Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/ftrace.h>
 20#include <linux/mm.h>
 21#include <linux/err.h>
 22#include <linux/cpu.h>
 23#include <linux/smp.h>
 24#include <linux/seq_file.h>
 25#include <linux/irq.h>
 26#include <linux/percpu.h>
 27#include <linux/clockchips.h>
 28#include <linux/completion.h>
 29
 30#include <linux/atomic.h>
 31#include <asm/cacheflush.h>
 32#include <asm/cpu.h>
 33#include <asm/cputype.h>
 
 
 
 34#include <asm/mmu_context.h>
 35#include <asm/pgtable.h>
 36#include <asm/pgalloc.h>
 37#include <asm/processor.h>
 38#include <asm/sections.h>
 39#include <asm/tlbflush.h>
 40#include <asm/ptrace.h>
 41#include <asm/localtimer.h>
 
 42
 43/*
 44 * as from 2.5, kernels no longer have an init_tasks structure
 45 * so we need some other way of telling a new secondary core
 46 * where to place its SVC stack
 47 */
 48struct secondary_data secondary_data;
 49
 50enum ipi_msg_type {
 51	IPI_TIMER = 2,
 52	IPI_RESCHEDULE,
 53	IPI_CALL_FUNC,
 54	IPI_CALL_FUNC_SINGLE,
 55	IPI_CPU_STOP,
 56};
 57
 58int __cpuinit __cpu_up(unsigned int cpu)
 
 
 59{
 60	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
 61	struct task_struct *idle = ci->idle;
 62	pgd_t *pgd;
 63	int ret;
 64
 65	/*
 66	 * Spawn a new process manually, if not already done.
 67	 * Grab a pointer to its task struct so we can mess with it
 68	 */
 69	if (!idle) {
 70		idle = fork_idle(cpu);
 71		if (IS_ERR(idle)) {
 72			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
 73			return PTR_ERR(idle);
 74		}
 75		ci->idle = idle;
 76	} else {
 77		/*
 78		 * Since this idle thread is being re-used, call
 79		 * init_idle() to reinitialize the thread structure.
 80		 */
 81		init_idle(idle, cpu);
 82	}
 83
 84	/*
 85	 * Allocate initial page tables to allow the new CPU to
 86	 * enable the MMU safely.  This essentially means a set
 87	 * of our "standard" page tables, with the addition of
 88	 * a 1:1 mapping for the physical address of the kernel.
 89	 */
 90	pgd = pgd_alloc(&init_mm);
 91	if (!pgd)
 92		return -ENOMEM;
 93
 94	if (PHYS_OFFSET != PAGE_OFFSET) {
 95#ifndef CONFIG_HOTPLUG_CPU
 96		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
 97#endif
 98		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
 99		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100	}
101
102	/*
103	 * We need to tell the secondary core where to find
104	 * its stack and the page tables.
105	 */
106	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107	secondary_data.pgdir = virt_to_phys(pgd);
108	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
109	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
110	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
111
112	/*
113	 * Now bring the CPU into our world.
114	 */
115	ret = boot_secondary(cpu, idle);
116	if (ret == 0) {
117		unsigned long timeout;
118
119		/*
120		 * CPU was successfully started, wait for it
121		 * to come online or time out.
122		 */
123		timeout = jiffies + HZ;
124		while (time_before(jiffies, timeout)) {
125			if (cpu_online(cpu))
126				break;
127
128			udelay(10);
129			barrier();
130		}
131
132		if (!cpu_online(cpu)) {
133			pr_crit("CPU%u: failed to come online\n", cpu);
134			ret = -EIO;
135		}
136	} else {
137		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138	}
139
140	secondary_data.stack = NULL;
141	secondary_data.pgdir = 0;
142
143	if (PHYS_OFFSET != PAGE_OFFSET) {
144#ifndef CONFIG_HOTPLUG_CPU
145		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
146#endif
147		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
148		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
149	}
150
151	pgd_free(&init_mm, pgd);
152
153	return ret;
154}
155
156#ifdef CONFIG_HOTPLUG_CPU
157static void percpu_timer_stop(void);
158
159/*
160 * __cpu_disable runs on the processor to be shutdown.
161 */
162int __cpu_disable(void)
163{
164	unsigned int cpu = smp_processor_id();
165	struct task_struct *p;
166	int ret;
167
168	ret = platform_cpu_disable(cpu);
169	if (ret)
170		return ret;
171
172	/*
173	 * Take this CPU offline.  Once we clear this, we can't return,
174	 * and we must not schedule until we're ready to give up the cpu.
175	 */
176	set_cpu_online(cpu, false);
177
178	/*
179	 * OK - migrate IRQs away from this CPU
180	 */
181	migrate_irqs();
182
183	/*
184	 * Stop the local timer for this CPU.
185	 */
186	percpu_timer_stop();
187
188	/*
189	 * Flush user cache and TLB mappings, and then remove this CPU
190	 * from the vm mask set of all processes.
191	 */
192	flush_cache_all();
193	local_flush_tlb_all();
194
195	read_lock(&tasklist_lock);
196	for_each_process(p) {
197		if (p->mm)
198			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199	}
200	read_unlock(&tasklist_lock);
201
202	return 0;
203}
204
205static DECLARE_COMPLETION(cpu_died);
206
207/*
208 * called on the thread which is asking for a CPU to be shutdown -
209 * waits until shutdown has completed, or it is timed out.
210 */
211void __cpu_die(unsigned int cpu)
212{
213	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
214		pr_err("CPU%u: cpu didn't die\n", cpu);
215		return;
216	}
217	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218
219	if (!platform_cpu_kill(cpu))
220		printk("CPU%u: unable to kill\n", cpu);
221}
222
223/*
224 * Called from the idle thread for the CPU which has been shutdown.
225 *
226 * Note that we disable IRQs here, but do not re-enable them
227 * before returning to the caller. This is also the behaviour
228 * of the other hotplug-cpu capable cores, so presumably coming
229 * out of idle fixes this.
230 */
231void __ref cpu_die(void)
232{
233	unsigned int cpu = smp_processor_id();
234
235	idle_task_exit();
236
237	local_irq_disable();
238	mb();
239
240	/* Tell __cpu_die() that this CPU is now safe to dispose of */
241	complete(&cpu_died);
242
243	/*
244	 * actual CPU shutdown procedure is at least platform (if not
245	 * CPU) specific.
246	 */
247	platform_cpu_die(cpu);
248
249	/*
250	 * Do not return to the idle loop - jump back to the secondary
251	 * cpu initialisation.  There's some initialisation which needs
252	 * to be repeated to undo the effects of taking the CPU offline.
253	 */
254	__asm__("mov	sp, %0\n"
255	"	mov	fp, #0\n"
256	"	b	secondary_start_kernel"
257		:
258		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
259}
260#endif /* CONFIG_HOTPLUG_CPU */
261
262/*
263 * Called by both boot and secondaries to move global data into
264 * per-processor storage.
265 */
266static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267{
268	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269
270	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
 
271}
272
 
 
273/*
274 * This is the secondary CPU boot entry.  We're using this CPUs
275 * idle thread stack, but a set of temporary page tables.
276 */
277asmlinkage void __cpuinit secondary_start_kernel(void)
278{
279	struct mm_struct *mm = &init_mm;
280	unsigned int cpu = smp_processor_id();
281
282	printk("CPU%u: Booted secondary processor\n", cpu);
283
284	/*
285	 * All kernel threads share the same mm context; grab a
286	 * reference and switch to it.
287	 */
288	atomic_inc(&mm->mm_count);
289	current->active_mm = mm;
290	cpumask_set_cpu(cpu, mm_cpumask(mm));
291	cpu_switch_mm(mm->pgd, mm);
292	enter_lazy_tlb(mm, current);
293	local_flush_tlb_all();
294
 
 
295	cpu_init();
296	preempt_disable();
297	trace_hardirqs_off();
298
299	/*
300	 * Give the platform a chance to do its own initialisation.
301	 */
302	platform_secondary_init(cpu);
303
304	/*
305	 * Enable local interrupts.
306	 */
307	notify_cpu_starting(cpu);
308	local_irq_enable();
309	local_fiq_enable();
310
311	/*
312	 * Setup the percpu timer for this CPU.
313	 */
314	percpu_timer_setup();
315
316	calibrate_delay();
317
318	smp_store_cpu_info(cpu);
319
320	/*
321	 * OK, now it's safe to let the boot CPU continue.  Wait for
322	 * the CPU migration code to notice that the CPU is online
323	 * before we continue.
324	 */
325	set_cpu_online(cpu, true);
326	while (!cpu_active(cpu))
327		cpu_relax();
 
 
 
 
 
 
 
328
329	/*
330	 * OK, it's off to the idle thread for us
331	 */
332	cpu_idle();
333}
334
335void __init smp_cpus_done(unsigned int max_cpus)
336{
337	int cpu;
338	unsigned long bogosum = 0;
339
340	for_each_online_cpu(cpu)
341		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
342
343	printk(KERN_INFO "SMP: Total of %d processors activated "
344	       "(%lu.%02lu BogoMIPS).\n",
345	       num_online_cpus(),
346	       bogosum / (500000/HZ),
347	       (bogosum / (5000/HZ)) % 100);
348}
349
350void __init smp_prepare_boot_cpu(void)
351{
352	unsigned int cpu = smp_processor_id();
353
354	per_cpu(cpu_data, cpu).idle = current;
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359	unsigned int ncores = num_possible_cpus();
360
 
 
361	smp_store_cpu_info(smp_processor_id());
362
363	/*
364	 * are we trying to boot more cores than exist?
365	 */
366	if (max_cpus > ncores)
367		max_cpus = ncores;
368	if (ncores > 1 && max_cpus) {
369		/*
370		 * Enable the local timer or broadcast device for the
371		 * boot CPU, but only if we have more than one CPU.
372		 */
373		percpu_timer_setup();
374
375		/*
376		 * Initialise the present map, which describes the set of CPUs
377		 * actually populated at the present time. A platform should
378		 * re-initialize the map in platform_smp_prepare_cpus() if
379		 * present != possible (e.g. physical hotplug).
380		 */
381		init_cpu_present(&cpu_possible_map);
382
383		/*
384		 * Initialise the SCU if there are more than one CPU
385		 * and let them know where to start.
386		 */
387		platform_smp_prepare_cpus(max_cpus);
388	}
389}
390
391static void (*smp_cross_call)(const struct cpumask *, unsigned int);
392
393void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
394{
395	smp_cross_call = fn;
396}
397
398void arch_send_call_function_ipi_mask(const struct cpumask *mask)
399{
400	smp_cross_call(mask, IPI_CALL_FUNC);
401}
402
403void arch_send_call_function_single_ipi(int cpu)
404{
405	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
406}
407
408static const char *ipi_types[NR_IPI] = {
409#define S(x,s)	[x - IPI_TIMER] = s
410	S(IPI_TIMER, "Timer broadcast interrupts"),
411	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
412	S(IPI_CALL_FUNC, "Function call interrupts"),
413	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
414	S(IPI_CPU_STOP, "CPU stop interrupts"),
415};
416
417void show_ipi_list(struct seq_file *p, int prec)
418{
419	unsigned int cpu, i;
420
421	for (i = 0; i < NR_IPI; i++) {
422		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
423
424		for_each_present_cpu(cpu)
425			seq_printf(p, "%10u ",
426				   __get_irq_stat(cpu, ipi_irqs[i]));
427
428		seq_printf(p, " %s\n", ipi_types[i]);
429	}
430}
431
432u64 smp_irq_stat_cpu(unsigned int cpu)
433{
434	u64 sum = 0;
435	int i;
436
437	for (i = 0; i < NR_IPI; i++)
438		sum += __get_irq_stat(cpu, ipi_irqs[i]);
439
440#ifdef CONFIG_LOCAL_TIMERS
441	sum += __get_irq_stat(cpu, local_timer_irqs);
442#endif
443
444	return sum;
445}
446
447/*
448 * Timer (local or broadcast) support
449 */
450static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
451
452static void ipi_timer(void)
453{
454	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
455	irq_enter();
456	evt->event_handler(evt);
457	irq_exit();
458}
459
460#ifdef CONFIG_LOCAL_TIMERS
461asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
462{
463	struct pt_regs *old_regs = set_irq_regs(regs);
464	int cpu = smp_processor_id();
465
466	if (local_timer_ack()) {
467		__inc_irq_stat(cpu, local_timer_irqs);
468		ipi_timer();
469	}
470
471	set_irq_regs(old_regs);
472}
473
474void show_local_irqs(struct seq_file *p, int prec)
475{
476	unsigned int cpu;
477
478	seq_printf(p, "%*s: ", prec, "LOC");
479
480	for_each_present_cpu(cpu)
481		seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
482
483	seq_printf(p, " Local timer interrupts\n");
484}
485#endif
486
487#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488static void smp_timer_broadcast(const struct cpumask *mask)
489{
490	smp_cross_call(mask, IPI_TIMER);
491}
492#else
493#define smp_timer_broadcast	NULL
494#endif
495
496static void broadcast_timer_set_mode(enum clock_event_mode mode,
497	struct clock_event_device *evt)
498{
499}
500
501static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
502{
503	evt->name	= "dummy_timer";
504	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
505			  CLOCK_EVT_FEAT_PERIODIC |
506			  CLOCK_EVT_FEAT_DUMMY;
507	evt->rating	= 400;
508	evt->mult	= 1;
509	evt->set_mode	= broadcast_timer_set_mode;
510
511	clockevents_register_device(evt);
512}
513
514void __cpuinit percpu_timer_setup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515{
516	unsigned int cpu = smp_processor_id();
517	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
518
519	evt->cpumask = cpumask_of(cpu);
520	evt->broadcast = smp_timer_broadcast;
521
522	if (local_timer_setup(evt))
523		broadcast_timer_setup(evt);
524}
525
526#ifdef CONFIG_HOTPLUG_CPU
527/*
528 * The generic clock events code purposely does not stop the local timer
529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
530 * manually here.
531 */
532static void percpu_timer_stop(void)
533{
534	unsigned int cpu = smp_processor_id();
535	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
536
537	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
 
538}
539#endif
540
541static DEFINE_SPINLOCK(stop_lock);
542
543/*
544 * ipi_cpu_stop - handle IPI from smp_send_stop()
545 */
546static void ipi_cpu_stop(unsigned int cpu)
547{
548	if (system_state == SYSTEM_BOOTING ||
549	    system_state == SYSTEM_RUNNING) {
550		spin_lock(&stop_lock);
551		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
552		dump_stack();
553		spin_unlock(&stop_lock);
554	}
555
556	set_cpu_online(cpu, false);
557
558	local_fiq_disable();
559	local_irq_disable();
560
561	while (1)
562		cpu_relax();
563}
564
565/*
566 * Main handler for inter-processor interrupts
567 */
568asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569{
 
 
 
 
 
570	unsigned int cpu = smp_processor_id();
571	struct pt_regs *old_regs = set_irq_regs(regs);
572
573	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
574		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
575
576	switch (ipinr) {
577	case IPI_TIMER:
 
578		ipi_timer();
 
579		break;
580
581	case IPI_RESCHEDULE:
582		scheduler_ipi();
583		break;
584
585	case IPI_CALL_FUNC:
 
586		generic_smp_call_function_interrupt();
 
587		break;
588
589	case IPI_CALL_FUNC_SINGLE:
 
590		generic_smp_call_function_single_interrupt();
 
591		break;
592
593	case IPI_CPU_STOP:
 
594		ipi_cpu_stop(cpu);
 
595		break;
596
597	default:
598		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599		       cpu, ipinr);
600		break;
601	}
602	set_irq_regs(old_regs);
603}
604
605void smp_send_reschedule(int cpu)
606{
607	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
608}
609
 
 
 
 
 
 
 
 
 
 
 
610void smp_send_stop(void)
611{
612	unsigned long timeout;
 
613
614	if (num_online_cpus() > 1) {
615		cpumask_t mask = cpu_online_map;
616		cpu_clear(smp_processor_id(), mask);
617
618		smp_cross_call(&mask, IPI_CPU_STOP);
619	}
620
621	/* Wait up to one second for other CPUs to stop */
622	timeout = USEC_PER_SEC;
623	while (num_online_cpus() > 1 && timeout--)
624		udelay(1);
625
626	if (num_online_cpus() > 1)
627		pr_warning("SMP: failed to stop secondary CPUs\n");
 
 
628}
629
630/*
631 * not supported here
632 */
633int setup_profiling_timer(unsigned int multiplier)
634{
635	return -EINVAL;
636}
v3.5.6
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 22#include <linux/smp.h>
 23#include <linux/seq_file.h>
 24#include <linux/irq.h>
 25#include <linux/percpu.h>
 26#include <linux/clockchips.h>
 27#include <linux/completion.h>
 28
 29#include <linux/atomic.h>
 30#include <asm/cacheflush.h>
 31#include <asm/cpu.h>
 32#include <asm/cputype.h>
 33#include <asm/exception.h>
 34#include <asm/idmap.h>
 35#include <asm/topology.h>
 36#include <asm/mmu_context.h>
 37#include <asm/pgtable.h>
 38#include <asm/pgalloc.h>
 39#include <asm/processor.h>
 40#include <asm/sections.h>
 41#include <asm/tlbflush.h>
 42#include <asm/ptrace.h>
 43#include <asm/localtimer.h>
 44#include <asm/smp_plat.h>
 45
 46/*
 47 * as from 2.5, kernels no longer have an init_tasks structure
 48 * so we need some other way of telling a new secondary core
 49 * where to place its SVC stack
 50 */
 51struct secondary_data secondary_data;
 52
 53enum ipi_msg_type {
 54	IPI_TIMER = 2,
 55	IPI_RESCHEDULE,
 56	IPI_CALL_FUNC,
 57	IPI_CALL_FUNC_SINGLE,
 58	IPI_CPU_STOP,
 59};
 60
 61static DECLARE_COMPLETION(cpu_running);
 62
 63int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
 64{
 
 
 
 65	int ret;
 66
 67	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	 * We need to tell the secondary core where to find
 69	 * its stack and the page tables.
 70	 */
 71	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 72	secondary_data.pgdir = virt_to_phys(idmap_pgd);
 73	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
 74	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
 75	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 76
 77	/*
 78	 * Now bring the CPU into our world.
 79	 */
 80	ret = boot_secondary(cpu, idle);
 81	if (ret == 0) {
 
 
 82		/*
 83		 * CPU was successfully started, wait for it
 84		 * to come online or time out.
 85		 */
 86		wait_for_completion_timeout(&cpu_running,
 87						 msecs_to_jiffies(1000));
 
 
 
 
 
 
 88
 89		if (!cpu_online(cpu)) {
 90			pr_crit("CPU%u: failed to come online\n", cpu);
 91			ret = -EIO;
 92		}
 93	} else {
 94		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 95	}
 96
 97	secondary_data.stack = NULL;
 98	secondary_data.pgdir = 0;
 99
 
 
 
 
 
 
 
 
 
 
100	return ret;
101}
102
103#ifdef CONFIG_HOTPLUG_CPU
104static void percpu_timer_stop(void);
105
106/*
107 * __cpu_disable runs on the processor to be shutdown.
108 */
109int __cpu_disable(void)
110{
111	unsigned int cpu = smp_processor_id();
 
112	int ret;
113
114	ret = platform_cpu_disable(cpu);
115	if (ret)
116		return ret;
117
118	/*
119	 * Take this CPU offline.  Once we clear this, we can't return,
120	 * and we must not schedule until we're ready to give up the cpu.
121	 */
122	set_cpu_online(cpu, false);
123
124	/*
125	 * OK - migrate IRQs away from this CPU
126	 */
127	migrate_irqs();
128
129	/*
130	 * Stop the local timer for this CPU.
131	 */
132	percpu_timer_stop();
133
134	/*
135	 * Flush user cache and TLB mappings, and then remove this CPU
136	 * from the vm mask set of all processes.
137	 */
138	flush_cache_all();
139	local_flush_tlb_all();
140
141	clear_tasks_mm_cpumask(cpu);
 
 
 
 
 
142
143	return 0;
144}
145
146static DECLARE_COMPLETION(cpu_died);
147
148/*
149 * called on the thread which is asking for a CPU to be shutdown -
150 * waits until shutdown has completed, or it is timed out.
151 */
152void __cpu_die(unsigned int cpu)
153{
154	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
155		pr_err("CPU%u: cpu didn't die\n", cpu);
156		return;
157	}
158	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
159
160	if (!platform_cpu_kill(cpu))
161		printk("CPU%u: unable to kill\n", cpu);
162}
163
164/*
165 * Called from the idle thread for the CPU which has been shutdown.
166 *
167 * Note that we disable IRQs here, but do not re-enable them
168 * before returning to the caller. This is also the behaviour
169 * of the other hotplug-cpu capable cores, so presumably coming
170 * out of idle fixes this.
171 */
172void __ref cpu_die(void)
173{
174	unsigned int cpu = smp_processor_id();
175
176	idle_task_exit();
177
178	local_irq_disable();
179	mb();
180
181	/* Tell __cpu_die() that this CPU is now safe to dispose of */
182	complete(&cpu_died);
183
184	/*
185	 * actual CPU shutdown procedure is at least platform (if not
186	 * CPU) specific.
187	 */
188	platform_cpu_die(cpu);
189
190	/*
191	 * Do not return to the idle loop - jump back to the secondary
192	 * cpu initialisation.  There's some initialisation which needs
193	 * to be repeated to undo the effects of taking the CPU offline.
194	 */
195	__asm__("mov	sp, %0\n"
196	"	mov	fp, #0\n"
197	"	b	secondary_start_kernel"
198		:
199		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
200}
201#endif /* CONFIG_HOTPLUG_CPU */
202
203/*
204 * Called by both boot and secondaries to move global data into
205 * per-processor storage.
206 */
207static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
208{
209	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
210
211	cpu_info->loops_per_jiffy = loops_per_jiffy;
212
213	store_cpu_topology(cpuid);
214}
215
216static void percpu_timer_setup(void);
217
218/*
219 * This is the secondary CPU boot entry.  We're using this CPUs
220 * idle thread stack, but a set of temporary page tables.
221 */
222asmlinkage void __cpuinit secondary_start_kernel(void)
223{
224	struct mm_struct *mm = &init_mm;
225	unsigned int cpu = smp_processor_id();
226
 
 
227	/*
228	 * All kernel threads share the same mm context; grab a
229	 * reference and switch to it.
230	 */
231	atomic_inc(&mm->mm_count);
232	current->active_mm = mm;
233	cpumask_set_cpu(cpu, mm_cpumask(mm));
234	cpu_switch_mm(mm->pgd, mm);
235	enter_lazy_tlb(mm, current);
236	local_flush_tlb_all();
237
238	printk("CPU%u: Booted secondary processor\n", cpu);
239
240	cpu_init();
241	preempt_disable();
242	trace_hardirqs_off();
243
244	/*
245	 * Give the platform a chance to do its own initialisation.
246	 */
247	platform_secondary_init(cpu);
248
 
 
 
249	notify_cpu_starting(cpu);
 
 
 
 
 
 
 
250
251	calibrate_delay();
252
253	smp_store_cpu_info(cpu);
254
255	/*
256	 * OK, now it's safe to let the boot CPU continue.  Wait for
257	 * the CPU migration code to notice that the CPU is online
258	 * before we continue - which happens after __cpu_up returns.
259	 */
260	set_cpu_online(cpu, true);
261	complete(&cpu_running);
262
263	/*
264	 * Setup the percpu timer for this CPU.
265	 */
266	percpu_timer_setup();
267
268	local_irq_enable();
269	local_fiq_enable();
270
271	/*
272	 * OK, it's off to the idle thread for us
273	 */
274	cpu_idle();
275}
276
277void __init smp_cpus_done(unsigned int max_cpus)
278{
279	int cpu;
280	unsigned long bogosum = 0;
281
282	for_each_online_cpu(cpu)
283		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
284
285	printk(KERN_INFO "SMP: Total of %d processors activated "
286	       "(%lu.%02lu BogoMIPS).\n",
287	       num_online_cpus(),
288	       bogosum / (500000/HZ),
289	       (bogosum / (5000/HZ)) % 100);
290}
291
292void __init smp_prepare_boot_cpu(void)
293{
 
 
 
294}
295
296void __init smp_prepare_cpus(unsigned int max_cpus)
297{
298	unsigned int ncores = num_possible_cpus();
299
300	init_cpu_topology();
301
302	smp_store_cpu_info(smp_processor_id());
303
304	/*
305	 * are we trying to boot more cores than exist?
306	 */
307	if (max_cpus > ncores)
308		max_cpus = ncores;
309	if (ncores > 1 && max_cpus) {
310		/*
311		 * Enable the local timer or broadcast device for the
312		 * boot CPU, but only if we have more than one CPU.
313		 */
314		percpu_timer_setup();
315
316		/*
317		 * Initialise the present map, which describes the set of CPUs
318		 * actually populated at the present time. A platform should
319		 * re-initialize the map in platform_smp_prepare_cpus() if
320		 * present != possible (e.g. physical hotplug).
321		 */
322		init_cpu_present(cpu_possible_mask);
323
324		/*
325		 * Initialise the SCU if there are more than one CPU
326		 * and let them know where to start.
327		 */
328		platform_smp_prepare_cpus(max_cpus);
329	}
330}
331
332static void (*smp_cross_call)(const struct cpumask *, unsigned int);
333
334void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
335{
336	smp_cross_call = fn;
337}
338
339void arch_send_call_function_ipi_mask(const struct cpumask *mask)
340{
341	smp_cross_call(mask, IPI_CALL_FUNC);
342}
343
344void arch_send_call_function_single_ipi(int cpu)
345{
346	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
347}
348
349static const char *ipi_types[NR_IPI] = {
350#define S(x,s)	[x - IPI_TIMER] = s
351	S(IPI_TIMER, "Timer broadcast interrupts"),
352	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
353	S(IPI_CALL_FUNC, "Function call interrupts"),
354	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
355	S(IPI_CPU_STOP, "CPU stop interrupts"),
356};
357
358void show_ipi_list(struct seq_file *p, int prec)
359{
360	unsigned int cpu, i;
361
362	for (i = 0; i < NR_IPI; i++) {
363		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
364
365		for_each_present_cpu(cpu)
366			seq_printf(p, "%10u ",
367				   __get_irq_stat(cpu, ipi_irqs[i]));
368
369		seq_printf(p, " %s\n", ipi_types[i]);
370	}
371}
372
373u64 smp_irq_stat_cpu(unsigned int cpu)
374{
375	u64 sum = 0;
376	int i;
377
378	for (i = 0; i < NR_IPI; i++)
379		sum += __get_irq_stat(cpu, ipi_irqs[i]);
380
 
 
 
 
381	return sum;
382}
383
384/*
385 * Timer (local or broadcast) support
386 */
387static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
388
389static void ipi_timer(void)
390{
391	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
 
392	evt->event_handler(evt);
 
393}
394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
396static void smp_timer_broadcast(const struct cpumask *mask)
397{
398	smp_cross_call(mask, IPI_TIMER);
399}
400#else
401#define smp_timer_broadcast	NULL
402#endif
403
404static void broadcast_timer_set_mode(enum clock_event_mode mode,
405	struct clock_event_device *evt)
406{
407}
408
409static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
410{
411	evt->name	= "dummy_timer";
412	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
413			  CLOCK_EVT_FEAT_PERIODIC |
414			  CLOCK_EVT_FEAT_DUMMY;
415	evt->rating	= 400;
416	evt->mult	= 1;
417	evt->set_mode	= broadcast_timer_set_mode;
418
419	clockevents_register_device(evt);
420}
421
422static struct local_timer_ops *lt_ops;
423
424#ifdef CONFIG_LOCAL_TIMERS
425int local_timer_register(struct local_timer_ops *ops)
426{
427	if (!is_smp() || !setup_max_cpus)
428		return -ENXIO;
429
430	if (lt_ops)
431		return -EBUSY;
432
433	lt_ops = ops;
434	return 0;
435}
436#endif
437
438static void __cpuinit percpu_timer_setup(void)
439{
440	unsigned int cpu = smp_processor_id();
441	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
442
443	evt->cpumask = cpumask_of(cpu);
444	evt->broadcast = smp_timer_broadcast;
445
446	if (!lt_ops || lt_ops->setup(evt))
447		broadcast_timer_setup(evt);
448}
449
450#ifdef CONFIG_HOTPLUG_CPU
451/*
452 * The generic clock events code purposely does not stop the local timer
453 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
454 * manually here.
455 */
456static void percpu_timer_stop(void)
457{
458	unsigned int cpu = smp_processor_id();
459	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
460
461	if (lt_ops)
462		lt_ops->stop(evt);
463}
464#endif
465
466static DEFINE_RAW_SPINLOCK(stop_lock);
467
468/*
469 * ipi_cpu_stop - handle IPI from smp_send_stop()
470 */
471static void ipi_cpu_stop(unsigned int cpu)
472{
473	if (system_state == SYSTEM_BOOTING ||
474	    system_state == SYSTEM_RUNNING) {
475		raw_spin_lock(&stop_lock);
476		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
477		dump_stack();
478		raw_spin_unlock(&stop_lock);
479	}
480
481	set_cpu_online(cpu, false);
482
483	local_fiq_disable();
484	local_irq_disable();
485
486	while (1)
487		cpu_relax();
488}
489
490/*
491 * Main handler for inter-processor interrupts
492 */
493asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
494{
495	handle_IPI(ipinr, regs);
496}
497
498void handle_IPI(int ipinr, struct pt_regs *regs)
499{
500	unsigned int cpu = smp_processor_id();
501	struct pt_regs *old_regs = set_irq_regs(regs);
502
503	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
504		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
505
506	switch (ipinr) {
507	case IPI_TIMER:
508		irq_enter();
509		ipi_timer();
510		irq_exit();
511		break;
512
513	case IPI_RESCHEDULE:
514		scheduler_ipi();
515		break;
516
517	case IPI_CALL_FUNC:
518		irq_enter();
519		generic_smp_call_function_interrupt();
520		irq_exit();
521		break;
522
523	case IPI_CALL_FUNC_SINGLE:
524		irq_enter();
525		generic_smp_call_function_single_interrupt();
526		irq_exit();
527		break;
528
529	case IPI_CPU_STOP:
530		irq_enter();
531		ipi_cpu_stop(cpu);
532		irq_exit();
533		break;
534
535	default:
536		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
537		       cpu, ipinr);
538		break;
539	}
540	set_irq_regs(old_regs);
541}
542
543void smp_send_reschedule(int cpu)
544{
545	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
546}
547
548#ifdef CONFIG_HOTPLUG_CPU
549static void smp_kill_cpus(cpumask_t *mask)
550{
551	unsigned int cpu;
552	for_each_cpu(cpu, mask)
553		platform_cpu_kill(cpu);
554}
555#else
556static void smp_kill_cpus(cpumask_t *mask) { }
557#endif
558
559void smp_send_stop(void)
560{
561	unsigned long timeout;
562	struct cpumask mask;
563
564	cpumask_copy(&mask, cpu_online_mask);
565	cpumask_clear_cpu(smp_processor_id(), &mask);
566	if (!cpumask_empty(&mask))
 
567		smp_cross_call(&mask, IPI_CPU_STOP);
 
568
569	/* Wait up to one second for other CPUs to stop */
570	timeout = USEC_PER_SEC;
571	while (num_online_cpus() > 1 && timeout--)
572		udelay(1);
573
574	if (num_online_cpus() > 1)
575		pr_warning("SMP: failed to stop secondary CPUs\n");
576
577	smp_kill_cpus(&mask);
578}
579
580/*
581 * not supported here
582 */
583int setup_profiling_timer(unsigned int multiplier)
584{
585	return -EINVAL;
586}