Loading...
1/*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
21*/
22
23/*
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
26*/
27
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/pci.h>
32#include <linux/errno.h>
33#include <linux/atm.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/skbuff.h>
37#include <linux/time.h>
38#include <linux/delay.h>
39#include <linux/uio.h>
40#include <linux/init.h>
41#include <linux/interrupt.h>
42#include <linux/ioport.h>
43#include <linux/wait.h>
44#include <linux/slab.h>
45
46#include <asm/system.h>
47#include <asm/io.h>
48#include <linux/atomic.h>
49#include <asm/uaccess.h>
50#include <asm/string.h>
51#include <asm/byteorder.h>
52
53#include "horizon.h"
54
55#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
56#define description_string "Madge ATM Horizon [Ultra] driver"
57#define version_string "1.2.1"
58
59static inline void __init show_version (void) {
60 printk ("%s version %s\n", description_string, version_string);
61}
62
63/*
64
65 CREDITS
66
67 Driver and documentation by:
68
69 Chris Aston Madge Networks
70 Giuliano Procida Madge Networks
71 Simon Benham Madge Networks
72 Simon Johnson Madge Networks
73 Various Others Madge Networks
74
75 Some inspiration taken from other drivers by:
76
77 Alexandru Cucos UTBv
78 Kari Mettinen University of Helsinki
79 Werner Almesberger EPFL LRC
80
81 Theory of Operation
82
83 I Hardware, detection, initialisation and shutdown.
84
85 1. Supported Hardware
86
87 This driver should handle all variants of the PCI Madge ATM adapters
88 with the Horizon chipset. These are all PCI cards supporting PIO, BM
89 DMA and a form of MMIO (registers only, not internal RAM).
90
91 The driver is only known to work with SONET and UTP Horizon Ultra
92 cards at 155Mb/s. However, code is in place to deal with both the
93 original Horizon and 25Mb/s operation.
94
95 There are two revisions of the Horizon ASIC: the original and the
96 Ultra. Details of hardware bugs are in section III.
97
98 The ASIC version can be distinguished by chip markings but is NOT
99 indicated by the PCI revision (all adapters seem to have PCI rev 1).
100
101 I believe that:
102
103 Horizon => Collage 25 PCI Adapter (UTP and STP)
104 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
105 Ambassador x => Collage 155 PCI Server (completely different)
106
107 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
108 have a Madge B154 plus glue logic serializer. I have also found a
109 really ancient version of this with slightly different glue. It
110 comes with the revision 0 (140-025-01) ASIC.
111
112 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
113 output (UTP) or an HP HFBR 5205 output (SONET). It has either
114 Madge's SAMBA framer or a SUNI-lite device (early versions). It
115 comes with the revision 1 (140-027-01) ASIC.
116
117 2. Detection
118
119 All Horizon-based cards present with the same PCI Vendor and Device
120 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
121 to enable bus-mastering (with appropriate latency).
122
123 ATM_LAYER_STATUS in the control register distinguishes between the
124 two possible physical layers (25 and 155). It is not clear whether
125 the 155 cards can also operate at 25Mbps. We rely on the fact that a
126 card operates at 155 if and only if it has the newer Horizon Ultra
127 ASIC.
128
129 For 155 cards the two possible framers are probed for and then set
130 up for loop-timing.
131
132 3. Initialisation
133
134 The card is reset and then put into a known state. The physical
135 layer is configured for normal operation at the appropriate speed;
136 in the case of the 155 cards, the framer is initialised with
137 line-based timing; the internal RAM is zeroed and the allocation of
138 buffers for RX and TX is made; the Burnt In Address is read and
139 copied to the ATM ESI; various policy settings for RX (VPI bits,
140 unknown VCs, oam cells) are made. Ideally all policy items should be
141 configurable at module load (if not actually on-demand), however,
142 only the vpi vs vci bit allocation can be specified at insmod.
143
144 4. Shutdown
145
146 This is in response to module_cleaup. No VCs are in use and the card
147 should be idle; it is reset.
148
149 II Driver software (as it should be)
150
151 0. Traffic Parameters
152
153 The traffic classes (not an enumeration) are currently: ATM_NONE (no
154 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
155 (compatible with everything). Together with (perhaps only some of)
156 the following items they make up the traffic specification.
157
158 struct atm_trafprm {
159 unsigned char traffic_class; traffic class (ATM_UBR, ...)
160 int max_pcr; maximum PCR in cells per second
161 int pcr; desired PCR in cells per second
162 int min_pcr; minimum PCR in cells per second
163 int max_cdv; maximum CDV in microseconds
164 int max_sdu; maximum SDU in bytes
165 };
166
167 Note that these denote bandwidth available not bandwidth used; the
168 possibilities according to ATMF are:
169
170 Real Time (cdv and max CDT given)
171
172 CBR(pcr) pcr bandwidth always available
173 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
174
175 Non Real Time
176
177 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
178 UBR()
179 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
180
181 mbs is max burst size (bucket)
182 pcr and scr have associated cdvt values
183 mcr is like scr but has no cdtv
184 cdtv may differ at each hop
185
186 Some of the above items are qos items (as opposed to traffic
187 parameters). We have nothing to do with qos. All except ABR can have
188 their traffic parameters converted to GCRA parameters. The GCRA may
189 be implemented as a (real-number) leaky bucket. The GCRA can be used
190 in complicated ways by switches and in simpler ways by end-stations.
191 It can be used both to filter incoming cells and shape out-going
192 cells.
193
194 ATM Linux actually supports:
195
196 ATM_NONE() (no traffic in this direction)
197 ATM_UBR(max_frame_size)
198 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
199
200 0 or ATM_MAX_PCR are used to indicate maximum available PCR
201
202 A traffic specification consists of the AAL type and separate
203 traffic specifications for either direction. In ATM Linux it is:
204
205 struct atm_qos {
206 struct atm_trafprm txtp;
207 struct atm_trafprm rxtp;
208 unsigned char aal;
209 };
210
211 AAL types are:
212
213 ATM_NO_AAL AAL not specified
214 ATM_AAL0 "raw" ATM cells
215 ATM_AAL1 AAL1 (CBR)
216 ATM_AAL2 AAL2 (VBR)
217 ATM_AAL34 AAL3/4 (data)
218 ATM_AAL5 AAL5 (data)
219 ATM_SAAL signaling AAL
220
221 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
222 it does not implement AAL 3/4 SAR and it has a different notion of
223 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
224 supported by this driver.
225
226 The Horizon has limited support for ABR (including UBR), VBR and
227 CBR. Each TX channel has a bucket (containing up to 31 cell units)
228 and two timers (PCR and SCR) associated with it that can be used to
229 govern cell emissions and host notification (in the case of ABR this
230 is presumably so that RM cells may be emitted at appropriate times).
231 The timers may either be disabled or may be set to any of 240 values
232 (determined by the clock crystal, a fixed (?) per-device divider, a
233 configurable divider and a configurable timer preload value).
234
235 At the moment only UBR and CBR are supported by the driver. VBR will
236 be supported as soon as ATM for Linux supports it. ABR support is
237 very unlikely as RM cell handling is completely up to the driver.
238
239 1. TX (TX channel setup and TX transfer)
240
241 The TX half of the driver owns the TX Horizon registers. The TX
242 component in the IRQ handler is the BM completion handler. This can
243 only be entered when tx_busy is true (enforced by hardware). The
244 other TX component can only be entered when tx_busy is false
245 (enforced by driver). So TX is single-threaded.
246
247 Apart from a minor optimisation to not re-select the last channel,
248 the TX send component works as follows:
249
250 Atomic test and set tx_busy until we succeed; we should implement
251 some sort of timeout so that tx_busy will never be stuck at true.
252
253 If no TX channel is set up for this VC we wait for an idle one (if
254 necessary) and set it up.
255
256 At this point we have a TX channel ready for use. We wait for enough
257 buffers to become available then start a TX transmit (set the TX
258 descriptor, schedule transfer, exit).
259
260 The IRQ component handles TX completion (stats, free buffer, tx_busy
261 unset, exit). We also re-schedule further transfers for the same
262 frame if needed.
263
264 TX setup in more detail:
265
266 TX open is a nop, the relevant information is held in the hrz_vcc
267 (vcc->dev_data) structure and is "cached" on the card.
268
269 TX close gets the TX lock and clears the channel from the "cache".
270
271 2. RX (Data Available and RX transfer)
272
273 The RX half of the driver owns the RX registers. There are two RX
274 components in the IRQ handler: the data available handler deals with
275 fresh data that has arrived on the card, the BM completion handler
276 is very similar to the TX completion handler. The data available
277 handler grabs the rx_lock and it is only released once the data has
278 been discarded or completely transferred to the host. The BM
279 completion handler only runs when the lock is held; the data
280 available handler is locked out over the same period.
281
282 Data available on the card triggers an interrupt. If the data is not
283 suitable for our existing RX channels or we cannot allocate a buffer
284 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
285 transfers may be scheduled for the same frame.
286
287 RX setup in more detail:
288
289 RX open...
290 RX close...
291
292 III Hardware Bugs
293
294 0. Byte vs Word addressing of adapter RAM.
295
296 A design feature; see the .h file (especially the memory map).
297
298 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
299
300 The host must not start a transmit direction transfer at a
301 non-four-byte boundary in host memory. Instead the host should
302 perform a byte, or a two byte, or one byte followed by two byte
303 transfer in order to start the rest of the transfer on a four byte
304 boundary. RX is OK.
305
306 Simultaneous transmit and receive direction bus master transfers are
307 not allowed.
308
309 The simplest solution to these two is to always do PIO (never DMA)
310 in the TX direction on the original Horizon. More complicated
311 solutions are likely to hurt my brain.
312
313 2. Loss of buffer on close VC
314
315 When a VC is being closed, the buffer associated with it is not
316 returned to the pool. The host must store the reference to this
317 buffer and when opening a new VC then give it to that new VC.
318
319 The host intervention currently consists of stacking such a buffer
320 pointer at VC close and checking the stack at VC open.
321
322 3. Failure to close a VC
323
324 If a VC is currently receiving a frame then closing the VC may fail
325 and the frame continues to be received.
326
327 The solution is to make sure any received frames are flushed when
328 ready. This is currently done just before the solution to 2.
329
330 4. PCI bus (original Horizon only, fixed in Ultra)
331
332 Reading from the data port prior to initialisation will hang the PCI
333 bus. Just don't do that then! We don't.
334
335 IV To Do List
336
337 . Timer code may be broken.
338
339 . Allow users to specify buffer allocation split for TX and RX.
340
341 . Deal once and for all with buggy VC close.
342
343 . Handle interrupted and/or non-blocking operations.
344
345 . Change some macros to functions and move from .h to .c.
346
347 . Try to limit the number of TX frames each VC may have queued, in
348 order to reduce the chances of TX buffer exhaustion.
349
350 . Implement VBR (bucket and timers not understood) and ABR (need to
351 do RM cells manually); also no Linux support for either.
352
353 . Implement QoS changes on open VCs (involves extracting parts of VC open
354 and close into separate functions and using them to make changes).
355
356*/
357
358/********** globals **********/
359
360static void do_housekeeping (unsigned long arg);
361
362static unsigned short debug = 0;
363static unsigned short vpi_bits = 0;
364static int max_tx_size = 9000;
365static int max_rx_size = 9000;
366static unsigned char pci_lat = 0;
367
368/********** access functions **********/
369
370/* Read / Write Horizon registers */
371static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
372 outl (cpu_to_le32 (data), dev->iobase + reg);
373}
374
375static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
376 return le32_to_cpu (inl (dev->iobase + reg));
377}
378
379static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
380 outw (cpu_to_le16 (data), dev->iobase + reg);
381}
382
383static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
384 return le16_to_cpu (inw (dev->iobase + reg));
385}
386
387static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
388 outsb (dev->iobase + reg, addr, len);
389}
390
391static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
392 insb (dev->iobase + reg, addr, len);
393}
394
395/* Read / Write to a given address in Horizon buffer memory.
396 Interrupts must be disabled between the address register and data
397 port accesses as these must form an atomic operation. */
398static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
399 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
400 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
401 wr_regl (dev, MEMORY_PORT_OFF, data);
402}
403
404static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
405 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
406 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
407 return rd_regl (dev, MEMORY_PORT_OFF);
408}
409
410static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
411 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
412 wr_regl (dev, MEMORY_PORT_OFF, data);
413}
414
415static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
416 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
417 return rd_regl (dev, MEMORY_PORT_OFF);
418}
419
420/********** specialised access functions **********/
421
422/* RX */
423
424static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
425 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
426 return;
427}
428
429static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
430 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
431 ;
432 return;
433}
434
435static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
436 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
437 return;
438}
439
440static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
441 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
442 ;
443 return;
444}
445
446/* TX */
447
448static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
449 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
450 return;
451}
452
453/* Update or query one configuration parameter of a particular channel. */
454
455static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
456 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
457 chan * TX_CHANNEL_CONFIG_MULT | mode);
458 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
459 return;
460}
461
462static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
463 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
464 chan * TX_CHANNEL_CONFIG_MULT | mode);
465 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
466}
467
468/********** dump functions **********/
469
470static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
471#ifdef DEBUG_HORIZON
472 unsigned int i;
473 unsigned char * data = skb->data;
474 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
475 for (i=0; i<skb->len && i < 256;i++)
476 PRINTDM (DBG_DATA, "%02x ", data[i]);
477 PRINTDE (DBG_DATA,"");
478#else
479 (void) prefix;
480 (void) vc;
481 (void) skb;
482#endif
483 return;
484}
485
486static inline void dump_regs (hrz_dev * dev) {
487#ifdef DEBUG_HORIZON
488 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
489 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
490 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
491 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
492 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
493 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
494#else
495 (void) dev;
496#endif
497 return;
498}
499
500static inline void dump_framer (hrz_dev * dev) {
501#ifdef DEBUG_HORIZON
502 unsigned int i;
503 PRINTDB (DBG_REGS, "framer registers:");
504 for (i = 0; i < 0x10; ++i)
505 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
506 PRINTDE (DBG_REGS,"");
507#else
508 (void) dev;
509#endif
510 return;
511}
512
513/********** VPI/VCI <-> (RX) channel conversions **********/
514
515/* RX channels are 10 bit integers, these fns are quite paranoid */
516
517static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
518 unsigned short vci_bits = 10 - vpi_bits;
519 if ((channel & RX_CHANNEL_MASK) == channel) {
520 *vci = channel & ((~0)<<vci_bits);
521 *vpi = channel >> vci_bits;
522 return channel ? 0 : -EINVAL;
523 }
524 return -EINVAL;
525}
526
527static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
528 unsigned short vci_bits = 10 - vpi_bits;
529 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
530 *channel = vpi<<vci_bits | vci;
531 return *channel ? 0 : -EINVAL;
532 }
533 return -EINVAL;
534}
535
536/********** decode RX queue entries **********/
537
538static inline u16 rx_q_entry_to_length (u32 x) {
539 return x & RX_Q_ENTRY_LENGTH_MASK;
540}
541
542static inline u16 rx_q_entry_to_rx_channel (u32 x) {
543 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
544}
545
546/* Cell Transmit Rate Values
547 *
548 * the cell transmit rate (cells per sec) can be set to a variety of
549 * different values by specifying two parameters: a timer preload from
550 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
551 * an exponent from 0 to 14; the special value 15 disables the timer).
552 *
553 * cellrate = baserate / (preload * 2^divider)
554 *
555 * The maximum cell rate that can be specified is therefore just the
556 * base rate. Halving the preload is equivalent to adding 1 to the
557 * divider and so values 1 to 8 of the preload are redundant except
558 * in the case of a maximal divider (14).
559 *
560 * Given a desired cell rate, an algorithm to determine the preload
561 * and divider is:
562 *
563 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
564 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
565 * if x <= 16 then set p = x, d = 0 (high rates), done
566 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
567 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
568 * we find the range (n will be between 1 and 14), set d = n
569 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
570 *
571 * The algorithm used below is a minor variant of the above.
572 *
573 * The base rate is derived from the oscillator frequency (Hz) using a
574 * fixed divider:
575 *
576 * baserate = freq / 32 in the case of some Unknown Card
577 * baserate = freq / 8 in the case of the Horizon 25
578 * baserate = freq / 8 in the case of the Horizon Ultra 155
579 *
580 * The Horizon cards have oscillators and base rates as follows:
581 *
582 * Card Oscillator Base Rate
583 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
584 * Horizon 25 32 MHz 4 MHz
585 * Horizon Ultra 155 40 MHz 5 MHz
586 *
587 * The following defines give the base rates in Hz. These were
588 * previously a factor of 100 larger, no doubt someone was using
589 * cps*100.
590 */
591
592#define BR_UKN 1031250l
593#define BR_HRZ 4000000l
594#define BR_ULT 5000000l
595
596// d is an exponent
597#define CR_MIND 0
598#define CR_MAXD 14
599
600// p ranges from 1 to a power of 2
601#define CR_MAXPEXP 4
602
603static int make_rate (const hrz_dev * dev, u32 c, rounding r,
604 u16 * bits, unsigned int * actual)
605{
606 // note: rounding the rate down means rounding 'p' up
607 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
608
609 u32 div = CR_MIND;
610 u32 pre;
611
612 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
613 // the tests below. We could think harder about exact possibilities
614 // of failure...
615
616 unsigned long br_man = br;
617 unsigned int br_exp = 0;
618
619 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
620 r == round_up ? "up" : r == round_down ? "down" : "nearest");
621
622 // avoid div by zero
623 if (!c) {
624 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
625 return -EINVAL;
626 }
627
628 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
629 br_man = br_man >> 1;
630 ++br_exp;
631 }
632 // (br >>br_exp) <<br_exp == br and
633 // br_exp <= CR_MAXPEXP+CR_MIND
634
635 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
636 // Equivalent to: B <= (c << (MAXPEXP+MIND))
637 // take care of rounding
638 switch (r) {
639 case round_down:
640 pre = DIV_ROUND_UP(br, c<<div);
641 // but p must be non-zero
642 if (!pre)
643 pre = 1;
644 break;
645 case round_nearest:
646 pre = DIV_ROUND_CLOSEST(br, c<<div);
647 // but p must be non-zero
648 if (!pre)
649 pre = 1;
650 break;
651 default: /* round_up */
652 pre = br/(c<<div);
653 // but p must be non-zero
654 if (!pre)
655 return -EINVAL;
656 }
657 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
658 goto got_it;
659 }
660
661 // at this point we have
662 // d == MIND and (c << (MAXPEXP+MIND)) < B
663 while (div < CR_MAXD) {
664 div++;
665 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
666 // Equivalent to: B <= (c << (MAXPEXP+d))
667 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
668 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
669 // MAXP/2 < B/c2^d <= MAXP
670 // take care of rounding
671 switch (r) {
672 case round_down:
673 pre = DIV_ROUND_UP(br, c<<div);
674 break;
675 case round_nearest:
676 pre = DIV_ROUND_CLOSEST(br, c<<div);
677 break;
678 default: /* round_up */
679 pre = br/(c<<div);
680 }
681 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
682 goto got_it;
683 }
684 }
685 // at this point we have
686 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
687 // but we cannot go any higher
688 // take care of rounding
689 if (r == round_down)
690 return -EINVAL;
691 pre = 1 << CR_MAXPEXP;
692 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
693got_it:
694 // paranoia
695 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
696 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
697 div, pre);
698 return -EINVAL;
699 } else {
700 if (bits)
701 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
702 if (actual) {
703 *actual = DIV_ROUND_UP(br, pre<<div);
704 PRINTD (DBG_QOS, "actual rate: %u", *actual);
705 }
706 return 0;
707 }
708}
709
710static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
711 u16 * bit_pattern, unsigned int * actual) {
712 unsigned int my_actual;
713
714 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
715 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
716
717 if (!actual)
718 // actual rate is not returned
719 actual = &my_actual;
720
721 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
722 // should never happen as round_nearest always succeeds
723 return -1;
724
725 if (c - tol <= *actual && *actual <= c + tol)
726 // within tolerance
727 return 0;
728 else
729 // intolerant, try rounding instead
730 return make_rate (dev, c, r, bit_pattern, actual);
731}
732
733/********** Listen on a VC **********/
734
735static int hrz_open_rx (hrz_dev * dev, u16 channel) {
736 // is there any guarantee that we don't get two simulataneous
737 // identical calls of this function from different processes? yes
738 // rate_lock
739 unsigned long flags;
740 u32 channel_type; // u16?
741
742 u16 buf_ptr = RX_CHANNEL_IDLE;
743
744 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
745
746 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
747
748 spin_lock_irqsave (&dev->mem_lock, flags);
749 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
750 spin_unlock_irqrestore (&dev->mem_lock, flags);
751
752 // very serious error, should never occur
753 if (channel_type != RX_CHANNEL_DISABLED) {
754 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
755 return -EBUSY; // clean up?
756 }
757
758 // Give back spare buffer
759 if (dev->noof_spare_buffers) {
760 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
761 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
762 // should never occur
763 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
764 // but easy to recover from
765 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
766 buf_ptr = RX_CHANNEL_IDLE;
767 }
768 } else {
769 PRINTD (DBG_VCC, "using IDLE buffer pointer");
770 }
771
772 // Channel is currently disabled so change its status to idle
773
774 // do we really need to save the flags again?
775 spin_lock_irqsave (&dev->mem_lock, flags);
776
777 wr_mem (dev, &rx_desc->wr_buf_type,
778 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
779 if (buf_ptr != RX_CHANNEL_IDLE)
780 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
781
782 spin_unlock_irqrestore (&dev->mem_lock, flags);
783
784 // rxer->rate = make_rate (qos->peak_cells);
785
786 PRINTD (DBG_FLOW, "hrz_open_rx ok");
787
788 return 0;
789}
790
791#if 0
792/********** change vc rate for a given vc **********/
793
794static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
795 rxer->rate = make_rate (qos->peak_cells);
796}
797#endif
798
799/********** free an skb (as per ATM device driver documentation) **********/
800
801static void hrz_kfree_skb (struct sk_buff * skb) {
802 if (ATM_SKB(skb)->vcc->pop) {
803 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
804 } else {
805 dev_kfree_skb_any (skb);
806 }
807}
808
809/********** cancel listen on a VC **********/
810
811static void hrz_close_rx (hrz_dev * dev, u16 vc) {
812 unsigned long flags;
813
814 u32 value;
815
816 u32 r1, r2;
817
818 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
819
820 int was_idle = 0;
821
822 spin_lock_irqsave (&dev->mem_lock, flags);
823 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
824 spin_unlock_irqrestore (&dev->mem_lock, flags);
825
826 if (value == RX_CHANNEL_DISABLED) {
827 // I suppose this could happen once we deal with _NONE traffic properly
828 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
829 return;
830 }
831 if (value == RX_CHANNEL_IDLE)
832 was_idle = 1;
833
834 spin_lock_irqsave (&dev->mem_lock, flags);
835
836 for (;;) {
837 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
838
839 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
840 break;
841
842 was_idle = 0;
843 }
844
845 if (was_idle) {
846 spin_unlock_irqrestore (&dev->mem_lock, flags);
847 return;
848 }
849
850 WAIT_FLUSH_RX_COMPLETE(dev);
851
852 // XXX Is this all really necessary? We can rely on the rx_data_av
853 // handler to discard frames that remain queued for delivery. If the
854 // worry is that immediately reopening the channel (perhaps by a
855 // different process) may cause some data to be mis-delivered then
856 // there may still be a simpler solution (such as busy-waiting on
857 // rx_busy once the channel is disabled or before a new one is
858 // opened - does this leave any holes?). Arguably setting up and
859 // tearing down the TX and RX halves of each virtual circuit could
860 // most safely be done within ?x_busy protected regions.
861
862 // OK, current changes are that Simon's marker is disabled and we DO
863 // look for NULL rxer elsewhere. The code here seems flush frames
864 // and then remember the last dead cell belonging to the channel
865 // just disabled - the cell gets relinked at the next vc_open.
866 // However, when all VCs are closed or only a few opened there are a
867 // handful of buffers that are unusable.
868
869 // Does anyone feel like documenting spare_buffers properly?
870 // Does anyone feel like fixing this in a nicer way?
871
872 // Flush any data which is left in the channel
873 for (;;) {
874 // Change the rx channel port to something different to the RX
875 // channel we are trying to close to force Horizon to flush the rx
876 // channel read and write pointers.
877
878 u16 other = vc^(RX_CHANS/2);
879
880 SELECT_RX_CHANNEL (dev, other);
881 WAIT_UPDATE_COMPLETE (dev);
882
883 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
884
885 // Select this RX channel. Flush doesn't seem to work unless we
886 // select an RX channel before hand
887
888 SELECT_RX_CHANNEL (dev, vc);
889 WAIT_UPDATE_COMPLETE (dev);
890
891 // Attempt to flush a frame on this RX channel
892
893 FLUSH_RX_CHANNEL (dev, vc);
894 WAIT_FLUSH_RX_COMPLETE (dev);
895
896 // Force Horizon to flush rx channel read and write pointers as before
897
898 SELECT_RX_CHANNEL (dev, other);
899 WAIT_UPDATE_COMPLETE (dev);
900
901 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
902
903 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
904
905 if (r1 == r2) {
906 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
907 break;
908 }
909 }
910
911#if 0
912 {
913 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
914 rx_q_entry * rd_ptr = dev->rx_q_entry;
915
916 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
917
918 while (rd_ptr != wr_ptr) {
919 u32 x = rd_mem (dev, (HDW *) rd_ptr);
920
921 if (vc == rx_q_entry_to_rx_channel (x)) {
922 x |= SIMONS_DODGEY_MARKER;
923
924 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
925
926 wr_mem (dev, (HDW *) rd_ptr, x);
927 }
928
929 if (rd_ptr == dev->rx_q_wrap)
930 rd_ptr = dev->rx_q_reset;
931 else
932 rd_ptr++;
933 }
934 }
935#endif
936
937 spin_unlock_irqrestore (&dev->mem_lock, flags);
938
939 return;
940}
941
942/********** schedule RX transfers **********/
943
944// Note on tail recursion: a GCC developer said that it is not likely
945// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
946// are sure it does as you may otherwise overflow the kernel stack.
947
948// giving this fn a return value would help GCC, allegedly
949
950static void rx_schedule (hrz_dev * dev, int irq) {
951 unsigned int rx_bytes;
952
953 int pio_instead = 0;
954#ifndef TAILRECURSIONWORKS
955 pio_instead = 1;
956 while (pio_instead) {
957#endif
958 // bytes waiting for RX transfer
959 rx_bytes = dev->rx_bytes;
960
961#if 0
962 spin_count = 0;
963 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
964 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
965 if (++spin_count > 10) {
966 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
967 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
968 clear_bit (rx_busy, &dev->flags);
969 hrz_kfree_skb (dev->rx_skb);
970 return;
971 }
972 }
973#endif
974
975 // this code follows the TX code but (at the moment) there is only
976 // one region - the skb itself. I don't know if this will change,
977 // but it doesn't hurt to have the code here, disabled.
978
979 if (rx_bytes) {
980 // start next transfer within same region
981 if (rx_bytes <= MAX_PIO_COUNT) {
982 PRINTD (DBG_RX|DBG_BUS, "(pio)");
983 pio_instead = 1;
984 }
985 if (rx_bytes <= MAX_TRANSFER_COUNT) {
986 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
987 dev->rx_bytes = 0;
988 } else {
989 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
990 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
991 rx_bytes = MAX_TRANSFER_COUNT;
992 }
993 } else {
994 // rx_bytes == 0 -- we're between regions
995 // regions remaining to transfer
996#if 0
997 unsigned int rx_regions = dev->rx_regions;
998#else
999 unsigned int rx_regions = 0;
1000#endif
1001
1002 if (rx_regions) {
1003#if 0
1004 // start a new region
1005 dev->rx_addr = dev->rx_iovec->iov_base;
1006 rx_bytes = dev->rx_iovec->iov_len;
1007 ++dev->rx_iovec;
1008 dev->rx_regions = rx_regions - 1;
1009
1010 if (rx_bytes <= MAX_PIO_COUNT) {
1011 PRINTD (DBG_RX|DBG_BUS, "(pio)");
1012 pio_instead = 1;
1013 }
1014 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1015 PRINTD (DBG_RX|DBG_BUS, "(full region)");
1016 dev->rx_bytes = 0;
1017 } else {
1018 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1019 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1020 rx_bytes = MAX_TRANSFER_COUNT;
1021 }
1022#endif
1023 } else {
1024 // rx_regions == 0
1025 // that's all folks - end of frame
1026 struct sk_buff * skb = dev->rx_skb;
1027 // dev->rx_iovec = 0;
1028
1029 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1030
1031 dump_skb ("<<<", dev->rx_channel, skb);
1032
1033 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1034
1035 {
1036 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1037 // VC layer stats
1038 atomic_inc(&vcc->stats->rx);
1039 __net_timestamp(skb);
1040 // end of our responsibility
1041 vcc->push (vcc, skb);
1042 }
1043 }
1044 }
1045
1046 // note: writing RX_COUNT clears any interrupt condition
1047 if (rx_bytes) {
1048 if (pio_instead) {
1049 if (irq)
1050 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1051 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1052 } else {
1053 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1054 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1055 }
1056 dev->rx_addr += rx_bytes;
1057 } else {
1058 if (irq)
1059 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1060 // allow another RX thread to start
1061 YELLOW_LED_ON(dev);
1062 clear_bit (rx_busy, &dev->flags);
1063 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1064 }
1065
1066#ifdef TAILRECURSIONWORKS
1067 // and we all bless optimised tail calls
1068 if (pio_instead)
1069 return rx_schedule (dev, 0);
1070 return;
1071#else
1072 // grrrrrrr!
1073 irq = 0;
1074 }
1075 return;
1076#endif
1077}
1078
1079/********** handle RX bus master complete events **********/
1080
1081static void rx_bus_master_complete_handler (hrz_dev * dev) {
1082 if (test_bit (rx_busy, &dev->flags)) {
1083 rx_schedule (dev, 1);
1084 } else {
1085 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1086 // clear interrupt condition on adapter
1087 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1088 }
1089 return;
1090}
1091
1092/********** (queue to) become the next TX thread **********/
1093
1094static int tx_hold (hrz_dev * dev) {
1095 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1096 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1097 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1098 if (signal_pending (current))
1099 return -1;
1100 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1101 return 0;
1102}
1103
1104/********** allow another TX thread to start **********/
1105
1106static inline void tx_release (hrz_dev * dev) {
1107 clear_bit (tx_busy, &dev->flags);
1108 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1109 wake_up_interruptible (&dev->tx_queue);
1110}
1111
1112/********** schedule TX transfers **********/
1113
1114static void tx_schedule (hrz_dev * const dev, int irq) {
1115 unsigned int tx_bytes;
1116
1117 int append_desc = 0;
1118
1119 int pio_instead = 0;
1120#ifndef TAILRECURSIONWORKS
1121 pio_instead = 1;
1122 while (pio_instead) {
1123#endif
1124 // bytes in current region waiting for TX transfer
1125 tx_bytes = dev->tx_bytes;
1126
1127#if 0
1128 spin_count = 0;
1129 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1130 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1131 if (++spin_count > 10) {
1132 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1133 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1134 tx_release (dev);
1135 hrz_kfree_skb (dev->tx_skb);
1136 return;
1137 }
1138 }
1139#endif
1140
1141 if (tx_bytes) {
1142 // start next transfer within same region
1143 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1144 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1145 pio_instead = 1;
1146 }
1147 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1148 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1149 if (!dev->tx_iovec) {
1150 // end of last region
1151 append_desc = 1;
1152 }
1153 dev->tx_bytes = 0;
1154 } else {
1155 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1156 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1157 tx_bytes = MAX_TRANSFER_COUNT;
1158 }
1159 } else {
1160 // tx_bytes == 0 -- we're between regions
1161 // regions remaining to transfer
1162 unsigned int tx_regions = dev->tx_regions;
1163
1164 if (tx_regions) {
1165 // start a new region
1166 dev->tx_addr = dev->tx_iovec->iov_base;
1167 tx_bytes = dev->tx_iovec->iov_len;
1168 ++dev->tx_iovec;
1169 dev->tx_regions = tx_regions - 1;
1170
1171 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1172 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1173 pio_instead = 1;
1174 }
1175 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1176 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1177 dev->tx_bytes = 0;
1178 } else {
1179 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1180 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1181 tx_bytes = MAX_TRANSFER_COUNT;
1182 }
1183 } else {
1184 // tx_regions == 0
1185 // that's all folks - end of frame
1186 struct sk_buff * skb = dev->tx_skb;
1187 dev->tx_iovec = NULL;
1188
1189 // VC layer stats
1190 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1191
1192 // free the skb
1193 hrz_kfree_skb (skb);
1194 }
1195 }
1196
1197 // note: writing TX_COUNT clears any interrupt condition
1198 if (tx_bytes) {
1199 if (pio_instead) {
1200 if (irq)
1201 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1203 if (append_desc)
1204 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1205 } else {
1206 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1207 if (append_desc)
1208 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1209 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1210 append_desc
1211 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1212 : tx_bytes);
1213 }
1214 dev->tx_addr += tx_bytes;
1215 } else {
1216 if (irq)
1217 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1218 YELLOW_LED_ON(dev);
1219 tx_release (dev);
1220 }
1221
1222#ifdef TAILRECURSIONWORKS
1223 // and we all bless optimised tail calls
1224 if (pio_instead)
1225 return tx_schedule (dev, 0);
1226 return;
1227#else
1228 // grrrrrrr!
1229 irq = 0;
1230 }
1231 return;
1232#endif
1233}
1234
1235/********** handle TX bus master complete events **********/
1236
1237static void tx_bus_master_complete_handler (hrz_dev * dev) {
1238 if (test_bit (tx_busy, &dev->flags)) {
1239 tx_schedule (dev, 1);
1240 } else {
1241 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1242 // clear interrupt condition on adapter
1243 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1244 }
1245 return;
1246}
1247
1248/********** move RX Q pointer to next item in circular buffer **********/
1249
1250// called only from IRQ sub-handler
1251static u32 rx_queue_entry_next (hrz_dev * dev) {
1252 u32 rx_queue_entry;
1253 spin_lock (&dev->mem_lock);
1254 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1255 if (dev->rx_q_entry == dev->rx_q_wrap)
1256 dev->rx_q_entry = dev->rx_q_reset;
1257 else
1258 dev->rx_q_entry++;
1259 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1260 spin_unlock (&dev->mem_lock);
1261 return rx_queue_entry;
1262}
1263
1264/********** handle RX disabled by device **********/
1265
1266static inline void rx_disabled_handler (hrz_dev * dev) {
1267 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1268 // count me please
1269 PRINTK (KERN_WARNING, "RX was disabled!");
1270}
1271
1272/********** handle RX data received by device **********/
1273
1274// called from IRQ handler
1275static void rx_data_av_handler (hrz_dev * dev) {
1276 u32 rx_queue_entry;
1277 u32 rx_queue_entry_flags;
1278 u16 rx_len;
1279 u16 rx_channel;
1280
1281 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1282
1283 // try to grab rx lock (not possible during RX bus mastering)
1284 if (test_and_set_bit (rx_busy, &dev->flags)) {
1285 PRINTD (DBG_RX, "locked out of rx lock");
1286 return;
1287 }
1288 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1289 // lock is cleared if we fail now, o/w after bus master completion
1290
1291 YELLOW_LED_OFF(dev);
1292
1293 rx_queue_entry = rx_queue_entry_next (dev);
1294
1295 rx_len = rx_q_entry_to_length (rx_queue_entry);
1296 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1297
1298 WAIT_FLUSH_RX_COMPLETE (dev);
1299
1300 SELECT_RX_CHANNEL (dev, rx_channel);
1301
1302 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1303 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1304
1305 if (!rx_len) {
1306 // (at least) bus-mastering breaks if we try to handle a
1307 // zero-length frame, besides AAL5 does not support them
1308 PRINTK (KERN_ERR, "zero-length frame!");
1309 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1310 }
1311
1312 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1313 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1314 }
1315 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1316 struct atm_vcc * atm_vcc;
1317
1318 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1319
1320 atm_vcc = dev->rxer[rx_channel];
1321 // if no vcc is assigned to this channel, we should drop the frame
1322 // (is this what SIMONS etc. was trying to achieve?)
1323
1324 if (atm_vcc) {
1325
1326 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1327
1328 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1329
1330 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1331 if (skb) {
1332 // remember this so we can push it later
1333 dev->rx_skb = skb;
1334 // remember this so we can flush it later
1335 dev->rx_channel = rx_channel;
1336
1337 // prepare socket buffer
1338 skb_put (skb, rx_len);
1339 ATM_SKB(skb)->vcc = atm_vcc;
1340
1341 // simple transfer
1342 // dev->rx_regions = 0;
1343 // dev->rx_iovec = 0;
1344 dev->rx_bytes = rx_len;
1345 dev->rx_addr = skb->data;
1346 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1347 skb->data, rx_len);
1348
1349 // do the business
1350 rx_schedule (dev, 0);
1351 return;
1352
1353 } else {
1354 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1355 }
1356
1357 } else {
1358 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1359 // do we count this?
1360 }
1361
1362 } else {
1363 PRINTK (KERN_WARNING, "dropped over-size frame");
1364 // do we count this?
1365 }
1366
1367 } else {
1368 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1369 // do we count this?
1370 }
1371
1372 } else {
1373 // Wait update complete ? SPONG
1374 }
1375
1376 // RX was aborted
1377 YELLOW_LED_ON(dev);
1378
1379 FLUSH_RX_CHANNEL (dev,rx_channel);
1380 clear_bit (rx_busy, &dev->flags);
1381
1382 return;
1383}
1384
1385/********** interrupt handler **********/
1386
1387static irqreturn_t interrupt_handler(int irq, void *dev_id)
1388{
1389 hrz_dev *dev = dev_id;
1390 u32 int_source;
1391 unsigned int irq_ok;
1392
1393 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1394
1395 // definitely for us
1396 irq_ok = 0;
1397 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1398 & INTERESTING_INTERRUPTS)) {
1399 // In the interests of fairness, the handlers below are
1400 // called in sequence and without immediate return to the head of
1401 // the while loop. This is only of issue for slow hosts (or when
1402 // debugging messages are on). Really slow hosts may find a fast
1403 // sender keeps them permanently in the IRQ handler. :(
1404
1405 // (only an issue for slow hosts) RX completion goes before
1406 // rx_data_av as the former implies rx_busy and so the latter
1407 // would just abort. If it reschedules another transfer
1408 // (continuing the same frame) then it will not clear rx_busy.
1409
1410 // (only an issue for slow hosts) TX completion goes before RX
1411 // data available as it is a much shorter routine - there is the
1412 // chance that any further transfers it schedules will be complete
1413 // by the time of the return to the head of the while loop
1414
1415 if (int_source & RX_BUS_MASTER_COMPLETE) {
1416 ++irq_ok;
1417 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1418 rx_bus_master_complete_handler (dev);
1419 }
1420 if (int_source & TX_BUS_MASTER_COMPLETE) {
1421 ++irq_ok;
1422 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1423 tx_bus_master_complete_handler (dev);
1424 }
1425 if (int_source & RX_DATA_AV) {
1426 ++irq_ok;
1427 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1428 rx_data_av_handler (dev);
1429 }
1430 }
1431 if (irq_ok) {
1432 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1433 } else {
1434 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1435 }
1436
1437 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1438 if (irq_ok)
1439 return IRQ_HANDLED;
1440 return IRQ_NONE;
1441}
1442
1443/********** housekeeping **********/
1444
1445static void do_housekeeping (unsigned long arg) {
1446 // just stats at the moment
1447 hrz_dev * dev = (hrz_dev *) arg;
1448
1449 // collect device-specific (not driver/atm-linux) stats here
1450 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1451 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1452 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1453 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1454
1455 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1456
1457 return;
1458}
1459
1460/********** find an idle channel for TX and set it up **********/
1461
1462// called with tx_busy set
1463static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1464 unsigned short idle_channels;
1465 short tx_channel = -1;
1466 unsigned int spin_count;
1467 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1468
1469 // better would be to fail immediately, the caller can then decide whether
1470 // to wait or drop (depending on whether this is UBR etc.)
1471 spin_count = 0;
1472 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1473 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1474 // delay a bit here
1475 if (++spin_count > 100) {
1476 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1477 return -EBUSY;
1478 }
1479 }
1480
1481 // got an idle channel
1482 {
1483 // tx_idle ensures we look for idle channels in RR order
1484 int chan = dev->tx_idle;
1485
1486 int keep_going = 1;
1487 while (keep_going) {
1488 if (idle_channels & (1<<chan)) {
1489 tx_channel = chan;
1490 keep_going = 0;
1491 }
1492 ++chan;
1493 if (chan == TX_CHANS)
1494 chan = 0;
1495 }
1496
1497 dev->tx_idle = chan;
1498 }
1499
1500 // set up the channel we found
1501 {
1502 // Initialise the cell header in the transmit channel descriptor
1503 // a.k.a. prepare the channel and remember that we have done so.
1504
1505 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1506 u32 rd_ptr;
1507 u32 wr_ptr;
1508 u16 channel = vcc->channel;
1509
1510 unsigned long flags;
1511 spin_lock_irqsave (&dev->mem_lock, flags);
1512
1513 // Update the transmit channel record.
1514 dev->tx_channel_record[tx_channel] = channel;
1515
1516 // xBR channel
1517 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1518 vcc->tx_xbr_bits);
1519
1520 // Update the PCR counter preload value etc.
1521 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1522 vcc->tx_pcr_bits);
1523
1524#if 0
1525 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1526 // SCR timer
1527 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1528 vcc->tx_scr_bits);
1529
1530 // Bucket size...
1531 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1532 vcc->tx_bucket_bits);
1533
1534 // ... and fullness
1535 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1536 vcc->tx_bucket_bits);
1537 }
1538#endif
1539
1540 // Initialise the read and write buffer pointers
1541 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1542 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1543
1544 // idle TX channels should have identical pointers
1545 if (rd_ptr != wr_ptr) {
1546 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1547 // spin_unlock... return -E...
1548 // I wonder if gcc would get rid of one of the pointer aliases
1549 }
1550 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1551 rd_ptr, wr_ptr);
1552
1553 switch (vcc->aal) {
1554 case aal0:
1555 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1556 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1558 break;
1559 case aal34:
1560 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1561 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1562 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1563 break;
1564 case aal5:
1565 rd_ptr |= CHANNEL_TYPE_AAL5;
1566 wr_ptr |= CHANNEL_TYPE_AAL5;
1567 // Initialise the CRC
1568 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1569 break;
1570 }
1571
1572 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1573 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1574
1575 // Write the Cell Header
1576 // Payload Type, CLP and GFC would go here if non-zero
1577 wr_mem (dev, &tx_desc->cell_header, channel);
1578
1579 spin_unlock_irqrestore (&dev->mem_lock, flags);
1580 }
1581
1582 return tx_channel;
1583}
1584
1585/********** send a frame **********/
1586
1587static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1588 unsigned int spin_count;
1589 int free_buffers;
1590 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1591 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1592 u16 channel = vcc->channel;
1593
1594 u32 buffers_required;
1595
1596 /* signed for error return */
1597 short tx_channel;
1598
1599 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1600 channel, skb->data, skb->len);
1601
1602 dump_skb (">>>", channel, skb);
1603
1604 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1605 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1606 hrz_kfree_skb (skb);
1607 return -EIO;
1608 }
1609
1610 // don't understand this
1611 ATM_SKB(skb)->vcc = atm_vcc;
1612
1613 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1614 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1615 hrz_kfree_skb (skb);
1616 return -EIO;
1617 }
1618
1619 if (!channel) {
1620 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1621 hrz_kfree_skb (skb);
1622 return -EIO;
1623 }
1624
1625#if 0
1626 {
1627 // where would be a better place for this? housekeeping?
1628 u16 status;
1629 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1630 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1631 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1632 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1633 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1634 if (test_bit (tx_busy, &dev->flags)) {
1635 hrz_kfree_skb (dev->tx_skb);
1636 tx_release (dev);
1637 }
1638 }
1639 }
1640#endif
1641
1642#ifdef DEBUG_HORIZON
1643 /* wey-hey! */
1644 if (channel == 1023) {
1645 unsigned int i;
1646 unsigned short d = 0;
1647 char * s = skb->data;
1648 if (*s++ == 'D') {
1649 for (i = 0; i < 4; ++i)
1650 d = (d << 4) | hex_to_bin(*s++);
1651 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1652 }
1653 }
1654#endif
1655
1656 // wait until TX is free and grab lock
1657 if (tx_hold (dev)) {
1658 hrz_kfree_skb (skb);
1659 return -ERESTARTSYS;
1660 }
1661
1662 // Wait for enough space to be available in transmit buffer memory.
1663
1664 // should be number of cells needed + 2 (according to hardware docs)
1665 // = ((framelen+8)+47) / 48 + 2
1666 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1667 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668
1669 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1670 spin_count = 0;
1671 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1672 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1673 free_buffers, buffers_required);
1674 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1675 // mdelay (1);
1676 // what happens if we kill (current_pid, SIGKILL) ?
1677 schedule();
1678 if (++spin_count > 1000) {
1679 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1680 free_buffers, buffers_required);
1681 tx_release (dev);
1682 hrz_kfree_skb (skb);
1683 return -ERESTARTSYS;
1684 }
1685 }
1686
1687 // Select a channel to transmit the frame on.
1688 if (channel == dev->last_vc) {
1689 PRINTD (DBG_TX, "last vc hack: hit");
1690 tx_channel = dev->tx_last;
1691 } else {
1692 PRINTD (DBG_TX, "last vc hack: miss");
1693 // Are we currently transmitting this VC on one of the channels?
1694 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1695 if (dev->tx_channel_record[tx_channel] == channel) {
1696 PRINTD (DBG_TX, "vc already on channel: hit");
1697 break;
1698 }
1699 if (tx_channel == TX_CHANS) {
1700 PRINTD (DBG_TX, "vc already on channel: miss");
1701 // Find and set up an idle channel.
1702 tx_channel = setup_idle_tx_channel (dev, vcc);
1703 if (tx_channel < 0) {
1704 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1705 tx_release (dev);
1706 return tx_channel;
1707 }
1708 }
1709
1710 PRINTD (DBG_TX, "got channel");
1711 SELECT_TX_CHANNEL(dev, tx_channel);
1712
1713 dev->last_vc = channel;
1714 dev->tx_last = tx_channel;
1715 }
1716
1717 PRINTD (DBG_TX, "using channel %u", tx_channel);
1718
1719 YELLOW_LED_OFF(dev);
1720
1721 // TX start transfer
1722
1723 {
1724 unsigned int tx_len = skb->len;
1725 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1726 // remember this so we can free it later
1727 dev->tx_skb = skb;
1728
1729 if (tx_iovcnt) {
1730 // scatter gather transfer
1731 dev->tx_regions = tx_iovcnt;
1732 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1733 dev->tx_bytes = 0;
1734 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1735 skb->data, tx_len);
1736 tx_release (dev);
1737 hrz_kfree_skb (skb);
1738 return -EIO;
1739 } else {
1740 // simple transfer
1741 dev->tx_regions = 0;
1742 dev->tx_iovec = NULL;
1743 dev->tx_bytes = tx_len;
1744 dev->tx_addr = skb->data;
1745 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1746 skb->data, tx_len);
1747 }
1748
1749 // and do the business
1750 tx_schedule (dev, 0);
1751
1752 }
1753
1754 return 0;
1755}
1756
1757/********** reset a card **********/
1758
1759static void hrz_reset (const hrz_dev * dev) {
1760 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761
1762 // why not set RESET_HORIZON to one and wait for the card to
1763 // reassert that bit as zero? Like so:
1764 control_0_reg = control_0_reg & RESET_HORIZON;
1765 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1766 while (control_0_reg & RESET_HORIZON)
1767 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768
1769 // old reset code retained:
1770 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1772 // just guessing here
1773 udelay (1000);
1774
1775 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1776}
1777
1778/********** read the burnt in address **********/
1779
1780static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781{
1782 wr_regl (dev, CONTROL_0_REG, ctrl);
1783 udelay (5);
1784}
1785
1786static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787{
1788 // DI must be valid around rising SK edge
1789 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1790 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1791}
1792
1793static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794{
1795 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796
1797 const unsigned int addr_bits = 6;
1798 const unsigned int data_bits = 16;
1799
1800 unsigned int i;
1801
1802 u16 res;
1803
1804 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1805 WRITE_IT_WAIT(dev, ctrl);
1806
1807 // wake Serial EEPROM and send 110 (READ) command
1808 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1809 CLOCK_IT(dev, ctrl);
1810
1811 ctrl |= SEEPROM_DI;
1812 CLOCK_IT(dev, ctrl);
1813
1814 ctrl &= ~SEEPROM_DI;
1815 CLOCK_IT(dev, ctrl);
1816
1817 for (i=0; i<addr_bits; i++) {
1818 if (addr & (1 << (addr_bits-1)))
1819 ctrl |= SEEPROM_DI;
1820 else
1821 ctrl &= ~SEEPROM_DI;
1822
1823 CLOCK_IT(dev, ctrl);
1824
1825 addr = addr << 1;
1826 }
1827
1828 // we could check that we have DO = 0 here
1829 ctrl &= ~SEEPROM_DI;
1830
1831 res = 0;
1832 for (i=0;i<data_bits;i++) {
1833 res = res >> 1;
1834
1835 CLOCK_IT(dev, ctrl);
1836
1837 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1838 res |= (1 << (data_bits-1));
1839 }
1840
1841 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1842 WRITE_IT_WAIT(dev, ctrl);
1843
1844 return res;
1845}
1846
1847/********** initialise a card **********/
1848
1849static int __devinit hrz_init (hrz_dev * dev) {
1850 int onefivefive;
1851
1852 u16 chan;
1853
1854 int buff_count;
1855
1856 HDW * mem;
1857
1858 cell_buf * tx_desc;
1859 cell_buf * rx_desc;
1860
1861 u32 ctrl;
1862
1863 ctrl = rd_regl (dev, CONTROL_0_REG);
1864 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865 onefivefive = ctrl & ATM_LAYER_STATUS;
1866
1867 if (onefivefive)
1868 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869 else
1870 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871
1872 printk (":");
1873 // Reset the card to get everything in a known state
1874
1875 printk (" reset");
1876 hrz_reset (dev);
1877
1878 // Clear all the buffer memory
1879
1880 printk (" clearing memory");
1881
1882 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883 wr_mem (dev, mem, 0);
1884
1885 printk (" tx channels");
1886
1887 // All transmit eight channels are set up as AAL5 ABR channels with
1888 // a 16us cell spacing. Why?
1889
1890 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891 // buffer at 110h etc.
1892
1893 for (chan = 0; chan < TX_CHANS; ++chan) {
1894 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895 cell_buf * buf = &memmap->inittxbufs[chan];
1896
1897 // initialise the read and write buffer pointers
1898 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900
1901 // set the status of the initial buffers to empty
1902 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903 }
1904
1905 // Use space bufn3 at the moment for tx buffers
1906
1907 printk (" tx buffers");
1908
1909 tx_desc = memmap->bufn3;
1910
1911 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912
1913 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915 tx_desc++;
1916 }
1917
1918 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919
1920 // Initialise the transmit free buffer count
1921 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922
1923 printk (" rx channels");
1924
1925 // Initialise all of the receive channels to be AAL5 disabled with
1926 // an interrupt threshold of 0
1927
1928 for (chan = 0; chan < RX_CHANS; ++chan) {
1929 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930
1931 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932 }
1933
1934 printk (" rx buffers");
1935
1936 // Use space bufn4 at the moment for rx buffers
1937
1938 rx_desc = memmap->bufn4;
1939
1940 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941
1942 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944
1945 rx_desc++;
1946 }
1947
1948 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949
1950 // Initialise the receive free buffer count
1951 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952
1953 // Initialize Horizons registers
1954
1955 // TX config
1956 wr_regw (dev, TX_CONFIG_OFF,
1957 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958
1959 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960 wr_regw (dev, RX_CONFIG_OFF,
1961 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962
1963 // RX line config
1964 wr_regw (dev, RX_LINE_CONFIG_OFF,
1965 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966
1967 // Set the max AAL5 cell count to be just enough to contain the
1968 // largest AAL5 frame that the user wants to receive
1969 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971
1972 // Enable receive
1973 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974
1975 printk (" control");
1976
1977 // Drive the OE of the LEDs then turn the green LED on
1978 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979 wr_regl (dev, CONTROL_0_REG, ctrl);
1980
1981 // Test for a 155-capable card
1982
1983 if (onefivefive) {
1984 // Select 155 mode... make this a choice (or: how do we detect
1985 // external line speed and switch?)
1986 ctrl |= ATM_LAYER_SELECT;
1987 wr_regl (dev, CONTROL_0_REG, ctrl);
1988
1989 // test SUNI-lite vs SAMBA
1990
1991 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992 // they will always be zero for the SAMBA. Ha! Bloody hardware
1993 // engineers. It'll never work.
1994
1995 if (rd_framer (dev, 0) & 0x00f0) {
1996 // SUNI
1997 printk (" SUNI");
1998
1999 // Reset, just in case
2000 wr_framer (dev, 0x00, 0x0080);
2001 wr_framer (dev, 0x00, 0x0000);
2002
2003 // Configure transmit FIFO
2004 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005
2006 // Set line timed mode
2007 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008 } else {
2009 // SAMBA
2010 printk (" SAMBA");
2011
2012 // Reset, just in case
2013 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015
2016 // Turn off diagnostic loopback and enable line-timed mode
2017 wr_framer (dev, 0, 0x0002);
2018
2019 // Turn on transmit outputs
2020 wr_framer (dev, 2, 0x0B80);
2021 }
2022 } else {
2023 // Select 25 mode
2024 ctrl &= ~ATM_LAYER_SELECT;
2025
2026 // Madge B154 setup
2027 // none required?
2028 }
2029
2030 printk (" LEDs");
2031
2032 GREEN_LED_ON(dev);
2033 YELLOW_LED_ON(dev);
2034
2035 printk (" ESI=");
2036
2037 {
2038 u16 b = 0;
2039 int i;
2040 u8 * esi = dev->atm_dev->esi;
2041
2042 // in the card I have, EEPROM
2043 // addresses 0, 1, 2 contain 0
2044 // addresess 5, 6 etc. contain ffff
2045 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046 // the read_bia routine gets the BIA in Ethernet bit order
2047
2048 for (i=0; i < ESI_LEN; ++i) {
2049 if (i % 2 == 0)
2050 b = read_bia (dev, i/2 + 2);
2051 else
2052 b = b >> 8;
2053 esi[i] = b & 0xFF;
2054 printk ("%02x", esi[i]);
2055 }
2056 }
2057
2058 // Enable RX_Q and ?X_COMPLETE interrupts only
2059 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060 printk (" IRQ on");
2061
2062 printk (".\n");
2063
2064 return onefivefive;
2065}
2066
2067/********** check max_sdu **********/
2068
2069static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071
2072 switch (aal) {
2073 case aal0:
2074 if (!(tp->max_sdu)) {
2075 PRINTD (DBG_QOS, "defaulting max_sdu");
2076 tp->max_sdu = ATM_AAL0_SDU;
2077 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079 return -EINVAL;
2080 }
2081 break;
2082 case aal34:
2083 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085 tp->max_sdu = ATM_MAX_AAL34_PDU;
2086 }
2087 break;
2088 case aal5:
2089 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091 tp->max_sdu = max_frame_size;
2092 }
2093 break;
2094 }
2095 return 0;
2096}
2097
2098/********** check pcr **********/
2099
2100// something like this should be part of ATM Linux
2101static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102 // we are assuming non-UBR, and non-special values of pcr
2103 if (tp->min_pcr == ATM_MAX_PCR)
2104 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105 else if (tp->min_pcr < 0)
2106 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107 else if (tp->min_pcr && tp->min_pcr > pcr)
2108 PRINTD (DBG_QOS, "pcr less than min_pcr");
2109 else
2110 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112 // [this would get rid of next two conditionals]
2113 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119 else {
2120 // each limit unspecified or not violated
2121 PRINTD (DBG_QOS, "xBR(pcr) OK");
2122 return 0;
2123 }
2124 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126 return -EINVAL;
2127}
2128
2129/********** open VC **********/
2130
2131static int hrz_open (struct atm_vcc *atm_vcc)
2132{
2133 int error;
2134 u16 channel;
2135
2136 struct atm_qos * qos;
2137 struct atm_trafprm * txtp;
2138 struct atm_trafprm * rxtp;
2139
2140 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141 hrz_vcc vcc;
2142 hrz_vcc * vccp; // allocated late
2143 short vpi = atm_vcc->vpi;
2144 int vci = atm_vcc->vci;
2145 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146
2147#ifdef ATM_VPI_UNSPEC
2148 // UNSPEC is deprecated, remove this code eventually
2149 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151 return -EINVAL;
2152 }
2153#endif
2154
2155 error = vpivci_to_channel (&channel, vpi, vci);
2156 if (error) {
2157 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158 return error;
2159 }
2160
2161 vcc.channel = channel;
2162 // max speed for the moment
2163 vcc.tx_rate = 0x0;
2164
2165 qos = &atm_vcc->qos;
2166
2167 // check AAL and remember it
2168 switch (qos->aal) {
2169 case ATM_AAL0:
2170 // we would if it were 48 bytes and not 52!
2171 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172 vcc.aal = aal0;
2173 break;
2174 case ATM_AAL34:
2175 // we would if I knew how do the SAR!
2176 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177 vcc.aal = aal34;
2178 break;
2179 case ATM_AAL5:
2180 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181 vcc.aal = aal5;
2182 break;
2183 default:
2184 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185 return -EINVAL;
2186 break;
2187 }
2188
2189 // TX traffic parameters
2190
2191 // there are two, interrelated problems here: 1. the reservation of
2192 // PCR is not a binary choice, we are given bounds and/or a
2193 // desirable value; 2. the device is only capable of certain values,
2194 // most of which are not integers. It is almost certainly acceptable
2195 // to be off by a maximum of 1 to 10 cps.
2196
2197 // Pragmatic choice: always store an integral PCR as that which has
2198 // been allocated, even if we allocate a little (or a lot) less,
2199 // after rounding. The actual allocation depends on what we can
2200 // manage with our rate selection algorithm. The rate selection
2201 // algorithm is given an integral PCR and a tolerance and told
2202 // whether it should round the value up or down if the tolerance is
2203 // exceeded; it returns: a) the actual rate selected (rounded up to
2204 // the nearest integer), b) a bit pattern to feed to the timer
2205 // register, and c) a failure value if no applicable rate exists.
2206
2207 // Part of the job is done by atm_pcr_goal which gives us a PCR
2208 // specification which says: EITHER grab the maximum available PCR
2209 // (and perhaps a lower bound which we musn't pass), OR grab this
2210 // amount, rounding down if you have to (and perhaps a lower bound
2211 // which we musn't pass) OR grab this amount, rounding up if you
2212 // have to (and perhaps an upper bound which we musn't pass). If any
2213 // bounds ARE passed we fail. Note that rounding is only rounding to
2214 // match device limitations, we do not round down to satisfy
2215 // bandwidth availability even if this would not violate any given
2216 // lower bound.
2217
2218 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2219 // (say) so this is not even a binary fixpoint cell rate (but this
2220 // device can do it). To avoid this sort of hassle we use a
2221 // tolerance parameter (currently fixed at 10 cps).
2222
2223 PRINTD (DBG_QOS, "TX:");
2224
2225 txtp = &qos->txtp;
2226
2227 // set up defaults for no traffic
2228 vcc.tx_rate = 0;
2229 // who knows what would actually happen if you try and send on this?
2230 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2231 vcc.tx_pcr_bits = CLOCK_DISABLE;
2232#if 0
2233 vcc.tx_scr_bits = CLOCK_DISABLE;
2234 vcc.tx_bucket_bits = 0;
2235#endif
2236
2237 if (txtp->traffic_class != ATM_NONE) {
2238 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2239 if (error) {
2240 PRINTD (DBG_QOS, "TX max_sdu check failed");
2241 return error;
2242 }
2243
2244 switch (txtp->traffic_class) {
2245 case ATM_UBR: {
2246 // we take "the PCR" as a rate-cap
2247 // not reserved
2248 vcc.tx_rate = 0;
2249 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2250 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2251 break;
2252 }
2253#if 0
2254 case ATM_ABR: {
2255 // reserve min, allow up to max
2256 vcc.tx_rate = 0; // ?
2257 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2258 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2259 break;
2260 }
2261#endif
2262 case ATM_CBR: {
2263 int pcr = atm_pcr_goal (txtp);
2264 rounding r;
2265 if (!pcr) {
2266 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2267 // should really have: once someone gets unlimited bandwidth
2268 // that no more non-UBR channels can be opened until the
2269 // unlimited one closes?? For the moment, round_down means
2270 // greedy people actually get something and not nothing
2271 r = round_down;
2272 // slight race (no locking) here so we may get -EAGAIN
2273 // later; the greedy bastards would deserve it :)
2274 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2275 pcr = dev->tx_avail;
2276 } else if (pcr < 0) {
2277 r = round_down;
2278 pcr = -pcr;
2279 } else {
2280 r = round_up;
2281 }
2282 error = make_rate_with_tolerance (dev, pcr, r, 10,
2283 &vcc.tx_pcr_bits, &vcc.tx_rate);
2284 if (error) {
2285 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2286 return error;
2287 }
2288 // not really clear what further checking is needed
2289 error = atm_pcr_check (txtp, vcc.tx_rate);
2290 if (error) {
2291 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2292 return error;
2293 }
2294 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2295 break;
2296 }
2297#if 0
2298 case ATM_VBR: {
2299 int pcr = atm_pcr_goal (txtp);
2300 // int scr = atm_scr_goal (txtp);
2301 int scr = pcr/2; // just for fun
2302 unsigned int mbs = 60; // just for fun
2303 rounding pr;
2304 rounding sr;
2305 unsigned int bucket;
2306 if (!pcr) {
2307 pr = round_nearest;
2308 pcr = 1<<30;
2309 } else if (pcr < 0) {
2310 pr = round_down;
2311 pcr = -pcr;
2312 } else {
2313 pr = round_up;
2314 }
2315 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2316 &vcc.tx_pcr_bits, 0);
2317 if (!scr) {
2318 // see comments for PCR with CBR above
2319 sr = round_down;
2320 // slight race (no locking) here so we may get -EAGAIN
2321 // later; the greedy bastards would deserve it :)
2322 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2323 scr = dev->tx_avail;
2324 } else if (scr < 0) {
2325 sr = round_down;
2326 scr = -scr;
2327 } else {
2328 sr = round_up;
2329 }
2330 error = make_rate_with_tolerance (dev, scr, sr, 10,
2331 &vcc.tx_scr_bits, &vcc.tx_rate);
2332 if (error) {
2333 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2334 return error;
2335 }
2336 // not really clear what further checking is needed
2337 // error = atm_scr_check (txtp, vcc.tx_rate);
2338 if (error) {
2339 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2340 return error;
2341 }
2342 // bucket calculations (from a piece of paper...) cell bucket
2343 // capacity must be largest integer smaller than m(p-s)/p + 1
2344 // where m = max burst size, p = pcr, s = scr
2345 bucket = mbs*(pcr-scr)/pcr;
2346 if (bucket*pcr != mbs*(pcr-scr))
2347 bucket += 1;
2348 if (bucket > BUCKET_MAX_SIZE) {
2349 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2350 bucket, BUCKET_MAX_SIZE);
2351 bucket = BUCKET_MAX_SIZE;
2352 }
2353 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2354 vcc.tx_bucket_bits = bucket;
2355 break;
2356 }
2357#endif
2358 default: {
2359 PRINTD (DBG_QOS, "unsupported TX traffic class");
2360 return -EINVAL;
2361 break;
2362 }
2363 }
2364 }
2365
2366 // RX traffic parameters
2367
2368 PRINTD (DBG_QOS, "RX:");
2369
2370 rxtp = &qos->rxtp;
2371
2372 // set up defaults for no traffic
2373 vcc.rx_rate = 0;
2374
2375 if (rxtp->traffic_class != ATM_NONE) {
2376 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2377 if (error) {
2378 PRINTD (DBG_QOS, "RX max_sdu check failed");
2379 return error;
2380 }
2381 switch (rxtp->traffic_class) {
2382 case ATM_UBR: {
2383 // not reserved
2384 break;
2385 }
2386#if 0
2387 case ATM_ABR: {
2388 // reserve min
2389 vcc.rx_rate = 0; // ?
2390 break;
2391 }
2392#endif
2393 case ATM_CBR: {
2394 int pcr = atm_pcr_goal (rxtp);
2395 if (!pcr) {
2396 // slight race (no locking) here so we may get -EAGAIN
2397 // later; the greedy bastards would deserve it :)
2398 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2399 pcr = dev->rx_avail;
2400 } else if (pcr < 0) {
2401 pcr = -pcr;
2402 }
2403 vcc.rx_rate = pcr;
2404 // not really clear what further checking is needed
2405 error = atm_pcr_check (rxtp, vcc.rx_rate);
2406 if (error) {
2407 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2408 return error;
2409 }
2410 break;
2411 }
2412#if 0
2413 case ATM_VBR: {
2414 // int scr = atm_scr_goal (rxtp);
2415 int scr = 1<<16; // just for fun
2416 if (!scr) {
2417 // slight race (no locking) here so we may get -EAGAIN
2418 // later; the greedy bastards would deserve it :)
2419 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2420 scr = dev->rx_avail;
2421 } else if (scr < 0) {
2422 scr = -scr;
2423 }
2424 vcc.rx_rate = scr;
2425 // not really clear what further checking is needed
2426 // error = atm_scr_check (rxtp, vcc.rx_rate);
2427 if (error) {
2428 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2429 return error;
2430 }
2431 break;
2432 }
2433#endif
2434 default: {
2435 PRINTD (DBG_QOS, "unsupported RX traffic class");
2436 return -EINVAL;
2437 break;
2438 }
2439 }
2440 }
2441
2442
2443 // late abort useful for diagnostics
2444 if (vcc.aal != aal5) {
2445 PRINTD (DBG_QOS, "AAL not supported");
2446 return -EINVAL;
2447 }
2448
2449 // get space for our vcc stuff and copy parameters into it
2450 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2451 if (!vccp) {
2452 PRINTK (KERN_ERR, "out of memory!");
2453 return -ENOMEM;
2454 }
2455 *vccp = vcc;
2456
2457 // clear error and grab cell rate resource lock
2458 error = 0;
2459 spin_lock (&dev->rate_lock);
2460
2461 if (vcc.tx_rate > dev->tx_avail) {
2462 PRINTD (DBG_QOS, "not enough TX PCR left");
2463 error = -EAGAIN;
2464 }
2465
2466 if (vcc.rx_rate > dev->rx_avail) {
2467 PRINTD (DBG_QOS, "not enough RX PCR left");
2468 error = -EAGAIN;
2469 }
2470
2471 if (!error) {
2472 // really consume cell rates
2473 dev->tx_avail -= vcc.tx_rate;
2474 dev->rx_avail -= vcc.rx_rate;
2475 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2476 vcc.tx_rate, vcc.rx_rate);
2477 }
2478
2479 // release lock and exit on error
2480 spin_unlock (&dev->rate_lock);
2481 if (error) {
2482 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2483 kfree (vccp);
2484 return error;
2485 }
2486
2487 // this is "immediately before allocating the connection identifier
2488 // in hardware" - so long as the next call does not fail :)
2489 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490
2491 // any errors here are very serious and should never occur
2492
2493 if (rxtp->traffic_class != ATM_NONE) {
2494 if (dev->rxer[channel]) {
2495 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2496 error = -EBUSY;
2497 }
2498 if (!error)
2499 error = hrz_open_rx (dev, channel);
2500 if (error) {
2501 kfree (vccp);
2502 return error;
2503 }
2504 // this link allows RX frames through
2505 dev->rxer[channel] = atm_vcc;
2506 }
2507
2508 // success, set elements of atm_vcc
2509 atm_vcc->dev_data = (void *) vccp;
2510
2511 // indicate readiness
2512 set_bit(ATM_VF_READY,&atm_vcc->flags);
2513
2514 return 0;
2515}
2516
2517/********** close VC **********/
2518
2519static void hrz_close (struct atm_vcc * atm_vcc) {
2520 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2521 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2522 u16 channel = vcc->channel;
2523 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524
2525 // indicate unreadiness
2526 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527
2528 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2529 unsigned int i;
2530
2531 // let any TX on this channel that has started complete
2532 // no restart, just keep trying
2533 while (tx_hold (dev))
2534 ;
2535 // remove record of any tx_channel having been setup for this channel
2536 for (i = 0; i < TX_CHANS; ++i)
2537 if (dev->tx_channel_record[i] == channel) {
2538 dev->tx_channel_record[i] = -1;
2539 break;
2540 }
2541 if (dev->last_vc == channel)
2542 dev->tx_last = -1;
2543 tx_release (dev);
2544 }
2545
2546 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2547 // disable RXing - it tries quite hard
2548 hrz_close_rx (dev, channel);
2549 // forget the vcc - no more skbs will be pushed
2550 if (atm_vcc != dev->rxer[channel])
2551 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2552 "arghhh! we're going to die!",
2553 atm_vcc, dev->rxer[channel]);
2554 dev->rxer[channel] = NULL;
2555 }
2556
2557 // atomically release our rate reservation
2558 spin_lock (&dev->rate_lock);
2559 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2560 vcc->tx_rate, vcc->rx_rate);
2561 dev->tx_avail += vcc->tx_rate;
2562 dev->rx_avail += vcc->rx_rate;
2563 spin_unlock (&dev->rate_lock);
2564
2565 // free our structure
2566 kfree (vcc);
2567 // say the VPI/VCI is free again
2568 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2569}
2570
2571#if 0
2572static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2573 void *optval, int optlen) {
2574 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2575 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2576 switch (level) {
2577 case SOL_SOCKET:
2578 switch (optname) {
2579// case SO_BCTXOPT:
2580// break;
2581// case SO_BCRXOPT:
2582// break;
2583 default:
2584 return -ENOPROTOOPT;
2585 break;
2586 };
2587 break;
2588 }
2589 return -EINVAL;
2590}
2591
2592static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2593 void *optval, unsigned int optlen) {
2594 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2595 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2596 switch (level) {
2597 case SOL_SOCKET:
2598 switch (optname) {
2599// case SO_BCTXOPT:
2600// break;
2601// case SO_BCRXOPT:
2602// break;
2603 default:
2604 return -ENOPROTOOPT;
2605 break;
2606 };
2607 break;
2608 }
2609 return -EINVAL;
2610}
2611#endif
2612
2613#if 0
2614static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2615 hrz_dev * dev = HRZ_DEV(atm_dev);
2616 PRINTD (DBG_FLOW, "hrz_ioctl");
2617 return -1;
2618}
2619
2620unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2621 hrz_dev * dev = HRZ_DEV(atm_dev);
2622 PRINTD (DBG_FLOW, "hrz_phy_get");
2623 return 0;
2624}
2625
2626static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2627 unsigned long addr) {
2628 hrz_dev * dev = HRZ_DEV(atm_dev);
2629 PRINTD (DBG_FLOW, "hrz_phy_put");
2630}
2631
2632static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2633 hrz_dev * dev = HRZ_DEV(vcc->dev);
2634 PRINTD (DBG_FLOW, "hrz_change_qos");
2635 return -1;
2636}
2637#endif
2638
2639/********** proc file contents **********/
2640
2641static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2642 hrz_dev * dev = HRZ_DEV(atm_dev);
2643 int left = *pos;
2644 PRINTD (DBG_FLOW, "hrz_proc_read");
2645
2646 /* more diagnostics here? */
2647
2648#if 0
2649 if (!left--) {
2650 unsigned int count = sprintf (page, "vbr buckets:");
2651 unsigned int i;
2652 for (i = 0; i < TX_CHANS; ++i)
2653 count += sprintf (page, " %u/%u",
2654 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2655 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2656 count += sprintf (page+count, ".\n");
2657 return count;
2658 }
2659#endif
2660
2661 if (!left--)
2662 return sprintf (page,
2663 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2664 dev->tx_cell_count, dev->rx_cell_count,
2665 dev->hec_error_count, dev->unassigned_cell_count);
2666
2667 if (!left--)
2668 return sprintf (page,
2669 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2670 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2671 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2672 dev->noof_spare_buffers);
2673
2674 if (!left--)
2675 return sprintf (page,
2676 "cps remaining: TX %u, RX %u\n",
2677 dev->tx_avail, dev->rx_avail);
2678
2679 return 0;
2680}
2681
2682static const struct atmdev_ops hrz_ops = {
2683 .open = hrz_open,
2684 .close = hrz_close,
2685 .send = hrz_send,
2686 .proc_read = hrz_proc_read,
2687 .owner = THIS_MODULE,
2688};
2689
2690static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2691{
2692 hrz_dev * dev;
2693 int err = 0;
2694
2695 // adapter slot free, read resources from PCI configuration space
2696 u32 iobase = pci_resource_start (pci_dev, 0);
2697 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2698 unsigned int irq;
2699 unsigned char lat;
2700
2701 PRINTD (DBG_FLOW, "hrz_probe");
2702
2703 if (pci_enable_device(pci_dev))
2704 return -EINVAL;
2705
2706 /* XXX DEV_LABEL is a guess */
2707 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2708 err = -EINVAL;
2709 goto out_disable;
2710 }
2711
2712 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2713 if (!dev) {
2714 // perhaps we should be nice: deregister all adapters and abort?
2715 PRINTD(DBG_ERR, "out of memory");
2716 err = -ENOMEM;
2717 goto out_release;
2718 }
2719
2720 pci_set_drvdata(pci_dev, dev);
2721
2722 // grab IRQ and install handler - move this someplace more sensible
2723 irq = pci_dev->irq;
2724 if (request_irq(irq,
2725 interrupt_handler,
2726 IRQF_SHARED, /* irqflags guess */
2727 DEV_LABEL, /* name guess */
2728 dev)) {
2729 PRINTD(DBG_WARN, "request IRQ failed!");
2730 err = -EINVAL;
2731 goto out_free;
2732 }
2733
2734 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2735 iobase, irq, membase);
2736
2737 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2738 NULL);
2739 if (!(dev->atm_dev)) {
2740 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2741 err = -EINVAL;
2742 goto out_free_irq;
2743 }
2744
2745 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2746 dev->atm_dev->number, dev, dev->atm_dev);
2747 dev->atm_dev->dev_data = (void *) dev;
2748 dev->pci_dev = pci_dev;
2749
2750 // enable bus master accesses
2751 pci_set_master(pci_dev);
2752
2753 // frobnicate latency (upwards, usually)
2754 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2755 if (pci_lat) {
2756 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2757 "changing", lat, pci_lat);
2758 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2759 } else if (lat < MIN_PCI_LATENCY) {
2760 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2761 "increasing", lat, MIN_PCI_LATENCY);
2762 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2763 }
2764
2765 dev->iobase = iobase;
2766 dev->irq = irq;
2767 dev->membase = membase;
2768
2769 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2770 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2771
2772 // these next three are performance hacks
2773 dev->last_vc = -1;
2774 dev->tx_last = -1;
2775 dev->tx_idle = 0;
2776
2777 dev->tx_regions = 0;
2778 dev->tx_bytes = 0;
2779 dev->tx_skb = NULL;
2780 dev->tx_iovec = NULL;
2781
2782 dev->tx_cell_count = 0;
2783 dev->rx_cell_count = 0;
2784 dev->hec_error_count = 0;
2785 dev->unassigned_cell_count = 0;
2786
2787 dev->noof_spare_buffers = 0;
2788
2789 {
2790 unsigned int i;
2791 for (i = 0; i < TX_CHANS; ++i)
2792 dev->tx_channel_record[i] = -1;
2793 }
2794
2795 dev->flags = 0;
2796
2797 // Allocate cell rates and remember ASIC version
2798 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2799 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2800 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2801
2802 if (hrz_init(dev)) {
2803 // to be really pedantic, this should be ATM_OC3c_PCR
2804 dev->tx_avail = ATM_OC3_PCR;
2805 dev->rx_avail = ATM_OC3_PCR;
2806 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2807 } else {
2808 dev->tx_avail = ((25600000/8)*26)/(27*53);
2809 dev->rx_avail = ((25600000/8)*26)/(27*53);
2810 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2811 }
2812
2813 // rate changes spinlock
2814 spin_lock_init(&dev->rate_lock);
2815
2816 // on-board memory access spinlock; we want atomic reads and
2817 // writes to adapter memory (handles IRQ and SMP)
2818 spin_lock_init(&dev->mem_lock);
2819
2820 init_waitqueue_head(&dev->tx_queue);
2821
2822 // vpi in 0..4, vci in 6..10
2823 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2824 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2825
2826 init_timer(&dev->housekeeping);
2827 dev->housekeeping.function = do_housekeeping;
2828 dev->housekeeping.data = (unsigned long) dev;
2829 mod_timer(&dev->housekeeping, jiffies);
2830
2831out:
2832 return err;
2833
2834out_free_irq:
2835 free_irq(dev->irq, dev);
2836out_free:
2837 kfree(dev);
2838out_release:
2839 release_region(iobase, HRZ_IO_EXTENT);
2840out_disable:
2841 pci_disable_device(pci_dev);
2842 goto out;
2843}
2844
2845static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2846{
2847 hrz_dev *dev;
2848
2849 dev = pci_get_drvdata(pci_dev);
2850
2851 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2852 del_timer_sync(&dev->housekeeping);
2853 hrz_reset(dev);
2854 atm_dev_deregister(dev->atm_dev);
2855 free_irq(dev->irq, dev);
2856 release_region(dev->iobase, HRZ_IO_EXTENT);
2857 kfree(dev);
2858
2859 pci_disable_device(pci_dev);
2860}
2861
2862static void __init hrz_check_args (void) {
2863#ifdef DEBUG_HORIZON
2864 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2865#else
2866 if (debug)
2867 PRINTK (KERN_NOTICE, "no debug support in this image");
2868#endif
2869
2870 if (vpi_bits > HRZ_MAX_VPI)
2871 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2872 vpi_bits = HRZ_MAX_VPI);
2873
2874 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2875 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2876 max_tx_size = TX_AAL5_LIMIT);
2877
2878 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2879 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2880 max_rx_size = RX_AAL5_LIMIT);
2881
2882 return;
2883}
2884
2885MODULE_AUTHOR(maintainer_string);
2886MODULE_DESCRIPTION(description_string);
2887MODULE_LICENSE("GPL");
2888module_param(debug, ushort, 0644);
2889module_param(vpi_bits, ushort, 0);
2890module_param(max_tx_size, int, 0);
2891module_param(max_rx_size, int, 0);
2892module_param(pci_lat, byte, 0);
2893MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2894MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2895MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2896MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2897MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2898
2899static struct pci_device_id hrz_pci_tbl[] = {
2900 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2901 0, 0, 0 },
2902 { 0, }
2903};
2904
2905MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2906
2907static struct pci_driver hrz_driver = {
2908 .name = "horizon",
2909 .probe = hrz_probe,
2910 .remove = __devexit_p(hrz_remove_one),
2911 .id_table = hrz_pci_tbl,
2912};
2913
2914/********** module entry **********/
2915
2916static int __init hrz_module_init (void) {
2917 // sanity check - cast is needed since printk does not support %Zu
2918 if (sizeof(struct MEMMAP) != 128*1024/4) {
2919 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2920 (unsigned long) sizeof(struct MEMMAP));
2921 return -ENOMEM;
2922 }
2923
2924 show_version();
2925
2926 // check arguments
2927 hrz_check_args();
2928
2929 // get the juice
2930 return pci_register_driver(&hrz_driver);
2931}
2932
2933/********** module exit **********/
2934
2935static void __exit hrz_module_exit (void) {
2936 PRINTD (DBG_FLOW, "cleanup_module");
2937
2938 pci_unregister_driver(&hrz_driver);
2939}
2940
2941module_init(hrz_module_init);
2942module_exit(hrz_module_exit);
1/*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
21*/
22
23/*
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
26*/
27
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/pci.h>
32#include <linux/errno.h>
33#include <linux/atm.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/skbuff.h>
37#include <linux/time.h>
38#include <linux/delay.h>
39#include <linux/uio.h>
40#include <linux/init.h>
41#include <linux/interrupt.h>
42#include <linux/ioport.h>
43#include <linux/wait.h>
44#include <linux/slab.h>
45
46#include <asm/io.h>
47#include <linux/atomic.h>
48#include <asm/uaccess.h>
49#include <asm/string.h>
50#include <asm/byteorder.h>
51
52#include "horizon.h"
53
54#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55#define description_string "Madge ATM Horizon [Ultra] driver"
56#define version_string "1.2.1"
57
58static inline void __init show_version (void) {
59 printk ("%s version %s\n", description_string, version_string);
60}
61
62/*
63
64 CREDITS
65
66 Driver and documentation by:
67
68 Chris Aston Madge Networks
69 Giuliano Procida Madge Networks
70 Simon Benham Madge Networks
71 Simon Johnson Madge Networks
72 Various Others Madge Networks
73
74 Some inspiration taken from other drivers by:
75
76 Alexandru Cucos UTBv
77 Kari Mettinen University of Helsinki
78 Werner Almesberger EPFL LRC
79
80 Theory of Operation
81
82 I Hardware, detection, initialisation and shutdown.
83
84 1. Supported Hardware
85
86 This driver should handle all variants of the PCI Madge ATM adapters
87 with the Horizon chipset. These are all PCI cards supporting PIO, BM
88 DMA and a form of MMIO (registers only, not internal RAM).
89
90 The driver is only known to work with SONET and UTP Horizon Ultra
91 cards at 155Mb/s. However, code is in place to deal with both the
92 original Horizon and 25Mb/s operation.
93
94 There are two revisions of the Horizon ASIC: the original and the
95 Ultra. Details of hardware bugs are in section III.
96
97 The ASIC version can be distinguished by chip markings but is NOT
98 indicated by the PCI revision (all adapters seem to have PCI rev 1).
99
100 I believe that:
101
102 Horizon => Collage 25 PCI Adapter (UTP and STP)
103 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104 Ambassador x => Collage 155 PCI Server (completely different)
105
106 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107 have a Madge B154 plus glue logic serializer. I have also found a
108 really ancient version of this with slightly different glue. It
109 comes with the revision 0 (140-025-01) ASIC.
110
111 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112 output (UTP) or an HP HFBR 5205 output (SONET). It has either
113 Madge's SAMBA framer or a SUNI-lite device (early versions). It
114 comes with the revision 1 (140-027-01) ASIC.
115
116 2. Detection
117
118 All Horizon-based cards present with the same PCI Vendor and Device
119 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120 to enable bus-mastering (with appropriate latency).
121
122 ATM_LAYER_STATUS in the control register distinguishes between the
123 two possible physical layers (25 and 155). It is not clear whether
124 the 155 cards can also operate at 25Mbps. We rely on the fact that a
125 card operates at 155 if and only if it has the newer Horizon Ultra
126 ASIC.
127
128 For 155 cards the two possible framers are probed for and then set
129 up for loop-timing.
130
131 3. Initialisation
132
133 The card is reset and then put into a known state. The physical
134 layer is configured for normal operation at the appropriate speed;
135 in the case of the 155 cards, the framer is initialised with
136 line-based timing; the internal RAM is zeroed and the allocation of
137 buffers for RX and TX is made; the Burnt In Address is read and
138 copied to the ATM ESI; various policy settings for RX (VPI bits,
139 unknown VCs, oam cells) are made. Ideally all policy items should be
140 configurable at module load (if not actually on-demand), however,
141 only the vpi vs vci bit allocation can be specified at insmod.
142
143 4. Shutdown
144
145 This is in response to module_cleaup. No VCs are in use and the card
146 should be idle; it is reset.
147
148 II Driver software (as it should be)
149
150 0. Traffic Parameters
151
152 The traffic classes (not an enumeration) are currently: ATM_NONE (no
153 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154 (compatible with everything). Together with (perhaps only some of)
155 the following items they make up the traffic specification.
156
157 struct atm_trafprm {
158 unsigned char traffic_class; traffic class (ATM_UBR, ...)
159 int max_pcr; maximum PCR in cells per second
160 int pcr; desired PCR in cells per second
161 int min_pcr; minimum PCR in cells per second
162 int max_cdv; maximum CDV in microseconds
163 int max_sdu; maximum SDU in bytes
164 };
165
166 Note that these denote bandwidth available not bandwidth used; the
167 possibilities according to ATMF are:
168
169 Real Time (cdv and max CDT given)
170
171 CBR(pcr) pcr bandwidth always available
172 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
173
174 Non Real Time
175
176 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
177 UBR()
178 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
179
180 mbs is max burst size (bucket)
181 pcr and scr have associated cdvt values
182 mcr is like scr but has no cdtv
183 cdtv may differ at each hop
184
185 Some of the above items are qos items (as opposed to traffic
186 parameters). We have nothing to do with qos. All except ABR can have
187 their traffic parameters converted to GCRA parameters. The GCRA may
188 be implemented as a (real-number) leaky bucket. The GCRA can be used
189 in complicated ways by switches and in simpler ways by end-stations.
190 It can be used both to filter incoming cells and shape out-going
191 cells.
192
193 ATM Linux actually supports:
194
195 ATM_NONE() (no traffic in this direction)
196 ATM_UBR(max_frame_size)
197 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198
199 0 or ATM_MAX_PCR are used to indicate maximum available PCR
200
201 A traffic specification consists of the AAL type and separate
202 traffic specifications for either direction. In ATM Linux it is:
203
204 struct atm_qos {
205 struct atm_trafprm txtp;
206 struct atm_trafprm rxtp;
207 unsigned char aal;
208 };
209
210 AAL types are:
211
212 ATM_NO_AAL AAL not specified
213 ATM_AAL0 "raw" ATM cells
214 ATM_AAL1 AAL1 (CBR)
215 ATM_AAL2 AAL2 (VBR)
216 ATM_AAL34 AAL3/4 (data)
217 ATM_AAL5 AAL5 (data)
218 ATM_SAAL signaling AAL
219
220 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221 it does not implement AAL 3/4 SAR and it has a different notion of
222 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223 supported by this driver.
224
225 The Horizon has limited support for ABR (including UBR), VBR and
226 CBR. Each TX channel has a bucket (containing up to 31 cell units)
227 and two timers (PCR and SCR) associated with it that can be used to
228 govern cell emissions and host notification (in the case of ABR this
229 is presumably so that RM cells may be emitted at appropriate times).
230 The timers may either be disabled or may be set to any of 240 values
231 (determined by the clock crystal, a fixed (?) per-device divider, a
232 configurable divider and a configurable timer preload value).
233
234 At the moment only UBR and CBR are supported by the driver. VBR will
235 be supported as soon as ATM for Linux supports it. ABR support is
236 very unlikely as RM cell handling is completely up to the driver.
237
238 1. TX (TX channel setup and TX transfer)
239
240 The TX half of the driver owns the TX Horizon registers. The TX
241 component in the IRQ handler is the BM completion handler. This can
242 only be entered when tx_busy is true (enforced by hardware). The
243 other TX component can only be entered when tx_busy is false
244 (enforced by driver). So TX is single-threaded.
245
246 Apart from a minor optimisation to not re-select the last channel,
247 the TX send component works as follows:
248
249 Atomic test and set tx_busy until we succeed; we should implement
250 some sort of timeout so that tx_busy will never be stuck at true.
251
252 If no TX channel is set up for this VC we wait for an idle one (if
253 necessary) and set it up.
254
255 At this point we have a TX channel ready for use. We wait for enough
256 buffers to become available then start a TX transmit (set the TX
257 descriptor, schedule transfer, exit).
258
259 The IRQ component handles TX completion (stats, free buffer, tx_busy
260 unset, exit). We also re-schedule further transfers for the same
261 frame if needed.
262
263 TX setup in more detail:
264
265 TX open is a nop, the relevant information is held in the hrz_vcc
266 (vcc->dev_data) structure and is "cached" on the card.
267
268 TX close gets the TX lock and clears the channel from the "cache".
269
270 2. RX (Data Available and RX transfer)
271
272 The RX half of the driver owns the RX registers. There are two RX
273 components in the IRQ handler: the data available handler deals with
274 fresh data that has arrived on the card, the BM completion handler
275 is very similar to the TX completion handler. The data available
276 handler grabs the rx_lock and it is only released once the data has
277 been discarded or completely transferred to the host. The BM
278 completion handler only runs when the lock is held; the data
279 available handler is locked out over the same period.
280
281 Data available on the card triggers an interrupt. If the data is not
282 suitable for our existing RX channels or we cannot allocate a buffer
283 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284 transfers may be scheduled for the same frame.
285
286 RX setup in more detail:
287
288 RX open...
289 RX close...
290
291 III Hardware Bugs
292
293 0. Byte vs Word addressing of adapter RAM.
294
295 A design feature; see the .h file (especially the memory map).
296
297 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298
299 The host must not start a transmit direction transfer at a
300 non-four-byte boundary in host memory. Instead the host should
301 perform a byte, or a two byte, or one byte followed by two byte
302 transfer in order to start the rest of the transfer on a four byte
303 boundary. RX is OK.
304
305 Simultaneous transmit and receive direction bus master transfers are
306 not allowed.
307
308 The simplest solution to these two is to always do PIO (never DMA)
309 in the TX direction on the original Horizon. More complicated
310 solutions are likely to hurt my brain.
311
312 2. Loss of buffer on close VC
313
314 When a VC is being closed, the buffer associated with it is not
315 returned to the pool. The host must store the reference to this
316 buffer and when opening a new VC then give it to that new VC.
317
318 The host intervention currently consists of stacking such a buffer
319 pointer at VC close and checking the stack at VC open.
320
321 3. Failure to close a VC
322
323 If a VC is currently receiving a frame then closing the VC may fail
324 and the frame continues to be received.
325
326 The solution is to make sure any received frames are flushed when
327 ready. This is currently done just before the solution to 2.
328
329 4. PCI bus (original Horizon only, fixed in Ultra)
330
331 Reading from the data port prior to initialisation will hang the PCI
332 bus. Just don't do that then! We don't.
333
334 IV To Do List
335
336 . Timer code may be broken.
337
338 . Allow users to specify buffer allocation split for TX and RX.
339
340 . Deal once and for all with buggy VC close.
341
342 . Handle interrupted and/or non-blocking operations.
343
344 . Change some macros to functions and move from .h to .c.
345
346 . Try to limit the number of TX frames each VC may have queued, in
347 order to reduce the chances of TX buffer exhaustion.
348
349 . Implement VBR (bucket and timers not understood) and ABR (need to
350 do RM cells manually); also no Linux support for either.
351
352 . Implement QoS changes on open VCs (involves extracting parts of VC open
353 and close into separate functions and using them to make changes).
354
355*/
356
357/********** globals **********/
358
359static void do_housekeeping (unsigned long arg);
360
361static unsigned short debug = 0;
362static unsigned short vpi_bits = 0;
363static int max_tx_size = 9000;
364static int max_rx_size = 9000;
365static unsigned char pci_lat = 0;
366
367/********** access functions **********/
368
369/* Read / Write Horizon registers */
370static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371 outl (cpu_to_le32 (data), dev->iobase + reg);
372}
373
374static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375 return le32_to_cpu (inl (dev->iobase + reg));
376}
377
378static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379 outw (cpu_to_le16 (data), dev->iobase + reg);
380}
381
382static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383 return le16_to_cpu (inw (dev->iobase + reg));
384}
385
386static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387 outsb (dev->iobase + reg, addr, len);
388}
389
390static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391 insb (dev->iobase + reg, addr, len);
392}
393
394/* Read / Write to a given address in Horizon buffer memory.
395 Interrupts must be disabled between the address register and data
396 port accesses as these must form an atomic operation. */
397static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400 wr_regl (dev, MEMORY_PORT_OFF, data);
401}
402
403static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406 return rd_regl (dev, MEMORY_PORT_OFF);
407}
408
409static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411 wr_regl (dev, MEMORY_PORT_OFF, data);
412}
413
414static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416 return rd_regl (dev, MEMORY_PORT_OFF);
417}
418
419/********** specialised access functions **********/
420
421/* RX */
422
423static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425 return;
426}
427
428static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430 ;
431 return;
432}
433
434static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436 return;
437}
438
439static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441 ;
442 return;
443}
444
445/* TX */
446
447static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449 return;
450}
451
452/* Update or query one configuration parameter of a particular channel. */
453
454static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456 chan * TX_CHANNEL_CONFIG_MULT | mode);
457 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458 return;
459}
460
461static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
462 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
463 chan * TX_CHANNEL_CONFIG_MULT | mode);
464 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
465}
466
467/********** dump functions **********/
468
469static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
470#ifdef DEBUG_HORIZON
471 unsigned int i;
472 unsigned char * data = skb->data;
473 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
474 for (i=0; i<skb->len && i < 256;i++)
475 PRINTDM (DBG_DATA, "%02x ", data[i]);
476 PRINTDE (DBG_DATA,"");
477#else
478 (void) prefix;
479 (void) vc;
480 (void) skb;
481#endif
482 return;
483}
484
485static inline void dump_regs (hrz_dev * dev) {
486#ifdef DEBUG_HORIZON
487 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493#else
494 (void) dev;
495#endif
496 return;
497}
498
499static inline void dump_framer (hrz_dev * dev) {
500#ifdef DEBUG_HORIZON
501 unsigned int i;
502 PRINTDB (DBG_REGS, "framer registers:");
503 for (i = 0; i < 0x10; ++i)
504 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
505 PRINTDE (DBG_REGS,"");
506#else
507 (void) dev;
508#endif
509 return;
510}
511
512/********** VPI/VCI <-> (RX) channel conversions **********/
513
514/* RX channels are 10 bit integers, these fns are quite paranoid */
515
516static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
517 unsigned short vci_bits = 10 - vpi_bits;
518 if ((channel & RX_CHANNEL_MASK) == channel) {
519 *vci = channel & ((~0)<<vci_bits);
520 *vpi = channel >> vci_bits;
521 return channel ? 0 : -EINVAL;
522 }
523 return -EINVAL;
524}
525
526static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
527 unsigned short vci_bits = 10 - vpi_bits;
528 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
529 *channel = vpi<<vci_bits | vci;
530 return *channel ? 0 : -EINVAL;
531 }
532 return -EINVAL;
533}
534
535/********** decode RX queue entries **********/
536
537static inline u16 rx_q_entry_to_length (u32 x) {
538 return x & RX_Q_ENTRY_LENGTH_MASK;
539}
540
541static inline u16 rx_q_entry_to_rx_channel (u32 x) {
542 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
543}
544
545/* Cell Transmit Rate Values
546 *
547 * the cell transmit rate (cells per sec) can be set to a variety of
548 * different values by specifying two parameters: a timer preload from
549 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
550 * an exponent from 0 to 14; the special value 15 disables the timer).
551 *
552 * cellrate = baserate / (preload * 2^divider)
553 *
554 * The maximum cell rate that can be specified is therefore just the
555 * base rate. Halving the preload is equivalent to adding 1 to the
556 * divider and so values 1 to 8 of the preload are redundant except
557 * in the case of a maximal divider (14).
558 *
559 * Given a desired cell rate, an algorithm to determine the preload
560 * and divider is:
561 *
562 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
563 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
564 * if x <= 16 then set p = x, d = 0 (high rates), done
565 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
566 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
567 * we find the range (n will be between 1 and 14), set d = n
568 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
569 *
570 * The algorithm used below is a minor variant of the above.
571 *
572 * The base rate is derived from the oscillator frequency (Hz) using a
573 * fixed divider:
574 *
575 * baserate = freq / 32 in the case of some Unknown Card
576 * baserate = freq / 8 in the case of the Horizon 25
577 * baserate = freq / 8 in the case of the Horizon Ultra 155
578 *
579 * The Horizon cards have oscillators and base rates as follows:
580 *
581 * Card Oscillator Base Rate
582 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
583 * Horizon 25 32 MHz 4 MHz
584 * Horizon Ultra 155 40 MHz 5 MHz
585 *
586 * The following defines give the base rates in Hz. These were
587 * previously a factor of 100 larger, no doubt someone was using
588 * cps*100.
589 */
590
591#define BR_UKN 1031250l
592#define BR_HRZ 4000000l
593#define BR_ULT 5000000l
594
595// d is an exponent
596#define CR_MIND 0
597#define CR_MAXD 14
598
599// p ranges from 1 to a power of 2
600#define CR_MAXPEXP 4
601
602static int make_rate (const hrz_dev * dev, u32 c, rounding r,
603 u16 * bits, unsigned int * actual)
604{
605 // note: rounding the rate down means rounding 'p' up
606 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
607
608 u32 div = CR_MIND;
609 u32 pre;
610
611 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
612 // the tests below. We could think harder about exact possibilities
613 // of failure...
614
615 unsigned long br_man = br;
616 unsigned int br_exp = 0;
617
618 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
619 r == round_up ? "up" : r == round_down ? "down" : "nearest");
620
621 // avoid div by zero
622 if (!c) {
623 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
624 return -EINVAL;
625 }
626
627 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
628 br_man = br_man >> 1;
629 ++br_exp;
630 }
631 // (br >>br_exp) <<br_exp == br and
632 // br_exp <= CR_MAXPEXP+CR_MIND
633
634 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
635 // Equivalent to: B <= (c << (MAXPEXP+MIND))
636 // take care of rounding
637 switch (r) {
638 case round_down:
639 pre = DIV_ROUND_UP(br, c<<div);
640 // but p must be non-zero
641 if (!pre)
642 pre = 1;
643 break;
644 case round_nearest:
645 pre = DIV_ROUND_CLOSEST(br, c<<div);
646 // but p must be non-zero
647 if (!pre)
648 pre = 1;
649 break;
650 default: /* round_up */
651 pre = br/(c<<div);
652 // but p must be non-zero
653 if (!pre)
654 return -EINVAL;
655 }
656 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
657 goto got_it;
658 }
659
660 // at this point we have
661 // d == MIND and (c << (MAXPEXP+MIND)) < B
662 while (div < CR_MAXD) {
663 div++;
664 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
665 // Equivalent to: B <= (c << (MAXPEXP+d))
666 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
667 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
668 // MAXP/2 < B/c2^d <= MAXP
669 // take care of rounding
670 switch (r) {
671 case round_down:
672 pre = DIV_ROUND_UP(br, c<<div);
673 break;
674 case round_nearest:
675 pre = DIV_ROUND_CLOSEST(br, c<<div);
676 break;
677 default: /* round_up */
678 pre = br/(c<<div);
679 }
680 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
681 goto got_it;
682 }
683 }
684 // at this point we have
685 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
686 // but we cannot go any higher
687 // take care of rounding
688 if (r == round_down)
689 return -EINVAL;
690 pre = 1 << CR_MAXPEXP;
691 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
692got_it:
693 // paranoia
694 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
695 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
696 div, pre);
697 return -EINVAL;
698 } else {
699 if (bits)
700 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
701 if (actual) {
702 *actual = DIV_ROUND_UP(br, pre<<div);
703 PRINTD (DBG_QOS, "actual rate: %u", *actual);
704 }
705 return 0;
706 }
707}
708
709static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
710 u16 * bit_pattern, unsigned int * actual) {
711 unsigned int my_actual;
712
713 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
714 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
715
716 if (!actual)
717 // actual rate is not returned
718 actual = &my_actual;
719
720 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
721 // should never happen as round_nearest always succeeds
722 return -1;
723
724 if (c - tol <= *actual && *actual <= c + tol)
725 // within tolerance
726 return 0;
727 else
728 // intolerant, try rounding instead
729 return make_rate (dev, c, r, bit_pattern, actual);
730}
731
732/********** Listen on a VC **********/
733
734static int hrz_open_rx (hrz_dev * dev, u16 channel) {
735 // is there any guarantee that we don't get two simulataneous
736 // identical calls of this function from different processes? yes
737 // rate_lock
738 unsigned long flags;
739 u32 channel_type; // u16?
740
741 u16 buf_ptr = RX_CHANNEL_IDLE;
742
743 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
744
745 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
746
747 spin_lock_irqsave (&dev->mem_lock, flags);
748 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
749 spin_unlock_irqrestore (&dev->mem_lock, flags);
750
751 // very serious error, should never occur
752 if (channel_type != RX_CHANNEL_DISABLED) {
753 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
754 return -EBUSY; // clean up?
755 }
756
757 // Give back spare buffer
758 if (dev->noof_spare_buffers) {
759 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
760 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
761 // should never occur
762 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
763 // but easy to recover from
764 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
765 buf_ptr = RX_CHANNEL_IDLE;
766 }
767 } else {
768 PRINTD (DBG_VCC, "using IDLE buffer pointer");
769 }
770
771 // Channel is currently disabled so change its status to idle
772
773 // do we really need to save the flags again?
774 spin_lock_irqsave (&dev->mem_lock, flags);
775
776 wr_mem (dev, &rx_desc->wr_buf_type,
777 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
778 if (buf_ptr != RX_CHANNEL_IDLE)
779 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
780
781 spin_unlock_irqrestore (&dev->mem_lock, flags);
782
783 // rxer->rate = make_rate (qos->peak_cells);
784
785 PRINTD (DBG_FLOW, "hrz_open_rx ok");
786
787 return 0;
788}
789
790#if 0
791/********** change vc rate for a given vc **********/
792
793static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
794 rxer->rate = make_rate (qos->peak_cells);
795}
796#endif
797
798/********** free an skb (as per ATM device driver documentation) **********/
799
800static void hrz_kfree_skb (struct sk_buff * skb) {
801 if (ATM_SKB(skb)->vcc->pop) {
802 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
803 } else {
804 dev_kfree_skb_any (skb);
805 }
806}
807
808/********** cancel listen on a VC **********/
809
810static void hrz_close_rx (hrz_dev * dev, u16 vc) {
811 unsigned long flags;
812
813 u32 value;
814
815 u32 r1, r2;
816
817 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
818
819 int was_idle = 0;
820
821 spin_lock_irqsave (&dev->mem_lock, flags);
822 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
823 spin_unlock_irqrestore (&dev->mem_lock, flags);
824
825 if (value == RX_CHANNEL_DISABLED) {
826 // I suppose this could happen once we deal with _NONE traffic properly
827 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
828 return;
829 }
830 if (value == RX_CHANNEL_IDLE)
831 was_idle = 1;
832
833 spin_lock_irqsave (&dev->mem_lock, flags);
834
835 for (;;) {
836 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
837
838 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
839 break;
840
841 was_idle = 0;
842 }
843
844 if (was_idle) {
845 spin_unlock_irqrestore (&dev->mem_lock, flags);
846 return;
847 }
848
849 WAIT_FLUSH_RX_COMPLETE(dev);
850
851 // XXX Is this all really necessary? We can rely on the rx_data_av
852 // handler to discard frames that remain queued for delivery. If the
853 // worry is that immediately reopening the channel (perhaps by a
854 // different process) may cause some data to be mis-delivered then
855 // there may still be a simpler solution (such as busy-waiting on
856 // rx_busy once the channel is disabled or before a new one is
857 // opened - does this leave any holes?). Arguably setting up and
858 // tearing down the TX and RX halves of each virtual circuit could
859 // most safely be done within ?x_busy protected regions.
860
861 // OK, current changes are that Simon's marker is disabled and we DO
862 // look for NULL rxer elsewhere. The code here seems flush frames
863 // and then remember the last dead cell belonging to the channel
864 // just disabled - the cell gets relinked at the next vc_open.
865 // However, when all VCs are closed or only a few opened there are a
866 // handful of buffers that are unusable.
867
868 // Does anyone feel like documenting spare_buffers properly?
869 // Does anyone feel like fixing this in a nicer way?
870
871 // Flush any data which is left in the channel
872 for (;;) {
873 // Change the rx channel port to something different to the RX
874 // channel we are trying to close to force Horizon to flush the rx
875 // channel read and write pointers.
876
877 u16 other = vc^(RX_CHANS/2);
878
879 SELECT_RX_CHANNEL (dev, other);
880 WAIT_UPDATE_COMPLETE (dev);
881
882 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
883
884 // Select this RX channel. Flush doesn't seem to work unless we
885 // select an RX channel before hand
886
887 SELECT_RX_CHANNEL (dev, vc);
888 WAIT_UPDATE_COMPLETE (dev);
889
890 // Attempt to flush a frame on this RX channel
891
892 FLUSH_RX_CHANNEL (dev, vc);
893 WAIT_FLUSH_RX_COMPLETE (dev);
894
895 // Force Horizon to flush rx channel read and write pointers as before
896
897 SELECT_RX_CHANNEL (dev, other);
898 WAIT_UPDATE_COMPLETE (dev);
899
900 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
901
902 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
903
904 if (r1 == r2) {
905 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
906 break;
907 }
908 }
909
910#if 0
911 {
912 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
913 rx_q_entry * rd_ptr = dev->rx_q_entry;
914
915 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
916
917 while (rd_ptr != wr_ptr) {
918 u32 x = rd_mem (dev, (HDW *) rd_ptr);
919
920 if (vc == rx_q_entry_to_rx_channel (x)) {
921 x |= SIMONS_DODGEY_MARKER;
922
923 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
924
925 wr_mem (dev, (HDW *) rd_ptr, x);
926 }
927
928 if (rd_ptr == dev->rx_q_wrap)
929 rd_ptr = dev->rx_q_reset;
930 else
931 rd_ptr++;
932 }
933 }
934#endif
935
936 spin_unlock_irqrestore (&dev->mem_lock, flags);
937
938 return;
939}
940
941/********** schedule RX transfers **********/
942
943// Note on tail recursion: a GCC developer said that it is not likely
944// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
945// are sure it does as you may otherwise overflow the kernel stack.
946
947// giving this fn a return value would help GCC, allegedly
948
949static void rx_schedule (hrz_dev * dev, int irq) {
950 unsigned int rx_bytes;
951
952 int pio_instead = 0;
953#ifndef TAILRECURSIONWORKS
954 pio_instead = 1;
955 while (pio_instead) {
956#endif
957 // bytes waiting for RX transfer
958 rx_bytes = dev->rx_bytes;
959
960#if 0
961 spin_count = 0;
962 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
963 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
964 if (++spin_count > 10) {
965 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
966 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
967 clear_bit (rx_busy, &dev->flags);
968 hrz_kfree_skb (dev->rx_skb);
969 return;
970 }
971 }
972#endif
973
974 // this code follows the TX code but (at the moment) there is only
975 // one region - the skb itself. I don't know if this will change,
976 // but it doesn't hurt to have the code here, disabled.
977
978 if (rx_bytes) {
979 // start next transfer within same region
980 if (rx_bytes <= MAX_PIO_COUNT) {
981 PRINTD (DBG_RX|DBG_BUS, "(pio)");
982 pio_instead = 1;
983 }
984 if (rx_bytes <= MAX_TRANSFER_COUNT) {
985 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
986 dev->rx_bytes = 0;
987 } else {
988 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
989 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
990 rx_bytes = MAX_TRANSFER_COUNT;
991 }
992 } else {
993 // rx_bytes == 0 -- we're between regions
994 // regions remaining to transfer
995#if 0
996 unsigned int rx_regions = dev->rx_regions;
997#else
998 unsigned int rx_regions = 0;
999#endif
1000
1001 if (rx_regions) {
1002#if 0
1003 // start a new region
1004 dev->rx_addr = dev->rx_iovec->iov_base;
1005 rx_bytes = dev->rx_iovec->iov_len;
1006 ++dev->rx_iovec;
1007 dev->rx_regions = rx_regions - 1;
1008
1009 if (rx_bytes <= MAX_PIO_COUNT) {
1010 PRINTD (DBG_RX|DBG_BUS, "(pio)");
1011 pio_instead = 1;
1012 }
1013 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1014 PRINTD (DBG_RX|DBG_BUS, "(full region)");
1015 dev->rx_bytes = 0;
1016 } else {
1017 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1018 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1019 rx_bytes = MAX_TRANSFER_COUNT;
1020 }
1021#endif
1022 } else {
1023 // rx_regions == 0
1024 // that's all folks - end of frame
1025 struct sk_buff * skb = dev->rx_skb;
1026 // dev->rx_iovec = 0;
1027
1028 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1029
1030 dump_skb ("<<<", dev->rx_channel, skb);
1031
1032 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1033
1034 {
1035 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1036 // VC layer stats
1037 atomic_inc(&vcc->stats->rx);
1038 __net_timestamp(skb);
1039 // end of our responsibility
1040 vcc->push (vcc, skb);
1041 }
1042 }
1043 }
1044
1045 // note: writing RX_COUNT clears any interrupt condition
1046 if (rx_bytes) {
1047 if (pio_instead) {
1048 if (irq)
1049 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1050 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1051 } else {
1052 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1053 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1054 }
1055 dev->rx_addr += rx_bytes;
1056 } else {
1057 if (irq)
1058 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1059 // allow another RX thread to start
1060 YELLOW_LED_ON(dev);
1061 clear_bit (rx_busy, &dev->flags);
1062 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1063 }
1064
1065#ifdef TAILRECURSIONWORKS
1066 // and we all bless optimised tail calls
1067 if (pio_instead)
1068 return rx_schedule (dev, 0);
1069 return;
1070#else
1071 // grrrrrrr!
1072 irq = 0;
1073 }
1074 return;
1075#endif
1076}
1077
1078/********** handle RX bus master complete events **********/
1079
1080static void rx_bus_master_complete_handler (hrz_dev * dev) {
1081 if (test_bit (rx_busy, &dev->flags)) {
1082 rx_schedule (dev, 1);
1083 } else {
1084 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1085 // clear interrupt condition on adapter
1086 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1087 }
1088 return;
1089}
1090
1091/********** (queue to) become the next TX thread **********/
1092
1093static int tx_hold (hrz_dev * dev) {
1094 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1095 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1096 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1097 if (signal_pending (current))
1098 return -1;
1099 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1100 return 0;
1101}
1102
1103/********** allow another TX thread to start **********/
1104
1105static inline void tx_release (hrz_dev * dev) {
1106 clear_bit (tx_busy, &dev->flags);
1107 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1108 wake_up_interruptible (&dev->tx_queue);
1109}
1110
1111/********** schedule TX transfers **********/
1112
1113static void tx_schedule (hrz_dev * const dev, int irq) {
1114 unsigned int tx_bytes;
1115
1116 int append_desc = 0;
1117
1118 int pio_instead = 0;
1119#ifndef TAILRECURSIONWORKS
1120 pio_instead = 1;
1121 while (pio_instead) {
1122#endif
1123 // bytes in current region waiting for TX transfer
1124 tx_bytes = dev->tx_bytes;
1125
1126#if 0
1127 spin_count = 0;
1128 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1129 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1130 if (++spin_count > 10) {
1131 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1132 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1133 tx_release (dev);
1134 hrz_kfree_skb (dev->tx_skb);
1135 return;
1136 }
1137 }
1138#endif
1139
1140 if (tx_bytes) {
1141 // start next transfer within same region
1142 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1143 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1144 pio_instead = 1;
1145 }
1146 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1147 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1148 if (!dev->tx_iovec) {
1149 // end of last region
1150 append_desc = 1;
1151 }
1152 dev->tx_bytes = 0;
1153 } else {
1154 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1155 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1156 tx_bytes = MAX_TRANSFER_COUNT;
1157 }
1158 } else {
1159 // tx_bytes == 0 -- we're between regions
1160 // regions remaining to transfer
1161 unsigned int tx_regions = dev->tx_regions;
1162
1163 if (tx_regions) {
1164 // start a new region
1165 dev->tx_addr = dev->tx_iovec->iov_base;
1166 tx_bytes = dev->tx_iovec->iov_len;
1167 ++dev->tx_iovec;
1168 dev->tx_regions = tx_regions - 1;
1169
1170 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1171 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1172 pio_instead = 1;
1173 }
1174 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1175 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1176 dev->tx_bytes = 0;
1177 } else {
1178 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1179 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1180 tx_bytes = MAX_TRANSFER_COUNT;
1181 }
1182 } else {
1183 // tx_regions == 0
1184 // that's all folks - end of frame
1185 struct sk_buff * skb = dev->tx_skb;
1186 dev->tx_iovec = NULL;
1187
1188 // VC layer stats
1189 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1190
1191 // free the skb
1192 hrz_kfree_skb (skb);
1193 }
1194 }
1195
1196 // note: writing TX_COUNT clears any interrupt condition
1197 if (tx_bytes) {
1198 if (pio_instead) {
1199 if (irq)
1200 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1202 if (append_desc)
1203 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1204 } else {
1205 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1206 if (append_desc)
1207 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1208 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1209 append_desc
1210 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1211 : tx_bytes);
1212 }
1213 dev->tx_addr += tx_bytes;
1214 } else {
1215 if (irq)
1216 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1217 YELLOW_LED_ON(dev);
1218 tx_release (dev);
1219 }
1220
1221#ifdef TAILRECURSIONWORKS
1222 // and we all bless optimised tail calls
1223 if (pio_instead)
1224 return tx_schedule (dev, 0);
1225 return;
1226#else
1227 // grrrrrrr!
1228 irq = 0;
1229 }
1230 return;
1231#endif
1232}
1233
1234/********** handle TX bus master complete events **********/
1235
1236static void tx_bus_master_complete_handler (hrz_dev * dev) {
1237 if (test_bit (tx_busy, &dev->flags)) {
1238 tx_schedule (dev, 1);
1239 } else {
1240 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1241 // clear interrupt condition on adapter
1242 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1243 }
1244 return;
1245}
1246
1247/********** move RX Q pointer to next item in circular buffer **********/
1248
1249// called only from IRQ sub-handler
1250static u32 rx_queue_entry_next (hrz_dev * dev) {
1251 u32 rx_queue_entry;
1252 spin_lock (&dev->mem_lock);
1253 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1254 if (dev->rx_q_entry == dev->rx_q_wrap)
1255 dev->rx_q_entry = dev->rx_q_reset;
1256 else
1257 dev->rx_q_entry++;
1258 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1259 spin_unlock (&dev->mem_lock);
1260 return rx_queue_entry;
1261}
1262
1263/********** handle RX disabled by device **********/
1264
1265static inline void rx_disabled_handler (hrz_dev * dev) {
1266 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1267 // count me please
1268 PRINTK (KERN_WARNING, "RX was disabled!");
1269}
1270
1271/********** handle RX data received by device **********/
1272
1273// called from IRQ handler
1274static void rx_data_av_handler (hrz_dev * dev) {
1275 u32 rx_queue_entry;
1276 u32 rx_queue_entry_flags;
1277 u16 rx_len;
1278 u16 rx_channel;
1279
1280 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1281
1282 // try to grab rx lock (not possible during RX bus mastering)
1283 if (test_and_set_bit (rx_busy, &dev->flags)) {
1284 PRINTD (DBG_RX, "locked out of rx lock");
1285 return;
1286 }
1287 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1288 // lock is cleared if we fail now, o/w after bus master completion
1289
1290 YELLOW_LED_OFF(dev);
1291
1292 rx_queue_entry = rx_queue_entry_next (dev);
1293
1294 rx_len = rx_q_entry_to_length (rx_queue_entry);
1295 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1296
1297 WAIT_FLUSH_RX_COMPLETE (dev);
1298
1299 SELECT_RX_CHANNEL (dev, rx_channel);
1300
1301 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1302 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1303
1304 if (!rx_len) {
1305 // (at least) bus-mastering breaks if we try to handle a
1306 // zero-length frame, besides AAL5 does not support them
1307 PRINTK (KERN_ERR, "zero-length frame!");
1308 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1309 }
1310
1311 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1312 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1313 }
1314 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1315 struct atm_vcc * atm_vcc;
1316
1317 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1318
1319 atm_vcc = dev->rxer[rx_channel];
1320 // if no vcc is assigned to this channel, we should drop the frame
1321 // (is this what SIMONS etc. was trying to achieve?)
1322
1323 if (atm_vcc) {
1324
1325 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1326
1327 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1328
1329 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1330 if (skb) {
1331 // remember this so we can push it later
1332 dev->rx_skb = skb;
1333 // remember this so we can flush it later
1334 dev->rx_channel = rx_channel;
1335
1336 // prepare socket buffer
1337 skb_put (skb, rx_len);
1338 ATM_SKB(skb)->vcc = atm_vcc;
1339
1340 // simple transfer
1341 // dev->rx_regions = 0;
1342 // dev->rx_iovec = 0;
1343 dev->rx_bytes = rx_len;
1344 dev->rx_addr = skb->data;
1345 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1346 skb->data, rx_len);
1347
1348 // do the business
1349 rx_schedule (dev, 0);
1350 return;
1351
1352 } else {
1353 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1354 }
1355
1356 } else {
1357 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1358 // do we count this?
1359 }
1360
1361 } else {
1362 PRINTK (KERN_WARNING, "dropped over-size frame");
1363 // do we count this?
1364 }
1365
1366 } else {
1367 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1368 // do we count this?
1369 }
1370
1371 } else {
1372 // Wait update complete ? SPONG
1373 }
1374
1375 // RX was aborted
1376 YELLOW_LED_ON(dev);
1377
1378 FLUSH_RX_CHANNEL (dev,rx_channel);
1379 clear_bit (rx_busy, &dev->flags);
1380
1381 return;
1382}
1383
1384/********** interrupt handler **********/
1385
1386static irqreturn_t interrupt_handler(int irq, void *dev_id)
1387{
1388 hrz_dev *dev = dev_id;
1389 u32 int_source;
1390 unsigned int irq_ok;
1391
1392 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1393
1394 // definitely for us
1395 irq_ok = 0;
1396 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1397 & INTERESTING_INTERRUPTS)) {
1398 // In the interests of fairness, the handlers below are
1399 // called in sequence and without immediate return to the head of
1400 // the while loop. This is only of issue for slow hosts (or when
1401 // debugging messages are on). Really slow hosts may find a fast
1402 // sender keeps them permanently in the IRQ handler. :(
1403
1404 // (only an issue for slow hosts) RX completion goes before
1405 // rx_data_av as the former implies rx_busy and so the latter
1406 // would just abort. If it reschedules another transfer
1407 // (continuing the same frame) then it will not clear rx_busy.
1408
1409 // (only an issue for slow hosts) TX completion goes before RX
1410 // data available as it is a much shorter routine - there is the
1411 // chance that any further transfers it schedules will be complete
1412 // by the time of the return to the head of the while loop
1413
1414 if (int_source & RX_BUS_MASTER_COMPLETE) {
1415 ++irq_ok;
1416 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1417 rx_bus_master_complete_handler (dev);
1418 }
1419 if (int_source & TX_BUS_MASTER_COMPLETE) {
1420 ++irq_ok;
1421 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1422 tx_bus_master_complete_handler (dev);
1423 }
1424 if (int_source & RX_DATA_AV) {
1425 ++irq_ok;
1426 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1427 rx_data_av_handler (dev);
1428 }
1429 }
1430 if (irq_ok) {
1431 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1432 } else {
1433 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1434 }
1435
1436 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1437 if (irq_ok)
1438 return IRQ_HANDLED;
1439 return IRQ_NONE;
1440}
1441
1442/********** housekeeping **********/
1443
1444static void do_housekeeping (unsigned long arg) {
1445 // just stats at the moment
1446 hrz_dev * dev = (hrz_dev *) arg;
1447
1448 // collect device-specific (not driver/atm-linux) stats here
1449 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1450 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1451 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1452 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1453
1454 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1455
1456 return;
1457}
1458
1459/********** find an idle channel for TX and set it up **********/
1460
1461// called with tx_busy set
1462static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1463 unsigned short idle_channels;
1464 short tx_channel = -1;
1465 unsigned int spin_count;
1466 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1467
1468 // better would be to fail immediately, the caller can then decide whether
1469 // to wait or drop (depending on whether this is UBR etc.)
1470 spin_count = 0;
1471 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1472 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1473 // delay a bit here
1474 if (++spin_count > 100) {
1475 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1476 return -EBUSY;
1477 }
1478 }
1479
1480 // got an idle channel
1481 {
1482 // tx_idle ensures we look for idle channels in RR order
1483 int chan = dev->tx_idle;
1484
1485 int keep_going = 1;
1486 while (keep_going) {
1487 if (idle_channels & (1<<chan)) {
1488 tx_channel = chan;
1489 keep_going = 0;
1490 }
1491 ++chan;
1492 if (chan == TX_CHANS)
1493 chan = 0;
1494 }
1495
1496 dev->tx_idle = chan;
1497 }
1498
1499 // set up the channel we found
1500 {
1501 // Initialise the cell header in the transmit channel descriptor
1502 // a.k.a. prepare the channel and remember that we have done so.
1503
1504 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1505 u32 rd_ptr;
1506 u32 wr_ptr;
1507 u16 channel = vcc->channel;
1508
1509 unsigned long flags;
1510 spin_lock_irqsave (&dev->mem_lock, flags);
1511
1512 // Update the transmit channel record.
1513 dev->tx_channel_record[tx_channel] = channel;
1514
1515 // xBR channel
1516 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1517 vcc->tx_xbr_bits);
1518
1519 // Update the PCR counter preload value etc.
1520 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1521 vcc->tx_pcr_bits);
1522
1523#if 0
1524 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1525 // SCR timer
1526 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1527 vcc->tx_scr_bits);
1528
1529 // Bucket size...
1530 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1531 vcc->tx_bucket_bits);
1532
1533 // ... and fullness
1534 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1535 vcc->tx_bucket_bits);
1536 }
1537#endif
1538
1539 // Initialise the read and write buffer pointers
1540 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1541 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1542
1543 // idle TX channels should have identical pointers
1544 if (rd_ptr != wr_ptr) {
1545 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1546 // spin_unlock... return -E...
1547 // I wonder if gcc would get rid of one of the pointer aliases
1548 }
1549 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1550 rd_ptr, wr_ptr);
1551
1552 switch (vcc->aal) {
1553 case aal0:
1554 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1555 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557 break;
1558 case aal34:
1559 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1560 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1561 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1562 break;
1563 case aal5:
1564 rd_ptr |= CHANNEL_TYPE_AAL5;
1565 wr_ptr |= CHANNEL_TYPE_AAL5;
1566 // Initialise the CRC
1567 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1568 break;
1569 }
1570
1571 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1572 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1573
1574 // Write the Cell Header
1575 // Payload Type, CLP and GFC would go here if non-zero
1576 wr_mem (dev, &tx_desc->cell_header, channel);
1577
1578 spin_unlock_irqrestore (&dev->mem_lock, flags);
1579 }
1580
1581 return tx_channel;
1582}
1583
1584/********** send a frame **********/
1585
1586static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1587 unsigned int spin_count;
1588 int free_buffers;
1589 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1590 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1591 u16 channel = vcc->channel;
1592
1593 u32 buffers_required;
1594
1595 /* signed for error return */
1596 short tx_channel;
1597
1598 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1599 channel, skb->data, skb->len);
1600
1601 dump_skb (">>>", channel, skb);
1602
1603 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1604 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1605 hrz_kfree_skb (skb);
1606 return -EIO;
1607 }
1608
1609 // don't understand this
1610 ATM_SKB(skb)->vcc = atm_vcc;
1611
1612 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1613 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1614 hrz_kfree_skb (skb);
1615 return -EIO;
1616 }
1617
1618 if (!channel) {
1619 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1620 hrz_kfree_skb (skb);
1621 return -EIO;
1622 }
1623
1624#if 0
1625 {
1626 // where would be a better place for this? housekeeping?
1627 u16 status;
1628 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1629 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1630 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1631 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1632 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1633 if (test_bit (tx_busy, &dev->flags)) {
1634 hrz_kfree_skb (dev->tx_skb);
1635 tx_release (dev);
1636 }
1637 }
1638 }
1639#endif
1640
1641#ifdef DEBUG_HORIZON
1642 /* wey-hey! */
1643 if (channel == 1023) {
1644 unsigned int i;
1645 unsigned short d = 0;
1646 char * s = skb->data;
1647 if (*s++ == 'D') {
1648 for (i = 0; i < 4; ++i)
1649 d = (d << 4) | hex_to_bin(*s++);
1650 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1651 }
1652 }
1653#endif
1654
1655 // wait until TX is free and grab lock
1656 if (tx_hold (dev)) {
1657 hrz_kfree_skb (skb);
1658 return -ERESTARTSYS;
1659 }
1660
1661 // Wait for enough space to be available in transmit buffer memory.
1662
1663 // should be number of cells needed + 2 (according to hardware docs)
1664 // = ((framelen+8)+47) / 48 + 2
1665 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1667
1668 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669 spin_count = 0;
1670 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672 free_buffers, buffers_required);
1673 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1674 // mdelay (1);
1675 // what happens if we kill (current_pid, SIGKILL) ?
1676 schedule();
1677 if (++spin_count > 1000) {
1678 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679 free_buffers, buffers_required);
1680 tx_release (dev);
1681 hrz_kfree_skb (skb);
1682 return -ERESTARTSYS;
1683 }
1684 }
1685
1686 // Select a channel to transmit the frame on.
1687 if (channel == dev->last_vc) {
1688 PRINTD (DBG_TX, "last vc hack: hit");
1689 tx_channel = dev->tx_last;
1690 } else {
1691 PRINTD (DBG_TX, "last vc hack: miss");
1692 // Are we currently transmitting this VC on one of the channels?
1693 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694 if (dev->tx_channel_record[tx_channel] == channel) {
1695 PRINTD (DBG_TX, "vc already on channel: hit");
1696 break;
1697 }
1698 if (tx_channel == TX_CHANS) {
1699 PRINTD (DBG_TX, "vc already on channel: miss");
1700 // Find and set up an idle channel.
1701 tx_channel = setup_idle_tx_channel (dev, vcc);
1702 if (tx_channel < 0) {
1703 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704 tx_release (dev);
1705 return tx_channel;
1706 }
1707 }
1708
1709 PRINTD (DBG_TX, "got channel");
1710 SELECT_TX_CHANNEL(dev, tx_channel);
1711
1712 dev->last_vc = channel;
1713 dev->tx_last = tx_channel;
1714 }
1715
1716 PRINTD (DBG_TX, "using channel %u", tx_channel);
1717
1718 YELLOW_LED_OFF(dev);
1719
1720 // TX start transfer
1721
1722 {
1723 unsigned int tx_len = skb->len;
1724 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725 // remember this so we can free it later
1726 dev->tx_skb = skb;
1727
1728 if (tx_iovcnt) {
1729 // scatter gather transfer
1730 dev->tx_regions = tx_iovcnt;
1731 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1732 dev->tx_bytes = 0;
1733 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734 skb->data, tx_len);
1735 tx_release (dev);
1736 hrz_kfree_skb (skb);
1737 return -EIO;
1738 } else {
1739 // simple transfer
1740 dev->tx_regions = 0;
1741 dev->tx_iovec = NULL;
1742 dev->tx_bytes = tx_len;
1743 dev->tx_addr = skb->data;
1744 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745 skb->data, tx_len);
1746 }
1747
1748 // and do the business
1749 tx_schedule (dev, 0);
1750
1751 }
1752
1753 return 0;
1754}
1755
1756/********** reset a card **********/
1757
1758static void hrz_reset (const hrz_dev * dev) {
1759 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1760
1761 // why not set RESET_HORIZON to one and wait for the card to
1762 // reassert that bit as zero? Like so:
1763 control_0_reg = control_0_reg & RESET_HORIZON;
1764 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765 while (control_0_reg & RESET_HORIZON)
1766 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1767
1768 // old reset code retained:
1769 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1770 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1771 // just guessing here
1772 udelay (1000);
1773
1774 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1775}
1776
1777/********** read the burnt in address **********/
1778
1779static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1780{
1781 wr_regl (dev, CONTROL_0_REG, ctrl);
1782 udelay (5);
1783}
1784
1785static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1786{
1787 // DI must be valid around rising SK edge
1788 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1790}
1791
1792static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1793{
1794 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1795
1796 const unsigned int addr_bits = 6;
1797 const unsigned int data_bits = 16;
1798
1799 unsigned int i;
1800
1801 u16 res;
1802
1803 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804 WRITE_IT_WAIT(dev, ctrl);
1805
1806 // wake Serial EEPROM and send 110 (READ) command
1807 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1808 CLOCK_IT(dev, ctrl);
1809
1810 ctrl |= SEEPROM_DI;
1811 CLOCK_IT(dev, ctrl);
1812
1813 ctrl &= ~SEEPROM_DI;
1814 CLOCK_IT(dev, ctrl);
1815
1816 for (i=0; i<addr_bits; i++) {
1817 if (addr & (1 << (addr_bits-1)))
1818 ctrl |= SEEPROM_DI;
1819 else
1820 ctrl &= ~SEEPROM_DI;
1821
1822 CLOCK_IT(dev, ctrl);
1823
1824 addr = addr << 1;
1825 }
1826
1827 // we could check that we have DO = 0 here
1828 ctrl &= ~SEEPROM_DI;
1829
1830 res = 0;
1831 for (i=0;i<data_bits;i++) {
1832 res = res >> 1;
1833
1834 CLOCK_IT(dev, ctrl);
1835
1836 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837 res |= (1 << (data_bits-1));
1838 }
1839
1840 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841 WRITE_IT_WAIT(dev, ctrl);
1842
1843 return res;
1844}
1845
1846/********** initialise a card **********/
1847
1848static int __devinit hrz_init (hrz_dev * dev) {
1849 int onefivefive;
1850
1851 u16 chan;
1852
1853 int buff_count;
1854
1855 HDW * mem;
1856
1857 cell_buf * tx_desc;
1858 cell_buf * rx_desc;
1859
1860 u32 ctrl;
1861
1862 ctrl = rd_regl (dev, CONTROL_0_REG);
1863 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1864 onefivefive = ctrl & ATM_LAYER_STATUS;
1865
1866 if (onefivefive)
1867 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1868 else
1869 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1870
1871 printk (":");
1872 // Reset the card to get everything in a known state
1873
1874 printk (" reset");
1875 hrz_reset (dev);
1876
1877 // Clear all the buffer memory
1878
1879 printk (" clearing memory");
1880
1881 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1882 wr_mem (dev, mem, 0);
1883
1884 printk (" tx channels");
1885
1886 // All transmit eight channels are set up as AAL5 ABR channels with
1887 // a 16us cell spacing. Why?
1888
1889 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1890 // buffer at 110h etc.
1891
1892 for (chan = 0; chan < TX_CHANS; ++chan) {
1893 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1894 cell_buf * buf = &memmap->inittxbufs[chan];
1895
1896 // initialise the read and write buffer pointers
1897 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1898 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1899
1900 // set the status of the initial buffers to empty
1901 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1902 }
1903
1904 // Use space bufn3 at the moment for tx buffers
1905
1906 printk (" tx buffers");
1907
1908 tx_desc = memmap->bufn3;
1909
1910 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1911
1912 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1913 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1914 tx_desc++;
1915 }
1916
1917 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1918
1919 // Initialise the transmit free buffer count
1920 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1921
1922 printk (" rx channels");
1923
1924 // Initialise all of the receive channels to be AAL5 disabled with
1925 // an interrupt threshold of 0
1926
1927 for (chan = 0; chan < RX_CHANS; ++chan) {
1928 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1929
1930 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1931 }
1932
1933 printk (" rx buffers");
1934
1935 // Use space bufn4 at the moment for rx buffers
1936
1937 rx_desc = memmap->bufn4;
1938
1939 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1940
1941 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1942 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1943
1944 rx_desc++;
1945 }
1946
1947 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1948
1949 // Initialise the receive free buffer count
1950 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1951
1952 // Initialize Horizons registers
1953
1954 // TX config
1955 wr_regw (dev, TX_CONFIG_OFF,
1956 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1957
1958 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1959 wr_regw (dev, RX_CONFIG_OFF,
1960 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1961
1962 // RX line config
1963 wr_regw (dev, RX_LINE_CONFIG_OFF,
1964 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1965
1966 // Set the max AAL5 cell count to be just enough to contain the
1967 // largest AAL5 frame that the user wants to receive
1968 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1969 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1970
1971 // Enable receive
1972 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1973
1974 printk (" control");
1975
1976 // Drive the OE of the LEDs then turn the green LED on
1977 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1978 wr_regl (dev, CONTROL_0_REG, ctrl);
1979
1980 // Test for a 155-capable card
1981
1982 if (onefivefive) {
1983 // Select 155 mode... make this a choice (or: how do we detect
1984 // external line speed and switch?)
1985 ctrl |= ATM_LAYER_SELECT;
1986 wr_regl (dev, CONTROL_0_REG, ctrl);
1987
1988 // test SUNI-lite vs SAMBA
1989
1990 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1991 // they will always be zero for the SAMBA. Ha! Bloody hardware
1992 // engineers. It'll never work.
1993
1994 if (rd_framer (dev, 0) & 0x00f0) {
1995 // SUNI
1996 printk (" SUNI");
1997
1998 // Reset, just in case
1999 wr_framer (dev, 0x00, 0x0080);
2000 wr_framer (dev, 0x00, 0x0000);
2001
2002 // Configure transmit FIFO
2003 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2004
2005 // Set line timed mode
2006 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2007 } else {
2008 // SAMBA
2009 printk (" SAMBA");
2010
2011 // Reset, just in case
2012 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2013 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2014
2015 // Turn off diagnostic loopback and enable line-timed mode
2016 wr_framer (dev, 0, 0x0002);
2017
2018 // Turn on transmit outputs
2019 wr_framer (dev, 2, 0x0B80);
2020 }
2021 } else {
2022 // Select 25 mode
2023 ctrl &= ~ATM_LAYER_SELECT;
2024
2025 // Madge B154 setup
2026 // none required?
2027 }
2028
2029 printk (" LEDs");
2030
2031 GREEN_LED_ON(dev);
2032 YELLOW_LED_ON(dev);
2033
2034 printk (" ESI=");
2035
2036 {
2037 u16 b = 0;
2038 int i;
2039 u8 * esi = dev->atm_dev->esi;
2040
2041 // in the card I have, EEPROM
2042 // addresses 0, 1, 2 contain 0
2043 // addresess 5, 6 etc. contain ffff
2044 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2045 // the read_bia routine gets the BIA in Ethernet bit order
2046
2047 for (i=0; i < ESI_LEN; ++i) {
2048 if (i % 2 == 0)
2049 b = read_bia (dev, i/2 + 2);
2050 else
2051 b = b >> 8;
2052 esi[i] = b & 0xFF;
2053 printk ("%02x", esi[i]);
2054 }
2055 }
2056
2057 // Enable RX_Q and ?X_COMPLETE interrupts only
2058 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2059 printk (" IRQ on");
2060
2061 printk (".\n");
2062
2063 return onefivefive;
2064}
2065
2066/********** check max_sdu **********/
2067
2068static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2069 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2070
2071 switch (aal) {
2072 case aal0:
2073 if (!(tp->max_sdu)) {
2074 PRINTD (DBG_QOS, "defaulting max_sdu");
2075 tp->max_sdu = ATM_AAL0_SDU;
2076 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2077 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2078 return -EINVAL;
2079 }
2080 break;
2081 case aal34:
2082 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2083 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2084 tp->max_sdu = ATM_MAX_AAL34_PDU;
2085 }
2086 break;
2087 case aal5:
2088 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2089 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2090 tp->max_sdu = max_frame_size;
2091 }
2092 break;
2093 }
2094 return 0;
2095}
2096
2097/********** check pcr **********/
2098
2099// something like this should be part of ATM Linux
2100static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2101 // we are assuming non-UBR, and non-special values of pcr
2102 if (tp->min_pcr == ATM_MAX_PCR)
2103 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2104 else if (tp->min_pcr < 0)
2105 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2106 else if (tp->min_pcr && tp->min_pcr > pcr)
2107 PRINTD (DBG_QOS, "pcr less than min_pcr");
2108 else
2109 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2110 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2111 // [this would get rid of next two conditionals]
2112 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2113 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2114 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2115 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2116 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2117 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2118 else {
2119 // each limit unspecified or not violated
2120 PRINTD (DBG_QOS, "xBR(pcr) OK");
2121 return 0;
2122 }
2123 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2124 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2125 return -EINVAL;
2126}
2127
2128/********** open VC **********/
2129
2130static int hrz_open (struct atm_vcc *atm_vcc)
2131{
2132 int error;
2133 u16 channel;
2134
2135 struct atm_qos * qos;
2136 struct atm_trafprm * txtp;
2137 struct atm_trafprm * rxtp;
2138
2139 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2140 hrz_vcc vcc;
2141 hrz_vcc * vccp; // allocated late
2142 short vpi = atm_vcc->vpi;
2143 int vci = atm_vcc->vci;
2144 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2145
2146#ifdef ATM_VPI_UNSPEC
2147 // UNSPEC is deprecated, remove this code eventually
2148 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2149 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2150 return -EINVAL;
2151 }
2152#endif
2153
2154 error = vpivci_to_channel (&channel, vpi, vci);
2155 if (error) {
2156 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2157 return error;
2158 }
2159
2160 vcc.channel = channel;
2161 // max speed for the moment
2162 vcc.tx_rate = 0x0;
2163
2164 qos = &atm_vcc->qos;
2165
2166 // check AAL and remember it
2167 switch (qos->aal) {
2168 case ATM_AAL0:
2169 // we would if it were 48 bytes and not 52!
2170 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2171 vcc.aal = aal0;
2172 break;
2173 case ATM_AAL34:
2174 // we would if I knew how do the SAR!
2175 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2176 vcc.aal = aal34;
2177 break;
2178 case ATM_AAL5:
2179 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2180 vcc.aal = aal5;
2181 break;
2182 default:
2183 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2184 return -EINVAL;
2185 }
2186
2187 // TX traffic parameters
2188
2189 // there are two, interrelated problems here: 1. the reservation of
2190 // PCR is not a binary choice, we are given bounds and/or a
2191 // desirable value; 2. the device is only capable of certain values,
2192 // most of which are not integers. It is almost certainly acceptable
2193 // to be off by a maximum of 1 to 10 cps.
2194
2195 // Pragmatic choice: always store an integral PCR as that which has
2196 // been allocated, even if we allocate a little (or a lot) less,
2197 // after rounding. The actual allocation depends on what we can
2198 // manage with our rate selection algorithm. The rate selection
2199 // algorithm is given an integral PCR and a tolerance and told
2200 // whether it should round the value up or down if the tolerance is
2201 // exceeded; it returns: a) the actual rate selected (rounded up to
2202 // the nearest integer), b) a bit pattern to feed to the timer
2203 // register, and c) a failure value if no applicable rate exists.
2204
2205 // Part of the job is done by atm_pcr_goal which gives us a PCR
2206 // specification which says: EITHER grab the maximum available PCR
2207 // (and perhaps a lower bound which we musn't pass), OR grab this
2208 // amount, rounding down if you have to (and perhaps a lower bound
2209 // which we musn't pass) OR grab this amount, rounding up if you
2210 // have to (and perhaps an upper bound which we musn't pass). If any
2211 // bounds ARE passed we fail. Note that rounding is only rounding to
2212 // match device limitations, we do not round down to satisfy
2213 // bandwidth availability even if this would not violate any given
2214 // lower bound.
2215
2216 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2217 // (say) so this is not even a binary fixpoint cell rate (but this
2218 // device can do it). To avoid this sort of hassle we use a
2219 // tolerance parameter (currently fixed at 10 cps).
2220
2221 PRINTD (DBG_QOS, "TX:");
2222
2223 txtp = &qos->txtp;
2224
2225 // set up defaults for no traffic
2226 vcc.tx_rate = 0;
2227 // who knows what would actually happen if you try and send on this?
2228 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2229 vcc.tx_pcr_bits = CLOCK_DISABLE;
2230#if 0
2231 vcc.tx_scr_bits = CLOCK_DISABLE;
2232 vcc.tx_bucket_bits = 0;
2233#endif
2234
2235 if (txtp->traffic_class != ATM_NONE) {
2236 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2237 if (error) {
2238 PRINTD (DBG_QOS, "TX max_sdu check failed");
2239 return error;
2240 }
2241
2242 switch (txtp->traffic_class) {
2243 case ATM_UBR: {
2244 // we take "the PCR" as a rate-cap
2245 // not reserved
2246 vcc.tx_rate = 0;
2247 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2248 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2249 break;
2250 }
2251#if 0
2252 case ATM_ABR: {
2253 // reserve min, allow up to max
2254 vcc.tx_rate = 0; // ?
2255 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2256 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2257 break;
2258 }
2259#endif
2260 case ATM_CBR: {
2261 int pcr = atm_pcr_goal (txtp);
2262 rounding r;
2263 if (!pcr) {
2264 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2265 // should really have: once someone gets unlimited bandwidth
2266 // that no more non-UBR channels can be opened until the
2267 // unlimited one closes?? For the moment, round_down means
2268 // greedy people actually get something and not nothing
2269 r = round_down;
2270 // slight race (no locking) here so we may get -EAGAIN
2271 // later; the greedy bastards would deserve it :)
2272 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2273 pcr = dev->tx_avail;
2274 } else if (pcr < 0) {
2275 r = round_down;
2276 pcr = -pcr;
2277 } else {
2278 r = round_up;
2279 }
2280 error = make_rate_with_tolerance (dev, pcr, r, 10,
2281 &vcc.tx_pcr_bits, &vcc.tx_rate);
2282 if (error) {
2283 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2284 return error;
2285 }
2286 // not really clear what further checking is needed
2287 error = atm_pcr_check (txtp, vcc.tx_rate);
2288 if (error) {
2289 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2290 return error;
2291 }
2292 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2293 break;
2294 }
2295#if 0
2296 case ATM_VBR: {
2297 int pcr = atm_pcr_goal (txtp);
2298 // int scr = atm_scr_goal (txtp);
2299 int scr = pcr/2; // just for fun
2300 unsigned int mbs = 60; // just for fun
2301 rounding pr;
2302 rounding sr;
2303 unsigned int bucket;
2304 if (!pcr) {
2305 pr = round_nearest;
2306 pcr = 1<<30;
2307 } else if (pcr < 0) {
2308 pr = round_down;
2309 pcr = -pcr;
2310 } else {
2311 pr = round_up;
2312 }
2313 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2314 &vcc.tx_pcr_bits, 0);
2315 if (!scr) {
2316 // see comments for PCR with CBR above
2317 sr = round_down;
2318 // slight race (no locking) here so we may get -EAGAIN
2319 // later; the greedy bastards would deserve it :)
2320 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2321 scr = dev->tx_avail;
2322 } else if (scr < 0) {
2323 sr = round_down;
2324 scr = -scr;
2325 } else {
2326 sr = round_up;
2327 }
2328 error = make_rate_with_tolerance (dev, scr, sr, 10,
2329 &vcc.tx_scr_bits, &vcc.tx_rate);
2330 if (error) {
2331 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2332 return error;
2333 }
2334 // not really clear what further checking is needed
2335 // error = atm_scr_check (txtp, vcc.tx_rate);
2336 if (error) {
2337 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2338 return error;
2339 }
2340 // bucket calculations (from a piece of paper...) cell bucket
2341 // capacity must be largest integer smaller than m(p-s)/p + 1
2342 // where m = max burst size, p = pcr, s = scr
2343 bucket = mbs*(pcr-scr)/pcr;
2344 if (bucket*pcr != mbs*(pcr-scr))
2345 bucket += 1;
2346 if (bucket > BUCKET_MAX_SIZE) {
2347 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2348 bucket, BUCKET_MAX_SIZE);
2349 bucket = BUCKET_MAX_SIZE;
2350 }
2351 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2352 vcc.tx_bucket_bits = bucket;
2353 break;
2354 }
2355#endif
2356 default: {
2357 PRINTD (DBG_QOS, "unsupported TX traffic class");
2358 return -EINVAL;
2359 }
2360 }
2361 }
2362
2363 // RX traffic parameters
2364
2365 PRINTD (DBG_QOS, "RX:");
2366
2367 rxtp = &qos->rxtp;
2368
2369 // set up defaults for no traffic
2370 vcc.rx_rate = 0;
2371
2372 if (rxtp->traffic_class != ATM_NONE) {
2373 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2374 if (error) {
2375 PRINTD (DBG_QOS, "RX max_sdu check failed");
2376 return error;
2377 }
2378 switch (rxtp->traffic_class) {
2379 case ATM_UBR: {
2380 // not reserved
2381 break;
2382 }
2383#if 0
2384 case ATM_ABR: {
2385 // reserve min
2386 vcc.rx_rate = 0; // ?
2387 break;
2388 }
2389#endif
2390 case ATM_CBR: {
2391 int pcr = atm_pcr_goal (rxtp);
2392 if (!pcr) {
2393 // slight race (no locking) here so we may get -EAGAIN
2394 // later; the greedy bastards would deserve it :)
2395 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2396 pcr = dev->rx_avail;
2397 } else if (pcr < 0) {
2398 pcr = -pcr;
2399 }
2400 vcc.rx_rate = pcr;
2401 // not really clear what further checking is needed
2402 error = atm_pcr_check (rxtp, vcc.rx_rate);
2403 if (error) {
2404 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2405 return error;
2406 }
2407 break;
2408 }
2409#if 0
2410 case ATM_VBR: {
2411 // int scr = atm_scr_goal (rxtp);
2412 int scr = 1<<16; // just for fun
2413 if (!scr) {
2414 // slight race (no locking) here so we may get -EAGAIN
2415 // later; the greedy bastards would deserve it :)
2416 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2417 scr = dev->rx_avail;
2418 } else if (scr < 0) {
2419 scr = -scr;
2420 }
2421 vcc.rx_rate = scr;
2422 // not really clear what further checking is needed
2423 // error = atm_scr_check (rxtp, vcc.rx_rate);
2424 if (error) {
2425 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2426 return error;
2427 }
2428 break;
2429 }
2430#endif
2431 default: {
2432 PRINTD (DBG_QOS, "unsupported RX traffic class");
2433 return -EINVAL;
2434 }
2435 }
2436 }
2437
2438
2439 // late abort useful for diagnostics
2440 if (vcc.aal != aal5) {
2441 PRINTD (DBG_QOS, "AAL not supported");
2442 return -EINVAL;
2443 }
2444
2445 // get space for our vcc stuff and copy parameters into it
2446 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2447 if (!vccp) {
2448 PRINTK (KERN_ERR, "out of memory!");
2449 return -ENOMEM;
2450 }
2451 *vccp = vcc;
2452
2453 // clear error and grab cell rate resource lock
2454 error = 0;
2455 spin_lock (&dev->rate_lock);
2456
2457 if (vcc.tx_rate > dev->tx_avail) {
2458 PRINTD (DBG_QOS, "not enough TX PCR left");
2459 error = -EAGAIN;
2460 }
2461
2462 if (vcc.rx_rate > dev->rx_avail) {
2463 PRINTD (DBG_QOS, "not enough RX PCR left");
2464 error = -EAGAIN;
2465 }
2466
2467 if (!error) {
2468 // really consume cell rates
2469 dev->tx_avail -= vcc.tx_rate;
2470 dev->rx_avail -= vcc.rx_rate;
2471 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2472 vcc.tx_rate, vcc.rx_rate);
2473 }
2474
2475 // release lock and exit on error
2476 spin_unlock (&dev->rate_lock);
2477 if (error) {
2478 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2479 kfree (vccp);
2480 return error;
2481 }
2482
2483 // this is "immediately before allocating the connection identifier
2484 // in hardware" - so long as the next call does not fail :)
2485 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2486
2487 // any errors here are very serious and should never occur
2488
2489 if (rxtp->traffic_class != ATM_NONE) {
2490 if (dev->rxer[channel]) {
2491 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2492 error = -EBUSY;
2493 }
2494 if (!error)
2495 error = hrz_open_rx (dev, channel);
2496 if (error) {
2497 kfree (vccp);
2498 return error;
2499 }
2500 // this link allows RX frames through
2501 dev->rxer[channel] = atm_vcc;
2502 }
2503
2504 // success, set elements of atm_vcc
2505 atm_vcc->dev_data = (void *) vccp;
2506
2507 // indicate readiness
2508 set_bit(ATM_VF_READY,&atm_vcc->flags);
2509
2510 return 0;
2511}
2512
2513/********** close VC **********/
2514
2515static void hrz_close (struct atm_vcc * atm_vcc) {
2516 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2517 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2518 u16 channel = vcc->channel;
2519 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2520
2521 // indicate unreadiness
2522 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2523
2524 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2525 unsigned int i;
2526
2527 // let any TX on this channel that has started complete
2528 // no restart, just keep trying
2529 while (tx_hold (dev))
2530 ;
2531 // remove record of any tx_channel having been setup for this channel
2532 for (i = 0; i < TX_CHANS; ++i)
2533 if (dev->tx_channel_record[i] == channel) {
2534 dev->tx_channel_record[i] = -1;
2535 break;
2536 }
2537 if (dev->last_vc == channel)
2538 dev->tx_last = -1;
2539 tx_release (dev);
2540 }
2541
2542 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2543 // disable RXing - it tries quite hard
2544 hrz_close_rx (dev, channel);
2545 // forget the vcc - no more skbs will be pushed
2546 if (atm_vcc != dev->rxer[channel])
2547 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2548 "arghhh! we're going to die!",
2549 atm_vcc, dev->rxer[channel]);
2550 dev->rxer[channel] = NULL;
2551 }
2552
2553 // atomically release our rate reservation
2554 spin_lock (&dev->rate_lock);
2555 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2556 vcc->tx_rate, vcc->rx_rate);
2557 dev->tx_avail += vcc->tx_rate;
2558 dev->rx_avail += vcc->rx_rate;
2559 spin_unlock (&dev->rate_lock);
2560
2561 // free our structure
2562 kfree (vcc);
2563 // say the VPI/VCI is free again
2564 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2565}
2566
2567#if 0
2568static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2569 void *optval, int optlen) {
2570 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2571 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2572 switch (level) {
2573 case SOL_SOCKET:
2574 switch (optname) {
2575// case SO_BCTXOPT:
2576// break;
2577// case SO_BCRXOPT:
2578// break;
2579 default:
2580 return -ENOPROTOOPT;
2581 };
2582 break;
2583 }
2584 return -EINVAL;
2585}
2586
2587static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2588 void *optval, unsigned int optlen) {
2589 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2590 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2591 switch (level) {
2592 case SOL_SOCKET:
2593 switch (optname) {
2594// case SO_BCTXOPT:
2595// break;
2596// case SO_BCRXOPT:
2597// break;
2598 default:
2599 return -ENOPROTOOPT;
2600 };
2601 break;
2602 }
2603 return -EINVAL;
2604}
2605#endif
2606
2607#if 0
2608static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2609 hrz_dev * dev = HRZ_DEV(atm_dev);
2610 PRINTD (DBG_FLOW, "hrz_ioctl");
2611 return -1;
2612}
2613
2614unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2615 hrz_dev * dev = HRZ_DEV(atm_dev);
2616 PRINTD (DBG_FLOW, "hrz_phy_get");
2617 return 0;
2618}
2619
2620static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2621 unsigned long addr) {
2622 hrz_dev * dev = HRZ_DEV(atm_dev);
2623 PRINTD (DBG_FLOW, "hrz_phy_put");
2624}
2625
2626static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2627 hrz_dev * dev = HRZ_DEV(vcc->dev);
2628 PRINTD (DBG_FLOW, "hrz_change_qos");
2629 return -1;
2630}
2631#endif
2632
2633/********** proc file contents **********/
2634
2635static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2636 hrz_dev * dev = HRZ_DEV(atm_dev);
2637 int left = *pos;
2638 PRINTD (DBG_FLOW, "hrz_proc_read");
2639
2640 /* more diagnostics here? */
2641
2642#if 0
2643 if (!left--) {
2644 unsigned int count = sprintf (page, "vbr buckets:");
2645 unsigned int i;
2646 for (i = 0; i < TX_CHANS; ++i)
2647 count += sprintf (page, " %u/%u",
2648 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2649 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2650 count += sprintf (page+count, ".\n");
2651 return count;
2652 }
2653#endif
2654
2655 if (!left--)
2656 return sprintf (page,
2657 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2658 dev->tx_cell_count, dev->rx_cell_count,
2659 dev->hec_error_count, dev->unassigned_cell_count);
2660
2661 if (!left--)
2662 return sprintf (page,
2663 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2664 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2665 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2666 dev->noof_spare_buffers);
2667
2668 if (!left--)
2669 return sprintf (page,
2670 "cps remaining: TX %u, RX %u\n",
2671 dev->tx_avail, dev->rx_avail);
2672
2673 return 0;
2674}
2675
2676static const struct atmdev_ops hrz_ops = {
2677 .open = hrz_open,
2678 .close = hrz_close,
2679 .send = hrz_send,
2680 .proc_read = hrz_proc_read,
2681 .owner = THIS_MODULE,
2682};
2683
2684static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2685{
2686 hrz_dev * dev;
2687 int err = 0;
2688
2689 // adapter slot free, read resources from PCI configuration space
2690 u32 iobase = pci_resource_start (pci_dev, 0);
2691 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2692 unsigned int irq;
2693 unsigned char lat;
2694
2695 PRINTD (DBG_FLOW, "hrz_probe");
2696
2697 if (pci_enable_device(pci_dev))
2698 return -EINVAL;
2699
2700 /* XXX DEV_LABEL is a guess */
2701 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2702 err = -EINVAL;
2703 goto out_disable;
2704 }
2705
2706 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2707 if (!dev) {
2708 // perhaps we should be nice: deregister all adapters and abort?
2709 PRINTD(DBG_ERR, "out of memory");
2710 err = -ENOMEM;
2711 goto out_release;
2712 }
2713
2714 pci_set_drvdata(pci_dev, dev);
2715
2716 // grab IRQ and install handler - move this someplace more sensible
2717 irq = pci_dev->irq;
2718 if (request_irq(irq,
2719 interrupt_handler,
2720 IRQF_SHARED, /* irqflags guess */
2721 DEV_LABEL, /* name guess */
2722 dev)) {
2723 PRINTD(DBG_WARN, "request IRQ failed!");
2724 err = -EINVAL;
2725 goto out_free;
2726 }
2727
2728 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2729 iobase, irq, membase);
2730
2731 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2732 NULL);
2733 if (!(dev->atm_dev)) {
2734 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2735 err = -EINVAL;
2736 goto out_free_irq;
2737 }
2738
2739 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2740 dev->atm_dev->number, dev, dev->atm_dev);
2741 dev->atm_dev->dev_data = (void *) dev;
2742 dev->pci_dev = pci_dev;
2743
2744 // enable bus master accesses
2745 pci_set_master(pci_dev);
2746
2747 // frobnicate latency (upwards, usually)
2748 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2749 if (pci_lat) {
2750 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2751 "changing", lat, pci_lat);
2752 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2753 } else if (lat < MIN_PCI_LATENCY) {
2754 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2755 "increasing", lat, MIN_PCI_LATENCY);
2756 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2757 }
2758
2759 dev->iobase = iobase;
2760 dev->irq = irq;
2761 dev->membase = membase;
2762
2763 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2764 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2765
2766 // these next three are performance hacks
2767 dev->last_vc = -1;
2768 dev->tx_last = -1;
2769 dev->tx_idle = 0;
2770
2771 dev->tx_regions = 0;
2772 dev->tx_bytes = 0;
2773 dev->tx_skb = NULL;
2774 dev->tx_iovec = NULL;
2775
2776 dev->tx_cell_count = 0;
2777 dev->rx_cell_count = 0;
2778 dev->hec_error_count = 0;
2779 dev->unassigned_cell_count = 0;
2780
2781 dev->noof_spare_buffers = 0;
2782
2783 {
2784 unsigned int i;
2785 for (i = 0; i < TX_CHANS; ++i)
2786 dev->tx_channel_record[i] = -1;
2787 }
2788
2789 dev->flags = 0;
2790
2791 // Allocate cell rates and remember ASIC version
2792 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2793 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2794 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2795
2796 if (hrz_init(dev)) {
2797 // to be really pedantic, this should be ATM_OC3c_PCR
2798 dev->tx_avail = ATM_OC3_PCR;
2799 dev->rx_avail = ATM_OC3_PCR;
2800 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2801 } else {
2802 dev->tx_avail = ((25600000/8)*26)/(27*53);
2803 dev->rx_avail = ((25600000/8)*26)/(27*53);
2804 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2805 }
2806
2807 // rate changes spinlock
2808 spin_lock_init(&dev->rate_lock);
2809
2810 // on-board memory access spinlock; we want atomic reads and
2811 // writes to adapter memory (handles IRQ and SMP)
2812 spin_lock_init(&dev->mem_lock);
2813
2814 init_waitqueue_head(&dev->tx_queue);
2815
2816 // vpi in 0..4, vci in 6..10
2817 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2818 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2819
2820 init_timer(&dev->housekeeping);
2821 dev->housekeeping.function = do_housekeeping;
2822 dev->housekeeping.data = (unsigned long) dev;
2823 mod_timer(&dev->housekeeping, jiffies);
2824
2825out:
2826 return err;
2827
2828out_free_irq:
2829 free_irq(dev->irq, dev);
2830out_free:
2831 kfree(dev);
2832out_release:
2833 release_region(iobase, HRZ_IO_EXTENT);
2834out_disable:
2835 pci_disable_device(pci_dev);
2836 goto out;
2837}
2838
2839static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2840{
2841 hrz_dev *dev;
2842
2843 dev = pci_get_drvdata(pci_dev);
2844
2845 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2846 del_timer_sync(&dev->housekeeping);
2847 hrz_reset(dev);
2848 atm_dev_deregister(dev->atm_dev);
2849 free_irq(dev->irq, dev);
2850 release_region(dev->iobase, HRZ_IO_EXTENT);
2851 kfree(dev);
2852
2853 pci_disable_device(pci_dev);
2854}
2855
2856static void __init hrz_check_args (void) {
2857#ifdef DEBUG_HORIZON
2858 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2859#else
2860 if (debug)
2861 PRINTK (KERN_NOTICE, "no debug support in this image");
2862#endif
2863
2864 if (vpi_bits > HRZ_MAX_VPI)
2865 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2866 vpi_bits = HRZ_MAX_VPI);
2867
2868 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2869 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2870 max_tx_size = TX_AAL5_LIMIT);
2871
2872 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2873 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2874 max_rx_size = RX_AAL5_LIMIT);
2875
2876 return;
2877}
2878
2879MODULE_AUTHOR(maintainer_string);
2880MODULE_DESCRIPTION(description_string);
2881MODULE_LICENSE("GPL");
2882module_param(debug, ushort, 0644);
2883module_param(vpi_bits, ushort, 0);
2884module_param(max_tx_size, int, 0);
2885module_param(max_rx_size, int, 0);
2886module_param(pci_lat, byte, 0);
2887MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2888MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2889MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2890MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2891MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2892
2893static struct pci_device_id hrz_pci_tbl[] = {
2894 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2895 0, 0, 0 },
2896 { 0, }
2897};
2898
2899MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2900
2901static struct pci_driver hrz_driver = {
2902 .name = "horizon",
2903 .probe = hrz_probe,
2904 .remove = __devexit_p(hrz_remove_one),
2905 .id_table = hrz_pci_tbl,
2906};
2907
2908/********** module entry **********/
2909
2910static int __init hrz_module_init (void) {
2911 // sanity check - cast is needed since printk does not support %Zu
2912 if (sizeof(struct MEMMAP) != 128*1024/4) {
2913 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2914 (unsigned long) sizeof(struct MEMMAP));
2915 return -ENOMEM;
2916 }
2917
2918 show_version();
2919
2920 // check arguments
2921 hrz_check_args();
2922
2923 // get the juice
2924 return pci_register_driver(&hrz_driver);
2925}
2926
2927/********** module exit **********/
2928
2929static void __exit hrz_module_exit (void) {
2930 PRINTD (DBG_FLOW, "cleanup_module");
2931
2932 pci_unregister_driver(&hrz_driver);
2933}
2934
2935module_init(hrz_module_init);
2936module_exit(hrz_module_exit);