Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2006-2011 Intel Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc.,
  15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  16 *
  17 * Authors:
  18 *	Eric Anholt <eric@anholt.net>
  19 */
  20
  21#include <linux/i2c.h>
  22#include <linux/pm_runtime.h>
  23
  24#include <drm/drmP.h>
  25#include "framebuffer.h"
  26#include "psb_drv.h"
  27#include "psb_intel_drv.h"
  28#include "psb_intel_reg.h"
  29#include "psb_intel_display.h"
  30#include "power.h"
  31#include "cdv_device.h"
  32
  33
  34struct cdv_intel_range_t {
  35	int min, max;
  36};
  37
  38struct cdv_intel_p2_t {
  39	int dot_limit;
  40	int p2_slow, p2_fast;
  41};
  42
  43struct cdv_intel_clock_t {
  44	/* given values */
  45	int n;
  46	int m1, m2;
  47	int p1, p2;
  48	/* derived values */
  49	int dot;
  50	int vco;
  51	int m;
  52	int p;
  53};
  54
  55#define INTEL_P2_NUM		      2
  56
  57struct cdv_intel_limit_t {
  58	struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1;
  59	struct cdv_intel_p2_t p2;
  60};
  61
  62#define CDV_LIMIT_SINGLE_LVDS_96	0
  63#define CDV_LIMIT_SINGLE_LVDS_100	1
  64#define CDV_LIMIT_DAC_HDMI_27		2
  65#define CDV_LIMIT_DAC_HDMI_96		3
  66
  67static const struct cdv_intel_limit_t cdv_intel_limits[] = {
  68	{			/* CDV_SIGNLE_LVDS_96MHz */
  69	 .dot = {.min = 20000, .max = 115500},
  70	 .vco = {.min = 1800000, .max = 3600000},
  71	 .n = {.min = 2, .max = 6},
  72	 .m = {.min = 60, .max = 160},
  73	 .m1 = {.min = 0, .max = 0},
  74	 .m2 = {.min = 58, .max = 158},
  75	 .p = {.min = 28, .max = 140},
  76	 .p1 = {.min = 2, .max = 10},
  77	 .p2 = {.dot_limit = 200000,
  78		.p2_slow = 14, .p2_fast = 14},
  79	 },
  80	{			/* CDV_SINGLE_LVDS_100MHz */
  81	 .dot = {.min = 20000, .max = 115500},
  82	 .vco = {.min = 1800000, .max = 3600000},
  83	 .n = {.min = 2, .max = 6},
  84	 .m = {.min = 60, .max = 160},
  85	 .m1 = {.min = 0, .max = 0},
  86	 .m2 = {.min = 58, .max = 158},
  87	 .p = {.min = 28, .max = 140},
  88	 .p1 = {.min = 2, .max = 10},
  89	 /* The single-channel range is 25-112Mhz, and dual-channel
  90	  * is 80-224Mhz.  Prefer single channel as much as possible.
  91	  */
  92	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
  93	 },
  94	{			/* CDV_DAC_HDMI_27MHz */
  95	 .dot = {.min = 20000, .max = 400000},
  96	 .vco = {.min = 1809000, .max = 3564000},
  97	 .n = {.min = 1, .max = 1},
  98	 .m = {.min = 67, .max = 132},
  99	 .m1 = {.min = 0, .max = 0},
 100	 .m2 = {.min = 65, .max = 130},
 101	 .p = {.min = 5, .max = 90},
 102	 .p1 = {.min = 1, .max = 9},
 103	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
 104	 },
 105	{			/* CDV_DAC_HDMI_96MHz */
 106	 .dot = {.min = 20000, .max = 400000},
 107	 .vco = {.min = 1800000, .max = 3600000},
 108	 .n = {.min = 2, .max = 6},
 109	 .m = {.min = 60, .max = 160},
 110	 .m1 = {.min = 0, .max = 0},
 111	 .m2 = {.min = 58, .max = 158},
 112	 .p = {.min = 5, .max = 100},
 113	 .p1 = {.min = 1, .max = 10},
 114	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
 115	 },
 116};
 117
 118#define _wait_for(COND, MS, W) ({ \
 119	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
 120	int ret__ = 0;							\
 121	while (!(COND)) {						\
 122		if (time_after(jiffies, timeout__)) {			\
 123			ret__ = -ETIMEDOUT;				\
 124			break;						\
 125		}							\
 126		if (W && !in_dbg_master())				\
 127			msleep(W);					\
 128	}								\
 129	ret__;								\
 130})
 131
 132#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 133
 134
 135static int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
 136{
 137	int ret;
 138
 139	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 140	if (ret) {
 141		DRM_ERROR("timeout waiting for SB to idle before read\n");
 142		return ret;
 143	}
 144
 145	REG_WRITE(SB_ADDR, reg);
 146	REG_WRITE(SB_PCKT,
 147		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
 148		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
 149		   SET_FIELD(0xf, SB_BYTE_ENABLE));
 150
 151	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 152	if (ret) {
 153		DRM_ERROR("timeout waiting for SB to idle after read\n");
 154		return ret;
 155	}
 156
 157	*val = REG_READ(SB_DATA);
 158
 159	return 0;
 160}
 161
 162static int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
 163{
 164	int ret;
 165	static bool dpio_debug = true;
 166	u32 temp;
 167
 168	if (dpio_debug) {
 169		if (cdv_sb_read(dev, reg, &temp) == 0)
 170			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
 171		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
 172	}
 173
 174	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 175	if (ret) {
 176		DRM_ERROR("timeout waiting for SB to idle before write\n");
 177		return ret;
 178	}
 179
 180	REG_WRITE(SB_ADDR, reg);
 181	REG_WRITE(SB_DATA, val);
 182	REG_WRITE(SB_PCKT,
 183		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
 184		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
 185		   SET_FIELD(0xf, SB_BYTE_ENABLE));
 186
 187	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 188	if (ret) {
 189		DRM_ERROR("timeout waiting for SB to idle after write\n");
 190		return ret;
 191	}
 192
 193	if (dpio_debug) {
 194		if (cdv_sb_read(dev, reg, &temp) == 0)
 195			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
 196	}
 197
 198	return 0;
 199}
 200
 201/* Reset the DPIO configuration register.  The BIOS does this at every
 202 * mode set.
 203 */
 204static void cdv_sb_reset(struct drm_device *dev)
 205{
 206
 207	REG_WRITE(DPIO_CFG, 0);
 208	REG_READ(DPIO_CFG);
 209	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
 210}
 211
 212/* Unlike most Intel display engines, on Cedarview the DPLL registers
 213 * are behind this sideband bus.  They must be programmed while the
 214 * DPLL reference clock is on in the DPLL control register, but before
 215 * the DPLL is enabled in the DPLL control register.
 216 */
 217static int
 218cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
 219			       struct cdv_intel_clock_t *clock, bool is_lvds)
 220{
 221	struct psb_intel_crtc *psb_crtc = to_psb_intel_crtc(crtc);
 222	int pipe = psb_crtc->pipe;
 223	u32 m, n_vco, p;
 224	int ret = 0;
 225	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
 226	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
 227	u32 ref_value;
 228	u32 lane_reg, lane_value;
 229
 230	cdv_sb_reset(dev);
 231
 232	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
 233
 234	udelay(100);
 235
 236	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
 237	ref_value = 0x68A701;
 238
 239	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
 240
 241	/* We don't know what the other fields of these regs are, so
 242	 * leave them in place.
 243	 */
 244	/* 
 245	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
 246	 * for the pipe A/B. Display spec 1.06 has wrong definition.
 247	 * Correct definition is like below:
 248	 *
 249	 * refclka mean use clock from same PLL
 250	 *
 251	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
 252	 *
 253	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
 254	 *
 255	 */  
 256	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
 257	if (ret)
 258		return ret;
 259	ref_value &= ~(REF_CLK_MASK);
 260
 261	/* use DPLL_A for pipeB on CRT/HDMI */
 262	if (pipe == 1 && !is_lvds) {
 263		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
 264		ref_value |= REF_CLK_DPLLA;
 265	} else {
 266		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
 267		ref_value |= REF_CLK_DPLL;
 268	}
 269	ret = cdv_sb_write(dev, ref_sfr, ref_value);
 270	if (ret)
 271		return ret;
 272
 273	ret = cdv_sb_read(dev, SB_M(pipe), &m);
 274	if (ret)
 275		return ret;
 276	m &= ~SB_M_DIVIDER_MASK;
 277	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
 278	ret = cdv_sb_write(dev, SB_M(pipe), m);
 279	if (ret)
 280		return ret;
 281
 282	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
 283	if (ret)
 284		return ret;
 285
 286	/* Follow the BIOS to program the N_DIVIDER REG */
 287	n_vco &= 0xFFFF;
 288	n_vco |= 0x107;
 289	n_vco &= ~(SB_N_VCO_SEL_MASK |
 290		   SB_N_DIVIDER_MASK |
 291		   SB_N_CB_TUNE_MASK);
 292
 293	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
 294
 295	if (clock->vco < 2250000) {
 296		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
 297		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
 298	} else if (clock->vco < 2750000) {
 299		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
 300		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
 301	} else if (clock->vco < 3300000) {
 302		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
 303		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
 304	} else {
 305		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
 306		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
 307	}
 308
 309	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
 310	if (ret)
 311		return ret;
 312
 313	ret = cdv_sb_read(dev, SB_P(pipe), &p);
 314	if (ret)
 315		return ret;
 316	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
 317	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
 318	switch (clock->p2) {
 319	case 5:
 320		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
 321		break;
 322	case 10:
 323		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
 324		break;
 325	case 14:
 326		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
 327		break;
 328	case 7:
 329		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
 330		break;
 331	default:
 332		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
 333		return -EINVAL;
 334	}
 335	ret = cdv_sb_write(dev, SB_P(pipe), p);
 336	if (ret)
 337		return ret;
 338
 339	lane_reg = PSB_LANE0;
 340	cdv_sb_read(dev, lane_reg, &lane_value);
 341	lane_value &= ~(LANE_PLL_MASK);
 342	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 343	cdv_sb_write(dev, lane_reg, lane_value);
 344
 345	lane_reg = PSB_LANE1;
 346	cdv_sb_read(dev, lane_reg, &lane_value);
 347	lane_value &= ~(LANE_PLL_MASK);
 348	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 349	cdv_sb_write(dev, lane_reg, lane_value);
 350
 351	lane_reg = PSB_LANE2;
 352	cdv_sb_read(dev, lane_reg, &lane_value);
 353	lane_value &= ~(LANE_PLL_MASK);
 354	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 355	cdv_sb_write(dev, lane_reg, lane_value);
 356
 357	lane_reg = PSB_LANE3;
 358	cdv_sb_read(dev, lane_reg, &lane_value);
 359	lane_value &= ~(LANE_PLL_MASK);
 360	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 361	cdv_sb_write(dev, lane_reg, lane_value);
 362
 363	return 0;
 364}
 365
 366/*
 367 * Returns whether any encoder on the specified pipe is of the specified type
 368 */
 369static bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type)
 370{
 371	struct drm_device *dev = crtc->dev;
 372	struct drm_mode_config *mode_config = &dev->mode_config;
 373	struct drm_connector *l_entry;
 374
 375	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
 376		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
 377			struct psb_intel_encoder *psb_intel_encoder =
 378					psb_intel_attached_encoder(l_entry);
 379			if (psb_intel_encoder->type == type)
 380				return true;
 381		}
 382	}
 383	return false;
 384}
 385
 386static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
 387							int refclk)
 388{
 389	const struct cdv_intel_limit_t *limit;
 390	if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 391		/*
 392		 * Now only single-channel LVDS is supported on CDV. If it is
 393		 * incorrect, please add the dual-channel LVDS.
 394		 */
 395		if (refclk == 96000)
 396			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
 397		else
 398			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
 399	} else {
 400		if (refclk == 27000)
 401			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
 402		else
 403			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
 404	}
 405	return limit;
 406}
 407
 408/* m1 is reserved as 0 in CDV, n is a ring counter */
 409static void cdv_intel_clock(struct drm_device *dev,
 410			int refclk, struct cdv_intel_clock_t *clock)
 411{
 412	clock->m = clock->m2 + 2;
 413	clock->p = clock->p1 * clock->p2;
 414	clock->vco = (refclk * clock->m) / clock->n;
 415	clock->dot = clock->vco / clock->p;
 416}
 417
 418
 419#define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
 420static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc,
 421				const struct cdv_intel_limit_t *limit,
 422			       struct cdv_intel_clock_t *clock)
 423{
 424	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
 425		INTELPllInvalid("p1 out of range\n");
 426	if (clock->p < limit->p.min || limit->p.max < clock->p)
 427		INTELPllInvalid("p out of range\n");
 428	/* unnecessary to check the range of m(m1/M2)/n again */
 429	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 430		INTELPllInvalid("vco out of range\n");
 431	/* XXX: We may need to be checking "Dot clock"
 432	 * depending on the multiplier, connector, etc.,
 433	 * rather than just a single range.
 434	 */
 435	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 436		INTELPllInvalid("dot out of range\n");
 437
 438	return true;
 439}
 440
 441static bool cdv_intel_find_best_PLL(struct drm_crtc *crtc, int target,
 442				int refclk,
 443				struct cdv_intel_clock_t *best_clock)
 444{
 445	struct drm_device *dev = crtc->dev;
 446	struct cdv_intel_clock_t clock;
 447	const struct cdv_intel_limit_t *limit = cdv_intel_limit(crtc, refclk);
 448	int err = target;
 449
 450
 451	if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
 452	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
 453		/*
 454		 * For LVDS, if the panel is on, just rely on its current
 455		 * settings for dual-channel.  We haven't figured out how to
 456		 * reliably set up different single/dual channel state, if we
 457		 * even can.
 458		 */
 459		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
 460		    LVDS_CLKB_POWER_UP)
 461			clock.p2 = limit->p2.p2_fast;
 462		else
 463			clock.p2 = limit->p2.p2_slow;
 464	} else {
 465		if (target < limit->p2.dot_limit)
 466			clock.p2 = limit->p2.p2_slow;
 467		else
 468			clock.p2 = limit->p2.p2_fast;
 469	}
 470
 471	memset(best_clock, 0, sizeof(*best_clock));
 472	clock.m1 = 0;
 473	/* m1 is reserved as 0 in CDV, n is a ring counter.
 474	   So skip the m1 loop */
 475	for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
 476		for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max;
 477					     clock.m2++) {
 478			for (clock.p1 = limit->p1.min;
 479					clock.p1 <= limit->p1.max;
 480					clock.p1++) {
 481				int this_err;
 482
 483				cdv_intel_clock(dev, refclk, &clock);
 484
 485				if (!cdv_intel_PLL_is_valid(crtc,
 486								limit, &clock))
 487						continue;
 488
 489				this_err = abs(clock.dot - target);
 490				if (this_err < err) {
 491					*best_clock = clock;
 492					err = this_err;
 493				}
 494			}
 495		}
 496	}
 497
 498	return err != target;
 499}
 500
 501static int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
 502			    int x, int y, struct drm_framebuffer *old_fb)
 503{
 504	struct drm_device *dev = crtc->dev;
 505	struct drm_psb_private *dev_priv = dev->dev_private;
 506	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
 507	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
 508	int pipe = psb_intel_crtc->pipe;
 509	const struct psb_offset *map = &dev_priv->regmap[pipe];
 510	unsigned long start, offset;
 511	u32 dspcntr;
 512	int ret = 0;
 513
 514	if (!gma_power_begin(dev, true))
 515		return 0;
 516
 517	/* no fb bound */
 518	if (!crtc->fb) {
 519		dev_err(dev->dev, "No FB bound\n");
 520		goto psb_intel_pipe_cleaner;
 521	}
 522
 523
 524	/* We are displaying this buffer, make sure it is actually loaded
 525	   into the GTT */
 526	ret = psb_gtt_pin(psbfb->gtt);
 527	if (ret < 0)
 528		goto psb_intel_pipe_set_base_exit;
 529	start = psbfb->gtt->offset;
 530	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
 531
 532	REG_WRITE(map->stride, crtc->fb->pitches[0]);
 533
 534	dspcntr = REG_READ(map->cntr);
 535	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
 536
 537	switch (crtc->fb->bits_per_pixel) {
 538	case 8:
 539		dspcntr |= DISPPLANE_8BPP;
 540		break;
 541	case 16:
 542		if (crtc->fb->depth == 15)
 543			dspcntr |= DISPPLANE_15_16BPP;
 544		else
 545			dspcntr |= DISPPLANE_16BPP;
 546		break;
 547	case 24:
 548	case 32:
 549		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
 550		break;
 551	default:
 552		dev_err(dev->dev, "Unknown color depth\n");
 553		ret = -EINVAL;
 554		goto psb_intel_pipe_set_base_exit;
 555	}
 556	REG_WRITE(map->cntr, dspcntr);
 557
 558	dev_dbg(dev->dev,
 559		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
 560
 561	REG_WRITE(map->base, offset);
 562	REG_READ(map->base);
 563	REG_WRITE(map->surf, start);
 564	REG_READ(map->surf);
 565
 566psb_intel_pipe_cleaner:
 567	/* If there was a previous display we can now unpin it */
 568	if (old_fb)
 569		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
 570
 571psb_intel_pipe_set_base_exit:
 572	gma_power_end(dev);
 573	return ret;
 574}
 575
 576#define		FIFO_PIPEA		(1 << 0)
 577#define		FIFO_PIPEB		(1 << 1)
 578
 579static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
 580{
 581	struct drm_crtc *crtc;
 582	struct drm_psb_private *dev_priv = dev->dev_private;
 583	struct psb_intel_crtc *psb_intel_crtc = NULL;
 584
 585	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 586	psb_intel_crtc = to_psb_intel_crtc(crtc);
 587
 588	if (crtc->fb == NULL || !psb_intel_crtc->active)
 589		return false;
 590	return true;
 591}
 592
 593static bool cdv_intel_single_pipe_active (struct drm_device *dev)
 594{
 595	uint32_t pipe_enabled = 0;
 596
 597	if (cdv_intel_pipe_enabled(dev, 0))
 598		pipe_enabled |= FIFO_PIPEA;
 599
 600	if (cdv_intel_pipe_enabled(dev, 1))
 601		pipe_enabled |= FIFO_PIPEB;
 602
 603
 604	DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
 605
 606	if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
 607		return true;
 608	else
 609		return false;
 610}
 611
 612static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
 613{
 614	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
 615	struct drm_mode_config *mode_config = &dev->mode_config;
 616	struct drm_connector *connector;
 617
 618	if (psb_intel_crtc->pipe != 1)
 619		return false;
 620
 621	list_for_each_entry(connector, &mode_config->connector_list, head) {
 622		struct psb_intel_encoder *psb_intel_encoder =
 623					psb_intel_attached_encoder(connector);
 624
 625		if (!connector->encoder
 626		    || connector->encoder->crtc != crtc)
 627			continue;
 628
 629		if (psb_intel_encoder->type == INTEL_OUTPUT_LVDS)
 630			return true;
 631	}
 632
 633	return false;
 634}
 635
 636static void cdv_intel_disable_self_refresh (struct drm_device *dev)
 637{
 638	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
 639
 640		/* Disable self-refresh before adjust WM */
 641		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
 642		REG_READ(FW_BLC_SELF);
 643
 644		cdv_intel_wait_for_vblank(dev);
 645
 646		/* Cedarview workaround to write ovelay plane, which force to leave
 647		 * MAX_FIFO state.
 648		 */
 649		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
 650		REG_READ(OV_OVADD);
 651
 652		cdv_intel_wait_for_vblank(dev);
 653	}
 654
 655}
 656
 657static void cdv_intel_update_watermark (struct drm_device *dev, struct drm_crtc *crtc)
 658{
 659
 660	if (cdv_intel_single_pipe_active(dev)) {
 661		u32 fw;
 662
 663		fw = REG_READ(DSPFW1);
 664		fw &= ~DSP_FIFO_SR_WM_MASK;
 665		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
 666		fw &= ~CURSOR_B_FIFO_WM_MASK;
 667		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
 668		REG_WRITE(DSPFW1, fw);
 669
 670		fw = REG_READ(DSPFW2);
 671		fw &= ~CURSOR_A_FIFO_WM_MASK;
 672		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
 673		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
 674		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
 675		REG_WRITE(DSPFW2, fw);
 676
 677		REG_WRITE(DSPFW3, 0x36000000);
 678
 679		/* ignore FW4 */
 680
 681		if (is_pipeb_lvds(dev, crtc)) {
 682			REG_WRITE(DSPFW5, 0x00040330);
 683		} else {
 684			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
 685			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
 686			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
 687			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
 688			REG_WRITE(DSPFW5, fw);
 689		}
 690
 691		REG_WRITE(DSPFW6, 0x10);
 692
 693		cdv_intel_wait_for_vblank(dev);
 694
 695		/* enable self-refresh for single pipe active */
 696		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
 697		REG_READ(FW_BLC_SELF);
 698		cdv_intel_wait_for_vblank(dev);
 699
 700	} else {
 701
 702		/* HW team suggested values... */
 703		REG_WRITE(DSPFW1, 0x3f880808);
 704		REG_WRITE(DSPFW2, 0x0b020202);
 705		REG_WRITE(DSPFW3, 0x24000000);
 706		REG_WRITE(DSPFW4, 0x08030202);
 707		REG_WRITE(DSPFW5, 0x01010101);
 708		REG_WRITE(DSPFW6, 0x1d0);
 709
 710		cdv_intel_wait_for_vblank(dev);
 711
 712		cdv_intel_disable_self_refresh(dev);
 713	
 714	}
 715}
 716
 717/** Loads the palette/gamma unit for the CRTC with the prepared values */
 718static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
 719{
 720	struct drm_device *dev = crtc->dev;
 721	struct drm_psb_private *dev_priv = dev->dev_private;
 722	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
 723	int palreg = PALETTE_A;
 724	int i;
 725
 726	/* The clocks have to be on to load the palette. */
 727	if (!crtc->enabled)
 728		return;
 729
 730	switch (psb_intel_crtc->pipe) {
 731	case 0:
 732		break;
 733	case 1:
 734		palreg = PALETTE_B;
 735		break;
 736	case 2:
 737		palreg = PALETTE_C;
 738		break;
 739	default:
 740		dev_err(dev->dev, "Illegal Pipe Number.\n");
 741		return;
 742	}
 743
 744	if (gma_power_begin(dev, false)) {
 745		for (i = 0; i < 256; i++) {
 746			REG_WRITE(palreg + 4 * i,
 747				  ((psb_intel_crtc->lut_r[i] +
 748				  psb_intel_crtc->lut_adj[i]) << 16) |
 749				  ((psb_intel_crtc->lut_g[i] +
 750				  psb_intel_crtc->lut_adj[i]) << 8) |
 751				  (psb_intel_crtc->lut_b[i] +
 752				  psb_intel_crtc->lut_adj[i]));
 753		}
 754		gma_power_end(dev);
 755	} else {
 756		for (i = 0; i < 256; i++) {
 757			dev_priv->regs.pipe[0].palette[i] =
 758				  ((psb_intel_crtc->lut_r[i] +
 759				  psb_intel_crtc->lut_adj[i]) << 16) |
 760				  ((psb_intel_crtc->lut_g[i] +
 761				  psb_intel_crtc->lut_adj[i]) << 8) |
 762				  (psb_intel_crtc->lut_b[i] +
 763				  psb_intel_crtc->lut_adj[i]);
 764		}
 765
 766	}
 767}
 768
 769/**
 770 * Sets the power management mode of the pipe and plane.
 771 *
 772 * This code should probably grow support for turning the cursor off and back
 773 * on appropriately at the same time as we're turning the pipe off/on.
 774 */
 775static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
 776{
 777	struct drm_device *dev = crtc->dev;
 778	struct drm_psb_private *dev_priv = dev->dev_private;
 779	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
 780	int pipe = psb_intel_crtc->pipe;
 781	const struct psb_offset *map = &dev_priv->regmap[pipe];
 782	u32 temp;
 783
 784	/* XXX: When our outputs are all unaware of DPMS modes other than off
 785	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
 786	 */
 787	cdv_intel_disable_self_refresh(dev);
 788
 789	switch (mode) {
 790	case DRM_MODE_DPMS_ON:
 791	case DRM_MODE_DPMS_STANDBY:
 792	case DRM_MODE_DPMS_SUSPEND:
 793		if (psb_intel_crtc->active)
 794			return;
 795
 796		psb_intel_crtc->active = true;
 797
 798		/* Enable the DPLL */
 799		temp = REG_READ(map->dpll);
 800		if ((temp & DPLL_VCO_ENABLE) == 0) {
 801			REG_WRITE(map->dpll, temp);
 802			REG_READ(map->dpll);
 803			/* Wait for the clocks to stabilize. */
 804			udelay(150);
 805			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
 806			REG_READ(map->dpll);
 807			/* Wait for the clocks to stabilize. */
 808			udelay(150);
 809			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
 810			REG_READ(map->dpll);
 811			/* Wait for the clocks to stabilize. */
 812			udelay(150);
 813		}
 814
 815		/* Jim Bish - switch plan and pipe per scott */
 816		/* Enable the plane */
 817		temp = REG_READ(map->cntr);
 818		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
 819			REG_WRITE(map->cntr,
 820				  temp | DISPLAY_PLANE_ENABLE);
 821			/* Flush the plane changes */
 822			REG_WRITE(map->base, REG_READ(map->base));
 823		}
 824
 825		udelay(150);
 826
 827		/* Enable the pipe */
 828		temp = REG_READ(map->conf);
 829		if ((temp & PIPEACONF_ENABLE) == 0)
 830			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
 831
 832		temp = REG_READ(map->status);
 833		temp &= ~(0xFFFF);
 834		temp |= PIPE_FIFO_UNDERRUN;
 835		REG_WRITE(map->status, temp);
 836		REG_READ(map->status);
 837
 838		cdv_intel_update_watermark(dev, crtc);
 839		cdv_intel_crtc_load_lut(crtc);
 840
 841		/* Give the overlay scaler a chance to enable
 842		 * if it's on this pipe */
 843		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
 844		psb_intel_crtc->crtc_enable = true;
 845		break;
 846	case DRM_MODE_DPMS_OFF:
 847		if (!psb_intel_crtc->active)
 848			return;
 849
 850		psb_intel_crtc->active = false;
 851
 852		/* Give the overlay scaler a chance to disable
 853		 * if it's on this pipe */
 854		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
 855
 856		/* Disable the VGA plane that we never use */
 857		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
 858
 859		/* Jim Bish - changed pipe/plane here as well. */
 860
 861		drm_vblank_off(dev, pipe);
 862		/* Wait for vblank for the disable to take effect */
 863		cdv_intel_wait_for_vblank(dev);
 864
 865		/* Next, disable display pipes */
 866		temp = REG_READ(map->conf);
 867		if ((temp & PIPEACONF_ENABLE) != 0) {
 868			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
 869			REG_READ(map->conf);
 870		}
 871
 872		/* Wait for vblank for the disable to take effect. */
 873		cdv_intel_wait_for_vblank(dev);
 874
 875		udelay(150);
 876
 877		/* Disable display plane */
 878		temp = REG_READ(map->cntr);
 879		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
 880			REG_WRITE(map->cntr,
 881				  temp & ~DISPLAY_PLANE_ENABLE);
 882			/* Flush the plane changes */
 883			REG_WRITE(map->base, REG_READ(map->base));
 884			REG_READ(map->base);
 885		}
 886
 887		temp = REG_READ(map->dpll);
 888		if ((temp & DPLL_VCO_ENABLE) != 0) {
 889			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
 890			REG_READ(map->dpll);
 891		}
 892
 893		/* Wait for the clocks to turn off. */
 894		udelay(150);
 895		cdv_intel_update_watermark(dev, crtc);
 896		psb_intel_crtc->crtc_enable = false;
 897		break;
 898	}
 899	/*Set FIFO Watermarks*/
 900	REG_WRITE(DSPARB, 0x3F3E);
 901}
 902
 903static void cdv_intel_crtc_prepare(struct drm_crtc *crtc)
 904{
 905	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
 906	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
 907}
 908
 909static void cdv_intel_crtc_commit(struct drm_crtc *crtc)
 910{
 911	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
 912	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
 913}
 914
 915static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc,
 916				  struct drm_display_mode *mode,
 917				  struct drm_display_mode *adjusted_mode)
 918{
 919	return true;
 920}
 921
 922
 923/**
 924 * Return the pipe currently connected to the panel fitter,
 925 * or -1 if the panel fitter is not present or not in use
 926 */
 927static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
 928{
 929	u32 pfit_control;
 930
 931	pfit_control = REG_READ(PFIT_CONTROL);
 932
 933	/* See if the panel fitter is in use */
 934	if ((pfit_control & PFIT_ENABLE) == 0)
 935		return -1;
 936	return (pfit_control >> 29) & 0x3;
 937}
 938
 939static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
 940			       struct drm_display_mode *mode,
 941			       struct drm_display_mode *adjusted_mode,
 942			       int x, int y,
 943			       struct drm_framebuffer *old_fb)
 944{
 945	struct drm_device *dev = crtc->dev;
 946	struct drm_psb_private *dev_priv = dev->dev_private;
 947	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
 948	int pipe = psb_intel_crtc->pipe;
 949	const struct psb_offset *map = &dev_priv->regmap[pipe];
 950	int refclk;
 951	struct cdv_intel_clock_t clock;
 952	u32 dpll = 0, dspcntr, pipeconf;
 953	bool ok;
 954	bool is_crt = false, is_lvds = false, is_tv = false;
 955	bool is_hdmi = false;
 956	struct drm_mode_config *mode_config = &dev->mode_config;
 957	struct drm_connector *connector;
 958
 959	list_for_each_entry(connector, &mode_config->connector_list, head) {
 960		struct psb_intel_encoder *psb_intel_encoder =
 961					psb_intel_attached_encoder(connector);
 962
 963		if (!connector->encoder
 964		    || connector->encoder->crtc != crtc)
 965			continue;
 966
 967		switch (psb_intel_encoder->type) {
 968		case INTEL_OUTPUT_LVDS:
 969			is_lvds = true;
 970			break;
 971		case INTEL_OUTPUT_TVOUT:
 972			is_tv = true;
 973			break;
 974		case INTEL_OUTPUT_ANALOG:
 975			is_crt = true;
 976			break;
 977		case INTEL_OUTPUT_HDMI:
 978			is_hdmi = true;
 979			break;
 980		}
 981	}
 982
 983	if (dev_priv->dplla_96mhz)
 984		/* low-end sku, 96/100 mhz */
 985		refclk = 96000;
 986	else
 987		/* high-end sku, 27/100 mhz */
 988		refclk = 27000;
 989
 990	if (is_lvds && dev_priv->lvds_use_ssc) {
 991		refclk = dev_priv->lvds_ssc_freq * 1000;
 992		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
 993	}
 994
 995	drm_mode_debug_printmodeline(adjusted_mode);
 996
 997	ok = cdv_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
 998				 &clock);
 999	if (!ok) {
1000		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
1001		return 0;
1002	}
1003
1004	dpll = DPLL_VGA_MODE_DIS;
1005	if (is_tv) {
1006		/* XXX: just matching BIOS for now */
1007/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
1008		dpll |= 3;
1009	}
1010/*		dpll |= PLL_REF_INPUT_DREFCLK; */
1011
1012	dpll |= DPLL_SYNCLOCK_ENABLE;
1013/*	if (is_lvds)
1014		dpll |= DPLLB_MODE_LVDS;
1015	else
1016		dpll |= DPLLB_MODE_DAC_SERIAL; */
1017	/* dpll |= (2 << 11); */
1018
1019	/* setup pipeconf */
1020	pipeconf = REG_READ(map->conf);
1021
1022	/* Set up the display plane register */
1023	dspcntr = DISPPLANE_GAMMA_ENABLE;
1024
1025	if (pipe == 0)
1026		dspcntr |= DISPPLANE_SEL_PIPE_A;
1027	else
1028		dspcntr |= DISPPLANE_SEL_PIPE_B;
1029
1030	dspcntr |= DISPLAY_PLANE_ENABLE;
1031	pipeconf |= PIPEACONF_ENABLE;
1032
1033	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
1034	REG_READ(map->dpll);
1035
1036	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds);
1037
1038	udelay(150);
1039
1040
1041	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
1042	 * This is an exception to the general rule that mode_set doesn't turn
1043	 * things on.
1044	 */
1045	if (is_lvds) {
1046		u32 lvds = REG_READ(LVDS);
1047
1048		lvds |=
1049		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
1050		    LVDS_PIPEB_SELECT;
1051		/* Set the B0-B3 data pairs corresponding to
1052		 * whether we're going to
1053		 * set the DPLLs for dual-channel mode or not.
1054		 */
1055		if (clock.p2 == 7)
1056			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1057		else
1058			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1059
1060		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1061		 * appropriately here, but we need to look more
1062		 * thoroughly into how panels behave in the two modes.
1063		 */
1064
1065		REG_WRITE(LVDS, lvds);
1066		REG_READ(LVDS);
1067	}
1068
1069	dpll |= DPLL_VCO_ENABLE;
1070
1071	/* Disable the panel fitter if it was on our pipe */
1072	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
1073		REG_WRITE(PFIT_CONTROL, 0);
1074
1075	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1076	drm_mode_debug_printmodeline(mode);
1077
1078	REG_WRITE(map->dpll,
1079		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
1080	REG_READ(map->dpll);
1081	/* Wait for the clocks to stabilize. */
1082	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
1083
1084	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
1085		dev_err(dev->dev, "Failed to get DPLL lock\n");
1086		return -EBUSY;
1087	}
1088
1089	{
1090		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1091		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1092	}
1093
1094	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
1095		  ((adjusted_mode->crtc_htotal - 1) << 16));
1096	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
1097		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
1098	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
1099		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
1100	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
1101		  ((adjusted_mode->crtc_vtotal - 1) << 16));
1102	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
1103		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
1104	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
1105		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
1106	/* pipesrc and dspsize control the size that is scaled from,
1107	 * which should always be the user's requested size.
1108	 */
1109	REG_WRITE(map->size,
1110		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1111	REG_WRITE(map->pos, 0);
1112	REG_WRITE(map->src,
1113		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1114	REG_WRITE(map->conf, pipeconf);
1115	REG_READ(map->conf);
1116
1117	cdv_intel_wait_for_vblank(dev);
1118
1119	REG_WRITE(map->cntr, dspcntr);
1120
1121	/* Flush the plane changes */
1122	{
1123		struct drm_crtc_helper_funcs *crtc_funcs =
1124		    crtc->helper_private;
1125		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1126	}
1127
1128	cdv_intel_wait_for_vblank(dev);
1129
1130	return 0;
1131}
1132
1133
1134/**
1135 * Save HW states of giving crtc
1136 */
1137static void cdv_intel_crtc_save(struct drm_crtc *crtc)
1138{
1139	struct drm_device *dev = crtc->dev;
1140	struct drm_psb_private *dev_priv = dev->dev_private;
1141	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1142	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1143	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1144	uint32_t paletteReg;
1145	int i;
1146
1147	if (!crtc_state) {
1148		dev_dbg(dev->dev, "No CRTC state found\n");
1149		return;
1150	}
1151
1152	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
1153	crtc_state->savePIPECONF = REG_READ(map->conf);
1154	crtc_state->savePIPESRC = REG_READ(map->src);
1155	crtc_state->saveFP0 = REG_READ(map->fp0);
1156	crtc_state->saveFP1 = REG_READ(map->fp1);
1157	crtc_state->saveDPLL = REG_READ(map->dpll);
1158	crtc_state->saveHTOTAL = REG_READ(map->htotal);
1159	crtc_state->saveHBLANK = REG_READ(map->hblank);
1160	crtc_state->saveHSYNC = REG_READ(map->hsync);
1161	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
1162	crtc_state->saveVBLANK = REG_READ(map->vblank);
1163	crtc_state->saveVSYNC = REG_READ(map->vsync);
1164	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
1165
1166	/*NOTE: DSPSIZE DSPPOS only for psb*/
1167	crtc_state->saveDSPSIZE = REG_READ(map->size);
1168	crtc_state->saveDSPPOS = REG_READ(map->pos);
1169
1170	crtc_state->saveDSPBASE = REG_READ(map->base);
1171
1172	DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1173			crtc_state->saveDSPCNTR,
1174			crtc_state->savePIPECONF,
1175			crtc_state->savePIPESRC,
1176			crtc_state->saveFP0,
1177			crtc_state->saveFP1,
1178			crtc_state->saveDPLL,
1179			crtc_state->saveHTOTAL,
1180			crtc_state->saveHBLANK,
1181			crtc_state->saveHSYNC,
1182			crtc_state->saveVTOTAL,
1183			crtc_state->saveVBLANK,
1184			crtc_state->saveVSYNC,
1185			crtc_state->saveDSPSTRIDE,
1186			crtc_state->saveDSPSIZE,
1187			crtc_state->saveDSPPOS,
1188			crtc_state->saveDSPBASE
1189		);
1190
1191	paletteReg = map->palette;
1192	for (i = 0; i < 256; ++i)
1193		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1194}
1195
1196/**
1197 * Restore HW states of giving crtc
1198 */
1199static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1200{
1201	struct drm_device *dev = crtc->dev;
1202	struct drm_psb_private *dev_priv = dev->dev_private;
1203	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
1204	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1205	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1206	uint32_t paletteReg;
1207	int i;
1208
1209	if (!crtc_state) {
1210		dev_dbg(dev->dev, "No crtc state\n");
1211		return;
1212	}
1213
1214	DRM_DEBUG(
1215		"current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1216		REG_READ(map->cntr),
1217		REG_READ(map->conf),
1218		REG_READ(map->src),
1219		REG_READ(map->fp0),
1220		REG_READ(map->fp1),
1221		REG_READ(map->dpll),
1222		REG_READ(map->htotal),
1223		REG_READ(map->hblank),
1224		REG_READ(map->hsync),
1225		REG_READ(map->vtotal),
1226		REG_READ(map->vblank),
1227		REG_READ(map->vsync),
1228		REG_READ(map->stride),
1229		REG_READ(map->size),
1230		REG_READ(map->pos),
1231		REG_READ(map->base)
1232	);
1233
1234	DRM_DEBUG(
1235		"saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1236		crtc_state->saveDSPCNTR,
1237		crtc_state->savePIPECONF,
1238		crtc_state->savePIPESRC,
1239		crtc_state->saveFP0,
1240		crtc_state->saveFP1,
1241		crtc_state->saveDPLL,
1242		crtc_state->saveHTOTAL,
1243		crtc_state->saveHBLANK,
1244		crtc_state->saveHSYNC,
1245		crtc_state->saveVTOTAL,
1246		crtc_state->saveVBLANK,
1247		crtc_state->saveVSYNC,
1248		crtc_state->saveDSPSTRIDE,
1249		crtc_state->saveDSPSIZE,
1250		crtc_state->saveDSPPOS,
1251		crtc_state->saveDSPBASE
1252	);
1253
1254
1255	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1256		REG_WRITE(map->dpll,
1257				crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1258		REG_READ(map->dpll);
1259		DRM_DEBUG("write dpll: %x\n",
1260				REG_READ(map->dpll));
1261		udelay(150);
1262	}
1263
1264	REG_WRITE(map->fp0, crtc_state->saveFP0);
1265	REG_READ(map->fp0);
1266
1267	REG_WRITE(map->fp1, crtc_state->saveFP1);
1268	REG_READ(map->fp1);
1269
1270	REG_WRITE(map->dpll, crtc_state->saveDPLL);
1271	REG_READ(map->dpll);
1272	udelay(150);
1273
1274	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
1275	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
1276	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
1277	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
1278	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
1279	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
1280	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
1281
1282	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
1283	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
1284
1285	REG_WRITE(map->src, crtc_state->savePIPESRC);
1286	REG_WRITE(map->base, crtc_state->saveDSPBASE);
1287	REG_WRITE(map->conf, crtc_state->savePIPECONF);
1288
1289	cdv_intel_wait_for_vblank(dev);
1290
1291	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
1292	REG_WRITE(map->base, crtc_state->saveDSPBASE);
1293
1294	cdv_intel_wait_for_vblank(dev);
1295
1296	paletteReg = map->palette;
1297	for (i = 0; i < 256; ++i)
1298		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1299}
1300
1301static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1302				 struct drm_file *file_priv,
1303				 uint32_t handle,
1304				 uint32_t width, uint32_t height)
1305{
1306	struct drm_device *dev = crtc->dev;
1307	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1308	int pipe = psb_intel_crtc->pipe;
1309	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1310	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1311	uint32_t temp;
1312	size_t addr = 0;
1313	struct gtt_range *gt;
1314	struct drm_gem_object *obj;
1315	int ret;
1316
1317	/* if we want to turn of the cursor ignore width and height */
1318	if (!handle) {
1319		/* turn off the cursor */
1320		temp = CURSOR_MODE_DISABLE;
1321
1322		if (gma_power_begin(dev, false)) {
1323			REG_WRITE(control, temp);
1324			REG_WRITE(base, 0);
1325			gma_power_end(dev);
1326		}
1327
1328		/* unpin the old GEM object */
1329		if (psb_intel_crtc->cursor_obj) {
1330			gt = container_of(psb_intel_crtc->cursor_obj,
1331							struct gtt_range, gem);
1332			psb_gtt_unpin(gt);
1333			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1334			psb_intel_crtc->cursor_obj = NULL;
1335		}
1336
1337		return 0;
1338	}
1339
1340	/* Currently we only support 64x64 cursors */
1341	if (width != 64 || height != 64) {
1342		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1343		return -EINVAL;
1344	}
1345
1346	obj = drm_gem_object_lookup(dev, file_priv, handle);
1347	if (!obj)
1348		return -ENOENT;
1349
1350	if (obj->size < width * height * 4) {
1351		dev_dbg(dev->dev, "buffer is to small\n");
1352		return -ENOMEM;
1353	}
1354
1355	gt = container_of(obj, struct gtt_range, gem);
1356
1357	/* Pin the memory into the GTT */
1358	ret = psb_gtt_pin(gt);
1359	if (ret) {
1360		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1361		return ret;
1362	}
1363
1364	addr = gt->offset;	/* Or resource.start ??? */
1365
1366	psb_intel_crtc->cursor_addr = addr;
1367
1368	temp = 0;
1369	/* set the pipe for the cursor */
1370	temp |= (pipe << 28);
1371	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1372
1373	if (gma_power_begin(dev, false)) {
1374		REG_WRITE(control, temp);
1375		REG_WRITE(base, addr);
1376		gma_power_end(dev);
1377	}
1378
1379	/* unpin the old GEM object */
1380	if (psb_intel_crtc->cursor_obj) {
1381		gt = container_of(psb_intel_crtc->cursor_obj,
1382							struct gtt_range, gem);
1383		psb_gtt_unpin(gt);
1384		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1385		psb_intel_crtc->cursor_obj = obj;
1386	}
1387	return 0;
1388}
1389
1390static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1391{
1392	struct drm_device *dev = crtc->dev;
1393	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1394	int pipe = psb_intel_crtc->pipe;
1395	uint32_t temp = 0;
1396	uint32_t adder;
1397
1398
1399	if (x < 0) {
1400		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1401		x = -x;
1402	}
1403	if (y < 0) {
1404		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1405		y = -y;
1406	}
1407
1408	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1409	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1410
1411	adder = psb_intel_crtc->cursor_addr;
1412
1413	if (gma_power_begin(dev, false)) {
1414		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1415		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1416		gma_power_end(dev);
1417	}
1418	return 0;
1419}
1420
1421static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1422			 u16 *green, u16 *blue, uint32_t start, uint32_t size)
1423{
1424	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1425	int i;
1426	int end = (start + size > 256) ? 256 : start + size;
1427
1428	for (i = start; i < end; i++) {
1429		psb_intel_crtc->lut_r[i] = red[i] >> 8;
1430		psb_intel_crtc->lut_g[i] = green[i] >> 8;
1431		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1432	}
1433
1434	cdv_intel_crtc_load_lut(crtc);
1435}
1436
1437static int cdv_crtc_set_config(struct drm_mode_set *set)
1438{
1439	int ret = 0;
1440	struct drm_device *dev = set->crtc->dev;
1441	struct drm_psb_private *dev_priv = dev->dev_private;
1442
1443	if (!dev_priv->rpm_enabled)
1444		return drm_crtc_helper_set_config(set);
1445
1446	pm_runtime_forbid(&dev->pdev->dev);
1447
1448	ret = drm_crtc_helper_set_config(set);
1449
1450	pm_runtime_allow(&dev->pdev->dev);
1451
1452	return ret;
1453}
1454
1455/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1456
1457/* FIXME: why are we using this, should it be cdv_ in this tree ? */
1458
1459static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock)
1460{
1461	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1462	clock->p = clock->p1 * clock->p2;
1463	clock->vco = refclk * clock->m / (clock->n + 2);
1464	clock->dot = clock->vco / clock->p;
1465}
1466
1467/* Returns the clock of the currently programmed mode of the given pipe. */
1468static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1469				struct drm_crtc *crtc)
1470{
1471	struct drm_psb_private *dev_priv = dev->dev_private;
1472	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1473	int pipe = psb_intel_crtc->pipe;
1474	const struct psb_offset *map = &dev_priv->regmap[pipe];
1475	u32 dpll;
1476	u32 fp;
1477	struct cdv_intel_clock_t clock;
1478	bool is_lvds;
1479	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1480
1481	if (gma_power_begin(dev, false)) {
1482		dpll = REG_READ(map->dpll);
1483		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1484			fp = REG_READ(map->fp0);
1485		else
1486			fp = REG_READ(map->fp1);
1487		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1488		gma_power_end(dev);
1489	} else {
1490		dpll = p->dpll;
1491		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1492			fp = p->fp0;
1493		else
1494			fp = p->fp1;
1495
1496		is_lvds = (pipe == 1) &&
1497				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
1498	}
1499
1500	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1501	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1502	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1503
1504	if (is_lvds) {
1505		clock.p1 =
1506		    ffs((dpll &
1507			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1508			DPLL_FPA01_P1_POST_DIV_SHIFT);
1509		if (clock.p1 == 0) {
1510			clock.p1 = 4;
1511			dev_err(dev->dev, "PLL %d\n", dpll);
1512		}
1513		clock.p2 = 14;
1514
1515		if ((dpll & PLL_REF_INPUT_MASK) ==
1516		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1517			/* XXX: might not be 66MHz */
1518			i8xx_clock(66000, &clock);
1519		} else
1520			i8xx_clock(48000, &clock);
1521	} else {
1522		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1523			clock.p1 = 2;
1524		else {
1525			clock.p1 =
1526			    ((dpll &
1527			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1528			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1529		}
1530		if (dpll & PLL_P2_DIVIDE_BY_4)
1531			clock.p2 = 4;
1532		else
1533			clock.p2 = 2;
1534
1535		i8xx_clock(48000, &clock);
1536	}
1537
1538	/* XXX: It would be nice to validate the clocks, but we can't reuse
1539	 * i830PllIsValid() because it relies on the xf86_config connector
1540	 * configuration being accurate, which it isn't necessarily.
1541	 */
1542
1543	return clock.dot;
1544}
1545
1546/** Returns the currently programmed mode of the given pipe. */
1547struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
1548					     struct drm_crtc *crtc)
1549{
1550	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1551	int pipe = psb_intel_crtc->pipe;
1552	struct drm_psb_private *dev_priv = dev->dev_private;
1553	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1554	const struct psb_offset *map = &dev_priv->regmap[pipe];
1555	struct drm_display_mode *mode;
1556	int htot;
1557	int hsync;
1558	int vtot;
1559	int vsync;
1560
1561	if (gma_power_begin(dev, false)) {
1562		htot = REG_READ(map->htotal);
1563		hsync = REG_READ(map->hsync);
1564		vtot = REG_READ(map->vtotal);
1565		vsync = REG_READ(map->vsync);
1566		gma_power_end(dev);
1567	} else {
1568		htot = p->htotal;
1569		hsync = p->hsync;
1570		vtot = p->vtotal;
1571		vsync = p->vsync;
1572	}
1573
1574	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1575	if (!mode)
1576		return NULL;
1577
1578	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1579	mode->hdisplay = (htot & 0xffff) + 1;
1580	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1581	mode->hsync_start = (hsync & 0xffff) + 1;
1582	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1583	mode->vdisplay = (vtot & 0xffff) + 1;
1584	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1585	mode->vsync_start = (vsync & 0xffff) + 1;
1586	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1587
1588	drm_mode_set_name(mode);
1589	drm_mode_set_crtcinfo(mode, 0);
1590
1591	return mode;
1592}
1593
1594static void cdv_intel_crtc_destroy(struct drm_crtc *crtc)
1595{
1596	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1597
1598	kfree(psb_intel_crtc->crtc_state);
1599	drm_crtc_cleanup(crtc);
1600	kfree(psb_intel_crtc);
1601}
1602
1603const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1604	.dpms = cdv_intel_crtc_dpms,
1605	.mode_fixup = cdv_intel_crtc_mode_fixup,
1606	.mode_set = cdv_intel_crtc_mode_set,
1607	.mode_set_base = cdv_intel_pipe_set_base,
1608	.prepare = cdv_intel_crtc_prepare,
1609	.commit = cdv_intel_crtc_commit,
1610};
1611
1612const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1613	.save = cdv_intel_crtc_save,
1614	.restore = cdv_intel_crtc_restore,
1615	.cursor_set = cdv_intel_crtc_cursor_set,
1616	.cursor_move = cdv_intel_crtc_cursor_move,
1617	.gamma_set = cdv_intel_crtc_gamma_set,
1618	.set_config = cdv_crtc_set_config,
1619	.destroy = cdv_intel_crtc_destroy,
1620};