Linux Audio

Check our new training course

Loading...
v3.1
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
 
 
  31#include "ttm/ttm_module.h"
  32#include "ttm/ttm_bo_driver.h"
  33#include "ttm/ttm_placement.h"
  34#include <linux/jiffies.h>
  35#include <linux/slab.h>
  36#include <linux/sched.h>
  37#include <linux/mm.h>
  38#include <linux/file.h>
  39#include <linux/module.h>
  40#include <linux/atomic.h>
  41
  42#define TTM_ASSERT_LOCKED(param)
  43#define TTM_DEBUG(fmt, arg...)
  44#define TTM_BO_HASH_ORDER 13
  45
  46static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  47static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  48static void ttm_bo_global_kobj_release(struct kobject *kobj);
  49
  50static struct attribute ttm_bo_count = {
  51	.name = "bo_count",
  52	.mode = S_IRUGO
  53};
  54
  55static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  56{
  57	int i;
  58
  59	for (i = 0; i <= TTM_PL_PRIV5; i++)
  60		if (flags & (1 << i)) {
  61			*mem_type = i;
  62			return 0;
  63		}
  64	return -EINVAL;
  65}
  66
  67static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  68{
  69	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  70
  71	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
  72	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
  73	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
  74	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
  75	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
  76	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
  77		man->available_caching);
  78	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
  79		man->default_caching);
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
  87	int i, ret, mem_type;
  88
  89	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
  90		bo, bo->mem.num_pages, bo->mem.size >> 10,
  91		bo->mem.size >> 20);
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
  98			i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 131{
 132	return 1 << (type);
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 152	if (bo->destroy)
 153		bo->destroy(bo);
 154	else {
 155		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
 156		kfree(bo);
 157	}
 
 158}
 159
 160int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 161{
 162	if (interruptible) {
 163		return wait_event_interruptible(bo->event_queue,
 164					       atomic_read(&bo->reserved) == 0);
 165	} else {
 166		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 167		return 0;
 168	}
 169}
 170EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 171
 172void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 173{
 174	struct ttm_bo_device *bdev = bo->bdev;
 175	struct ttm_mem_type_manager *man;
 176
 177	BUG_ON(!atomic_read(&bo->reserved));
 178
 179	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 180
 181		BUG_ON(!list_empty(&bo->lru));
 182
 183		man = &bdev->man[bo->mem.mem_type];
 184		list_add_tail(&bo->lru, &man->lru);
 185		kref_get(&bo->list_kref);
 186
 187		if (bo->ttm != NULL) {
 188			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 189			kref_get(&bo->list_kref);
 190		}
 191	}
 192}
 193
 194int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 195{
 196	int put_count = 0;
 197
 198	if (!list_empty(&bo->swap)) {
 199		list_del_init(&bo->swap);
 200		++put_count;
 201	}
 202	if (!list_empty(&bo->lru)) {
 203		list_del_init(&bo->lru);
 204		++put_count;
 205	}
 206
 207	/*
 208	 * TODO: Add a driver hook to delete from
 209	 * driver-specific LRU's here.
 210	 */
 211
 212	return put_count;
 213}
 214
 215int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 216			  bool interruptible,
 217			  bool no_wait, bool use_sequence, uint32_t sequence)
 218{
 219	struct ttm_bo_global *glob = bo->glob;
 220	int ret;
 221
 222	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 223		/**
 224		 * Deadlock avoidance for multi-bo reserving.
 225		 */
 226		if (use_sequence && bo->seq_valid) {
 227			/**
 228			 * We've already reserved this one.
 229			 */
 230			if (unlikely(sequence == bo->val_seq))
 231				return -EDEADLK;
 232			/**
 233			 * Already reserved by a thread that will not back
 234			 * off for us. We need to back off.
 235			 */
 236			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 237				return -EAGAIN;
 238		}
 239
 240		if (no_wait)
 241			return -EBUSY;
 242
 243		spin_unlock(&glob->lru_lock);
 244		ret = ttm_bo_wait_unreserved(bo, interruptible);
 245		spin_lock(&glob->lru_lock);
 246
 247		if (unlikely(ret))
 248			return ret;
 249	}
 250
 251	if (use_sequence) {
 252		/**
 253		 * Wake up waiters that may need to recheck for deadlock,
 254		 * if we decreased the sequence number.
 255		 */
 256		if (unlikely((bo->val_seq - sequence < (1 << 31))
 257			     || !bo->seq_valid))
 258			wake_up_all(&bo->event_queue);
 259
 260		bo->val_seq = sequence;
 261		bo->seq_valid = true;
 262	} else {
 263		bo->seq_valid = false;
 264	}
 265
 266	return 0;
 267}
 268EXPORT_SYMBOL(ttm_bo_reserve);
 269
 270static void ttm_bo_ref_bug(struct kref *list_kref)
 271{
 272	BUG();
 273}
 274
 275void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 276			 bool never_free)
 277{
 278	kref_sub(&bo->list_kref, count,
 279		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 280}
 281
 282int ttm_bo_reserve(struct ttm_buffer_object *bo,
 283		   bool interruptible,
 284		   bool no_wait, bool use_sequence, uint32_t sequence)
 285{
 286	struct ttm_bo_global *glob = bo->glob;
 287	int put_count = 0;
 288	int ret;
 289
 290	spin_lock(&glob->lru_lock);
 291	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 292				    sequence);
 293	if (likely(ret == 0))
 294		put_count = ttm_bo_del_from_lru(bo);
 295	spin_unlock(&glob->lru_lock);
 296
 297	ttm_bo_list_ref_sub(bo, put_count, true);
 298
 299	return ret;
 300}
 301
 302void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 303{
 304	ttm_bo_add_to_lru(bo);
 305	atomic_set(&bo->reserved, 0);
 306	wake_up_all(&bo->event_queue);
 307}
 308
 309void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 310{
 311	struct ttm_bo_global *glob = bo->glob;
 312
 313	spin_lock(&glob->lru_lock);
 314	ttm_bo_unreserve_locked(bo);
 315	spin_unlock(&glob->lru_lock);
 316}
 317EXPORT_SYMBOL(ttm_bo_unreserve);
 318
 319/*
 320 * Call bo->mutex locked.
 321 */
 322static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 323{
 324	struct ttm_bo_device *bdev = bo->bdev;
 325	struct ttm_bo_global *glob = bo->glob;
 326	int ret = 0;
 327	uint32_t page_flags = 0;
 328
 329	TTM_ASSERT_LOCKED(&bo->mutex);
 330	bo->ttm = NULL;
 331
 332	if (bdev->need_dma32)
 333		page_flags |= TTM_PAGE_FLAG_DMA32;
 334
 335	switch (bo->type) {
 336	case ttm_bo_type_device:
 337		if (zero_alloc)
 338			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 339	case ttm_bo_type_kernel:
 340		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 341					page_flags, glob->dummy_read_page);
 342		if (unlikely(bo->ttm == NULL))
 343			ret = -ENOMEM;
 344		break;
 345	case ttm_bo_type_user:
 346		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 347					page_flags | TTM_PAGE_FLAG_USER,
 348					glob->dummy_read_page);
 349		if (unlikely(bo->ttm == NULL)) {
 350			ret = -ENOMEM;
 351			break;
 352		}
 353
 354		ret = ttm_tt_set_user(bo->ttm, current,
 355				      bo->buffer_start, bo->num_pages);
 356		if (unlikely(ret != 0)) {
 357			ttm_tt_destroy(bo->ttm);
 358			bo->ttm = NULL;
 359		}
 360		break;
 361	default:
 362		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
 363		ret = -EINVAL;
 364		break;
 365	}
 366
 367	return ret;
 368}
 369
 370static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 371				  struct ttm_mem_reg *mem,
 372				  bool evict, bool interruptible,
 373				  bool no_wait_reserve, bool no_wait_gpu)
 374{
 375	struct ttm_bo_device *bdev = bo->bdev;
 376	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 377	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 378	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 379	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 380	int ret = 0;
 381
 382	if (old_is_pci || new_is_pci ||
 383	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 384		ret = ttm_mem_io_lock(old_man, true);
 385		if (unlikely(ret != 0))
 386			goto out_err;
 387		ttm_bo_unmap_virtual_locked(bo);
 388		ttm_mem_io_unlock(old_man);
 389	}
 390
 391	/*
 392	 * Create and bind a ttm if required.
 393	 */
 394
 395	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 396		if (bo->ttm == NULL) {
 397			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 398			ret = ttm_bo_add_ttm(bo, zero);
 399			if (ret)
 400				goto out_err;
 401		}
 402
 403		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 404		if (ret)
 405			goto out_err;
 406
 407		if (mem->mem_type != TTM_PL_SYSTEM) {
 408			ret = ttm_tt_bind(bo->ttm, mem);
 409			if (ret)
 410				goto out_err;
 411		}
 412
 413		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 414			if (bdev->driver->move_notify)
 415				bdev->driver->move_notify(bo, mem);
 416			bo->mem = *mem;
 417			mem->mm_node = NULL;
 418			goto moved;
 419		}
 420	}
 421
 422	if (bdev->driver->move_notify)
 423		bdev->driver->move_notify(bo, mem);
 424
 425	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 426	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 427		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428	else if (bdev->driver->move)
 429		ret = bdev->driver->move(bo, evict, interruptible,
 430					 no_wait_reserve, no_wait_gpu, mem);
 431	else
 432		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 433
 434	if (ret)
 
 
 
 
 
 
 
 
 435		goto out_err;
 
 436
 437moved:
 438	if (bo->evicted) {
 439		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 440		if (ret)
 441			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
 442		bo->evicted = false;
 443	}
 444
 445	if (bo->mem.mm_node) {
 446		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 447		    bdev->man[bo->mem.mem_type].gpu_offset;
 448		bo->cur_placement = bo->mem.placement;
 449	} else
 450		bo->offset = 0;
 451
 452	return 0;
 453
 454out_err:
 455	new_man = &bdev->man[bo->mem.mem_type];
 456	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 457		ttm_tt_unbind(bo->ttm);
 458		ttm_tt_destroy(bo->ttm);
 459		bo->ttm = NULL;
 460	}
 461
 462	return ret;
 463}
 464
 465/**
 466 * Call bo::reserved.
 467 * Will release GPU memory type usage on destruction.
 468 * This is the place to put in driver specific hooks to release
 469 * driver private resources.
 470 * Will release the bo::reserved lock.
 471 */
 472
 473static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 474{
 
 
 
 475	if (bo->ttm) {
 476		ttm_tt_unbind(bo->ttm);
 477		ttm_tt_destroy(bo->ttm);
 478		bo->ttm = NULL;
 479	}
 480	ttm_bo_mem_put(bo, &bo->mem);
 481
 482	atomic_set(&bo->reserved, 0);
 483
 484	/*
 485	 * Make processes trying to reserve really pick it up.
 486	 */
 487	smp_mb__after_atomic_dec();
 488	wake_up_all(&bo->event_queue);
 489}
 490
 491static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 492{
 493	struct ttm_bo_device *bdev = bo->bdev;
 494	struct ttm_bo_global *glob = bo->glob;
 495	struct ttm_bo_driver *driver;
 496	void *sync_obj = NULL;
 497	void *sync_obj_arg;
 498	int put_count;
 499	int ret;
 500
 501	spin_lock(&bdev->fence_lock);
 502	(void) ttm_bo_wait(bo, false, false, true);
 503	if (!bo->sync_obj) {
 504
 505		spin_lock(&glob->lru_lock);
 506
 507		/**
 508		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 509		 * but that's OK, since we're only trylocking.
 510		 */
 511
 512		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 513
 514		if (unlikely(ret == -EBUSY))
 515			goto queue;
 516
 517		spin_unlock(&bdev->fence_lock);
 518		put_count = ttm_bo_del_from_lru(bo);
 519
 520		spin_unlock(&glob->lru_lock);
 521		ttm_bo_cleanup_memtype_use(bo);
 522
 523		ttm_bo_list_ref_sub(bo, put_count, true);
 524
 525		return;
 526	} else {
 527		spin_lock(&glob->lru_lock);
 528	}
 529queue:
 530	driver = bdev->driver;
 531	if (bo->sync_obj)
 532		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 533	sync_obj_arg = bo->sync_obj_arg;
 534
 535	kref_get(&bo->list_kref);
 536	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 537	spin_unlock(&glob->lru_lock);
 538	spin_unlock(&bdev->fence_lock);
 539
 540	if (sync_obj) {
 541		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 542		driver->sync_obj_unref(&sync_obj);
 543	}
 544	schedule_delayed_work(&bdev->wq,
 545			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 546}
 547
 548/**
 549 * function ttm_bo_cleanup_refs
 550 * If bo idle, remove from delayed- and lru lists, and unref.
 551 * If not idle, do nothing.
 552 *
 553 * @interruptible         Any sleeps should occur interruptibly.
 554 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 555 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 556 */
 557
 558static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 559			       bool interruptible,
 560			       bool no_wait_reserve,
 561			       bool no_wait_gpu)
 562{
 563	struct ttm_bo_device *bdev = bo->bdev;
 564	struct ttm_bo_global *glob = bo->glob;
 565	int put_count;
 566	int ret = 0;
 567
 568retry:
 569	spin_lock(&bdev->fence_lock);
 570	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 571	spin_unlock(&bdev->fence_lock);
 572
 573	if (unlikely(ret != 0))
 574		return ret;
 575
 576	spin_lock(&glob->lru_lock);
 
 
 
 
 
 
 577	ret = ttm_bo_reserve_locked(bo, interruptible,
 578				    no_wait_reserve, false, 0);
 579
 580	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
 581		spin_unlock(&glob->lru_lock);
 582		return ret;
 583	}
 584
 585	/**
 586	 * We can re-check for sync object without taking
 587	 * the bo::lock since setting the sync object requires
 588	 * also bo::reserved. A busy object at this point may
 589	 * be caused by another thread recently starting an accelerated
 590	 * eviction.
 591	 */
 592
 593	if (unlikely(bo->sync_obj)) {
 594		atomic_set(&bo->reserved, 0);
 595		wake_up_all(&bo->event_queue);
 596		spin_unlock(&glob->lru_lock);
 597		goto retry;
 598	}
 599
 600	put_count = ttm_bo_del_from_lru(bo);
 601	list_del_init(&bo->ddestroy);
 602	++put_count;
 603
 604	spin_unlock(&glob->lru_lock);
 605	ttm_bo_cleanup_memtype_use(bo);
 606
 607	ttm_bo_list_ref_sub(bo, put_count, true);
 608
 609	return 0;
 610}
 611
 612/**
 613 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 614 * encountered buffers.
 615 */
 616
 617static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 618{
 619	struct ttm_bo_global *glob = bdev->glob;
 620	struct ttm_buffer_object *entry = NULL;
 621	int ret = 0;
 622
 623	spin_lock(&glob->lru_lock);
 624	if (list_empty(&bdev->ddestroy))
 625		goto out_unlock;
 626
 627	entry = list_first_entry(&bdev->ddestroy,
 628		struct ttm_buffer_object, ddestroy);
 629	kref_get(&entry->list_kref);
 630
 631	for (;;) {
 632		struct ttm_buffer_object *nentry = NULL;
 633
 634		if (entry->ddestroy.next != &bdev->ddestroy) {
 635			nentry = list_first_entry(&entry->ddestroy,
 636				struct ttm_buffer_object, ddestroy);
 637			kref_get(&nentry->list_kref);
 638		}
 639
 640		spin_unlock(&glob->lru_lock);
 641		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 642					  !remove_all);
 643		kref_put(&entry->list_kref, ttm_bo_release_list);
 644		entry = nentry;
 645
 646		if (ret || !entry)
 647			goto out;
 648
 649		spin_lock(&glob->lru_lock);
 650		if (list_empty(&entry->ddestroy))
 651			break;
 652	}
 653
 654out_unlock:
 655	spin_unlock(&glob->lru_lock);
 656out:
 657	if (entry)
 658		kref_put(&entry->list_kref, ttm_bo_release_list);
 659	return ret;
 660}
 661
 662static void ttm_bo_delayed_workqueue(struct work_struct *work)
 663{
 664	struct ttm_bo_device *bdev =
 665	    container_of(work, struct ttm_bo_device, wq.work);
 666
 667	if (ttm_bo_delayed_delete(bdev, false)) {
 668		schedule_delayed_work(&bdev->wq,
 669				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 670	}
 671}
 672
 673static void ttm_bo_release(struct kref *kref)
 674{
 675	struct ttm_buffer_object *bo =
 676	    container_of(kref, struct ttm_buffer_object, kref);
 677	struct ttm_bo_device *bdev = bo->bdev;
 678	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 679
 680	if (likely(bo->vm_node != NULL)) {
 681		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 682		drm_mm_put_block(bo->vm_node);
 683		bo->vm_node = NULL;
 684	}
 685	write_unlock(&bdev->vm_lock);
 686	ttm_mem_io_lock(man, false);
 687	ttm_mem_io_free_vm(bo);
 688	ttm_mem_io_unlock(man);
 689	ttm_bo_cleanup_refs_or_queue(bo);
 690	kref_put(&bo->list_kref, ttm_bo_release_list);
 691	write_lock(&bdev->vm_lock);
 692}
 693
 694void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 695{
 696	struct ttm_buffer_object *bo = *p_bo;
 697	struct ttm_bo_device *bdev = bo->bdev;
 698
 699	*p_bo = NULL;
 700	write_lock(&bdev->vm_lock);
 701	kref_put(&bo->kref, ttm_bo_release);
 702	write_unlock(&bdev->vm_lock);
 703}
 704EXPORT_SYMBOL(ttm_bo_unref);
 705
 706int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 707{
 708	return cancel_delayed_work_sync(&bdev->wq);
 709}
 710EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 711
 712void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 713{
 714	if (resched)
 715		schedule_delayed_work(&bdev->wq,
 716				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 717}
 718EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 719
 720static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 721			bool no_wait_reserve, bool no_wait_gpu)
 722{
 723	struct ttm_bo_device *bdev = bo->bdev;
 724	struct ttm_mem_reg evict_mem;
 725	struct ttm_placement placement;
 726	int ret = 0;
 727
 728	spin_lock(&bdev->fence_lock);
 729	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 730	spin_unlock(&bdev->fence_lock);
 731
 732	if (unlikely(ret != 0)) {
 733		if (ret != -ERESTARTSYS) {
 734			printk(KERN_ERR TTM_PFX
 735			       "Failed to expire sync object before "
 736			       "buffer eviction.\n");
 737		}
 738		goto out;
 739	}
 740
 741	BUG_ON(!atomic_read(&bo->reserved));
 742
 743	evict_mem = bo->mem;
 744	evict_mem.mm_node = NULL;
 745	evict_mem.bus.io_reserved_vm = false;
 746	evict_mem.bus.io_reserved_count = 0;
 747
 748	placement.fpfn = 0;
 749	placement.lpfn = 0;
 750	placement.num_placement = 0;
 751	placement.num_busy_placement = 0;
 752	bdev->driver->evict_flags(bo, &placement);
 753	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 754				no_wait_reserve, no_wait_gpu);
 755	if (ret) {
 756		if (ret != -ERESTARTSYS) {
 757			printk(KERN_ERR TTM_PFX
 758			       "Failed to find memory space for "
 759			       "buffer 0x%p eviction.\n", bo);
 760			ttm_bo_mem_space_debug(bo, &placement);
 761		}
 762		goto out;
 763	}
 764
 765	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 766				     no_wait_reserve, no_wait_gpu);
 767	if (ret) {
 768		if (ret != -ERESTARTSYS)
 769			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
 770		ttm_bo_mem_put(bo, &evict_mem);
 771		goto out;
 772	}
 773	bo->evicted = true;
 774out:
 775	return ret;
 776}
 777
 778static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 779				uint32_t mem_type,
 780				bool interruptible, bool no_wait_reserve,
 781				bool no_wait_gpu)
 782{
 783	struct ttm_bo_global *glob = bdev->glob;
 784	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 785	struct ttm_buffer_object *bo;
 786	int ret, put_count = 0;
 787
 788retry:
 789	spin_lock(&glob->lru_lock);
 790	if (list_empty(&man->lru)) {
 791		spin_unlock(&glob->lru_lock);
 792		return -EBUSY;
 793	}
 794
 795	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 796	kref_get(&bo->list_kref);
 797
 798	if (!list_empty(&bo->ddestroy)) {
 799		spin_unlock(&glob->lru_lock);
 800		ret = ttm_bo_cleanup_refs(bo, interruptible,
 801					  no_wait_reserve, no_wait_gpu);
 802		kref_put(&bo->list_kref, ttm_bo_release_list);
 803
 804		if (likely(ret == 0 || ret == -ERESTARTSYS))
 805			return ret;
 806
 807		goto retry;
 808	}
 809
 810	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 811
 812	if (unlikely(ret == -EBUSY)) {
 813		spin_unlock(&glob->lru_lock);
 814		if (likely(!no_wait_gpu))
 815			ret = ttm_bo_wait_unreserved(bo, interruptible);
 816
 817		kref_put(&bo->list_kref, ttm_bo_release_list);
 818
 819		/**
 820		 * We *need* to retry after releasing the lru lock.
 821		 */
 822
 823		if (unlikely(ret != 0))
 824			return ret;
 825		goto retry;
 826	}
 827
 828	put_count = ttm_bo_del_from_lru(bo);
 829	spin_unlock(&glob->lru_lock);
 830
 831	BUG_ON(ret != 0);
 832
 833	ttm_bo_list_ref_sub(bo, put_count, true);
 834
 835	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 836	ttm_bo_unreserve(bo);
 837
 838	kref_put(&bo->list_kref, ttm_bo_release_list);
 839	return ret;
 840}
 841
 842void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 843{
 844	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 845
 846	if (mem->mm_node)
 847		(*man->func->put_node)(man, mem);
 848}
 849EXPORT_SYMBOL(ttm_bo_mem_put);
 850
 851/**
 852 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 853 * space, or we've evicted everything and there isn't enough space.
 854 */
 855static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 856					uint32_t mem_type,
 857					struct ttm_placement *placement,
 858					struct ttm_mem_reg *mem,
 859					bool interruptible,
 860					bool no_wait_reserve,
 861					bool no_wait_gpu)
 862{
 863	struct ttm_bo_device *bdev = bo->bdev;
 864	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 865	int ret;
 866
 867	do {
 868		ret = (*man->func->get_node)(man, bo, placement, mem);
 869		if (unlikely(ret != 0))
 870			return ret;
 871		if (mem->mm_node)
 872			break;
 873		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 874						no_wait_reserve, no_wait_gpu);
 875		if (unlikely(ret != 0))
 876			return ret;
 877	} while (1);
 878	if (mem->mm_node == NULL)
 879		return -ENOMEM;
 880	mem->mem_type = mem_type;
 881	return 0;
 882}
 883
 884static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 885				      uint32_t cur_placement,
 886				      uint32_t proposed_placement)
 887{
 888	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 889	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 890
 891	/**
 892	 * Keep current caching if possible.
 893	 */
 894
 895	if ((cur_placement & caching) != 0)
 896		result |= (cur_placement & caching);
 897	else if ((man->default_caching & caching) != 0)
 898		result |= man->default_caching;
 899	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 900		result |= TTM_PL_FLAG_CACHED;
 901	else if ((TTM_PL_FLAG_WC & caching) != 0)
 902		result |= TTM_PL_FLAG_WC;
 903	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 904		result |= TTM_PL_FLAG_UNCACHED;
 905
 906	return result;
 907}
 908
 909static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 910				 bool disallow_fixed,
 911				 uint32_t mem_type,
 912				 uint32_t proposed_placement,
 913				 uint32_t *masked_placement)
 914{
 915	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 916
 917	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
 918		return false;
 919
 920	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 921		return false;
 922
 923	if ((proposed_placement & man->available_caching) == 0)
 924		return false;
 925
 926	cur_flags |= (proposed_placement & man->available_caching);
 927
 928	*masked_placement = cur_flags;
 929	return true;
 930}
 931
 932/**
 933 * Creates space for memory region @mem according to its type.
 934 *
 935 * This function first searches for free space in compatible memory types in
 936 * the priority order defined by the driver.  If free space isn't found, then
 937 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 938 * space.
 939 */
 940int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 941			struct ttm_placement *placement,
 942			struct ttm_mem_reg *mem,
 943			bool interruptible, bool no_wait_reserve,
 944			bool no_wait_gpu)
 945{
 946	struct ttm_bo_device *bdev = bo->bdev;
 947	struct ttm_mem_type_manager *man;
 948	uint32_t mem_type = TTM_PL_SYSTEM;
 949	uint32_t cur_flags = 0;
 950	bool type_found = false;
 951	bool type_ok = false;
 952	bool has_erestartsys = false;
 953	int i, ret;
 954
 955	mem->mm_node = NULL;
 956	for (i = 0; i < placement->num_placement; ++i) {
 957		ret = ttm_mem_type_from_flags(placement->placement[i],
 958						&mem_type);
 959		if (ret)
 960			return ret;
 961		man = &bdev->man[mem_type];
 962
 963		type_ok = ttm_bo_mt_compatible(man,
 964						bo->type == ttm_bo_type_user,
 965						mem_type,
 966						placement->placement[i],
 967						&cur_flags);
 968
 969		if (!type_ok)
 970			continue;
 971
 972		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 973						  cur_flags);
 974		/*
 975		 * Use the access and other non-mapping-related flag bits from
 976		 * the memory placement flags to the current flags
 977		 */
 978		ttm_flag_masked(&cur_flags, placement->placement[i],
 979				~TTM_PL_MASK_MEMTYPE);
 980
 981		if (mem_type == TTM_PL_SYSTEM)
 982			break;
 983
 984		if (man->has_type && man->use_type) {
 985			type_found = true;
 986			ret = (*man->func->get_node)(man, bo, placement, mem);
 987			if (unlikely(ret))
 988				return ret;
 989		}
 990		if (mem->mm_node)
 991			break;
 992	}
 993
 994	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 995		mem->mem_type = mem_type;
 996		mem->placement = cur_flags;
 997		return 0;
 998	}
 999
1000	if (!type_found)
1001		return -EINVAL;
1002
1003	for (i = 0; i < placement->num_busy_placement; ++i) {
1004		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005						&mem_type);
1006		if (ret)
1007			return ret;
1008		man = &bdev->man[mem_type];
1009		if (!man->has_type)
1010			continue;
1011		if (!ttm_bo_mt_compatible(man,
1012						bo->type == ttm_bo_type_user,
1013						mem_type,
1014						placement->busy_placement[i],
1015						&cur_flags))
1016			continue;
1017
1018		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019						  cur_flags);
1020		/*
1021		 * Use the access and other non-mapping-related flag bits from
1022		 * the memory placement flags to the current flags
1023		 */
1024		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025				~TTM_PL_MASK_MEMTYPE);
1026
1027
1028		if (mem_type == TTM_PL_SYSTEM) {
1029			mem->mem_type = mem_type;
1030			mem->placement = cur_flags;
1031			mem->mm_node = NULL;
1032			return 0;
1033		}
1034
1035		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036						interruptible, no_wait_reserve, no_wait_gpu);
1037		if (ret == 0 && mem->mm_node) {
1038			mem->placement = cur_flags;
1039			return 0;
1040		}
1041		if (ret == -ERESTARTSYS)
1042			has_erestartsys = true;
1043	}
1044	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045	return ret;
1046}
1047EXPORT_SYMBOL(ttm_bo_mem_space);
1048
1049int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050{
1051	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052		return -EBUSY;
1053
1054	return wait_event_interruptible(bo->event_queue,
1055					atomic_read(&bo->cpu_writers) == 0);
1056}
1057EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058
1059int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060			struct ttm_placement *placement,
1061			bool interruptible, bool no_wait_reserve,
1062			bool no_wait_gpu)
1063{
1064	int ret = 0;
1065	struct ttm_mem_reg mem;
1066	struct ttm_bo_device *bdev = bo->bdev;
1067
1068	BUG_ON(!atomic_read(&bo->reserved));
1069
1070	/*
1071	 * FIXME: It's possible to pipeline buffer moves.
1072	 * Have the driver move function wait for idle when necessary,
1073	 * instead of doing it here.
1074	 */
1075	spin_lock(&bdev->fence_lock);
1076	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077	spin_unlock(&bdev->fence_lock);
1078	if (ret)
1079		return ret;
1080	mem.num_pages = bo->num_pages;
1081	mem.size = mem.num_pages << PAGE_SHIFT;
1082	mem.page_alignment = bo->mem.page_alignment;
1083	mem.bus.io_reserved_vm = false;
1084	mem.bus.io_reserved_count = 0;
1085	/*
1086	 * Determine where to move the buffer.
1087	 */
1088	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1089	if (ret)
1090		goto out_unlock;
1091	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1092out_unlock:
1093	if (ret && mem.mm_node)
1094		ttm_bo_mem_put(bo, &mem);
1095	return ret;
1096}
1097
1098static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099			     struct ttm_mem_reg *mem)
1100{
1101	int i;
1102
1103	if (mem->mm_node && placement->lpfn != 0 &&
1104	    (mem->start < placement->fpfn ||
1105	     mem->start + mem->num_pages > placement->lpfn))
1106		return -1;
1107
1108	for (i = 0; i < placement->num_placement; i++) {
1109		if ((placement->placement[i] & mem->placement &
1110			TTM_PL_MASK_CACHING) &&
1111			(placement->placement[i] & mem->placement &
1112			TTM_PL_MASK_MEM))
1113			return i;
1114	}
1115	return -1;
1116}
1117
1118int ttm_bo_validate(struct ttm_buffer_object *bo,
1119			struct ttm_placement *placement,
1120			bool interruptible, bool no_wait_reserve,
1121			bool no_wait_gpu)
1122{
1123	int ret;
1124
1125	BUG_ON(!atomic_read(&bo->reserved));
1126	/* Check that range is valid */
1127	if (placement->lpfn || placement->fpfn)
1128		if (placement->fpfn > placement->lpfn ||
1129			(placement->lpfn - placement->fpfn) < bo->num_pages)
1130			return -EINVAL;
1131	/*
1132	 * Check whether we need to move buffer.
1133	 */
1134	ret = ttm_bo_mem_compat(placement, &bo->mem);
1135	if (ret < 0) {
1136		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137		if (ret)
1138			return ret;
1139	} else {
1140		/*
1141		 * Use the access and other non-mapping-related flag bits from
1142		 * the compatible memory placement flags to the active flags
1143		 */
1144		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145				~TTM_PL_MASK_MEMTYPE);
1146	}
1147	/*
1148	 * We might need to add a TTM.
1149	 */
1150	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151		ret = ttm_bo_add_ttm(bo, true);
1152		if (ret)
1153			return ret;
1154	}
1155	return 0;
1156}
1157EXPORT_SYMBOL(ttm_bo_validate);
1158
1159int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160				struct ttm_placement *placement)
1161{
1162	BUG_ON((placement->fpfn || placement->lpfn) &&
1163	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164
1165	return 0;
1166}
1167
1168int ttm_bo_init(struct ttm_bo_device *bdev,
1169		struct ttm_buffer_object *bo,
1170		unsigned long size,
1171		enum ttm_bo_type type,
1172		struct ttm_placement *placement,
1173		uint32_t page_alignment,
1174		unsigned long buffer_start,
1175		bool interruptible,
1176		struct file *persistent_swap_storage,
1177		size_t acc_size,
 
1178		void (*destroy) (struct ttm_buffer_object *))
1179{
1180	int ret = 0;
1181	unsigned long num_pages;
 
 
 
 
 
 
 
 
 
 
 
1182
1183	size += buffer_start & ~PAGE_MASK;
1184	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185	if (num_pages == 0) {
1186		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187		if (destroy)
1188			(*destroy)(bo);
1189		else
1190			kfree(bo);
 
1191		return -EINVAL;
1192	}
1193	bo->destroy = destroy;
1194
1195	kref_init(&bo->kref);
1196	kref_init(&bo->list_kref);
1197	atomic_set(&bo->cpu_writers, 0);
1198	atomic_set(&bo->reserved, 1);
1199	init_waitqueue_head(&bo->event_queue);
1200	INIT_LIST_HEAD(&bo->lru);
1201	INIT_LIST_HEAD(&bo->ddestroy);
1202	INIT_LIST_HEAD(&bo->swap);
1203	INIT_LIST_HEAD(&bo->io_reserve_lru);
1204	bo->bdev = bdev;
1205	bo->glob = bdev->glob;
1206	bo->type = type;
1207	bo->num_pages = num_pages;
1208	bo->mem.size = num_pages << PAGE_SHIFT;
1209	bo->mem.mem_type = TTM_PL_SYSTEM;
1210	bo->mem.num_pages = bo->num_pages;
1211	bo->mem.mm_node = NULL;
1212	bo->mem.page_alignment = page_alignment;
1213	bo->mem.bus.io_reserved_vm = false;
1214	bo->mem.bus.io_reserved_count = 0;
1215	bo->buffer_start = buffer_start & PAGE_MASK;
1216	bo->priv_flags = 0;
1217	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218	bo->seq_valid = false;
1219	bo->persistent_swap_storage = persistent_swap_storage;
1220	bo->acc_size = acc_size;
 
1221	atomic_inc(&bo->glob->bo_count);
1222
1223	ret = ttm_bo_check_placement(bo, placement);
1224	if (unlikely(ret != 0))
1225		goto out_err;
1226
1227	/*
1228	 * For ttm_bo_type_device buffers, allocate
1229	 * address space from the device.
1230	 */
1231	if (bo->type == ttm_bo_type_device) {
 
1232		ret = ttm_bo_setup_vm(bo);
1233		if (ret)
1234			goto out_err;
1235	}
1236
1237	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238	if (ret)
1239		goto out_err;
1240
1241	ttm_bo_unreserve(bo);
1242	return 0;
1243
1244out_err:
1245	ttm_bo_unreserve(bo);
1246	ttm_bo_unref(&bo);
1247
1248	return ret;
1249}
1250EXPORT_SYMBOL(ttm_bo_init);
1251
1252static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253				 unsigned long num_pages)
1254{
1255	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256	    PAGE_MASK;
1257
1258	return glob->ttm_bo_size + 2 * page_array_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259}
 
1260
1261int ttm_bo_create(struct ttm_bo_device *bdev,
1262			unsigned long size,
1263			enum ttm_bo_type type,
1264			struct ttm_placement *placement,
1265			uint32_t page_alignment,
1266			unsigned long buffer_start,
1267			bool interruptible,
1268			struct file *persistent_swap_storage,
1269			struct ttm_buffer_object **p_bo)
1270{
1271	struct ttm_buffer_object *bo;
1272	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273	int ret;
1274
1275	size_t acc_size =
1276	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278	if (unlikely(ret != 0))
1279		return ret;
1280
1281	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282
1283	if (unlikely(bo == NULL)) {
1284		ttm_mem_global_free(mem_glob, acc_size);
1285		return -ENOMEM;
1286	}
1287
 
1288	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289				buffer_start, interruptible,
1290				persistent_swap_storage, acc_size, NULL);
1291	if (likely(ret == 0))
1292		*p_bo = bo;
1293
1294	return ret;
1295}
 
1296
1297static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1298					unsigned mem_type, bool allow_errors)
1299{
1300	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1301	struct ttm_bo_global *glob = bdev->glob;
1302	int ret;
1303
1304	/*
1305	 * Can't use standard list traversal since we're unlocking.
1306	 */
1307
1308	spin_lock(&glob->lru_lock);
1309	while (!list_empty(&man->lru)) {
1310		spin_unlock(&glob->lru_lock);
1311		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1312		if (ret) {
1313			if (allow_errors) {
1314				return ret;
1315			} else {
1316				printk(KERN_ERR TTM_PFX
1317					"Cleanup eviction failed\n");
1318			}
1319		}
1320		spin_lock(&glob->lru_lock);
1321	}
1322	spin_unlock(&glob->lru_lock);
1323	return 0;
1324}
1325
1326int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1327{
1328	struct ttm_mem_type_manager *man;
1329	int ret = -EINVAL;
1330
1331	if (mem_type >= TTM_NUM_MEM_TYPES) {
1332		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1333		return ret;
1334	}
1335	man = &bdev->man[mem_type];
1336
1337	if (!man->has_type) {
1338		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1339		       "memory manager type %u\n", mem_type);
1340		return ret;
1341	}
1342
1343	man->use_type = false;
1344	man->has_type = false;
1345
1346	ret = 0;
1347	if (mem_type > 0) {
1348		ttm_bo_force_list_clean(bdev, mem_type, false);
1349
1350		ret = (*man->func->takedown)(man);
1351	}
1352
1353	return ret;
1354}
1355EXPORT_SYMBOL(ttm_bo_clean_mm);
1356
1357int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1360
1361	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1362		printk(KERN_ERR TTM_PFX
1363		       "Illegal memory manager memory type %u.\n",
1364		       mem_type);
1365		return -EINVAL;
1366	}
1367
1368	if (!man->has_type) {
1369		printk(KERN_ERR TTM_PFX
1370		       "Memory type %u has not been initialized.\n",
1371		       mem_type);
1372		return 0;
1373	}
1374
1375	return ttm_bo_force_list_clean(bdev, mem_type, true);
1376}
1377EXPORT_SYMBOL(ttm_bo_evict_mm);
1378
1379int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1380			unsigned long p_size)
1381{
1382	int ret = -EINVAL;
1383	struct ttm_mem_type_manager *man;
1384
1385	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1386	man = &bdev->man[type];
1387	BUG_ON(man->has_type);
1388	man->io_reserve_fastpath = true;
1389	man->use_io_reserve_lru = false;
1390	mutex_init(&man->io_reserve_mutex);
1391	INIT_LIST_HEAD(&man->io_reserve_lru);
1392
1393	ret = bdev->driver->init_mem_type(bdev, type, man);
1394	if (ret)
1395		return ret;
1396	man->bdev = bdev;
1397
1398	ret = 0;
1399	if (type != TTM_PL_SYSTEM) {
1400		ret = (*man->func->init)(man, p_size);
1401		if (ret)
1402			return ret;
1403	}
1404	man->has_type = true;
1405	man->use_type = true;
1406	man->size = p_size;
1407
1408	INIT_LIST_HEAD(&man->lru);
1409
1410	return 0;
1411}
1412EXPORT_SYMBOL(ttm_bo_init_mm);
1413
1414static void ttm_bo_global_kobj_release(struct kobject *kobj)
1415{
1416	struct ttm_bo_global *glob =
1417		container_of(kobj, struct ttm_bo_global, kobj);
1418
1419	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1420	__free_page(glob->dummy_read_page);
1421	kfree(glob);
1422}
1423
1424void ttm_bo_global_release(struct drm_global_reference *ref)
1425{
1426	struct ttm_bo_global *glob = ref->object;
1427
1428	kobject_del(&glob->kobj);
1429	kobject_put(&glob->kobj);
1430}
1431EXPORT_SYMBOL(ttm_bo_global_release);
1432
1433int ttm_bo_global_init(struct drm_global_reference *ref)
1434{
1435	struct ttm_bo_global_ref *bo_ref =
1436		container_of(ref, struct ttm_bo_global_ref, ref);
1437	struct ttm_bo_global *glob = ref->object;
1438	int ret;
1439
1440	mutex_init(&glob->device_list_mutex);
1441	spin_lock_init(&glob->lru_lock);
1442	glob->mem_glob = bo_ref->mem_glob;
1443	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1444
1445	if (unlikely(glob->dummy_read_page == NULL)) {
1446		ret = -ENOMEM;
1447		goto out_no_drp;
1448	}
1449
1450	INIT_LIST_HEAD(&glob->swap_lru);
1451	INIT_LIST_HEAD(&glob->device_list);
1452
1453	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1454	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1455	if (unlikely(ret != 0)) {
1456		printk(KERN_ERR TTM_PFX
1457		       "Could not register buffer object swapout.\n");
1458		goto out_no_shrink;
1459	}
1460
1461	glob->ttm_bo_extra_size =
1462		ttm_round_pot(sizeof(struct ttm_tt)) +
1463		ttm_round_pot(sizeof(struct ttm_backend));
1464
1465	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1466		ttm_round_pot(sizeof(struct ttm_buffer_object));
1467
1468	atomic_set(&glob->bo_count, 0);
1469
1470	ret = kobject_init_and_add(
1471		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1472	if (unlikely(ret != 0))
1473		kobject_put(&glob->kobj);
1474	return ret;
1475out_no_shrink:
1476	__free_page(glob->dummy_read_page);
1477out_no_drp:
1478	kfree(glob);
1479	return ret;
1480}
1481EXPORT_SYMBOL(ttm_bo_global_init);
1482
1483
1484int ttm_bo_device_release(struct ttm_bo_device *bdev)
1485{
1486	int ret = 0;
1487	unsigned i = TTM_NUM_MEM_TYPES;
1488	struct ttm_mem_type_manager *man;
1489	struct ttm_bo_global *glob = bdev->glob;
1490
1491	while (i--) {
1492		man = &bdev->man[i];
1493		if (man->has_type) {
1494			man->use_type = false;
1495			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1496				ret = -EBUSY;
1497				printk(KERN_ERR TTM_PFX
1498				       "DRM memory manager type %d "
1499				       "is not clean.\n", i);
1500			}
1501			man->has_type = false;
1502		}
1503	}
1504
1505	mutex_lock(&glob->device_list_mutex);
1506	list_del(&bdev->device_list);
1507	mutex_unlock(&glob->device_list_mutex);
1508
1509	cancel_delayed_work_sync(&bdev->wq);
1510
1511	while (ttm_bo_delayed_delete(bdev, true))
1512		;
1513
1514	spin_lock(&glob->lru_lock);
1515	if (list_empty(&bdev->ddestroy))
1516		TTM_DEBUG("Delayed destroy list was clean\n");
1517
1518	if (list_empty(&bdev->man[0].lru))
1519		TTM_DEBUG("Swap list was clean\n");
1520	spin_unlock(&glob->lru_lock);
1521
1522	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1523	write_lock(&bdev->vm_lock);
1524	drm_mm_takedown(&bdev->addr_space_mm);
1525	write_unlock(&bdev->vm_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532		       struct ttm_bo_global *glob,
1533		       struct ttm_bo_driver *driver,
1534		       uint64_t file_page_offset,
1535		       bool need_dma32)
1536{
1537	int ret = -EINVAL;
1538
1539	rwlock_init(&bdev->vm_lock);
1540	bdev->driver = driver;
1541
1542	memset(bdev->man, 0, sizeof(bdev->man));
1543
1544	/*
1545	 * Initialize the system memory buffer type.
1546	 * Other types need to be driver / IOCTL initialized.
1547	 */
1548	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549	if (unlikely(ret != 0))
1550		goto out_no_sys;
1551
1552	bdev->addr_space_rb = RB_ROOT;
1553	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1554	if (unlikely(ret != 0))
1555		goto out_no_addr_mm;
1556
1557	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1558	bdev->nice_mode = true;
1559	INIT_LIST_HEAD(&bdev->ddestroy);
1560	bdev->dev_mapping = NULL;
1561	bdev->glob = glob;
1562	bdev->need_dma32 = need_dma32;
1563	bdev->val_seq = 0;
1564	spin_lock_init(&bdev->fence_lock);
1565	mutex_lock(&glob->device_list_mutex);
1566	list_add_tail(&bdev->device_list, &glob->device_list);
1567	mutex_unlock(&glob->device_list_mutex);
1568
1569	return 0;
1570out_no_addr_mm:
1571	ttm_bo_clean_mm(bdev, 0);
1572out_no_sys:
1573	return ret;
1574}
1575EXPORT_SYMBOL(ttm_bo_device_init);
1576
1577/*
1578 * buffer object vm functions.
1579 */
1580
1581bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1582{
1583	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1584
1585	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1586		if (mem->mem_type == TTM_PL_SYSTEM)
1587			return false;
1588
1589		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1590			return false;
1591
1592		if (mem->placement & TTM_PL_FLAG_CACHED)
1593			return false;
1594	}
1595	return true;
1596}
1597
1598void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1599{
1600	struct ttm_bo_device *bdev = bo->bdev;
1601	loff_t offset = (loff_t) bo->addr_space_offset;
1602	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1603
1604	if (!bdev->dev_mapping)
1605		return;
1606	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1607	ttm_mem_io_free_vm(bo);
1608}
1609
1610void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1611{
1612	struct ttm_bo_device *bdev = bo->bdev;
1613	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1614
1615	ttm_mem_io_lock(man, false);
1616	ttm_bo_unmap_virtual_locked(bo);
1617	ttm_mem_io_unlock(man);
1618}
1619
1620
1621EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1622
1623static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1624{
1625	struct ttm_bo_device *bdev = bo->bdev;
1626	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1627	struct rb_node *parent = NULL;
1628	struct ttm_buffer_object *cur_bo;
1629	unsigned long offset = bo->vm_node->start;
1630	unsigned long cur_offset;
1631
1632	while (*cur) {
1633		parent = *cur;
1634		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1635		cur_offset = cur_bo->vm_node->start;
1636		if (offset < cur_offset)
1637			cur = &parent->rb_left;
1638		else if (offset > cur_offset)
1639			cur = &parent->rb_right;
1640		else
1641			BUG();
1642	}
1643
1644	rb_link_node(&bo->vm_rb, parent, cur);
1645	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1646}
1647
1648/**
1649 * ttm_bo_setup_vm:
1650 *
1651 * @bo: the buffer to allocate address space for
1652 *
1653 * Allocate address space in the drm device so that applications
1654 * can mmap the buffer and access the contents. This only
1655 * applies to ttm_bo_type_device objects as others are not
1656 * placed in the drm device address space.
1657 */
1658
1659static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1660{
1661	struct ttm_bo_device *bdev = bo->bdev;
1662	int ret;
1663
1664retry_pre_get:
1665	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1666	if (unlikely(ret != 0))
1667		return ret;
1668
1669	write_lock(&bdev->vm_lock);
1670	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1671					 bo->mem.num_pages, 0, 0);
1672
1673	if (unlikely(bo->vm_node == NULL)) {
1674		ret = -ENOMEM;
1675		goto out_unlock;
1676	}
1677
1678	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1679					      bo->mem.num_pages, 0);
1680
1681	if (unlikely(bo->vm_node == NULL)) {
1682		write_unlock(&bdev->vm_lock);
1683		goto retry_pre_get;
1684	}
1685
1686	ttm_bo_vm_insert_rb(bo);
1687	write_unlock(&bdev->vm_lock);
1688	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1689
1690	return 0;
1691out_unlock:
1692	write_unlock(&bdev->vm_lock);
1693	return ret;
1694}
1695
1696int ttm_bo_wait(struct ttm_buffer_object *bo,
1697		bool lazy, bool interruptible, bool no_wait)
1698{
1699	struct ttm_bo_driver *driver = bo->bdev->driver;
1700	struct ttm_bo_device *bdev = bo->bdev;
1701	void *sync_obj;
1702	void *sync_obj_arg;
1703	int ret = 0;
1704
1705	if (likely(bo->sync_obj == NULL))
1706		return 0;
1707
1708	while (bo->sync_obj) {
1709
1710		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1711			void *tmp_obj = bo->sync_obj;
1712			bo->sync_obj = NULL;
1713			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1714			spin_unlock(&bdev->fence_lock);
1715			driver->sync_obj_unref(&tmp_obj);
1716			spin_lock(&bdev->fence_lock);
1717			continue;
1718		}
1719
1720		if (no_wait)
1721			return -EBUSY;
1722
1723		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1724		sync_obj_arg = bo->sync_obj_arg;
1725		spin_unlock(&bdev->fence_lock);
1726		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1727					    lazy, interruptible);
1728		if (unlikely(ret != 0)) {
1729			driver->sync_obj_unref(&sync_obj);
1730			spin_lock(&bdev->fence_lock);
1731			return ret;
1732		}
1733		spin_lock(&bdev->fence_lock);
1734		if (likely(bo->sync_obj == sync_obj &&
1735			   bo->sync_obj_arg == sync_obj_arg)) {
1736			void *tmp_obj = bo->sync_obj;
1737			bo->sync_obj = NULL;
1738			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1739				  &bo->priv_flags);
1740			spin_unlock(&bdev->fence_lock);
1741			driver->sync_obj_unref(&sync_obj);
1742			driver->sync_obj_unref(&tmp_obj);
1743			spin_lock(&bdev->fence_lock);
1744		} else {
1745			spin_unlock(&bdev->fence_lock);
1746			driver->sync_obj_unref(&sync_obj);
1747			spin_lock(&bdev->fence_lock);
1748		}
1749	}
1750	return 0;
1751}
1752EXPORT_SYMBOL(ttm_bo_wait);
1753
1754int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1755{
1756	struct ttm_bo_device *bdev = bo->bdev;
1757	int ret = 0;
1758
1759	/*
1760	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1761	 */
1762
1763	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1764	if (unlikely(ret != 0))
1765		return ret;
1766	spin_lock(&bdev->fence_lock);
1767	ret = ttm_bo_wait(bo, false, true, no_wait);
1768	spin_unlock(&bdev->fence_lock);
1769	if (likely(ret == 0))
1770		atomic_inc(&bo->cpu_writers);
1771	ttm_bo_unreserve(bo);
1772	return ret;
1773}
1774EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1775
1776void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1777{
1778	if (atomic_dec_and_test(&bo->cpu_writers))
1779		wake_up_all(&bo->event_queue);
1780}
1781EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1782
1783/**
1784 * A buffer object shrink method that tries to swap out the first
1785 * buffer object on the bo_global::swap_lru list.
1786 */
1787
1788static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1789{
1790	struct ttm_bo_global *glob =
1791	    container_of(shrink, struct ttm_bo_global, shrink);
1792	struct ttm_buffer_object *bo;
1793	int ret = -EBUSY;
1794	int put_count;
1795	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1796
1797	spin_lock(&glob->lru_lock);
1798	while (ret == -EBUSY) {
1799		if (unlikely(list_empty(&glob->swap_lru))) {
1800			spin_unlock(&glob->lru_lock);
1801			return -EBUSY;
1802		}
1803
1804		bo = list_first_entry(&glob->swap_lru,
1805				      struct ttm_buffer_object, swap);
1806		kref_get(&bo->list_kref);
1807
1808		if (!list_empty(&bo->ddestroy)) {
1809			spin_unlock(&glob->lru_lock);
1810			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1811			kref_put(&bo->list_kref, ttm_bo_release_list);
 
1812			continue;
1813		}
1814
1815		/**
1816		 * Reserve buffer. Since we unlock while sleeping, we need
1817		 * to re-check that nobody removed us from the swap-list while
1818		 * we slept.
1819		 */
1820
1821		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1822		if (unlikely(ret == -EBUSY)) {
1823			spin_unlock(&glob->lru_lock);
1824			ttm_bo_wait_unreserved(bo, false);
1825			kref_put(&bo->list_kref, ttm_bo_release_list);
1826			spin_lock(&glob->lru_lock);
1827		}
1828	}
1829
1830	BUG_ON(ret != 0);
1831	put_count = ttm_bo_del_from_lru(bo);
1832	spin_unlock(&glob->lru_lock);
1833
1834	ttm_bo_list_ref_sub(bo, put_count, true);
1835
1836	/**
1837	 * Wait for GPU, then move to system cached.
1838	 */
1839
1840	spin_lock(&bo->bdev->fence_lock);
1841	ret = ttm_bo_wait(bo, false, false, false);
1842	spin_unlock(&bo->bdev->fence_lock);
1843
1844	if (unlikely(ret != 0))
1845		goto out;
1846
1847	if ((bo->mem.placement & swap_placement) != swap_placement) {
1848		struct ttm_mem_reg evict_mem;
1849
1850		evict_mem = bo->mem;
1851		evict_mem.mm_node = NULL;
1852		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1853		evict_mem.mem_type = TTM_PL_SYSTEM;
1854
1855		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1856					     false, false, false);
1857		if (unlikely(ret != 0))
1858			goto out;
1859	}
1860
1861	ttm_bo_unmap_virtual(bo);
1862
1863	/**
1864	 * Swap out. Buffer will be swapped in again as soon as
1865	 * anyone tries to access a ttm page.
1866	 */
1867
1868	if (bo->bdev->driver->swap_notify)
1869		bo->bdev->driver->swap_notify(bo);
1870
1871	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1872out:
1873
1874	/**
1875	 *
1876	 * Unreserve without putting on LRU to avoid swapping out an
1877	 * already swapped buffer.
1878	 */
1879
1880	atomic_set(&bo->reserved, 0);
1881	wake_up_all(&bo->event_queue);
1882	kref_put(&bo->list_kref, ttm_bo_release_list);
1883	return ret;
1884}
1885
1886void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1887{
1888	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1889		;
1890}
1891EXPORT_SYMBOL(ttm_bo_swapout_all);
v3.5.6
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include "ttm/ttm_module.h"
  34#include "ttm/ttm_bo_driver.h"
  35#include "ttm/ttm_placement.h"
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
  43
  44#define TTM_ASSERT_LOCKED(param)
  45#define TTM_DEBUG(fmt, arg...)
  46#define TTM_BO_HASH_ORDER 13
  47
  48static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  50static void ttm_bo_global_kobj_release(struct kobject *kobj);
  51
  52static struct attribute ttm_bo_count = {
  53	.name = "bo_count",
  54	.mode = S_IRUGO
  55};
  56
  57static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  58{
  59	int i;
  60
  61	for (i = 0; i <= TTM_PL_PRIV5; i++)
  62		if (flags & (1 << i)) {
  63			*mem_type = i;
  64			return 0;
  65		}
  66	return -EINVAL;
  67}
  68
  69static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  70{
  71	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  72
  73	pr_err("    has_type: %d\n", man->has_type);
  74	pr_err("    use_type: %d\n", man->use_type);
  75	pr_err("    flags: 0x%08X\n", man->flags);
  76	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
  77	pr_err("    size: %llu\n", man->size);
  78	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  79	pr_err("    default_caching: 0x%08X\n", man->default_caching);
 
 
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
  87	int i, ret, mem_type;
  88
  89	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  90	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  91	       bo->mem.size >> 20);
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		pr_err("  placement[%d]=0x%08X (%d)\n",
  98		       i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 131{
 132	return 1 << (type);
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 140	size_t acc_size = bo->acc_size;
 141
 142	BUG_ON(atomic_read(&bo->list_kref.refcount));
 143	BUG_ON(atomic_read(&bo->kref.refcount));
 144	BUG_ON(atomic_read(&bo->cpu_writers));
 145	BUG_ON(bo->sync_obj != NULL);
 146	BUG_ON(bo->mem.mm_node != NULL);
 147	BUG_ON(!list_empty(&bo->lru));
 148	BUG_ON(!list_empty(&bo->ddestroy));
 149
 150	if (bo->ttm)
 151		ttm_tt_destroy(bo->ttm);
 152	atomic_dec(&bo->glob->bo_count);
 153	if (bo->destroy)
 154		bo->destroy(bo);
 155	else {
 
 156		kfree(bo);
 157	}
 158	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 159}
 160
 161int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 162{
 163	if (interruptible) {
 164		return wait_event_interruptible(bo->event_queue,
 165					       atomic_read(&bo->reserved) == 0);
 166	} else {
 167		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 168		return 0;
 169	}
 170}
 171EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 172
 173void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 174{
 175	struct ttm_bo_device *bdev = bo->bdev;
 176	struct ttm_mem_type_manager *man;
 177
 178	BUG_ON(!atomic_read(&bo->reserved));
 179
 180	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 181
 182		BUG_ON(!list_empty(&bo->lru));
 183
 184		man = &bdev->man[bo->mem.mem_type];
 185		list_add_tail(&bo->lru, &man->lru);
 186		kref_get(&bo->list_kref);
 187
 188		if (bo->ttm != NULL) {
 189			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 190			kref_get(&bo->list_kref);
 191		}
 192	}
 193}
 194
 195int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 196{
 197	int put_count = 0;
 198
 199	if (!list_empty(&bo->swap)) {
 200		list_del_init(&bo->swap);
 201		++put_count;
 202	}
 203	if (!list_empty(&bo->lru)) {
 204		list_del_init(&bo->lru);
 205		++put_count;
 206	}
 207
 208	/*
 209	 * TODO: Add a driver hook to delete from
 210	 * driver-specific LRU's here.
 211	 */
 212
 213	return put_count;
 214}
 215
 216int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 217			  bool interruptible,
 218			  bool no_wait, bool use_sequence, uint32_t sequence)
 219{
 220	struct ttm_bo_global *glob = bo->glob;
 221	int ret;
 222
 223	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 224		/**
 225		 * Deadlock avoidance for multi-bo reserving.
 226		 */
 227		if (use_sequence && bo->seq_valid) {
 228			/**
 229			 * We've already reserved this one.
 230			 */
 231			if (unlikely(sequence == bo->val_seq))
 232				return -EDEADLK;
 233			/**
 234			 * Already reserved by a thread that will not back
 235			 * off for us. We need to back off.
 236			 */
 237			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 238				return -EAGAIN;
 239		}
 240
 241		if (no_wait)
 242			return -EBUSY;
 243
 244		spin_unlock(&glob->lru_lock);
 245		ret = ttm_bo_wait_unreserved(bo, interruptible);
 246		spin_lock(&glob->lru_lock);
 247
 248		if (unlikely(ret))
 249			return ret;
 250	}
 251
 252	if (use_sequence) {
 253		/**
 254		 * Wake up waiters that may need to recheck for deadlock,
 255		 * if we decreased the sequence number.
 256		 */
 257		if (unlikely((bo->val_seq - sequence < (1 << 31))
 258			     || !bo->seq_valid))
 259			wake_up_all(&bo->event_queue);
 260
 261		bo->val_seq = sequence;
 262		bo->seq_valid = true;
 263	} else {
 264		bo->seq_valid = false;
 265	}
 266
 267	return 0;
 268}
 269EXPORT_SYMBOL(ttm_bo_reserve);
 270
 271static void ttm_bo_ref_bug(struct kref *list_kref)
 272{
 273	BUG();
 274}
 275
 276void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 277			 bool never_free)
 278{
 279	kref_sub(&bo->list_kref, count,
 280		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 281}
 282
 283int ttm_bo_reserve(struct ttm_buffer_object *bo,
 284		   bool interruptible,
 285		   bool no_wait, bool use_sequence, uint32_t sequence)
 286{
 287	struct ttm_bo_global *glob = bo->glob;
 288	int put_count = 0;
 289	int ret;
 290
 291	spin_lock(&glob->lru_lock);
 292	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 293				    sequence);
 294	if (likely(ret == 0))
 295		put_count = ttm_bo_del_from_lru(bo);
 296	spin_unlock(&glob->lru_lock);
 297
 298	ttm_bo_list_ref_sub(bo, put_count, true);
 299
 300	return ret;
 301}
 302
 303void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 304{
 305	ttm_bo_add_to_lru(bo);
 306	atomic_set(&bo->reserved, 0);
 307	wake_up_all(&bo->event_queue);
 308}
 309
 310void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 311{
 312	struct ttm_bo_global *glob = bo->glob;
 313
 314	spin_lock(&glob->lru_lock);
 315	ttm_bo_unreserve_locked(bo);
 316	spin_unlock(&glob->lru_lock);
 317}
 318EXPORT_SYMBOL(ttm_bo_unreserve);
 319
 320/*
 321 * Call bo->mutex locked.
 322 */
 323static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 324{
 325	struct ttm_bo_device *bdev = bo->bdev;
 326	struct ttm_bo_global *glob = bo->glob;
 327	int ret = 0;
 328	uint32_t page_flags = 0;
 329
 330	TTM_ASSERT_LOCKED(&bo->mutex);
 331	bo->ttm = NULL;
 332
 333	if (bdev->need_dma32)
 334		page_flags |= TTM_PAGE_FLAG_DMA32;
 335
 336	switch (bo->type) {
 337	case ttm_bo_type_device:
 338		if (zero_alloc)
 339			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 340	case ttm_bo_type_kernel:
 341		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 342						      page_flags, glob->dummy_read_page);
 343		if (unlikely(bo->ttm == NULL))
 344			ret = -ENOMEM;
 345		break;
 346	case ttm_bo_type_sg:
 347		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 348						      page_flags | TTM_PAGE_FLAG_SG,
 349						      glob->dummy_read_page);
 350		if (unlikely(bo->ttm == NULL)) {
 351			ret = -ENOMEM;
 352			break;
 353		}
 354		bo->ttm->sg = bo->sg;
 
 
 
 
 
 
 355		break;
 356	default:
 357		pr_err("Illegal buffer object type\n");
 358		ret = -EINVAL;
 359		break;
 360	}
 361
 362	return ret;
 363}
 364
 365static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 366				  struct ttm_mem_reg *mem,
 367				  bool evict, bool interruptible,
 368				  bool no_wait_reserve, bool no_wait_gpu)
 369{
 370	struct ttm_bo_device *bdev = bo->bdev;
 371	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 372	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 373	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 374	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 375	int ret = 0;
 376
 377	if (old_is_pci || new_is_pci ||
 378	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 379		ret = ttm_mem_io_lock(old_man, true);
 380		if (unlikely(ret != 0))
 381			goto out_err;
 382		ttm_bo_unmap_virtual_locked(bo);
 383		ttm_mem_io_unlock(old_man);
 384	}
 385
 386	/*
 387	 * Create and bind a ttm if required.
 388	 */
 389
 390	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 391		if (bo->ttm == NULL) {
 392			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 393			ret = ttm_bo_add_ttm(bo, zero);
 394			if (ret)
 395				goto out_err;
 396		}
 397
 398		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 399		if (ret)
 400			goto out_err;
 401
 402		if (mem->mem_type != TTM_PL_SYSTEM) {
 403			ret = ttm_tt_bind(bo->ttm, mem);
 404			if (ret)
 405				goto out_err;
 406		}
 407
 408		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 409			if (bdev->driver->move_notify)
 410				bdev->driver->move_notify(bo, mem);
 411			bo->mem = *mem;
 412			mem->mm_node = NULL;
 413			goto moved;
 414		}
 415	}
 416
 417	if (bdev->driver->move_notify)
 418		bdev->driver->move_notify(bo, mem);
 419
 420	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 421	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 422		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 423	else if (bdev->driver->move)
 424		ret = bdev->driver->move(bo, evict, interruptible,
 425					 no_wait_reserve, no_wait_gpu, mem);
 426	else
 427		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428
 429	if (ret) {
 430		if (bdev->driver->move_notify) {
 431			struct ttm_mem_reg tmp_mem = *mem;
 432			*mem = bo->mem;
 433			bo->mem = tmp_mem;
 434			bdev->driver->move_notify(bo, mem);
 435			bo->mem = *mem;
 436		}
 437
 438		goto out_err;
 439	}
 440
 441moved:
 442	if (bo->evicted) {
 443		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 444		if (ret)
 445			pr_err("Can not flush read caches\n");
 446		bo->evicted = false;
 447	}
 448
 449	if (bo->mem.mm_node) {
 450		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 451		    bdev->man[bo->mem.mem_type].gpu_offset;
 452		bo->cur_placement = bo->mem.placement;
 453	} else
 454		bo->offset = 0;
 455
 456	return 0;
 457
 458out_err:
 459	new_man = &bdev->man[bo->mem.mem_type];
 460	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 461		ttm_tt_unbind(bo->ttm);
 462		ttm_tt_destroy(bo->ttm);
 463		bo->ttm = NULL;
 464	}
 465
 466	return ret;
 467}
 468
 469/**
 470 * Call bo::reserved.
 471 * Will release GPU memory type usage on destruction.
 472 * This is the place to put in driver specific hooks to release
 473 * driver private resources.
 474 * Will release the bo::reserved lock.
 475 */
 476
 477static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 478{
 479	if (bo->bdev->driver->move_notify)
 480		bo->bdev->driver->move_notify(bo, NULL);
 481
 482	if (bo->ttm) {
 483		ttm_tt_unbind(bo->ttm);
 484		ttm_tt_destroy(bo->ttm);
 485		bo->ttm = NULL;
 486	}
 487	ttm_bo_mem_put(bo, &bo->mem);
 488
 489	atomic_set(&bo->reserved, 0);
 490
 491	/*
 492	 * Make processes trying to reserve really pick it up.
 493	 */
 494	smp_mb__after_atomic_dec();
 495	wake_up_all(&bo->event_queue);
 496}
 497
 498static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 499{
 500	struct ttm_bo_device *bdev = bo->bdev;
 501	struct ttm_bo_global *glob = bo->glob;
 502	struct ttm_bo_driver *driver;
 503	void *sync_obj = NULL;
 504	void *sync_obj_arg;
 505	int put_count;
 506	int ret;
 507
 508	spin_lock(&bdev->fence_lock);
 509	(void) ttm_bo_wait(bo, false, false, true);
 510	if (!bo->sync_obj) {
 511
 512		spin_lock(&glob->lru_lock);
 513
 514		/**
 515		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 516		 * but that's OK, since we're only trylocking.
 517		 */
 518
 519		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 520
 521		if (unlikely(ret == -EBUSY))
 522			goto queue;
 523
 524		spin_unlock(&bdev->fence_lock);
 525		put_count = ttm_bo_del_from_lru(bo);
 526
 527		spin_unlock(&glob->lru_lock);
 528		ttm_bo_cleanup_memtype_use(bo);
 529
 530		ttm_bo_list_ref_sub(bo, put_count, true);
 531
 532		return;
 533	} else {
 534		spin_lock(&glob->lru_lock);
 535	}
 536queue:
 537	driver = bdev->driver;
 538	if (bo->sync_obj)
 539		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 540	sync_obj_arg = bo->sync_obj_arg;
 541
 542	kref_get(&bo->list_kref);
 543	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 544	spin_unlock(&glob->lru_lock);
 545	spin_unlock(&bdev->fence_lock);
 546
 547	if (sync_obj) {
 548		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 549		driver->sync_obj_unref(&sync_obj);
 550	}
 551	schedule_delayed_work(&bdev->wq,
 552			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 553}
 554
 555/**
 556 * function ttm_bo_cleanup_refs
 557 * If bo idle, remove from delayed- and lru lists, and unref.
 558 * If not idle, do nothing.
 559 *
 560 * @interruptible         Any sleeps should occur interruptibly.
 561 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 562 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 563 */
 564
 565static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 566			       bool interruptible,
 567			       bool no_wait_reserve,
 568			       bool no_wait_gpu)
 569{
 570	struct ttm_bo_device *bdev = bo->bdev;
 571	struct ttm_bo_global *glob = bo->glob;
 572	int put_count;
 573	int ret = 0;
 574
 575retry:
 576	spin_lock(&bdev->fence_lock);
 577	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 578	spin_unlock(&bdev->fence_lock);
 579
 580	if (unlikely(ret != 0))
 581		return ret;
 582
 583	spin_lock(&glob->lru_lock);
 584
 585	if (unlikely(list_empty(&bo->ddestroy))) {
 586		spin_unlock(&glob->lru_lock);
 587		return 0;
 588	}
 589
 590	ret = ttm_bo_reserve_locked(bo, interruptible,
 591				    no_wait_reserve, false, 0);
 592
 593	if (unlikely(ret != 0)) {
 594		spin_unlock(&glob->lru_lock);
 595		return ret;
 596	}
 597
 598	/**
 599	 * We can re-check for sync object without taking
 600	 * the bo::lock since setting the sync object requires
 601	 * also bo::reserved. A busy object at this point may
 602	 * be caused by another thread recently starting an accelerated
 603	 * eviction.
 604	 */
 605
 606	if (unlikely(bo->sync_obj)) {
 607		atomic_set(&bo->reserved, 0);
 608		wake_up_all(&bo->event_queue);
 609		spin_unlock(&glob->lru_lock);
 610		goto retry;
 611	}
 612
 613	put_count = ttm_bo_del_from_lru(bo);
 614	list_del_init(&bo->ddestroy);
 615	++put_count;
 616
 617	spin_unlock(&glob->lru_lock);
 618	ttm_bo_cleanup_memtype_use(bo);
 619
 620	ttm_bo_list_ref_sub(bo, put_count, true);
 621
 622	return 0;
 623}
 624
 625/**
 626 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 627 * encountered buffers.
 628 */
 629
 630static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 631{
 632	struct ttm_bo_global *glob = bdev->glob;
 633	struct ttm_buffer_object *entry = NULL;
 634	int ret = 0;
 635
 636	spin_lock(&glob->lru_lock);
 637	if (list_empty(&bdev->ddestroy))
 638		goto out_unlock;
 639
 640	entry = list_first_entry(&bdev->ddestroy,
 641		struct ttm_buffer_object, ddestroy);
 642	kref_get(&entry->list_kref);
 643
 644	for (;;) {
 645		struct ttm_buffer_object *nentry = NULL;
 646
 647		if (entry->ddestroy.next != &bdev->ddestroy) {
 648			nentry = list_first_entry(&entry->ddestroy,
 649				struct ttm_buffer_object, ddestroy);
 650			kref_get(&nentry->list_kref);
 651		}
 652
 653		spin_unlock(&glob->lru_lock);
 654		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 655					  !remove_all);
 656		kref_put(&entry->list_kref, ttm_bo_release_list);
 657		entry = nentry;
 658
 659		if (ret || !entry)
 660			goto out;
 661
 662		spin_lock(&glob->lru_lock);
 663		if (list_empty(&entry->ddestroy))
 664			break;
 665	}
 666
 667out_unlock:
 668	spin_unlock(&glob->lru_lock);
 669out:
 670	if (entry)
 671		kref_put(&entry->list_kref, ttm_bo_release_list);
 672	return ret;
 673}
 674
 675static void ttm_bo_delayed_workqueue(struct work_struct *work)
 676{
 677	struct ttm_bo_device *bdev =
 678	    container_of(work, struct ttm_bo_device, wq.work);
 679
 680	if (ttm_bo_delayed_delete(bdev, false)) {
 681		schedule_delayed_work(&bdev->wq,
 682				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 683	}
 684}
 685
 686static void ttm_bo_release(struct kref *kref)
 687{
 688	struct ttm_buffer_object *bo =
 689	    container_of(kref, struct ttm_buffer_object, kref);
 690	struct ttm_bo_device *bdev = bo->bdev;
 691	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 692
 693	if (likely(bo->vm_node != NULL)) {
 694		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 695		drm_mm_put_block(bo->vm_node);
 696		bo->vm_node = NULL;
 697	}
 698	write_unlock(&bdev->vm_lock);
 699	ttm_mem_io_lock(man, false);
 700	ttm_mem_io_free_vm(bo);
 701	ttm_mem_io_unlock(man);
 702	ttm_bo_cleanup_refs_or_queue(bo);
 703	kref_put(&bo->list_kref, ttm_bo_release_list);
 704	write_lock(&bdev->vm_lock);
 705}
 706
 707void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 708{
 709	struct ttm_buffer_object *bo = *p_bo;
 710	struct ttm_bo_device *bdev = bo->bdev;
 711
 712	*p_bo = NULL;
 713	write_lock(&bdev->vm_lock);
 714	kref_put(&bo->kref, ttm_bo_release);
 715	write_unlock(&bdev->vm_lock);
 716}
 717EXPORT_SYMBOL(ttm_bo_unref);
 718
 719int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 720{
 721	return cancel_delayed_work_sync(&bdev->wq);
 722}
 723EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 724
 725void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 726{
 727	if (resched)
 728		schedule_delayed_work(&bdev->wq,
 729				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 730}
 731EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 732
 733static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 734			bool no_wait_reserve, bool no_wait_gpu)
 735{
 736	struct ttm_bo_device *bdev = bo->bdev;
 737	struct ttm_mem_reg evict_mem;
 738	struct ttm_placement placement;
 739	int ret = 0;
 740
 741	spin_lock(&bdev->fence_lock);
 742	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 743	spin_unlock(&bdev->fence_lock);
 744
 745	if (unlikely(ret != 0)) {
 746		if (ret != -ERESTARTSYS) {
 747			pr_err("Failed to expire sync object before buffer eviction\n");
 
 
 748		}
 749		goto out;
 750	}
 751
 752	BUG_ON(!atomic_read(&bo->reserved));
 753
 754	evict_mem = bo->mem;
 755	evict_mem.mm_node = NULL;
 756	evict_mem.bus.io_reserved_vm = false;
 757	evict_mem.bus.io_reserved_count = 0;
 758
 759	placement.fpfn = 0;
 760	placement.lpfn = 0;
 761	placement.num_placement = 0;
 762	placement.num_busy_placement = 0;
 763	bdev->driver->evict_flags(bo, &placement);
 764	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 765				no_wait_reserve, no_wait_gpu);
 766	if (ret) {
 767		if (ret != -ERESTARTSYS) {
 768			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 769			       bo);
 
 770			ttm_bo_mem_space_debug(bo, &placement);
 771		}
 772		goto out;
 773	}
 774
 775	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 776				     no_wait_reserve, no_wait_gpu);
 777	if (ret) {
 778		if (ret != -ERESTARTSYS)
 779			pr_err("Buffer eviction failed\n");
 780		ttm_bo_mem_put(bo, &evict_mem);
 781		goto out;
 782	}
 783	bo->evicted = true;
 784out:
 785	return ret;
 786}
 787
 788static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 789				uint32_t mem_type,
 790				bool interruptible, bool no_wait_reserve,
 791				bool no_wait_gpu)
 792{
 793	struct ttm_bo_global *glob = bdev->glob;
 794	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 795	struct ttm_buffer_object *bo;
 796	int ret, put_count = 0;
 797
 798retry:
 799	spin_lock(&glob->lru_lock);
 800	if (list_empty(&man->lru)) {
 801		spin_unlock(&glob->lru_lock);
 802		return -EBUSY;
 803	}
 804
 805	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 806	kref_get(&bo->list_kref);
 807
 808	if (!list_empty(&bo->ddestroy)) {
 809		spin_unlock(&glob->lru_lock);
 810		ret = ttm_bo_cleanup_refs(bo, interruptible,
 811					  no_wait_reserve, no_wait_gpu);
 812		kref_put(&bo->list_kref, ttm_bo_release_list);
 813
 814		if (likely(ret == 0 || ret == -ERESTARTSYS))
 815			return ret;
 816
 817		goto retry;
 818	}
 819
 820	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 821
 822	if (unlikely(ret == -EBUSY)) {
 823		spin_unlock(&glob->lru_lock);
 824		if (likely(!no_wait_gpu))
 825			ret = ttm_bo_wait_unreserved(bo, interruptible);
 826
 827		kref_put(&bo->list_kref, ttm_bo_release_list);
 828
 829		/**
 830		 * We *need* to retry after releasing the lru lock.
 831		 */
 832
 833		if (unlikely(ret != 0))
 834			return ret;
 835		goto retry;
 836	}
 837
 838	put_count = ttm_bo_del_from_lru(bo);
 839	spin_unlock(&glob->lru_lock);
 840
 841	BUG_ON(ret != 0);
 842
 843	ttm_bo_list_ref_sub(bo, put_count, true);
 844
 845	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 846	ttm_bo_unreserve(bo);
 847
 848	kref_put(&bo->list_kref, ttm_bo_release_list);
 849	return ret;
 850}
 851
 852void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 853{
 854	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 855
 856	if (mem->mm_node)
 857		(*man->func->put_node)(man, mem);
 858}
 859EXPORT_SYMBOL(ttm_bo_mem_put);
 860
 861/**
 862 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 863 * space, or we've evicted everything and there isn't enough space.
 864 */
 865static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 866					uint32_t mem_type,
 867					struct ttm_placement *placement,
 868					struct ttm_mem_reg *mem,
 869					bool interruptible,
 870					bool no_wait_reserve,
 871					bool no_wait_gpu)
 872{
 873	struct ttm_bo_device *bdev = bo->bdev;
 874	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 875	int ret;
 876
 877	do {
 878		ret = (*man->func->get_node)(man, bo, placement, mem);
 879		if (unlikely(ret != 0))
 880			return ret;
 881		if (mem->mm_node)
 882			break;
 883		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 884						no_wait_reserve, no_wait_gpu);
 885		if (unlikely(ret != 0))
 886			return ret;
 887	} while (1);
 888	if (mem->mm_node == NULL)
 889		return -ENOMEM;
 890	mem->mem_type = mem_type;
 891	return 0;
 892}
 893
 894static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 895				      uint32_t cur_placement,
 896				      uint32_t proposed_placement)
 897{
 898	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 899	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 900
 901	/**
 902	 * Keep current caching if possible.
 903	 */
 904
 905	if ((cur_placement & caching) != 0)
 906		result |= (cur_placement & caching);
 907	else if ((man->default_caching & caching) != 0)
 908		result |= man->default_caching;
 909	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 910		result |= TTM_PL_FLAG_CACHED;
 911	else if ((TTM_PL_FLAG_WC & caching) != 0)
 912		result |= TTM_PL_FLAG_WC;
 913	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 914		result |= TTM_PL_FLAG_UNCACHED;
 915
 916	return result;
 917}
 918
 919static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 
 920				 uint32_t mem_type,
 921				 uint32_t proposed_placement,
 922				 uint32_t *masked_placement)
 923{
 924	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 925
 
 
 
 926	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 927		return false;
 928
 929	if ((proposed_placement & man->available_caching) == 0)
 930		return false;
 931
 932	cur_flags |= (proposed_placement & man->available_caching);
 933
 934	*masked_placement = cur_flags;
 935	return true;
 936}
 937
 938/**
 939 * Creates space for memory region @mem according to its type.
 940 *
 941 * This function first searches for free space in compatible memory types in
 942 * the priority order defined by the driver.  If free space isn't found, then
 943 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 944 * space.
 945 */
 946int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 947			struct ttm_placement *placement,
 948			struct ttm_mem_reg *mem,
 949			bool interruptible, bool no_wait_reserve,
 950			bool no_wait_gpu)
 951{
 952	struct ttm_bo_device *bdev = bo->bdev;
 953	struct ttm_mem_type_manager *man;
 954	uint32_t mem_type = TTM_PL_SYSTEM;
 955	uint32_t cur_flags = 0;
 956	bool type_found = false;
 957	bool type_ok = false;
 958	bool has_erestartsys = false;
 959	int i, ret;
 960
 961	mem->mm_node = NULL;
 962	for (i = 0; i < placement->num_placement; ++i) {
 963		ret = ttm_mem_type_from_flags(placement->placement[i],
 964						&mem_type);
 965		if (ret)
 966			return ret;
 967		man = &bdev->man[mem_type];
 968
 969		type_ok = ttm_bo_mt_compatible(man,
 
 970						mem_type,
 971						placement->placement[i],
 972						&cur_flags);
 973
 974		if (!type_ok)
 975			continue;
 976
 977		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 978						  cur_flags);
 979		/*
 980		 * Use the access and other non-mapping-related flag bits from
 981		 * the memory placement flags to the current flags
 982		 */
 983		ttm_flag_masked(&cur_flags, placement->placement[i],
 984				~TTM_PL_MASK_MEMTYPE);
 985
 986		if (mem_type == TTM_PL_SYSTEM)
 987			break;
 988
 989		if (man->has_type && man->use_type) {
 990			type_found = true;
 991			ret = (*man->func->get_node)(man, bo, placement, mem);
 992			if (unlikely(ret))
 993				return ret;
 994		}
 995		if (mem->mm_node)
 996			break;
 997	}
 998
 999	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1000		mem->mem_type = mem_type;
1001		mem->placement = cur_flags;
1002		return 0;
1003	}
1004
1005	if (!type_found)
1006		return -EINVAL;
1007
1008	for (i = 0; i < placement->num_busy_placement; ++i) {
1009		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1010						&mem_type);
1011		if (ret)
1012			return ret;
1013		man = &bdev->man[mem_type];
1014		if (!man->has_type)
1015			continue;
1016		if (!ttm_bo_mt_compatible(man,
 
1017						mem_type,
1018						placement->busy_placement[i],
1019						&cur_flags))
1020			continue;
1021
1022		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1023						  cur_flags);
1024		/*
1025		 * Use the access and other non-mapping-related flag bits from
1026		 * the memory placement flags to the current flags
1027		 */
1028		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1029				~TTM_PL_MASK_MEMTYPE);
1030
1031
1032		if (mem_type == TTM_PL_SYSTEM) {
1033			mem->mem_type = mem_type;
1034			mem->placement = cur_flags;
1035			mem->mm_node = NULL;
1036			return 0;
1037		}
1038
1039		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1040						interruptible, no_wait_reserve, no_wait_gpu);
1041		if (ret == 0 && mem->mm_node) {
1042			mem->placement = cur_flags;
1043			return 0;
1044		}
1045		if (ret == -ERESTARTSYS)
1046			has_erestartsys = true;
1047	}
1048	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1049	return ret;
1050}
1051EXPORT_SYMBOL(ttm_bo_mem_space);
1052
1053int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1054{
1055	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1056		return -EBUSY;
1057
1058	return wait_event_interruptible(bo->event_queue,
1059					atomic_read(&bo->cpu_writers) == 0);
1060}
1061EXPORT_SYMBOL(ttm_bo_wait_cpu);
1062
1063int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1064			struct ttm_placement *placement,
1065			bool interruptible, bool no_wait_reserve,
1066			bool no_wait_gpu)
1067{
1068	int ret = 0;
1069	struct ttm_mem_reg mem;
1070	struct ttm_bo_device *bdev = bo->bdev;
1071
1072	BUG_ON(!atomic_read(&bo->reserved));
1073
1074	/*
1075	 * FIXME: It's possible to pipeline buffer moves.
1076	 * Have the driver move function wait for idle when necessary,
1077	 * instead of doing it here.
1078	 */
1079	spin_lock(&bdev->fence_lock);
1080	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1081	spin_unlock(&bdev->fence_lock);
1082	if (ret)
1083		return ret;
1084	mem.num_pages = bo->num_pages;
1085	mem.size = mem.num_pages << PAGE_SHIFT;
1086	mem.page_alignment = bo->mem.page_alignment;
1087	mem.bus.io_reserved_vm = false;
1088	mem.bus.io_reserved_count = 0;
1089	/*
1090	 * Determine where to move the buffer.
1091	 */
1092	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1093	if (ret)
1094		goto out_unlock;
1095	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1096out_unlock:
1097	if (ret && mem.mm_node)
1098		ttm_bo_mem_put(bo, &mem);
1099	return ret;
1100}
1101
1102static int ttm_bo_mem_compat(struct ttm_placement *placement,
1103			     struct ttm_mem_reg *mem)
1104{
1105	int i;
1106
1107	if (mem->mm_node && placement->lpfn != 0 &&
1108	    (mem->start < placement->fpfn ||
1109	     mem->start + mem->num_pages > placement->lpfn))
1110		return -1;
1111
1112	for (i = 0; i < placement->num_placement; i++) {
1113		if ((placement->placement[i] & mem->placement &
1114			TTM_PL_MASK_CACHING) &&
1115			(placement->placement[i] & mem->placement &
1116			TTM_PL_MASK_MEM))
1117			return i;
1118	}
1119	return -1;
1120}
1121
1122int ttm_bo_validate(struct ttm_buffer_object *bo,
1123			struct ttm_placement *placement,
1124			bool interruptible, bool no_wait_reserve,
1125			bool no_wait_gpu)
1126{
1127	int ret;
1128
1129	BUG_ON(!atomic_read(&bo->reserved));
1130	/* Check that range is valid */
1131	if (placement->lpfn || placement->fpfn)
1132		if (placement->fpfn > placement->lpfn ||
1133			(placement->lpfn - placement->fpfn) < bo->num_pages)
1134			return -EINVAL;
1135	/*
1136	 * Check whether we need to move buffer.
1137	 */
1138	ret = ttm_bo_mem_compat(placement, &bo->mem);
1139	if (ret < 0) {
1140		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1141		if (ret)
1142			return ret;
1143	} else {
1144		/*
1145		 * Use the access and other non-mapping-related flag bits from
1146		 * the compatible memory placement flags to the active flags
1147		 */
1148		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1149				~TTM_PL_MASK_MEMTYPE);
1150	}
1151	/*
1152	 * We might need to add a TTM.
1153	 */
1154	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1155		ret = ttm_bo_add_ttm(bo, true);
1156		if (ret)
1157			return ret;
1158	}
1159	return 0;
1160}
1161EXPORT_SYMBOL(ttm_bo_validate);
1162
1163int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1164				struct ttm_placement *placement)
1165{
1166	BUG_ON((placement->fpfn || placement->lpfn) &&
1167	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1168
1169	return 0;
1170}
1171
1172int ttm_bo_init(struct ttm_bo_device *bdev,
1173		struct ttm_buffer_object *bo,
1174		unsigned long size,
1175		enum ttm_bo_type type,
1176		struct ttm_placement *placement,
1177		uint32_t page_alignment,
1178		unsigned long buffer_start,
1179		bool interruptible,
1180		struct file *persistent_swap_storage,
1181		size_t acc_size,
1182		struct sg_table *sg,
1183		void (*destroy) (struct ttm_buffer_object *))
1184{
1185	int ret = 0;
1186	unsigned long num_pages;
1187	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1188
1189	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1190	if (ret) {
1191		pr_err("Out of kernel memory\n");
1192		if (destroy)
1193			(*destroy)(bo);
1194		else
1195			kfree(bo);
1196		return -ENOMEM;
1197	}
1198
1199	size += buffer_start & ~PAGE_MASK;
1200	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1201	if (num_pages == 0) {
1202		pr_err("Illegal buffer object size\n");
1203		if (destroy)
1204			(*destroy)(bo);
1205		else
1206			kfree(bo);
1207		ttm_mem_global_free(mem_glob, acc_size);
1208		return -EINVAL;
1209	}
1210	bo->destroy = destroy;
1211
1212	kref_init(&bo->kref);
1213	kref_init(&bo->list_kref);
1214	atomic_set(&bo->cpu_writers, 0);
1215	atomic_set(&bo->reserved, 1);
1216	init_waitqueue_head(&bo->event_queue);
1217	INIT_LIST_HEAD(&bo->lru);
1218	INIT_LIST_HEAD(&bo->ddestroy);
1219	INIT_LIST_HEAD(&bo->swap);
1220	INIT_LIST_HEAD(&bo->io_reserve_lru);
1221	bo->bdev = bdev;
1222	bo->glob = bdev->glob;
1223	bo->type = type;
1224	bo->num_pages = num_pages;
1225	bo->mem.size = num_pages << PAGE_SHIFT;
1226	bo->mem.mem_type = TTM_PL_SYSTEM;
1227	bo->mem.num_pages = bo->num_pages;
1228	bo->mem.mm_node = NULL;
1229	bo->mem.page_alignment = page_alignment;
1230	bo->mem.bus.io_reserved_vm = false;
1231	bo->mem.bus.io_reserved_count = 0;
1232	bo->buffer_start = buffer_start & PAGE_MASK;
1233	bo->priv_flags = 0;
1234	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1235	bo->seq_valid = false;
1236	bo->persistent_swap_storage = persistent_swap_storage;
1237	bo->acc_size = acc_size;
1238	bo->sg = sg;
1239	atomic_inc(&bo->glob->bo_count);
1240
1241	ret = ttm_bo_check_placement(bo, placement);
1242	if (unlikely(ret != 0))
1243		goto out_err;
1244
1245	/*
1246	 * For ttm_bo_type_device buffers, allocate
1247	 * address space from the device.
1248	 */
1249	if (bo->type == ttm_bo_type_device ||
1250	    bo->type == ttm_bo_type_sg) {
1251		ret = ttm_bo_setup_vm(bo);
1252		if (ret)
1253			goto out_err;
1254	}
1255
1256	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1257	if (ret)
1258		goto out_err;
1259
1260	ttm_bo_unreserve(bo);
1261	return 0;
1262
1263out_err:
1264	ttm_bo_unreserve(bo);
1265	ttm_bo_unref(&bo);
1266
1267	return ret;
1268}
1269EXPORT_SYMBOL(ttm_bo_init);
1270
1271size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1272		       unsigned long bo_size,
1273		       unsigned struct_size)
1274{
1275	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1276	size_t size = 0;
1277
1278	size += ttm_round_pot(struct_size);
1279	size += PAGE_ALIGN(npages * sizeof(void *));
1280	size += ttm_round_pot(sizeof(struct ttm_tt));
1281	return size;
1282}
1283EXPORT_SYMBOL(ttm_bo_acc_size);
1284
1285size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1286			   unsigned long bo_size,
1287			   unsigned struct_size)
1288{
1289	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1290	size_t size = 0;
1291
1292	size += ttm_round_pot(struct_size);
1293	size += PAGE_ALIGN(npages * sizeof(void *));
1294	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1295	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1296	return size;
1297}
1298EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1299
1300int ttm_bo_create(struct ttm_bo_device *bdev,
1301			unsigned long size,
1302			enum ttm_bo_type type,
1303			struct ttm_placement *placement,
1304			uint32_t page_alignment,
1305			unsigned long buffer_start,
1306			bool interruptible,
1307			struct file *persistent_swap_storage,
1308			struct ttm_buffer_object **p_bo)
1309{
1310	struct ttm_buffer_object *bo;
1311	size_t acc_size;
1312	int ret;
1313
 
 
 
 
 
 
1314	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1315	if (unlikely(bo == NULL))
 
 
1316		return -ENOMEM;
 
1317
1318	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1319	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1320				buffer_start, interruptible,
1321			  persistent_swap_storage, acc_size, NULL, NULL);
1322	if (likely(ret == 0))
1323		*p_bo = bo;
1324
1325	return ret;
1326}
1327EXPORT_SYMBOL(ttm_bo_create);
1328
1329static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1330					unsigned mem_type, bool allow_errors)
1331{
1332	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1333	struct ttm_bo_global *glob = bdev->glob;
1334	int ret;
1335
1336	/*
1337	 * Can't use standard list traversal since we're unlocking.
1338	 */
1339
1340	spin_lock(&glob->lru_lock);
1341	while (!list_empty(&man->lru)) {
1342		spin_unlock(&glob->lru_lock);
1343		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1344		if (ret) {
1345			if (allow_errors) {
1346				return ret;
1347			} else {
1348				pr_err("Cleanup eviction failed\n");
 
1349			}
1350		}
1351		spin_lock(&glob->lru_lock);
1352	}
1353	spin_unlock(&glob->lru_lock);
1354	return 0;
1355}
1356
1357int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man;
1360	int ret = -EINVAL;
1361
1362	if (mem_type >= TTM_NUM_MEM_TYPES) {
1363		pr_err("Illegal memory type %d\n", mem_type);
1364		return ret;
1365	}
1366	man = &bdev->man[mem_type];
1367
1368	if (!man->has_type) {
1369		pr_err("Trying to take down uninitialized memory manager type %u\n",
1370		       mem_type);
1371		return ret;
1372	}
1373
1374	man->use_type = false;
1375	man->has_type = false;
1376
1377	ret = 0;
1378	if (mem_type > 0) {
1379		ttm_bo_force_list_clean(bdev, mem_type, false);
1380
1381		ret = (*man->func->takedown)(man);
1382	}
1383
1384	return ret;
1385}
1386EXPORT_SYMBOL(ttm_bo_clean_mm);
1387
1388int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389{
1390	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1391
1392	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1393		pr_err("Illegal memory manager memory type %u\n", mem_type);
 
 
1394		return -EINVAL;
1395	}
1396
1397	if (!man->has_type) {
1398		pr_err("Memory type %u has not been initialized\n", mem_type);
 
 
1399		return 0;
1400	}
1401
1402	return ttm_bo_force_list_clean(bdev, mem_type, true);
1403}
1404EXPORT_SYMBOL(ttm_bo_evict_mm);
1405
1406int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1407			unsigned long p_size)
1408{
1409	int ret = -EINVAL;
1410	struct ttm_mem_type_manager *man;
1411
1412	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1413	man = &bdev->man[type];
1414	BUG_ON(man->has_type);
1415	man->io_reserve_fastpath = true;
1416	man->use_io_reserve_lru = false;
1417	mutex_init(&man->io_reserve_mutex);
1418	INIT_LIST_HEAD(&man->io_reserve_lru);
1419
1420	ret = bdev->driver->init_mem_type(bdev, type, man);
1421	if (ret)
1422		return ret;
1423	man->bdev = bdev;
1424
1425	ret = 0;
1426	if (type != TTM_PL_SYSTEM) {
1427		ret = (*man->func->init)(man, p_size);
1428		if (ret)
1429			return ret;
1430	}
1431	man->has_type = true;
1432	man->use_type = true;
1433	man->size = p_size;
1434
1435	INIT_LIST_HEAD(&man->lru);
1436
1437	return 0;
1438}
1439EXPORT_SYMBOL(ttm_bo_init_mm);
1440
1441static void ttm_bo_global_kobj_release(struct kobject *kobj)
1442{
1443	struct ttm_bo_global *glob =
1444		container_of(kobj, struct ttm_bo_global, kobj);
1445
1446	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1447	__free_page(glob->dummy_read_page);
1448	kfree(glob);
1449}
1450
1451void ttm_bo_global_release(struct drm_global_reference *ref)
1452{
1453	struct ttm_bo_global *glob = ref->object;
1454
1455	kobject_del(&glob->kobj);
1456	kobject_put(&glob->kobj);
1457}
1458EXPORT_SYMBOL(ttm_bo_global_release);
1459
1460int ttm_bo_global_init(struct drm_global_reference *ref)
1461{
1462	struct ttm_bo_global_ref *bo_ref =
1463		container_of(ref, struct ttm_bo_global_ref, ref);
1464	struct ttm_bo_global *glob = ref->object;
1465	int ret;
1466
1467	mutex_init(&glob->device_list_mutex);
1468	spin_lock_init(&glob->lru_lock);
1469	glob->mem_glob = bo_ref->mem_glob;
1470	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1471
1472	if (unlikely(glob->dummy_read_page == NULL)) {
1473		ret = -ENOMEM;
1474		goto out_no_drp;
1475	}
1476
1477	INIT_LIST_HEAD(&glob->swap_lru);
1478	INIT_LIST_HEAD(&glob->device_list);
1479
1480	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1481	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1482	if (unlikely(ret != 0)) {
1483		pr_err("Could not register buffer object swapout\n");
 
1484		goto out_no_shrink;
1485	}
1486
 
 
 
 
 
 
 
1487	atomic_set(&glob->bo_count, 0);
1488
1489	ret = kobject_init_and_add(
1490		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1491	if (unlikely(ret != 0))
1492		kobject_put(&glob->kobj);
1493	return ret;
1494out_no_shrink:
1495	__free_page(glob->dummy_read_page);
1496out_no_drp:
1497	kfree(glob);
1498	return ret;
1499}
1500EXPORT_SYMBOL(ttm_bo_global_init);
1501
1502
1503int ttm_bo_device_release(struct ttm_bo_device *bdev)
1504{
1505	int ret = 0;
1506	unsigned i = TTM_NUM_MEM_TYPES;
1507	struct ttm_mem_type_manager *man;
1508	struct ttm_bo_global *glob = bdev->glob;
1509
1510	while (i--) {
1511		man = &bdev->man[i];
1512		if (man->has_type) {
1513			man->use_type = false;
1514			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1515				ret = -EBUSY;
1516				pr_err("DRM memory manager type %d is not clean\n",
1517				       i);
 
1518			}
1519			man->has_type = false;
1520		}
1521	}
1522
1523	mutex_lock(&glob->device_list_mutex);
1524	list_del(&bdev->device_list);
1525	mutex_unlock(&glob->device_list_mutex);
1526
1527	cancel_delayed_work_sync(&bdev->wq);
1528
1529	while (ttm_bo_delayed_delete(bdev, true))
1530		;
1531
1532	spin_lock(&glob->lru_lock);
1533	if (list_empty(&bdev->ddestroy))
1534		TTM_DEBUG("Delayed destroy list was clean\n");
1535
1536	if (list_empty(&bdev->man[0].lru))
1537		TTM_DEBUG("Swap list was clean\n");
1538	spin_unlock(&glob->lru_lock);
1539
1540	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1541	write_lock(&bdev->vm_lock);
1542	drm_mm_takedown(&bdev->addr_space_mm);
1543	write_unlock(&bdev->vm_lock);
1544
1545	return ret;
1546}
1547EXPORT_SYMBOL(ttm_bo_device_release);
1548
1549int ttm_bo_device_init(struct ttm_bo_device *bdev,
1550		       struct ttm_bo_global *glob,
1551		       struct ttm_bo_driver *driver,
1552		       uint64_t file_page_offset,
1553		       bool need_dma32)
1554{
1555	int ret = -EINVAL;
1556
1557	rwlock_init(&bdev->vm_lock);
1558	bdev->driver = driver;
1559
1560	memset(bdev->man, 0, sizeof(bdev->man));
1561
1562	/*
1563	 * Initialize the system memory buffer type.
1564	 * Other types need to be driver / IOCTL initialized.
1565	 */
1566	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1567	if (unlikely(ret != 0))
1568		goto out_no_sys;
1569
1570	bdev->addr_space_rb = RB_ROOT;
1571	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1572	if (unlikely(ret != 0))
1573		goto out_no_addr_mm;
1574
1575	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1576	bdev->nice_mode = true;
1577	INIT_LIST_HEAD(&bdev->ddestroy);
1578	bdev->dev_mapping = NULL;
1579	bdev->glob = glob;
1580	bdev->need_dma32 = need_dma32;
1581	bdev->val_seq = 0;
1582	spin_lock_init(&bdev->fence_lock);
1583	mutex_lock(&glob->device_list_mutex);
1584	list_add_tail(&bdev->device_list, &glob->device_list);
1585	mutex_unlock(&glob->device_list_mutex);
1586
1587	return 0;
1588out_no_addr_mm:
1589	ttm_bo_clean_mm(bdev, 0);
1590out_no_sys:
1591	return ret;
1592}
1593EXPORT_SYMBOL(ttm_bo_device_init);
1594
1595/*
1596 * buffer object vm functions.
1597 */
1598
1599bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1600{
1601	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1602
1603	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1604		if (mem->mem_type == TTM_PL_SYSTEM)
1605			return false;
1606
1607		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1608			return false;
1609
1610		if (mem->placement & TTM_PL_FLAG_CACHED)
1611			return false;
1612	}
1613	return true;
1614}
1615
1616void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1617{
1618	struct ttm_bo_device *bdev = bo->bdev;
1619	loff_t offset = (loff_t) bo->addr_space_offset;
1620	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1621
1622	if (!bdev->dev_mapping)
1623		return;
1624	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1625	ttm_mem_io_free_vm(bo);
1626}
1627
1628void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1629{
1630	struct ttm_bo_device *bdev = bo->bdev;
1631	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1632
1633	ttm_mem_io_lock(man, false);
1634	ttm_bo_unmap_virtual_locked(bo);
1635	ttm_mem_io_unlock(man);
1636}
1637
1638
1639EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1640
1641static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1642{
1643	struct ttm_bo_device *bdev = bo->bdev;
1644	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1645	struct rb_node *parent = NULL;
1646	struct ttm_buffer_object *cur_bo;
1647	unsigned long offset = bo->vm_node->start;
1648	unsigned long cur_offset;
1649
1650	while (*cur) {
1651		parent = *cur;
1652		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1653		cur_offset = cur_bo->vm_node->start;
1654		if (offset < cur_offset)
1655			cur = &parent->rb_left;
1656		else if (offset > cur_offset)
1657			cur = &parent->rb_right;
1658		else
1659			BUG();
1660	}
1661
1662	rb_link_node(&bo->vm_rb, parent, cur);
1663	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1664}
1665
1666/**
1667 * ttm_bo_setup_vm:
1668 *
1669 * @bo: the buffer to allocate address space for
1670 *
1671 * Allocate address space in the drm device so that applications
1672 * can mmap the buffer and access the contents. This only
1673 * applies to ttm_bo_type_device objects as others are not
1674 * placed in the drm device address space.
1675 */
1676
1677static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1678{
1679	struct ttm_bo_device *bdev = bo->bdev;
1680	int ret;
1681
1682retry_pre_get:
1683	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1684	if (unlikely(ret != 0))
1685		return ret;
1686
1687	write_lock(&bdev->vm_lock);
1688	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1689					 bo->mem.num_pages, 0, 0);
1690
1691	if (unlikely(bo->vm_node == NULL)) {
1692		ret = -ENOMEM;
1693		goto out_unlock;
1694	}
1695
1696	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1697					      bo->mem.num_pages, 0);
1698
1699	if (unlikely(bo->vm_node == NULL)) {
1700		write_unlock(&bdev->vm_lock);
1701		goto retry_pre_get;
1702	}
1703
1704	ttm_bo_vm_insert_rb(bo);
1705	write_unlock(&bdev->vm_lock);
1706	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1707
1708	return 0;
1709out_unlock:
1710	write_unlock(&bdev->vm_lock);
1711	return ret;
1712}
1713
1714int ttm_bo_wait(struct ttm_buffer_object *bo,
1715		bool lazy, bool interruptible, bool no_wait)
1716{
1717	struct ttm_bo_driver *driver = bo->bdev->driver;
1718	struct ttm_bo_device *bdev = bo->bdev;
1719	void *sync_obj;
1720	void *sync_obj_arg;
1721	int ret = 0;
1722
1723	if (likely(bo->sync_obj == NULL))
1724		return 0;
1725
1726	while (bo->sync_obj) {
1727
1728		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1729			void *tmp_obj = bo->sync_obj;
1730			bo->sync_obj = NULL;
1731			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1732			spin_unlock(&bdev->fence_lock);
1733			driver->sync_obj_unref(&tmp_obj);
1734			spin_lock(&bdev->fence_lock);
1735			continue;
1736		}
1737
1738		if (no_wait)
1739			return -EBUSY;
1740
1741		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1742		sync_obj_arg = bo->sync_obj_arg;
1743		spin_unlock(&bdev->fence_lock);
1744		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1745					    lazy, interruptible);
1746		if (unlikely(ret != 0)) {
1747			driver->sync_obj_unref(&sync_obj);
1748			spin_lock(&bdev->fence_lock);
1749			return ret;
1750		}
1751		spin_lock(&bdev->fence_lock);
1752		if (likely(bo->sync_obj == sync_obj &&
1753			   bo->sync_obj_arg == sync_obj_arg)) {
1754			void *tmp_obj = bo->sync_obj;
1755			bo->sync_obj = NULL;
1756			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1757				  &bo->priv_flags);
1758			spin_unlock(&bdev->fence_lock);
1759			driver->sync_obj_unref(&sync_obj);
1760			driver->sync_obj_unref(&tmp_obj);
1761			spin_lock(&bdev->fence_lock);
1762		} else {
1763			spin_unlock(&bdev->fence_lock);
1764			driver->sync_obj_unref(&sync_obj);
1765			spin_lock(&bdev->fence_lock);
1766		}
1767	}
1768	return 0;
1769}
1770EXPORT_SYMBOL(ttm_bo_wait);
1771
1772int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1773{
1774	struct ttm_bo_device *bdev = bo->bdev;
1775	int ret = 0;
1776
1777	/*
1778	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1779	 */
1780
1781	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1782	if (unlikely(ret != 0))
1783		return ret;
1784	spin_lock(&bdev->fence_lock);
1785	ret = ttm_bo_wait(bo, false, true, no_wait);
1786	spin_unlock(&bdev->fence_lock);
1787	if (likely(ret == 0))
1788		atomic_inc(&bo->cpu_writers);
1789	ttm_bo_unreserve(bo);
1790	return ret;
1791}
1792EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1793
1794void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1795{
1796	if (atomic_dec_and_test(&bo->cpu_writers))
1797		wake_up_all(&bo->event_queue);
1798}
1799EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1800
1801/**
1802 * A buffer object shrink method that tries to swap out the first
1803 * buffer object on the bo_global::swap_lru list.
1804 */
1805
1806static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1807{
1808	struct ttm_bo_global *glob =
1809	    container_of(shrink, struct ttm_bo_global, shrink);
1810	struct ttm_buffer_object *bo;
1811	int ret = -EBUSY;
1812	int put_count;
1813	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1814
1815	spin_lock(&glob->lru_lock);
1816	while (ret == -EBUSY) {
1817		if (unlikely(list_empty(&glob->swap_lru))) {
1818			spin_unlock(&glob->lru_lock);
1819			return -EBUSY;
1820		}
1821
1822		bo = list_first_entry(&glob->swap_lru,
1823				      struct ttm_buffer_object, swap);
1824		kref_get(&bo->list_kref);
1825
1826		if (!list_empty(&bo->ddestroy)) {
1827			spin_unlock(&glob->lru_lock);
1828			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1829			kref_put(&bo->list_kref, ttm_bo_release_list);
1830			spin_lock(&glob->lru_lock);
1831			continue;
1832		}
1833
1834		/**
1835		 * Reserve buffer. Since we unlock while sleeping, we need
1836		 * to re-check that nobody removed us from the swap-list while
1837		 * we slept.
1838		 */
1839
1840		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1841		if (unlikely(ret == -EBUSY)) {
1842			spin_unlock(&glob->lru_lock);
1843			ttm_bo_wait_unreserved(bo, false);
1844			kref_put(&bo->list_kref, ttm_bo_release_list);
1845			spin_lock(&glob->lru_lock);
1846		}
1847	}
1848
1849	BUG_ON(ret != 0);
1850	put_count = ttm_bo_del_from_lru(bo);
1851	spin_unlock(&glob->lru_lock);
1852
1853	ttm_bo_list_ref_sub(bo, put_count, true);
1854
1855	/**
1856	 * Wait for GPU, then move to system cached.
1857	 */
1858
1859	spin_lock(&bo->bdev->fence_lock);
1860	ret = ttm_bo_wait(bo, false, false, false);
1861	spin_unlock(&bo->bdev->fence_lock);
1862
1863	if (unlikely(ret != 0))
1864		goto out;
1865
1866	if ((bo->mem.placement & swap_placement) != swap_placement) {
1867		struct ttm_mem_reg evict_mem;
1868
1869		evict_mem = bo->mem;
1870		evict_mem.mm_node = NULL;
1871		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1872		evict_mem.mem_type = TTM_PL_SYSTEM;
1873
1874		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1875					     false, false, false);
1876		if (unlikely(ret != 0))
1877			goto out;
1878	}
1879
1880	ttm_bo_unmap_virtual(bo);
1881
1882	/**
1883	 * Swap out. Buffer will be swapped in again as soon as
1884	 * anyone tries to access a ttm page.
1885	 */
1886
1887	if (bo->bdev->driver->swap_notify)
1888		bo->bdev->driver->swap_notify(bo);
1889
1890	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1891out:
1892
1893	/**
1894	 *
1895	 * Unreserve without putting on LRU to avoid swapping out an
1896	 * already swapped buffer.
1897	 */
1898
1899	atomic_set(&bo->reserved, 0);
1900	wake_up_all(&bo->event_queue);
1901	kref_put(&bo->list_kref, ttm_bo_release_list);
1902	return ret;
1903}
1904
1905void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1906{
1907	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1908		;
1909}
1910EXPORT_SYMBOL(ttm_bo_swapout_all);