Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2010-2011 Neil Brown
   3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/slab.h>
 
   9
  10#include "md.h"
  11#include "raid1.h"
  12#include "raid5.h"
  13#include "bitmap.h"
  14
  15#include <linux/device-mapper.h>
  16
  17#define DM_MSG_PREFIX "raid"
  18
  19/*
  20 * The following flags are used by dm-raid.c to set up the array state.
  21 * They must be cleared before md_run is called.
  22 */
  23#define FirstUse 10             /* rdev flag */
  24
  25struct raid_dev {
  26	/*
  27	 * Two DM devices, one to hold metadata and one to hold the
  28	 * actual data/parity.  The reason for this is to not confuse
  29	 * ti->len and give more flexibility in altering size and
  30	 * characteristics.
  31	 *
  32	 * While it is possible for this device to be associated
  33	 * with a different physical device than the data_dev, it
  34	 * is intended for it to be the same.
  35	 *    |--------- Physical Device ---------|
  36	 *    |- meta_dev -|------ data_dev ------|
  37	 */
  38	struct dm_dev *meta_dev;
  39	struct dm_dev *data_dev;
  40	struct mdk_rdev_s rdev;
  41};
  42
  43/*
  44 * Flags for rs->print_flags field.
  45 */
  46#define DMPF_SYNC              0x1
  47#define DMPF_NOSYNC            0x2
  48#define DMPF_REBUILD           0x4
  49#define DMPF_DAEMON_SLEEP      0x8
  50#define DMPF_MIN_RECOVERY_RATE 0x10
  51#define DMPF_MAX_RECOVERY_RATE 0x20
  52#define DMPF_MAX_WRITE_BEHIND  0x40
  53#define DMPF_STRIPE_CACHE      0x80
  54#define DMPF_REGION_SIZE       0X100
  55struct raid_set {
  56	struct dm_target *ti;
  57
  58	uint64_t print_flags;
 
  59
  60	struct mddev_s md;
  61	struct raid_type *raid_type;
  62	struct dm_target_callbacks callbacks;
  63
  64	struct raid_dev dev[0];
  65};
  66
  67/* Supported raid types and properties. */
  68static struct raid_type {
  69	const char *name;		/* RAID algorithm. */
  70	const char *descr;		/* Descriptor text for logging. */
  71	const unsigned parity_devs;	/* # of parity devices. */
  72	const unsigned minimal_devs;	/* minimal # of devices in set. */
  73	const unsigned level;		/* RAID level. */
  74	const unsigned algorithm;	/* RAID algorithm. */
  75} raid_types[] = {
  76	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
  77	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
  78	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
  79	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
  80	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
  81	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
  82	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
  83	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
  84	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
  85};
  86
  87static struct raid_type *get_raid_type(char *name)
  88{
  89	int i;
  90
  91	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
  92		if (!strcmp(raid_types[i].name, name))
  93			return &raid_types[i];
  94
  95	return NULL;
  96}
  97
  98static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
  99{
 100	unsigned i;
 101	struct raid_set *rs;
 102	sector_t sectors_per_dev;
 103
 104	if (raid_devs <= raid_type->parity_devs) {
 105		ti->error = "Insufficient number of devices";
 106		return ERR_PTR(-EINVAL);
 107	}
 108
 109	sectors_per_dev = ti->len;
 110	if ((raid_type->level > 1) &&
 111	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
 112		ti->error = "Target length not divisible by number of data devices";
 113		return ERR_PTR(-EINVAL);
 114	}
 115
 116	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
 117	if (!rs) {
 118		ti->error = "Cannot allocate raid context";
 119		return ERR_PTR(-ENOMEM);
 120	}
 121
 122	mddev_init(&rs->md);
 123
 124	rs->ti = ti;
 125	rs->raid_type = raid_type;
 126	rs->md.raid_disks = raid_devs;
 127	rs->md.level = raid_type->level;
 128	rs->md.new_level = rs->md.level;
 129	rs->md.dev_sectors = sectors_per_dev;
 130	rs->md.layout = raid_type->algorithm;
 131	rs->md.new_layout = rs->md.layout;
 132	rs->md.delta_disks = 0;
 133	rs->md.recovery_cp = 0;
 134
 135	for (i = 0; i < raid_devs; i++)
 136		md_rdev_init(&rs->dev[i].rdev);
 137
 138	/*
 139	 * Remaining items to be initialized by further RAID params:
 140	 *  rs->md.persistent
 141	 *  rs->md.external
 142	 *  rs->md.chunk_sectors
 143	 *  rs->md.new_chunk_sectors
 144	 */
 145
 146	return rs;
 147}
 148
 149static void context_free(struct raid_set *rs)
 150{
 151	int i;
 152
 153	for (i = 0; i < rs->md.raid_disks; i++) {
 154		if (rs->dev[i].meta_dev)
 155			dm_put_device(rs->ti, rs->dev[i].meta_dev);
 156		if (rs->dev[i].rdev.sb_page)
 157			put_page(rs->dev[i].rdev.sb_page);
 158		rs->dev[i].rdev.sb_page = NULL;
 159		rs->dev[i].rdev.sb_loaded = 0;
 160		if (rs->dev[i].data_dev)
 161			dm_put_device(rs->ti, rs->dev[i].data_dev);
 162	}
 163
 164	kfree(rs);
 165}
 166
 167/*
 168 * For every device we have two words
 169 *  <meta_dev>: meta device name or '-' if missing
 170 *  <data_dev>: data device name or '-' if missing
 171 *
 172 * The following are permitted:
 173 *    - -
 174 *    - <data_dev>
 175 *    <meta_dev> <data_dev>
 176 *
 177 * The following is not allowed:
 178 *    <meta_dev> -
 179 *
 180 * This code parses those words.  If there is a failure,
 181 * the caller must use context_free to unwind the operations.
 182 */
 183static int dev_parms(struct raid_set *rs, char **argv)
 184{
 185	int i;
 186	int rebuild = 0;
 187	int metadata_available = 0;
 188	int ret = 0;
 189
 190	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
 191		rs->dev[i].rdev.raid_disk = i;
 192
 193		rs->dev[i].meta_dev = NULL;
 194		rs->dev[i].data_dev = NULL;
 195
 196		/*
 197		 * There are no offsets, since there is a separate device
 198		 * for data and metadata.
 199		 */
 200		rs->dev[i].rdev.data_offset = 0;
 201		rs->dev[i].rdev.mddev = &rs->md;
 202
 203		if (strcmp(argv[0], "-")) {
 204			ret = dm_get_device(rs->ti, argv[0],
 205					    dm_table_get_mode(rs->ti->table),
 206					    &rs->dev[i].meta_dev);
 207			rs->ti->error = "RAID metadata device lookup failure";
 208			if (ret)
 209				return ret;
 210
 211			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
 212			if (!rs->dev[i].rdev.sb_page)
 213				return -ENOMEM;
 214		}
 215
 216		if (!strcmp(argv[1], "-")) {
 217			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
 218			    (!rs->dev[i].rdev.recovery_offset)) {
 219				rs->ti->error = "Drive designated for rebuild not specified";
 220				return -EINVAL;
 221			}
 222
 223			rs->ti->error = "No data device supplied with metadata device";
 224			if (rs->dev[i].meta_dev)
 225				return -EINVAL;
 226
 227			continue;
 228		}
 229
 230		ret = dm_get_device(rs->ti, argv[1],
 231				    dm_table_get_mode(rs->ti->table),
 232				    &rs->dev[i].data_dev);
 233		if (ret) {
 234			rs->ti->error = "RAID device lookup failure";
 235			return ret;
 236		}
 237
 238		if (rs->dev[i].meta_dev) {
 239			metadata_available = 1;
 240			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
 241		}
 242		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
 243		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
 244		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
 245			rebuild++;
 246	}
 247
 248	if (metadata_available) {
 249		rs->md.external = 0;
 250		rs->md.persistent = 1;
 251		rs->md.major_version = 2;
 252	} else if (rebuild && !rs->md.recovery_cp) {
 253		/*
 254		 * Without metadata, we will not be able to tell if the array
 255		 * is in-sync or not - we must assume it is not.  Therefore,
 256		 * it is impossible to rebuild a drive.
 257		 *
 258		 * Even if there is metadata, the on-disk information may
 259		 * indicate that the array is not in-sync and it will then
 260		 * fail at that time.
 261		 *
 262		 * User could specify 'nosync' option if desperate.
 263		 */
 264		DMERR("Unable to rebuild drive while array is not in-sync");
 265		rs->ti->error = "RAID device lookup failure";
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/*
 273 * validate_region_size
 274 * @rs
 275 * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
 276 *
 277 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
 278 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
 279 *
 280 * Returns: 0 on success, -EINVAL on failure.
 281 */
 282static int validate_region_size(struct raid_set *rs, unsigned long region_size)
 283{
 284	unsigned long min_region_size = rs->ti->len / (1 << 21);
 285
 286	if (!region_size) {
 287		/*
 288		 * Choose a reasonable default.  All figures in sectors.
 289		 */
 290		if (min_region_size > (1 << 13)) {
 291			DMINFO("Choosing default region size of %lu sectors",
 292			       region_size);
 293			region_size = min_region_size;
 294		} else {
 295			DMINFO("Choosing default region size of 4MiB");
 296			region_size = 1 << 13; /* sectors */
 297		}
 298	} else {
 299		/*
 300		 * Validate user-supplied value.
 301		 */
 302		if (region_size > rs->ti->len) {
 303			rs->ti->error = "Supplied region size is too large";
 304			return -EINVAL;
 305		}
 306
 307		if (region_size < min_region_size) {
 308			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
 309			      region_size, min_region_size);
 310			rs->ti->error = "Supplied region size is too small";
 311			return -EINVAL;
 312		}
 313
 314		if (!is_power_of_2(region_size)) {
 315			rs->ti->error = "Region size is not a power of 2";
 316			return -EINVAL;
 317		}
 318
 319		if (region_size < rs->md.chunk_sectors) {
 320			rs->ti->error = "Region size is smaller than the chunk size";
 321			return -EINVAL;
 322		}
 323	}
 324
 325	/*
 326	 * Convert sectors to bytes.
 327	 */
 328	rs->md.bitmap_info.chunksize = (region_size << 9);
 329
 330	return 0;
 331}
 332
 333/*
 334 * Possible arguments are...
 335 *	<chunk_size> [optional_args]
 336 *
 337 * Argument definitions
 338 *    <chunk_size>			The number of sectors per disk that
 339 *                                      will form the "stripe"
 340 *    [[no]sync]			Force or prevent recovery of the
 341 *                                      entire array
 342 *    [rebuild <idx>]			Rebuild the drive indicated by the index
 343 *    [daemon_sleep <ms>]		Time between bitmap daemon work to
 344 *                                      clear bits
 345 *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 346 *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 347 *    [write_mostly <idx>]		Indicate a write mostly drive via index
 348 *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
 349 *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
 350 *    [region_size <sectors>]           Defines granularity of bitmap
 351 */
 352static int parse_raid_params(struct raid_set *rs, char **argv,
 353			     unsigned num_raid_params)
 354{
 355	unsigned i, rebuild_cnt = 0;
 356	unsigned long value, region_size = 0;
 357	char *key;
 358
 359	/*
 360	 * First, parse the in-order required arguments
 361	 * "chunk_size" is the only argument of this type.
 362	 */
 363	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
 364		rs->ti->error = "Bad chunk size";
 365		return -EINVAL;
 366	} else if (rs->raid_type->level == 1) {
 367		if (value)
 368			DMERR("Ignoring chunk size parameter for RAID 1");
 369		value = 0;
 370	} else if (!is_power_of_2(value)) {
 371		rs->ti->error = "Chunk size must be a power of 2";
 372		return -EINVAL;
 373	} else if (value < 8) {
 374		rs->ti->error = "Chunk size value is too small";
 375		return -EINVAL;
 376	}
 377
 378	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
 379	argv++;
 380	num_raid_params--;
 381
 382	/*
 383	 * We set each individual device as In_sync with a completed
 384	 * 'recovery_offset'.  If there has been a device failure or
 385	 * replacement then one of the following cases applies:
 386	 *
 387	 *   1) User specifies 'rebuild'.
 388	 *      - Device is reset when param is read.
 389	 *   2) A new device is supplied.
 390	 *      - No matching superblock found, resets device.
 391	 *   3) Device failure was transient and returns on reload.
 392	 *      - Failure noticed, resets device for bitmap replay.
 393	 *   4) Device hadn't completed recovery after previous failure.
 394	 *      - Superblock is read and overrides recovery_offset.
 395	 *
 396	 * What is found in the superblocks of the devices is always
 397	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
 398	 */
 399	for (i = 0; i < rs->md.raid_disks; i++) {
 400		set_bit(In_sync, &rs->dev[i].rdev.flags);
 401		rs->dev[i].rdev.recovery_offset = MaxSector;
 402	}
 403
 404	/*
 405	 * Second, parse the unordered optional arguments
 406	 */
 407	for (i = 0; i < num_raid_params; i++) {
 408		if (!strcasecmp(argv[i], "nosync")) {
 409			rs->md.recovery_cp = MaxSector;
 410			rs->print_flags |= DMPF_NOSYNC;
 411			continue;
 412		}
 413		if (!strcasecmp(argv[i], "sync")) {
 414			rs->md.recovery_cp = 0;
 415			rs->print_flags |= DMPF_SYNC;
 416			continue;
 417		}
 418
 419		/* The rest of the optional arguments come in key/value pairs */
 420		if ((i + 1) >= num_raid_params) {
 421			rs->ti->error = "Wrong number of raid parameters given";
 422			return -EINVAL;
 423		}
 424
 425		key = argv[i++];
 426		if (strict_strtoul(argv[i], 10, &value) < 0) {
 427			rs->ti->error = "Bad numerical argument given in raid params";
 428			return -EINVAL;
 429		}
 430
 431		if (!strcasecmp(key, "rebuild")) {
 432			rebuild_cnt++;
 433			if (((rs->raid_type->level != 1) &&
 434			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
 435			    ((rs->raid_type->level == 1) &&
 436			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
 437				rs->ti->error = "Too many rebuild devices specified for given RAID type";
 438				return -EINVAL;
 439			}
 440			if (value > rs->md.raid_disks) {
 441				rs->ti->error = "Invalid rebuild index given";
 442				return -EINVAL;
 443			}
 444			clear_bit(In_sync, &rs->dev[value].rdev.flags);
 445			rs->dev[value].rdev.recovery_offset = 0;
 446			rs->print_flags |= DMPF_REBUILD;
 447		} else if (!strcasecmp(key, "write_mostly")) {
 448			if (rs->raid_type->level != 1) {
 449				rs->ti->error = "write_mostly option is only valid for RAID1";
 450				return -EINVAL;
 451			}
 452			if (value >= rs->md.raid_disks) {
 453				rs->ti->error = "Invalid write_mostly drive index given";
 454				return -EINVAL;
 455			}
 456			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
 457		} else if (!strcasecmp(key, "max_write_behind")) {
 458			if (rs->raid_type->level != 1) {
 459				rs->ti->error = "max_write_behind option is only valid for RAID1";
 460				return -EINVAL;
 461			}
 462			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
 463
 464			/*
 465			 * In device-mapper, we specify things in sectors, but
 466			 * MD records this value in kB
 467			 */
 468			value /= 2;
 469			if (value > COUNTER_MAX) {
 470				rs->ti->error = "Max write-behind limit out of range";
 471				return -EINVAL;
 472			}
 473			rs->md.bitmap_info.max_write_behind = value;
 474		} else if (!strcasecmp(key, "daemon_sleep")) {
 475			rs->print_flags |= DMPF_DAEMON_SLEEP;
 476			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
 477				rs->ti->error = "daemon sleep period out of range";
 478				return -EINVAL;
 479			}
 480			rs->md.bitmap_info.daemon_sleep = value;
 481		} else if (!strcasecmp(key, "stripe_cache")) {
 482			rs->print_flags |= DMPF_STRIPE_CACHE;
 483
 484			/*
 485			 * In device-mapper, we specify things in sectors, but
 486			 * MD records this value in kB
 487			 */
 488			value /= 2;
 489
 490			if (rs->raid_type->level < 5) {
 491				rs->ti->error = "Inappropriate argument: stripe_cache";
 492				return -EINVAL;
 493			}
 494			if (raid5_set_cache_size(&rs->md, (int)value)) {
 495				rs->ti->error = "Bad stripe_cache size";
 496				return -EINVAL;
 497			}
 498		} else if (!strcasecmp(key, "min_recovery_rate")) {
 499			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
 500			if (value > INT_MAX) {
 501				rs->ti->error = "min_recovery_rate out of range";
 502				return -EINVAL;
 503			}
 504			rs->md.sync_speed_min = (int)value;
 505		} else if (!strcasecmp(key, "max_recovery_rate")) {
 506			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
 507			if (value > INT_MAX) {
 508				rs->ti->error = "max_recovery_rate out of range";
 509				return -EINVAL;
 510			}
 511			rs->md.sync_speed_max = (int)value;
 512		} else if (!strcasecmp(key, "region_size")) {
 513			rs->print_flags |= DMPF_REGION_SIZE;
 514			region_size = value;
 515		} else {
 516			DMERR("Unable to parse RAID parameter: %s", key);
 517			rs->ti->error = "Unable to parse RAID parameters";
 518			return -EINVAL;
 519		}
 520	}
 521
 522	if (validate_region_size(rs, region_size))
 523		return -EINVAL;
 524
 525	if (rs->md.chunk_sectors)
 526		rs->ti->split_io = rs->md.chunk_sectors;
 527	else
 528		rs->ti->split_io = region_size;
 529
 530	if (rs->md.chunk_sectors)
 531		rs->ti->split_io = rs->md.chunk_sectors;
 532	else
 533		rs->ti->split_io = region_size;
 534
 535	/* Assume there are no metadata devices until the drives are parsed */
 536	rs->md.persistent = 0;
 537	rs->md.external = 1;
 538
 539	return 0;
 540}
 541
 542static void do_table_event(struct work_struct *ws)
 543{
 544	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
 545
 546	dm_table_event(rs->ti->table);
 547}
 548
 549static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
 550{
 551	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
 552
 553	if (rs->raid_type->level == 1)
 554		return md_raid1_congested(&rs->md, bits);
 555
 556	return md_raid5_congested(&rs->md, bits);
 557}
 558
 559/*
 560 * This structure is never routinely used by userspace, unlike md superblocks.
 561 * Devices with this superblock should only ever be accessed via device-mapper.
 562 */
 563#define DM_RAID_MAGIC 0x64526D44
 564struct dm_raid_superblock {
 565	__le32 magic;		/* "DmRd" */
 566	__le32 features;	/* Used to indicate possible future changes */
 567
 568	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
 569	__le32 array_position;	/* The position of this drive in the array */
 570
 571	__le64 events;		/* Incremented by md when superblock updated */
 572	__le64 failed_devices;	/* Bit field of devices to indicate failures */
 573
 574	/*
 575	 * This offset tracks the progress of the repair or replacement of
 576	 * an individual drive.
 577	 */
 578	__le64 disk_recovery_offset;
 579
 580	/*
 581	 * This offset tracks the progress of the initial array
 582	 * synchronisation/parity calculation.
 583	 */
 584	__le64 array_resync_offset;
 585
 586	/*
 587	 * RAID characteristics
 588	 */
 589	__le32 level;
 590	__le32 layout;
 591	__le32 stripe_sectors;
 592
 593	__u8 pad[452];		/* Round struct to 512 bytes. */
 594				/* Always set to 0 when writing. */
 595} __packed;
 596
 597static int read_disk_sb(mdk_rdev_t *rdev, int size)
 598{
 599	BUG_ON(!rdev->sb_page);
 600
 601	if (rdev->sb_loaded)
 602		return 0;
 603
 604	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
 605		DMERR("Failed to read device superblock");
 
 
 606		return -EINVAL;
 607	}
 608
 609	rdev->sb_loaded = 1;
 610
 611	return 0;
 612}
 613
 614static void super_sync(mddev_t *mddev, mdk_rdev_t *rdev)
 615{
 616	mdk_rdev_t *r, *t;
 617	uint64_t failed_devices;
 618	struct dm_raid_superblock *sb;
 
 619
 620	sb = page_address(rdev->sb_page);
 621	failed_devices = le64_to_cpu(sb->failed_devices);
 622
 623	rdev_for_each(r, t, mddev)
 624		if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
 625			failed_devices |= (1ULL << r->raid_disk);
 
 626
 627	memset(sb, 0, sizeof(*sb));
 628
 629	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
 630	sb->features = cpu_to_le32(0);	/* No features yet */
 631
 632	sb->num_devices = cpu_to_le32(mddev->raid_disks);
 633	sb->array_position = cpu_to_le32(rdev->raid_disk);
 634
 635	sb->events = cpu_to_le64(mddev->events);
 636	sb->failed_devices = cpu_to_le64(failed_devices);
 637
 638	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
 639	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
 640
 641	sb->level = cpu_to_le32(mddev->level);
 642	sb->layout = cpu_to_le32(mddev->layout);
 643	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
 644}
 645
 646/*
 647 * super_load
 648 *
 649 * This function creates a superblock if one is not found on the device
 650 * and will decide which superblock to use if there's a choice.
 651 *
 652 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
 653 */
 654static int super_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev)
 655{
 656	int ret;
 657	struct dm_raid_superblock *sb;
 658	struct dm_raid_superblock *refsb;
 659	uint64_t events_sb, events_refsb;
 660
 661	rdev->sb_start = 0;
 662	rdev->sb_size = sizeof(*sb);
 663
 664	ret = read_disk_sb(rdev, rdev->sb_size);
 665	if (ret)
 666		return ret;
 667
 668	sb = page_address(rdev->sb_page);
 669	if (sb->magic != cpu_to_le32(DM_RAID_MAGIC)) {
 
 
 
 
 
 
 
 670		super_sync(rdev->mddev, rdev);
 671
 672		set_bit(FirstUse, &rdev->flags);
 673
 674		/* Force writing of superblocks to disk */
 675		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
 676
 677		/* Any superblock is better than none, choose that if given */
 678		return refdev ? 0 : 1;
 679	}
 680
 681	if (!refdev)
 682		return 1;
 683
 684	events_sb = le64_to_cpu(sb->events);
 685
 686	refsb = page_address(refdev->sb_page);
 687	events_refsb = le64_to_cpu(refsb->events);
 688
 689	return (events_sb > events_refsb) ? 1 : 0;
 690}
 691
 692static int super_init_validation(mddev_t *mddev, mdk_rdev_t *rdev)
 693{
 694	int role;
 695	struct raid_set *rs = container_of(mddev, struct raid_set, md);
 696	uint64_t events_sb;
 697	uint64_t failed_devices;
 698	struct dm_raid_superblock *sb;
 699	uint32_t new_devs = 0;
 700	uint32_t rebuilds = 0;
 701	mdk_rdev_t *r, *t;
 702	struct dm_raid_superblock *sb2;
 703
 704	sb = page_address(rdev->sb_page);
 705	events_sb = le64_to_cpu(sb->events);
 706	failed_devices = le64_to_cpu(sb->failed_devices);
 707
 708	/*
 709	 * Initialise to 1 if this is a new superblock.
 710	 */
 711	mddev->events = events_sb ? : 1;
 712
 713	/*
 714	 * Reshaping is not currently allowed
 715	 */
 716	if ((le32_to_cpu(sb->level) != mddev->level) ||
 717	    (le32_to_cpu(sb->layout) != mddev->layout) ||
 718	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
 719		DMERR("Reshaping arrays not yet supported.");
 720		return -EINVAL;
 721	}
 722
 723	/* We can only change the number of devices in RAID1 right now */
 724	if ((rs->raid_type->level != 1) &&
 725	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
 726		DMERR("Reshaping arrays not yet supported.");
 727		return -EINVAL;
 728	}
 729
 730	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
 731		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
 732
 733	/*
 734	 * During load, we set FirstUse if a new superblock was written.
 735	 * There are two reasons we might not have a superblock:
 736	 * 1) The array is brand new - in which case, all of the
 737	 *    devices must have their In_sync bit set.  Also,
 738	 *    recovery_cp must be 0, unless forced.
 739	 * 2) This is a new device being added to an old array
 740	 *    and the new device needs to be rebuilt - in which
 741	 *    case the In_sync bit will /not/ be set and
 742	 *    recovery_cp must be MaxSector.
 743	 */
 744	rdev_for_each(r, t, mddev) {
 745		if (!test_bit(In_sync, &r->flags)) {
 746			if (!test_bit(FirstUse, &r->flags))
 747				DMERR("Superblock area of "
 748				      "rebuild device %d should have been "
 749				      "cleared.", r->raid_disk);
 750			set_bit(FirstUse, &r->flags);
 751			rebuilds++;
 752		} else if (test_bit(FirstUse, &r->flags))
 753			new_devs++;
 754	}
 755
 756	if (!rebuilds) {
 757		if (new_devs == mddev->raid_disks) {
 758			DMINFO("Superblocks created for new array");
 759			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
 760		} else if (new_devs) {
 761			DMERR("New device injected "
 762			      "into existing array without 'rebuild' "
 763			      "parameter specified");
 764			return -EINVAL;
 765		}
 766	} else if (new_devs) {
 767		DMERR("'rebuild' devices cannot be "
 768		      "injected into an array with other first-time devices");
 769		return -EINVAL;
 770	} else if (mddev->recovery_cp != MaxSector) {
 771		DMERR("'rebuild' specified while array is not in-sync");
 772		return -EINVAL;
 773	}
 774
 775	/*
 776	 * Now we set the Faulty bit for those devices that are
 777	 * recorded in the superblock as failed.
 778	 */
 779	rdev_for_each(r, t, mddev) {
 780		if (!r->sb_page)
 781			continue;
 782		sb2 = page_address(r->sb_page);
 783		sb2->failed_devices = 0;
 784
 785		/*
 786		 * Check for any device re-ordering.
 787		 */
 788		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
 789			role = le32_to_cpu(sb2->array_position);
 790			if (role != r->raid_disk) {
 791				if (rs->raid_type->level != 1) {
 792					rs->ti->error = "Cannot change device "
 793						"positions in RAID array";
 794					return -EINVAL;
 795				}
 796				DMINFO("RAID1 device #%d now at position #%d",
 797				       role, r->raid_disk);
 798			}
 799
 800			/*
 801			 * Partial recovery is performed on
 802			 * returning failed devices.
 803			 */
 804			if (failed_devices & (1 << role))
 805				set_bit(Faulty, &r->flags);
 806		}
 807	}
 808
 809	return 0;
 810}
 811
 812static int super_validate(mddev_t *mddev, mdk_rdev_t *rdev)
 813{
 814	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
 815
 816	/*
 817	 * If mddev->events is not set, we know we have not yet initialized
 818	 * the array.
 819	 */
 820	if (!mddev->events && super_init_validation(mddev, rdev))
 821		return -EINVAL;
 822
 823	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
 824	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
 825	if (!test_bit(FirstUse, &rdev->flags)) {
 826		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
 827		if (rdev->recovery_offset != MaxSector)
 828			clear_bit(In_sync, &rdev->flags);
 829	}
 830
 831	/*
 832	 * If a device comes back, set it as not In_sync and no longer faulty.
 833	 */
 834	if (test_bit(Faulty, &rdev->flags)) {
 835		clear_bit(Faulty, &rdev->flags);
 836		clear_bit(In_sync, &rdev->flags);
 837		rdev->saved_raid_disk = rdev->raid_disk;
 838		rdev->recovery_offset = 0;
 839	}
 840
 841	clear_bit(FirstUse, &rdev->flags);
 842
 843	return 0;
 844}
 845
 846/*
 847 * Analyse superblocks and select the freshest.
 848 */
 849static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
 850{
 851	int ret;
 852	mdk_rdev_t *rdev, *freshest, *tmp;
 853	mddev_t *mddev = &rs->md;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854
 855	freshest = NULL;
 856	rdev_for_each(rdev, tmp, mddev) {
 857		if (!rdev->meta_bdev)
 858			continue;
 859
 860		ret = super_load(rdev, freshest);
 861
 862		switch (ret) {
 863		case 1:
 864			freshest = rdev;
 865			break;
 866		case 0:
 867			break;
 868		default:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869			ti->error = "Failed to load superblock";
 870			return ret;
 871		}
 872	}
 873
 874	if (!freshest)
 875		return 0;
 876
 877	/*
 878	 * Validation of the freshest device provides the source of
 879	 * validation for the remaining devices.
 880	 */
 881	ti->error = "Unable to assemble array: Invalid superblocks";
 882	if (super_validate(mddev, freshest))
 883		return -EINVAL;
 884
 885	rdev_for_each(rdev, tmp, mddev)
 886		if ((rdev != freshest) && super_validate(mddev, rdev))
 887			return -EINVAL;
 888
 889	return 0;
 890}
 891
 892/*
 893 * Construct a RAID4/5/6 mapping:
 894 * Args:
 895 *	<raid_type> <#raid_params> <raid_params>		\
 896 *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
 897 *
 898 * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
 899 * details on possible <raid_params>.
 900 */
 901static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
 902{
 903	int ret;
 904	struct raid_type *rt;
 905	unsigned long num_raid_params, num_raid_devs;
 906	struct raid_set *rs = NULL;
 907
 908	/* Must have at least <raid_type> <#raid_params> */
 909	if (argc < 2) {
 910		ti->error = "Too few arguments";
 911		return -EINVAL;
 912	}
 913
 914	/* raid type */
 915	rt = get_raid_type(argv[0]);
 916	if (!rt) {
 917		ti->error = "Unrecognised raid_type";
 918		return -EINVAL;
 919	}
 920	argc--;
 921	argv++;
 922
 923	/* number of RAID parameters */
 924	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
 925		ti->error = "Cannot understand number of RAID parameters";
 926		return -EINVAL;
 927	}
 928	argc--;
 929	argv++;
 930
 931	/* Skip over RAID params for now and find out # of devices */
 932	if (num_raid_params + 1 > argc) {
 933		ti->error = "Arguments do not agree with counts given";
 934		return -EINVAL;
 935	}
 936
 937	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
 938	    (num_raid_devs >= INT_MAX)) {
 939		ti->error = "Cannot understand number of raid devices";
 940		return -EINVAL;
 941	}
 942
 943	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
 944	if (IS_ERR(rs))
 945		return PTR_ERR(rs);
 946
 947	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
 948	if (ret)
 949		goto bad;
 950
 951	ret = -EINVAL;
 952
 953	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
 954	argv += num_raid_params + 1;
 955
 956	if (argc != (num_raid_devs * 2)) {
 957		ti->error = "Supplied RAID devices does not match the count given";
 958		goto bad;
 959	}
 960
 961	ret = dev_parms(rs, argv);
 962	if (ret)
 963		goto bad;
 964
 965	rs->md.sync_super = super_sync;
 966	ret = analyse_superblocks(ti, rs);
 967	if (ret)
 968		goto bad;
 969
 970	INIT_WORK(&rs->md.event_work, do_table_event);
 971	ti->private = rs;
 
 972
 973	mutex_lock(&rs->md.reconfig_mutex);
 974	ret = md_run(&rs->md);
 975	rs->md.in_sync = 0; /* Assume already marked dirty */
 976	mutex_unlock(&rs->md.reconfig_mutex);
 977
 978	if (ret) {
 979		ti->error = "Fail to run raid array";
 980		goto bad;
 981	}
 982
 983	rs->callbacks.congested_fn = raid_is_congested;
 984	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
 985
 986	mddev_suspend(&rs->md);
 987	return 0;
 988
 989bad:
 990	context_free(rs);
 991
 992	return ret;
 993}
 994
 995static void raid_dtr(struct dm_target *ti)
 996{
 997	struct raid_set *rs = ti->private;
 998
 999	list_del_init(&rs->callbacks.list);
1000	md_stop(&rs->md);
1001	context_free(rs);
1002}
1003
1004static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1005{
1006	struct raid_set *rs = ti->private;
1007	mddev_t *mddev = &rs->md;
1008
1009	mddev->pers->make_request(mddev, bio);
1010
1011	return DM_MAPIO_SUBMITTED;
1012}
1013
1014static int raid_status(struct dm_target *ti, status_type_t type,
1015		       char *result, unsigned maxlen)
1016{
1017	struct raid_set *rs = ti->private;
1018	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1019	unsigned sz = 0;
1020	int i;
1021	sector_t sync;
1022
1023	switch (type) {
1024	case STATUSTYPE_INFO:
1025		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1026
1027		for (i = 0; i < rs->md.raid_disks; i++) {
1028			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1029				DMEMIT("D");
1030			else if (test_bit(In_sync, &rs->dev[i].rdev.flags))
1031				DMEMIT("A");
1032			else
1033				DMEMIT("a");
1034		}
1035
1036		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1037			sync = rs->md.curr_resync_completed;
1038		else
1039			sync = rs->md.recovery_cp;
1040
1041		if (sync > rs->md.resync_max_sectors)
 
1042			sync = rs->md.resync_max_sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
 
 
 
 
 
 
 
 
1044		DMEMIT(" %llu/%llu",
1045		       (unsigned long long) sync,
1046		       (unsigned long long) rs->md.resync_max_sectors);
1047
1048		break;
1049	case STATUSTYPE_TABLE:
1050		/* The string you would use to construct this array */
1051		for (i = 0; i < rs->md.raid_disks; i++) {
1052			if ((rs->print_flags & DMPF_REBUILD) &&
1053			    rs->dev[i].data_dev &&
1054			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1055				raid_param_cnt += 2; /* for rebuilds */
1056			if (rs->dev[i].data_dev &&
1057			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1058				raid_param_cnt += 2;
1059		}
1060
1061		raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2);
1062		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1063			raid_param_cnt--;
1064
1065		DMEMIT("%s %u %u", rs->raid_type->name,
1066		       raid_param_cnt, rs->md.chunk_sectors);
1067
1068		if ((rs->print_flags & DMPF_SYNC) &&
1069		    (rs->md.recovery_cp == MaxSector))
1070			DMEMIT(" sync");
1071		if (rs->print_flags & DMPF_NOSYNC)
1072			DMEMIT(" nosync");
1073
1074		for (i = 0; i < rs->md.raid_disks; i++)
1075			if ((rs->print_flags & DMPF_REBUILD) &&
1076			    rs->dev[i].data_dev &&
1077			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1078				DMEMIT(" rebuild %u", i);
1079
1080		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1081			DMEMIT(" daemon_sleep %lu",
1082			       rs->md.bitmap_info.daemon_sleep);
1083
1084		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1085			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1086
1087		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1088			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1089
1090		for (i = 0; i < rs->md.raid_disks; i++)
1091			if (rs->dev[i].data_dev &&
1092			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1093				DMEMIT(" write_mostly %u", i);
1094
1095		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1096			DMEMIT(" max_write_behind %lu",
1097			       rs->md.bitmap_info.max_write_behind);
1098
1099		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1100			raid5_conf_t *conf = rs->md.private;
1101
1102			/* convert from kiB to sectors */
1103			DMEMIT(" stripe_cache %d",
1104			       conf ? conf->max_nr_stripes * 2 : 0);
1105		}
1106
1107		if (rs->print_flags & DMPF_REGION_SIZE)
1108			DMEMIT(" region_size %lu",
1109			       rs->md.bitmap_info.chunksize >> 9);
1110
1111		DMEMIT(" %d", rs->md.raid_disks);
1112		for (i = 0; i < rs->md.raid_disks; i++) {
1113			if (rs->dev[i].meta_dev)
1114				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1115			else
1116				DMEMIT(" -");
1117
1118			if (rs->dev[i].data_dev)
1119				DMEMIT(" %s", rs->dev[i].data_dev->name);
1120			else
1121				DMEMIT(" -");
1122		}
1123	}
1124
1125	return 0;
1126}
1127
1128static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1129{
1130	struct raid_set *rs = ti->private;
1131	unsigned i;
1132	int ret = 0;
1133
1134	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1135		if (rs->dev[i].data_dev)
1136			ret = fn(ti,
1137				 rs->dev[i].data_dev,
1138				 0, /* No offset on data devs */
1139				 rs->md.dev_sectors,
1140				 data);
1141
1142	return ret;
1143}
1144
1145static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1146{
1147	struct raid_set *rs = ti->private;
1148	unsigned chunk_size = rs->md.chunk_sectors << 9;
1149	raid5_conf_t *conf = rs->md.private;
1150
1151	blk_limits_io_min(limits, chunk_size);
1152	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1153}
1154
1155static void raid_presuspend(struct dm_target *ti)
1156{
1157	struct raid_set *rs = ti->private;
1158
1159	md_stop_writes(&rs->md);
1160}
1161
1162static void raid_postsuspend(struct dm_target *ti)
1163{
1164	struct raid_set *rs = ti->private;
1165
1166	mddev_suspend(&rs->md);
1167}
1168
1169static void raid_resume(struct dm_target *ti)
1170{
1171	struct raid_set *rs = ti->private;
1172
1173	bitmap_load(&rs->md);
 
 
 
 
 
 
1174	mddev_resume(&rs->md);
1175}
1176
1177static struct target_type raid_target = {
1178	.name = "raid",
1179	.version = {1, 1, 0},
1180	.module = THIS_MODULE,
1181	.ctr = raid_ctr,
1182	.dtr = raid_dtr,
1183	.map = raid_map,
1184	.status = raid_status,
1185	.iterate_devices = raid_iterate_devices,
1186	.io_hints = raid_io_hints,
1187	.presuspend = raid_presuspend,
1188	.postsuspend = raid_postsuspend,
1189	.resume = raid_resume,
1190};
1191
1192static int __init dm_raid_init(void)
1193{
1194	return dm_register_target(&raid_target);
1195}
1196
1197static void __exit dm_raid_exit(void)
1198{
1199	dm_unregister_target(&raid_target);
1200}
1201
1202module_init(dm_raid_init);
1203module_exit(dm_raid_exit);
1204
1205MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1206MODULE_ALIAS("dm-raid4");
1207MODULE_ALIAS("dm-raid5");
1208MODULE_ALIAS("dm-raid6");
1209MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1210MODULE_LICENSE("GPL");
v3.5.6
   1/*
   2 * Copyright (C) 2010-2011 Neil Brown
   3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/module.h>
  10
  11#include "md.h"
  12#include "raid1.h"
  13#include "raid5.h"
  14#include "bitmap.h"
  15
  16#include <linux/device-mapper.h>
  17
  18#define DM_MSG_PREFIX "raid"
  19
  20/*
  21 * The following flags are used by dm-raid.c to set up the array state.
  22 * They must be cleared before md_run is called.
  23 */
  24#define FirstUse 10             /* rdev flag */
  25
  26struct raid_dev {
  27	/*
  28	 * Two DM devices, one to hold metadata and one to hold the
  29	 * actual data/parity.  The reason for this is to not confuse
  30	 * ti->len and give more flexibility in altering size and
  31	 * characteristics.
  32	 *
  33	 * While it is possible for this device to be associated
  34	 * with a different physical device than the data_dev, it
  35	 * is intended for it to be the same.
  36	 *    |--------- Physical Device ---------|
  37	 *    |- meta_dev -|------ data_dev ------|
  38	 */
  39	struct dm_dev *meta_dev;
  40	struct dm_dev *data_dev;
  41	struct md_rdev rdev;
  42};
  43
  44/*
  45 * Flags for rs->print_flags field.
  46 */
  47#define DMPF_SYNC              0x1
  48#define DMPF_NOSYNC            0x2
  49#define DMPF_REBUILD           0x4
  50#define DMPF_DAEMON_SLEEP      0x8
  51#define DMPF_MIN_RECOVERY_RATE 0x10
  52#define DMPF_MAX_RECOVERY_RATE 0x20
  53#define DMPF_MAX_WRITE_BEHIND  0x40
  54#define DMPF_STRIPE_CACHE      0x80
  55#define DMPF_REGION_SIZE       0X100
  56struct raid_set {
  57	struct dm_target *ti;
  58
  59	uint32_t bitmap_loaded;
  60	uint32_t print_flags;
  61
  62	struct mddev md;
  63	struct raid_type *raid_type;
  64	struct dm_target_callbacks callbacks;
  65
  66	struct raid_dev dev[0];
  67};
  68
  69/* Supported raid types and properties. */
  70static struct raid_type {
  71	const char *name;		/* RAID algorithm. */
  72	const char *descr;		/* Descriptor text for logging. */
  73	const unsigned parity_devs;	/* # of parity devices. */
  74	const unsigned minimal_devs;	/* minimal # of devices in set. */
  75	const unsigned level;		/* RAID level. */
  76	const unsigned algorithm;	/* RAID algorithm. */
  77} raid_types[] = {
  78	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
  79	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
  80	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
  81	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
  82	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
  83	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
  84	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
  85	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
  86	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
  87};
  88
  89static struct raid_type *get_raid_type(char *name)
  90{
  91	int i;
  92
  93	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
  94		if (!strcmp(raid_types[i].name, name))
  95			return &raid_types[i];
  96
  97	return NULL;
  98}
  99
 100static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
 101{
 102	unsigned i;
 103	struct raid_set *rs;
 104	sector_t sectors_per_dev;
 105
 106	if (raid_devs <= raid_type->parity_devs) {
 107		ti->error = "Insufficient number of devices";
 108		return ERR_PTR(-EINVAL);
 109	}
 110
 111	sectors_per_dev = ti->len;
 112	if ((raid_type->level > 1) &&
 113	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
 114		ti->error = "Target length not divisible by number of data devices";
 115		return ERR_PTR(-EINVAL);
 116	}
 117
 118	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
 119	if (!rs) {
 120		ti->error = "Cannot allocate raid context";
 121		return ERR_PTR(-ENOMEM);
 122	}
 123
 124	mddev_init(&rs->md);
 125
 126	rs->ti = ti;
 127	rs->raid_type = raid_type;
 128	rs->md.raid_disks = raid_devs;
 129	rs->md.level = raid_type->level;
 130	rs->md.new_level = rs->md.level;
 131	rs->md.dev_sectors = sectors_per_dev;
 132	rs->md.layout = raid_type->algorithm;
 133	rs->md.new_layout = rs->md.layout;
 134	rs->md.delta_disks = 0;
 135	rs->md.recovery_cp = 0;
 136
 137	for (i = 0; i < raid_devs; i++)
 138		md_rdev_init(&rs->dev[i].rdev);
 139
 140	/*
 141	 * Remaining items to be initialized by further RAID params:
 142	 *  rs->md.persistent
 143	 *  rs->md.external
 144	 *  rs->md.chunk_sectors
 145	 *  rs->md.new_chunk_sectors
 146	 */
 147
 148	return rs;
 149}
 150
 151static void context_free(struct raid_set *rs)
 152{
 153	int i;
 154
 155	for (i = 0; i < rs->md.raid_disks; i++) {
 156		if (rs->dev[i].meta_dev)
 157			dm_put_device(rs->ti, rs->dev[i].meta_dev);
 158		md_rdev_clear(&rs->dev[i].rdev);
 
 
 
 159		if (rs->dev[i].data_dev)
 160			dm_put_device(rs->ti, rs->dev[i].data_dev);
 161	}
 162
 163	kfree(rs);
 164}
 165
 166/*
 167 * For every device we have two words
 168 *  <meta_dev>: meta device name or '-' if missing
 169 *  <data_dev>: data device name or '-' if missing
 170 *
 171 * The following are permitted:
 172 *    - -
 173 *    - <data_dev>
 174 *    <meta_dev> <data_dev>
 175 *
 176 * The following is not allowed:
 177 *    <meta_dev> -
 178 *
 179 * This code parses those words.  If there is a failure,
 180 * the caller must use context_free to unwind the operations.
 181 */
 182static int dev_parms(struct raid_set *rs, char **argv)
 183{
 184	int i;
 185	int rebuild = 0;
 186	int metadata_available = 0;
 187	int ret = 0;
 188
 189	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
 190		rs->dev[i].rdev.raid_disk = i;
 191
 192		rs->dev[i].meta_dev = NULL;
 193		rs->dev[i].data_dev = NULL;
 194
 195		/*
 196		 * There are no offsets, since there is a separate device
 197		 * for data and metadata.
 198		 */
 199		rs->dev[i].rdev.data_offset = 0;
 200		rs->dev[i].rdev.mddev = &rs->md;
 201
 202		if (strcmp(argv[0], "-")) {
 203			ret = dm_get_device(rs->ti, argv[0],
 204					    dm_table_get_mode(rs->ti->table),
 205					    &rs->dev[i].meta_dev);
 206			rs->ti->error = "RAID metadata device lookup failure";
 207			if (ret)
 208				return ret;
 209
 210			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
 211			if (!rs->dev[i].rdev.sb_page)
 212				return -ENOMEM;
 213		}
 214
 215		if (!strcmp(argv[1], "-")) {
 216			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
 217			    (!rs->dev[i].rdev.recovery_offset)) {
 218				rs->ti->error = "Drive designated for rebuild not specified";
 219				return -EINVAL;
 220			}
 221
 222			rs->ti->error = "No data device supplied with metadata device";
 223			if (rs->dev[i].meta_dev)
 224				return -EINVAL;
 225
 226			continue;
 227		}
 228
 229		ret = dm_get_device(rs->ti, argv[1],
 230				    dm_table_get_mode(rs->ti->table),
 231				    &rs->dev[i].data_dev);
 232		if (ret) {
 233			rs->ti->error = "RAID device lookup failure";
 234			return ret;
 235		}
 236
 237		if (rs->dev[i].meta_dev) {
 238			metadata_available = 1;
 239			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
 240		}
 241		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
 242		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
 243		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
 244			rebuild++;
 245	}
 246
 247	if (metadata_available) {
 248		rs->md.external = 0;
 249		rs->md.persistent = 1;
 250		rs->md.major_version = 2;
 251	} else if (rebuild && !rs->md.recovery_cp) {
 252		/*
 253		 * Without metadata, we will not be able to tell if the array
 254		 * is in-sync or not - we must assume it is not.  Therefore,
 255		 * it is impossible to rebuild a drive.
 256		 *
 257		 * Even if there is metadata, the on-disk information may
 258		 * indicate that the array is not in-sync and it will then
 259		 * fail at that time.
 260		 *
 261		 * User could specify 'nosync' option if desperate.
 262		 */
 263		DMERR("Unable to rebuild drive while array is not in-sync");
 264		rs->ti->error = "RAID device lookup failure";
 265		return -EINVAL;
 266	}
 267
 268	return 0;
 269}
 270
 271/*
 272 * validate_region_size
 273 * @rs
 274 * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
 275 *
 276 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
 277 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
 278 *
 279 * Returns: 0 on success, -EINVAL on failure.
 280 */
 281static int validate_region_size(struct raid_set *rs, unsigned long region_size)
 282{
 283	unsigned long min_region_size = rs->ti->len / (1 << 21);
 284
 285	if (!region_size) {
 286		/*
 287		 * Choose a reasonable default.  All figures in sectors.
 288		 */
 289		if (min_region_size > (1 << 13)) {
 290			DMINFO("Choosing default region size of %lu sectors",
 291			       region_size);
 292			region_size = min_region_size;
 293		} else {
 294			DMINFO("Choosing default region size of 4MiB");
 295			region_size = 1 << 13; /* sectors */
 296		}
 297	} else {
 298		/*
 299		 * Validate user-supplied value.
 300		 */
 301		if (region_size > rs->ti->len) {
 302			rs->ti->error = "Supplied region size is too large";
 303			return -EINVAL;
 304		}
 305
 306		if (region_size < min_region_size) {
 307			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
 308			      region_size, min_region_size);
 309			rs->ti->error = "Supplied region size is too small";
 310			return -EINVAL;
 311		}
 312
 313		if (!is_power_of_2(region_size)) {
 314			rs->ti->error = "Region size is not a power of 2";
 315			return -EINVAL;
 316		}
 317
 318		if (region_size < rs->md.chunk_sectors) {
 319			rs->ti->error = "Region size is smaller than the chunk size";
 320			return -EINVAL;
 321		}
 322	}
 323
 324	/*
 325	 * Convert sectors to bytes.
 326	 */
 327	rs->md.bitmap_info.chunksize = (region_size << 9);
 328
 329	return 0;
 330}
 331
 332/*
 333 * Possible arguments are...
 334 *	<chunk_size> [optional_args]
 335 *
 336 * Argument definitions
 337 *    <chunk_size>			The number of sectors per disk that
 338 *                                      will form the "stripe"
 339 *    [[no]sync]			Force or prevent recovery of the
 340 *                                      entire array
 341 *    [rebuild <idx>]			Rebuild the drive indicated by the index
 342 *    [daemon_sleep <ms>]		Time between bitmap daemon work to
 343 *                                      clear bits
 344 *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 345 *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 346 *    [write_mostly <idx>]		Indicate a write mostly drive via index
 347 *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
 348 *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
 349 *    [region_size <sectors>]           Defines granularity of bitmap
 350 */
 351static int parse_raid_params(struct raid_set *rs, char **argv,
 352			     unsigned num_raid_params)
 353{
 354	unsigned i, rebuild_cnt = 0;
 355	unsigned long value, region_size = 0;
 356	char *key;
 357
 358	/*
 359	 * First, parse the in-order required arguments
 360	 * "chunk_size" is the only argument of this type.
 361	 */
 362	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
 363		rs->ti->error = "Bad chunk size";
 364		return -EINVAL;
 365	} else if (rs->raid_type->level == 1) {
 366		if (value)
 367			DMERR("Ignoring chunk size parameter for RAID 1");
 368		value = 0;
 369	} else if (!is_power_of_2(value)) {
 370		rs->ti->error = "Chunk size must be a power of 2";
 371		return -EINVAL;
 372	} else if (value < 8) {
 373		rs->ti->error = "Chunk size value is too small";
 374		return -EINVAL;
 375	}
 376
 377	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
 378	argv++;
 379	num_raid_params--;
 380
 381	/*
 382	 * We set each individual device as In_sync with a completed
 383	 * 'recovery_offset'.  If there has been a device failure or
 384	 * replacement then one of the following cases applies:
 385	 *
 386	 *   1) User specifies 'rebuild'.
 387	 *      - Device is reset when param is read.
 388	 *   2) A new device is supplied.
 389	 *      - No matching superblock found, resets device.
 390	 *   3) Device failure was transient and returns on reload.
 391	 *      - Failure noticed, resets device for bitmap replay.
 392	 *   4) Device hadn't completed recovery after previous failure.
 393	 *      - Superblock is read and overrides recovery_offset.
 394	 *
 395	 * What is found in the superblocks of the devices is always
 396	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
 397	 */
 398	for (i = 0; i < rs->md.raid_disks; i++) {
 399		set_bit(In_sync, &rs->dev[i].rdev.flags);
 400		rs->dev[i].rdev.recovery_offset = MaxSector;
 401	}
 402
 403	/*
 404	 * Second, parse the unordered optional arguments
 405	 */
 406	for (i = 0; i < num_raid_params; i++) {
 407		if (!strcasecmp(argv[i], "nosync")) {
 408			rs->md.recovery_cp = MaxSector;
 409			rs->print_flags |= DMPF_NOSYNC;
 410			continue;
 411		}
 412		if (!strcasecmp(argv[i], "sync")) {
 413			rs->md.recovery_cp = 0;
 414			rs->print_flags |= DMPF_SYNC;
 415			continue;
 416		}
 417
 418		/* The rest of the optional arguments come in key/value pairs */
 419		if ((i + 1) >= num_raid_params) {
 420			rs->ti->error = "Wrong number of raid parameters given";
 421			return -EINVAL;
 422		}
 423
 424		key = argv[i++];
 425		if (strict_strtoul(argv[i], 10, &value) < 0) {
 426			rs->ti->error = "Bad numerical argument given in raid params";
 427			return -EINVAL;
 428		}
 429
 430		if (!strcasecmp(key, "rebuild")) {
 431			rebuild_cnt++;
 432			if (((rs->raid_type->level != 1) &&
 433			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
 434			    ((rs->raid_type->level == 1) &&
 435			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
 436				rs->ti->error = "Too many rebuild devices specified for given RAID type";
 437				return -EINVAL;
 438			}
 439			if (value > rs->md.raid_disks) {
 440				rs->ti->error = "Invalid rebuild index given";
 441				return -EINVAL;
 442			}
 443			clear_bit(In_sync, &rs->dev[value].rdev.flags);
 444			rs->dev[value].rdev.recovery_offset = 0;
 445			rs->print_flags |= DMPF_REBUILD;
 446		} else if (!strcasecmp(key, "write_mostly")) {
 447			if (rs->raid_type->level != 1) {
 448				rs->ti->error = "write_mostly option is only valid for RAID1";
 449				return -EINVAL;
 450			}
 451			if (value >= rs->md.raid_disks) {
 452				rs->ti->error = "Invalid write_mostly drive index given";
 453				return -EINVAL;
 454			}
 455			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
 456		} else if (!strcasecmp(key, "max_write_behind")) {
 457			if (rs->raid_type->level != 1) {
 458				rs->ti->error = "max_write_behind option is only valid for RAID1";
 459				return -EINVAL;
 460			}
 461			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
 462
 463			/*
 464			 * In device-mapper, we specify things in sectors, but
 465			 * MD records this value in kB
 466			 */
 467			value /= 2;
 468			if (value > COUNTER_MAX) {
 469				rs->ti->error = "Max write-behind limit out of range";
 470				return -EINVAL;
 471			}
 472			rs->md.bitmap_info.max_write_behind = value;
 473		} else if (!strcasecmp(key, "daemon_sleep")) {
 474			rs->print_flags |= DMPF_DAEMON_SLEEP;
 475			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
 476				rs->ti->error = "daemon sleep period out of range";
 477				return -EINVAL;
 478			}
 479			rs->md.bitmap_info.daemon_sleep = value;
 480		} else if (!strcasecmp(key, "stripe_cache")) {
 481			rs->print_flags |= DMPF_STRIPE_CACHE;
 482
 483			/*
 484			 * In device-mapper, we specify things in sectors, but
 485			 * MD records this value in kB
 486			 */
 487			value /= 2;
 488
 489			if (rs->raid_type->level < 5) {
 490				rs->ti->error = "Inappropriate argument: stripe_cache";
 491				return -EINVAL;
 492			}
 493			if (raid5_set_cache_size(&rs->md, (int)value)) {
 494				rs->ti->error = "Bad stripe_cache size";
 495				return -EINVAL;
 496			}
 497		} else if (!strcasecmp(key, "min_recovery_rate")) {
 498			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
 499			if (value > INT_MAX) {
 500				rs->ti->error = "min_recovery_rate out of range";
 501				return -EINVAL;
 502			}
 503			rs->md.sync_speed_min = (int)value;
 504		} else if (!strcasecmp(key, "max_recovery_rate")) {
 505			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
 506			if (value > INT_MAX) {
 507				rs->ti->error = "max_recovery_rate out of range";
 508				return -EINVAL;
 509			}
 510			rs->md.sync_speed_max = (int)value;
 511		} else if (!strcasecmp(key, "region_size")) {
 512			rs->print_flags |= DMPF_REGION_SIZE;
 513			region_size = value;
 514		} else {
 515			DMERR("Unable to parse RAID parameter: %s", key);
 516			rs->ti->error = "Unable to parse RAID parameters";
 517			return -EINVAL;
 518		}
 519	}
 520
 521	if (validate_region_size(rs, region_size))
 522		return -EINVAL;
 523
 524	if (rs->md.chunk_sectors)
 525		rs->ti->split_io = rs->md.chunk_sectors;
 526	else
 527		rs->ti->split_io = region_size;
 528
 529	if (rs->md.chunk_sectors)
 530		rs->ti->split_io = rs->md.chunk_sectors;
 531	else
 532		rs->ti->split_io = region_size;
 533
 534	/* Assume there are no metadata devices until the drives are parsed */
 535	rs->md.persistent = 0;
 536	rs->md.external = 1;
 537
 538	return 0;
 539}
 540
 541static void do_table_event(struct work_struct *ws)
 542{
 543	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
 544
 545	dm_table_event(rs->ti->table);
 546}
 547
 548static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
 549{
 550	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
 551
 552	if (rs->raid_type->level == 1)
 553		return md_raid1_congested(&rs->md, bits);
 554
 555	return md_raid5_congested(&rs->md, bits);
 556}
 557
 558/*
 559 * This structure is never routinely used by userspace, unlike md superblocks.
 560 * Devices with this superblock should only ever be accessed via device-mapper.
 561 */
 562#define DM_RAID_MAGIC 0x64526D44
 563struct dm_raid_superblock {
 564	__le32 magic;		/* "DmRd" */
 565	__le32 features;	/* Used to indicate possible future changes */
 566
 567	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
 568	__le32 array_position;	/* The position of this drive in the array */
 569
 570	__le64 events;		/* Incremented by md when superblock updated */
 571	__le64 failed_devices;	/* Bit field of devices to indicate failures */
 572
 573	/*
 574	 * This offset tracks the progress of the repair or replacement of
 575	 * an individual drive.
 576	 */
 577	__le64 disk_recovery_offset;
 578
 579	/*
 580	 * This offset tracks the progress of the initial array
 581	 * synchronisation/parity calculation.
 582	 */
 583	__le64 array_resync_offset;
 584
 585	/*
 586	 * RAID characteristics
 587	 */
 588	__le32 level;
 589	__le32 layout;
 590	__le32 stripe_sectors;
 591
 592	__u8 pad[452];		/* Round struct to 512 bytes. */
 593				/* Always set to 0 when writing. */
 594} __packed;
 595
 596static int read_disk_sb(struct md_rdev *rdev, int size)
 597{
 598	BUG_ON(!rdev->sb_page);
 599
 600	if (rdev->sb_loaded)
 601		return 0;
 602
 603	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
 604		DMERR("Failed to read superblock of device at position %d",
 605		      rdev->raid_disk);
 606		md_error(rdev->mddev, rdev);
 607		return -EINVAL;
 608	}
 609
 610	rdev->sb_loaded = 1;
 611
 612	return 0;
 613}
 614
 615static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
 616{
 617	int i;
 618	uint64_t failed_devices;
 619	struct dm_raid_superblock *sb;
 620	struct raid_set *rs = container_of(mddev, struct raid_set, md);
 621
 622	sb = page_address(rdev->sb_page);
 623	failed_devices = le64_to_cpu(sb->failed_devices);
 624
 625	for (i = 0; i < mddev->raid_disks; i++)
 626		if (!rs->dev[i].data_dev ||
 627		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
 628			failed_devices |= (1ULL << i);
 629
 630	memset(sb, 0, sizeof(*sb));
 631
 632	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
 633	sb->features = cpu_to_le32(0);	/* No features yet */
 634
 635	sb->num_devices = cpu_to_le32(mddev->raid_disks);
 636	sb->array_position = cpu_to_le32(rdev->raid_disk);
 637
 638	sb->events = cpu_to_le64(mddev->events);
 639	sb->failed_devices = cpu_to_le64(failed_devices);
 640
 641	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
 642	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
 643
 644	sb->level = cpu_to_le32(mddev->level);
 645	sb->layout = cpu_to_le32(mddev->layout);
 646	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
 647}
 648
 649/*
 650 * super_load
 651 *
 652 * This function creates a superblock if one is not found on the device
 653 * and will decide which superblock to use if there's a choice.
 654 *
 655 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
 656 */
 657static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
 658{
 659	int ret;
 660	struct dm_raid_superblock *sb;
 661	struct dm_raid_superblock *refsb;
 662	uint64_t events_sb, events_refsb;
 663
 664	rdev->sb_start = 0;
 665	rdev->sb_size = sizeof(*sb);
 666
 667	ret = read_disk_sb(rdev, rdev->sb_size);
 668	if (ret)
 669		return ret;
 670
 671	sb = page_address(rdev->sb_page);
 672
 673	/*
 674	 * Two cases that we want to write new superblocks and rebuild:
 675	 * 1) New device (no matching magic number)
 676	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
 677	 */
 678	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
 679	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
 680		super_sync(rdev->mddev, rdev);
 681
 682		set_bit(FirstUse, &rdev->flags);
 683
 684		/* Force writing of superblocks to disk */
 685		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
 686
 687		/* Any superblock is better than none, choose that if given */
 688		return refdev ? 0 : 1;
 689	}
 690
 691	if (!refdev)
 692		return 1;
 693
 694	events_sb = le64_to_cpu(sb->events);
 695
 696	refsb = page_address(refdev->sb_page);
 697	events_refsb = le64_to_cpu(refsb->events);
 698
 699	return (events_sb > events_refsb) ? 1 : 0;
 700}
 701
 702static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
 703{
 704	int role;
 705	struct raid_set *rs = container_of(mddev, struct raid_set, md);
 706	uint64_t events_sb;
 707	uint64_t failed_devices;
 708	struct dm_raid_superblock *sb;
 709	uint32_t new_devs = 0;
 710	uint32_t rebuilds = 0;
 711	struct md_rdev *r;
 712	struct dm_raid_superblock *sb2;
 713
 714	sb = page_address(rdev->sb_page);
 715	events_sb = le64_to_cpu(sb->events);
 716	failed_devices = le64_to_cpu(sb->failed_devices);
 717
 718	/*
 719	 * Initialise to 1 if this is a new superblock.
 720	 */
 721	mddev->events = events_sb ? : 1;
 722
 723	/*
 724	 * Reshaping is not currently allowed
 725	 */
 726	if ((le32_to_cpu(sb->level) != mddev->level) ||
 727	    (le32_to_cpu(sb->layout) != mddev->layout) ||
 728	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
 729		DMERR("Reshaping arrays not yet supported.");
 730		return -EINVAL;
 731	}
 732
 733	/* We can only change the number of devices in RAID1 right now */
 734	if ((rs->raid_type->level != 1) &&
 735	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
 736		DMERR("Reshaping arrays not yet supported.");
 737		return -EINVAL;
 738	}
 739
 740	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
 741		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
 742
 743	/*
 744	 * During load, we set FirstUse if a new superblock was written.
 745	 * There are two reasons we might not have a superblock:
 746	 * 1) The array is brand new - in which case, all of the
 747	 *    devices must have their In_sync bit set.  Also,
 748	 *    recovery_cp must be 0, unless forced.
 749	 * 2) This is a new device being added to an old array
 750	 *    and the new device needs to be rebuilt - in which
 751	 *    case the In_sync bit will /not/ be set and
 752	 *    recovery_cp must be MaxSector.
 753	 */
 754	rdev_for_each(r, mddev) {
 755		if (!test_bit(In_sync, &r->flags)) {
 756			DMINFO("Device %d specified for rebuild: "
 757			       "Clearing superblock", r->raid_disk);
 
 
 
 758			rebuilds++;
 759		} else if (test_bit(FirstUse, &r->flags))
 760			new_devs++;
 761	}
 762
 763	if (!rebuilds) {
 764		if (new_devs == mddev->raid_disks) {
 765			DMINFO("Superblocks created for new array");
 766			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
 767		} else if (new_devs) {
 768			DMERR("New device injected "
 769			      "into existing array without 'rebuild' "
 770			      "parameter specified");
 771			return -EINVAL;
 772		}
 773	} else if (new_devs) {
 774		DMERR("'rebuild' devices cannot be "
 775		      "injected into an array with other first-time devices");
 776		return -EINVAL;
 777	} else if (mddev->recovery_cp != MaxSector) {
 778		DMERR("'rebuild' specified while array is not in-sync");
 779		return -EINVAL;
 780	}
 781
 782	/*
 783	 * Now we set the Faulty bit for those devices that are
 784	 * recorded in the superblock as failed.
 785	 */
 786	rdev_for_each(r, mddev) {
 787		if (!r->sb_page)
 788			continue;
 789		sb2 = page_address(r->sb_page);
 790		sb2->failed_devices = 0;
 791
 792		/*
 793		 * Check for any device re-ordering.
 794		 */
 795		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
 796			role = le32_to_cpu(sb2->array_position);
 797			if (role != r->raid_disk) {
 798				if (rs->raid_type->level != 1) {
 799					rs->ti->error = "Cannot change device "
 800						"positions in RAID array";
 801					return -EINVAL;
 802				}
 803				DMINFO("RAID1 device #%d now at position #%d",
 804				       role, r->raid_disk);
 805			}
 806
 807			/*
 808			 * Partial recovery is performed on
 809			 * returning failed devices.
 810			 */
 811			if (failed_devices & (1 << role))
 812				set_bit(Faulty, &r->flags);
 813		}
 814	}
 815
 816	return 0;
 817}
 818
 819static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
 820{
 821	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
 822
 823	/*
 824	 * If mddev->events is not set, we know we have not yet initialized
 825	 * the array.
 826	 */
 827	if (!mddev->events && super_init_validation(mddev, rdev))
 828		return -EINVAL;
 829
 830	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
 831	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
 832	if (!test_bit(FirstUse, &rdev->flags)) {
 833		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
 834		if (rdev->recovery_offset != MaxSector)
 835			clear_bit(In_sync, &rdev->flags);
 836	}
 837
 838	/*
 839	 * If a device comes back, set it as not In_sync and no longer faulty.
 840	 */
 841	if (test_bit(Faulty, &rdev->flags)) {
 842		clear_bit(Faulty, &rdev->flags);
 843		clear_bit(In_sync, &rdev->flags);
 844		rdev->saved_raid_disk = rdev->raid_disk;
 845		rdev->recovery_offset = 0;
 846	}
 847
 848	clear_bit(FirstUse, &rdev->flags);
 849
 850	return 0;
 851}
 852
 853/*
 854 * Analyse superblocks and select the freshest.
 855 */
 856static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
 857{
 858	int ret;
 859	unsigned redundancy = 0;
 860	struct raid_dev *dev;
 861	struct md_rdev *rdev, *tmp, *freshest;
 862	struct mddev *mddev = &rs->md;
 863
 864	switch (rs->raid_type->level) {
 865	case 1:
 866		redundancy = rs->md.raid_disks - 1;
 867		break;
 868	case 4:
 869	case 5:
 870	case 6:
 871		redundancy = rs->raid_type->parity_devs;
 872		break;
 873	default:
 874		ti->error = "Unknown RAID type";
 875		return -EINVAL;
 876	}
 877
 878	freshest = NULL;
 879	rdev_for_each_safe(rdev, tmp, mddev) {
 880		if (!rdev->meta_bdev)
 881			continue;
 882
 883		ret = super_load(rdev, freshest);
 884
 885		switch (ret) {
 886		case 1:
 887			freshest = rdev;
 888			break;
 889		case 0:
 890			break;
 891		default:
 892			dev = container_of(rdev, struct raid_dev, rdev);
 893			if (redundancy--) {
 894				if (dev->meta_dev)
 895					dm_put_device(ti, dev->meta_dev);
 896
 897				dev->meta_dev = NULL;
 898				rdev->meta_bdev = NULL;
 899
 900				if (rdev->sb_page)
 901					put_page(rdev->sb_page);
 902
 903				rdev->sb_page = NULL;
 904
 905				rdev->sb_loaded = 0;
 906
 907				/*
 908				 * We might be able to salvage the data device
 909				 * even though the meta device has failed.  For
 910				 * now, we behave as though '- -' had been
 911				 * set for this device in the table.
 912				 */
 913				if (dev->data_dev)
 914					dm_put_device(ti, dev->data_dev);
 915
 916				dev->data_dev = NULL;
 917				rdev->bdev = NULL;
 918
 919				list_del(&rdev->same_set);
 920
 921				continue;
 922			}
 923			ti->error = "Failed to load superblock";
 924			return ret;
 925		}
 926	}
 927
 928	if (!freshest)
 929		return 0;
 930
 931	/*
 932	 * Validation of the freshest device provides the source of
 933	 * validation for the remaining devices.
 934	 */
 935	ti->error = "Unable to assemble array: Invalid superblocks";
 936	if (super_validate(mddev, freshest))
 937		return -EINVAL;
 938
 939	rdev_for_each(rdev, mddev)
 940		if ((rdev != freshest) && super_validate(mddev, rdev))
 941			return -EINVAL;
 942
 943	return 0;
 944}
 945
 946/*
 947 * Construct a RAID4/5/6 mapping:
 948 * Args:
 949 *	<raid_type> <#raid_params> <raid_params>		\
 950 *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
 951 *
 952 * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
 953 * details on possible <raid_params>.
 954 */
 955static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
 956{
 957	int ret;
 958	struct raid_type *rt;
 959	unsigned long num_raid_params, num_raid_devs;
 960	struct raid_set *rs = NULL;
 961
 962	/* Must have at least <raid_type> <#raid_params> */
 963	if (argc < 2) {
 964		ti->error = "Too few arguments";
 965		return -EINVAL;
 966	}
 967
 968	/* raid type */
 969	rt = get_raid_type(argv[0]);
 970	if (!rt) {
 971		ti->error = "Unrecognised raid_type";
 972		return -EINVAL;
 973	}
 974	argc--;
 975	argv++;
 976
 977	/* number of RAID parameters */
 978	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
 979		ti->error = "Cannot understand number of RAID parameters";
 980		return -EINVAL;
 981	}
 982	argc--;
 983	argv++;
 984
 985	/* Skip over RAID params for now and find out # of devices */
 986	if (num_raid_params + 1 > argc) {
 987		ti->error = "Arguments do not agree with counts given";
 988		return -EINVAL;
 989	}
 990
 991	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
 992	    (num_raid_devs >= INT_MAX)) {
 993		ti->error = "Cannot understand number of raid devices";
 994		return -EINVAL;
 995	}
 996
 997	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
 998	if (IS_ERR(rs))
 999		return PTR_ERR(rs);
1000
1001	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1002	if (ret)
1003		goto bad;
1004
1005	ret = -EINVAL;
1006
1007	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1008	argv += num_raid_params + 1;
1009
1010	if (argc != (num_raid_devs * 2)) {
1011		ti->error = "Supplied RAID devices does not match the count given";
1012		goto bad;
1013	}
1014
1015	ret = dev_parms(rs, argv);
1016	if (ret)
1017		goto bad;
1018
1019	rs->md.sync_super = super_sync;
1020	ret = analyse_superblocks(ti, rs);
1021	if (ret)
1022		goto bad;
1023
1024	INIT_WORK(&rs->md.event_work, do_table_event);
1025	ti->private = rs;
1026	ti->num_flush_requests = 1;
1027
1028	mutex_lock(&rs->md.reconfig_mutex);
1029	ret = md_run(&rs->md);
1030	rs->md.in_sync = 0; /* Assume already marked dirty */
1031	mutex_unlock(&rs->md.reconfig_mutex);
1032
1033	if (ret) {
1034		ti->error = "Fail to run raid array";
1035		goto bad;
1036	}
1037
1038	rs->callbacks.congested_fn = raid_is_congested;
1039	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1040
1041	mddev_suspend(&rs->md);
1042	return 0;
1043
1044bad:
1045	context_free(rs);
1046
1047	return ret;
1048}
1049
1050static void raid_dtr(struct dm_target *ti)
1051{
1052	struct raid_set *rs = ti->private;
1053
1054	list_del_init(&rs->callbacks.list);
1055	md_stop(&rs->md);
1056	context_free(rs);
1057}
1058
1059static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1060{
1061	struct raid_set *rs = ti->private;
1062	struct mddev *mddev = &rs->md;
1063
1064	mddev->pers->make_request(mddev, bio);
1065
1066	return DM_MAPIO_SUBMITTED;
1067}
1068
1069static int raid_status(struct dm_target *ti, status_type_t type,
1070		       char *result, unsigned maxlen)
1071{
1072	struct raid_set *rs = ti->private;
1073	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1074	unsigned sz = 0;
1075	int i, array_in_sync = 0;
1076	sector_t sync;
1077
1078	switch (type) {
1079	case STATUSTYPE_INFO:
1080		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1081
 
 
 
 
 
 
 
 
 
1082		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1083			sync = rs->md.curr_resync_completed;
1084		else
1085			sync = rs->md.recovery_cp;
1086
1087		if (sync >= rs->md.resync_max_sectors) {
1088			array_in_sync = 1;
1089			sync = rs->md.resync_max_sectors;
1090		} else {
1091			/*
1092			 * The array may be doing an initial sync, or it may
1093			 * be rebuilding individual components.  If all the
1094			 * devices are In_sync, then it is the array that is
1095			 * being initialized.
1096			 */
1097			for (i = 0; i < rs->md.raid_disks; i++)
1098				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1099					array_in_sync = 1;
1100		}
1101		/*
1102		 * Status characters:
1103		 *  'D' = Dead/Failed device
1104		 *  'a' = Alive but not in-sync
1105		 *  'A' = Alive and in-sync
1106		 */
1107		for (i = 0; i < rs->md.raid_disks; i++) {
1108			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1109				DMEMIT("D");
1110			else if (!array_in_sync ||
1111				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1112				DMEMIT("a");
1113			else
1114				DMEMIT("A");
1115		}
1116
1117		/*
1118		 * In-sync ratio:
1119		 *  The in-sync ratio shows the progress of:
1120		 *   - Initializing the array
1121		 *   - Rebuilding a subset of devices of the array
1122		 *  The user can distinguish between the two by referring
1123		 *  to the status characters.
1124		 */
1125		DMEMIT(" %llu/%llu",
1126		       (unsigned long long) sync,
1127		       (unsigned long long) rs->md.resync_max_sectors);
1128
1129		break;
1130	case STATUSTYPE_TABLE:
1131		/* The string you would use to construct this array */
1132		for (i = 0; i < rs->md.raid_disks; i++) {
1133			if ((rs->print_flags & DMPF_REBUILD) &&
1134			    rs->dev[i].data_dev &&
1135			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1136				raid_param_cnt += 2; /* for rebuilds */
1137			if (rs->dev[i].data_dev &&
1138			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1139				raid_param_cnt += 2;
1140		}
1141
1142		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1143		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1144			raid_param_cnt--;
1145
1146		DMEMIT("%s %u %u", rs->raid_type->name,
1147		       raid_param_cnt, rs->md.chunk_sectors);
1148
1149		if ((rs->print_flags & DMPF_SYNC) &&
1150		    (rs->md.recovery_cp == MaxSector))
1151			DMEMIT(" sync");
1152		if (rs->print_flags & DMPF_NOSYNC)
1153			DMEMIT(" nosync");
1154
1155		for (i = 0; i < rs->md.raid_disks; i++)
1156			if ((rs->print_flags & DMPF_REBUILD) &&
1157			    rs->dev[i].data_dev &&
1158			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1159				DMEMIT(" rebuild %u", i);
1160
1161		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1162			DMEMIT(" daemon_sleep %lu",
1163			       rs->md.bitmap_info.daemon_sleep);
1164
1165		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1166			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1167
1168		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1169			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1170
1171		for (i = 0; i < rs->md.raid_disks; i++)
1172			if (rs->dev[i].data_dev &&
1173			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1174				DMEMIT(" write_mostly %u", i);
1175
1176		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1177			DMEMIT(" max_write_behind %lu",
1178			       rs->md.bitmap_info.max_write_behind);
1179
1180		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1181			struct r5conf *conf = rs->md.private;
1182
1183			/* convert from kiB to sectors */
1184			DMEMIT(" stripe_cache %d",
1185			       conf ? conf->max_nr_stripes * 2 : 0);
1186		}
1187
1188		if (rs->print_flags & DMPF_REGION_SIZE)
1189			DMEMIT(" region_size %lu",
1190			       rs->md.bitmap_info.chunksize >> 9);
1191
1192		DMEMIT(" %d", rs->md.raid_disks);
1193		for (i = 0; i < rs->md.raid_disks; i++) {
1194			if (rs->dev[i].meta_dev)
1195				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1196			else
1197				DMEMIT(" -");
1198
1199			if (rs->dev[i].data_dev)
1200				DMEMIT(" %s", rs->dev[i].data_dev->name);
1201			else
1202				DMEMIT(" -");
1203		}
1204	}
1205
1206	return 0;
1207}
1208
1209static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1210{
1211	struct raid_set *rs = ti->private;
1212	unsigned i;
1213	int ret = 0;
1214
1215	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1216		if (rs->dev[i].data_dev)
1217			ret = fn(ti,
1218				 rs->dev[i].data_dev,
1219				 0, /* No offset on data devs */
1220				 rs->md.dev_sectors,
1221				 data);
1222
1223	return ret;
1224}
1225
1226static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1227{
1228	struct raid_set *rs = ti->private;
1229	unsigned chunk_size = rs->md.chunk_sectors << 9;
1230	struct r5conf *conf = rs->md.private;
1231
1232	blk_limits_io_min(limits, chunk_size);
1233	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1234}
1235
1236static void raid_presuspend(struct dm_target *ti)
1237{
1238	struct raid_set *rs = ti->private;
1239
1240	md_stop_writes(&rs->md);
1241}
1242
1243static void raid_postsuspend(struct dm_target *ti)
1244{
1245	struct raid_set *rs = ti->private;
1246
1247	mddev_suspend(&rs->md);
1248}
1249
1250static void raid_resume(struct dm_target *ti)
1251{
1252	struct raid_set *rs = ti->private;
1253
1254	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1255	if (!rs->bitmap_loaded) {
1256		bitmap_load(&rs->md);
1257		rs->bitmap_loaded = 1;
1258	}
1259
1260	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1261	mddev_resume(&rs->md);
1262}
1263
1264static struct target_type raid_target = {
1265	.name = "raid",
1266	.version = {1, 2, 0},
1267	.module = THIS_MODULE,
1268	.ctr = raid_ctr,
1269	.dtr = raid_dtr,
1270	.map = raid_map,
1271	.status = raid_status,
1272	.iterate_devices = raid_iterate_devices,
1273	.io_hints = raid_io_hints,
1274	.presuspend = raid_presuspend,
1275	.postsuspend = raid_postsuspend,
1276	.resume = raid_resume,
1277};
1278
1279static int __init dm_raid_init(void)
1280{
1281	return dm_register_target(&raid_target);
1282}
1283
1284static void __exit dm_raid_exit(void)
1285{
1286	dm_unregister_target(&raid_target);
1287}
1288
1289module_init(dm_raid_init);
1290module_exit(dm_raid_exit);
1291
1292MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1293MODULE_ALIAS("dm-raid4");
1294MODULE_ALIAS("dm-raid5");
1295MODULE_ALIAS("dm-raid6");
1296MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1297MODULE_LICENSE("GPL");