_raid_disks(struct mddev *mddev, int raid_disks);
3728
3729static ssize_t
3730raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3731{
3732 unsigned int n;
3733 int err;
3734
3735 err = kstrtouint(buf, 10, &n);
3736 if (err < 0)
3737 return err;
3738
3739 err = mddev_lock(mddev);
3740 if (err)
3741 return err;
3742 if (mddev->pers)
3743 err = update_raid_disks(mddev, n);
3744 else if (mddev->reshape_position != MaxSector) {
3745 struct md_rdev *rdev;
3746 int olddisks = mddev->raid_disks - mddev->delta_disks;
3747
3748 err = -EINVAL;
3749 rdev_for_each(rdev, mddev) {
3750 if (olddisks < n &&
3751 rdev->data_offset < rdev->new_data_offset)
3752 goto out_unlock;
3753 if (olddisks > n &&
3754 rdev->data_offset > rdev->new_data_offset)
3755 goto out_unlock;
3756 }
3757 err = 0;
3758 mddev->delta_disks = n - olddisks;
3759 mddev->raid_disks = n;
3760 mddev->reshape_backwards = (mddev->delta_disks < 0);
3761 } else
3762 mddev->raid_disks = n;
3763out_unlock:
3764 mddev_unlock(mddev);
3765 return err ? err : len;
3766}
3767static struct md_sysfs_entry md_raid_disks =
3768__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3769
3770static ssize_t
3771chunk_size_show(struct mddev *mddev, char *page)
3772{
3773 if (mddev->reshape_position != MaxSector &&
3774 mddev->chunk_sectors != mddev->new_chunk_sectors)
3775 return sprintf(page, "%d (%d)\n",
3776 mddev->new_chunk_sectors << 9,
3777 mddev->chunk_sectors << 9);
3778 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3779}
3780
3781static ssize_t
3782chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3783{
3784 unsigned long n;
3785 int err;
3786
3787 err = kstrtoul(buf, 10, &n);
3788 if (err < 0)
3789 return err;
3790
3791 err = mddev_lock(mddev);
3792 if (err)
3793 return err;
3794 if (mddev->pers) {
3795 if (mddev->pers->check_reshape == NULL)
3796 err = -EBUSY;
3797 else if (mddev->ro)
3798 err = -EROFS;
3799 else {
3800 mddev->new_chunk_sectors = n >> 9;
3801 err = mddev->pers->check_reshape(mddev);
3802 if (err)
3803 mddev->new_chunk_sectors = mddev->chunk_sectors;
3804 }
3805 } else {
3806 mddev->new_chunk_sectors = n >> 9;
3807 if (mddev->reshape_position == MaxSector)
3808 mddev->chunk_sectors = n >> 9;
3809 }
3810 mddev_unlock(mddev);
3811 return err ?: len;
3812}
3813static struct md_sysfs_entry md_chunk_size =
3814__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3815
3816static ssize_t
3817resync_start_show(struct mddev *mddev, char *page)
3818{
3819 if (mddev->recovery_cp == MaxSector)
3820 return sprintf(page, "none\n");
3821 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3822}
3823
3824static ssize_t
3825resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3826{
3827 unsigned long long n;
3828 int err;
3829
3830 if (cmd_match(buf, "none"))
3831 n = MaxSector;
3832 else {
3833 err = kstrtoull(buf, 10, &n);
3834 if (err < 0)
3835 return err;
3836 if (n != (sector_t)n)
3837 return -EINVAL;
3838 }
3839
3840 err = mddev_lock(mddev);
3841 if (err)
3842 return err;
3843 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3844 err = -EBUSY;
3845
3846 if (!err) {
3847 mddev->recovery_cp = n;
3848 if (mddev->pers)
3849 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
3850 }
3851 mddev_unlock(mddev);
3852 return err ?: len;
3853}
3854static struct md_sysfs_entry md_resync_start =
3855__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3856 resync_start_show, resync_start_store);
3857
3858/*
3859 * The array state can be:
3860 *
3861 * clear
3862 * No devices, no size, no level
3863 * Equivalent to STOP_ARRAY ioctl
3864 * inactive
3865 * May have some settings, but array is not active
3866 * all IO results in error
3867 * When written, doesn't tear down array, but just stops it
3868 * suspended (not supported yet)
3869 * All IO requests will block. The array can be reconfigured.
3870 * Writing this, if accepted, will block until array is quiescent
3871 * readonly
3872 * no resync can happen. no superblocks get written.
3873 * write requests fail
3874 * read-auto
3875 * like readonly, but behaves like 'clean' on a write request.
3876 *
3877 * clean - no pending writes, but otherwise active.
3878 * When written to inactive array, starts without resync
3879 * If a write request arrives then
3880 * if metadata is known, mark 'dirty' and switch to 'active'.
3881 * if not known, block and switch to write-pending
3882 * If written to an active array that has pending writes, then fails.
3883 * active
3884 * fully active: IO and resync can be happening.
3885 * When written to inactive array, starts with resync
3886 *
3887 * write-pending
3888 * clean, but writes are blocked waiting for 'active' to be written.
3889 *
3890 * active-idle
3891 * like active, but no writes have been seen for a while (100msec).
3892 *
3893 */
3894enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3895 write_pending, active_idle, bad_word};
3896static char *array_states[] = {
3897 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3898 "write-pending", "active-idle", NULL };
3899
3900static int match_word(const char *word, char **list)
3901{
3902 int n;
3903 for (n=0; list[n]; n++)
3904 if (cmd_match(word, list[n]))
3905 break;
3906 return n;
3907}
3908
3909static ssize_t
3910array_state_show(struct mddev *mddev, char *page)
3911{
3912 enum array_state st = inactive;
3913
3914 if (mddev->pers)
3915 switch(mddev->ro) {
3916 case 1:
3917 st = readonly;
3918 break;
3919 case 2:
3920 st = read_auto;
3921 break;
3922 case 0:
3923 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
3924 st = write_pending;
3925 else if (mddev->in_sync)
3926 st = clean;
3927 else if (mddev->safemode)
3928 st = active_idle;
3929 else
3930 st = active;
3931 }
3932 else {
3933 if (list_empty(&mddev->disks) &&
3934 mddev->raid_disks == 0 &&
3935 mddev->dev_sectors == 0)
3936 st = clear;
3937 else
3938 st = inactive;
3939 }
3940 return sprintf(page, "%s\n", array_states[st]);
3941}
3942
3943static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3944static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3945static int do_md_run(struct mddev *mddev);
3946static int restart_array(struct mddev *mddev);
3947
3948static ssize_t
3949array_state_store(struct mddev *mddev, const char *buf, size_t len)
3950{
3951 int err;
3952 enum array_state st = match_word(buf, array_states);
3953
3954 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3955 /* don't take reconfig_mutex when toggling between
3956 * clean and active
3957 */
3958 spin_lock(&mddev->lock);
3959 if (st == active) {
3960 restart_array(mddev);
3961 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
3962 md_wakeup_thread(mddev->thread);
3963 wake_up(&mddev->sb_wait);
3964 err = 0;
3965 } else /* st == clean */ {
3966 restart_array(mddev);
3967 if (atomic_read(&mddev->writes_pending) == 0) {
3968 if (mddev->in_sync == 0) {
3969 mddev->in_sync = 1;
3970 if (mddev->safemode == 1)
3971 mddev->safemode = 0;
3972 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
3973 }
3974 err = 0;
3975 } else
3976 err = -EBUSY;
3977 }
3978 if (!err)
3979 sysfs_notify_dirent_safe(mddev->sysfs_state);
3980 spin_unlock(&mddev->lock);
3981 return err ?: len;
3982 }
3983 err = mddev_lock(mddev);
3984 if (err)
3985 return err;
3986 err = -EINVAL;
3987 switch(st) {
3988 case bad_word:
3989 break;
3990 case clear:
3991 /* stopping an active array */
3992 err = do_md_stop(mddev, 0, NULL);
3993 break;
3994 case inactive:
3995 /* stopping an active array */
3996 if (mddev->pers)
3997 err = do_md_stop(mddev, 2, NULL);
3998 else
3999 err = 0; /* already inactive */
4000 break;
4001 case suspended:
4002 break; /* not supported yet */
4003 case readonly:
4004 if (mddev->pers)
4005 err = md_set_readonly(mddev, NULL);
4006 else {
4007 mddev->ro = 1;
4008 set_disk_ro(mddev->gendisk, 1);
4009 err = do_md_run(mddev);
4010 }
4011 break;
4012 case read_auto:
4013 if (mddev->pers) {
4014 if (mddev->ro == 0)
4015 err = md_set_readonly(mddev, NULL);
4016 else if (mddev->ro == 1)
4017 err = restart_array(mddev);
4018 if (err == 0) {
4019 mddev->ro = 2;
4020 set_disk_ro(mddev->gendisk, 0);
4021 }
4022 } else {
4023 mddev->ro = 2;
4024 err = do_md_run(mddev);
4025 }
4026 break;
4027 case clean:
4028 if (mddev->pers) {
4029 err = restart_array(mddev);
4030 if (err)
4031 break;
4032 spin_lock(&mddev->lock);
4033 if (atomic_read(&mddev->writes_pending) == 0) {
4034 if (mddev->in_sync == 0) {
4035 mddev->in_sync = 1;
4036 if (mddev->safemode == 1)
4037 mddev->safemode = 0;
4038 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4039 }
4040 err = 0;
4041 } else
4042 err = -EBUSY;
4043 spin_unlock(&mddev->lock);
4044 } else
4045 err = -EINVAL;
4046 break;
4047 case active:
4048 if (mddev->pers) {
4049 err = restart_array(mddev);
4050 if (err)
4051 break;
4052 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4053 wake_up(&mddev->sb_wait);
4054 err = 0;
4055 } else {
4056 mddev->ro = 0;
4057 set_disk_ro(mddev->gendisk, 0);
4058 err = do_md_run(mddev);
4059 }
4060 break;
4061 case write_pending:
4062 case active_idle:
4063 /* these cannot be set */
4064 break;
4065 }
4066
4067 if (!err) {
4068 if (mddev->hold_active == UNTIL_IOCTL)
4069 mddev->hold_active = 0;
4070 sysfs_notify_dirent_safe(mddev->sysfs_state);
4071 }
4072 mddev_unlock(mddev);
4073 return err ?: len;
4074}
4075static struct md_sysfs_entry md_array_state =
4076__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4077
4078static ssize_t
4079max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4080 return sprintf(page, "%d\n",
4081 atomic_read(&mddev->max_corr_read_errors));
4082}
4083
4084static ssize_t
4085max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4086{
4087 unsigned int n;
4088 int rv;
4089
4090 rv = kstrtouint(buf, 10, &n);
4091 if (rv < 0)
4092 return rv;
4093 atomic_set(&mddev->max_corr_read_errors, n);
4094 return len;
4095}
4096
4097static struct md_sysfs_entry max_corr_read_errors =
4098__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4099 max_corrected_read_errors_store);
4100
4101static ssize_t
4102null_show(struct mddev *mddev, char *page)
4103{
4104 return -EINVAL;
4105}
4106
4107static ssize_t
4108new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4109{
4110 /* buf must be %d:%d\n? giving major and minor numbers */
4111 /* The new device is added to the array.
4112 * If the array has a persistent superblock, we read the
4113 * superblock to initialise info and check validity.
4114 * Otherwise, only checking done is that in bind_rdev_to_array,
4115 * which mainly checks size.
4116 */
4117 char *e;
4118 int major = simple_strtoul(buf, &e, 10);
4119 int minor;
4120 dev_t dev;
4121 struct md_rdev *rdev;
4122 int err;
4123
4124 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4125 return -EINVAL;
4126 minor = simple_strtoul(e+1, &e, 10);
4127 if (*e && *e != '\n')
4128 return -EINVAL;
4129 dev = MKDEV(major, minor);
4130 if (major != MAJOR(dev) ||
4131 minor != MINOR(dev))
4132 return -EOVERFLOW;
4133
4134 flush_workqueue(md_misc_wq);
4135
4136 err = mddev_lock(mddev);
4137 if (err)
4138 return err;
4139 if (mddev->persistent) {
4140 rdev = md_import_device(dev, mddev->major_version,
4141 mddev->minor_version);
4142 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4143 struct md_rdev *rdev0
4144 = list_entry(mddev->disks.next,
4145 struct md_rdev, same_set);
4146 err = super_types[mddev->major_version]
4147 .load_super(rdev, rdev0, mddev->minor_version);
4148 if (err < 0)
4149 goto out;
4150 }
4151 } else if (mddev->external)
4152 rdev = md_import_device(dev, -2, -1);
4153 else
4154 rdev = md_import_device(dev, -1, -1);
4155
4156 if (IS_ERR(rdev)) {
4157 mddev_unlock(mddev);
4158 return PTR_ERR(rdev);
4159 }
4160 err = bind_rdev_to_array(rdev, mddev);
4161 out:
4162 if (err)
4163 export_rdev(rdev);
4164 mddev_unlock(mddev);
4165 return err ? err : len;
4166}
4167
4168static struct md_sysfs_entry md_new_device =
4169__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4170
4171static ssize_t
4172bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4173{
4174 char *end;
4175 unsigned long chunk, end_chunk;
4176 int err;
4177
4178 err = mddev_lock(mddev);
4179 if (err)
4180 return err;
4181 if (!mddev->bitmap)
4182 goto out;
4183 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4184 while (*buf) {
4185 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4186 if (buf == end) break;
4187 if (*end == '-') { /* range */
4188 buf = end + 1;
4189 end_chunk = simple_strtoul(buf, &end, 0);
4190 if (buf == end) break;
4191 }
4192 if (*end && !isspace(*end)) break;
4193 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4194 buf = skip_spaces(end);
4195 }
4196 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4197out:
4198 mddev_unlock(mddev);
4199 return len;
4200}
4201
4202static struct md_sysfs_entry md_bitmap =
4203__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4204
4205static ssize_t
4206size_show(struct mddev *mddev, char *page)
4207{
4208 return sprintf(page, "%llu\n",
4209 (unsigned long long)mddev->dev_sectors / 2);
4210}
4211
4212static int update_size(struct mddev *mddev, sector_t num_sectors);
4213
4214static ssize_t
4215size_store(struct mddev *mddev, const char *buf, size_t len)
4216{
4217 /* If array is inactive, we can reduce the component size, but
4218 * not increase it (except from 0).
4219 * If array is active, we can try an on-line resize
4220 */
4221 sector_t sectors;
4222 int err = strict_blocks_to_sectors(buf, §ors);
4223
4224 if (err < 0)
4225 return err;
4226 err = mddev_lock(mddev);
4227 if (err)
4228 return err;
4229 if (mddev->pers) {
4230 err = update_size(mddev, sectors);
4231 if (err == 0)
4232 md_update_sb(mddev, 1);
4233 } else {
4234 if (mddev->dev_sectors == 0 ||
4235 mddev->dev_sectors > sectors)
4236 mddev->dev_sectors = sectors;
4237 else
4238 err = -ENOSPC;
4239 }
4240 mddev_unlock(mddev);
4241 return err ? err : len;
4242}
4243
4244static struct md_sysfs_entry md_size =
4245__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4246
4247/* Metadata version.
4248 * This is one of
4249 * 'none' for arrays with no metadata (good luck...)
4250 * 'external' for arrays with externally managed metadata,
4251 * or N.M for internally known formats
4252 */
4253static ssize_t
4254metadata_show(struct mddev *mddev, char *page)
4255{
4256 if (mddev->persistent)
4257 return sprintf(page, "%d.%d\n",
4258 mddev->major_version, mddev->minor_version);
4259 else if (mddev->external)
4260 return sprintf(page, "external:%s\n", mddev->metadata_type);
4261 else
4262 return sprintf(page, "none\n");
4263}
4264
4265static ssize_t
4266metadata_store(struct mddev *mddev, const char *buf, size_t len)
4267{
4268 int major, minor;
4269 char *e;
4270 int err;
4271 /* Changing the details of 'external' metadata is
4272 * always permitted. Otherwise there must be
4273 * no devices attached to the array.
4274 */
4275
4276 err = mddev_lock(mddev);
4277 if (err)
4278 return err;
4279 err = -EBUSY;
4280 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4281 ;
4282 else if (!list_empty(&mddev->disks))
4283 goto out_unlock;
4284
4285 err = 0;
4286 if (cmd_match(buf, "none")) {
4287 mddev->persistent = 0;
4288 mddev->external = 0;
4289 mddev->major_version = 0;
4290 mddev->minor_version = 90;
4291 goto out_unlock;
4292 }
4293 if (strncmp(buf, "external:", 9) == 0) {
4294 size_t namelen = len-9;
4295 if (namelen >= sizeof(mddev->metadata_type))
4296 namelen = sizeof(mddev->metadata_type)-1;
4297 strncpy(mddev->metadata_type, buf+9, namelen);
4298 mddev->metadata_type[namelen] = 0;
4299 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4300 mddev->metadata_type[--namelen] = 0;
4301 mddev->persistent = 0;
4302 mddev->external = 1;
4303 mddev->major_version = 0;
4304 mddev->minor_version = 90;
4305 goto out_unlock;
4306 }
4307 major = simple_strtoul(buf, &e, 10);
4308 err = -EINVAL;
4309 if (e==buf || *e != '.')
4310 goto out_unlock;
4311 buf = e+1;
4312 minor = simple_strtoul(buf, &e, 10);
4313 if (e==buf || (*e && *e != '\n') )
4314 goto out_unlock;
4315 err = -ENOENT;
4316 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4317 goto out_unlock;
4318 mddev->major_version = major;
4319 mddev->minor_version = minor;
4320 mddev->persistent = 1;
4321 mddev->external = 0;
4322 err = 0;
4323out_unlock:
4324 mddev_unlock(mddev);
4325 return err ?: len;
4326}
4327
4328static struct md_sysfs_entry md_metadata =
4329__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4330
4331static ssize_t
4332action_show(struct mddev *mddev, char *page)
4333{
4334 char *type = "idle";
4335 unsigned long recovery = mddev->recovery;
4336 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4337 type = "frozen";
4338 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4339 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4340 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4341 type = "reshape";
4342 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4343 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4344 type = "resync";
4345 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4346 type = "check";
4347 else
4348 type = "repair";
4349 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4350 type = "recover";
4351 else if (mddev->reshape_position != MaxSector)
4352 type = "reshape";
4353 }
4354 return sprintf(page, "%s\n", type);
4355}
4356
4357static ssize_t
4358action_store(struct mddev *mddev, const char *page, size_t len)
4359{
4360 if (!mddev->pers || !mddev->pers->sync_request)
4361 return -EINVAL;
4362
4363
4364 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4365 if (cmd_match(page, "frozen"))
4366 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4367 else
4368 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4369 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4370 mddev_lock(mddev) == 0) {
4371 flush_workqueue(md_misc_wq);
4372 if (mddev->sync_thread) {
4373 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4374 md_reap_sync_thread(mddev);
4375 }
4376 mddev_unlock(mddev);
4377 }
4378 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4379 return -EBUSY;
4380 else if (cmd_match(page, "resync"))
4381 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4382 else if (cmd_match(page, "recover")) {
4383 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4384 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4385 } else if (cmd_match(page, "reshape")) {
4386 int err;
4387 if (mddev->pers->start_reshape == NULL)
4388 return -EINVAL;
4389 err = mddev_lock(mddev);
4390 if (!err) {
4391 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4392 err = -EBUSY;
4393 else {
4394 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4395 err = mddev->pers->start_reshape(mddev);
4396 }
4397 mddev_unlock(mddev);
4398 }
4399 if (err)
4400 return err;
4401 sysfs_notify(&mddev->kobj, NULL, "degraded");
4402 } else {
4403 if (cmd_match(page, "check"))
4404 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4405 else if (!cmd_match(page, "repair"))
4406 return -EINVAL;
4407 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4408 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4409 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4410 }
4411 if (mddev->ro == 2) {
4412 /* A write to sync_action is enough to justify
4413 * canceling read-auto mode
4414 */
4415 mddev->ro = 0;
4416 md_wakeup_thread(mddev->sync_thread);
4417 }
4418 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4419 md_wakeup_thread(mddev->thread);
4420 sysfs_notify_dirent_safe(mddev->sysfs_action);
4421 return len;
4422}
4423
4424static struct md_sysfs_entry md_scan_mode =
4425__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4426
4427static ssize_t
4428last_sync_action_show(struct mddev *mddev, char *page)
4429{
4430 return sprintf(page, "%s\n", mddev->last_sync_action);
4431}
4432
4433static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4434
4435static ssize_t
4436mismatch_cnt_show(struct mddev *mddev, char *page)
4437{
4438 return sprintf(page, "%llu\n",
4439 (unsigned long long)
4440 atomic64_read(&mddev->resync_mismatches));
4441}
4442
4443static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4444
4445static ssize_t
4446sync_min_show(struct mddev *mddev, char *page)
4447{
4448 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4449 mddev->sync_speed_min ? "local": "system");
4450}
4451
4452static ssize_t
4453sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4454{
4455 unsigned int min;
4456 int rv;
4457
4458 if (strncmp(buf, "system", 6)==0) {
4459 min = 0;
4460 } else {
4461 rv = kstrtouint(buf, 10, &min);
4462 if (rv < 0)
4463 return rv;
4464 if (min == 0)
4465 return -EINVAL;
4466 }
4467 mddev->sync_speed_min = min;
4468 return len;
4469}
4470
4471static struct md_sysfs_entry md_sync_min =
4472__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4473
4474static ssize_t
4475sync_max_show(struct mddev *mddev, char *page)
4476{
4477 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4478 mddev->sync_speed_max ? "local": "system");
4479}
4480
4481static ssize_t
4482sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4483{
4484 unsigned int max;
4485 int rv;
4486
4487 if (strncmp(buf, "system", 6)==0) {
4488 max = 0;
4489 } else {
4490 rv = kstrtouint(buf, 10, &max);
4491 if (rv < 0)
4492 return rv;
4493 if (max == 0)
4494 return -EINVAL;
4495 }
4496 mddev->sync_speed_max = max;
4497 return len;
4498}
4499
4500static struct md_sysfs_entry md_sync_max =
4501__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4502
4503static ssize_t
4504degraded_show(struct mddev *mddev, char *page)
4505{
4506 return sprintf(page, "%d\n", mddev->degraded);
4507}
4508static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4509
4510static ssize_t
4511sync_force_parallel_show(struct mddev *mddev, char *page)
4512{
4513 return sprintf(page, "%d\n", mddev->parallel_resync);
4514}
4515
4516static ssize_t
4517sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4518{
4519 long n;
4520
4521 if (kstrtol(buf, 10, &n))
4522 return -EINVAL;
4523
4524 if (n != 0 && n != 1)
4525 return -EINVAL;
4526
4527 mddev->parallel_resync = n;
4528
4529 if (mddev->sync_thread)
4530 wake_up(&resync_wait);
4531
4532 return len;
4533}
4534
4535/* force parallel resync, even with shared block devices */
4536static struct md_sysfs_entry md_sync_force_parallel =
4537__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4538 sync_force_parallel_show, sync_force_parallel_store);
4539
4540static ssize_t
4541sync_speed_show(struct mddev *mddev, char *page)
4542{
4543 unsigned long resync, dt, db;
4544 if (mddev->curr_resync == 0)
4545 return sprintf(page, "none\n");
4546 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4547 dt = (jiffies - mddev->resync_mark) / HZ;
4548 if (!dt) dt++;
4549 db = resync - mddev->resync_mark_cnt;
4550 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4551}
4552
4553static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4554
4555static ssize_t
4556sync_completed_show(struct mddev *mddev, char *page)
4557{
4558 unsigned long long max_sectors, resync;
4559
4560 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4561 return sprintf(page, "none\n");
4562
4563 if (mddev->curr_resync == 1 ||
4564 mddev->curr_resync == 2)
4565 return sprintf(page, "delayed\n");
4566
4567 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4568 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4569 max_sectors = mddev->resync_max_sectors;
4570 else
4571 max_sectors = mddev->dev_sectors;
4572
4573 resync = mddev->curr_resync_completed;
4574 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4575}
4576
4577static struct md_sysfs_entry md_sync_completed =
4578 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4579
4580static ssize_t
4581min_sync_show(struct mddev *mddev, char *page)
4582{
4583 return sprintf(page, "%llu\n",
4584 (unsigned long long)mddev->resync_min);
4585}
4586static ssize_t
4587min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4588{
4589 unsigned long long min;
4590 int err;
4591
4592 if (kstrtoull(buf, 10, &min))
4593 return -EINVAL;
4594
4595 spin_lock(&mddev->lock);
4596 err = -EINVAL;
4597 if (min > mddev->resync_max)
4598 goto out_unlock;
4599
4600 err = -EBUSY;
4601 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4602 goto out_unlock;
4603
4604 /* Round down to multiple of 4K for safety */
4605 mddev->resync_min = round_down(min, 8);
4606 err = 0;
4607
4608out_unlock:
4609 spin_unlock(&mddev->lock);
4610 return err ?: len;
4611}
4612
4613static struct md_sysfs_entry md_min_sync =
4614__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4615
4616static ssize_t
4617max_sync_show(struct mddev *mddev, char *page)
4618{
4619 if (mddev->resync_max == MaxSector)
4620 return sprintf(page, "max\n");
4621 else
4622 return sprintf(page, "%llu\n",
4623 (unsigned long long)mddev->resync_max);
4624}
4625static ssize_t
4626max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4627{
4628 int err;
4629 spin_lock(&mddev->lock);
4630 if (strncmp(buf, "max", 3) == 0)
4631 mddev->resync_max = MaxSector;
4632 else {
4633 unsigned long long max;
4634 int chunk;
4635
4636 err = -EINVAL;
4637 if (kstrtoull(buf, 10, &max))
4638 goto out_unlock;
4639 if (max < mddev->resync_min)
4640 goto out_unlock;
4641
4642 err = -EBUSY;
4643 if (max < mddev->resync_max &&
4644 mddev->ro == 0 &&
4645 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4646 goto out_unlock;
4647
4648 /* Must be a multiple of chunk_size */
4649 chunk = mddev->chunk_sectors;
4650 if (chunk) {
4651 sector_t temp = max;
4652
4653 err = -EINVAL;
4654 if (sector_div(temp, chunk))
4655 goto out_unlock;
4656 }
4657 mddev->resync_max = max;
4658 }
4659 wake_up(&mddev->recovery_wait);
4660 err = 0;
4661out_unlock:
4662 spin_unlock(&mddev->lock);
4663 return err ?: len;
4664}
4665
4666static struct md_sysfs_entry md_max_sync =
4667__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4668
4669static ssize_t
4670suspend_lo_show(struct mddev *mddev, char *page)
4671{
4672 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4673}
4674
4675static ssize_t
4676suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4677{
4678 unsigned long long old, new;
4679 int err;
4680
4681 err = kstrtoull(buf, 10, &new);
4682 if (err < 0)
4683 return err;
4684 if (new != (sector_t)new)
4685 return -EINVAL;
4686
4687 err = mddev_lock(mddev);
4688 if (err)
4689 return err;
4690 err = -EINVAL;
4691 if (mddev->pers == NULL ||
4692 mddev->pers->quiesce == NULL)
4693 goto unlock;
4694 old = mddev->suspend_lo;
4695 mddev->suspend_lo = new;
4696 if (new >= old)
4697 /* Shrinking suspended region */
4698 mddev->pers->quiesce(mddev, 2);
4699 else {
4700 /* Expanding suspended region - need to wait */
4701 mddev->pers->quiesce(mddev, 1);
4702 mddev->pers->quiesce(mddev, 0);
4703 }
4704 err = 0;
4705unlock:
4706 mddev_unlock(mddev);
4707 return err ?: len;
4708}
4709static struct md_sysfs_entry md_suspend_lo =
4710__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4711
4712static ssize_t
4713suspend_hi_show(struct mddev *mddev, char *page)
4714{
4715 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4716}
4717
4718static ssize_t
4719suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4720{
4721 unsigned long long old, new;
4722 int err;
4723
4724 err = kstrtoull(buf, 10, &new);
4725 if (err < 0)
4726 return err;
4727 if (new != (sector_t)new)
4728 return -EINVAL;
4729
4730 err = mddev_lock(mddev);
4731 if (err)
4732 return err;
4733 err = -EINVAL;
4734 if (mddev->pers == NULL ||
4735 mddev->pers->quiesce == NULL)
4736 goto unlock;
4737 old = mddev->suspend_hi;
4738 mddev->suspend_hi = new;
4739 if (new <= old)
4740 /* Shrinking suspended region */
4741 mddev->pers->quiesce(mddev, 2);
4742 else {
4743 /* Expanding suspended region - need to wait */
4744 mddev->pers->quiesce(mddev, 1);
4745 mddev->pers->quiesce(mddev, 0);
4746 }
4747 err = 0;
4748unlock:
4749 mddev_unlock(mddev);
4750 return err ?: len;
4751}
4752static struct md_sysfs_entry md_suspend_hi =
4753__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4754
4755static ssize_t
4756reshape_position_show(struct mddev *mddev, char *page)
4757{
4758 if (mddev->reshape_position != MaxSector)
4759 return sprintf(page, "%llu\n",
4760 (unsigned long long)mddev->reshape_position);
4761 strcpy(page, "none\n");
4762 return 5;
4763}
4764
4765static ssize_t
4766reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4767{
4768 struct md_rdev *rdev;
4769 unsigned long long new;
4770 int err;
4771
4772 err = kstrtoull(buf, 10, &new);
4773 if (err < 0)
4774 return err;
4775 if (new != (sector_t)new)
4776 return -EINVAL;
4777 err = mddev_lock(mddev);
4778 if (err)
4779 return err;
4780 err = -EBUSY;
4781 if (mddev->pers)
4782 goto unlock;
4783 mddev->reshape_position = new;
4784 mddev->delta_disks = 0;
4785 mddev->reshape_backwards = 0;
4786 mddev->new_level = mddev->level;
4787 mddev->new_layout = mddev->layout;
4788 mddev->new_chunk_sectors = mddev->chunk_sectors;
4789 rdev_for_each(rdev, mddev)
4790 rdev->new_data_offset = rdev->data_offset;
4791 err = 0;
4792unlock:
4793 mddev_unlock(mddev);
4794 return err ?: len;
4795}
4796
4797static struct md_sysfs_entry md_reshape_position =
4798__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4799 reshape_position_store);
4800
4801static ssize_t
4802reshape_direction_show(struct mddev *mddev, char *page)
4803{
4804 return sprintf(page, "%s\n",
4805 mddev->reshape_backwards ? "backwards" : "forwards");
4806}
4807
4808static ssize_t
4809reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4810{
4811 int backwards = 0;
4812 int err;
4813
4814 if (cmd_match(buf, "forwards"))
4815 backwards = 0;
4816 else if (cmd_match(buf, "backwards"))
4817 backwards = 1;
4818 else
4819 return -EINVAL;
4820 if (mddev->reshape_backwards == backwards)
4821 return len;
4822
4823 err = mddev_lock(mddev);
4824 if (err)
4825 return err;
4826 /* check if we are allowed to change */
4827 if (mddev->delta_disks)
4828 err = -EBUSY;
4829 else if (mddev->persistent &&
4830 mddev->major_version == 0)
4831 err = -EINVAL;
4832 else
4833 mddev->reshape_backwards = backwards;
4834 mddev_unlock(mddev);
4835 return err ?: len;
4836}
4837
4838static struct md_sysfs_entry md_reshape_direction =
4839__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4840 reshape_direction_store);
4841
4842static ssize_t
4843array_size_show(struct mddev *mddev, char *page)
4844{
4845 if (mddev->external_size)
4846 return sprintf(page, "%llu\n",
4847 (unsigned long long)mddev->array_sectors/2);
4848 else
4849 return sprintf(page, "default\n");
4850}
4851
4852static ssize_t
4853array_size_store(struct mddev *mddev, const char *buf, size_t len)
4854{
4855 sector_t sectors;
4856 int err;
4857
4858 err = mddev_lock(mddev);
4859 if (err)
4860 return err;
4861
4862 /* cluster raid doesn't support change array_sectors */
4863 if (mddev_is_clustered(mddev))
4864 return -EINVAL;
4865
4866 if (strncmp(buf, "default", 7) == 0) {
4867 if (mddev->pers)
4868 sectors = mddev->pers->size(mddev, 0, 0);
4869 else
4870 sectors = mddev->array_sectors;
4871
4872 mddev->external_size = 0;
4873 } else {
4874 if (strict_blocks_to_sectors(buf, §ors) < 0)
4875 err = -EINVAL;
4876 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4877 err = -E2BIG;
4878 else
4879 mddev->external_size = 1;
4880 }
4881
4882 if (!err) {
4883 mddev->array_sectors = sectors;
4884 if (mddev->pers) {
4885 set_capacity(mddev->gendisk, mddev->array_sectors);
4886 revalidate_disk(mddev->gendisk);
4887 }
4888 }
4889 mddev_unlock(mddev);
4890 return err ?: len;
4891}
4892
4893static struct md_sysfs_entry md_array_size =
4894__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4895 array_size_store);
4896
4897static struct attribute *md_default_attrs[] = {
4898 &md_level.attr,
4899 &md_layout.attr,
4900 &md_raid_disks.attr,
4901 &md_chunk_size.attr,
4902 &md_size.attr,
4903 &md_resync_start.attr,
4904 &md_metadata.attr,
4905 &md_new_device.attr,
4906 &md_safe_delay.attr,
4907 &md_array_state.attr,
4908 &md_reshape_position.attr,
4909 &md_reshape_direction.attr,
4910 &md_array_size.attr,
4911 &max_corr_read_errors.attr,
4912 NULL,
4913};
4914
4915static struct attribute *md_redundancy_attrs[] = {
4916 &md_scan_mode.attr,
4917 &md_last_scan_mode.attr,
4918 &md_mismatches.attr,
4919 &md_sync_min.attr,
4920 &md_sync_max.attr,
4921 &md_sync_speed.attr,
4922 &md_sync_force_parallel.attr,
4923 &md_sync_completed.attr,
4924 &md_min_sync.attr,
4925 &md_max_sync.attr,
4926 &md_suspend_lo.attr,
4927 &md_suspend_hi.attr,
4928 &md_bitmap.attr,
4929 &md_degraded.attr,
4930 NULL,
4931};
4932static struct attribute_group md_redundancy_group = {
4933 .name = NULL,
4934 .attrs = md_redundancy_attrs,
4935};
4936
4937static ssize_t
4938md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4939{
4940 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4941 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4942 ssize_t rv;
4943
4944 if (!entry->show)
4945 return -EIO;
4946 spin_lock(&all_mddevs_lock);
4947 if (list_empty(&mddev->all_mddevs)) {
4948 spin_unlock(&all_mddevs_lock);
4949 return -EBUSY;
4950 }
4951 mddev_get(mddev);
4952 spin_unlock(&all_mddevs_lock);
4953
4954 rv = entry->show(mddev, page);
4955 mddev_put(mddev);
4956 return rv;
4957}
4958
4959static ssize_t
4960md_attr_store(struct kobject *kobj, struct attribute *attr,
4961 const char *page, size_t length)
4962{
4963 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4964 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4965 ssize_t rv;
4966
4967 if (!entry->store)
4968 return -EIO;
4969 if (!capable(CAP_SYS_ADMIN))
4970 return -EACCES;
4971 spin_lock(&all_mddevs_lock);
4972 if (list_empty(&mddev->all_mddevs)) {
4973 spin_unlock(&all_mddevs_lock);
4974 return -EBUSY;
4975 }
4976 mddev_get(mddev);
4977 spin_unlock(&all_mddevs_lock);
4978 rv = entry->store(mddev, page, length);
4979 mddev_put(mddev);
4980 return rv;
4981}
4982
4983static void md_free(struct kobject *ko)
4984{
4985 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4986
4987 if (mddev->sysfs_state)
4988 sysfs_put(mddev->sysfs_state);
4989
4990 if (mddev->queue)
4991 blk_cleanup_queue(mddev->queue);
4992 if (mddev->gendisk) {
4993 del_gendisk(mddev->gendisk);
4994 put_disk(mddev->gendisk);
4995 }
4996
4997 kfree(mddev);
4998}
4999
5000static const struct sysfs_ops md_sysfs_ops = {
5001 .show = md_attr_show,
5002 .store = md_attr_store,
5003};
5004static struct kobj_type md_ktype = {
5005 .release = md_free,
5006 .sysfs_ops = &md_sysfs_ops,
5007 .default_attrs = md_default_attrs,
5008};
5009
5010int mdp_major = 0;
5011
5012static void mddev_delayed_delete(struct work_struct *ws)
5013{
5014 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5015
5016 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5017 kobject_del(&mddev->kobj);
5018 kobject_put(&mddev->kobj);
5019}
5020
5021static int md_alloc(dev_t dev, char *name)
5022{
5023 static DEFINE_MUTEX(disks_mutex);
5024 struct mddev *mddev = mddev_find(dev);
5025 struct gendisk *disk;
5026 int partitioned;
5027 int shift;
5028 int unit;
5029 int error;
5030
5031 if (!mddev)
5032 return -ENODEV;
5033
5034 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5035 shift = partitioned ? MdpMinorShift : 0;
5036 unit = MINOR(mddev->unit) >> shift;
5037
5038 /* wait for any previous instance of this device to be
5039 * completely removed (mddev_delayed_delete).
5040 */
5041 flush_workqueue(md_misc_wq);
5042
5043 mutex_lock(&disks_mutex);
5044 error = -EEXIST;
5045 if (mddev->gendisk)
5046 goto abort;
5047
5048 if (name) {
5049 /* Need to ensure that 'name' is not a duplicate.
5050 */
5051 struct mddev *mddev2;
5052 spin_lock(&all_mddevs_lock);
5053
5054 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5055 if (mddev2->gendisk &&
5056 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5057 spin_unlock(&all_mddevs_lock);
5058 goto abort;
5059 }
5060 spin_unlock(&all_mddevs_lock);
5061 }
5062
5063 error = -ENOMEM;
5064 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5065 if (!mddev->queue)
5066 goto abort;
5067 mddev->queue->queuedata = mddev;
5068
5069 blk_queue_make_request(mddev->queue, md_make_request);
5070 blk_set_stacking_limits(&mddev->queue->limits);
5071
5072 disk = alloc_disk(1 << shift);
5073 if (!disk) {
5074 blk_cleanup_queue(mddev->queue);
5075 mddev->queue = NULL;
5076 goto abort;
5077 }
5078 disk->major = MAJOR(mddev->unit);
5079 disk->first_minor = unit << shift;
5080 if (name)
5081 strcpy(disk->disk_name, name);
5082 else if (partitioned)
5083 sprintf(disk->disk_name, "md_d%d", unit);
5084 else
5085 sprintf(disk->disk_name, "md%d", unit);
5086 disk->fops = &md_fops;
5087 disk->private_data = mddev;
5088 disk->queue = mddev->queue;
5089 blk_queue_write_cache(mddev->queue, true, true);
5090 /* Allow extended partitions. This makes the
5091 * 'mdp' device redundant, but we can't really
5092 * remove it now.
5093 */
5094 disk->flags |= GENHD_FL_EXT_DEVT;
5095 mddev->gendisk = disk;
5096 /* As soon as we call add_disk(), another thread could get
5097 * through to md_open, so make sure it doesn't get too far
5098 */
5099 mutex_lock(&mddev->open_mutex);
5100 add_disk(disk);
5101
5102 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5103 &disk_to_dev(disk)->kobj, "%s", "md");
5104 if (error) {
5105 /* This isn't possible, but as kobject_init_and_add is marked
5106 * __must_check, we must do something with the result
5107 */
5108 pr_debug("md: cannot register %s/md - name in use\n",
5109 disk->disk_name);
5110 error = 0;
5111 }
5112 if (mddev->kobj.sd &&
5113 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5114 pr_debug("pointless warning\n");
5115 mutex_unlock(&mddev->open_mutex);
5116 abort:
5117 mutex_unlock(&disks_mutex);
5118 if (!error && mddev->kobj.sd) {
5119 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5120 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5121 }
5122 mddev_put(mddev);
5123 return error;
5124}
5125
5126static struct kobject *md_probe(dev_t dev, int *part, void *data)
5127{
5128 md_alloc(dev, NULL);
5129 return NULL;
5130}
5131
5132static int add_named_array(const char *val, struct kernel_param *kp)
5133{
5134 /* val must be "md_*" where * is not all digits.
5135 * We allocate an array with a large free minor number, and
5136 * set the name to val. val must not already be an active name.
5137 */
5138 int len = strlen(val);
5139 char buf[DISK_NAME_LEN];
5140
5141 while (len && val[len-1] == '\n')
5142 len--;
5143 if (len >= DISK_NAME_LEN)
5144 return -E2BIG;
5145 strlcpy(buf, val, len+1);
5146 if (strncmp(buf, "md_", 3) != 0)
5147 return -EINVAL;
5148 return md_alloc(0, buf);
5149}
5150
5151static void md_safemode_timeout(unsigned long data)
5152{
5153 struct mddev *mddev = (struct mddev *) data;
5154
5155 if (!atomic_read(&mddev->writes_pending)) {
5156 mddev->safemode = 1;
5157 if (mddev->external)
5158 sysfs_notify_dirent_safe(mddev->sysfs_state);
5159 }
5160 md_wakeup_thread(mddev->thread);
5161}
5162
5163static int start_dirty_degraded;
5164
5165int md_run(struct mddev *mddev)
5166{
5167 int err;
5168 struct md_rdev *rdev;
5169 struct md_personality *pers;
5170
5171 if (list_empty(&mddev->disks))
5172 /* cannot run an array with no devices.. */
5173 return -EINVAL;
5174
5175 if (mddev->pers)
5176 return -EBUSY;
5177 /* Cannot run until previous stop completes properly */
5178 if (mddev->sysfs_active)
5179 return -EBUSY;
5180
5181 /*
5182 * Analyze all RAID superblock(s)
5183 */
5184 if (!mddev->raid_disks) {
5185 if (!mddev->persistent)
5186 return -EINVAL;
5187 analyze_sbs(mddev);
5188 }
5189
5190 if (mddev->level != LEVEL_NONE)
5191 request_module("md-level-%d", mddev->level);
5192 else if (mddev->clevel[0])
5193 request_module("md-%s", mddev->clevel);
5194
5195 /*
5196 * Drop all container device buffers, from now on
5197 * the only valid external interface is through the md
5198 * device.
5199 */
5200 rdev_for_each(rdev, mddev) {
5201 if (test_bit(Faulty, &rdev->flags))
5202 continue;
5203 sync_blockdev(rdev->bdev);
5204 invalidate_bdev(rdev->bdev);
5205
5206 /* perform some consistency tests on the device.
5207 * We don't want the data to overlap the metadata,
5208 * Internal Bitmap issues have been handled elsewhere.
5209 */
5210 if (rdev->meta_bdev) {
5211 /* Nothing to check */;
5212 } else if (rdev->data_offset < rdev->sb_start) {
5213 if (mddev->dev_sectors &&
5214 rdev->data_offset + mddev->dev_sectors
5215 > rdev->sb_start) {
5216 pr_warn("md: %s: data overlaps metadata\n",
5217 mdname(mddev));
5218 return -EINVAL;
5219 }
5220 } else {
5221 if (rdev->sb_start + rdev->sb_size/512
5222 > rdev->data_offset) {
5223 pr_warn("md: %s: metadata overlaps data\n",
5224 mdname(mddev));
5225 return -EINVAL;
5226 }
5227 }
5228 sysfs_notify_dirent_safe(rdev->sysfs_state);
5229 }
5230
5231 if (mddev->bio_set == NULL)
5232 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5233
5234 spin_lock(&pers_lock);
5235 pers = find_pers(mddev->level, mddev->clevel);
5236 if (!pers || !try_module_get(pers->owner)) {
5237 spin_unlock(&pers_lock);
5238 if (mddev->level != LEVEL_NONE)
5239 pr_warn("md: personality for level %d is not loaded!\n",
5240 mddev->level);
5241 else
5242 pr_warn("md: personality for level %s is not loaded!\n",
5243 mddev->clevel);
5244 return -EINVAL;
5245 }
5246 spin_unlock(&pers_lock);
5247 if (mddev->level != pers->level) {
5248 mddev->level = pers->level;
5249 mddev->new_level = pers->level;
5250 }
5251 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5252
5253 if (mddev->reshape_position != MaxSector &&
5254 pers->start_reshape == NULL) {
5255 /* This personality cannot handle reshaping... */
5256 module_put(pers->owner);
5257 return -EINVAL;
5258 }
5259
5260 if (pers->sync_request) {
5261 /* Warn if this is a potentially silly
5262 * configuration.
5263 */
5264 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5265 struct md_rdev *rdev2;
5266 int warned = 0;
5267
5268 rdev_for_each(rdev, mddev)
5269 rdev_for_each(rdev2, mddev) {
5270 if (rdev < rdev2 &&
5271 rdev->bdev->bd_contains ==
5272 rdev2->bdev->bd_contains) {
5273 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5274 mdname(mddev),
5275 bdevname(rdev->bdev,b),
5276 bdevname(rdev2->bdev,b2));
5277 warned = 1;
5278 }
5279 }
5280
5281 if (warned)
5282 pr_warn("True protection against single-disk failure might be compromised.\n");
5283 }
5284
5285 mddev->recovery = 0;
5286 /* may be over-ridden by personality */
5287 mddev->resync_max_sectors = mddev->dev_sectors;
5288
5289 mddev->ok_start_degraded = start_dirty_degraded;
5290
5291 if (start_readonly && mddev->ro == 0)
5292 mddev->ro = 2; /* read-only, but switch on first write */
5293
5294 /*
5295 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5296 * up mddev->thread. It is important to initialize critical
5297 * resources for mddev->thread BEFORE calling pers->run().
5298 */
5299 err = pers->run(mddev);
5300 if (err)
5301 pr_warn("md: pers->run() failed ...\n");
5302 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5303 WARN_ONCE(!mddev->external_size,
5304 "%s: default size too small, but 'external_size' not in effect?\n",
5305 __func__);
5306 pr_warn("md: invalid array_size %llu > default size %llu\n",
5307 (unsigned long long)mddev->array_sectors / 2,
5308 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5309 err = -EINVAL;
5310 }
5311 if (err == 0 && pers->sync_request &&
5312 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5313 struct bitmap *bitmap;
5314
5315 bitmap = bitmap_create(mddev, -1);
5316 if (IS_ERR(bitmap)) {
5317 err = PTR_ERR(bitmap);
5318 pr_warn("%s: failed to create bitmap (%d)\n",
5319 mdname(mddev), err);
5320 } else
5321 mddev->bitmap = bitmap;
5322
5323 }
5324 if (err) {
5325 mddev_detach(mddev);
5326 if (mddev->private)
5327 pers->free(mddev, mddev->private);
5328 mddev->private = NULL;
5329 module_put(pers->owner);
5330 bitmap_destroy(mddev);
5331 return err;
5332 }
5333 if (mddev->queue) {
5334 bool nonrot = true;
5335
5336 rdev_for_each(rdev, mddev) {
5337 if (rdev->raid_disk >= 0 &&
5338 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5339 nonrot = false;
5340 break;
5341 }
5342 }
5343 if (mddev->degraded)
5344 nonrot = false;
5345 if (nonrot)
5346 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5347 else
5348 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5349 mddev->queue->backing_dev_info.congested_data = mddev;
5350 mddev->queue->backing_dev_info.congested_fn = md_congested;
5351 }
5352 if (pers->sync_request) {
5353 if (mddev->kobj.sd &&
5354 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5355 pr_warn("md: cannot register extra attributes for %s\n",
5356 mdname(mddev));
5357 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5358 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5359 mddev->ro = 0;
5360
5361 atomic_set(&mddev->writes_pending,0);
5362 atomic_set(&mddev->max_corr_read_errors,
5363 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5364 mddev->safemode = 0;
5365 if (mddev_is_clustered(mddev))
5366 mddev->safemode_delay = 0;
5367 else
5368 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5369 mddev->in_sync = 1;
5370 smp_wmb();
5371 spin_lock(&mddev->lock);
5372 mddev->pers = pers;
5373 spin_unlock(&mddev->lock);
5374 rdev_for_each(rdev, mddev)
5375 if (rdev->raid_disk >= 0)
5376 if (sysfs_link_rdev(mddev, rdev))
5377 /* failure here is OK */;
5378
5379 if (mddev->degraded && !mddev->ro)
5380 /* This ensures that recovering status is reported immediately
5381 * via sysfs - until a lack of spares is confirmed.
5382 */
5383 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5384 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5385
5386 if (mddev->sb_flags)
5387 md_update_sb(mddev, 0);
5388
5389 md_new_event(mddev);
5390 sysfs_notify_dirent_safe(mddev->sysfs_state);
5391 sysfs_notify_dirent_safe(mddev->sysfs_action);
5392 sysfs_notify(&mddev->kobj, NULL, "degraded");
5393 return 0;
5394}
5395EXPORT_SYMBOL_GPL(md_run);
5396
5397static int do_md_run(struct mddev *mddev)
5398{
5399 int err;
5400
5401 err = md_run(mddev);
5402 if (err)
5403 goto out;
5404 err = bitmap_load(mddev);
5405 if (err) {
5406 bitmap_destroy(mddev);
5407 goto out;
5408 }
5409
5410 if (mddev_is_clustered(mddev))
5411 md_allow_write(mddev);
5412
5413 md_wakeup_thread(mddev->thread);
5414 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5415
5416 set_capacity(mddev->gendisk, mddev->array_sectors);
5417 revalidate_disk(mddev->gendisk);
5418 mddev->changed = 1;
5419 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5420out:
5421 return err;
5422}
5423
5424static int restart_array(struct mddev *mddev)
5425{
5426 struct gendisk *disk = mddev->gendisk;
5427
5428 /* Complain if it has no devices */
5429 if (list_empty(&mddev->disks))
5430 return -ENXIO;
5431 if (!mddev->pers)
5432 return -EINVAL;
5433 if (!mddev->ro)
5434 return -EBUSY;
5435 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5436 struct md_rdev *rdev;
5437 bool has_journal = false;
5438
5439 rcu_read_lock();
5440 rdev_for_each_rcu(rdev, mddev) {
5441 if (test_bit(Journal, &rdev->flags) &&
5442 !test_bit(Faulty, &rdev->flags)) {
5443 has_journal = true;
5444 break;
5445 }
5446 }
5447 rcu_read_unlock();
5448
5449 /* Don't restart rw with journal missing/faulty */
5450 if (!has_journal)
5451 return -EINVAL;
5452 }
5453
5454 mddev->safemode = 0;
5455 mddev->ro = 0;
5456 set_disk_ro(disk, 0);
5457 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5458 /* Kick recovery or resync if necessary */
5459 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5460 md_wakeup_thread(mddev->thread);
5461 md_wakeup_thread(mddev->sync_thread);
5462 sysfs_notify_dirent_safe(mddev->sysfs_state);
5463 return 0;
5464}
5465
5466static void md_clean(struct mddev *mddev)
5467{
5468 mddev->array_sectors = 0;
5469 mddev->external_size = 0;
5470 mddev->dev_sectors = 0;
5471 mddev->raid_disks = 0;
5472 mddev->recovery_cp = 0;
5473 mddev->resync_min = 0;
5474 mddev->resync_max = MaxSector;
5475 mddev->reshape_position = MaxSector;
5476 mddev->external = 0;
5477 mddev->persistent = 0;
5478 mddev->level = LEVEL_NONE;
5479 mddev->clevel[0] = 0;
5480 mddev->flags = 0;
5481 mddev->sb_flags = 0;
5482 mddev->ro = 0;
5483 mddev->metadata_type[0] = 0;
5484 mddev->chunk_sectors = 0;
5485 mddev->ctime = mddev->utime = 0;
5486 mddev->layout = 0;
5487 mddev->max_disks = 0;
5488 mddev->events = 0;
5489 mddev->can_decrease_events = 0;
5490 mddev->delta_disks = 0;
5491 mddev->reshape_backwards = 0;
5492 mddev->new_level = LEVEL_NONE;
5493 mddev->new_layout = 0;
5494 mddev->new_chunk_sectors = 0;
5495 mddev->curr_resync = 0;
5496 atomic64_set(&mddev->resync_mismatches, 0);
5497 mddev->suspend_lo = mddev->suspend_hi = 0;
5498 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5499 mddev->recovery = 0;
5500 mddev->in_sync = 0;
5501 mddev->changed = 0;
5502 mddev->degraded = 0;
5503 mddev->safemode = 0;
5504 mddev->private = NULL;
5505 mddev->cluster_info = NULL;
5506 mddev->bitmap_info.offset = 0;
5507 mddev->bitmap_info.default_offset = 0;
5508 mddev->bitmap_info.default_space = 0;
5509 mddev->bitmap_info.chunksize = 0;
5510 mddev->bitmap_info.daemon_sleep = 0;
5511 mddev->bitmap_info.max_write_behind = 0;
5512 mddev->bitmap_info.nodes = 0;
5513}
5514
5515static void __md_stop_writes(struct mddev *mddev)
5516{
5517 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5518 flush_workqueue(md_misc_wq);
5519 if (mddev->sync_thread) {
5520 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5521 md_reap_sync_thread(mddev);
5522 }
5523
5524 del_timer_sync(&mddev->safemode_timer);
5525
5526 if (mddev->pers && mddev->pers->quiesce) {
5527 mddev->pers->quiesce(mddev, 1);
5528 mddev->pers->quiesce(mddev, 0);
5529 }
5530 bitmap_flush(mddev);
5531
5532 if (mddev->ro == 0 &&
5533 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5534 mddev->sb_flags)) {
5535 /* mark array as shutdown cleanly */
5536 if (!mddev_is_clustered(mddev))
5537 mddev->in_sync = 1;
5538 md_update_sb(mddev, 1);
5539 }
5540}
5541
5542void md_stop_writes(struct mddev *mddev)
5543{
5544 mddev_lock_nointr(mddev);
5545 __md_stop_writes(mddev);
5546 mddev_unlock(mddev);
5547}
5548EXPORT_SYMBOL_GPL(md_stop_writes);
5549
5550static void mddev_detach(struct mddev *mddev)
5551{
5552 struct bitmap *bitmap = mddev->bitmap;
5553 /* wait for behind writes to complete */
5554 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5555 pr_debug("md:%s: behind writes in progress - waiting to stop.\n",
5556 mdname(mddev));
5557 /* need to kick something here to make sure I/O goes? */
5558 wait_event(bitmap->behind_wait,
5559 atomic_read(&bitmap->behind_writes) == 0);
5560 }
5561 if (mddev->pers && mddev->pers->quiesce) {
5562 mddev->pers->quiesce(mddev, 1);
5563 mddev->pers->quiesce(mddev, 0);
5564 }
5565 md_unregister_thread(&mddev->thread);
5566 if (mddev->queue)
5567 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5568}
5569
5570static void __md_stop(struct mddev *mddev)
5571{
5572 struct md_personality *pers = mddev->pers;
5573 mddev_detach(mddev);
5574 /* Ensure ->event_work is done */
5575 flush_workqueue(md_misc_wq);
5576 spin_lock(&mddev->lock);
5577 mddev->pers = NULL;
5578 spin_unlock(&mddev->lock);
5579 pers->free(mddev, mddev->private);
5580 mddev->private = NULL;
5581 if (pers->sync_request && mddev->to_remove == NULL)
5582 mddev->to_remove = &md_redundancy_group;
5583 module_put(pers->owner);
5584 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5585}
5586
5587void md_stop(struct mddev *mddev)
5588{
5589 /* stop the array and free an attached data structures.
5590 * This is called from dm-raid
5591 */
5592 __md_stop(mddev);
5593 bitmap_destroy(mddev);
5594 if (mddev->bio_set)
5595 bioset_free(mddev->bio_set);
5596}
5597
5598EXPORT_SYMBOL_GPL(md_stop);
5599
5600static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5601{
5602 int err = 0;
5603 int did_freeze = 0;
5604
5605 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5606 did_freeze = 1;
5607 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5608 md_wakeup_thread(mddev->thread);
5609 }
5610 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5611 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5612 if (mddev->sync_thread)
5613 /* Thread might be blocked waiting for metadata update
5614 * which will now never happen */
5615 wake_up_process(mddev->sync_thread->tsk);
5616
5617 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5618 return -EBUSY;
5619 mddev_unlock(mddev);
5620 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5621 &mddev->recovery));
5622 wait_event(mddev->sb_wait,
5623 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5624 mddev_lock_nointr(mddev);
5625
5626 mutex_lock(&mddev->open_mutex);
5627 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5628 mddev->sync_thread ||
5629 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5630 pr_warn("md: %s still in use.\n",mdname(mddev));
5631 if (did_freeze) {
5632 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5633 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5634 md_wakeup_thread(mddev->thread);
5635 }
5636 err = -EBUSY;
5637 goto out;
5638 }
5639 if (mddev->pers) {
5640 __md_stop_writes(mddev);
5641
5642 err = -ENXIO;
5643 if (mddev->ro==1)
5644 goto out;
5645 mddev->ro = 1;
5646 set_disk_ro(mddev->gendisk, 1);
5647 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5648 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5649 md_wakeup_thread(mddev->thread);
5650 sysfs_notify_dirent_safe(mddev->sysfs_state);
5651 err = 0;
5652 }
5653out:
5654 mutex_unlock(&mddev->open_mutex);
5655 return err;
5656}
5657
5658/* mode:
5659 * 0 - completely stop and dis-assemble array
5660 * 2 - stop but do not disassemble array
5661 */
5662static int do_md_stop(struct mddev *mddev, int mode,
5663 struct block_device *bdev)
5664{
5665 struct gendisk *disk = mddev->gendisk;
5666 struct md_rdev *rdev;
5667 int did_freeze = 0;
5668
5669 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5670 did_freeze = 1;
5671 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5672 md_wakeup_thread(mddev->thread);
5673 }
5674 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5675 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5676 if (mddev->sync_thread)
5677 /* Thread might be blocked waiting for metadata update
5678 * which will now never happen */
5679 wake_up_process(mddev->sync_thread->tsk);
5680
5681 mddev_unlock(mddev);
5682 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5683 !test_bit(MD_RECOVERY_RUNNING,
5684 &mddev->recovery)));
5685 mddev_lock_nointr(mddev);
5686
5687 mutex_lock(&mddev->open_mutex);
5688 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5689 mddev->sysfs_active ||
5690 mddev->sync_thread ||
5691 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5692 pr_warn("md: %s still in use.\n",mdname(mddev));
5693 mutex_unlock(&mddev->open_mutex);
5694 if (did_freeze) {
5695 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5697 md_wakeup_thread(mddev->thread);
5698 }
5699 return -EBUSY;
5700 }
5701 if (mddev->pers) {
5702 if (mddev->ro)
5703 set_disk_ro(disk, 0);
5704
5705 __md_stop_writes(mddev);
5706 __md_stop(mddev);
5707 mddev->queue->backing_dev_info.congested_fn = NULL;
5708
5709 /* tell userspace to handle 'inactive' */
5710 sysfs_notify_dirent_safe(mddev->sysfs_state);
5711
5712 rdev_for_each(rdev, mddev)
5713 if (rdev->raid_disk >= 0)
5714 sysfs_unlink_rdev(mddev, rdev);
5715
5716 set_capacity(disk, 0);
5717 mutex_unlock(&mddev->open_mutex);
5718 mddev->changed = 1;
5719 revalidate_disk(disk);
5720
5721 if (mddev->ro)
5722 mddev->ro = 0;
5723 } else
5724 mutex_unlock(&mddev->open_mutex);
5725 /*
5726 * Free resources if final stop
5727 */
5728 if (mode == 0) {
5729 pr_info("md: %s stopped.\n", mdname(mddev));
5730
5731 bitmap_destroy(mddev);
5732 if (mddev->bitmap_info.file) {
5733 struct file *f = mddev->bitmap_info.file;
5734 spin_lock(&mddev->lock);
5735 mddev->bitmap_info.file = NULL;
5736 spin_unlock(&mddev->lock);
5737 fput(f);
5738 }
5739 mddev->bitmap_info.offset = 0;
5740
5741 export_array(mddev);
5742
5743 md_clean(mddev);
5744 if (mddev->hold_active == UNTIL_STOP)
5745 mddev->hold_active = 0;
5746 }
5747 md_new_event(mddev);
5748 sysfs_notify_dirent_safe(mddev->sysfs_state);
5749 return 0;
5750}
5751
5752#ifndef MODULE
5753static void autorun_array(struct mddev *mddev)
5754{
5755 struct md_rdev *rdev;
5756 int err;
5757
5758 if (list_empty(&mddev->disks))
5759 return;
5760
5761 pr_info("md: running: ");
5762
5763 rdev_for_each(rdev, mddev) {
5764 char b[BDEVNAME_SIZE];
5765 pr_cont("<%s>", bdevname(rdev->bdev,b));
5766 }
5767 pr_cont("\n");
5768
5769 err = do_md_run(mddev);
5770 if (err) {
5771 pr_warn("md: do_md_run() returned %d\n", err);
5772 do_md_stop(mddev, 0, NULL);
5773 }
5774}
5775
5776/*
5777 * lets try to run arrays based on all disks that have arrived
5778 * until now. (those are in pending_raid_disks)
5779 *
5780 * the method: pick the first pending disk, collect all disks with
5781 * the same UUID, remove all from the pending list and put them into
5782 * the 'same_array' list. Then order this list based on superblock
5783 * update time (freshest comes first), kick out 'old' disks and
5784 * compare superblocks. If everything's fine then run it.
5785 *
5786 * If "unit" is allocated, then bump its reference count
5787 */
5788static void autorun_devices(int part)
5789{
5790 struct md_rdev *rdev0, *rdev, *tmp;
5791 struct mddev *mddev;
5792 char b[BDEVNAME_SIZE];
5793
5794 pr_info("md: autorun ...\n");
5795 while (!list_empty(&pending_raid_disks)) {
5796 int unit;
5797 dev_t dev;
5798 LIST_HEAD(candidates);
5799 rdev0 = list_entry(pending_raid_disks.next,
5800 struct md_rdev, same_set);
5801
5802 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
5803 INIT_LIST_HEAD(&candidates);
5804 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5805 if (super_90_load(rdev, rdev0, 0) >= 0) {
5806 pr_debug("md: adding %s ...\n",
5807 bdevname(rdev->bdev,b));
5808 list_move(&rdev->same_set, &candidates);
5809 }
5810 /*
5811 * now we have a set of devices, with all of them having
5812 * mostly sane superblocks. It's time to allocate the
5813 * mddev.
5814 */
5815 if (part) {
5816 dev = MKDEV(mdp_major,
5817 rdev0->preferred_minor << MdpMinorShift);
5818 unit = MINOR(dev) >> MdpMinorShift;
5819 } else {
5820 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5821 unit = MINOR(dev);
5822 }
5823 if (rdev0->preferred_minor != unit) {
5824 pr_warn("md: unit number in %s is bad: %d\n",
5825 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5826 break;
5827 }
5828
5829 md_probe(dev, NULL, NULL);
5830 mddev = mddev_find(dev);
5831 if (!mddev || !mddev->gendisk) {
5832 if (mddev)
5833 mddev_put(mddev);
5834 break;
5835 }
5836 if (mddev_lock(mddev))
5837 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
5838 else if (mddev->raid_disks || mddev->major_version
5839 || !list_empty(&mddev->disks)) {
5840 pr_warn("md: %s already running, cannot run %s\n",
5841 mdname(mddev), bdevname(rdev0->bdev,b));
5842 mddev_unlock(mddev);
5843 } else {
5844 pr_debug("md: created %s\n", mdname(mddev));
5845 mddev->persistent = 1;
5846 rdev_for_each_list(rdev, tmp, &candidates) {
5847 list_del_init(&rdev->same_set);
5848 if (bind_rdev_to_array(rdev, mddev))
5849 export_rdev(rdev);
5850 }
5851 autorun_array(mddev);
5852 mddev_unlock(mddev);
5853 }
5854 /* on success, candidates will be empty, on error
5855 * it won't...
5856 */
5857 rdev_for_each_list(rdev, tmp, &candidates) {
5858 list_del_init(&rdev->same_set);
5859 export_rdev(rdev);
5860 }
5861 mddev_put(mddev);
5862 }
5863 pr_info("md: ... autorun DONE.\n");
5864}
5865#endif /* !MODULE */
5866
5867static int get_version(void __user *arg)
5868{
5869 mdu_version_t ver;
5870
5871 ver.major = MD_MAJOR_VERSION;
5872 ver.minor = MD_MINOR_VERSION;
5873 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5874
5875 if (copy_to_user(arg, &ver, sizeof(ver)))
5876 return -EFAULT;
5877
5878 return 0;
5879}
5880
5881static int get_array_info(struct mddev *mddev, void __user *arg)
5882{
5883 mdu_array_info_t info;
5884 int nr,working,insync,failed,spare;
5885 struct md_rdev *rdev;
5886
5887 nr = working = insync = failed = spare = 0;
5888 rcu_read_lock();
5889 rdev_for_each_rcu(rdev, mddev) {
5890 nr++;
5891 if (test_bit(Faulty, &rdev->flags))
5892 failed++;
5893 else {
5894 working++;
5895 if (test_bit(In_sync, &rdev->flags))
5896 insync++;
5897 else if (test_bit(Journal, &rdev->flags))
5898 /* TODO: add journal count to md_u.h */
5899 ;
5900 else
5901 spare++;
5902 }
5903 }
5904 rcu_read_unlock();
5905
5906 info.major_version = mddev->major_version;
5907 info.minor_version = mddev->minor_version;
5908 info.patch_version = MD_PATCHLEVEL_VERSION;
5909 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5910 info.level = mddev->level;
5911 info.size = mddev->dev_sectors / 2;
5912 if (info.size != mddev->dev_sectors / 2) /* overflow */
5913 info.size = -1;
5914 info.nr_disks = nr;
5915 info.raid_disks = mddev->raid_disks;
5916 info.md_minor = mddev->md_minor;
5917 info.not_persistent= !mddev->persistent;
5918
5919 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5920 info.state = 0;
5921 if (mddev->in_sync)
5922 info.state = (1<<MD_SB_CLEAN);
5923 if (mddev->bitmap && mddev->bitmap_info.offset)
5924 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5925 if (mddev_is_clustered(mddev))
5926 info.state |= (1<<MD_SB_CLUSTERED);
5927 info.active_disks = insync;
5928 info.working_disks = working;
5929 info.failed_disks = failed;
5930 info.spare_disks = spare;
5931
5932 info.layout = mddev->layout;
5933 info.chunk_size = mddev->chunk_sectors << 9;
5934
5935 if (copy_to_user(arg, &info, sizeof(info)))
5936 return -EFAULT;
5937
5938 return 0;
5939}
5940
5941static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5942{
5943 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5944 char *ptr;
5945 int err;
5946
5947 file = kzalloc(sizeof(*file), GFP_NOIO);
5948 if (!file)
5949 return -ENOMEM;
5950
5951 err = 0;
5952 spin_lock(&mddev->lock);
5953 /* bitmap enabled */
5954 if (mddev->bitmap_info.file) {
5955 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5956 sizeof(file->pathname));
5957 if (IS_ERR(ptr))
5958 err = PTR_ERR(ptr);
5959 else
5960 memmove(file->pathname, ptr,
5961 sizeof(file->pathname)-(ptr-file->pathname));
5962 }
5963 spin_unlock(&mddev->lock);
5964
5965 if (err == 0 &&
5966 copy_to_user(arg, file, sizeof(*file)))
5967 err = -EFAULT;
5968
5969 kfree(file);
5970 return err;
5971}
5972
5973static int get_disk_info(struct mddev *mddev, void __user * arg)
5974{
5975 mdu_disk_info_t info;
5976 struct md_rdev *rdev;
5977
5978 if (copy_from_user(&info, arg, sizeof(info)))
5979 return -EFAULT;
5980
5981 rcu_read_lock();
5982 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5983 if (rdev) {
5984 info.major = MAJOR(rdev->bdev->bd_dev);
5985 info.minor = MINOR(rdev->bdev->bd_dev);
5986 info.raid_disk = rdev->raid_disk;
5987 info.state = 0;
5988 if (test_bit(Faulty, &rdev->flags))
5989 info.state |= (1<<MD_DISK_FAULTY);
5990 else if (test_bit(In_sync, &rdev->flags)) {
5991 info.state |= (1<<MD_DISK_ACTIVE);
5992 info.state |= (1<<MD_DISK_SYNC);
5993 }
5994 if (test_bit(Journal, &rdev->flags))
5995 info.state |= (1<<MD_DISK_JOURNAL);
5996 if (test_bit(WriteMostly, &rdev->flags))
5997 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5998 if (test_bit(FailFast, &rdev->flags))
5999 info.state |= (1<<MD_DISK_FAILFAST);
6000 } else {
6001 info.major = info.minor = 0;
6002 info.raid_disk = -1;
6003 info.state = (1<<MD_DISK_REMOVED);
6004 }
6005 rcu_read_unlock();
6006
6007 if (copy_to_user(arg, &info, sizeof(info)))
6008 return -EFAULT;
6009
6010 return 0;
6011}
6012
6013static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6014{
6015 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6016 struct md_rdev *rdev;
6017 dev_t dev = MKDEV(info->major,info->minor);
6018
6019 if (mddev_is_clustered(mddev) &&
6020 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6021 pr_warn("%s: Cannot add to clustered mddev.\n",
6022 mdname(mddev));
6023 return -EINVAL;
6024 }
6025
6026 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6027 return -EOVERFLOW;
6028
6029 if (!mddev->raid_disks) {
6030 int err;
6031 /* expecting a device which has a superblock */
6032 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6033 if (IS_ERR(rdev)) {
6034 pr_warn("md: md_import_device returned %ld\n",
6035 PTR_ERR(rdev));
6036 return PTR_ERR(rdev);
6037 }
6038 if (!list_empty(&mddev->disks)) {
6039 struct md_rdev *rdev0
6040 = list_entry(mddev->disks.next,
6041 struct md_rdev, same_set);
6042 err = super_types[mddev->major_version]
6043 .load_super(rdev, rdev0, mddev->minor_version);
6044 if (err < 0) {
6045 pr_warn("md: %s has different UUID to %s\n",
6046 bdevname(rdev->bdev,b),
6047 bdevname(rdev0->bdev,b2));
6048 export_rdev(rdev);
6049 return -EINVAL;
6050 }
6051 }
6052 err = bind_rdev_to_array(rdev, mddev);
6053 if (err)
6054 export_rdev(rdev);
6055 return err;
6056 }
6057
6058 /*
6059 * add_new_disk can be used once the array is assembled
6060 * to add "hot spares". They must already have a superblock
6061 * written
6062 */
6063 if (mddev->pers) {
6064 int err;
6065 if (!mddev->pers->hot_add_disk) {
6066 pr_warn("%s: personality does not support diskops!\n",
6067 mdname(mddev));
6068 return -EINVAL;
6069 }
6070 if (mddev->persistent)
6071 rdev = md_import_device(dev, mddev->major_version,
6072 mddev->minor_version);
6073 else
6074 rdev = md_import_device(dev, -1, -1);
6075 if (IS_ERR(rdev)) {
6076 pr_warn("md: md_import_device returned %ld\n",
6077 PTR_ERR(rdev));
6078 return PTR_ERR(rdev);
6079 }
6080 /* set saved_raid_disk if appropriate */
6081 if (!mddev->persistent) {
6082 if (info->state & (1<<MD_DISK_SYNC) &&
6083 info->raid_disk < mddev->raid_disks) {
6084 rdev->raid_disk = info->raid_disk;
6085 set_bit(In_sync, &rdev->flags);
6086 clear_bit(Bitmap_sync, &rdev->flags);
6087 } else
6088 rdev->raid_disk = -1;
6089 rdev->saved_raid_disk = rdev->raid_disk;
6090 } else
6091 super_types[mddev->major_version].
6092 validate_super(mddev, rdev);
6093 if ((info->state & (1<<MD_DISK_SYNC)) &&
6094 rdev->raid_disk != info->raid_disk) {
6095 /* This was a hot-add request, but events doesn't
6096 * match, so reject it.
6097 */
6098 export_rdev(rdev);
6099 return -EINVAL;
6100 }
6101
6102 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6103 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6104 set_bit(WriteMostly, &rdev->flags);
6105 else
6106 clear_bit(WriteMostly, &rdev->flags);
6107 if (info->state & (1<<MD_DISK_FAILFAST))
6108 set_bit(FailFast, &rdev->flags);
6109 else
6110 clear_bit(FailFast, &rdev->flags);
6111
6112 if (info->state & (1<<MD_DISK_JOURNAL)) {
6113 struct md_rdev *rdev2;
6114 bool has_journal = false;
6115
6116 /* make sure no existing journal disk */
6117 rdev_for_each(rdev2, mddev) {
6118 if (test_bit(Journal, &rdev2->flags)) {
6119 has_journal = true;
6120 break;
6121 }
6122 }
6123 if (has_journal) {
6124 export_rdev(rdev);
6125 return -EBUSY;
6126 }
6127 set_bit(Journal, &rdev->flags);
6128 }
6129 /*
6130 * check whether the device shows up in other nodes
6131 */
6132 if (mddev_is_clustered(mddev)) {
6133 if (info->state & (1 << MD_DISK_CANDIDATE))
6134 set_bit(Candidate, &rdev->flags);
6135 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6136 /* --add initiated by this node */
6137 err = md_cluster_ops->add_new_disk(mddev, rdev);
6138 if (err) {
6139 export_rdev(rdev);
6140 return err;
6141 }
6142 }
6143 }
6144
6145 rdev->raid_disk = -1;
6146 err = bind_rdev_to_array(rdev, mddev);
6147
6148 if (err)
6149 export_rdev(rdev);
6150
6151 if (mddev_is_clustered(mddev)) {
6152 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6153 if (!err) {
6154 err = md_cluster_ops->new_disk_ack(mddev,
6155 err == 0);
6156 if (err)
6157 md_kick_rdev_from_array(rdev);
6158 }
6159 } else {
6160 if (err)
6161 md_cluster_ops->add_new_disk_cancel(mddev);
6162 else
6163 err = add_bound_rdev(rdev);
6164 }
6165
6166 } else if (!err)
6167 err = add_bound_rdev(rdev);
6168
6169 return err;
6170 }
6171
6172 /* otherwise, add_new_disk is only allowed
6173 * for major_version==0 superblocks
6174 */
6175 if (mddev->major_version != 0) {
6176 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6177 return -EINVAL;
6178 }
6179
6180 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6181 int err;
6182 rdev = md_import_device(dev, -1, 0);
6183 if (IS_ERR(rdev)) {
6184 pr_warn("md: error, md_import_device() returned %ld\n",
6185 PTR_ERR(rdev));
6186 return PTR_ERR(rdev);
6187 }
6188 rdev->desc_nr = info->number;
6189 if (info->raid_disk < mddev->raid_disks)
6190 rdev->raid_disk = info->raid_disk;
6191 else
6192 rdev->raid_disk = -1;
6193
6194 if (rdev->raid_disk < mddev->raid_disks)
6195 if (info->state & (1<<MD_DISK_SYNC))
6196 set_bit(In_sync, &rdev->flags);
6197
6198 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6199 set_bit(WriteMostly, &rdev->flags);
6200 if (info->state & (1<<MD_DISK_FAILFAST))
6201 set_bit(FailFast, &rdev->flags);
6202
6203 if (!mddev->persistent) {
6204 pr_debug("md: nonpersistent superblock ...\n");
6205 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6206 } else
6207 rdev->sb_start = calc_dev_sboffset(rdev);
6208 rdev->sectors = rdev->sb_start;
6209
6210 err = bind_rdev_to_array(rdev, mddev);
6211 if (err) {
6212 export_rdev(rdev);
6213 return err;
6214 }
6215 }
6216
6217 return 0;
6218}
6219
6220static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6221{
6222 char b[BDEVNAME_SIZE];
6223 struct md_rdev *rdev;
6224
6225 rdev = find_rdev(mddev, dev);
6226 if (!rdev)
6227 return -ENXIO;
6228
6229 if (rdev->raid_disk < 0)
6230 goto kick_rdev;
6231
6232 clear_bit(Blocked, &rdev->flags);
6233 remove_and_add_spares(mddev, rdev);
6234
6235 if (rdev->raid_disk >= 0)
6236 goto busy;
6237
6238kick_rdev:
6239 if (mddev_is_clustered(mddev))
6240 md_cluster_ops->remove_disk(mddev, rdev);
6241
6242 md_kick_rdev_from_array(rdev);
6243 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6244 if (mddev->thread)
6245 md_wakeup_thread(mddev->thread);
6246 else
6247 md_update_sb(mddev, 1);
6248 md_new_event(mddev);
6249
6250 return 0;
6251busy:
6252 pr_debug("md: cannot remove active disk %s from %s ...\n",
6253 bdevname(rdev->bdev,b), mdname(mddev));
6254 return -EBUSY;
6255}
6256
6257static int hot_add_disk(struct mddev *mddev, dev_t dev)
6258{
6259 char b[BDEVNAME_SIZE];
6260 int err;
6261 struct md_rdev *rdev;
6262
6263 if (!mddev->pers)
6264 return -ENODEV;
6265
6266 if (mddev->major_version != 0) {
6267 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6268 mdname(mddev));
6269 return -EINVAL;
6270 }
6271 if (!mddev->pers->hot_add_disk) {
6272 pr_warn("%s: personality does not support diskops!\n",
6273 mdname(mddev));
6274 return -EINVAL;
6275 }
6276
6277 rdev = md_import_device(dev, -1, 0);
6278 if (IS_ERR(rdev)) {
6279 pr_warn("md: error, md_import_device() returned %ld\n",
6280 PTR_ERR(rdev));
6281 return -EINVAL;
6282 }
6283
6284 if (mddev->persistent)
6285 rdev->sb_start = calc_dev_sboffset(rdev);
6286 else
6287 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6288
6289 rdev->sectors = rdev->sb_start;
6290
6291 if (test_bit(Faulty, &rdev->flags)) {
6292 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6293 bdevname(rdev->bdev,b), mdname(mddev));
6294 err = -EINVAL;
6295 goto abort_export;
6296 }
6297
6298 clear_bit(In_sync, &rdev->flags);
6299 rdev->desc_nr = -1;
6300 rdev->saved_raid_disk = -1;
6301 err = bind_rdev_to_array(rdev, mddev);
6302 if (err)
6303 goto abort_export;
6304
6305 /*
6306 * The rest should better be atomic, we can have disk failures
6307 * noticed in interrupt contexts ...
6308 */
6309
6310 rdev->raid_disk = -1;
6311
6312 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6313 if (!mddev->thread)
6314 md_update_sb(mddev, 1);
6315 /*
6316 * Kick recovery, maybe this spare has to be added to the
6317 * array immediately.
6318 */
6319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6320 md_wakeup_thread(mddev->thread);
6321 md_new_event(mddev);
6322 return 0;
6323
6324abort_export:
6325 export_rdev(rdev);
6326 return err;
6327}
6328
6329static int set_bitmap_file(struct mddev *mddev, int fd)
6330{
6331 int err = 0;
6332
6333 if (mddev->pers) {
6334 if (!mddev->pers->quiesce || !mddev->thread)
6335 return -EBUSY;
6336 if (mddev->recovery || mddev->sync_thread)
6337 return -EBUSY;
6338 /* we should be able to change the bitmap.. */
6339 }
6340
6341 if (fd >= 0) {
6342 struct inode *inode;
6343 struct file *f;
6344
6345 if (mddev->bitmap || mddev->bitmap_info.file)
6346 return -EEXIST; /* cannot add when bitmap is present */
6347 f = fget(fd);
6348
6349 if (f == NULL) {
6350 pr_warn("%s: error: failed to get bitmap file\n",
6351 mdname(mddev));
6352 return -EBADF;
6353 }
6354
6355 inode = f->f_mapping->host;
6356 if (!S_ISREG(inode->i_mode)) {
6357 pr_warn("%s: error: bitmap file must be a regular file\n",
6358 mdname(mddev));
6359 err = -EBADF;
6360 } else if (!(f->f_mode & FMODE_WRITE)) {
6361 pr_warn("%s: error: bitmap file must open for write\n",
6362 mdname(mddev));
6363 err = -EBADF;
6364 } else if (atomic_read(&inode->i_writecount) != 1) {
6365 pr_warn("%s: error: bitmap file is already in use\n",
6366 mdname(mddev));
6367 err = -EBUSY;
6368 }
6369 if (err) {
6370 fput(f);
6371 return err;
6372 }
6373 mddev->bitmap_info.file = f;
6374 mddev->bitmap_info.offset = 0; /* file overrides offset */
6375 } else if (mddev->bitmap == NULL)
6376 return -ENOENT; /* cannot remove what isn't there */
6377 err = 0;
6378 if (mddev->pers) {
6379 mddev->pers->quiesce(mddev, 1);
6380 if (fd >= 0) {
6381 struct bitmap *bitmap;
6382
6383 bitmap = bitmap_create(mddev, -1);
6384 if (!IS_ERR(bitmap)) {
6385 mddev->bitmap = bitmap;
6386 err = bitmap_load(mddev);
6387 } else
6388 err = PTR_ERR(bitmap);
6389 }
6390 if (fd < 0 || err) {
6391 bitmap_destroy(mddev);
6392 fd = -1; /* make sure to put the file */
6393 }
6394 mddev->pers->quiesce(mddev, 0);
6395 }
6396 if (fd < 0) {
6397 struct file *f = mddev->bitmap_info.file;
6398 if (f) {
6399 spin_lock(&mddev->lock);
6400 mddev->bitmap_info.file = NULL;
6401 spin_unlock(&mddev->lock);
6402 fput(f);
6403 }
6404 }
6405
6406 return err;
6407}
6408
6409/*
6410 * set_array_info is used two different ways
6411 * The original usage is when creating a new array.
6412 * In this usage, raid_disks is > 0 and it together with
6413 * level, size, not_persistent,layout,chunksize determine the
6414 * shape of the array.
6415 * This will always create an array with a type-0.90.0 superblock.
6416 * The newer usage is when assembling an array.
6417 * In this case raid_disks will be 0, and the major_version field is
6418 * use to determine which style super-blocks are to be found on the devices.
6419 * The minor and patch _version numbers are also kept incase the
6420 * super_block handler wishes to interpret them.
6421 */
6422static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6423{
6424
6425 if (info->raid_disks == 0) {
6426 /* just setting version number for superblock loading */
6427 if (info->major_version < 0 ||
6428 info->major_version >= ARRAY_SIZE(super_types) ||
6429 super_types[info->major_version].name == NULL) {
6430 /* maybe try to auto-load a module? */
6431 pr_warn("md: superblock version %d not known\n",
6432 info->major_version);
6433 return -EINVAL;
6434 }
6435 mddev->major_version = info->major_version;
6436 mddev->minor_version = info->minor_version;
6437 mddev->patch_version = info->patch_version;
6438 mddev->persistent = !info->not_persistent;
6439 /* ensure mddev_put doesn't delete this now that there
6440 * is some minimal configuration.
6441 */
6442 mddev->ctime = ktime_get_real_seconds();
6443 return 0;
6444 }
6445 mddev->major_version = MD_MAJOR_VERSION;
6446 mddev->minor_version = MD_MINOR_VERSION;
6447 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6448 mddev->ctime = ktime_get_real_seconds();
6449
6450 mddev->level = info->level;
6451 mddev->clevel[0] = 0;
6452 mddev->dev_sectors = 2 * (sector_t)info->size;
6453 mddev->raid_disks = info->raid_disks;
6454 /* don't set md_minor, it is determined by which /dev/md* was
6455 * openned
6456 */
6457 if (info->state & (1<<MD_SB_CLEAN))
6458 mddev->recovery_cp = MaxSector;
6459 else
6460 mddev->recovery_cp = 0;
6461 mddev->persistent = ! info->not_persistent;
6462 mddev->external = 0;
6463
6464 mddev->layout = info->layout;
6465 mddev->chunk_sectors = info->chunk_size >> 9;
6466
6467 mddev->max_disks = MD_SB_DISKS;
6468
6469 if (mddev->persistent) {
6470 mddev->flags = 0;
6471 mddev->sb_flags = 0;
6472 }
6473 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6474
6475 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6476 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6477 mddev->bitmap_info.offset = 0;
6478
6479 mddev->reshape_position = MaxSector;
6480
6481 /*
6482 * Generate a 128 bit UUID
6483 */
6484 get_random_bytes(mddev->uuid, 16);
6485
6486 mddev->new_level = mddev->level;
6487 mddev->new_chunk_sectors = mddev->chunk_sectors;
6488 mddev->new_layout = mddev->layout;
6489 mddev->delta_disks = 0;
6490 mddev->reshape_backwards = 0;
6491
6492 return 0;
6493}
6494
6495void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6496{
6497 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6498
6499 if (mddev->external_size)
6500 return;
6501
6502 mddev->array_sectors = array_sectors;
6503}
6504EXPORT_SYMBOL(md_set_array_sectors);
6505
6506static int update_size(struct mddev *mddev, sector_t num_sectors)
6507{
6508 struct md_rdev *rdev;
6509 int rv;
6510 int fit = (num_sectors == 0);
6511
6512 /* cluster raid doesn't support update size */
6513 if (mddev_is_clustered(mddev))
6514 return -EINVAL;
6515
6516 if (mddev->pers->resize == NULL)
6517 return -EINVAL;
6518 /* The "num_sectors" is the number of sectors of each device that
6519 * is used. This can only make sense for arrays with redundancy.
6520 * linear and raid0 always use whatever space is available. We can only
6521 * consider changing this number if no resync or reconstruction is
6522 * happening, and if the new size is acceptable. It must fit before the
6523 * sb_start or, if that is <data_offset, it must fit before the size
6524 * of each device. If num_sectors is zero, we find the largest size
6525 * that fits.
6526 */
6527 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6528 mddev->sync_thread)
6529 return -EBUSY;
6530 if (mddev->ro)
6531 return -EROFS;
6532
6533 rdev_for_each(rdev, mddev) {
6534 sector_t avail = rdev->sectors;
6535
6536 if (fit && (num_sectors == 0 || num_sectors > avail))
6537 num_sectors = avail;
6538 if (avail < num_sectors)
6539 return -ENOSPC;
6540 }
6541 rv = mddev->pers->resize(mddev, num_sectors);
6542 if (!rv)
6543 revalidate_disk(mddev->gendisk);
6544 return rv;
6545}
6546
6547static int update_raid_disks(struct mddev *mddev, int raid_disks)
6548{
6549 int rv;
6550 struct md_rdev *rdev;
6551 /* change the number of raid disks */
6552 if (mddev->pers->check_reshape == NULL)
6553 return -EINVAL;
6554 if (mddev->ro)
6555 return -EROFS;
6556 if (raid_disks <= 0 ||
6557 (mddev->max_disks && raid_disks >= mddev->max_disks))
6558 return -EINVAL;
6559 if (mddev->sync_thread ||
6560 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6561 mddev->reshape_position != MaxSector)
6562 return -EBUSY;
6563
6564 rdev_for_each(rdev, mddev) {
6565 if (mddev->raid_disks < raid_disks &&
6566 rdev->data_offset < rdev->new_data_offset)
6567 return -EINVAL;
6568 if (mddev->raid_disks > raid_disks &&
6569 rdev->data_offset > rdev->new_data_offset)
6570 return -EINVAL;
6571 }
6572
6573 mddev->delta_disks = raid_disks - mddev->raid_disks;
6574 if (mddev->delta_disks < 0)
6575 mddev->reshape_backwards = 1;
6576 else if (mddev->delta_disks > 0)
6577 mddev->reshape_backwards = 0;
6578
6579 rv = mddev->pers->check_reshape(mddev);
6580 if (rv < 0) {
6581 mddev->delta_disks = 0;
6582 mddev->reshape_backwards = 0;
6583 }
6584 return rv;
6585}
6586
6587/*
6588 * update_array_info is used to change the configuration of an
6589 * on-line array.
6590 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6591 * fields in the info are checked against the array.
6592 * Any differences that cannot be handled will cause an error.
6593 * Normally, only one change can be managed at a time.
6594 */
6595static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6596{
6597 int rv = 0;
6598 int cnt = 0;
6599 int state = 0;
6600
6601 /* calculate expected state,ignoring low bits */
6602 if (mddev->bitmap && mddev->bitmap_info.offset)
6603 state |= (1 << MD_SB_BITMAP_PRESENT);
6604
6605 if (mddev->major_version != info->major_version ||
6606 mddev->minor_version != info->minor_version ||
6607/* mddev->patch_version != info->patch_version || */
6608 mddev->ctime != info->ctime ||
6609 mddev->level != info->level ||
6610/* mddev->layout != info->layout || */
6611 mddev->persistent != !info->not_persistent ||
6612 mddev->chunk_sectors != info->chunk_size >> 9 ||
6613 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6614 ((state^info->state) & 0xfffffe00)
6615 )
6616 return -EINVAL;
6617 /* Check there is only one change */
6618 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6619 cnt++;
6620 if (mddev->raid_disks != info->raid_disks)
6621 cnt++;
6622 if (mddev->layout != info->layout)
6623 cnt++;
6624 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6625 cnt++;
6626 if (cnt == 0)
6627 return 0;
6628 if (cnt > 1)
6629 return -EINVAL;
6630
6631 if (mddev->layout != info->layout) {
6632 /* Change layout
6633 * we don't need to do anything at the md level, the
6634 * personality will take care of it all.
6635 */
6636 if (mddev->pers->check_reshape == NULL)
6637 return -EINVAL;
6638 else {
6639 mddev->new_layout = info->layout;
6640 rv = mddev->pers->check_reshape(mddev);
6641 if (rv)
6642 mddev->new_layout = mddev->layout;
6643 return rv;
6644 }
6645 }
6646 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6647 rv = update_size(mddev, (sector_t)info->size * 2);
6648
6649 if (mddev->raid_disks != info->raid_disks)
6650 rv = update_raid_disks(mddev, info->raid_disks);
6651
6652 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6653 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6654 rv = -EINVAL;
6655 goto err;
6656 }
6657 if (mddev->recovery || mddev->sync_thread) {
6658 rv = -EBUSY;
6659 goto err;
6660 }
6661 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6662 struct bitmap *bitmap;
6663 /* add the bitmap */
6664 if (mddev->bitmap) {
6665 rv = -EEXIST;
6666 goto err;
6667 }
6668 if (mddev->bitmap_info.default_offset == 0) {
6669 rv = -EINVAL;
6670 goto err;
6671 }
6672 mddev->bitmap_info.offset =
6673 mddev->bitmap_info.default_offset;
6674 mddev->bitmap_info.space =
6675 mddev->bitmap_info.default_space;
6676 mddev->pers->quiesce(mddev, 1);
6677 bitmap = bitmap_create(mddev, -1);
6678 if (!IS_ERR(bitmap)) {
6679 mddev->bitmap = bitmap;
6680 rv = bitmap_load(mddev);
6681 } else
6682 rv = PTR_ERR(bitmap);
6683 if (rv)
6684 bitmap_destroy(mddev);
6685 mddev->pers->quiesce(mddev, 0);
6686 } else {
6687 /* remove the bitmap */
6688 if (!mddev->bitmap) {
6689 rv = -ENOENT;
6690 goto err;
6691 }
6692 if (mddev->bitmap->storage.file) {
6693 rv = -EINVAL;
6694 goto err;
6695 }
6696 if (mddev->bitmap_info.nodes) {
6697 /* hold PW on all the bitmap lock */
6698 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6699 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6700 rv = -EPERM;
6701 md_cluster_ops->unlock_all_bitmaps(mddev);
6702 goto err;
6703 }
6704
6705 mddev->bitmap_info.nodes = 0;
6706 md_cluster_ops->leave(mddev);
6707 }
6708 mddev->pers->quiesce(mddev, 1);
6709 bitmap_destroy(mddev);
6710 mddev->pers->quiesce(mddev, 0);
6711 mddev->bitmap_info.offset = 0;
6712 }
6713 }
6714 md_update_sb(mddev, 1);
6715 return rv;
6716err:
6717 return rv;
6718}
6719
6720static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6721{
6722 struct md_rdev *rdev;
6723 int err = 0;
6724
6725 if (mddev->pers == NULL)
6726 return -ENODEV;
6727
6728 rcu_read_lock();
6729 rdev = find_rdev_rcu(mddev, dev);
6730 if (!rdev)
6731 err = -ENODEV;
6732 else {
6733 md_error(mddev, rdev);
6734 if (!test_bit(Faulty, &rdev->flags))
6735 err = -EBUSY;
6736 }
6737 rcu_read_unlock();
6738 return err;
6739}
6740
6741/*
6742 * We have a problem here : there is no easy way to give a CHS
6743 * virtual geometry. We currently pretend that we have a 2 heads
6744 * 4 sectors (with a BIG number of cylinders...). This drives
6745 * dosfs just mad... ;-)
6746 */
6747static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6748{
6749 struct mddev *mddev = bdev->bd_disk->private_data;
6750
6751 geo->heads = 2;
6752 geo->sectors = 4;
6753 geo->cylinders = mddev->array_sectors / 8;
6754 return 0;
6755}
6756
6757static inline bool md_ioctl_valid(unsigned int cmd)
6758{
6759 switch (cmd) {
6760 case ADD_NEW_DISK:
6761 case BLKROSET:
6762 case GET_ARRAY_INFO:
6763 case GET_BITMAP_FILE:
6764 case GET_DISK_INFO:
6765 case HOT_ADD_DISK:
6766 case HOT_REMOVE_DISK:
6767 case RAID_AUTORUN:
6768 case RAID_VERSION:
6769 case RESTART_ARRAY_RW:
6770 case RUN_ARRAY:
6771 case SET_ARRAY_INFO:
6772 case SET_BITMAP_FILE:
6773 case SET_DISK_FAULTY:
6774 case STOP_ARRAY:
6775 case STOP_ARRAY_RO:
6776 case CLUSTERED_DISK_NACK:
6777 return true;
6778 default:
6779 return false;
6780 }
6781}
6782
6783static int md_ioctl(struct block_device *bdev, fmode_t mode,
6784 unsigned int cmd, unsigned long arg)
6785{
6786 int err = 0;
6787 void __user *argp = (void __user *)arg;
6788 struct mddev *mddev = NULL;
6789 int ro;
6790
6791 if (!md_ioctl_valid(cmd))
6792 return -ENOTTY;
6793
6794 switch (cmd) {
6795 case RAID_VERSION:
6796 case GET_ARRAY_INFO:
6797 case GET_DISK_INFO:
6798 break;
6799 default:
6800 if (!capable(CAP_SYS_ADMIN))
6801 return -EACCES;
6802 }
6803
6804 /*
6805 * Commands dealing with the RAID driver but not any
6806 * particular array:
6807 */
6808 switch (cmd) {
6809 case RAID_VERSION:
6810 err = get_version(argp);
6811 goto out;
6812
6813#ifndef MODULE
6814 case RAID_AUTORUN:
6815 err = 0;
6816 autostart_arrays(arg);
6817 goto out;
6818#endif
6819 default:;
6820 }
6821
6822 /*
6823 * Commands creating/starting a new array:
6824 */
6825
6826 mddev = bdev->bd_disk->private_data;
6827
6828 if (!mddev) {
6829 BUG();
6830 goto out;
6831 }
6832
6833 /* Some actions do not requires the mutex */
6834 switch (cmd) {
6835 case GET_ARRAY_INFO:
6836 if (!mddev->raid_disks && !mddev->external)
6837 err = -ENODEV;
6838 else
6839 err = get_array_info(mddev, argp);
6840 goto out;
6841
6842 case GET_DISK_INFO:
6843 if (!mddev->raid_disks && !mddev->external)
6844 err = -ENODEV;
6845 else
6846 err = get_disk_info(mddev, argp);
6847 goto out;
6848
6849 case SET_DISK_FAULTY:
6850 err = set_disk_faulty(mddev, new_decode_dev(arg));
6851 goto out;
6852
6853 case GET_BITMAP_FILE:
6854 err = get_bitmap_file(mddev, argp);
6855 goto out;
6856
6857 }
6858
6859 if (cmd == ADD_NEW_DISK)
6860 /* need to ensure md_delayed_delete() has completed */
6861 flush_workqueue(md_misc_wq);
6862
6863 if (cmd == HOT_REMOVE_DISK)
6864 /* need to ensure recovery thread has run */
6865 wait_event_interruptible_timeout(mddev->sb_wait,
6866 !test_bit(MD_RECOVERY_NEEDED,
6867 &mddev->recovery),
6868 msecs_to_jiffies(5000));
6869 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6870 /* Need to flush page cache, and ensure no-one else opens
6871 * and writes
6872 */
6873 mutex_lock(&mddev->open_mutex);
6874 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6875 mutex_unlock(&mddev->open_mutex);
6876 err = -EBUSY;
6877 goto out;
6878 }
6879 set_bit(MD_CLOSING, &mddev->flags);
6880 mutex_unlock(&mddev->open_mutex);
6881 sync_blockdev(bdev);
6882 }
6883 err = mddev_lock(mddev);
6884 if (err) {
6885 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
6886 err, cmd);
6887 goto out;
6888 }
6889
6890 if (cmd == SET_ARRAY_INFO) {
6891 mdu_array_info_t info;
6892 if (!arg)
6893 memset(&info, 0, sizeof(info));
6894 else if (copy_from_user(&info, argp, sizeof(info))) {
6895 err = -EFAULT;
6896 goto unlock;
6897 }
6898 if (mddev->pers) {
6899 err = update_array_info(mddev, &info);
6900 if (err) {
6901 pr_warn("md: couldn't update array info. %d\n", err);
6902 goto unlock;
6903 }
6904 goto unlock;
6905 }
6906 if (!list_empty(&mddev->disks)) {
6907 pr_warn("md: array %s already has disks!\n", mdname(mddev));
6908 err = -EBUSY;
6909 goto unlock;
6910 }
6911 if (mddev->raid_disks) {
6912 pr_warn("md: array %s already initialised!\n", mdname(mddev));
6913 err = -EBUSY;
6914 goto unlock;
6915 }
6916 err = set_array_info(mddev, &info);
6917 if (err) {
6918 pr_warn("md: couldn't set array info. %d\n", err);
6919 goto unlock;
6920 }
6921 goto unlock;
6922 }
6923
6924 /*
6925 * Commands querying/configuring an existing array:
6926 */
6927 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6928 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6929 if ((!mddev->raid_disks && !mddev->external)
6930 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6931 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6932 && cmd != GET_BITMAP_FILE) {
6933 err = -ENODEV;
6934 goto unlock;
6935 }
6936
6937 /*
6938 * Commands even a read-only array can execute:
6939 */
6940 switch (cmd) {
6941 case RESTART_ARRAY_RW:
6942 err = restart_array(mddev);
6943 goto unlock;
6944
6945 case STOP_ARRAY:
6946 err = do_md_stop(mddev, 0, bdev);
6947 goto unlock;
6948
6949 case STOP_ARRAY_RO:
6950 err = md_set_readonly(mddev, bdev);
6951 goto unlock;
6952
6953 case HOT_REMOVE_DISK:
6954 err = hot_remove_disk(mddev, new_decode_dev(arg));
6955 goto unlock;
6956
6957 case ADD_NEW_DISK:
6958 /* We can support ADD_NEW_DISK on read-only arrays
6959 * only if we are re-adding a preexisting device.
6960 * So require mddev->pers and MD_DISK_SYNC.
6961 */
6962 if (mddev->pers) {
6963 mdu_disk_info_t info;
6964 if (copy_from_user(&info, argp, sizeof(info)))
6965 err = -EFAULT;
6966 else if (!(info.state & (1<<MD_DISK_SYNC)))
6967 /* Need to clear read-only for this */
6968 break;
6969 else
6970 err = add_new_disk(mddev, &info);
6971 goto unlock;
6972 }
6973 break;
6974
6975 case BLKROSET:
6976 if (get_user(ro, (int __user *)(arg))) {
6977 err = -EFAULT;
6978 goto unlock;
6979 }
6980 err = -EINVAL;
6981
6982 /* if the bdev is going readonly the value of mddev->ro
6983 * does not matter, no writes are coming
6984 */
6985 if (ro)
6986 goto unlock;
6987
6988 /* are we are already prepared for writes? */
6989 if (mddev->ro != 1)
6990 goto unlock;
6991
6992 /* transitioning to readauto need only happen for
6993 * arrays that call md_write_start
6994 */
6995 if (mddev->pers) {
6996 err = restart_array(mddev);
6997 if (err == 0) {
6998 mddev->ro = 2;
6999 set_disk_ro(mddev->gendisk, 0);
7000 }
7001 }
7002 goto unlock;
7003 }
7004
7005 /*
7006 * The remaining ioctls are changing the state of the
7007 * superblock, so we do not allow them on read-only arrays.
7008 */
7009 if (mddev->ro && mddev->pers) {
7010 if (mddev->ro == 2) {
7011 mddev->ro = 0;
7012 sysfs_notify_dirent_safe(mddev->sysfs_state);
7013 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7014 /* mddev_unlock will wake thread */
7015 /* If a device failed while we were read-only, we
7016 * need to make sure the metadata is updated now.
7017 */
7018 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7019 mddev_unlock(mddev);
7020 wait_event(mddev->sb_wait,
7021 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7022 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7023 mddev_lock_nointr(mddev);
7024 }
7025 } else {
7026 err = -EROFS;
7027 goto unlock;
7028 }
7029 }
7030
7031 switch (cmd) {
7032 case ADD_NEW_DISK:
7033 {
7034 mdu_disk_info_t info;
7035 if (copy_from_user(&info, argp, sizeof(info)))
7036 err = -EFAULT;
7037 else
7038 err = add_new_disk(mddev, &info);
7039 goto unlock;
7040 }
7041
7042 case CLUSTERED_DISK_NACK:
7043 if (mddev_is_clustered(mddev))
7044 md_cluster_ops->new_disk_ack(mddev, false);
7045 else
7046 err = -EINVAL;
7047 goto unlock;
7048
7049 case HOT_ADD_DISK:
7050 err = hot_add_disk(mddev, new_decode_dev(arg));
7051 goto unlock;
7052
7053 case RUN_ARRAY:
7054 err = do_md_run(mddev);
7055 goto unlock;
7056
7057 case SET_BITMAP_FILE:
7058 err = set_bitmap_file(mddev, (int)arg);
7059 goto unlock;
7060
7061 default:
7062 err = -EINVAL;
7063 goto unlock;
7064 }
7065
7066unlock:
7067 if (mddev->hold_active == UNTIL_IOCTL &&
7068 err != -EINVAL)
7069 mddev->hold_active = 0;
7070 mddev_unlock(mddev);
7071out:
7072 return err;
7073}
7074#ifdef CONFIG_COMPAT
7075static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7076 unsigned int cmd, unsigned long arg)
7077{
7078 switch (cmd) {
7079 case HOT_REMOVE_DISK:
7080 case HOT_ADD_DISK:
7081 case SET_DISK_FAULTY:
7082 case SET_BITMAP_FILE:
7083 /* These take in integer arg, do not convert */
7084 break;
7085 default:
7086 arg = (unsigned long)compat_ptr(arg);
7087 break;
7088 }
7089
7090 return md_ioctl(bdev, mode, cmd, arg);
7091}
7092#endif /* CONFIG_COMPAT */
7093
7094static int md_open(struct block_device *bdev, fmode_t mode)
7095{
7096 /*
7097 * Succeed if we can lock the mddev, which confirms that
7098 * it isn't being stopped right now.
7099 */
7100 struct mddev *mddev = mddev_find(bdev->bd_dev);
7101 int err;
7102
7103 if (!mddev)
7104 return -ENODEV;
7105
7106 if (mddev->gendisk != bdev->bd_disk) {
7107 /* we are racing with mddev_put which is discarding this
7108 * bd_disk.
7109 */
7110 mddev_put(mddev);
7111 /* Wait until bdev->bd_disk is definitely gone */
7112 flush_workqueue(md_misc_wq);
7113 /* Then retry the open from the top */
7114 return -ERESTARTSYS;
7115 }
7116 BUG_ON(mddev != bdev->bd_disk->private_data);
7117
7118 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7119 goto out;
7120
7121 if (test_bit(MD_CLOSING, &mddev->flags)) {
7122 mutex_unlock(&mddev->open_mutex);
7123 err = -ENODEV;
7124 goto out;
7125 }
7126
7127 err = 0;
7128 atomic_inc(&mddev->openers);
7129 mutex_unlock(&mddev->open_mutex);
7130
7131 check_disk_change(bdev);
7132 out:
7133 if (err)
7134 mddev_put(mddev);
7135 return err;
7136}
7137
7138static void md_release(struct gendisk *disk, fmode_t mode)
7139{
7140 struct mddev *mddev = disk->private_data;
7141
7142 BUG_ON(!mddev);
7143 atomic_dec(&mddev->openers);
7144 mddev_put(mddev);
7145}
7146
7147static int md_media_changed(struct gendisk *disk)
7148{
7149 struct mddev *mddev = disk->private_data;
7150
7151 return mddev->changed;
7152}
7153
7154static int md_revalidate(struct gendisk *disk)
7155{
7156 struct mddev *mddev = disk->private_data;
7157
7158 mddev->changed = 0;
7159 return 0;
7160}
7161static const struct block_device_operations md_fops =
7162{
7163 .owner = THIS_MODULE,
7164 .open = md_open,
7165 .release = md_release,
7166 .ioctl = md_ioctl,
7167#ifdef CONFIG_COMPAT
7168 .compat_ioctl = md_compat_ioctl,
7169#endif
7170 .getgeo = md_getgeo,
7171 .media_changed = md_media_changed,
7172 .revalidate_disk= md_revalidate,
7173};
7174
7175static int md_thread(void *arg)
7176{
7177 struct md_thread *thread = arg;
7178
7179 /*
7180 * md_thread is a 'system-thread', it's priority should be very
7181 * high. We avoid resource deadlocks individually in each
7182 * raid personality. (RAID5 does preallocation) We also use RR and
7183 * the very same RT priority as kswapd, thus we will never get
7184 * into a priority inversion deadlock.
7185 *
7186 * we definitely have to have equal or higher priority than
7187 * bdflush, otherwise bdflush will deadlock if there are too
7188 * many dirty RAID5 blocks.
7189 */
7190
7191 allow_signal(SIGKILL);
7192 while (!kthread_should_stop()) {
7193
7194 /* We need to wait INTERRUPTIBLE so that
7195 * we don't add to the load-average.
7196 * That means we need to be sure no signals are
7197 * pending
7198 */
7199 if (signal_pending(current))
7200 flush_signals(current);
7201
7202 wait_event_interruptible_timeout
7203 (thread->wqueue,
7204 test_bit(THREAD_WAKEUP, &thread->flags)
7205 || kthread_should_stop() || kthread_should_park(),
7206 thread->timeout);
7207
7208 clear_bit(THREAD_WAKEUP, &thread->flags);
7209 if (kthread_should_park())
7210 kthread_parkme();
7211 if (!kthread_should_stop())
7212 thread->run(thread);
7213 }
7214
7215 return 0;
7216}
7217
7218void md_wakeup_thread(struct md_thread *thread)
7219{
7220 if (thread) {
7221 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7222 set_bit(THREAD_WAKEUP, &thread->flags);
7223 wake_up(&thread->wqueue);
7224 }
7225}
7226EXPORT_SYMBOL(md_wakeup_thread);
7227
7228struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7229 struct mddev *mddev, const char *name)
7230{
7231 struct md_thread *thread;
7232
7233 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7234 if (!thread)
7235 return NULL;
7236
7237 init_waitqueue_head(&thread->wqueue);
7238
7239 thread->run = run;
7240 thread->mddev = mddev;
7241 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7242 thread->tsk = kthread_run(md_thread, thread,
7243 "%s_%s",
7244 mdname(thread->mddev),
7245 name);
7246 if (IS_ERR(thread->tsk)) {
7247 kfree(thread);
7248 return NULL;
7249 }
7250 return thread;
7251}
7252EXPORT_SYMBOL(md_register_thread);
7253
7254void md_unregister_thread(struct md_thread **threadp)
7255{
7256 struct md_thread *thread = *threadp;
7257 if (!thread)
7258 return;
7259 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7260 /* Locking ensures that mddev_unlock does not wake_up a
7261 * non-existent thread
7262 */
7263 spin_lock(&pers_lock);
7264 *threadp = NULL;
7265 spin_unlock(&pers_lock);
7266
7267 kthread_stop(thread->tsk);
7268 kfree(thread);
7269}
7270EXPORT_SYMBOL(md_unregister_thread);
7271
7272void md_error(struct mddev *mddev, struct md_rdev *rdev)
7273{
7274 if (!rdev || test_bit(Faulty, &rdev->flags))
7275 return;
7276
7277 if (!mddev->pers || !mddev->pers->error_handler)
7278 return;
7279 mddev->pers->error_handler(mddev,rdev);
7280 if (mddev->degraded)
7281 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7282 sysfs_notify_dirent_safe(rdev->sysfs_state);
7283 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7284 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7285 md_wakeup_thread(mddev->thread);
7286 if (mddev->event_work.func)
7287 queue_work(md_misc_wq, &mddev->event_work);
7288 md_new_event(mddev);
7289}
7290EXPORT_SYMBOL(md_error);
7291
7292/* seq_file implementation /proc/mdstat */
7293
7294static void status_unused(struct seq_file *seq)
7295{
7296 int i = 0;
7297 struct md_rdev *rdev;
7298
7299 seq_printf(seq, "unused devices: ");
7300
7301 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7302 char b[BDEVNAME_SIZE];
7303 i++;
7304 seq_printf(seq, "%s ",
7305 bdevname(rdev->bdev,b));
7306 }
7307 if (!i)
7308 seq_printf(seq, "<none>");
7309
7310 seq_printf(seq, "\n");
7311}
7312
7313static int status_resync(struct seq_file *seq, struct mddev *mddev)
7314{
7315 sector_t max_sectors, resync, res;
7316 unsigned long dt, db;
7317 sector_t rt;
7318 int scale;
7319 unsigned int per_milli;
7320
7321 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7322 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7323 max_sectors = mddev->resync_max_sectors;
7324 else
7325 max_sectors = mddev->dev_sectors;
7326
7327 resync = mddev->curr_resync;
7328 if (resync <= 3) {
7329 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7330 /* Still cleaning up */
7331 resync = max_sectors;
7332 } else
7333 resync -= atomic_read(&mddev->recovery_active);
7334
7335 if (resync == 0) {
7336 if (mddev->recovery_cp < MaxSector) {
7337 seq_printf(seq, "\tresync=PENDING");
7338 return 1;
7339 }
7340 return 0;
7341 }
7342 if (resync < 3) {
7343 seq_printf(seq, "\tresync=DELAYED");
7344 return 1;
7345 }
7346
7347 WARN_ON(max_sectors == 0);
7348 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7349 * in a sector_t, and (max_sectors>>scale) will fit in a
7350 * u32, as those are the requirements for sector_div.
7351 * Thus 'scale' must be at least 10
7352 */
7353 scale = 10;
7354 if (sizeof(sector_t) > sizeof(unsigned long)) {
7355 while ( max_sectors/2 > (1ULL<<(scale+32)))
7356 scale++;
7357 }
7358 res = (resync>>scale)*1000;
7359 sector_div(res, (u32)((max_sectors>>scale)+1));
7360
7361 per_milli = res;
7362 {
7363 int i, x = per_milli/50, y = 20-x;
7364 seq_printf(seq, "[");
7365 for (i = 0; i < x; i++)
7366 seq_printf(seq, "=");
7367 seq_printf(seq, ">");
7368 for (i = 0; i < y; i++)
7369 seq_printf(seq, ".");
7370 seq_printf(seq, "] ");
7371 }
7372 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7373 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7374 "reshape" :
7375 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7376 "check" :
7377 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7378 "resync" : "recovery"))),
7379 per_milli/10, per_milli % 10,
7380 (unsigned long long) resync/2,
7381 (unsigned long long) max_sectors/2);
7382
7383 /*
7384 * dt: time from mark until now
7385 * db: blocks written from mark until now
7386 * rt: remaining time
7387 *
7388 * rt is a sector_t, so could be 32bit or 64bit.
7389 * So we divide before multiply in case it is 32bit and close
7390 * to the limit.
7391 * We scale the divisor (db) by 32 to avoid losing precision
7392 * near the end of resync when the number of remaining sectors
7393 * is close to 'db'.
7394 * We then divide rt by 32 after multiplying by db to compensate.
7395 * The '+1' avoids division by zero if db is very small.
7396 */
7397 dt = ((jiffies - mddev->resync_mark) / HZ);
7398 if (!dt) dt++;
7399 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7400 - mddev->resync_mark_cnt;
7401
7402 rt = max_sectors - resync; /* number of remaining sectors */
7403 sector_div(rt, db/32+1);
7404 rt *= dt;
7405 rt >>= 5;
7406
7407 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7408 ((unsigned long)rt % 60)/6);
7409
7410 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7411 return 1;
7412}
7413
7414static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7415{
7416 struct list_head *tmp;
7417 loff_t l = *pos;
7418 struct mddev *mddev;
7419
7420 if (l >= 0x10000)
7421 return NULL;
7422 if (!l--)
7423 /* header */
7424 return (void*)1;
7425
7426 spin_lock(&all_mddevs_lock);
7427 list_for_each(tmp,&all_mddevs)
7428 if (!l--) {
7429 mddev = list_entry(tmp, struct mddev, all_mddevs);
7430 mddev_get(mddev);
7431 spin_unlock(&all_mddevs_lock);
7432 return mddev;
7433 }
7434 spin_unlock(&all_mddevs_lock);
7435 if (!l--)
7436 return (void*)2;/* tail */
7437 return NULL;
7438}
7439
7440static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7441{
7442 struct list_head *tmp;
7443 struct mddev *next_mddev, *mddev = v;
7444
7445 ++*pos;
7446 if (v == (void*)2)
7447 return NULL;
7448
7449 spin_lock(&all_mddevs_lock);
7450 if (v == (void*)1)
7451 tmp = all_mddevs.next;
7452 else
7453 tmp = mddev->all_mddevs.next;
7454 if (tmp != &all_mddevs)
7455 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7456 else {
7457 next_mddev = (void*)2;
7458 *pos = 0x10000;
7459 }
7460 spin_unlock(&all_mddevs_lock);
7461
7462 if (v != (void*)1)
7463 mddev_put(mddev);
7464 return next_mddev;
7465
7466}
7467
7468static void md_seq_stop(struct seq_file *seq, void *v)
7469{
7470 struct mddev *mddev = v;
7471
7472 if (mddev && v != (void*)1 && v != (void*)2)
7473 mddev_put(mddev);
7474}
7475
7476static int md_seq_show(struct seq_file *seq, void *v)
7477{
7478 struct mddev *mddev = v;
7479 sector_t sectors;
7480 struct md_rdev *rdev;
7481
7482 if (v == (void*)1) {
7483 struct md_personality *pers;
7484 seq_printf(seq, "Personalities : ");
7485 spin_lock(&pers_lock);
7486 list_for_each_entry(pers, &pers_list, list)
7487 seq_printf(seq, "[%s] ", pers->name);
7488
7489 spin_unlock(&pers_lock);
7490 seq_printf(seq, "\n");
7491 seq->poll_event = atomic_read(&md_event_count);
7492 return 0;
7493 }
7494 if (v == (void*)2) {
7495 status_unused(seq);
7496 return 0;
7497 }
7498
7499 spin_lock(&mddev->lock);
7500 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7501 seq_printf(seq, "%s : %sactive", mdname(mddev),
7502 mddev->pers ? "" : "in");
7503 if (mddev->pers) {
7504 if (mddev->ro==1)
7505 seq_printf(seq, " (read-only)");
7506 if (mddev->ro==2)
7507 seq_printf(seq, " (auto-read-only)");
7508 seq_printf(seq, " %s", mddev->pers->name);
7509 }
7510
7511 sectors = 0;
7512 rcu_read_lock();
7513 rdev_for_each_rcu(rdev, mddev) {
7514 char b[BDEVNAME_SIZE];
7515 seq_printf(seq, " %s[%d]",
7516 bdevname(rdev->bdev,b), rdev->desc_nr);
7517 if (test_bit(WriteMostly, &rdev->flags))
7518 seq_printf(seq, "(W)");
7519 if (test_bit(Journal, &rdev->flags))
7520 seq_printf(seq, "(J)");
7521 if (test_bit(Faulty, &rdev->flags)) {
7522 seq_printf(seq, "(F)");
7523 continue;
7524 }
7525 if (rdev->raid_disk < 0)
7526 seq_printf(seq, "(S)"); /* spare */
7527 if (test_bit(Replacement, &rdev->flags))
7528 seq_printf(seq, "(R)");
7529 sectors += rdev->sectors;
7530 }
7531 rcu_read_unlock();
7532
7533 if (!list_empty(&mddev->disks)) {
7534 if (mddev->pers)
7535 seq_printf(seq, "\n %llu blocks",
7536 (unsigned long long)
7537 mddev->array_sectors / 2);
7538 else
7539 seq_printf(seq, "\n %llu blocks",
7540 (unsigned long long)sectors / 2);
7541 }
7542 if (mddev->persistent) {
7543 if (mddev->major_version != 0 ||
7544 mddev->minor_version != 90) {
7545 seq_printf(seq," super %d.%d",
7546 mddev->major_version,
7547 mddev->minor_version);
7548 }
7549 } else if (mddev->external)
7550 seq_printf(seq, " super external:%s",
7551 mddev->metadata_type);
7552 else
7553 seq_printf(seq, " super non-persistent");
7554
7555 if (mddev->pers) {
7556 mddev->pers->status(seq, mddev);
7557 seq_printf(seq, "\n ");
7558 if (mddev->pers->sync_request) {
7559 if (status_resync(seq, mddev))
7560 seq_printf(seq, "\n ");
7561 }
7562 } else
7563 seq_printf(seq, "\n ");
7564
7565 bitmap_status(seq, mddev->bitmap);
7566
7567 seq_printf(seq, "\n");
7568 }
7569 spin_unlock(&mddev->lock);
7570
7571 return 0;
7572}
7573
7574static const struct seq_operations md_seq_ops = {
7575 .start = md_seq_start,
7576 .next = md_seq_next,
7577 .stop = md_seq_stop,
7578 .show = md_seq_show,
7579};
7580
7581static int md_seq_open(struct inode *inode, struct file *file)
7582{
7583 struct seq_file *seq;
7584 int error;
7585
7586 error = seq_open(file, &md_seq_ops);
7587 if (error)
7588 return error;
7589
7590 seq = file->private_data;
7591 seq->poll_event = atomic_read(&md_event_count);
7592 return error;
7593}
7594
7595static int md_unloading;
7596static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7597{
7598 struct seq_file *seq = filp->private_data;
7599 int mask;
7600
7601 if (md_unloading)
7602 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7603 poll_wait(filp, &md_event_waiters, wait);
7604
7605 /* always allow read */
7606 mask = POLLIN | POLLRDNORM;
7607
7608 if (seq->poll_event != atomic_read(&md_event_count))
7609 mask |= POLLERR | POLLPRI;
7610 return mask;
7611}
7612
7613static const struct file_operations md_seq_fops = {
7614 .owner = THIS_MODULE,
7615 .open = md_seq_open,
7616 .read = seq_read,
7617 .llseek = seq_lseek,
7618 .release = seq_release_private,
7619 .poll = mdstat_poll,
7620};
7621
7622int register_md_personality(struct md_personality *p)
7623{
7624 pr_debug("md: %s personality registered for level %d\n",
7625 p->name, p->level);
7626 spin_lock(&pers_lock);
7627 list_add_tail(&p->list, &pers_list);
7628 spin_unlock(&pers_lock);
7629 return 0;
7630}
7631EXPORT_SYMBOL(register_md_personality);
7632
7633int unregister_md_personality(struct md_personality *p)
7634{
7635 pr_debug("md: %s personality unregistered\n", p->name);
7636 spin_lock(&pers_lock);
7637 list_del_init(&p->list);
7638 spin_unlock(&pers_lock);
7639 return 0;
7640}
7641EXPORT_SYMBOL(unregister_md_personality);
7642
7643int register_md_cluster_operations(struct md_cluster_operations *ops,
7644 struct module *module)
7645{
7646 int ret = 0;
7647 spin_lock(&pers_lock);
7648 if (md_cluster_ops != NULL)
7649 ret = -EALREADY;
7650 else {
7651 md_cluster_ops = ops;
7652 md_cluster_mod = module;
7653 }
7654 spin_unlock(&pers_lock);
7655 return ret;
7656}
7657EXPORT_SYMBOL(register_md_cluster_operations);
7658
7659int unregister_md_cluster_operations(void)
7660{
7661 spin_lock(&pers_lock);
7662 md_cluster_ops = NULL;
7663 spin_unlock(&pers_lock);
7664 return 0;
7665}
7666EXPORT_SYMBOL(unregister_md_cluster_operations);
7667
7668int md_setup_cluster(struct mddev *mddev, int nodes)
7669{
7670 if (!md_cluster_ops)
7671 request_module("md-cluster");
7672 spin_lock(&pers_lock);
7673 /* ensure module won't be unloaded */
7674 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7675 pr_warn("can't find md-cluster module or get it's reference.\n");
7676 spin_unlock(&pers_lock);
7677 return -ENOENT;
7678 }
7679 spin_unlock(&pers_lock);
7680
7681 return md_cluster_ops->join(mddev, nodes);
7682}
7683
7684void md_cluster_stop(struct mddev *mddev)
7685{
7686 if (!md_cluster_ops)
7687 return;
7688 md_cluster_ops->leave(mddev);
7689 module_put(md_cluster_mod);
7690}
7691
7692static int is_mddev_idle(struct mddev *mddev, int init)
7693{
7694 struct md_rdev *rdev;
7695 int idle;
7696 int curr_events;
7697
7698 idle = 1;
7699 rcu_read_lock();
7700 rdev_for_each_rcu(rdev, mddev) {
7701 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7702 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7703 (int)part_stat_read(&disk->part0, sectors[1]) -
7704 atomic_read(&disk->sync_io);
7705 /* sync IO will cause sync_io to increase before the disk_stats
7706 * as sync_io is counted when a request starts, and
7707 * disk_stats is counted when it completes.
7708 * So resync activity will cause curr_events to be smaller than
7709 * when there was no such activity.
7710 * non-sync IO will cause disk_stat to increase without
7711 * increasing sync_io so curr_events will (eventually)
7712 * be larger than it was before. Once it becomes
7713 * substantially larger, the test below will cause
7714 * the array to appear non-idle, and resync will slow
7715 * down.
7716 * If there is a lot of outstanding resync activity when
7717 * we set last_event to curr_events, then all that activity
7718 * completing might cause the array to appear non-idle
7719 * and resync will be slowed down even though there might
7720 * not have been non-resync activity. This will only
7721 * happen once though. 'last_events' will soon reflect
7722 * the state where there is little or no outstanding
7723 * resync requests, and further resync activity will
7724 * always make curr_events less than last_events.
7725 *
7726 */
7727 if (init || curr_events - rdev->last_events > 64) {
7728 rdev->last_events = curr_events;
7729 idle = 0;
7730 }
7731 }
7732 rcu_read_unlock();
7733 return idle;
7734}
7735
7736void md_done_sync(struct mddev *mddev, int blocks, int ok)
7737{
7738 /* another "blocks" (512byte) blocks have been synced */
7739 atomic_sub(blocks, &mddev->recovery_active);
7740 wake_up(&mddev->recovery_wait);
7741 if (!ok) {
7742 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7743 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7744 md_wakeup_thread(mddev->thread);
7745 // stop recovery, signal do_sync ....
7746 }
7747}
7748EXPORT_SYMBOL(md_done_sync);
7749
7750/* md_write_start(mddev, bi)
7751 * If we need to update some array metadata (e.g. 'active' flag
7752 * in superblock) before writing, schedule a superblock update
7753 * and wait for it to complete.
7754 */
7755void md_write_start(struct mddev *mddev, struct bio *bi)
7756{
7757 int did_change = 0;
7758 if (bio_data_dir(bi) != WRITE)
7759 return;
7760
7761 BUG_ON(mddev->ro == 1);
7762 if (mddev->ro == 2) {
7763 /* need to switch to read/write */
7764 mddev->ro = 0;
7765 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7766 md_wakeup_thread(mddev->thread);
7767 md_wakeup_thread(mddev->sync_thread);
7768 did_change = 1;
7769 }
7770 atomic_inc(&mddev->writes_pending);
7771 if (mddev->safemode == 1)
7772 mddev->safemode = 0;
7773 if (mddev->in_sync) {
7774 spin_lock(&mddev->lock);
7775 if (mddev->in_sync) {
7776 mddev->in_sync = 0;
7777 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
7778 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
7779 md_wakeup_thread(mddev->thread);
7780 did_change = 1;
7781 }
7782 spin_unlock(&mddev->lock);
7783 }
7784 if (did_change)
7785 sysfs_notify_dirent_safe(mddev->sysfs_state);
7786 wait_event(mddev->sb_wait,
7787 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7788}
7789EXPORT_SYMBOL(md_write_start);
7790
7791void md_write_end(struct mddev *mddev)
7792{
7793 if (atomic_dec_and_test(&mddev->writes_pending)) {
7794 if (mddev->safemode == 2)
7795 md_wakeup_thread(mddev->thread);
7796 else if (mddev->safemode_delay)
7797 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7798 }
7799}
7800EXPORT_SYMBOL(md_write_end);
7801
7802/* md_allow_write(mddev)
7803 * Calling this ensures that the array is marked 'active' so that writes
7804 * may proceed without blocking. It is important to call this before
7805 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7806 * Must be called with mddev_lock held.
7807 *
7808 * In the ->external case MD_SB_CHANGE_PENDING can not be cleared until mddev->lock
7809 * is dropped, so return -EAGAIN after notifying userspace.
7810 */
7811int md_allow_write(struct mddev *mddev)
7812{
7813 if (!mddev->pers)
7814 return 0;
7815 if (mddev->ro)
7816 return 0;
7817 if (!mddev->pers->sync_request)
7818 return 0;
7819
7820 spin_lock(&mddev->lock);
7821 if (mddev->in_sync) {
7822 mddev->in_sync = 0;
7823 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
7824 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
7825 if (mddev->safemode_delay &&
7826 mddev->safemode == 0)
7827 mddev->safemode = 1;
7828 spin_unlock(&mddev->lock);
7829 md_update_sb(mddev, 0);
7830 sysfs_notify_dirent_safe(mddev->sysfs_state);
7831 } else
7832 spin_unlock(&mddev->lock);
7833
7834 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
7835 return -EAGAIN;
7836 else
7837 return 0;
7838}
7839EXPORT_SYMBOL_GPL(md_allow_write);
7840
7841#define SYNC_MARKS 10
7842#define SYNC_MARK_STEP (3*HZ)
7843#define UPDATE_FREQUENCY (5*60*HZ)
7844void md_do_sync(struct md_thread *thread)
7845{
7846 struct mddev *mddev = thread->mddev;
7847 struct mddev *mddev2;
7848 unsigned int currspeed = 0,
7849 window;
7850 sector_t max_sectors,j, io_sectors, recovery_done;
7851 unsigned long mark[SYNC_MARKS];
7852 unsigned long update_time;
7853 sector_t mark_cnt[SYNC_MARKS];
7854 int last_mark,m;
7855 struct list_head *tmp;
7856 sector_t last_check;
7857 int skipped = 0;
7858 struct md_rdev *rdev;
7859 char *desc, *action = NULL;
7860 struct blk_plug plug;
7861 int ret;
7862
7863 /* just incase thread restarts... */
7864 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7865 return;
7866 if (mddev->ro) {/* never try to sync a read-only array */
7867 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7868 return;
7869 }
7870
7871 if (mddev_is_clustered(mddev)) {
7872 ret = md_cluster_ops->resync_start(mddev);
7873 if (ret)
7874 goto skip;
7875
7876 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
7877 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7878 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
7879 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
7880 && ((unsigned long long)mddev->curr_resync_completed
7881 < (unsigned long long)mddev->resync_max_sectors))
7882 goto skip;
7883 }
7884
7885 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7886 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7887 desc = "data-check";
7888 action = "check";
7889 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7890 desc = "requested-resync";
7891 action = "repair";
7892 } else
7893 desc = "resync";
7894 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7895 desc = "reshape";
7896 else
7897 desc = "recovery";
7898
7899 mddev->last_sync_action = action ?: desc;
7900
7901 /* we overload curr_resync somewhat here.
7902 * 0 == not engaged in resync at all
7903 * 2 == checking that there is no conflict with another sync
7904 * 1 == like 2, but have yielded to allow conflicting resync to
7905 * commense
7906 * other == active in resync - this many blocks
7907 *
7908 * Before starting a resync we must have set curr_resync to
7909 * 2, and then checked that every "conflicting" array has curr_resync
7910 * less than ours. When we find one that is the same or higher
7911 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7912 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7913 * This will mean we have to start checking from the beginning again.
7914 *
7915 */
7916
7917 do {
7918 int mddev2_minor = -1;
7919 mddev->curr_resync = 2;
7920
7921 try_again:
7922 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7923 goto skip;
7924 for_each_mddev(mddev2, tmp) {
7925 if (mddev2 == mddev)
7926 continue;
7927 if (!mddev->parallel_resync
7928 && mddev2->curr_resync
7929 && match_mddev_units(mddev, mddev2)) {
7930 DEFINE_WAIT(wq);
7931 if (mddev < mddev2 && mddev->curr_resync == 2) {
7932 /* arbitrarily yield */
7933 mddev->curr_resync = 1;
7934 wake_up(&resync_wait);
7935 }
7936 if (mddev > mddev2 && mddev->curr_resync == 1)
7937 /* no need to wait here, we can wait the next
7938 * time 'round when curr_resync == 2
7939 */
7940 continue;
7941 /* We need to wait 'interruptible' so as not to
7942 * contribute to the load average, and not to
7943 * be caught by 'softlockup'
7944 */
7945 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7946 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7947 mddev2->curr_resync >= mddev->curr_resync) {
7948 if (mddev2_minor != mddev2->md_minor) {
7949 mddev2_minor = mddev2->md_minor;
7950 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
7951 desc, mdname(mddev),
7952 mdname(mddev2));
7953 }
7954 mddev_put(mddev2);
7955 if (signal_pending(current))
7956 flush_signals(current);
7957 schedule();
7958 finish_wait(&resync_wait, &wq);
7959 goto try_again;
7960 }
7961 finish_wait(&resync_wait, &wq);
7962 }
7963 }
7964 } while (mddev->curr_resync < 2);
7965
7966 j = 0;
7967 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7968 /* resync follows the size requested by the personality,
7969 * which defaults to physical size, but can be virtual size
7970 */
7971 max_sectors = mddev->resync_max_sectors;
7972 atomic64_set(&mddev->resync_mismatches, 0);
7973 /* we don't use the checkpoint if there's a bitmap */
7974 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7975 j = mddev->resync_min;
7976 else if (!mddev->bitmap)
7977 j = mddev->recovery_cp;
7978
7979 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7980 max_sectors = mddev->resync_max_sectors;
7981 else {
7982 /* recovery follows the physical size of devices */
7983 max_sectors = mddev->dev_sectors;
7984 j = MaxSector;
7985 rcu_read_lock();
7986 rdev_for_each_rcu(rdev, mddev)
7987 if (rdev->raid_disk >= 0 &&
7988 !test_bit(Journal, &rdev->flags) &&
7989 !test_bit(Faulty, &rdev->flags) &&
7990 !test_bit(In_sync, &rdev->flags) &&
7991 rdev->recovery_offset < j)
7992 j = rdev->recovery_offset;
7993 rcu_read_unlock();
7994
7995 /* If there is a bitmap, we need to make sure all
7996 * writes that started before we added a spare
7997 * complete before we start doing a recovery.
7998 * Otherwise the write might complete and (via
7999 * bitmap_endwrite) set a bit in the bitmap after the
8000 * recovery has checked that bit and skipped that
8001 * region.
8002 */
8003 if (mddev->bitmap) {
8004 mddev->pers->quiesce(mddev, 1);
8005 mddev->pers->quiesce(mddev, 0);
8006 }
8007 }
8008
8009 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8010 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8011 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8012 speed_max(mddev), desc);
8013
8014 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8015
8016 io_sectors = 0;
8017 for (m = 0; m < SYNC_MARKS; m++) {
8018 mark[m] = jiffies;
8019 mark_cnt[m] = io_sectors;
8020 }
8021 last_mark = 0;
8022 mddev->resync_mark = mark[last_mark];
8023 mddev->resync_mark_cnt = mark_cnt[last_mark];
8024
8025 /*
8026 * Tune reconstruction:
8027 */
8028 window = 32*(PAGE_SIZE/512);
8029 pr_debug("md: using %dk window, over a total of %lluk.\n",
8030 window/2, (unsigned long long)max_sectors/2);
8031
8032 atomic_set(&mddev->recovery_active, 0);
8033 last_check = 0;
8034
8035 if (j>2) {
8036 pr_debug("md: resuming %s of %s from checkpoint.\n",
8037 desc, mdname(mddev));
8038 mddev->curr_resync = j;
8039 } else
8040 mddev->curr_resync = 3; /* no longer delayed */
8041 mddev->curr_resync_completed = j;
8042 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8043 md_new_event(mddev);
8044 update_time = jiffies;
8045
8046 blk_start_plug(&plug);
8047 while (j < max_sectors) {
8048 sector_t sectors;
8049
8050 skipped = 0;
8051
8052 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8053 ((mddev->curr_resync > mddev->curr_resync_completed &&
8054 (mddev->curr_resync - mddev->curr_resync_completed)
8055 > (max_sectors >> 4)) ||
8056 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8057 (j - mddev->curr_resync_completed)*2
8058 >= mddev->resync_max - mddev->curr_resync_completed ||
8059 mddev->curr_resync_completed > mddev->resync_max
8060 )) {
8061 /* time to update curr_resync_completed */
8062 wait_event(mddev->recovery_wait,
8063 atomic_read(&mddev->recovery_active) == 0);
8064 mddev->curr_resync_completed = j;
8065 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8066 j > mddev->recovery_cp)
8067 mddev->recovery_cp = j;
8068 update_time = jiffies;
8069 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8070 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8071 }
8072
8073 while (j >= mddev->resync_max &&
8074 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8075 /* As this condition is controlled by user-space,
8076 * we can block indefinitely, so use '_interruptible'
8077 * to avoid triggering warnings.
8078 */
8079 flush_signals(current); /* just in case */
8080 wait_event_interruptible(mddev->recovery_wait,
8081 mddev->resync_max > j
8082 || test_bit(MD_RECOVERY_INTR,
8083 &mddev->recovery));
8084 }
8085
8086 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8087 break;
8088
8089 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8090 if (sectors == 0) {
8091 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8092 break;
8093 }
8094
8095 if (!skipped) { /* actual IO requested */
8096 io_sectors += sectors;
8097 atomic_add(sectors, &mddev->recovery_active);
8098 }
8099
8100 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8101 break;
8102
8103 j += sectors;
8104 if (j > max_sectors)
8105 /* when skipping, extra large numbers can be returned. */
8106 j = max_sectors;
8107 if (j > 2)
8108 mddev->curr_resync = j;
8109 mddev->curr_mark_cnt = io_sectors;
8110 if (last_check == 0)
8111 /* this is the earliest that rebuild will be
8112 * visible in /proc/mdstat
8113 */
8114 md_new_event(mddev);
8115
8116 if (last_check + window > io_sectors || j == max_sectors)
8117 continue;
8118
8119 last_check = io_sectors;
8120 repeat:
8121 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8122 /* step marks */
8123 int next = (last_mark+1) % SYNC_MARKS;
8124
8125 mddev->resync_mark = mark[next];
8126 mddev->resync_mark_cnt = mark_cnt[next];
8127 mark[next] = jiffies;
8128 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8129 last_mark = next;
8130 }
8131
8132 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8133 break;
8134
8135 /*
8136 * this loop exits only if either when we are slower than
8137 * the 'hard' speed limit, or the system was IO-idle for
8138 * a jiffy.
8139 * the system might be non-idle CPU-wise, but we only care
8140 * about not overloading the IO subsystem. (things like an
8141 * e2fsck being done on the RAID array should execute fast)
8142 */
8143 cond_resched();
8144
8145 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8146 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8147 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8148
8149 if (currspeed > speed_min(mddev)) {
8150 if (currspeed > speed_max(mddev)) {
8151 msleep(500);
8152 goto repeat;
8153 }
8154 if (!is_mddev_idle(mddev, 0)) {
8155 /*
8156 * Give other IO more of a chance.
8157 * The faster the devices, the less we wait.
8158 */
8159 wait_event(mddev->recovery_wait,
8160 !atomic_read(&mddev->recovery_active));
8161 }
8162 }
8163 }
8164 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8165 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8166 ? "interrupted" : "done");
8167 /*
8168 * this also signals 'finished resyncing' to md_stop
8169 */
8170 blk_finish_plug(&plug);
8171 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8172
8173 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8174 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8175 mddev->curr_resync > 3) {
8176 mddev->curr_resync_completed = mddev->curr_resync;
8177 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8178 }
8179 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8180
8181 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8182 mddev->curr_resync > 3) {
8183 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8184 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8185 if (mddev->curr_resync >= mddev->recovery_cp) {
8186 pr_debug("md: checkpointing %s of %s.\n",
8187 desc, mdname(mddev));
8188 if (test_bit(MD_RECOVERY_ERROR,
8189 &mddev->recovery))
8190 mddev->recovery_cp =
8191 mddev->curr_resync_completed;
8192 else
8193 mddev->recovery_cp =
8194 mddev->curr_resync;
8195 }
8196 } else
8197 mddev->recovery_cp = MaxSector;
8198 } else {
8199 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8200 mddev->curr_resync = MaxSector;
8201 rcu_read_lock();
8202 rdev_for_each_rcu(rdev, mddev)
8203 if (rdev->raid_disk >= 0 &&
8204 mddev->delta_disks >= 0 &&
8205 !test_bit(Journal, &rdev->flags) &&
8206 !test_bit(Faulty, &rdev->flags) &&
8207 !test_bit(In_sync, &rdev->flags) &&
8208 rdev->recovery_offset < mddev->curr_resync)
8209 rdev->recovery_offset = mddev->curr_resync;
8210 rcu_read_unlock();
8211 }
8212 }
8213 skip:
8214 /* set CHANGE_PENDING here since maybe another update is needed,
8215 * so other nodes are informed. It should be harmless for normal
8216 * raid */
8217 set_mask_bits(&mddev->sb_flags, 0,
8218 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8219
8220 spin_lock(&mddev->lock);
8221 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8222 /* We completed so min/max setting can be forgotten if used. */
8223 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8224 mddev->resync_min = 0;
8225 mddev->resync_max = MaxSector;
8226 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8227 mddev->resync_min = mddev->curr_resync_completed;
8228 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8229 mddev->curr_resync = 0;
8230 spin_unlock(&mddev->lock);
8231
8232 wake_up(&resync_wait);
8233 md_wakeup_thread(mddev->thread);
8234 return;
8235}
8236EXPORT_SYMBOL_GPL(md_do_sync);
8237
8238static int remove_and_add_spares(struct mddev *mddev,
8239 struct md_rdev *this)
8240{
8241 struct md_rdev *rdev;
8242 int spares = 0;
8243 int removed = 0;
8244 bool remove_some = false;
8245
8246 rdev_for_each(rdev, mddev) {
8247 if ((this == NULL || rdev == this) &&
8248 rdev->raid_disk >= 0 &&
8249 !test_bit(Blocked, &rdev->flags) &&
8250 test_bit(Faulty, &rdev->flags) &&
8251 atomic_read(&rdev->nr_pending)==0) {
8252 /* Faulty non-Blocked devices with nr_pending == 0
8253 * never get nr_pending incremented,
8254 * never get Faulty cleared, and never get Blocked set.
8255 * So we can synchronize_rcu now rather than once per device
8256 */
8257 remove_some = true;
8258 set_bit(RemoveSynchronized, &rdev->flags);
8259 }
8260 }
8261
8262 if (remove_some)
8263 synchronize_rcu();
8264 rdev_for_each(rdev, mddev) {
8265 if ((this == NULL || rdev == this) &&
8266 rdev->raid_disk >= 0 &&
8267 !test_bit(Blocked, &rdev->flags) &&
8268 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8269 (!test_bit(In_sync, &rdev->flags) &&
8270 !test_bit(Journal, &rdev->flags))) &&
8271 atomic_read(&rdev->nr_pending)==0)) {
8272 if (mddev->pers->hot_remove_disk(
8273 mddev, rdev) == 0) {
8274 sysfs_unlink_rdev(mddev, rdev);
8275 rdev->raid_disk = -1;
8276 removed++;
8277 }
8278 }
8279 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8280 clear_bit(RemoveSynchronized, &rdev->flags);
8281 }
8282
8283 if (removed && mddev->kobj.sd)
8284 sysfs_notify(&mddev->kobj, NULL, "degraded");
8285
8286 if (this && removed)
8287 goto no_add;
8288
8289 rdev_for_each(rdev, mddev) {
8290 if (this && this != rdev)
8291 continue;
8292 if (test_bit(Candidate, &rdev->flags))
8293 continue;
8294 if (rdev->raid_disk >= 0 &&
8295 !test_bit(In_sync, &rdev->flags) &&
8296 !test_bit(Journal, &rdev->flags) &&
8297 !test_bit(Faulty, &rdev->flags))
8298 spares++;
8299 if (rdev->raid_disk >= 0)
8300 continue;
8301 if (test_bit(Faulty, &rdev->flags))
8302 continue;
8303 if (!test_bit(Journal, &rdev->flags)) {
8304 if (mddev->ro &&
8305 ! (rdev->saved_raid_disk >= 0 &&
8306 !test_bit(Bitmap_sync, &rdev->flags)))
8307 continue;
8308
8309 rdev->recovery_offset = 0;
8310 }
8311 if (mddev->pers->
8312 hot_add_disk(mddev, rdev) == 0) {
8313 if (sysfs_link_rdev(mddev, rdev))
8314 /* failure here is OK */;
8315 if (!test_bit(Journal, &rdev->flags))
8316 spares++;
8317 md_new_event(mddev);
8318 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8319 }
8320 }
8321no_add:
8322 if (removed)
8323 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8324 return spares;
8325}
8326
8327static void md_start_sync(struct work_struct *ws)
8328{
8329 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8330
8331 mddev->sync_thread = md_register_thread(md_do_sync,
8332 mddev,
8333 "resync");
8334 if (!mddev->sync_thread) {
8335 pr_warn("%s: could not start resync thread...\n",
8336 mdname(mddev));
8337 /* leave the spares where they are, it shouldn't hurt */
8338 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8339 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8340 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8341 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8342 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8343 wake_up(&resync_wait);
8344 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8345 &mddev->recovery))
8346 if (mddev->sysfs_action)
8347 sysfs_notify_dirent_safe(mddev->sysfs_action);
8348 } else
8349 md_wakeup_thread(mddev->sync_thread);
8350 sysfs_notify_dirent_safe(mddev->sysfs_action);
8351 md_new_event(mddev);
8352}
8353
8354/*
8355 * This routine is regularly called by all per-raid-array threads to
8356 * deal with generic issues like resync and super-block update.
8357 * Raid personalities that don't have a thread (linear/raid0) do not
8358 * need this as they never do any recovery or update the superblock.
8359 *
8360 * It does not do any resync itself, but rather "forks" off other threads
8361 * to do that as needed.
8362 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8363 * "->recovery" and create a thread at ->sync_thread.
8364 * When the thread finishes it sets MD_RECOVERY_DONE
8365 * and wakeups up this thread which will reap the thread and finish up.
8366 * This thread also removes any faulty devices (with nr_pending == 0).
8367 *
8368 * The overall approach is:
8369 * 1/ if the superblock needs updating, update it.
8370 * 2/ If a recovery thread is running, don't do anything else.
8371 * 3/ If recovery has finished, clean up, possibly marking spares active.
8372 * 4/ If there are any faulty devices, remove them.
8373 * 5/ If array is degraded, try to add spares devices
8374 * 6/ If array has spares or is not in-sync, start a resync thread.
8375 */
8376void md_check_recovery(struct mddev *mddev)
8377{
8378 if (mddev->suspended)
8379 return;
8380
8381 if (mddev->bitmap)
8382 bitmap_daemon_work(mddev);
8383
8384 if (signal_pending(current)) {
8385 if (mddev->pers->sync_request && !mddev->external) {
8386 pr_debug("md: %s in immediate safe mode\n",
8387 mdname(mddev));
8388 mddev->safemode = 2;
8389 }
8390 flush_signals(current);
8391 }
8392
8393 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8394 return;
8395 if ( ! (
8396 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8397 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8398 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8399 test_bit(MD_RELOAD_SB, &mddev->flags) ||
8400 (mddev->external == 0 && mddev->safemode == 1) ||
8401 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8402 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8403 ))
8404 return;
8405
8406 if (mddev_trylock(mddev)) {
8407 int spares = 0;
8408
8409 if (mddev->ro) {
8410 struct md_rdev *rdev;
8411 if (!mddev->external && mddev->in_sync)
8412 /* 'Blocked' flag not needed as failed devices
8413 * will be recorded if array switched to read/write.
8414 * Leaving it set will prevent the device
8415 * from being removed.
8416 */
8417 rdev_for_each(rdev, mddev)
8418 clear_bit(Blocked, &rdev->flags);
8419 /* On a read-only array we can:
8420 * - remove failed devices
8421 * - add already-in_sync devices if the array itself
8422 * is in-sync.
8423 * As we only add devices that are already in-sync,
8424 * we can activate the spares immediately.
8425 */
8426 remove_and_add_spares(mddev, NULL);
8427 /* There is no thread, but we need to call
8428 * ->spare_active and clear saved_raid_disk
8429 */
8430 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8431 md_reap_sync_thread(mddev);
8432 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8433 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8434 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8435 goto unlock;
8436 }
8437
8438 if (mddev_is_clustered(mddev)) {
8439 struct md_rdev *rdev;
8440 /* kick the device if another node issued a
8441 * remove disk.
8442 */
8443 rdev_for_each(rdev, mddev) {
8444 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8445 rdev->raid_disk < 0)
8446 md_kick_rdev_from_array(rdev);
8447 }
8448
8449 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8450 md_reload_sb(mddev, mddev->good_device_nr);
8451 }
8452
8453 if (!mddev->external) {
8454 int did_change = 0;
8455 spin_lock(&mddev->lock);
8456 if (mddev->safemode &&
8457 !atomic_read(&mddev->writes_pending) &&
8458 !mddev->in_sync &&
8459 mddev->recovery_cp == MaxSector) {
8460 mddev->in_sync = 1;
8461 did_change = 1;
8462 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8463 }
8464 if (mddev->safemode == 1)
8465 mddev->safemode = 0;
8466 spin_unlock(&mddev->lock);
8467 if (did_change)
8468 sysfs_notify_dirent_safe(mddev->sysfs_state);
8469 }
8470
8471 if (mddev->sb_flags)
8472 md_update_sb(mddev, 0);
8473
8474 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8475 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8476 /* resync/recovery still happening */
8477 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8478 goto unlock;
8479 }
8480 if (mddev->sync_thread) {
8481 md_reap_sync_thread(mddev);
8482 goto unlock;
8483 }
8484 /* Set RUNNING before clearing NEEDED to avoid
8485 * any transients in the value of "sync_action".
8486 */
8487 mddev->curr_resync_completed = 0;
8488 spin_lock(&mddev->lock);
8489 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8490 spin_unlock(&mddev->lock);
8491 /* Clear some bits that don't mean anything, but
8492 * might be left set
8493 */
8494 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8495 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8496
8497 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8498 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8499 goto not_running;
8500 /* no recovery is running.
8501 * remove any failed drives, then
8502 * add spares if possible.
8503 * Spares are also removed and re-added, to allow
8504 * the personality to fail the re-add.
8505 */
8506
8507 if (mddev->reshape_position != MaxSector) {
8508 if (mddev->pers->check_reshape == NULL ||
8509 mddev->pers->check_reshape(mddev) != 0)
8510 /* Cannot proceed */
8511 goto not_running;
8512 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8513 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8514 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8515 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8516 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8517 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8518 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8519 } else if (mddev->recovery_cp < MaxSector) {
8520 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8521 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8522 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8523 /* nothing to be done ... */
8524 goto not_running;
8525
8526 if (mddev->pers->sync_request) {
8527 if (spares) {
8528 /* We are adding a device or devices to an array
8529 * which has the bitmap stored on all devices.
8530 * So make sure all bitmap pages get written
8531 */
8532 bitmap_write_all(mddev->bitmap);
8533 }
8534 INIT_WORK(&mddev->del_work, md_start_sync);
8535 queue_work(md_misc_wq, &mddev->del_work);
8536 goto unlock;
8537 }
8538 not_running:
8539 if (!mddev->sync_thread) {
8540 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8541 wake_up(&resync_wait);
8542 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8543 &mddev->recovery))
8544 if (mddev->sysfs_action)
8545 sysfs_notify_dirent_safe(mddev->sysfs_action);
8546 }
8547 unlock:
8548 wake_up(&mddev->sb_wait);
8549 mddev_unlock(mddev);
8550 }
8551}
8552EXPORT_SYMBOL(md_check_recovery);
8553
8554void md_reap_sync_thread(struct mddev *mddev)
8555{
8556 struct md_rdev *rdev;
8557
8558 /* resync has finished, collect result */
8559 md_unregister_thread(&mddev->sync_thread);
8560 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8561 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8562 /* success...*/
8563 /* activate any spares */
8564 if (mddev->pers->spare_active(mddev)) {
8565 sysfs_notify(&mddev->kobj, NULL,
8566 "degraded");
8567 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8568 }
8569 }
8570 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8571 mddev->pers->finish_reshape)
8572 mddev->pers->finish_reshape(mddev);
8573
8574 /* If array is no-longer degraded, then any saved_raid_disk
8575 * information must be scrapped.
8576 */
8577 if (!mddev->degraded)
8578 rdev_for_each(rdev, mddev)
8579 rdev->saved_raid_disk = -1;
8580
8581 md_update_sb(mddev, 1);
8582 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8583 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8584 * clustered raid */
8585 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8586 md_cluster_ops->resync_finish(mddev);
8587 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8588 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8589 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8590 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8591 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8592 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8593 wake_up(&resync_wait);
8594 /* flag recovery needed just to double check */
8595 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8596 sysfs_notify_dirent_safe(mddev->sysfs_action);
8597 md_new_event(mddev);
8598 if (mddev->event_work.func)
8599 queue_work(md_misc_wq, &mddev->event_work);
8600}
8601EXPORT_SYMBOL(md_reap_sync_thread);
8602
8603void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8604{
8605 sysfs_notify_dirent_safe(rdev->sysfs_state);
8606 wait_event_timeout(rdev->blocked_wait,
8607 !test_bit(Blocked, &rdev->flags) &&
8608 !test_bit(BlockedBadBlocks, &rdev->flags),
8609 msecs_to_jiffies(5000));
8610 rdev_dec_pending(rdev, mddev);
8611}
8612EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8613
8614void md_finish_reshape(struct mddev *mddev)
8615{
8616 /* called be personality module when reshape completes. */
8617 struct md_rdev *rdev;
8618
8619 rdev_for_each(rdev, mddev) {
8620 if (rdev->data_offset > rdev->new_data_offset)
8621 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8622 else
8623 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8624 rdev->data_offset = rdev->new_data_offset;
8625 }
8626}
8627EXPORT_SYMBOL(md_finish_reshape);
8628
8629/* Bad block management */
8630
8631/* Returns 1 on success, 0 on failure */
8632int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8633 int is_new)
8634{
8635 struct mddev *mddev = rdev->mddev;
8636 int rv;
8637 if (is_new)
8638 s += rdev->new_data_offset;
8639 else
8640 s += rdev->data_offset;
8641 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8642 if (rv == 0) {
8643 /* Make sure they get written out promptly */
8644 if (test_bit(ExternalBbl, &rdev->flags))
8645 sysfs_notify(&rdev->kobj, NULL,
8646 "unacknowledged_bad_blocks");
8647 sysfs_notify_dirent_safe(rdev->sysfs_state);
8648 set_mask_bits(&mddev->sb_flags, 0,
8649 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
8650 md_wakeup_thread(rdev->mddev->thread);
8651 return 1;
8652 } else
8653 return 0;
8654}
8655EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8656
8657int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8658 int is_new)
8659{
8660 int rv;
8661 if (is_new)
8662 s += rdev->new_data_offset;
8663 else
8664 s += rdev->data_offset;
8665 rv = badblocks_clear(&rdev->badblocks, s, sectors);
8666 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
8667 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
8668 return rv;
8669}
8670EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8671
8672static int md_notify_reboot(struct notifier_block *this,
8673 unsigned long code, void *x)
8674{
8675 struct list_head *tmp;
8676 struct mddev *mddev;
8677 int need_delay = 0;
8678
8679 for_each_mddev(mddev, tmp) {
8680 if (mddev_trylock(mddev)) {
8681 if (mddev->pers)
8682 __md_stop_writes(mddev);
8683 if (mddev->persistent)
8684 mddev->safemode = 2;
8685 mddev_unlock(mddev);
8686 }
8687 need_delay = 1;
8688 }
8689 /*
8690 * certain more exotic SCSI devices are known to be
8691 * volatile wrt too early system reboots. While the
8692 * right place to handle this issue is the given
8693 * driver, we do want to have a safe RAID driver ...
8694 */
8695 if (need_delay)
8696 mdelay(1000*1);
8697
8698 return NOTIFY_DONE;
8699}
8700
8701static struct notifier_block md_notifier = {
8702 .notifier_call = md_notify_reboot,
8703 .next = NULL,
8704 .priority = INT_MAX, /* before any real devices */
8705};
8706
8707static void md_geninit(void)
8708{
8709 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8710
8711 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8712}
8713
8714static int __init md_init(void)
8715{
8716 int ret = -ENOMEM;
8717
8718 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8719 if (!md_wq)
8720 goto err_wq;
8721
8722 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8723 if (!md_misc_wq)
8724 goto err_misc_wq;
8725
8726 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8727 goto err_md;
8728
8729 if ((ret = register_blkdev(0, "mdp")) < 0)
8730 goto err_mdp;
8731 mdp_major = ret;
8732
8733 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8734 md_probe, NULL, NULL);
8735 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8736 md_probe, NULL, NULL);
8737
8738 register_reboot_notifier(&md_notifier);
8739 raid_table_header = register_sysctl_table(raid_root_table);
8740
8741 md_geninit();
8742 return 0;
8743
8744err_mdp:
8745 unregister_blkdev(MD_MAJOR, "md");
8746err_md:
8747 destroy_workqueue(md_misc_wq);
8748err_misc_wq:
8749 destroy_workqueue(md_wq);
8750err_wq:
8751 return ret;
8752}
8753
8754static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8755{
8756 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8757 struct md_rdev *rdev2;
8758 int role, ret;
8759 char b[BDEVNAME_SIZE];
8760
8761 /* Check for change of roles in the active devices */
8762 rdev_for_each(rdev2, mddev) {
8763 if (test_bit(Faulty, &rdev2->flags))
8764 continue;
8765
8766 /* Check if the roles changed */
8767 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8768
8769 if (test_bit(Candidate, &rdev2->flags)) {
8770 if (role == 0xfffe) {
8771 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8772 md_kick_rdev_from_array(rdev2);
8773 continue;
8774 }
8775 else
8776 clear_bit(Candidate, &rdev2->flags);
8777 }
8778
8779 if (role != rdev2->raid_disk) {
8780 /* got activated */
8781 if (rdev2->raid_disk == -1 && role != 0xffff) {
8782 rdev2->saved_raid_disk = role;
8783 ret = remove_and_add_spares(mddev, rdev2);
8784 pr_info("Activated spare: %s\n",
8785 bdevname(rdev2->bdev,b));
8786 /* wakeup mddev->thread here, so array could
8787 * perform resync with the new activated disk */
8788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8789 md_wakeup_thread(mddev->thread);
8790
8791 }
8792 /* device faulty
8793 * We just want to do the minimum to mark the disk
8794 * as faulty. The recovery is performed by the
8795 * one who initiated the error.
8796 */
8797 if ((role == 0xfffe) || (role == 0xfffd)) {
8798 md_error(mddev, rdev2);
8799 clear_bit(Blocked, &rdev2->flags);
8800 }
8801 }
8802 }
8803
8804 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8805 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8806
8807 /* Finally set the event to be up to date */
8808 mddev->events = le64_to_cpu(sb->events);
8809}
8810
8811static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8812{
8813 int err;
8814 struct page *swapout = rdev->sb_page;
8815 struct mdp_superblock_1 *sb;
8816
8817 /* Store the sb page of the rdev in the swapout temporary
8818 * variable in case we err in the future
8819 */
8820 rdev->sb_page = NULL;
8821 err = alloc_disk_sb(rdev);
8822 if (err == 0) {
8823 ClearPageUptodate(rdev->sb_page);
8824 rdev->sb_loaded = 0;
8825 err = super_types[mddev->major_version].
8826 load_super(rdev, NULL, mddev->minor_version);
8827 }
8828 if (err < 0) {
8829 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8830 __func__, __LINE__, rdev->desc_nr, err);
8831 if (rdev->sb_page)
8832 put_page(rdev->sb_page);
8833 rdev->sb_page = swapout;
8834 rdev->sb_loaded = 1;
8835 return err;
8836 }
8837
8838 sb = page_address(rdev->sb_page);
8839 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8840 * is not set
8841 */
8842
8843 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8844 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8845
8846 /* The other node finished recovery, call spare_active to set
8847 * device In_sync and mddev->degraded
8848 */
8849 if (rdev->recovery_offset == MaxSector &&
8850 !test_bit(In_sync, &rdev->flags) &&
8851 mddev->pers->spare_active(mddev))
8852 sysfs_notify(&mddev->kobj, NULL, "degraded");
8853
8854 put_page(swapout);
8855 return 0;
8856}
8857
8858void md_reload_sb(struct mddev *mddev, int nr)
8859{
8860 struct md_rdev *rdev;
8861 int err;
8862
8863 /* Find the rdev */
8864 rdev_for_each_rcu(rdev, mddev) {
8865 if (rdev->desc_nr == nr)
8866 break;
8867 }
8868
8869 if (!rdev || rdev->desc_nr != nr) {
8870 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8871 return;
8872 }
8873
8874 err = read_rdev(mddev, rdev);
8875 if (err < 0)
8876 return;
8877
8878 check_sb_changes(mddev, rdev);
8879
8880 /* Read all rdev's to update recovery_offset */
8881 rdev_for_each_rcu(rdev, mddev)
8882 read_rdev(mddev, rdev);
8883}
8884EXPORT_SYMBOL(md_reload_sb);
8885
8886#ifndef MODULE
8887
8888/*
8889 * Searches all registered partitions for autorun RAID arrays
8890 * at boot time.
8891 */
8892
8893static DEFINE_MUTEX(detected_devices_mutex);
8894static LIST_HEAD(all_detected_devices);
8895struct detected_devices_node {
8896 struct list_head list;
8897 dev_t dev;
8898};
8899
8900void md_autodetect_dev(dev_t dev)
8901{
8902 struct detected_devices_node *node_detected_dev;
8903
8904 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8905 if (node_detected_dev) {
8906 node_detected_dev->dev = dev;
8907 mutex_lock(&detected_devices_mutex);
8908 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8909 mutex_unlock(&detected_devices_mutex);
8910 }
8911}
8912
8913static void autostart_arrays(int part)
8914{
8915 struct md_rdev *rdev;
8916 struct detected_devices_node *node_detected_dev;
8917 dev_t dev;
8918 int i_scanned, i_passed;
8919
8920 i_scanned = 0;
8921 i_passed = 0;
8922
8923 pr_info("md: Autodetecting RAID arrays.\n");
8924
8925 mutex_lock(&detected_devices_mutex);
8926 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8927 i_scanned++;
8928 node_detected_dev = list_entry(all_detected_devices.next,
8929 struct detected_devices_node, list);
8930 list_del(&node_detected_dev->list);
8931 dev = node_detected_dev->dev;
8932 kfree(node_detected_dev);
8933 mutex_unlock(&detected_devices_mutex);
8934 rdev = md_import_device(dev,0, 90);
8935 mutex_lock(&detected_devices_mutex);
8936 if (IS_ERR(rdev))
8937 continue;
8938
8939 if (test_bit(Faulty, &rdev->flags))
8940 continue;
8941
8942 set_bit(AutoDetected, &rdev->flags);
8943 list_add(&rdev->same_set, &pending_raid_disks);
8944 i_passed++;
8945 }
8946 mutex_unlock(&detected_devices_mutex);
8947
8948 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
8949
8950 autorun_devices(part);
8951}
8952
8953#endif /* !MODULE */
8954
8955static __exit void md_exit(void)
8956{
8957 struct mddev *mddev;
8958 struct list_head *tmp;
8959 int delay = 1;
8960
8961 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8962 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8963
8964 unregister_blkdev(MD_MAJOR,"md");
8965 unregister_blkdev(mdp_major, "mdp");
8966 unregister_reboot_notifier(&md_notifier);
8967 unregister_sysctl_table(raid_table_header);
8968
8969 /* We cannot unload the modules while some process is
8970 * waiting for us in select() or poll() - wake them up
8971 */
8972 md_unloading = 1;
8973 while (waitqueue_active(&md_event_waiters)) {
8974 /* not safe to leave yet */
8975 wake_up(&md_event_waiters);
8976 msleep(delay);
8977 delay += delay;
8978 }
8979 remove_proc_entry("mdstat", NULL);
8980
8981 for_each_mddev(mddev, tmp) {
8982 export_array(mddev);
8983 mddev->hold_active = 0;
8984 }
8985 destroy_workqueue(md_misc_wq);
8986 destroy_workqueue(md_wq);
8987}
8988
8989subsys_initcall(md_init);
8990module_exit(md_exit)
8991
8992static int get_ro(char *buffer, struct kernel_param *kp)
8993{
8994 return sprintf(buffer, "%d", start_readonly);
8995}
8996static int set_ro(const char *val, struct kernel_param *kp)
8997{
8998 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8999}
9000
9001module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9002module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9003module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9004
9005MODULE_LICENSE("GPL");
9006MODULE_DESCRIPTION("MD RAID framework");
9007MODULE_ALIAS("md");
9008MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);