Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright © 2006-2011 Intel Corporation
  4 *
  5 * Authors:
  6 *	Eric Anholt <eric@anholt.net>
  7 */
  8
  9#include <linux/delay.h>
 10#include <linux/i2c.h>
 11
 12#include <drm/drm_crtc.h>
 13
 14#include "cdv_device.h"
 15#include "framebuffer.h"
 16#include "gma_display.h"
 17#include "power.h"
 18#include "psb_drv.h"
 19#include "psb_intel_drv.h"
 20#include "psb_intel_reg.h"
 21
 22static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
 23				  struct drm_crtc *crtc, int target,
 24				  int refclk, struct gma_clock_t *best_clock);
 25
 26
 27#define CDV_LIMIT_SINGLE_LVDS_96	0
 28#define CDV_LIMIT_SINGLE_LVDS_100	1
 29#define CDV_LIMIT_DAC_HDMI_27		2
 30#define CDV_LIMIT_DAC_HDMI_96		3
 31#define CDV_LIMIT_DP_27			4
 32#define CDV_LIMIT_DP_100		5
 33
 34static const struct gma_limit_t cdv_intel_limits[] = {
 35	{			/* CDV_SINGLE_LVDS_96MHz */
 36	 .dot = {.min = 20000, .max = 115500},
 37	 .vco = {.min = 1800000, .max = 3600000},
 38	 .n = {.min = 2, .max = 6},
 39	 .m = {.min = 60, .max = 160},
 40	 .m1 = {.min = 0, .max = 0},
 41	 .m2 = {.min = 58, .max = 158},
 42	 .p = {.min = 28, .max = 140},
 43	 .p1 = {.min = 2, .max = 10},
 44	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
 45	 .find_pll = gma_find_best_pll,
 46	 },
 47	{			/* CDV_SINGLE_LVDS_100MHz */
 48	 .dot = {.min = 20000, .max = 115500},
 49	 .vco = {.min = 1800000, .max = 3600000},
 50	 .n = {.min = 2, .max = 6},
 51	 .m = {.min = 60, .max = 160},
 52	 .m1 = {.min = 0, .max = 0},
 53	 .m2 = {.min = 58, .max = 158},
 54	 .p = {.min = 28, .max = 140},
 55	 .p1 = {.min = 2, .max = 10},
 56	 /* The single-channel range is 25-112Mhz, and dual-channel
 57	  * is 80-224Mhz.  Prefer single channel as much as possible.
 58	  */
 59	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
 60	 .find_pll = gma_find_best_pll,
 61	 },
 62	{			/* CDV_DAC_HDMI_27MHz */
 63	 .dot = {.min = 20000, .max = 400000},
 64	 .vco = {.min = 1809000, .max = 3564000},
 65	 .n = {.min = 1, .max = 1},
 66	 .m = {.min = 67, .max = 132},
 67	 .m1 = {.min = 0, .max = 0},
 68	 .m2 = {.min = 65, .max = 130},
 69	 .p = {.min = 5, .max = 90},
 70	 .p1 = {.min = 1, .max = 9},
 71	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
 72	 .find_pll = gma_find_best_pll,
 73	 },
 74	{			/* CDV_DAC_HDMI_96MHz */
 75	 .dot = {.min = 20000, .max = 400000},
 76	 .vco = {.min = 1800000, .max = 3600000},
 77	 .n = {.min = 2, .max = 6},
 78	 .m = {.min = 60, .max = 160},
 79	 .m1 = {.min = 0, .max = 0},
 80	 .m2 = {.min = 58, .max = 158},
 81	 .p = {.min = 5, .max = 100},
 82	 .p1 = {.min = 1, .max = 10},
 83	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
 84	 .find_pll = gma_find_best_pll,
 85	 },
 86	{			/* CDV_DP_27MHz */
 87	 .dot = {.min = 160000, .max = 272000},
 88	 .vco = {.min = 1809000, .max = 3564000},
 89	 .n = {.min = 1, .max = 1},
 90	 .m = {.min = 67, .max = 132},
 91	 .m1 = {.min = 0, .max = 0},
 92	 .m2 = {.min = 65, .max = 130},
 93	 .p = {.min = 5, .max = 90},
 94	 .p1 = {.min = 1, .max = 9},
 95	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
 96	 .find_pll = cdv_intel_find_dp_pll,
 97	 },
 98	{			/* CDV_DP_100MHz */
 99	 .dot = {.min = 160000, .max = 272000},
100	 .vco = {.min = 1800000, .max = 3600000},
101	 .n = {.min = 2, .max = 6},
102	 .m = {.min = 60, .max = 164},
103	 .m1 = {.min = 0, .max = 0},
104	 .m2 = {.min = 58, .max = 162},
105	 .p = {.min = 5, .max = 100},
106	 .p1 = {.min = 1, .max = 10},
107	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
108	 .find_pll = cdv_intel_find_dp_pll,
109	}
110};
111
112#define _wait_for(COND, MS, W) ({ \
113	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
114	int ret__ = 0;							\
115	while (!(COND)) {						\
116		if (time_after(jiffies, timeout__)) {			\
117			ret__ = -ETIMEDOUT;				\
118			break;						\
119		}							\
120		if (W && !in_dbg_master())				\
121			msleep(W);					\
122	}								\
123	ret__;								\
124})
125
126#define wait_for(COND, MS) _wait_for(COND, MS, 1)
127
128
129int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
130{
131	int ret;
132
133	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
134	if (ret) {
135		DRM_ERROR("timeout waiting for SB to idle before read\n");
136		return ret;
137	}
138
139	REG_WRITE(SB_ADDR, reg);
140	REG_WRITE(SB_PCKT,
141		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
142		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
143		   SET_FIELD(0xf, SB_BYTE_ENABLE));
144
145	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
146	if (ret) {
147		DRM_ERROR("timeout waiting for SB to idle after read\n");
148		return ret;
149	}
150
151	*val = REG_READ(SB_DATA);
152
153	return 0;
154}
155
156int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
157{
158	int ret;
159	static bool dpio_debug = true;
160	u32 temp;
161
162	if (dpio_debug) {
163		if (cdv_sb_read(dev, reg, &temp) == 0)
164			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
165		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
166	}
167
168	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
169	if (ret) {
170		DRM_ERROR("timeout waiting for SB to idle before write\n");
171		return ret;
172	}
173
174	REG_WRITE(SB_ADDR, reg);
175	REG_WRITE(SB_DATA, val);
176	REG_WRITE(SB_PCKT,
177		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
178		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
179		   SET_FIELD(0xf, SB_BYTE_ENABLE));
180
181	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
182	if (ret) {
183		DRM_ERROR("timeout waiting for SB to idle after write\n");
184		return ret;
185	}
186
187	if (dpio_debug) {
188		if (cdv_sb_read(dev, reg, &temp) == 0)
189			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
190	}
191
192	return 0;
193}
194
195/* Reset the DPIO configuration register.  The BIOS does this at every
196 * mode set.
197 */
198void cdv_sb_reset(struct drm_device *dev)
199{
200
201	REG_WRITE(DPIO_CFG, 0);
202	REG_READ(DPIO_CFG);
203	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
204}
205
206/* Unlike most Intel display engines, on Cedarview the DPLL registers
207 * are behind this sideband bus.  They must be programmed while the
208 * DPLL reference clock is on in the DPLL control register, but before
209 * the DPLL is enabled in the DPLL control register.
210 */
211static int
212cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
213		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
214{
215	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
216	int pipe = gma_crtc->pipe;
217	u32 m, n_vco, p;
218	int ret = 0;
219	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
220	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
221	u32 ref_value;
222	u32 lane_reg, lane_value;
223
224	cdv_sb_reset(dev);
225
226	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
227
228	udelay(100);
229
230	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
231	ref_value = 0x68A701;
232
233	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
234
235	/* We don't know what the other fields of these regs are, so
236	 * leave them in place.
237	 */
238	/*
239	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
240	 * for the pipe A/B. Display spec 1.06 has wrong definition.
241	 * Correct definition is like below:
242	 *
243	 * refclka mean use clock from same PLL
244	 *
245	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
246	 *
247	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
248	 *
249	 */
250	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
251	if (ret)
252		return ret;
253	ref_value &= ~(REF_CLK_MASK);
254
255	/* use DPLL_A for pipeB on CRT/HDMI */
256	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
257		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
258		ref_value |= REF_CLK_DPLLA;
259	} else {
260		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
261		ref_value |= REF_CLK_DPLL;
262	}
263	ret = cdv_sb_write(dev, ref_sfr, ref_value);
264	if (ret)
265		return ret;
266
267	ret = cdv_sb_read(dev, SB_M(pipe), &m);
268	if (ret)
269		return ret;
270	m &= ~SB_M_DIVIDER_MASK;
271	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
272	ret = cdv_sb_write(dev, SB_M(pipe), m);
273	if (ret)
274		return ret;
275
276	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
277	if (ret)
278		return ret;
279
280	/* Follow the BIOS to program the N_DIVIDER REG */
281	n_vco &= 0xFFFF;
282	n_vco |= 0x107;
283	n_vco &= ~(SB_N_VCO_SEL_MASK |
284		   SB_N_DIVIDER_MASK |
285		   SB_N_CB_TUNE_MASK);
286
287	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
288
289	if (clock->vco < 2250000) {
290		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
291		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
292	} else if (clock->vco < 2750000) {
293		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
294		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
295	} else if (clock->vco < 3300000) {
296		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
297		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
298	} else {
299		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
300		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
301	}
302
303	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
304	if (ret)
305		return ret;
306
307	ret = cdv_sb_read(dev, SB_P(pipe), &p);
308	if (ret)
309		return ret;
310	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
311	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
312	switch (clock->p2) {
313	case 5:
314		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
315		break;
316	case 10:
317		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
318		break;
319	case 14:
320		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
321		break;
322	case 7:
323		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
324		break;
325	default:
326		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
327		return -EINVAL;
328	}
329	ret = cdv_sb_write(dev, SB_P(pipe), p);
330	if (ret)
331		return ret;
332
333	if (ddi_select) {
334		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
335			lane_reg = PSB_LANE0;
336			cdv_sb_read(dev, lane_reg, &lane_value);
337			lane_value &= ~(LANE_PLL_MASK);
338			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
339			cdv_sb_write(dev, lane_reg, lane_value);
340
341			lane_reg = PSB_LANE1;
342			cdv_sb_read(dev, lane_reg, &lane_value);
343			lane_value &= ~(LANE_PLL_MASK);
344			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
345			cdv_sb_write(dev, lane_reg, lane_value);
346		} else {
347			lane_reg = PSB_LANE2;
348			cdv_sb_read(dev, lane_reg, &lane_value);
349			lane_value &= ~(LANE_PLL_MASK);
350			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
351			cdv_sb_write(dev, lane_reg, lane_value);
352
353			lane_reg = PSB_LANE3;
354			cdv_sb_read(dev, lane_reg, &lane_value);
355			lane_value &= ~(LANE_PLL_MASK);
356			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
357			cdv_sb_write(dev, lane_reg, lane_value);
358		}
359	}
360	return 0;
361}
362
363static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
364						 int refclk)
365{
366	const struct gma_limit_t *limit;
367	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
368		/*
369		 * Now only single-channel LVDS is supported on CDV. If it is
370		 * incorrect, please add the dual-channel LVDS.
371		 */
372		if (refclk == 96000)
373			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
374		else
375			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
376	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
377			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
378		if (refclk == 27000)
379			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
380		else
381			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
382	} else {
383		if (refclk == 27000)
384			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
385		else
386			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
387	}
388	return limit;
389}
390
391/* m1 is reserved as 0 in CDV, n is a ring counter */
392static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
393{
394	clock->m = clock->m2 + 2;
395	clock->p = clock->p1 * clock->p2;
396	clock->vco = (refclk * clock->m) / clock->n;
397	clock->dot = clock->vco / clock->p;
398}
399
400static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
401				  struct drm_crtc *crtc, int target,
402				  int refclk,
403				  struct gma_clock_t *best_clock)
404{
405	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
406	struct gma_clock_t clock;
407
408	memset(&clock, 0, sizeof(clock));
409
410	switch (refclk) {
411	case 27000:
412		if (target < 200000) {
413			clock.p1 = 2;
414			clock.p2 = 10;
415			clock.n = 1;
416			clock.m1 = 0;
417			clock.m2 = 118;
418		} else {
419			clock.p1 = 1;
420			clock.p2 = 10;
421			clock.n = 1;
422			clock.m1 = 0;
423			clock.m2 = 98;
424		}
425		break;
426
427	case 100000:
428		if (target < 200000) {
429			clock.p1 = 2;
430			clock.p2 = 10;
431			clock.n = 5;
432			clock.m1 = 0;
433			clock.m2 = 160;
434		} else {
435			clock.p1 = 1;
436			clock.p2 = 10;
437			clock.n = 5;
438			clock.m1 = 0;
439			clock.m2 = 133;
440		}
441		break;
442
443	default:
444		return false;
445	}
446
447	gma_crtc->clock_funcs->clock(refclk, &clock);
448	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
449	return true;
450}
451
452#define		FIFO_PIPEA		(1 << 0)
453#define		FIFO_PIPEB		(1 << 1)
454
455static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
456{
457	struct drm_crtc *crtc;
458	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
459	struct gma_crtc *gma_crtc = NULL;
460
461	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
462	gma_crtc = to_gma_crtc(crtc);
463
464	if (crtc->primary->fb == NULL || !gma_crtc->active)
465		return false;
466	return true;
467}
468
469void cdv_disable_sr(struct drm_device *dev)
470{
471	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
472
473		/* Disable self-refresh before adjust WM */
474		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
475		REG_READ(FW_BLC_SELF);
476
477		gma_wait_for_vblank(dev);
478
479		/* Cedarview workaround to write ovelay plane, which force to leave
480		 * MAX_FIFO state.
481		 */
482		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
483		REG_READ(OV_OVADD);
484
485		gma_wait_for_vblank(dev);
486	}
487
488}
489
490void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
491{
492	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
493	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
494
495	/* Is only one pipe enabled? */
496	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
497		u32 fw;
498
499		fw = REG_READ(DSPFW1);
500		fw &= ~DSP_FIFO_SR_WM_MASK;
501		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
502		fw &= ~CURSOR_B_FIFO_WM_MASK;
503		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
504		REG_WRITE(DSPFW1, fw);
505
506		fw = REG_READ(DSPFW2);
507		fw &= ~CURSOR_A_FIFO_WM_MASK;
508		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
509		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
510		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
511		REG_WRITE(DSPFW2, fw);
512
513		REG_WRITE(DSPFW3, 0x36000000);
514
515		/* ignore FW4 */
516
517		/* Is pipe b lvds ? */
518		if (gma_crtc->pipe == 1 &&
519		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
520			REG_WRITE(DSPFW5, 0x00040330);
521		} else {
522			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
523			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
524			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
525			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
526			REG_WRITE(DSPFW5, fw);
527		}
528
529		REG_WRITE(DSPFW6, 0x10);
530
531		gma_wait_for_vblank(dev);
532
533		/* enable self-refresh for single pipe active */
534		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
535		REG_READ(FW_BLC_SELF);
536		gma_wait_for_vblank(dev);
537
538	} else {
539
540		/* HW team suggested values... */
541		REG_WRITE(DSPFW1, 0x3f880808);
542		REG_WRITE(DSPFW2, 0x0b020202);
543		REG_WRITE(DSPFW3, 0x24000000);
544		REG_WRITE(DSPFW4, 0x08030202);
545		REG_WRITE(DSPFW5, 0x01010101);
546		REG_WRITE(DSPFW6, 0x1d0);
547
548		gma_wait_for_vblank(dev);
549
550		dev_priv->ops->disable_sr(dev);
551	}
552}
553
554/*
555 * Return the pipe currently connected to the panel fitter,
556 * or -1 if the panel fitter is not present or not in use
557 */
558static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
559{
560	u32 pfit_control;
561
562	pfit_control = REG_READ(PFIT_CONTROL);
563
564	/* See if the panel fitter is in use */
565	if ((pfit_control & PFIT_ENABLE) == 0)
566		return -1;
567	return (pfit_control >> 29) & 0x3;
568}
569
570static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
571			       struct drm_display_mode *mode,
572			       struct drm_display_mode *adjusted_mode,
573			       int x, int y,
574			       struct drm_framebuffer *old_fb)
575{
576	struct drm_device *dev = crtc->dev;
577	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
578	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
579	int pipe = gma_crtc->pipe;
580	const struct psb_offset *map = &dev_priv->regmap[pipe];
581	int refclk;
582	struct gma_clock_t clock;
583	u32 dpll = 0, dspcntr, pipeconf;
584	bool ok;
585	bool is_lvds = false;
586	bool is_dp = false;
587	struct drm_connector_list_iter conn_iter;
588	struct drm_connector *connector;
589	const struct gma_limit_t *limit;
590	u32 ddi_select = 0;
591	bool is_edp = false;
592
593	drm_connector_list_iter_begin(dev, &conn_iter);
594	drm_for_each_connector_iter(connector, &conn_iter) {
595		struct gma_encoder *gma_encoder =
596					gma_attached_encoder(connector);
597
598		if (!connector->encoder
599		    || connector->encoder->crtc != crtc)
600			continue;
601
602		ddi_select = gma_encoder->ddi_select;
603		switch (gma_encoder->type) {
604		case INTEL_OUTPUT_LVDS:
605			is_lvds = true;
606			break;
607		case INTEL_OUTPUT_ANALOG:
608		case INTEL_OUTPUT_HDMI:
609			break;
610		case INTEL_OUTPUT_DISPLAYPORT:
611			is_dp = true;
612			break;
613		case INTEL_OUTPUT_EDP:
614			is_edp = true;
615			break;
616		default:
617			drm_connector_list_iter_end(&conn_iter);
618			DRM_ERROR("invalid output type.\n");
619			return 0;
620		}
621
622		break;
623	}
624	drm_connector_list_iter_end(&conn_iter);
625
626	if (dev_priv->dplla_96mhz)
627		/* low-end sku, 96/100 mhz */
628		refclk = 96000;
629	else
630		/* high-end sku, 27/100 mhz */
631		refclk = 27000;
632	if (is_dp || is_edp) {
633		/*
634		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
635		 * unnecessary to consider it for DP/eDP.
636		 * On the high-end SKU, it will use the 27/100M reference clk
637		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
638		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
639		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
640		 */
641		if (pipe == 0)
642			refclk = 27000;
643		else
644			refclk = 100000;
645	}
646
647	if (is_lvds && dev_priv->lvds_use_ssc) {
648		refclk = dev_priv->lvds_ssc_freq * 1000;
649		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
650	}
651
652	drm_mode_debug_printmodeline(adjusted_mode);
653
654	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
655
656	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
657				 &clock);
658	if (!ok) {
659		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
660			  adjusted_mode->clock, clock.dot);
661		return 0;
662	}
663
664	dpll = DPLL_VGA_MODE_DIS;
665
666	if (is_dp || is_edp) {
667		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
668	} else {
669		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
670		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
671		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
672		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
673	}
674
675	dpll |= DPLL_SYNCLOCK_ENABLE;
676/*	if (is_lvds)
677		dpll |= DPLLB_MODE_LVDS;
678	else
679		dpll |= DPLLB_MODE_DAC_SERIAL; */
680	/* dpll |= (2 << 11); */
681
682	/* setup pipeconf */
683	pipeconf = REG_READ(map->conf);
684
685	pipeconf &= ~(PIPE_BPC_MASK);
686	if (is_edp) {
687		switch (dev_priv->edp.bpp) {
688		case 24:
689			pipeconf |= PIPE_8BPC;
690			break;
691		case 18:
692			pipeconf |= PIPE_6BPC;
693			break;
694		case 30:
695			pipeconf |= PIPE_10BPC;
696			break;
697		default:
698			pipeconf |= PIPE_8BPC;
699			break;
700		}
701	} else if (is_lvds) {
702		/* the BPC will be 6 if it is 18-bit LVDS panel */
703		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
704			pipeconf |= PIPE_8BPC;
705		else
706			pipeconf |= PIPE_6BPC;
707	} else
708		pipeconf |= PIPE_8BPC;
709
710	/* Set up the display plane register */
711	dspcntr = DISPPLANE_GAMMA_ENABLE;
712
713	if (pipe == 0)
714		dspcntr |= DISPPLANE_SEL_PIPE_A;
715	else
716		dspcntr |= DISPPLANE_SEL_PIPE_B;
717
718	dspcntr |= DISPLAY_PLANE_ENABLE;
719	pipeconf |= PIPEACONF_ENABLE;
720
721	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
722	REG_READ(map->dpll);
723
724	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
725
726	udelay(150);
727
728
729	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
730	 * This is an exception to the general rule that mode_set doesn't turn
731	 * things on.
732	 */
733	if (is_lvds) {
734		u32 lvds = REG_READ(LVDS);
735
736		lvds |=
737		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
738		    LVDS_PIPEB_SELECT;
739		/* Set the B0-B3 data pairs corresponding to
740		 * whether we're going to
741		 * set the DPLLs for dual-channel mode or not.
742		 */
743		if (clock.p2 == 7)
744			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
745		else
746			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
747
748		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
749		 * appropriately here, but we need to look more
750		 * thoroughly into how panels behave in the two modes.
751		 */
752
753		REG_WRITE(LVDS, lvds);
754		REG_READ(LVDS);
755	}
756
757	dpll |= DPLL_VCO_ENABLE;
758
759	/* Disable the panel fitter if it was on our pipe */
760	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
761		REG_WRITE(PFIT_CONTROL, 0);
762
763	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
764	drm_mode_debug_printmodeline(mode);
765
766	REG_WRITE(map->dpll,
767		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
768	REG_READ(map->dpll);
769	/* Wait for the clocks to stabilize. */
770	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
771
772	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
773		dev_err(dev->dev, "Failed to get DPLL lock\n");
774		return -EBUSY;
775	}
776
777	{
778		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
779		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
780	}
781
782	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
783		  ((adjusted_mode->crtc_htotal - 1) << 16));
784	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
785		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
786	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
787		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
788	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
789		  ((adjusted_mode->crtc_vtotal - 1) << 16));
790	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
791		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
792	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
793		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
794	/* pipesrc and dspsize control the size that is scaled from,
795	 * which should always be the user's requested size.
796	 */
797	REG_WRITE(map->size,
798		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
799	REG_WRITE(map->pos, 0);
800	REG_WRITE(map->src,
801		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
802	REG_WRITE(map->conf, pipeconf);
803	REG_READ(map->conf);
804
805	gma_wait_for_vblank(dev);
806
807	REG_WRITE(map->cntr, dspcntr);
808
809	/* Flush the plane changes */
810	{
811		const struct drm_crtc_helper_funcs *crtc_funcs =
812		    crtc->helper_private;
813		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
814	}
815
816	gma_wait_for_vblank(dev);
817
818	return 0;
819}
820
821/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
822
823/* FIXME: why are we using this, should it be cdv_ in this tree ? */
824
825static void i8xx_clock(int refclk, struct gma_clock_t *clock)
826{
827	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
828	clock->p = clock->p1 * clock->p2;
829	clock->vco = refclk * clock->m / (clock->n + 2);
830	clock->dot = clock->vco / clock->p;
831}
832
833/* Returns the clock of the currently programmed mode of the given pipe. */
834static int cdv_intel_crtc_clock_get(struct drm_device *dev,
835				struct drm_crtc *crtc)
836{
837	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
838	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
839	int pipe = gma_crtc->pipe;
840	const struct psb_offset *map = &dev_priv->regmap[pipe];
841	u32 dpll;
842	u32 fp;
843	struct gma_clock_t clock;
844	bool is_lvds;
845	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
846
847	if (gma_power_begin(dev, false)) {
848		dpll = REG_READ(map->dpll);
849		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
850			fp = REG_READ(map->fp0);
851		else
852			fp = REG_READ(map->fp1);
853		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
854		gma_power_end(dev);
855	} else {
856		dpll = p->dpll;
857		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
858			fp = p->fp0;
859		else
860			fp = p->fp1;
861
862		is_lvds = (pipe == 1) &&
863				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
864	}
865
866	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
867	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
868	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
869
870	if (is_lvds) {
871		clock.p1 =
872		    ffs((dpll &
873			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
874			DPLL_FPA01_P1_POST_DIV_SHIFT);
875		if (clock.p1 == 0) {
876			clock.p1 = 4;
877			dev_err(dev->dev, "PLL %d\n", dpll);
878		}
879		clock.p2 = 14;
880
881		if ((dpll & PLL_REF_INPUT_MASK) ==
882		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
883			/* XXX: might not be 66MHz */
884			i8xx_clock(66000, &clock);
885		} else
886			i8xx_clock(48000, &clock);
887	} else {
888		if (dpll & PLL_P1_DIVIDE_BY_TWO)
889			clock.p1 = 2;
890		else {
891			clock.p1 =
892			    ((dpll &
893			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
894			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
895		}
896		if (dpll & PLL_P2_DIVIDE_BY_4)
897			clock.p2 = 4;
898		else
899			clock.p2 = 2;
900
901		i8xx_clock(48000, &clock);
902	}
903
904	/* XXX: It would be nice to validate the clocks, but we can't reuse
905	 * i830PllIsValid() because it relies on the xf86_config connector
906	 * configuration being accurate, which it isn't necessarily.
907	 */
908
909	return clock.dot;
910}
911
912/** Returns the currently programmed mode of the given pipe. */
913struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
914					     struct drm_crtc *crtc)
915{
916	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
917	int pipe = gma_crtc->pipe;
918	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
919	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
920	const struct psb_offset *map = &dev_priv->regmap[pipe];
921	struct drm_display_mode *mode;
922	int htot;
923	int hsync;
924	int vtot;
925	int vsync;
926
927	if (gma_power_begin(dev, false)) {
928		htot = REG_READ(map->htotal);
929		hsync = REG_READ(map->hsync);
930		vtot = REG_READ(map->vtotal);
931		vsync = REG_READ(map->vsync);
932		gma_power_end(dev);
933	} else {
934		htot = p->htotal;
935		hsync = p->hsync;
936		vtot = p->vtotal;
937		vsync = p->vsync;
938	}
939
940	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
941	if (!mode)
942		return NULL;
943
944	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
945	mode->hdisplay = (htot & 0xffff) + 1;
946	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
947	mode->hsync_start = (hsync & 0xffff) + 1;
948	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
949	mode->vdisplay = (vtot & 0xffff) + 1;
950	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
951	mode->vsync_start = (vsync & 0xffff) + 1;
952	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
953
954	drm_mode_set_name(mode);
955	drm_mode_set_crtcinfo(mode, 0);
956
957	return mode;
958}
959
960const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
961	.dpms = gma_crtc_dpms,
962	.mode_set = cdv_intel_crtc_mode_set,
963	.mode_set_base = gma_pipe_set_base,
964	.prepare = gma_crtc_prepare,
965	.commit = gma_crtc_commit,
966	.disable = gma_crtc_disable,
967};
968
969const struct gma_clock_funcs cdv_clock_funcs = {
970	.clock = cdv_intel_clock,
971	.limit = cdv_intel_limit,
972	.pll_is_valid = gma_pll_is_valid,
973};