Loading...
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/vmalloc.h>
14#include <linux/pagemap.h>
15#include <linux/init.h>
16#include <linux/spinlock.h>
17#include <linux/bootmem.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/kdebug.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23
24#include <asm/bitext.h>
25#include <asm/page.h>
26#include <asm/pgalloc.h>
27#include <asm/pgtable.h>
28#include <asm/io.h>
29#include <asm/vaddrs.h>
30#include <asm/traps.h>
31#include <asm/smp.h>
32#include <asm/mbus.h>
33#include <asm/cache.h>
34#include <asm/oplib.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
37#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49#include <asm/leon.h>
50
51#include <asm/btfixup.h>
52
53enum mbus_module srmmu_modtype;
54static unsigned int hwbug_bitmask;
55int vac_cache_size;
56int vac_line_size;
57
58extern struct resource sparc_iomap;
59
60extern unsigned long last_valid_pfn;
61
62extern unsigned long page_kernel;
63
64static pgd_t *srmmu_swapper_pg_dir;
65
66#ifdef CONFIG_SMP
67#define FLUSH_BEGIN(mm)
68#define FLUSH_END
69#else
70#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71#define FLUSH_END }
72#endif
73
74BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76
77int flush_page_for_dma_global = 1;
78
79#ifdef CONFIG_SMP
80BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82#endif
83
84char *srmmu_name;
85
86ctxd_t *srmmu_ctx_table_phys;
87static ctxd_t *srmmu_context_table;
88
89int viking_mxcc_present;
90static DEFINE_SPINLOCK(srmmu_context_spinlock);
91
92static int is_hypersparc;
93
94/*
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
98 */
99static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100{
101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 return value;
103}
104
105static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106{
107 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108}
109
110/* The very generic SRMMU page table operations. */
111static inline int srmmu_device_memory(unsigned long x)
112{
113 return ((x & 0xF0000000) != 0);
114}
115
116static int srmmu_cache_pagetables;
117
118/* these will be initialized in srmmu_nocache_calcsize() */
119static unsigned long srmmu_nocache_size;
120static unsigned long srmmu_nocache_end;
121
122/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124
125/* The context table is a nocache user with the biggest alignment needs. */
126#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127
128void *srmmu_nocache_pool;
129void *srmmu_nocache_bitmap;
130static struct bit_map srmmu_nocache_map;
131
132static unsigned long srmmu_pte_pfn(pte_t pte)
133{
134 if (srmmu_device_memory(pte_val(pte))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
138 * PTE over.
139 */
140 return ~0UL;
141 }
142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143}
144
145static struct page *srmmu_pmd_page(pmd_t pmd)
146{
147
148 if (srmmu_device_memory(pmd_val(pmd)))
149 BUG();
150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151}
152
153static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155
156
157static inline int srmmu_pte_none(pte_t pte)
158{ return !(pte_val(pte) & 0xFFFFFFF); }
159
160static inline int srmmu_pte_present(pte_t pte)
161{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162
163static inline void srmmu_pte_clear(pte_t *ptep)
164{ srmmu_set_pte(ptep, __pte(0)); }
165
166static inline int srmmu_pmd_none(pmd_t pmd)
167{ return !(pmd_val(pmd) & 0xFFFFFFF); }
168
169static inline int srmmu_pmd_bad(pmd_t pmd)
170{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171
172static inline int srmmu_pmd_present(pmd_t pmd)
173{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174
175static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 int i;
177 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179}
180
181static inline int srmmu_pgd_none(pgd_t pgd)
182{ return !(pgd_val(pgd) & 0xFFFFFFF); }
183
184static inline int srmmu_pgd_bad(pgd_t pgd)
185{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186
187static inline int srmmu_pgd_present(pgd_t pgd)
188{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189
190static inline void srmmu_pgd_clear(pgd_t * pgdp)
191{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192
193static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195
196static inline pte_t srmmu_pte_mkclean(pte_t pte)
197{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198
199static inline pte_t srmmu_pte_mkold(pte_t pte)
200{ return __pte(pte_val(pte) & ~SRMMU_REF);}
201
202static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203{ return __pte(pte_val(pte) | SRMMU_WRITE);}
204
205static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
207
208static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209{ return __pte(pte_val(pte) | SRMMU_REF);}
210
211/*
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
214 */
215static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217
218static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220
221static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223
224/* XXX should we hyper_flush_whole_icache here - Anton */
225static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227
228static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230
231static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232{
233 unsigned long ptp; /* Physical address, shifted right by 4 */
234 int i;
235
236 ptp = __nocache_pa((unsigned long) ptep) >> 4;
237 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
240 }
241}
242
243static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244{
245 unsigned long ptp; /* Physical address, shifted right by 4 */
246 int i;
247
248 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
249 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
252 }
253}
254
255static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257
258/* to find an entry in a top-level page table... */
259static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261
262/* Find an entry in the second-level page table.. */
263static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264{
265 return (pmd_t *) srmmu_pgd_page(*dir) +
266 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267}
268
269/* Find an entry in the third-level page table.. */
270static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271{
272 void *pte;
273
274 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275 return (pte_t *) pte +
276 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277}
278
279static unsigned long srmmu_swp_type(swp_entry_t entry)
280{
281 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282}
283
284static unsigned long srmmu_swp_offset(swp_entry_t entry)
285{
286 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287}
288
289static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290{
291 return (swp_entry_t) {
292 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
294}
295
296/*
297 * size: bytes to allocate in the nocache area.
298 * align: bytes, number to align at.
299 * Returns the virtual address of the allocated area.
300 */
301static unsigned long __srmmu_get_nocache(int size, int align)
302{
303 int offset;
304
305 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306 printk("Size 0x%x too small for nocache request\n", size);
307 size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 }
309 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310 printk("Size 0x%x unaligned int nocache request\n", size);
311 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 }
313 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314
315 offset = bit_map_string_get(&srmmu_nocache_map,
316 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318 if (offset == -1) {
319 printk("srmmu: out of nocache %d: %d/%d\n",
320 size, (int) srmmu_nocache_size,
321 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322 return 0;
323 }
324
325 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326}
327
328static unsigned long srmmu_get_nocache(int size, int align)
329{
330 unsigned long tmp;
331
332 tmp = __srmmu_get_nocache(size, align);
333
334 if (tmp)
335 memset((void *)tmp, 0, size);
336
337 return tmp;
338}
339
340static void srmmu_free_nocache(unsigned long vaddr, int size)
341{
342 int offset;
343
344 if (vaddr < SRMMU_NOCACHE_VADDR) {
345 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 BUG();
348 }
349 if (vaddr+size > srmmu_nocache_end) {
350 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 vaddr, srmmu_nocache_end);
352 BUG();
353 }
354 if (!is_power_of_2(size)) {
355 printk("Size 0x%x is not a power of 2\n", size);
356 BUG();
357 }
358 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359 printk("Size 0x%x is too small\n", size);
360 BUG();
361 }
362 if (vaddr & (size-1)) {
363 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364 BUG();
365 }
366
367 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369
370 bit_map_clear(&srmmu_nocache_map, offset, size);
371}
372
373static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
374 unsigned long end);
375
376extern unsigned long probe_memory(void); /* in fault.c */
377
378/*
379 * Reserve nocache dynamically proportionally to the amount of
380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
381 */
382static void srmmu_nocache_calcsize(void)
383{
384 unsigned long sysmemavail = probe_memory() / 1024;
385 int srmmu_nocache_npages;
386
387 srmmu_nocache_npages =
388 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
389
390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
391 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
392 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
393 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
394
395 /* anything above 1280 blows up */
396 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
397 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
398
399 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
400 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
401}
402
403static void __init srmmu_nocache_init(void)
404{
405 unsigned int bitmap_bits;
406 pgd_t *pgd;
407 pmd_t *pmd;
408 pte_t *pte;
409 unsigned long paddr, vaddr;
410 unsigned long pteval;
411
412 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
413
414 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
415 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
416 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
417
418 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
419 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
420
421 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
422 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
423 init_mm.pgd = srmmu_swapper_pg_dir;
424
425 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
426
427 paddr = __pa((unsigned long)srmmu_nocache_pool);
428 vaddr = SRMMU_NOCACHE_VADDR;
429
430 while (vaddr < srmmu_nocache_end) {
431 pgd = pgd_offset_k(vaddr);
432 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
433 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
434
435 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
436
437 if (srmmu_cache_pagetables)
438 pteval |= SRMMU_CACHE;
439
440 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
441
442 vaddr += PAGE_SIZE;
443 paddr += PAGE_SIZE;
444 }
445
446 flush_cache_all();
447 flush_tlb_all();
448}
449
450static inline pgd_t *srmmu_get_pgd_fast(void)
451{
452 pgd_t *pgd = NULL;
453
454 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
455 if (pgd) {
456 pgd_t *init = pgd_offset_k(0);
457 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
458 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
459 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
460 }
461
462 return pgd;
463}
464
465static void srmmu_free_pgd_fast(pgd_t *pgd)
466{
467 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
468}
469
470static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
471{
472 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
473}
474
475static void srmmu_pmd_free(pmd_t * pmd)
476{
477 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
478}
479
480/*
481 * Hardware needs alignment to 256 only, but we align to whole page size
482 * to reduce fragmentation problems due to the buddy principle.
483 * XXX Provide actual fragmentation statistics in /proc.
484 *
485 * Alignments up to the page size are the same for physical and virtual
486 * addresses of the nocache area.
487 */
488static pte_t *
489srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
490{
491 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
492}
493
494static pgtable_t
495srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
496{
497 unsigned long pte;
498 struct page *page;
499
500 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
501 return NULL;
502 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
503 pgtable_page_ctor(page);
504 return page;
505}
506
507static void srmmu_free_pte_fast(pte_t *pte)
508{
509 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
510}
511
512static void srmmu_pte_free(pgtable_t pte)
513{
514 unsigned long p;
515
516 pgtable_page_dtor(pte);
517 p = (unsigned long)page_address(pte); /* Cached address (for test) */
518 if (p == 0)
519 BUG();
520 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
521 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
522 srmmu_free_nocache(p, PTE_SIZE);
523}
524
525/*
526 */
527static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
528{
529 struct ctx_list *ctxp;
530
531 ctxp = ctx_free.next;
532 if(ctxp != &ctx_free) {
533 remove_from_ctx_list(ctxp);
534 add_to_used_ctxlist(ctxp);
535 mm->context = ctxp->ctx_number;
536 ctxp->ctx_mm = mm;
537 return;
538 }
539 ctxp = ctx_used.next;
540 if(ctxp->ctx_mm == old_mm)
541 ctxp = ctxp->next;
542 if(ctxp == &ctx_used)
543 panic("out of mmu contexts");
544 flush_cache_mm(ctxp->ctx_mm);
545 flush_tlb_mm(ctxp->ctx_mm);
546 remove_from_ctx_list(ctxp);
547 add_to_used_ctxlist(ctxp);
548 ctxp->ctx_mm->context = NO_CONTEXT;
549 ctxp->ctx_mm = mm;
550 mm->context = ctxp->ctx_number;
551}
552
553static inline void free_context(int context)
554{
555 struct ctx_list *ctx_old;
556
557 ctx_old = ctx_list_pool + context;
558 remove_from_ctx_list(ctx_old);
559 add_to_free_ctxlist(ctx_old);
560}
561
562
563static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
564 struct task_struct *tsk, int cpu)
565{
566 if(mm->context == NO_CONTEXT) {
567 spin_lock(&srmmu_context_spinlock);
568 alloc_context(old_mm, mm);
569 spin_unlock(&srmmu_context_spinlock);
570 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
571 }
572
573 if (sparc_cpu_model == sparc_leon)
574 leon_switch_mm();
575
576 if (is_hypersparc)
577 hyper_flush_whole_icache();
578
579 srmmu_set_context(mm->context);
580}
581
582/* Low level IO area allocation on the SRMMU. */
583static inline void srmmu_mapioaddr(unsigned long physaddr,
584 unsigned long virt_addr, int bus_type)
585{
586 pgd_t *pgdp;
587 pmd_t *pmdp;
588 pte_t *ptep;
589 unsigned long tmp;
590
591 physaddr &= PAGE_MASK;
592 pgdp = pgd_offset_k(virt_addr);
593 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
594 ptep = srmmu_pte_offset(pmdp, virt_addr);
595 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
596
597 /*
598 * I need to test whether this is consistent over all
599 * sun4m's. The bus_type represents the upper 4 bits of
600 * 36-bit physical address on the I/O space lines...
601 */
602 tmp |= (bus_type << 28);
603 tmp |= SRMMU_PRIV;
604 __flush_page_to_ram(virt_addr);
605 srmmu_set_pte(ptep, __pte(tmp));
606}
607
608static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
609 unsigned long xva, unsigned int len)
610{
611 while (len != 0) {
612 len -= PAGE_SIZE;
613 srmmu_mapioaddr(xpa, xva, bus);
614 xva += PAGE_SIZE;
615 xpa += PAGE_SIZE;
616 }
617 flush_tlb_all();
618}
619
620static inline void srmmu_unmapioaddr(unsigned long virt_addr)
621{
622 pgd_t *pgdp;
623 pmd_t *pmdp;
624 pte_t *ptep;
625
626 pgdp = pgd_offset_k(virt_addr);
627 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
628 ptep = srmmu_pte_offset(pmdp, virt_addr);
629
630 /* No need to flush uncacheable page. */
631 srmmu_pte_clear(ptep);
632}
633
634static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
635{
636 while (len != 0) {
637 len -= PAGE_SIZE;
638 srmmu_unmapioaddr(virt_addr);
639 virt_addr += PAGE_SIZE;
640 }
641 flush_tlb_all();
642}
643
644/*
645 * On the SRMMU we do not have the problems with limited tlb entries
646 * for mapping kernel pages, so we just take things from the free page
647 * pool. As a side effect we are putting a little too much pressure
648 * on the gfp() subsystem. This setup also makes the logic of the
649 * iommu mapping code a lot easier as we can transparently handle
650 * mappings on the kernel stack without any special code as we did
651 * need on the sun4c.
652 */
653static struct thread_info *srmmu_alloc_thread_info_node(int node)
654{
655 struct thread_info *ret;
656
657 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
658 THREAD_INFO_ORDER);
659#ifdef CONFIG_DEBUG_STACK_USAGE
660 if (ret)
661 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
662#endif /* DEBUG_STACK_USAGE */
663
664 return ret;
665}
666
667static void srmmu_free_thread_info(struct thread_info *ti)
668{
669 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
670}
671
672/* tsunami.S */
673extern void tsunami_flush_cache_all(void);
674extern void tsunami_flush_cache_mm(struct mm_struct *mm);
675extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
677extern void tsunami_flush_page_to_ram(unsigned long page);
678extern void tsunami_flush_page_for_dma(unsigned long page);
679extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
680extern void tsunami_flush_tlb_all(void);
681extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
682extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
683extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
684extern void tsunami_setup_blockops(void);
685
686/*
687 * Workaround, until we find what's going on with Swift. When low on memory,
688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
689 * out it is already in page tables/ fault again on the same instruction.
690 * I really don't understand it, have checked it and contexts
691 * are right, flush_tlb_all is done as well, and it faults again...
692 * Strange. -jj
693 *
694 * The following code is a deadwood that may be necessary when
695 * we start to make precise page flushes again. --zaitcev
696 */
697static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
698{
699#if 0
700 static unsigned long last;
701 unsigned int val;
702 /* unsigned int n; */
703
704 if (address == last) {
705 val = srmmu_hwprobe(address);
706 if (val != 0 && pte_val(*ptep) != val) {
707 printk("swift_update_mmu_cache: "
708 "addr %lx put %08x probed %08x from %p\n",
709 address, pte_val(*ptep), val,
710 __builtin_return_address(0));
711 srmmu_flush_whole_tlb();
712 }
713 }
714 last = address;
715#endif
716}
717
718/* swift.S */
719extern void swift_flush_cache_all(void);
720extern void swift_flush_cache_mm(struct mm_struct *mm);
721extern void swift_flush_cache_range(struct vm_area_struct *vma,
722 unsigned long start, unsigned long end);
723extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
724extern void swift_flush_page_to_ram(unsigned long page);
725extern void swift_flush_page_for_dma(unsigned long page);
726extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
727extern void swift_flush_tlb_all(void);
728extern void swift_flush_tlb_mm(struct mm_struct *mm);
729extern void swift_flush_tlb_range(struct vm_area_struct *vma,
730 unsigned long start, unsigned long end);
731extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
732
733#if 0 /* P3: deadwood to debug precise flushes on Swift. */
734void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
735{
736 int cctx, ctx1;
737
738 page &= PAGE_MASK;
739 if ((ctx1 = vma->vm_mm->context) != -1) {
740 cctx = srmmu_get_context();
741/* Is context # ever different from current context? P3 */
742 if (cctx != ctx1) {
743 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
744 srmmu_set_context(ctx1);
745 swift_flush_page(page);
746 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
747 "r" (page), "i" (ASI_M_FLUSH_PROBE));
748 srmmu_set_context(cctx);
749 } else {
750 /* Rm. prot. bits from virt. c. */
751 /* swift_flush_cache_all(); */
752 /* swift_flush_cache_page(vma, page); */
753 swift_flush_page(page);
754
755 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
756 "r" (page), "i" (ASI_M_FLUSH_PROBE));
757 /* same as above: srmmu_flush_tlb_page() */
758 }
759 }
760}
761#endif
762
763/*
764 * The following are all MBUS based SRMMU modules, and therefore could
765 * be found in a multiprocessor configuration. On the whole, these
766 * chips seems to be much more touchy about DVMA and page tables
767 * with respect to cache coherency.
768 */
769
770/* Cypress flushes. */
771static void cypress_flush_cache_all(void)
772{
773 volatile unsigned long cypress_sucks;
774 unsigned long faddr, tagval;
775
776 flush_user_windows();
777 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
778 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
779 "=r" (tagval) :
780 "r" (faddr), "r" (0x40000),
781 "i" (ASI_M_DATAC_TAG));
782
783 /* If modified and valid, kick it. */
784 if((tagval & 0x60) == 0x60)
785 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
786 }
787}
788
789static void cypress_flush_cache_mm(struct mm_struct *mm)
790{
791 register unsigned long a, b, c, d, e, f, g;
792 unsigned long flags, faddr;
793 int octx;
794
795 FLUSH_BEGIN(mm)
796 flush_user_windows();
797 local_irq_save(flags);
798 octx = srmmu_get_context();
799 srmmu_set_context(mm->context);
800 a = 0x20; b = 0x40; c = 0x60;
801 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
802
803 faddr = (0x10000 - 0x100);
804 goto inside;
805 do {
806 faddr -= 0x100;
807 inside:
808 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
809 "sta %%g0, [%0 + %2] %1\n\t"
810 "sta %%g0, [%0 + %3] %1\n\t"
811 "sta %%g0, [%0 + %4] %1\n\t"
812 "sta %%g0, [%0 + %5] %1\n\t"
813 "sta %%g0, [%0 + %6] %1\n\t"
814 "sta %%g0, [%0 + %7] %1\n\t"
815 "sta %%g0, [%0 + %8] %1\n\t" : :
816 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
817 "r" (a), "r" (b), "r" (c), "r" (d),
818 "r" (e), "r" (f), "r" (g));
819 } while(faddr);
820 srmmu_set_context(octx);
821 local_irq_restore(flags);
822 FLUSH_END
823}
824
825static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
826{
827 struct mm_struct *mm = vma->vm_mm;
828 register unsigned long a, b, c, d, e, f, g;
829 unsigned long flags, faddr;
830 int octx;
831
832 FLUSH_BEGIN(mm)
833 flush_user_windows();
834 local_irq_save(flags);
835 octx = srmmu_get_context();
836 srmmu_set_context(mm->context);
837 a = 0x20; b = 0x40; c = 0x60;
838 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
839
840 start &= SRMMU_REAL_PMD_MASK;
841 while(start < end) {
842 faddr = (start + (0x10000 - 0x100));
843 goto inside;
844 do {
845 faddr -= 0x100;
846 inside:
847 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
848 "sta %%g0, [%0 + %2] %1\n\t"
849 "sta %%g0, [%0 + %3] %1\n\t"
850 "sta %%g0, [%0 + %4] %1\n\t"
851 "sta %%g0, [%0 + %5] %1\n\t"
852 "sta %%g0, [%0 + %6] %1\n\t"
853 "sta %%g0, [%0 + %7] %1\n\t"
854 "sta %%g0, [%0 + %8] %1\n\t" : :
855 "r" (faddr),
856 "i" (ASI_M_FLUSH_SEG),
857 "r" (a), "r" (b), "r" (c), "r" (d),
858 "r" (e), "r" (f), "r" (g));
859 } while (faddr != start);
860 start += SRMMU_REAL_PMD_SIZE;
861 }
862 srmmu_set_context(octx);
863 local_irq_restore(flags);
864 FLUSH_END
865}
866
867static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
868{
869 register unsigned long a, b, c, d, e, f, g;
870 struct mm_struct *mm = vma->vm_mm;
871 unsigned long flags, line;
872 int octx;
873
874 FLUSH_BEGIN(mm)
875 flush_user_windows();
876 local_irq_save(flags);
877 octx = srmmu_get_context();
878 srmmu_set_context(mm->context);
879 a = 0x20; b = 0x40; c = 0x60;
880 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
881
882 page &= PAGE_MASK;
883 line = (page + PAGE_SIZE) - 0x100;
884 goto inside;
885 do {
886 line -= 0x100;
887 inside:
888 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
889 "sta %%g0, [%0 + %2] %1\n\t"
890 "sta %%g0, [%0 + %3] %1\n\t"
891 "sta %%g0, [%0 + %4] %1\n\t"
892 "sta %%g0, [%0 + %5] %1\n\t"
893 "sta %%g0, [%0 + %6] %1\n\t"
894 "sta %%g0, [%0 + %7] %1\n\t"
895 "sta %%g0, [%0 + %8] %1\n\t" : :
896 "r" (line),
897 "i" (ASI_M_FLUSH_PAGE),
898 "r" (a), "r" (b), "r" (c), "r" (d),
899 "r" (e), "r" (f), "r" (g));
900 } while(line != page);
901 srmmu_set_context(octx);
902 local_irq_restore(flags);
903 FLUSH_END
904}
905
906/* Cypress is copy-back, at least that is how we configure it. */
907static void cypress_flush_page_to_ram(unsigned long page)
908{
909 register unsigned long a, b, c, d, e, f, g;
910 unsigned long line;
911
912 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
913 page &= PAGE_MASK;
914 line = (page + PAGE_SIZE) - 0x100;
915 goto inside;
916 do {
917 line -= 0x100;
918 inside:
919 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
920 "sta %%g0, [%0 + %2] %1\n\t"
921 "sta %%g0, [%0 + %3] %1\n\t"
922 "sta %%g0, [%0 + %4] %1\n\t"
923 "sta %%g0, [%0 + %5] %1\n\t"
924 "sta %%g0, [%0 + %6] %1\n\t"
925 "sta %%g0, [%0 + %7] %1\n\t"
926 "sta %%g0, [%0 + %8] %1\n\t" : :
927 "r" (line),
928 "i" (ASI_M_FLUSH_PAGE),
929 "r" (a), "r" (b), "r" (c), "r" (d),
930 "r" (e), "r" (f), "r" (g));
931 } while(line != page);
932}
933
934/* Cypress is also IO cache coherent. */
935static void cypress_flush_page_for_dma(unsigned long page)
936{
937}
938
939/* Cypress has unified L2 VIPT, from which both instructions and data
940 * are stored. It does not have an onboard icache of any sort, therefore
941 * no flush is necessary.
942 */
943static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
944{
945}
946
947static void cypress_flush_tlb_all(void)
948{
949 srmmu_flush_whole_tlb();
950}
951
952static void cypress_flush_tlb_mm(struct mm_struct *mm)
953{
954 FLUSH_BEGIN(mm)
955 __asm__ __volatile__(
956 "lda [%0] %3, %%g5\n\t"
957 "sta %2, [%0] %3\n\t"
958 "sta %%g0, [%1] %4\n\t"
959 "sta %%g5, [%0] %3\n"
960 : /* no outputs */
961 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
962 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
963 : "g5");
964 FLUSH_END
965}
966
967static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
968{
969 struct mm_struct *mm = vma->vm_mm;
970 unsigned long size;
971
972 FLUSH_BEGIN(mm)
973 start &= SRMMU_PGDIR_MASK;
974 size = SRMMU_PGDIR_ALIGN(end) - start;
975 __asm__ __volatile__(
976 "lda [%0] %5, %%g5\n\t"
977 "sta %1, [%0] %5\n"
978 "1:\n\t"
979 "subcc %3, %4, %3\n\t"
980 "bne 1b\n\t"
981 " sta %%g0, [%2 + %3] %6\n\t"
982 "sta %%g5, [%0] %5\n"
983 : /* no outputs */
984 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
985 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
986 "i" (ASI_M_FLUSH_PROBE)
987 : "g5", "cc");
988 FLUSH_END
989}
990
991static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
992{
993 struct mm_struct *mm = vma->vm_mm;
994
995 FLUSH_BEGIN(mm)
996 __asm__ __volatile__(
997 "lda [%0] %3, %%g5\n\t"
998 "sta %1, [%0] %3\n\t"
999 "sta %%g0, [%2] %4\n\t"
1000 "sta %%g5, [%0] %3\n"
1001 : /* no outputs */
1002 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1003 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004 : "g5");
1005 FLUSH_END
1006}
1007
1008/* viking.S */
1009extern void viking_flush_cache_all(void);
1010extern void viking_flush_cache_mm(struct mm_struct *mm);
1011extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1012 unsigned long end);
1013extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1014extern void viking_flush_page_to_ram(unsigned long page);
1015extern void viking_flush_page_for_dma(unsigned long page);
1016extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1017extern void viking_flush_page(unsigned long page);
1018extern void viking_mxcc_flush_page(unsigned long page);
1019extern void viking_flush_tlb_all(void);
1020extern void viking_flush_tlb_mm(struct mm_struct *mm);
1021extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1022 unsigned long end);
1023extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1024 unsigned long page);
1025extern void sun4dsmp_flush_tlb_all(void);
1026extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1027extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1028 unsigned long end);
1029extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1030 unsigned long page);
1031
1032/* hypersparc.S */
1033extern void hypersparc_flush_cache_all(void);
1034extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1035extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1037extern void hypersparc_flush_page_to_ram(unsigned long page);
1038extern void hypersparc_flush_page_for_dma(unsigned long page);
1039extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1040extern void hypersparc_flush_tlb_all(void);
1041extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1042extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1043extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1044extern void hypersparc_setup_blockops(void);
1045
1046/*
1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048 * kernel mappings are done with one single contiguous chunk of
1049 * ram. On small ram machines (classics mainly) we only get
1050 * around 8mb mapped for us.
1051 */
1052
1053static void __init early_pgtable_allocfail(char *type)
1054{
1055 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1056 prom_halt();
1057}
1058
1059static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1060 unsigned long end)
1061{
1062 pgd_t *pgdp;
1063 pmd_t *pmdp;
1064 pte_t *ptep;
1065
1066 while(start < end) {
1067 pgdp = pgd_offset_k(start);
1068 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1069 pmdp = (pmd_t *) __srmmu_get_nocache(
1070 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1071 if (pmdp == NULL)
1072 early_pgtable_allocfail("pmd");
1073 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1074 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1075 }
1076 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1077 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1078 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1079 if (ptep == NULL)
1080 early_pgtable_allocfail("pte");
1081 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1082 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1083 }
1084 if (start > (0xffffffffUL - PMD_SIZE))
1085 break;
1086 start = (start + PMD_SIZE) & PMD_MASK;
1087 }
1088}
1089
1090static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1091 unsigned long end)
1092{
1093 pgd_t *pgdp;
1094 pmd_t *pmdp;
1095 pte_t *ptep;
1096
1097 while(start < end) {
1098 pgdp = pgd_offset_k(start);
1099 if(srmmu_pgd_none(*pgdp)) {
1100 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1101 if (pmdp == NULL)
1102 early_pgtable_allocfail("pmd");
1103 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1104 srmmu_pgd_set(pgdp, pmdp);
1105 }
1106 pmdp = srmmu_pmd_offset(pgdp, start);
1107 if(srmmu_pmd_none(*pmdp)) {
1108 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1109 PTE_SIZE);
1110 if (ptep == NULL)
1111 early_pgtable_allocfail("pte");
1112 memset(ptep, 0, PTE_SIZE);
1113 srmmu_pmd_set(pmdp, ptep);
1114 }
1115 if (start > (0xffffffffUL - PMD_SIZE))
1116 break;
1117 start = (start + PMD_SIZE) & PMD_MASK;
1118 }
1119}
1120
1121/*
1122 * This is much cleaner than poking around physical address space
1123 * looking at the prom's page table directly which is what most
1124 * other OS's do. Yuck... this is much better.
1125 */
1126static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127 unsigned long end)
1128{
1129 pgd_t *pgdp;
1130 pmd_t *pmdp;
1131 pte_t *ptep;
1132 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133 unsigned long prompte;
1134
1135 while(start <= end) {
1136 if (start == 0)
1137 break; /* probably wrap around */
1138 if(start == 0xfef00000)
1139 start = KADB_DEBUGGER_BEGVM;
1140 if(!(prompte = srmmu_hwprobe(start))) {
1141 start += PAGE_SIZE;
1142 continue;
1143 }
1144
1145 /* A red snapper, see what it really is. */
1146 what = 0;
1147
1148 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1150 what = 1;
1151 }
1152
1153 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1154 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1155 prompte)
1156 what = 2;
1157 }
1158
1159 pgdp = pgd_offset_k(start);
1160 if(what == 2) {
1161 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1162 start += SRMMU_PGDIR_SIZE;
1163 continue;
1164 }
1165 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1166 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1167 if (pmdp == NULL)
1168 early_pgtable_allocfail("pmd");
1169 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1170 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1171 }
1172 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1173 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1174 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1175 PTE_SIZE);
1176 if (ptep == NULL)
1177 early_pgtable_allocfail("pte");
1178 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1179 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1180 }
1181 if(what == 1) {
1182 /*
1183 * We bend the rule where all 16 PTPs in a pmd_t point
1184 * inside the same PTE page, and we leak a perfectly
1185 * good hardware PTE piece. Alternatives seem worse.
1186 */
1187 unsigned int x; /* Index of HW PMD in soft cluster */
1188 x = (start >> PMD_SHIFT) & 15;
1189 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1190 start += SRMMU_REAL_PMD_SIZE;
1191 continue;
1192 }
1193 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1194 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1195 start += PAGE_SIZE;
1196 }
1197}
1198
1199#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1200
1201/* Create a third-level SRMMU 16MB page mapping. */
1202static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1203{
1204 pgd_t *pgdp = pgd_offset_k(vaddr);
1205 unsigned long big_pte;
1206
1207 big_pte = KERNEL_PTE(phys_base >> 4);
1208 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1209}
1210
1211/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1213{
1214 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1215 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1216 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1217 /* Map "low" memory only */
1218 const unsigned long min_vaddr = PAGE_OFFSET;
1219 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1220
1221 if (vstart < min_vaddr || vstart >= max_vaddr)
1222 return vstart;
1223
1224 if (vend > max_vaddr || vend < min_vaddr)
1225 vend = max_vaddr;
1226
1227 while(vstart < vend) {
1228 do_large_mapping(vstart, pstart);
1229 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1230 }
1231 return vstart;
1232}
1233
1234static inline void memprobe_error(char *msg)
1235{
1236 prom_printf(msg);
1237 prom_printf("Halting now...\n");
1238 prom_halt();
1239}
1240
1241static inline void map_kernel(void)
1242{
1243 int i;
1244
1245 if (phys_base > 0) {
1246 do_large_mapping(PAGE_OFFSET, phys_base);
1247 }
1248
1249 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1250 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1251 }
1252
1253 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1254}
1255
1256/* Paging initialization on the Sparc Reference MMU. */
1257extern void sparc_context_init(int);
1258
1259void (*poke_srmmu)(void) __cpuinitdata = NULL;
1260
1261extern unsigned long bootmem_init(unsigned long *pages_avail);
1262
1263void __init srmmu_paging_init(void)
1264{
1265 int i;
1266 phandle cpunode;
1267 char node_str[128];
1268 pgd_t *pgd;
1269 pmd_t *pmd;
1270 pte_t *pte;
1271 unsigned long pages_avail;
1272
1273 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1274
1275 if (sparc_cpu_model == sun4d)
1276 num_contexts = 65536; /* We know it is Viking */
1277 else {
1278 /* Find the number of contexts on the srmmu. */
1279 cpunode = prom_getchild(prom_root_node);
1280 num_contexts = 0;
1281 while(cpunode != 0) {
1282 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1283 if(!strcmp(node_str, "cpu")) {
1284 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1285 break;
1286 }
1287 cpunode = prom_getsibling(cpunode);
1288 }
1289 }
1290
1291 if(!num_contexts) {
1292 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1293 prom_halt();
1294 }
1295
1296 pages_avail = 0;
1297 last_valid_pfn = bootmem_init(&pages_avail);
1298
1299 srmmu_nocache_calcsize();
1300 srmmu_nocache_init();
1301 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1302 map_kernel();
1303
1304 /* ctx table has to be physically aligned to its size */
1305 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1306 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1307
1308 for(i = 0; i < num_contexts; i++)
1309 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1310
1311 flush_cache_all();
1312 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1313#ifdef CONFIG_SMP
1314 /* Stop from hanging here... */
1315 local_flush_tlb_all();
1316#else
1317 flush_tlb_all();
1318#endif
1319 poke_srmmu();
1320
1321 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1322 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1323
1324 srmmu_allocate_ptable_skeleton(
1325 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1326 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1327
1328 pgd = pgd_offset_k(PKMAP_BASE);
1329 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1330 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1331 pkmap_page_table = pte;
1332
1333 flush_cache_all();
1334 flush_tlb_all();
1335
1336 sparc_context_init(num_contexts);
1337
1338 kmap_init();
1339
1340 {
1341 unsigned long zones_size[MAX_NR_ZONES];
1342 unsigned long zholes_size[MAX_NR_ZONES];
1343 unsigned long npages;
1344 int znum;
1345
1346 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1347 zones_size[znum] = zholes_size[znum] = 0;
1348
1349 npages = max_low_pfn - pfn_base;
1350
1351 zones_size[ZONE_DMA] = npages;
1352 zholes_size[ZONE_DMA] = npages - pages_avail;
1353
1354 npages = highend_pfn - max_low_pfn;
1355 zones_size[ZONE_HIGHMEM] = npages;
1356 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1357
1358 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1359 }
1360}
1361
1362static void srmmu_mmu_info(struct seq_file *m)
1363{
1364 seq_printf(m,
1365 "MMU type\t: %s\n"
1366 "contexts\t: %d\n"
1367 "nocache total\t: %ld\n"
1368 "nocache used\t: %d\n",
1369 srmmu_name,
1370 num_contexts,
1371 srmmu_nocache_size,
1372 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1373}
1374
1375static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1376{
1377}
1378
1379static void srmmu_destroy_context(struct mm_struct *mm)
1380{
1381
1382 if(mm->context != NO_CONTEXT) {
1383 flush_cache_mm(mm);
1384 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1385 flush_tlb_mm(mm);
1386 spin_lock(&srmmu_context_spinlock);
1387 free_context(mm->context);
1388 spin_unlock(&srmmu_context_spinlock);
1389 mm->context = NO_CONTEXT;
1390 }
1391}
1392
1393/* Init various srmmu chip types. */
1394static void __init srmmu_is_bad(void)
1395{
1396 prom_printf("Could not determine SRMMU chip type.\n");
1397 prom_halt();
1398}
1399
1400static void __init init_vac_layout(void)
1401{
1402 phandle nd;
1403 int cache_lines;
1404 char node_str[128];
1405#ifdef CONFIG_SMP
1406 int cpu = 0;
1407 unsigned long max_size = 0;
1408 unsigned long min_line_size = 0x10000000;
1409#endif
1410
1411 nd = prom_getchild(prom_root_node);
1412 while((nd = prom_getsibling(nd)) != 0) {
1413 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1414 if(!strcmp(node_str, "cpu")) {
1415 vac_line_size = prom_getint(nd, "cache-line-size");
1416 if (vac_line_size == -1) {
1417 prom_printf("can't determine cache-line-size, "
1418 "halting.\n");
1419 prom_halt();
1420 }
1421 cache_lines = prom_getint(nd, "cache-nlines");
1422 if (cache_lines == -1) {
1423 prom_printf("can't determine cache-nlines, halting.\n");
1424 prom_halt();
1425 }
1426
1427 vac_cache_size = cache_lines * vac_line_size;
1428#ifdef CONFIG_SMP
1429 if(vac_cache_size > max_size)
1430 max_size = vac_cache_size;
1431 if(vac_line_size < min_line_size)
1432 min_line_size = vac_line_size;
1433 //FIXME: cpus not contiguous!!
1434 cpu++;
1435 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1436 break;
1437#else
1438 break;
1439#endif
1440 }
1441 }
1442 if(nd == 0) {
1443 prom_printf("No CPU nodes found, halting.\n");
1444 prom_halt();
1445 }
1446#ifdef CONFIG_SMP
1447 vac_cache_size = max_size;
1448 vac_line_size = min_line_size;
1449#endif
1450 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1451 (int)vac_cache_size, (int)vac_line_size);
1452}
1453
1454static void __cpuinit poke_hypersparc(void)
1455{
1456 volatile unsigned long clear;
1457 unsigned long mreg = srmmu_get_mmureg();
1458
1459 hyper_flush_unconditional_combined();
1460
1461 mreg &= ~(HYPERSPARC_CWENABLE);
1462 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1463 mreg |= (HYPERSPARC_CMODE);
1464
1465 srmmu_set_mmureg(mreg);
1466
1467#if 0 /* XXX I think this is bad news... -DaveM */
1468 hyper_clear_all_tags();
1469#endif
1470
1471 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1472 hyper_flush_whole_icache();
1473 clear = srmmu_get_faddr();
1474 clear = srmmu_get_fstatus();
1475}
1476
1477static void __init init_hypersparc(void)
1478{
1479 srmmu_name = "ROSS HyperSparc";
1480 srmmu_modtype = HyperSparc;
1481
1482 init_vac_layout();
1483
1484 is_hypersparc = 1;
1485
1486 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1493
1494 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1496 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1497 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1498
1499 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1500 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1501 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1502
1503
1504 poke_srmmu = poke_hypersparc;
1505
1506 hypersparc_setup_blockops();
1507}
1508
1509static void __cpuinit poke_cypress(void)
1510{
1511 unsigned long mreg = srmmu_get_mmureg();
1512 unsigned long faddr, tagval;
1513 volatile unsigned long cypress_sucks;
1514 volatile unsigned long clear;
1515
1516 clear = srmmu_get_faddr();
1517 clear = srmmu_get_fstatus();
1518
1519 if (!(mreg & CYPRESS_CENABLE)) {
1520 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1521 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1522 "sta %%g0, [%0] %2\n\t" : :
1523 "r" (faddr), "r" (0x40000),
1524 "i" (ASI_M_DATAC_TAG));
1525 }
1526 } else {
1527 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1528 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1529 "=r" (tagval) :
1530 "r" (faddr), "r" (0x40000),
1531 "i" (ASI_M_DATAC_TAG));
1532
1533 /* If modified and valid, kick it. */
1534 if((tagval & 0x60) == 0x60)
1535 cypress_sucks = *(unsigned long *)
1536 (0xf0020000 + faddr);
1537 }
1538 }
1539
1540 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1541 clear = srmmu_get_faddr();
1542 clear = srmmu_get_fstatus();
1543
1544 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1545 srmmu_set_mmureg(mreg);
1546}
1547
1548static void __init init_cypress_common(void)
1549{
1550 init_vac_layout();
1551
1552 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1559
1560 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1561 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1562 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1563 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1564
1565
1566 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1567 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1568 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1569
1570 poke_srmmu = poke_cypress;
1571}
1572
1573static void __init init_cypress_604(void)
1574{
1575 srmmu_name = "ROSS Cypress-604(UP)";
1576 srmmu_modtype = Cypress;
1577 init_cypress_common();
1578}
1579
1580static void __init init_cypress_605(unsigned long mrev)
1581{
1582 srmmu_name = "ROSS Cypress-605(MP)";
1583 if(mrev == 0xe) {
1584 srmmu_modtype = Cypress_vE;
1585 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1586 } else {
1587 if(mrev == 0xd) {
1588 srmmu_modtype = Cypress_vD;
1589 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1590 } else {
1591 srmmu_modtype = Cypress;
1592 }
1593 }
1594 init_cypress_common();
1595}
1596
1597static void __cpuinit poke_swift(void)
1598{
1599 unsigned long mreg;
1600
1601 /* Clear any crap from the cache or else... */
1602 swift_flush_cache_all();
1603
1604 /* Enable I & D caches */
1605 mreg = srmmu_get_mmureg();
1606 mreg |= (SWIFT_IE | SWIFT_DE);
1607 /*
1608 * The Swift branch folding logic is completely broken. At
1609 * trap time, if things are just right, if can mistakenly
1610 * think that a trap is coming from kernel mode when in fact
1611 * it is coming from user mode (it mis-executes the branch in
1612 * the trap code). So you see things like crashme completely
1613 * hosing your machine which is completely unacceptable. Turn
1614 * this shit off... nice job Fujitsu.
1615 */
1616 mreg &= ~(SWIFT_BF);
1617 srmmu_set_mmureg(mreg);
1618}
1619
1620#define SWIFT_MASKID_ADDR 0x10003018
1621static void __init init_swift(void)
1622{
1623 unsigned long swift_rev;
1624
1625 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1626 "srl %0, 0x18, %0\n\t" :
1627 "=r" (swift_rev) :
1628 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1629 srmmu_name = "Fujitsu Swift";
1630 switch(swift_rev) {
1631 case 0x11:
1632 case 0x20:
1633 case 0x23:
1634 case 0x30:
1635 srmmu_modtype = Swift_lots_o_bugs;
1636 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1637 /*
1638 * Gee george, I wonder why Sun is so hush hush about
1639 * this hardware bug... really braindamage stuff going
1640 * on here. However I think we can find a way to avoid
1641 * all of the workaround overhead under Linux. Basically,
1642 * any page fault can cause kernel pages to become user
1643 * accessible (the mmu gets confused and clears some of
1644 * the ACC bits in kernel ptes). Aha, sounds pretty
1645 * horrible eh? But wait, after extensive testing it appears
1646 * that if you use pgd_t level large kernel pte's (like the
1647 * 4MB pages on the Pentium) the bug does not get tripped
1648 * at all. This avoids almost all of the major overhead.
1649 * Welcome to a world where your vendor tells you to,
1650 * "apply this kernel patch" instead of "sorry for the
1651 * broken hardware, send it back and we'll give you
1652 * properly functioning parts"
1653 */
1654 break;
1655 case 0x25:
1656 case 0x31:
1657 srmmu_modtype = Swift_bad_c;
1658 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1659 /*
1660 * You see Sun allude to this hardware bug but never
1661 * admit things directly, they'll say things like,
1662 * "the Swift chip cache problems" or similar.
1663 */
1664 break;
1665 default:
1666 srmmu_modtype = Swift_ok;
1667 break;
1668 }
1669
1670 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1674
1675
1676 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1679 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1680
1681 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1682 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1683 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1684
1685 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1686
1687 flush_page_for_dma_global = 0;
1688
1689 /*
1690 * Are you now convinced that the Swift is one of the
1691 * biggest VLSI abortions of all time? Bravo Fujitsu!
1692 * Fujitsu, the !#?!%$'d up processor people. I bet if
1693 * you examined the microcode of the Swift you'd find
1694 * XXX's all over the place.
1695 */
1696 poke_srmmu = poke_swift;
1697}
1698
1699static void turbosparc_flush_cache_all(void)
1700{
1701 flush_user_windows();
1702 turbosparc_idflash_clear();
1703}
1704
1705static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1706{
1707 FLUSH_BEGIN(mm)
1708 flush_user_windows();
1709 turbosparc_idflash_clear();
1710 FLUSH_END
1711}
1712
1713static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1714{
1715 FLUSH_BEGIN(vma->vm_mm)
1716 flush_user_windows();
1717 turbosparc_idflash_clear();
1718 FLUSH_END
1719}
1720
1721static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1722{
1723 FLUSH_BEGIN(vma->vm_mm)
1724 flush_user_windows();
1725 if (vma->vm_flags & VM_EXEC)
1726 turbosparc_flush_icache();
1727 turbosparc_flush_dcache();
1728 FLUSH_END
1729}
1730
1731/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1732static void turbosparc_flush_page_to_ram(unsigned long page)
1733{
1734#ifdef TURBOSPARC_WRITEBACK
1735 volatile unsigned long clear;
1736
1737 if (srmmu_hwprobe(page))
1738 turbosparc_flush_page_cache(page);
1739 clear = srmmu_get_fstatus();
1740#endif
1741}
1742
1743static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744{
1745}
1746
1747static void turbosparc_flush_page_for_dma(unsigned long page)
1748{
1749 turbosparc_flush_dcache();
1750}
1751
1752static void turbosparc_flush_tlb_all(void)
1753{
1754 srmmu_flush_whole_tlb();
1755}
1756
1757static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1758{
1759 FLUSH_BEGIN(mm)
1760 srmmu_flush_whole_tlb();
1761 FLUSH_END
1762}
1763
1764static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1765{
1766 FLUSH_BEGIN(vma->vm_mm)
1767 srmmu_flush_whole_tlb();
1768 FLUSH_END
1769}
1770
1771static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1772{
1773 FLUSH_BEGIN(vma->vm_mm)
1774 srmmu_flush_whole_tlb();
1775 FLUSH_END
1776}
1777
1778
1779static void __cpuinit poke_turbosparc(void)
1780{
1781 unsigned long mreg = srmmu_get_mmureg();
1782 unsigned long ccreg;
1783
1784 /* Clear any crap from the cache or else... */
1785 turbosparc_flush_cache_all();
1786 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1787 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1788 srmmu_set_mmureg(mreg);
1789
1790 ccreg = turbosparc_get_ccreg();
1791
1792#ifdef TURBOSPARC_WRITEBACK
1793 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1794 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795 /* Write-back D-cache, emulate VLSI
1796 * abortion number three, not number one */
1797#else
1798 /* For now let's play safe, optimize later */
1799 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1801 ccreg &= ~(TURBOSPARC_uS2);
1802 /* Emulate VLSI abortion number three, not number one */
1803#endif
1804
1805 switch (ccreg & 7) {
1806 case 0: /* No SE cache */
1807 case 7: /* Test mode */
1808 break;
1809 default:
1810 ccreg |= (TURBOSPARC_SCENABLE);
1811 }
1812 turbosparc_set_ccreg (ccreg);
1813
1814 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1816 srmmu_set_mmureg(mreg);
1817}
1818
1819static void __init init_turbosparc(void)
1820{
1821 srmmu_name = "Fujitsu TurboSparc";
1822 srmmu_modtype = TurboSparc;
1823
1824 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1828
1829 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1833
1834 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1835
1836 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1838
1839 poke_srmmu = poke_turbosparc;
1840}
1841
1842static void __cpuinit poke_tsunami(void)
1843{
1844 unsigned long mreg = srmmu_get_mmureg();
1845
1846 tsunami_flush_icache();
1847 tsunami_flush_dcache();
1848 mreg &= ~TSUNAMI_ITD;
1849 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850 srmmu_set_mmureg(mreg);
1851}
1852
1853static void __init init_tsunami(void)
1854{
1855 /*
1856 * Tsunami's pretty sane, Sun and TI actually got it
1857 * somewhat right this time. Fujitsu should have
1858 * taken some lessons from them.
1859 */
1860
1861 srmmu_name = "TI Tsunami";
1862 srmmu_modtype = Tsunami;
1863
1864 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1868
1869
1870 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1874
1875 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1878
1879 poke_srmmu = poke_tsunami;
1880
1881 tsunami_setup_blockops();
1882}
1883
1884static void __cpuinit poke_viking(void)
1885{
1886 unsigned long mreg = srmmu_get_mmureg();
1887 static int smp_catch;
1888
1889 if(viking_mxcc_present) {
1890 unsigned long mxcc_control = mxcc_get_creg();
1891
1892 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893 mxcc_control &= ~(MXCC_CTL_RRC);
1894 mxcc_set_creg(mxcc_control);
1895
1896 /*
1897 * We don't need memory parity checks.
1898 * XXX This is a mess, have to dig out later. ecd.
1899 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900 */
1901
1902 /* We do cache ptables on MXCC. */
1903 mreg |= VIKING_TCENABLE;
1904 } else {
1905 unsigned long bpreg;
1906
1907 mreg &= ~(VIKING_TCENABLE);
1908 if(smp_catch++) {
1909 /* Must disable mixed-cmd mode here for other cpu's. */
1910 bpreg = viking_get_bpreg();
1911 bpreg &= ~(VIKING_ACTION_MIX);
1912 viking_set_bpreg(bpreg);
1913
1914 /* Just in case PROM does something funny. */
1915 msi_set_sync();
1916 }
1917 }
1918
1919 mreg |= VIKING_SPENABLE;
1920 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921 mreg |= VIKING_SBENABLE;
1922 mreg &= ~(VIKING_ACENABLE);
1923 srmmu_set_mmureg(mreg);
1924}
1925
1926static void __init init_viking(void)
1927{
1928 unsigned long mreg = srmmu_get_mmureg();
1929
1930 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1931 if(mreg & VIKING_MMODE) {
1932 srmmu_name = "TI Viking";
1933 viking_mxcc_present = 0;
1934 msi_set_sync();
1935
1936 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1939
1940 /*
1941 * We need this to make sure old viking takes no hits
1942 * on it's cache for dma snoops to workaround the
1943 * "load from non-cacheable memory" interrupt bug.
1944 * This is only necessary because of the new way in
1945 * which we use the IOMMU.
1946 */
1947 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1948
1949 flush_page_for_dma_global = 0;
1950 } else {
1951 srmmu_name = "TI Viking/MXCC";
1952 viking_mxcc_present = 1;
1953
1954 srmmu_cache_pagetables = 1;
1955
1956 /* MXCC vikings lack the DMA snooping bug. */
1957 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1958 }
1959
1960 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1964
1965#ifdef CONFIG_SMP
1966 if (sparc_cpu_model == sun4d) {
1967 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971 } else
1972#endif
1973 {
1974 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1978 }
1979
1980 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1982
1983 poke_srmmu = poke_viking;
1984}
1985
1986#ifdef CONFIG_SPARC_LEON
1987
1988void __init poke_leonsparc(void)
1989{
1990}
1991
1992void __init init_leon(void)
1993{
1994
1995 srmmu_name = "LEON";
1996
1997 BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1998 BTFIXUPCALL_NORM);
1999 BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
2000 BTFIXUPCALL_NORM);
2001 BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
2002 BTFIXUPCALL_NORM);
2003 BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
2004 BTFIXUPCALL_NORM);
2005 BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
2006 BTFIXUPCALL_NORM);
2007
2008 BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2009 BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2010 BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2011 BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2012
2013 BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
2014 BTFIXUPCALL_NOP);
2015 BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
2016
2017 poke_srmmu = poke_leonsparc;
2018
2019 srmmu_cache_pagetables = 0;
2020
2021 leon_flush_during_switch = leon_flush_needed();
2022}
2023#endif
2024
2025/* Probe for the srmmu chip version. */
2026static void __init get_srmmu_type(void)
2027{
2028 unsigned long mreg, psr;
2029 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2030
2031 srmmu_modtype = SRMMU_INVAL_MOD;
2032 hwbug_bitmask = 0;
2033
2034 mreg = srmmu_get_mmureg(); psr = get_psr();
2035 mod_typ = (mreg & 0xf0000000) >> 28;
2036 mod_rev = (mreg & 0x0f000000) >> 24;
2037 psr_typ = (psr >> 28) & 0xf;
2038 psr_vers = (psr >> 24) & 0xf;
2039
2040 /* First, check for sparc-leon. */
2041 if (sparc_cpu_model == sparc_leon) {
2042 init_leon();
2043 return;
2044 }
2045
2046 /* Second, check for HyperSparc or Cypress. */
2047 if(mod_typ == 1) {
2048 switch(mod_rev) {
2049 case 7:
2050 /* UP or MP Hypersparc */
2051 init_hypersparc();
2052 break;
2053 case 0:
2054 case 2:
2055 /* Uniprocessor Cypress */
2056 init_cypress_604();
2057 break;
2058 case 10:
2059 case 11:
2060 case 12:
2061 /* _REALLY OLD_ Cypress MP chips... */
2062 case 13:
2063 case 14:
2064 case 15:
2065 /* MP Cypress mmu/cache-controller */
2066 init_cypress_605(mod_rev);
2067 break;
2068 default:
2069 /* Some other Cypress revision, assume a 605. */
2070 init_cypress_605(mod_rev);
2071 break;
2072 }
2073 return;
2074 }
2075
2076 /*
2077 * Now Fujitsu TurboSparc. It might happen that it is
2078 * in Swift emulation mode, so we will check later...
2079 */
2080 if (psr_typ == 0 && psr_vers == 5) {
2081 init_turbosparc();
2082 return;
2083 }
2084
2085 /* Next check for Fujitsu Swift. */
2086 if(psr_typ == 0 && psr_vers == 4) {
2087 phandle cpunode;
2088 char node_str[128];
2089
2090 /* Look if it is not a TurboSparc emulating Swift... */
2091 cpunode = prom_getchild(prom_root_node);
2092 while((cpunode = prom_getsibling(cpunode)) != 0) {
2093 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2094 if(!strcmp(node_str, "cpu")) {
2095 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2096 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2097 init_turbosparc();
2098 return;
2099 }
2100 break;
2101 }
2102 }
2103
2104 init_swift();
2105 return;
2106 }
2107
2108 /* Now the Viking family of srmmu. */
2109 if(psr_typ == 4 &&
2110 ((psr_vers == 0) ||
2111 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2112 init_viking();
2113 return;
2114 }
2115
2116 /* Finally the Tsunami. */
2117 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2118 init_tsunami();
2119 return;
2120 }
2121
2122 /* Oh well */
2123 srmmu_is_bad();
2124}
2125
2126/* don't laugh, static pagetables */
2127static void srmmu_check_pgt_cache(int low, int high)
2128{
2129}
2130
2131extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2132 tsetup_mmu_patchme, rtrap_mmu_patchme;
2133
2134extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2135 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2136
2137extern unsigned long srmmu_fault;
2138
2139#define PATCH_BRANCH(insn, dest) do { \
2140 iaddr = &(insn); \
2141 daddr = &(dest); \
2142 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143 } while(0)
2144
2145static void __init patch_window_trap_handlers(void)
2146{
2147 unsigned long *iaddr, *daddr;
2148
2149 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2150 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2151 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2152 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2153 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2154 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2155 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2156}
2157
2158#ifdef CONFIG_SMP
2159/* Local cross-calls. */
2160static void smp_flush_page_for_dma(unsigned long page)
2161{
2162 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2163 local_flush_page_for_dma(page);
2164}
2165
2166#endif
2167
2168static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2169{
2170 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2171}
2172
2173static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2174{
2175 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2176}
2177
2178static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2179{
2180 prot &= ~__pgprot(SRMMU_CACHE);
2181
2182 return prot;
2183}
2184
2185/* Load up routines and constants for sun4m and sun4d mmu */
2186void __init ld_mmu_srmmu(void)
2187{
2188 extern void ld_mmu_iommu(void);
2189 extern void ld_mmu_iounit(void);
2190 extern void ___xchg32_sun4md(void);
2191
2192 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2193 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2194 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2195
2196 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2197 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2198
2199 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2200 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2201 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2202 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2203 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2204 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2205
2206 /* Functions */
2207 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2208#ifndef CONFIG_SMP
2209 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2210#endif
2211 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2212
2213 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2214 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2215
2216 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2217 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2218 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2219
2220 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2221 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2222
2223 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2224 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2225 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2226
2227 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2229 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2231
2232 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2235 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2236 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2237 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2238
2239 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2240 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2241 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2242
2243 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2244 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2245 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2246 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2247 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2248 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2249 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2250 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2251
2252 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2253 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2254 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2255 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2256 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2257 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2258 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2259 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2260 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2261 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2262 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2263 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2264
2265 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2266 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2267
2268 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2271
2272 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2273
2274 BTFIXUPSET_CALL(alloc_thread_info_node, srmmu_alloc_thread_info_node, BTFIXUPCALL_NORM);
2275 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2276
2277 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2278 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2279
2280 get_srmmu_type();
2281 patch_window_trap_handlers();
2282
2283#ifdef CONFIG_SMP
2284 /* El switcheroo... */
2285
2286 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2287 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2288 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2289 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2290 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2291 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2292 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2293 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2294 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2295 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2296 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2297
2298 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2299 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2300 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2301 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2302 if (sparc_cpu_model != sun4d &&
2303 sparc_cpu_model != sparc_leon) {
2304 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2305 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2306 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2307 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2308 }
2309 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2310 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2311 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2312
2313 if (poke_srmmu == poke_viking) {
2314 /* Avoid unnecessary cross calls. */
2315 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2316 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2317 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2318 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2319 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2320 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2321 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2322 }
2323#endif
2324
2325 if (sparc_cpu_model == sun4d)
2326 ld_mmu_iounit();
2327 else
2328 ld_mmu_iommu();
2329#ifdef CONFIG_SMP
2330 if (sparc_cpu_model == sun4d)
2331 sun4d_init_smp();
2332 else if (sparc_cpu_model == sparc_leon)
2333 leon_init_smp();
2334 else
2335 sun4m_init_smp();
2336#endif
2337}
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/vmalloc.h>
14#include <linux/pagemap.h>
15#include <linux/init.h>
16#include <linux/spinlock.h>
17#include <linux/bootmem.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/kdebug.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23
24#include <asm/bitext.h>
25#include <asm/page.h>
26#include <asm/pgalloc.h>
27#include <asm/pgtable.h>
28#include <asm/io.h>
29#include <asm/vaddrs.h>
30#include <asm/traps.h>
31#include <asm/smp.h>
32#include <asm/mbus.h>
33#include <asm/cache.h>
34#include <asm/oplib.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
37#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49#include <asm/leon.h>
50
51#include "srmmu.h"
52
53enum mbus_module srmmu_modtype;
54static unsigned int hwbug_bitmask;
55int vac_cache_size;
56int vac_line_size;
57
58struct ctx_list *ctx_list_pool;
59struct ctx_list ctx_free;
60struct ctx_list ctx_used;
61
62extern struct resource sparc_iomap;
63
64extern unsigned long last_valid_pfn;
65
66static pgd_t *srmmu_swapper_pg_dir;
67
68const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
69
70#ifdef CONFIG_SMP
71const struct sparc32_cachetlb_ops *local_ops;
72
73#define FLUSH_BEGIN(mm)
74#define FLUSH_END
75#else
76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77#define FLUSH_END }
78#endif
79
80int flush_page_for_dma_global = 1;
81
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
85static ctxd_t *srmmu_context_table;
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90static int is_hypersparc;
91
92static int srmmu_cache_pagetables;
93
94/* these will be initialized in srmmu_nocache_calcsize() */
95static unsigned long srmmu_nocache_size;
96static unsigned long srmmu_nocache_end;
97
98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101/* The context table is a nocache user with the biggest alignment needs. */
102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104void *srmmu_nocache_pool;
105void *srmmu_nocache_bitmap;
106static struct bit_map srmmu_nocache_map;
107
108static inline int srmmu_pmd_none(pmd_t pmd)
109{ return !(pmd_val(pmd) & 0xFFFFFFF); }
110
111/* XXX should we hyper_flush_whole_icache here - Anton */
112static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
114
115void pmd_set(pmd_t *pmdp, pte_t *ptep)
116{
117 unsigned long ptp; /* Physical address, shifted right by 4 */
118 int i;
119
120 ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
124 }
125}
126
127void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
128{
129 unsigned long ptp; /* Physical address, shifted right by 4 */
130 int i;
131
132 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
133 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
136 }
137}
138
139/* Find an entry in the third-level page table.. */
140pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
141{
142 void *pte;
143
144 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 return (pte_t *) pte +
146 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
147}
148
149/*
150 * size: bytes to allocate in the nocache area.
151 * align: bytes, number to align at.
152 * Returns the virtual address of the allocated area.
153 */
154static unsigned long __srmmu_get_nocache(int size, int align)
155{
156 int offset;
157
158 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159 printk("Size 0x%x too small for nocache request\n", size);
160 size = SRMMU_NOCACHE_BITMAP_SHIFT;
161 }
162 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163 printk("Size 0x%x unaligned int nocache request\n", size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
165 }
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk("srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return 0;
176 }
177
178 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
179}
180
181unsigned long srmmu_get_nocache(int size, int align)
182{
183 unsigned long tmp;
184
185 tmp = __srmmu_get_nocache(size, align);
186
187 if (tmp)
188 memset((void *)tmp, 0, size);
189
190 return tmp;
191}
192
193void srmmu_free_nocache(unsigned long vaddr, int size)
194{
195 int offset;
196
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 BUG();
201 }
202 if (vaddr+size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
205 BUG();
206 }
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
209 BUG();
210 }
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
213 BUG();
214 }
215 if (vaddr & (size-1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 BUG();
218 }
219
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222
223 bit_map_clear(&srmmu_nocache_map, offset, size);
224}
225
226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 unsigned long end);
228
229extern unsigned long probe_memory(void); /* in fault.c */
230
231/*
232 * Reserve nocache dynamically proportionally to the amount of
233 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
234 */
235static void srmmu_nocache_calcsize(void)
236{
237 unsigned long sysmemavail = probe_memory() / 1024;
238 int srmmu_nocache_npages;
239
240 srmmu_nocache_npages =
241 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
242
243 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
247
248 /* anything above 1280 blows up */
249 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
251
252 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
254}
255
256static void __init srmmu_nocache_init(void)
257{
258 unsigned int bitmap_bits;
259 pgd_t *pgd;
260 pmd_t *pmd;
261 pte_t *pte;
262 unsigned long paddr, vaddr;
263 unsigned long pteval;
264
265 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
266
267 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
270
271 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
273
274 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276 init_mm.pgd = srmmu_swapper_pg_dir;
277
278 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
279
280 paddr = __pa((unsigned long)srmmu_nocache_pool);
281 vaddr = SRMMU_NOCACHE_VADDR;
282
283 while (vaddr < srmmu_nocache_end) {
284 pgd = pgd_offset_k(vaddr);
285 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
287
288 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
289
290 if (srmmu_cache_pagetables)
291 pteval |= SRMMU_CACHE;
292
293 set_pte(__nocache_fix(pte), __pte(pteval));
294
295 vaddr += PAGE_SIZE;
296 paddr += PAGE_SIZE;
297 }
298
299 flush_cache_all();
300 flush_tlb_all();
301}
302
303pgd_t *get_pgd_fast(void)
304{
305 pgd_t *pgd = NULL;
306
307 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308 if (pgd) {
309 pgd_t *init = pgd_offset_k(0);
310 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
313 }
314
315 return pgd;
316}
317
318/*
319 * Hardware needs alignment to 256 only, but we align to whole page size
320 * to reduce fragmentation problems due to the buddy principle.
321 * XXX Provide actual fragmentation statistics in /proc.
322 *
323 * Alignments up to the page size are the same for physical and virtual
324 * addresses of the nocache area.
325 */
326pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
327{
328 unsigned long pte;
329 struct page *page;
330
331 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
332 return NULL;
333 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
334 pgtable_page_ctor(page);
335 return page;
336}
337
338void pte_free(struct mm_struct *mm, pgtable_t pte)
339{
340 unsigned long p;
341
342 pgtable_page_dtor(pte);
343 p = (unsigned long)page_address(pte); /* Cached address (for test) */
344 if (p == 0)
345 BUG();
346 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
347 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
348 srmmu_free_nocache(p, PTE_SIZE);
349}
350
351/*
352 */
353static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
354{
355 struct ctx_list *ctxp;
356
357 ctxp = ctx_free.next;
358 if(ctxp != &ctx_free) {
359 remove_from_ctx_list(ctxp);
360 add_to_used_ctxlist(ctxp);
361 mm->context = ctxp->ctx_number;
362 ctxp->ctx_mm = mm;
363 return;
364 }
365 ctxp = ctx_used.next;
366 if(ctxp->ctx_mm == old_mm)
367 ctxp = ctxp->next;
368 if(ctxp == &ctx_used)
369 panic("out of mmu contexts");
370 flush_cache_mm(ctxp->ctx_mm);
371 flush_tlb_mm(ctxp->ctx_mm);
372 remove_from_ctx_list(ctxp);
373 add_to_used_ctxlist(ctxp);
374 ctxp->ctx_mm->context = NO_CONTEXT;
375 ctxp->ctx_mm = mm;
376 mm->context = ctxp->ctx_number;
377}
378
379static inline void free_context(int context)
380{
381 struct ctx_list *ctx_old;
382
383 ctx_old = ctx_list_pool + context;
384 remove_from_ctx_list(ctx_old);
385 add_to_free_ctxlist(ctx_old);
386}
387
388
389void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390 struct task_struct *tsk)
391{
392 if(mm->context == NO_CONTEXT) {
393 spin_lock(&srmmu_context_spinlock);
394 alloc_context(old_mm, mm);
395 spin_unlock(&srmmu_context_spinlock);
396 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
397 }
398
399 if (sparc_cpu_model == sparc_leon)
400 leon_switch_mm();
401
402 if (is_hypersparc)
403 hyper_flush_whole_icache();
404
405 srmmu_set_context(mm->context);
406}
407
408/* Low level IO area allocation on the SRMMU. */
409static inline void srmmu_mapioaddr(unsigned long physaddr,
410 unsigned long virt_addr, int bus_type)
411{
412 pgd_t *pgdp;
413 pmd_t *pmdp;
414 pte_t *ptep;
415 unsigned long tmp;
416
417 physaddr &= PAGE_MASK;
418 pgdp = pgd_offset_k(virt_addr);
419 pmdp = pmd_offset(pgdp, virt_addr);
420 ptep = pte_offset_kernel(pmdp, virt_addr);
421 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
422
423 /*
424 * I need to test whether this is consistent over all
425 * sun4m's. The bus_type represents the upper 4 bits of
426 * 36-bit physical address on the I/O space lines...
427 */
428 tmp |= (bus_type << 28);
429 tmp |= SRMMU_PRIV;
430 __flush_page_to_ram(virt_addr);
431 set_pte(ptep, __pte(tmp));
432}
433
434void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
435 unsigned long xva, unsigned int len)
436{
437 while (len != 0) {
438 len -= PAGE_SIZE;
439 srmmu_mapioaddr(xpa, xva, bus);
440 xva += PAGE_SIZE;
441 xpa += PAGE_SIZE;
442 }
443 flush_tlb_all();
444}
445
446static inline void srmmu_unmapioaddr(unsigned long virt_addr)
447{
448 pgd_t *pgdp;
449 pmd_t *pmdp;
450 pte_t *ptep;
451
452 pgdp = pgd_offset_k(virt_addr);
453 pmdp = pmd_offset(pgdp, virt_addr);
454 ptep = pte_offset_kernel(pmdp, virt_addr);
455
456 /* No need to flush uncacheable page. */
457 __pte_clear(ptep);
458}
459
460void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
461{
462 while (len != 0) {
463 len -= PAGE_SIZE;
464 srmmu_unmapioaddr(virt_addr);
465 virt_addr += PAGE_SIZE;
466 }
467 flush_tlb_all();
468}
469
470/* tsunami.S */
471extern void tsunami_flush_cache_all(void);
472extern void tsunami_flush_cache_mm(struct mm_struct *mm);
473extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
474extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
475extern void tsunami_flush_page_to_ram(unsigned long page);
476extern void tsunami_flush_page_for_dma(unsigned long page);
477extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
478extern void tsunami_flush_tlb_all(void);
479extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
480extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
481extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
482extern void tsunami_setup_blockops(void);
483
484/* swift.S */
485extern void swift_flush_cache_all(void);
486extern void swift_flush_cache_mm(struct mm_struct *mm);
487extern void swift_flush_cache_range(struct vm_area_struct *vma,
488 unsigned long start, unsigned long end);
489extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
490extern void swift_flush_page_to_ram(unsigned long page);
491extern void swift_flush_page_for_dma(unsigned long page);
492extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
493extern void swift_flush_tlb_all(void);
494extern void swift_flush_tlb_mm(struct mm_struct *mm);
495extern void swift_flush_tlb_range(struct vm_area_struct *vma,
496 unsigned long start, unsigned long end);
497extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
498
499#if 0 /* P3: deadwood to debug precise flushes on Swift. */
500void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
501{
502 int cctx, ctx1;
503
504 page &= PAGE_MASK;
505 if ((ctx1 = vma->vm_mm->context) != -1) {
506 cctx = srmmu_get_context();
507/* Is context # ever different from current context? P3 */
508 if (cctx != ctx1) {
509 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
510 srmmu_set_context(ctx1);
511 swift_flush_page(page);
512 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
513 "r" (page), "i" (ASI_M_FLUSH_PROBE));
514 srmmu_set_context(cctx);
515 } else {
516 /* Rm. prot. bits from virt. c. */
517 /* swift_flush_cache_all(); */
518 /* swift_flush_cache_page(vma, page); */
519 swift_flush_page(page);
520
521 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
522 "r" (page), "i" (ASI_M_FLUSH_PROBE));
523 /* same as above: srmmu_flush_tlb_page() */
524 }
525 }
526}
527#endif
528
529/*
530 * The following are all MBUS based SRMMU modules, and therefore could
531 * be found in a multiprocessor configuration. On the whole, these
532 * chips seems to be much more touchy about DVMA and page tables
533 * with respect to cache coherency.
534 */
535
536/* viking.S */
537extern void viking_flush_cache_all(void);
538extern void viking_flush_cache_mm(struct mm_struct *mm);
539extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
540 unsigned long end);
541extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
542extern void viking_flush_page_to_ram(unsigned long page);
543extern void viking_flush_page_for_dma(unsigned long page);
544extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
545extern void viking_flush_page(unsigned long page);
546extern void viking_mxcc_flush_page(unsigned long page);
547extern void viking_flush_tlb_all(void);
548extern void viking_flush_tlb_mm(struct mm_struct *mm);
549extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
550 unsigned long end);
551extern void viking_flush_tlb_page(struct vm_area_struct *vma,
552 unsigned long page);
553extern void sun4dsmp_flush_tlb_all(void);
554extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
555extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end);
557extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
558 unsigned long page);
559
560/* hypersparc.S */
561extern void hypersparc_flush_cache_all(void);
562extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
563extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
564extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
565extern void hypersparc_flush_page_to_ram(unsigned long page);
566extern void hypersparc_flush_page_for_dma(unsigned long page);
567extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
568extern void hypersparc_flush_tlb_all(void);
569extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
570extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
572extern void hypersparc_setup_blockops(void);
573
574/*
575 * NOTE: All of this startup code assumes the low 16mb (approx.) of
576 * kernel mappings are done with one single contiguous chunk of
577 * ram. On small ram machines (classics mainly) we only get
578 * around 8mb mapped for us.
579 */
580
581static void __init early_pgtable_allocfail(char *type)
582{
583 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
584 prom_halt();
585}
586
587static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
588 unsigned long end)
589{
590 pgd_t *pgdp;
591 pmd_t *pmdp;
592 pte_t *ptep;
593
594 while(start < end) {
595 pgdp = pgd_offset_k(start);
596 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
597 pmdp = (pmd_t *) __srmmu_get_nocache(
598 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
599 if (pmdp == NULL)
600 early_pgtable_allocfail("pmd");
601 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
602 pgd_set(__nocache_fix(pgdp), pmdp);
603 }
604 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
606 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
607 if (ptep == NULL)
608 early_pgtable_allocfail("pte");
609 memset(__nocache_fix(ptep), 0, PTE_SIZE);
610 pmd_set(__nocache_fix(pmdp), ptep);
611 }
612 if (start > (0xffffffffUL - PMD_SIZE))
613 break;
614 start = (start + PMD_SIZE) & PMD_MASK;
615 }
616}
617
618static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
619 unsigned long end)
620{
621 pgd_t *pgdp;
622 pmd_t *pmdp;
623 pte_t *ptep;
624
625 while(start < end) {
626 pgdp = pgd_offset_k(start);
627 if (pgd_none(*pgdp)) {
628 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
629 if (pmdp == NULL)
630 early_pgtable_allocfail("pmd");
631 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
632 pgd_set(pgdp, pmdp);
633 }
634 pmdp = pmd_offset(pgdp, start);
635 if(srmmu_pmd_none(*pmdp)) {
636 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
637 PTE_SIZE);
638 if (ptep == NULL)
639 early_pgtable_allocfail("pte");
640 memset(ptep, 0, PTE_SIZE);
641 pmd_set(pmdp, ptep);
642 }
643 if (start > (0xffffffffUL - PMD_SIZE))
644 break;
645 start = (start + PMD_SIZE) & PMD_MASK;
646 }
647}
648
649/* These flush types are not available on all chips... */
650static inline unsigned long srmmu_probe(unsigned long vaddr)
651{
652 unsigned long retval;
653
654 if (sparc_cpu_model != sparc_leon) {
655
656 vaddr &= PAGE_MASK;
657 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
658 "=r" (retval) :
659 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
660 } else {
661 retval = leon_swprobe(vaddr, 0);
662 }
663 return retval;
664}
665
666/*
667 * This is much cleaner than poking around physical address space
668 * looking at the prom's page table directly which is what most
669 * other OS's do. Yuck... this is much better.
670 */
671static void __init srmmu_inherit_prom_mappings(unsigned long start,
672 unsigned long end)
673{
674 pgd_t *pgdp;
675 pmd_t *pmdp;
676 pte_t *ptep;
677 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
678 unsigned long prompte;
679
680 while(start <= end) {
681 if (start == 0)
682 break; /* probably wrap around */
683 if(start == 0xfef00000)
684 start = KADB_DEBUGGER_BEGVM;
685 if(!(prompte = srmmu_probe(start))) {
686 start += PAGE_SIZE;
687 continue;
688 }
689
690 /* A red snapper, see what it really is. */
691 what = 0;
692
693 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
694 if(srmmu_probe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
695 what = 1;
696 }
697
698 if(!(start & ~(SRMMU_PGDIR_MASK))) {
699 if(srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
700 prompte)
701 what = 2;
702 }
703
704 pgdp = pgd_offset_k(start);
705 if(what == 2) {
706 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
707 start += SRMMU_PGDIR_SIZE;
708 continue;
709 }
710 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
711 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
712 if (pmdp == NULL)
713 early_pgtable_allocfail("pmd");
714 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
715 pgd_set(__nocache_fix(pgdp), pmdp);
716 }
717 pmdp = pmd_offset(__nocache_fix(pgdp), start);
718 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
719 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
720 PTE_SIZE);
721 if (ptep == NULL)
722 early_pgtable_allocfail("pte");
723 memset(__nocache_fix(ptep), 0, PTE_SIZE);
724 pmd_set(__nocache_fix(pmdp), ptep);
725 }
726 if(what == 1) {
727 /*
728 * We bend the rule where all 16 PTPs in a pmd_t point
729 * inside the same PTE page, and we leak a perfectly
730 * good hardware PTE piece. Alternatives seem worse.
731 */
732 unsigned int x; /* Index of HW PMD in soft cluster */
733 x = (start >> PMD_SHIFT) & 15;
734 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
735 start += SRMMU_REAL_PMD_SIZE;
736 continue;
737 }
738 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
739 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
740 start += PAGE_SIZE;
741 }
742}
743
744#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
745
746/* Create a third-level SRMMU 16MB page mapping. */
747static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
748{
749 pgd_t *pgdp = pgd_offset_k(vaddr);
750 unsigned long big_pte;
751
752 big_pte = KERNEL_PTE(phys_base >> 4);
753 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
754}
755
756/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
757static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
758{
759 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
760 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
761 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
762 /* Map "low" memory only */
763 const unsigned long min_vaddr = PAGE_OFFSET;
764 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
765
766 if (vstart < min_vaddr || vstart >= max_vaddr)
767 return vstart;
768
769 if (vend > max_vaddr || vend < min_vaddr)
770 vend = max_vaddr;
771
772 while(vstart < vend) {
773 do_large_mapping(vstart, pstart);
774 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
775 }
776 return vstart;
777}
778
779static inline void map_kernel(void)
780{
781 int i;
782
783 if (phys_base > 0) {
784 do_large_mapping(PAGE_OFFSET, phys_base);
785 }
786
787 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
788 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
789 }
790}
791
792/* Paging initialization on the Sparc Reference MMU. */
793extern void sparc_context_init(int);
794
795void (*poke_srmmu)(void) __cpuinitdata = NULL;
796
797extern unsigned long bootmem_init(unsigned long *pages_avail);
798
799void __init srmmu_paging_init(void)
800{
801 int i;
802 phandle cpunode;
803 char node_str[128];
804 pgd_t *pgd;
805 pmd_t *pmd;
806 pte_t *pte;
807 unsigned long pages_avail;
808
809 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
810
811 if (sparc_cpu_model == sun4d)
812 num_contexts = 65536; /* We know it is Viking */
813 else {
814 /* Find the number of contexts on the srmmu. */
815 cpunode = prom_getchild(prom_root_node);
816 num_contexts = 0;
817 while(cpunode != 0) {
818 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
819 if(!strcmp(node_str, "cpu")) {
820 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
821 break;
822 }
823 cpunode = prom_getsibling(cpunode);
824 }
825 }
826
827 if(!num_contexts) {
828 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
829 prom_halt();
830 }
831
832 pages_avail = 0;
833 last_valid_pfn = bootmem_init(&pages_avail);
834
835 srmmu_nocache_calcsize();
836 srmmu_nocache_init();
837 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
838 map_kernel();
839
840 /* ctx table has to be physically aligned to its size */
841 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
842 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
843
844 for(i = 0; i < num_contexts; i++)
845 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
846
847 flush_cache_all();
848 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
849#ifdef CONFIG_SMP
850 /* Stop from hanging here... */
851 local_ops->tlb_all();
852#else
853 flush_tlb_all();
854#endif
855 poke_srmmu();
856
857 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
858 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
859
860 srmmu_allocate_ptable_skeleton(
861 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
862 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
863
864 pgd = pgd_offset_k(PKMAP_BASE);
865 pmd = pmd_offset(pgd, PKMAP_BASE);
866 pte = pte_offset_kernel(pmd, PKMAP_BASE);
867 pkmap_page_table = pte;
868
869 flush_cache_all();
870 flush_tlb_all();
871
872 sparc_context_init(num_contexts);
873
874 kmap_init();
875
876 {
877 unsigned long zones_size[MAX_NR_ZONES];
878 unsigned long zholes_size[MAX_NR_ZONES];
879 unsigned long npages;
880 int znum;
881
882 for (znum = 0; znum < MAX_NR_ZONES; znum++)
883 zones_size[znum] = zholes_size[znum] = 0;
884
885 npages = max_low_pfn - pfn_base;
886
887 zones_size[ZONE_DMA] = npages;
888 zholes_size[ZONE_DMA] = npages - pages_avail;
889
890 npages = highend_pfn - max_low_pfn;
891 zones_size[ZONE_HIGHMEM] = npages;
892 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
893
894 free_area_init_node(0, zones_size, pfn_base, zholes_size);
895 }
896}
897
898void mmu_info(struct seq_file *m)
899{
900 seq_printf(m,
901 "MMU type\t: %s\n"
902 "contexts\t: %d\n"
903 "nocache total\t: %ld\n"
904 "nocache used\t: %d\n",
905 srmmu_name,
906 num_contexts,
907 srmmu_nocache_size,
908 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
909}
910
911void destroy_context(struct mm_struct *mm)
912{
913
914 if(mm->context != NO_CONTEXT) {
915 flush_cache_mm(mm);
916 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
917 flush_tlb_mm(mm);
918 spin_lock(&srmmu_context_spinlock);
919 free_context(mm->context);
920 spin_unlock(&srmmu_context_spinlock);
921 mm->context = NO_CONTEXT;
922 }
923}
924
925/* Init various srmmu chip types. */
926static void __init srmmu_is_bad(void)
927{
928 prom_printf("Could not determine SRMMU chip type.\n");
929 prom_halt();
930}
931
932static void __init init_vac_layout(void)
933{
934 phandle nd;
935 int cache_lines;
936 char node_str[128];
937#ifdef CONFIG_SMP
938 int cpu = 0;
939 unsigned long max_size = 0;
940 unsigned long min_line_size = 0x10000000;
941#endif
942
943 nd = prom_getchild(prom_root_node);
944 while((nd = prom_getsibling(nd)) != 0) {
945 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
946 if(!strcmp(node_str, "cpu")) {
947 vac_line_size = prom_getint(nd, "cache-line-size");
948 if (vac_line_size == -1) {
949 prom_printf("can't determine cache-line-size, "
950 "halting.\n");
951 prom_halt();
952 }
953 cache_lines = prom_getint(nd, "cache-nlines");
954 if (cache_lines == -1) {
955 prom_printf("can't determine cache-nlines, halting.\n");
956 prom_halt();
957 }
958
959 vac_cache_size = cache_lines * vac_line_size;
960#ifdef CONFIG_SMP
961 if(vac_cache_size > max_size)
962 max_size = vac_cache_size;
963 if(vac_line_size < min_line_size)
964 min_line_size = vac_line_size;
965 //FIXME: cpus not contiguous!!
966 cpu++;
967 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
968 break;
969#else
970 break;
971#endif
972 }
973 }
974 if(nd == 0) {
975 prom_printf("No CPU nodes found, halting.\n");
976 prom_halt();
977 }
978#ifdef CONFIG_SMP
979 vac_cache_size = max_size;
980 vac_line_size = min_line_size;
981#endif
982 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
983 (int)vac_cache_size, (int)vac_line_size);
984}
985
986static void __cpuinit poke_hypersparc(void)
987{
988 volatile unsigned long clear;
989 unsigned long mreg = srmmu_get_mmureg();
990
991 hyper_flush_unconditional_combined();
992
993 mreg &= ~(HYPERSPARC_CWENABLE);
994 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
995 mreg |= (HYPERSPARC_CMODE);
996
997 srmmu_set_mmureg(mreg);
998
999#if 0 /* XXX I think this is bad news... -DaveM */
1000 hyper_clear_all_tags();
1001#endif
1002
1003 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1004 hyper_flush_whole_icache();
1005 clear = srmmu_get_faddr();
1006 clear = srmmu_get_fstatus();
1007}
1008
1009static const struct sparc32_cachetlb_ops hypersparc_ops = {
1010 .cache_all = hypersparc_flush_cache_all,
1011 .cache_mm = hypersparc_flush_cache_mm,
1012 .cache_page = hypersparc_flush_cache_page,
1013 .cache_range = hypersparc_flush_cache_range,
1014 .tlb_all = hypersparc_flush_tlb_all,
1015 .tlb_mm = hypersparc_flush_tlb_mm,
1016 .tlb_page = hypersparc_flush_tlb_page,
1017 .tlb_range = hypersparc_flush_tlb_range,
1018 .page_to_ram = hypersparc_flush_page_to_ram,
1019 .sig_insns = hypersparc_flush_sig_insns,
1020 .page_for_dma = hypersparc_flush_page_for_dma,
1021};
1022
1023static void __init init_hypersparc(void)
1024{
1025 srmmu_name = "ROSS HyperSparc";
1026 srmmu_modtype = HyperSparc;
1027
1028 init_vac_layout();
1029
1030 is_hypersparc = 1;
1031 sparc32_cachetlb_ops = &hypersparc_ops;
1032
1033 poke_srmmu = poke_hypersparc;
1034
1035 hypersparc_setup_blockops();
1036}
1037
1038static void __cpuinit poke_swift(void)
1039{
1040 unsigned long mreg;
1041
1042 /* Clear any crap from the cache or else... */
1043 swift_flush_cache_all();
1044
1045 /* Enable I & D caches */
1046 mreg = srmmu_get_mmureg();
1047 mreg |= (SWIFT_IE | SWIFT_DE);
1048 /*
1049 * The Swift branch folding logic is completely broken. At
1050 * trap time, if things are just right, if can mistakenly
1051 * think that a trap is coming from kernel mode when in fact
1052 * it is coming from user mode (it mis-executes the branch in
1053 * the trap code). So you see things like crashme completely
1054 * hosing your machine which is completely unacceptable. Turn
1055 * this shit off... nice job Fujitsu.
1056 */
1057 mreg &= ~(SWIFT_BF);
1058 srmmu_set_mmureg(mreg);
1059}
1060
1061static const struct sparc32_cachetlb_ops swift_ops = {
1062 .cache_all = swift_flush_cache_all,
1063 .cache_mm = swift_flush_cache_mm,
1064 .cache_page = swift_flush_cache_page,
1065 .cache_range = swift_flush_cache_range,
1066 .tlb_all = swift_flush_tlb_all,
1067 .tlb_mm = swift_flush_tlb_mm,
1068 .tlb_page = swift_flush_tlb_page,
1069 .tlb_range = swift_flush_tlb_range,
1070 .page_to_ram = swift_flush_page_to_ram,
1071 .sig_insns = swift_flush_sig_insns,
1072 .page_for_dma = swift_flush_page_for_dma,
1073};
1074
1075#define SWIFT_MASKID_ADDR 0x10003018
1076static void __init init_swift(void)
1077{
1078 unsigned long swift_rev;
1079
1080 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1081 "srl %0, 0x18, %0\n\t" :
1082 "=r" (swift_rev) :
1083 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1084 srmmu_name = "Fujitsu Swift";
1085 switch(swift_rev) {
1086 case 0x11:
1087 case 0x20:
1088 case 0x23:
1089 case 0x30:
1090 srmmu_modtype = Swift_lots_o_bugs;
1091 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1092 /*
1093 * Gee george, I wonder why Sun is so hush hush about
1094 * this hardware bug... really braindamage stuff going
1095 * on here. However I think we can find a way to avoid
1096 * all of the workaround overhead under Linux. Basically,
1097 * any page fault can cause kernel pages to become user
1098 * accessible (the mmu gets confused and clears some of
1099 * the ACC bits in kernel ptes). Aha, sounds pretty
1100 * horrible eh? But wait, after extensive testing it appears
1101 * that if you use pgd_t level large kernel pte's (like the
1102 * 4MB pages on the Pentium) the bug does not get tripped
1103 * at all. This avoids almost all of the major overhead.
1104 * Welcome to a world where your vendor tells you to,
1105 * "apply this kernel patch" instead of "sorry for the
1106 * broken hardware, send it back and we'll give you
1107 * properly functioning parts"
1108 */
1109 break;
1110 case 0x25:
1111 case 0x31:
1112 srmmu_modtype = Swift_bad_c;
1113 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1114 /*
1115 * You see Sun allude to this hardware bug but never
1116 * admit things directly, they'll say things like,
1117 * "the Swift chip cache problems" or similar.
1118 */
1119 break;
1120 default:
1121 srmmu_modtype = Swift_ok;
1122 break;
1123 }
1124
1125 sparc32_cachetlb_ops = &swift_ops;
1126 flush_page_for_dma_global = 0;
1127
1128 /*
1129 * Are you now convinced that the Swift is one of the
1130 * biggest VLSI abortions of all time? Bravo Fujitsu!
1131 * Fujitsu, the !#?!%$'d up processor people. I bet if
1132 * you examined the microcode of the Swift you'd find
1133 * XXX's all over the place.
1134 */
1135 poke_srmmu = poke_swift;
1136}
1137
1138static void turbosparc_flush_cache_all(void)
1139{
1140 flush_user_windows();
1141 turbosparc_idflash_clear();
1142}
1143
1144static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1145{
1146 FLUSH_BEGIN(mm)
1147 flush_user_windows();
1148 turbosparc_idflash_clear();
1149 FLUSH_END
1150}
1151
1152static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1153{
1154 FLUSH_BEGIN(vma->vm_mm)
1155 flush_user_windows();
1156 turbosparc_idflash_clear();
1157 FLUSH_END
1158}
1159
1160static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1161{
1162 FLUSH_BEGIN(vma->vm_mm)
1163 flush_user_windows();
1164 if (vma->vm_flags & VM_EXEC)
1165 turbosparc_flush_icache();
1166 turbosparc_flush_dcache();
1167 FLUSH_END
1168}
1169
1170/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1171static void turbosparc_flush_page_to_ram(unsigned long page)
1172{
1173#ifdef TURBOSPARC_WRITEBACK
1174 volatile unsigned long clear;
1175
1176 if (srmmu_probe(page))
1177 turbosparc_flush_page_cache(page);
1178 clear = srmmu_get_fstatus();
1179#endif
1180}
1181
1182static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1183{
1184}
1185
1186static void turbosparc_flush_page_for_dma(unsigned long page)
1187{
1188 turbosparc_flush_dcache();
1189}
1190
1191static void turbosparc_flush_tlb_all(void)
1192{
1193 srmmu_flush_whole_tlb();
1194}
1195
1196static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1197{
1198 FLUSH_BEGIN(mm)
1199 srmmu_flush_whole_tlb();
1200 FLUSH_END
1201}
1202
1203static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1204{
1205 FLUSH_BEGIN(vma->vm_mm)
1206 srmmu_flush_whole_tlb();
1207 FLUSH_END
1208}
1209
1210static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1211{
1212 FLUSH_BEGIN(vma->vm_mm)
1213 srmmu_flush_whole_tlb();
1214 FLUSH_END
1215}
1216
1217
1218static void __cpuinit poke_turbosparc(void)
1219{
1220 unsigned long mreg = srmmu_get_mmureg();
1221 unsigned long ccreg;
1222
1223 /* Clear any crap from the cache or else... */
1224 turbosparc_flush_cache_all();
1225 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1226 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1227 srmmu_set_mmureg(mreg);
1228
1229 ccreg = turbosparc_get_ccreg();
1230
1231#ifdef TURBOSPARC_WRITEBACK
1232 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1233 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1234 /* Write-back D-cache, emulate VLSI
1235 * abortion number three, not number one */
1236#else
1237 /* For now let's play safe, optimize later */
1238 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1239 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1240 ccreg &= ~(TURBOSPARC_uS2);
1241 /* Emulate VLSI abortion number three, not number one */
1242#endif
1243
1244 switch (ccreg & 7) {
1245 case 0: /* No SE cache */
1246 case 7: /* Test mode */
1247 break;
1248 default:
1249 ccreg |= (TURBOSPARC_SCENABLE);
1250 }
1251 turbosparc_set_ccreg (ccreg);
1252
1253 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1254 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1255 srmmu_set_mmureg(mreg);
1256}
1257
1258static const struct sparc32_cachetlb_ops turbosparc_ops = {
1259 .cache_all = turbosparc_flush_cache_all,
1260 .cache_mm = turbosparc_flush_cache_mm,
1261 .cache_page = turbosparc_flush_cache_page,
1262 .cache_range = turbosparc_flush_cache_range,
1263 .tlb_all = turbosparc_flush_tlb_all,
1264 .tlb_mm = turbosparc_flush_tlb_mm,
1265 .tlb_page = turbosparc_flush_tlb_page,
1266 .tlb_range = turbosparc_flush_tlb_range,
1267 .page_to_ram = turbosparc_flush_page_to_ram,
1268 .sig_insns = turbosparc_flush_sig_insns,
1269 .page_for_dma = turbosparc_flush_page_for_dma,
1270};
1271
1272static void __init init_turbosparc(void)
1273{
1274 srmmu_name = "Fujitsu TurboSparc";
1275 srmmu_modtype = TurboSparc;
1276 sparc32_cachetlb_ops = &turbosparc_ops;
1277 poke_srmmu = poke_turbosparc;
1278}
1279
1280static void __cpuinit poke_tsunami(void)
1281{
1282 unsigned long mreg = srmmu_get_mmureg();
1283
1284 tsunami_flush_icache();
1285 tsunami_flush_dcache();
1286 mreg &= ~TSUNAMI_ITD;
1287 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1288 srmmu_set_mmureg(mreg);
1289}
1290
1291static const struct sparc32_cachetlb_ops tsunami_ops = {
1292 .cache_all = tsunami_flush_cache_all,
1293 .cache_mm = tsunami_flush_cache_mm,
1294 .cache_page = tsunami_flush_cache_page,
1295 .cache_range = tsunami_flush_cache_range,
1296 .tlb_all = tsunami_flush_tlb_all,
1297 .tlb_mm = tsunami_flush_tlb_mm,
1298 .tlb_page = tsunami_flush_tlb_page,
1299 .tlb_range = tsunami_flush_tlb_range,
1300 .page_to_ram = tsunami_flush_page_to_ram,
1301 .sig_insns = tsunami_flush_sig_insns,
1302 .page_for_dma = tsunami_flush_page_for_dma,
1303};
1304
1305static void __init init_tsunami(void)
1306{
1307 /*
1308 * Tsunami's pretty sane, Sun and TI actually got it
1309 * somewhat right this time. Fujitsu should have
1310 * taken some lessons from them.
1311 */
1312
1313 srmmu_name = "TI Tsunami";
1314 srmmu_modtype = Tsunami;
1315 sparc32_cachetlb_ops = &tsunami_ops;
1316 poke_srmmu = poke_tsunami;
1317
1318 tsunami_setup_blockops();
1319}
1320
1321static void __cpuinit poke_viking(void)
1322{
1323 unsigned long mreg = srmmu_get_mmureg();
1324 static int smp_catch;
1325
1326 if (viking_mxcc_present) {
1327 unsigned long mxcc_control = mxcc_get_creg();
1328
1329 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1330 mxcc_control &= ~(MXCC_CTL_RRC);
1331 mxcc_set_creg(mxcc_control);
1332
1333 /*
1334 * We don't need memory parity checks.
1335 * XXX This is a mess, have to dig out later. ecd.
1336 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1337 */
1338
1339 /* We do cache ptables on MXCC. */
1340 mreg |= VIKING_TCENABLE;
1341 } else {
1342 unsigned long bpreg;
1343
1344 mreg &= ~(VIKING_TCENABLE);
1345 if(smp_catch++) {
1346 /* Must disable mixed-cmd mode here for other cpu's. */
1347 bpreg = viking_get_bpreg();
1348 bpreg &= ~(VIKING_ACTION_MIX);
1349 viking_set_bpreg(bpreg);
1350
1351 /* Just in case PROM does something funny. */
1352 msi_set_sync();
1353 }
1354 }
1355
1356 mreg |= VIKING_SPENABLE;
1357 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1358 mreg |= VIKING_SBENABLE;
1359 mreg &= ~(VIKING_ACENABLE);
1360 srmmu_set_mmureg(mreg);
1361}
1362
1363static struct sparc32_cachetlb_ops viking_ops = {
1364 .cache_all = viking_flush_cache_all,
1365 .cache_mm = viking_flush_cache_mm,
1366 .cache_page = viking_flush_cache_page,
1367 .cache_range = viking_flush_cache_range,
1368 .tlb_all = viking_flush_tlb_all,
1369 .tlb_mm = viking_flush_tlb_mm,
1370 .tlb_page = viking_flush_tlb_page,
1371 .tlb_range = viking_flush_tlb_range,
1372 .page_to_ram = viking_flush_page_to_ram,
1373 .sig_insns = viking_flush_sig_insns,
1374 .page_for_dma = viking_flush_page_for_dma,
1375};
1376
1377#ifdef CONFIG_SMP
1378/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1379 * perform the local TLB flush and all the other cpus will see it.
1380 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1381 * that requires that we add some synchronization to these flushes.
1382 *
1383 * The bug is that the fifo which keeps track of all the pending TLB
1384 * broadcasts in the system is an entry or two too small, so if we
1385 * have too many going at once we'll overflow that fifo and lose a TLB
1386 * flush resulting in corruption.
1387 *
1388 * Our workaround is to take a global spinlock around the TLB flushes,
1389 * which guarentees we won't ever have too many pending. It's a big
1390 * hammer, but a semaphore like system to make sure we only have N TLB
1391 * flushes going at once will require SMP locking anyways so there's
1392 * no real value in trying any harder than this.
1393 */
1394static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1395 .cache_all = viking_flush_cache_all,
1396 .cache_mm = viking_flush_cache_mm,
1397 .cache_page = viking_flush_cache_page,
1398 .cache_range = viking_flush_cache_range,
1399 .tlb_all = sun4dsmp_flush_tlb_all,
1400 .tlb_mm = sun4dsmp_flush_tlb_mm,
1401 .tlb_page = sun4dsmp_flush_tlb_page,
1402 .tlb_range = sun4dsmp_flush_tlb_range,
1403 .page_to_ram = viking_flush_page_to_ram,
1404 .sig_insns = viking_flush_sig_insns,
1405 .page_for_dma = viking_flush_page_for_dma,
1406};
1407#endif
1408
1409static void __init init_viking(void)
1410{
1411 unsigned long mreg = srmmu_get_mmureg();
1412
1413 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1414 if(mreg & VIKING_MMODE) {
1415 srmmu_name = "TI Viking";
1416 viking_mxcc_present = 0;
1417 msi_set_sync();
1418
1419 /*
1420 * We need this to make sure old viking takes no hits
1421 * on it's cache for dma snoops to workaround the
1422 * "load from non-cacheable memory" interrupt bug.
1423 * This is only necessary because of the new way in
1424 * which we use the IOMMU.
1425 */
1426 viking_ops.page_for_dma = viking_flush_page;
1427#ifdef CONFIG_SMP
1428 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1429#endif
1430 flush_page_for_dma_global = 0;
1431 } else {
1432 srmmu_name = "TI Viking/MXCC";
1433 viking_mxcc_present = 1;
1434 srmmu_cache_pagetables = 1;
1435 }
1436
1437 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1438 &viking_ops;
1439#ifdef CONFIG_SMP
1440 if (sparc_cpu_model == sun4d)
1441 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1442 &viking_sun4d_smp_ops;
1443#endif
1444
1445 poke_srmmu = poke_viking;
1446}
1447
1448/* Probe for the srmmu chip version. */
1449static void __init get_srmmu_type(void)
1450{
1451 unsigned long mreg, psr;
1452 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1453
1454 srmmu_modtype = SRMMU_INVAL_MOD;
1455 hwbug_bitmask = 0;
1456
1457 mreg = srmmu_get_mmureg(); psr = get_psr();
1458 mod_typ = (mreg & 0xf0000000) >> 28;
1459 mod_rev = (mreg & 0x0f000000) >> 24;
1460 psr_typ = (psr >> 28) & 0xf;
1461 psr_vers = (psr >> 24) & 0xf;
1462
1463 /* First, check for sparc-leon. */
1464 if (sparc_cpu_model == sparc_leon) {
1465 init_leon();
1466 return;
1467 }
1468
1469 /* Second, check for HyperSparc or Cypress. */
1470 if(mod_typ == 1) {
1471 switch(mod_rev) {
1472 case 7:
1473 /* UP or MP Hypersparc */
1474 init_hypersparc();
1475 break;
1476 case 0:
1477 case 2:
1478 case 10:
1479 case 11:
1480 case 12:
1481 case 13:
1482 case 14:
1483 case 15:
1484 default:
1485 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1486 prom_halt();
1487 break;
1488 }
1489 return;
1490 }
1491
1492 /*
1493 * Now Fujitsu TurboSparc. It might happen that it is
1494 * in Swift emulation mode, so we will check later...
1495 */
1496 if (psr_typ == 0 && psr_vers == 5) {
1497 init_turbosparc();
1498 return;
1499 }
1500
1501 /* Next check for Fujitsu Swift. */
1502 if(psr_typ == 0 && psr_vers == 4) {
1503 phandle cpunode;
1504 char node_str[128];
1505
1506 /* Look if it is not a TurboSparc emulating Swift... */
1507 cpunode = prom_getchild(prom_root_node);
1508 while((cpunode = prom_getsibling(cpunode)) != 0) {
1509 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1510 if(!strcmp(node_str, "cpu")) {
1511 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1512 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1513 init_turbosparc();
1514 return;
1515 }
1516 break;
1517 }
1518 }
1519
1520 init_swift();
1521 return;
1522 }
1523
1524 /* Now the Viking family of srmmu. */
1525 if(psr_typ == 4 &&
1526 ((psr_vers == 0) ||
1527 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1528 init_viking();
1529 return;
1530 }
1531
1532 /* Finally the Tsunami. */
1533 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1534 init_tsunami();
1535 return;
1536 }
1537
1538 /* Oh well */
1539 srmmu_is_bad();
1540}
1541
1542#ifdef CONFIG_SMP
1543/* Local cross-calls. */
1544static void smp_flush_page_for_dma(unsigned long page)
1545{
1546 xc1((smpfunc_t) local_ops->page_for_dma, page);
1547 local_ops->page_for_dma(page);
1548}
1549
1550static void smp_flush_cache_all(void)
1551{
1552 xc0((smpfunc_t) local_ops->cache_all);
1553 local_ops->cache_all();
1554}
1555
1556static void smp_flush_tlb_all(void)
1557{
1558 xc0((smpfunc_t) local_ops->tlb_all);
1559 local_ops->tlb_all();
1560}
1561
1562static void smp_flush_cache_mm(struct mm_struct *mm)
1563{
1564 if (mm->context != NO_CONTEXT) {
1565 cpumask_t cpu_mask;
1566 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1567 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1568 if (!cpumask_empty(&cpu_mask))
1569 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1570 local_ops->cache_mm(mm);
1571 }
1572}
1573
1574static void smp_flush_tlb_mm(struct mm_struct *mm)
1575{
1576 if (mm->context != NO_CONTEXT) {
1577 cpumask_t cpu_mask;
1578 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1579 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1580 if (!cpumask_empty(&cpu_mask)) {
1581 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1582 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1583 cpumask_copy(mm_cpumask(mm),
1584 cpumask_of(smp_processor_id()));
1585 }
1586 local_ops->tlb_mm(mm);
1587 }
1588}
1589
1590static void smp_flush_cache_range(struct vm_area_struct *vma,
1591 unsigned long start,
1592 unsigned long end)
1593{
1594 struct mm_struct *mm = vma->vm_mm;
1595
1596 if (mm->context != NO_CONTEXT) {
1597 cpumask_t cpu_mask;
1598 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1599 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1600 if (!cpumask_empty(&cpu_mask))
1601 xc3((smpfunc_t) local_ops->cache_range,
1602 (unsigned long) vma, start, end);
1603 local_ops->cache_range(vma, start, end);
1604 }
1605}
1606
1607static void smp_flush_tlb_range(struct vm_area_struct *vma,
1608 unsigned long start,
1609 unsigned long end)
1610{
1611 struct mm_struct *mm = vma->vm_mm;
1612
1613 if (mm->context != NO_CONTEXT) {
1614 cpumask_t cpu_mask;
1615 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1616 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1617 if (!cpumask_empty(&cpu_mask))
1618 xc3((smpfunc_t) local_ops->tlb_range,
1619 (unsigned long) vma, start, end);
1620 local_ops->tlb_range(vma, start, end);
1621 }
1622}
1623
1624static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1625{
1626 struct mm_struct *mm = vma->vm_mm;
1627
1628 if (mm->context != NO_CONTEXT) {
1629 cpumask_t cpu_mask;
1630 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1631 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1632 if (!cpumask_empty(&cpu_mask))
1633 xc2((smpfunc_t) local_ops->cache_page,
1634 (unsigned long) vma, page);
1635 local_ops->cache_page(vma, page);
1636 }
1637}
1638
1639static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1640{
1641 struct mm_struct *mm = vma->vm_mm;
1642
1643 if (mm->context != NO_CONTEXT) {
1644 cpumask_t cpu_mask;
1645 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1646 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1647 if (!cpumask_empty(&cpu_mask))
1648 xc2((smpfunc_t) local_ops->tlb_page,
1649 (unsigned long) vma, page);
1650 local_ops->tlb_page(vma, page);
1651 }
1652}
1653
1654static void smp_flush_page_to_ram(unsigned long page)
1655{
1656 /* Current theory is that those who call this are the one's
1657 * who have just dirtied their cache with the pages contents
1658 * in kernel space, therefore we only run this on local cpu.
1659 *
1660 * XXX This experiment failed, research further... -DaveM
1661 */
1662#if 1
1663 xc1((smpfunc_t) local_ops->page_to_ram, page);
1664#endif
1665 local_ops->page_to_ram(page);
1666}
1667
1668static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1669{
1670 cpumask_t cpu_mask;
1671 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673 if (!cpumask_empty(&cpu_mask))
1674 xc2((smpfunc_t) local_ops->sig_insns,
1675 (unsigned long) mm, insn_addr);
1676 local_ops->sig_insns(mm, insn_addr);
1677}
1678
1679static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1680 .cache_all = smp_flush_cache_all,
1681 .cache_mm = smp_flush_cache_mm,
1682 .cache_page = smp_flush_cache_page,
1683 .cache_range = smp_flush_cache_range,
1684 .tlb_all = smp_flush_tlb_all,
1685 .tlb_mm = smp_flush_tlb_mm,
1686 .tlb_page = smp_flush_tlb_page,
1687 .tlb_range = smp_flush_tlb_range,
1688 .page_to_ram = smp_flush_page_to_ram,
1689 .sig_insns = smp_flush_sig_insns,
1690 .page_for_dma = smp_flush_page_for_dma,
1691};
1692#endif
1693
1694/* Load up routines and constants for sun4m and sun4d mmu */
1695void __init load_mmu(void)
1696{
1697 extern void ld_mmu_iommu(void);
1698 extern void ld_mmu_iounit(void);
1699
1700 /* Functions */
1701 get_srmmu_type();
1702
1703#ifdef CONFIG_SMP
1704 /* El switcheroo... */
1705 local_ops = sparc32_cachetlb_ops;
1706
1707 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1708 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1709 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1710 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1711 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1712 }
1713
1714 if (poke_srmmu == poke_viking) {
1715 /* Avoid unnecessary cross calls. */
1716 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1717 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1718 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1719 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1720
1721 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1722 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1723 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1724 }
1725
1726 /* It really is const after this point. */
1727 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1728 &smp_cachetlb_ops;
1729#endif
1730
1731 if (sparc_cpu_model == sun4d)
1732 ld_mmu_iounit();
1733 else
1734 ld_mmu_iommu();
1735#ifdef CONFIG_SMP
1736 if (sparc_cpu_model == sun4d)
1737 sun4d_init_smp();
1738 else if (sparc_cpu_model == sparc_leon)
1739 leon_init_smp();
1740 else
1741 sun4m_init_smp();
1742#endif
1743}