Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
  8#include <linux/highmem.h>
  9#include <linux/module.h>
 10#include <linux/spinlock.h>
 11#include <linux/vmalloc.h>
 12#include "internal.h"
 13#include <asm/dma.h>
 14#include <asm/pgalloc.h>
 15#include <asm/pgtable.h>
 16
 17/*
 18 * Permanent SPARSEMEM data:
 19 *
 20 * 1) mem_section	- memory sections, mem_map's for valid memory
 21 */
 22#ifdef CONFIG_SPARSEMEM_EXTREME
 23struct mem_section *mem_section[NR_SECTION_ROOTS]
 24	____cacheline_internodealigned_in_smp;
 25#else
 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 27	____cacheline_internodealigned_in_smp;
 28#endif
 29EXPORT_SYMBOL(mem_section);
 30
 31#ifdef NODE_NOT_IN_PAGE_FLAGS
 32/*
 33 * If we did not store the node number in the page then we have to
 34 * do a lookup in the section_to_node_table in order to find which
 35 * node the page belongs to.
 36 */
 37#if MAX_NUMNODES <= 256
 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 39#else
 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#endif
 42
 43int page_to_nid(const struct page *page)
 44{
 45	return section_to_node_table[page_to_section(page)];
 46}
 47EXPORT_SYMBOL(page_to_nid);
 48
 49static void set_section_nid(unsigned long section_nr, int nid)
 50{
 51	section_to_node_table[section_nr] = nid;
 52}
 53#else /* !NODE_NOT_IN_PAGE_FLAGS */
 54static inline void set_section_nid(unsigned long section_nr, int nid)
 55{
 56}
 57#endif
 58
 59#ifdef CONFIG_SPARSEMEM_EXTREME
 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 61{
 62	struct mem_section *section = NULL;
 63	unsigned long array_size = SECTIONS_PER_ROOT *
 64				   sizeof(struct mem_section);
 65
 66	if (slab_is_available()) {
 67		if (node_state(nid, N_HIGH_MEMORY))
 68			section = kmalloc_node(array_size, GFP_KERNEL, nid);
 69		else
 70			section = kmalloc(array_size, GFP_KERNEL);
 71	} else
 72		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
 73
 74	if (section)
 75		memset(section, 0, array_size);
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	static DEFINE_SPINLOCK(index_init_lock);
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85	int ret = 0;
 86
 87	if (mem_section[root])
 88		return -EEXIST;
 89
 90	section = sparse_index_alloc(nid);
 91	if (!section)
 92		return -ENOMEM;
 93	/*
 94	 * This lock keeps two different sections from
 95	 * reallocating for the same index
 96	 */
 97	spin_lock(&index_init_lock);
 98
 99	if (mem_section[root]) {
100		ret = -EEXIST;
101		goto out;
102	}
103
104	mem_section[root] = section;
105out:
106	spin_unlock(&index_init_lock);
107	return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112	return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123	unsigned long root_nr;
124	struct mem_section* root;
125
126	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128		if (!root)
129			continue;
130
131		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132		     break;
133	}
134
135	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183	unsigned long pfn;
184
185	start &= PAGE_SECTION_MASK;
186	mminit_validate_memmodel_limits(&start, &end);
187	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188		unsigned long section = pfn_to_section_nr(pfn);
189		struct mem_section *ms;
190
191		sparse_index_init(section, nid);
192		set_section_nid(section, nid);
193
194		ms = __nr_to_section(section);
195		if (!ms->section_mem_map)
196			ms->section_mem_map = sparse_encode_early_nid(nid) |
197							SECTION_MARKED_PRESENT;
198	}
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206						     unsigned long end_pfn)
207{
208	unsigned long pfn;
209	unsigned long nr_pages = 0;
210
211	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213		if (nid != early_pfn_to_nid(pfn))
214			continue;
215
216		if (pfn_present(pfn))
217			nr_pages += PAGES_PER_SECTION;
218	}
219
220	return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231}
232
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238	/* mask off the extra low bits of information */
239	coded_mem_map &= SECTION_MAP_MASK;
240	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244		unsigned long pnum, struct page *mem_map,
245		unsigned long *pageblock_bitmap)
246{
247	if (!present_section(ms))
248		return -EINVAL;
249
250	ms->section_mem_map &= ~SECTION_MAP_MASK;
251	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252							SECTION_HAS_MEM_MAP;
253 	ms->pageblock_flags = pageblock_bitmap;
254
255	return 1;
256}
257
258unsigned long usemap_size(void)
259{
260	unsigned long size_bytes;
261	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263	return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269	return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276					 unsigned long count)
277{
278	unsigned long section_nr;
279
 
280	/*
281	 * A page may contain usemaps for other sections preventing the
282	 * page being freed and making a section unremovable while
283	 * other sections referencing the usemap retmain active. Similarly,
284	 * a pgdat can prevent a section being removed. If section A
285	 * contains a pgdat and section B contains the usemap, both
286	 * sections become inter-dependent. This allocates usemaps
287	 * from the same section as the pgdat where possible to avoid
288	 * this problem.
289	 */
290	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
291	return alloc_bootmem_section(usemap_size() * count, section_nr);
 
 
 
 
 
 
 
 
 
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		printk(KERN_INFO
317		       "node %d must be removed before remove section %ld\n",
318		       nid, usemap_snr);
319		return;
320	}
321	/*
322	 * There is a circular dependency.
323	 * Some platforms allow un-removable section because they will just
324	 * gather other removable sections for dynamic partitioning.
325	 * Just notify un-removable section's number here.
326	 */
327	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328	       pgdat_snr, nid);
329	printk(KERN_CONT
330	       " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335					 unsigned long count)
336{
337	return NULL;
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
346				 unsigned long pnum_begin,
347				 unsigned long pnum_end,
348				 unsigned long usemap_count, int nodeid)
349{
350	void *usemap;
351	unsigned long pnum;
352	int size = usemap_size();
353
354	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355								 usemap_count);
356	if (usemap) {
357		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
358			if (!present_section_nr(pnum))
359				continue;
360			usemap_map[pnum] = usemap;
361			usemap += size;
362		}
363		return;
364	}
365
366	usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
367	if (usemap) {
368		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
369			if (!present_section_nr(pnum))
370				continue;
371			usemap_map[pnum] = usemap;
372			usemap += size;
373			check_usemap_section_nr(nodeid, usemap_map[pnum]);
374		}
375		return;
376	}
377
378	printk(KERN_WARNING "%s: allocation failed\n", __func__);
379}
380
381#ifndef CONFIG_SPARSEMEM_VMEMMAP
382struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
383{
384	struct page *map;
385	unsigned long size;
386
387	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
388	if (map)
389		return map;
390
391	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
392	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
393					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
394	return map;
395}
396void __init sparse_mem_maps_populate_node(struct page **map_map,
397					  unsigned long pnum_begin,
398					  unsigned long pnum_end,
399					  unsigned long map_count, int nodeid)
400{
401	void *map;
402	unsigned long pnum;
403	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
404
405	map = alloc_remap(nodeid, size * map_count);
406	if (map) {
407		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408			if (!present_section_nr(pnum))
409				continue;
410			map_map[pnum] = map;
411			map += size;
412		}
413		return;
414	}
415
416	size = PAGE_ALIGN(size);
417	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
418					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
419	if (map) {
420		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
421			if (!present_section_nr(pnum))
422				continue;
423			map_map[pnum] = map;
424			map += size;
425		}
426		return;
427	}
428
429	/* fallback */
430	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431		struct mem_section *ms;
432
433		if (!present_section_nr(pnum))
434			continue;
435		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
436		if (map_map[pnum])
437			continue;
438		ms = __nr_to_section(pnum);
439		printk(KERN_ERR "%s: sparsemem memory map backing failed "
440			"some memory will not be available.\n", __func__);
441		ms->section_mem_map = 0;
442	}
443}
444#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
445
446#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
447static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
448				 unsigned long pnum_begin,
449				 unsigned long pnum_end,
450				 unsigned long map_count, int nodeid)
451{
452	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
453					 map_count, nodeid);
454}
455#else
456static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
457{
458	struct page *map;
459	struct mem_section *ms = __nr_to_section(pnum);
460	int nid = sparse_early_nid(ms);
461
462	map = sparse_mem_map_populate(pnum, nid);
463	if (map)
464		return map;
465
466	printk(KERN_ERR "%s: sparsemem memory map backing failed "
467			"some memory will not be available.\n", __func__);
468	ms->section_mem_map = 0;
469	return NULL;
470}
471#endif
472
473void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
474{
475}
476
477/*
478 * Allocate the accumulated non-linear sections, allocate a mem_map
479 * for each and record the physical to section mapping.
480 */
481void __init sparse_init(void)
482{
483	unsigned long pnum;
484	struct page *map;
485	unsigned long *usemap;
486	unsigned long **usemap_map;
487	int size;
488	int nodeid_begin = 0;
489	unsigned long pnum_begin = 0;
490	unsigned long usemap_count;
491#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492	unsigned long map_count;
493	int size2;
494	struct page **map_map;
495#endif
 
 
 
496
497	/*
498	 * map is using big page (aka 2M in x86 64 bit)
499	 * usemap is less one page (aka 24 bytes)
500	 * so alloc 2M (with 2M align) and 24 bytes in turn will
501	 * make next 2M slip to one more 2M later.
502	 * then in big system, the memory will have a lot of holes...
503	 * here try to allocate 2M pages continuously.
504	 *
505	 * powerpc need to call sparse_init_one_section right after each
506	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
507	 */
508	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
509	usemap_map = alloc_bootmem(size);
510	if (!usemap_map)
511		panic("can not allocate usemap_map\n");
512
513	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
514		struct mem_section *ms;
515
516		if (!present_section_nr(pnum))
517			continue;
518		ms = __nr_to_section(pnum);
519		nodeid_begin = sparse_early_nid(ms);
520		pnum_begin = pnum;
521		break;
522	}
523	usemap_count = 1;
524	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
525		struct mem_section *ms;
526		int nodeid;
527
528		if (!present_section_nr(pnum))
529			continue;
530		ms = __nr_to_section(pnum);
531		nodeid = sparse_early_nid(ms);
532		if (nodeid == nodeid_begin) {
533			usemap_count++;
534			continue;
535		}
536		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
537		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
538						 usemap_count, nodeid_begin);
539		/* new start, update count etc*/
540		nodeid_begin = nodeid;
541		pnum_begin = pnum;
542		usemap_count = 1;
543	}
544	/* ok, last chunk */
545	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
546					 usemap_count, nodeid_begin);
547
548#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
549	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
550	map_map = alloc_bootmem(size2);
551	if (!map_map)
552		panic("can not allocate map_map\n");
553
554	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
555		struct mem_section *ms;
556
557		if (!present_section_nr(pnum))
558			continue;
559		ms = __nr_to_section(pnum);
560		nodeid_begin = sparse_early_nid(ms);
561		pnum_begin = pnum;
562		break;
563	}
564	map_count = 1;
565	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
566		struct mem_section *ms;
567		int nodeid;
568
569		if (!present_section_nr(pnum))
570			continue;
571		ms = __nr_to_section(pnum);
572		nodeid = sparse_early_nid(ms);
573		if (nodeid == nodeid_begin) {
574			map_count++;
575			continue;
576		}
577		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
578		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
579						 map_count, nodeid_begin);
580		/* new start, update count etc*/
581		nodeid_begin = nodeid;
582		pnum_begin = pnum;
583		map_count = 1;
584	}
585	/* ok, last chunk */
586	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
587					 map_count, nodeid_begin);
588#endif
589
590	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
591		if (!present_section_nr(pnum))
592			continue;
593
594		usemap = usemap_map[pnum];
595		if (!usemap)
596			continue;
597
598#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
599		map = map_map[pnum];
600#else
601		map = sparse_early_mem_map_alloc(pnum);
602#endif
603		if (!map)
604			continue;
605
606		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
607								usemap);
608	}
609
610	vmemmap_populate_print_last();
611
612#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
613	free_bootmem(__pa(map_map), size2);
614#endif
615	free_bootmem(__pa(usemap_map), size);
616}
617
618#ifdef CONFIG_MEMORY_HOTPLUG
619#ifdef CONFIG_SPARSEMEM_VMEMMAP
620static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
621						 unsigned long nr_pages)
622{
623	/* This will make the necessary allocations eventually. */
624	return sparse_mem_map_populate(pnum, nid);
625}
626static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
627{
628	return; /* XXX: Not implemented yet */
629}
630static void free_map_bootmem(struct page *page, unsigned long nr_pages)
631{
632}
633#else
634static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
635{
636	struct page *page, *ret;
637	unsigned long memmap_size = sizeof(struct page) * nr_pages;
638
639	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
640	if (page)
641		goto got_map_page;
642
643	ret = vmalloc(memmap_size);
644	if (ret)
645		goto got_map_ptr;
646
647	return NULL;
648got_map_page:
649	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
650got_map_ptr:
651	memset(ret, 0, memmap_size);
652
653	return ret;
654}
655
656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
657						  unsigned long nr_pages)
658{
659	return __kmalloc_section_memmap(nr_pages);
660}
661
662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
663{
664	if (is_vmalloc_addr(memmap))
665		vfree(memmap);
666	else
667		free_pages((unsigned long)memmap,
668			   get_order(sizeof(struct page) * nr_pages));
669}
670
671static void free_map_bootmem(struct page *page, unsigned long nr_pages)
672{
673	unsigned long maps_section_nr, removing_section_nr, i;
674	unsigned long magic;
675
676	for (i = 0; i < nr_pages; i++, page++) {
677		magic = (unsigned long) page->lru.next;
678
679		BUG_ON(magic == NODE_INFO);
680
681		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
682		removing_section_nr = page->private;
683
684		/*
685		 * When this function is called, the removing section is
686		 * logical offlined state. This means all pages are isolated
687		 * from page allocator. If removing section's memmap is placed
688		 * on the same section, it must not be freed.
689		 * If it is freed, page allocator may allocate it which will
690		 * be removed physically soon.
691		 */
692		if (maps_section_nr != removing_section_nr)
693			put_page_bootmem(page);
694	}
695}
696#endif /* CONFIG_SPARSEMEM_VMEMMAP */
697
698static void free_section_usemap(struct page *memmap, unsigned long *usemap)
699{
700	struct page *usemap_page;
701	unsigned long nr_pages;
702
703	if (!usemap)
704		return;
705
706	usemap_page = virt_to_page(usemap);
707	/*
708	 * Check to see if allocation came from hot-plug-add
709	 */
710	if (PageSlab(usemap_page)) {
711		kfree(usemap);
712		if (memmap)
713			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
714		return;
715	}
716
717	/*
718	 * The usemap came from bootmem. This is packed with other usemaps
719	 * on the section which has pgdat at boot time. Just keep it as is now.
720	 */
721
722	if (memmap) {
723		struct page *memmap_page;
724		memmap_page = virt_to_page(memmap);
725
726		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727			>> PAGE_SHIFT;
728
729		free_map_bootmem(memmap_page, nr_pages);
730	}
731}
732
733/*
734 * returns the number of sections whose mem_maps were properly
735 * set.  If this is <=0, then that means that the passed-in
736 * map was not consumed and must be freed.
737 */
738int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
739			   int nr_pages)
740{
741	unsigned long section_nr = pfn_to_section_nr(start_pfn);
742	struct pglist_data *pgdat = zone->zone_pgdat;
743	struct mem_section *ms;
744	struct page *memmap;
745	unsigned long *usemap;
746	unsigned long flags;
747	int ret;
748
749	/*
750	 * no locking for this, because it does its own
751	 * plus, it does a kmalloc
752	 */
753	ret = sparse_index_init(section_nr, pgdat->node_id);
754	if (ret < 0 && ret != -EEXIST)
755		return ret;
756	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
757	if (!memmap)
758		return -ENOMEM;
759	usemap = __kmalloc_section_usemap();
760	if (!usemap) {
761		__kfree_section_memmap(memmap, nr_pages);
762		return -ENOMEM;
763	}
764
765	pgdat_resize_lock(pgdat, &flags);
766
767	ms = __pfn_to_section(start_pfn);
768	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
769		ret = -EEXIST;
770		goto out;
771	}
772
773	ms->section_mem_map |= SECTION_MARKED_PRESENT;
774
775	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
776
777out:
778	pgdat_resize_unlock(pgdat, &flags);
779	if (ret <= 0) {
780		kfree(usemap);
781		__kfree_section_memmap(memmap, nr_pages);
782	}
783	return ret;
784}
785
786void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
787{
788	struct page *memmap = NULL;
789	unsigned long *usemap = NULL;
790
791	if (ms->section_mem_map) {
792		usemap = ms->pageblock_flags;
793		memmap = sparse_decode_mem_map(ms->section_mem_map,
794						__section_nr(ms));
795		ms->section_mem_map = 0;
796		ms->pageblock_flags = NULL;
797	}
798
799	free_section_usemap(memmap, usemap);
800}
801#endif
v3.5.6
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
  8#include <linux/highmem.h>
  9#include <linux/export.h>
 10#include <linux/spinlock.h>
 11#include <linux/vmalloc.h>
 12#include "internal.h"
 13#include <asm/dma.h>
 14#include <asm/pgalloc.h>
 15#include <asm/pgtable.h>
 16
 17/*
 18 * Permanent SPARSEMEM data:
 19 *
 20 * 1) mem_section	- memory sections, mem_map's for valid memory
 21 */
 22#ifdef CONFIG_SPARSEMEM_EXTREME
 23struct mem_section *mem_section[NR_SECTION_ROOTS]
 24	____cacheline_internodealigned_in_smp;
 25#else
 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 27	____cacheline_internodealigned_in_smp;
 28#endif
 29EXPORT_SYMBOL(mem_section);
 30
 31#ifdef NODE_NOT_IN_PAGE_FLAGS
 32/*
 33 * If we did not store the node number in the page then we have to
 34 * do a lookup in the section_to_node_table in order to find which
 35 * node the page belongs to.
 36 */
 37#if MAX_NUMNODES <= 256
 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 39#else
 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#endif
 42
 43int page_to_nid(const struct page *page)
 44{
 45	return section_to_node_table[page_to_section(page)];
 46}
 47EXPORT_SYMBOL(page_to_nid);
 48
 49static void set_section_nid(unsigned long section_nr, int nid)
 50{
 51	section_to_node_table[section_nr] = nid;
 52}
 53#else /* !NODE_NOT_IN_PAGE_FLAGS */
 54static inline void set_section_nid(unsigned long section_nr, int nid)
 55{
 56}
 57#endif
 58
 59#ifdef CONFIG_SPARSEMEM_EXTREME
 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 61{
 62	struct mem_section *section = NULL;
 63	unsigned long array_size = SECTIONS_PER_ROOT *
 64				   sizeof(struct mem_section);
 65
 66	if (slab_is_available()) {
 67		if (node_state(nid, N_HIGH_MEMORY))
 68			section = kmalloc_node(array_size, GFP_KERNEL, nid);
 69		else
 70			section = kmalloc(array_size, GFP_KERNEL);
 71	} else
 72		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
 73
 74	if (section)
 75		memset(section, 0, array_size);
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	static DEFINE_SPINLOCK(index_init_lock);
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85	int ret = 0;
 86
 87	if (mem_section[root])
 88		return -EEXIST;
 89
 90	section = sparse_index_alloc(nid);
 91	if (!section)
 92		return -ENOMEM;
 93	/*
 94	 * This lock keeps two different sections from
 95	 * reallocating for the same index
 96	 */
 97	spin_lock(&index_init_lock);
 98
 99	if (mem_section[root]) {
100		ret = -EEXIST;
101		goto out;
102	}
103
104	mem_section[root] = section;
105out:
106	spin_unlock(&index_init_lock);
107	return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112	return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123	unsigned long root_nr;
124	struct mem_section* root;
125
126	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128		if (!root)
129			continue;
130
131		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132		     break;
133	}
134
135	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183	unsigned long pfn;
184
185	start &= PAGE_SECTION_MASK;
186	mminit_validate_memmodel_limits(&start, &end);
187	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188		unsigned long section = pfn_to_section_nr(pfn);
189		struct mem_section *ms;
190
191		sparse_index_init(section, nid);
192		set_section_nid(section, nid);
193
194		ms = __nr_to_section(section);
195		if (!ms->section_mem_map)
196			ms->section_mem_map = sparse_encode_early_nid(nid) |
197							SECTION_MARKED_PRESENT;
198	}
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206						     unsigned long end_pfn)
207{
208	unsigned long pfn;
209	unsigned long nr_pages = 0;
210
211	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213		if (nid != early_pfn_to_nid(pfn))
214			continue;
215
216		if (pfn_present(pfn))
217			nr_pages += PAGES_PER_SECTION;
218	}
219
220	return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231}
232
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238	/* mask off the extra low bits of information */
239	coded_mem_map &= SECTION_MAP_MASK;
240	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244		unsigned long pnum, struct page *mem_map,
245		unsigned long *pageblock_bitmap)
246{
247	if (!present_section(ms))
248		return -EINVAL;
249
250	ms->section_mem_map &= ~SECTION_MAP_MASK;
251	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252							SECTION_HAS_MEM_MAP;
253 	ms->pageblock_flags = pageblock_bitmap;
254
255	return 1;
256}
257
258unsigned long usemap_size(void)
259{
260	unsigned long size_bytes;
261	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263	return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269	return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276					 unsigned long size)
277{
278	unsigned long goal, limit;
279	unsigned long *p;
280	int nid;
281	/*
282	 * A page may contain usemaps for other sections preventing the
283	 * page being freed and making a section unremovable while
284	 * other sections referencing the usemap retmain active. Similarly,
285	 * a pgdat can prevent a section being removed. If section A
286	 * contains a pgdat and section B contains the usemap, both
287	 * sections become inter-dependent. This allocates usemaps
288	 * from the same section as the pgdat where possible to avoid
289	 * this problem.
290	 */
291	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
292	limit = goal + (1UL << PA_SECTION_SHIFT);
293	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
294again:
295	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
296					  SMP_CACHE_BYTES, goal, limit);
297	if (!p && limit) {
298		limit = 0;
299		goto again;
300	}
301	return p;
302}
303
304static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
305{
306	unsigned long usemap_snr, pgdat_snr;
307	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
308	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
309	struct pglist_data *pgdat = NODE_DATA(nid);
310	int usemap_nid;
311
312	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
313	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
314	if (usemap_snr == pgdat_snr)
315		return;
316
317	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
318		/* skip redundant message */
319		return;
320
321	old_usemap_snr = usemap_snr;
322	old_pgdat_snr = pgdat_snr;
323
324	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
325	if (usemap_nid != nid) {
326		printk(KERN_INFO
327		       "node %d must be removed before remove section %ld\n",
328		       nid, usemap_snr);
329		return;
330	}
331	/*
332	 * There is a circular dependency.
333	 * Some platforms allow un-removable section because they will just
334	 * gather other removable sections for dynamic partitioning.
335	 * Just notify un-removable section's number here.
336	 */
337	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
338	       pgdat_snr, nid);
339	printk(KERN_CONT
340	       " have a circular dependency on usemap and pgdat allocations\n");
341}
342#else
343static unsigned long * __init
344sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
345					 unsigned long size)
346{
347	return alloc_bootmem_node_nopanic(pgdat, size);
348}
349
350static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
351{
352}
353#endif /* CONFIG_MEMORY_HOTREMOVE */
354
355static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
356				 unsigned long pnum_begin,
357				 unsigned long pnum_end,
358				 unsigned long usemap_count, int nodeid)
359{
360	void *usemap;
361	unsigned long pnum;
362	int size = usemap_size();
363
364	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
365							  size * usemap_count);
366	if (!usemap) {
367		printk(KERN_WARNING "%s: allocation failed\n", __func__);
 
 
 
 
 
368		return;
369	}
370
371	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
372		if (!present_section_nr(pnum))
373			continue;
374		usemap_map[pnum] = usemap;
375		usemap += size;
376		check_usemap_section_nr(nodeid, usemap_map[pnum]);
 
 
 
 
377	}
 
 
378}
379
380#ifndef CONFIG_SPARSEMEM_VMEMMAP
381struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
382{
383	struct page *map;
384	unsigned long size;
385
386	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
387	if (map)
388		return map;
389
390	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
391	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
392					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
393	return map;
394}
395void __init sparse_mem_maps_populate_node(struct page **map_map,
396					  unsigned long pnum_begin,
397					  unsigned long pnum_end,
398					  unsigned long map_count, int nodeid)
399{
400	void *map;
401	unsigned long pnum;
402	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
403
404	map = alloc_remap(nodeid, size * map_count);
405	if (map) {
406		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
407			if (!present_section_nr(pnum))
408				continue;
409			map_map[pnum] = map;
410			map += size;
411		}
412		return;
413	}
414
415	size = PAGE_ALIGN(size);
416	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
417					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
418	if (map) {
419		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420			if (!present_section_nr(pnum))
421				continue;
422			map_map[pnum] = map;
423			map += size;
424		}
425		return;
426	}
427
428	/* fallback */
429	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
430		struct mem_section *ms;
431
432		if (!present_section_nr(pnum))
433			continue;
434		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
435		if (map_map[pnum])
436			continue;
437		ms = __nr_to_section(pnum);
438		printk(KERN_ERR "%s: sparsemem memory map backing failed "
439			"some memory will not be available.\n", __func__);
440		ms->section_mem_map = 0;
441	}
442}
443#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
446static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
447				 unsigned long pnum_begin,
448				 unsigned long pnum_end,
449				 unsigned long map_count, int nodeid)
450{
451	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
452					 map_count, nodeid);
453}
454#else
455static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
456{
457	struct page *map;
458	struct mem_section *ms = __nr_to_section(pnum);
459	int nid = sparse_early_nid(ms);
460
461	map = sparse_mem_map_populate(pnum, nid);
462	if (map)
463		return map;
464
465	printk(KERN_ERR "%s: sparsemem memory map backing failed "
466			"some memory will not be available.\n", __func__);
467	ms->section_mem_map = 0;
468	return NULL;
469}
470#endif
471
472void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
473{
474}
475
476/*
477 * Allocate the accumulated non-linear sections, allocate a mem_map
478 * for each and record the physical to section mapping.
479 */
480void __init sparse_init(void)
481{
482	unsigned long pnum;
483	struct page *map;
484	unsigned long *usemap;
485	unsigned long **usemap_map;
486	int size;
487	int nodeid_begin = 0;
488	unsigned long pnum_begin = 0;
489	unsigned long usemap_count;
490#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
491	unsigned long map_count;
492	int size2;
493	struct page **map_map;
494#endif
495
496	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
497	set_pageblock_order();
498
499	/*
500	 * map is using big page (aka 2M in x86 64 bit)
501	 * usemap is less one page (aka 24 bytes)
502	 * so alloc 2M (with 2M align) and 24 bytes in turn will
503	 * make next 2M slip to one more 2M later.
504	 * then in big system, the memory will have a lot of holes...
505	 * here try to allocate 2M pages continuously.
506	 *
507	 * powerpc need to call sparse_init_one_section right after each
508	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
509	 */
510	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
511	usemap_map = alloc_bootmem(size);
512	if (!usemap_map)
513		panic("can not allocate usemap_map\n");
514
515	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
516		struct mem_section *ms;
517
518		if (!present_section_nr(pnum))
519			continue;
520		ms = __nr_to_section(pnum);
521		nodeid_begin = sparse_early_nid(ms);
522		pnum_begin = pnum;
523		break;
524	}
525	usemap_count = 1;
526	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
527		struct mem_section *ms;
528		int nodeid;
529
530		if (!present_section_nr(pnum))
531			continue;
532		ms = __nr_to_section(pnum);
533		nodeid = sparse_early_nid(ms);
534		if (nodeid == nodeid_begin) {
535			usemap_count++;
536			continue;
537		}
538		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
539		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
540						 usemap_count, nodeid_begin);
541		/* new start, update count etc*/
542		nodeid_begin = nodeid;
543		pnum_begin = pnum;
544		usemap_count = 1;
545	}
546	/* ok, last chunk */
547	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
548					 usemap_count, nodeid_begin);
549
550#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
551	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
552	map_map = alloc_bootmem(size2);
553	if (!map_map)
554		panic("can not allocate map_map\n");
555
556	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
557		struct mem_section *ms;
558
559		if (!present_section_nr(pnum))
560			continue;
561		ms = __nr_to_section(pnum);
562		nodeid_begin = sparse_early_nid(ms);
563		pnum_begin = pnum;
564		break;
565	}
566	map_count = 1;
567	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
568		struct mem_section *ms;
569		int nodeid;
570
571		if (!present_section_nr(pnum))
572			continue;
573		ms = __nr_to_section(pnum);
574		nodeid = sparse_early_nid(ms);
575		if (nodeid == nodeid_begin) {
576			map_count++;
577			continue;
578		}
579		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
580		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
581						 map_count, nodeid_begin);
582		/* new start, update count etc*/
583		nodeid_begin = nodeid;
584		pnum_begin = pnum;
585		map_count = 1;
586	}
587	/* ok, last chunk */
588	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
589					 map_count, nodeid_begin);
590#endif
591
592	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
593		if (!present_section_nr(pnum))
594			continue;
595
596		usemap = usemap_map[pnum];
597		if (!usemap)
598			continue;
599
600#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
601		map = map_map[pnum];
602#else
603		map = sparse_early_mem_map_alloc(pnum);
604#endif
605		if (!map)
606			continue;
607
608		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
609								usemap);
610	}
611
612	vmemmap_populate_print_last();
613
614#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
615	free_bootmem(__pa(map_map), size2);
616#endif
617	free_bootmem(__pa(usemap_map), size);
618}
619
620#ifdef CONFIG_MEMORY_HOTPLUG
621#ifdef CONFIG_SPARSEMEM_VMEMMAP
622static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
623						 unsigned long nr_pages)
624{
625	/* This will make the necessary allocations eventually. */
626	return sparse_mem_map_populate(pnum, nid);
627}
628static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
629{
630	return; /* XXX: Not implemented yet */
631}
632static void free_map_bootmem(struct page *page, unsigned long nr_pages)
633{
634}
635#else
636static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
637{
638	struct page *page, *ret;
639	unsigned long memmap_size = sizeof(struct page) * nr_pages;
640
641	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
642	if (page)
643		goto got_map_page;
644
645	ret = vmalloc(memmap_size);
646	if (ret)
647		goto got_map_ptr;
648
649	return NULL;
650got_map_page:
651	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
652got_map_ptr:
653	memset(ret, 0, memmap_size);
654
655	return ret;
656}
657
658static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
659						  unsigned long nr_pages)
660{
661	return __kmalloc_section_memmap(nr_pages);
662}
663
664static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
665{
666	if (is_vmalloc_addr(memmap))
667		vfree(memmap);
668	else
669		free_pages((unsigned long)memmap,
670			   get_order(sizeof(struct page) * nr_pages));
671}
672
673static void free_map_bootmem(struct page *page, unsigned long nr_pages)
674{
675	unsigned long maps_section_nr, removing_section_nr, i;
676	unsigned long magic;
677
678	for (i = 0; i < nr_pages; i++, page++) {
679		magic = (unsigned long) page->lru.next;
680
681		BUG_ON(magic == NODE_INFO);
682
683		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
684		removing_section_nr = page->private;
685
686		/*
687		 * When this function is called, the removing section is
688		 * logical offlined state. This means all pages are isolated
689		 * from page allocator. If removing section's memmap is placed
690		 * on the same section, it must not be freed.
691		 * If it is freed, page allocator may allocate it which will
692		 * be removed physically soon.
693		 */
694		if (maps_section_nr != removing_section_nr)
695			put_page_bootmem(page);
696	}
697}
698#endif /* CONFIG_SPARSEMEM_VMEMMAP */
699
700static void free_section_usemap(struct page *memmap, unsigned long *usemap)
701{
702	struct page *usemap_page;
703	unsigned long nr_pages;
704
705	if (!usemap)
706		return;
707
708	usemap_page = virt_to_page(usemap);
709	/*
710	 * Check to see if allocation came from hot-plug-add
711	 */
712	if (PageSlab(usemap_page)) {
713		kfree(usemap);
714		if (memmap)
715			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
716		return;
717	}
718
719	/*
720	 * The usemap came from bootmem. This is packed with other usemaps
721	 * on the section which has pgdat at boot time. Just keep it as is now.
722	 */
723
724	if (memmap) {
725		struct page *memmap_page;
726		memmap_page = virt_to_page(memmap);
727
728		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
729			>> PAGE_SHIFT;
730
731		free_map_bootmem(memmap_page, nr_pages);
732	}
733}
734
735/*
736 * returns the number of sections whose mem_maps were properly
737 * set.  If this is <=0, then that means that the passed-in
738 * map was not consumed and must be freed.
739 */
740int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
741			   int nr_pages)
742{
743	unsigned long section_nr = pfn_to_section_nr(start_pfn);
744	struct pglist_data *pgdat = zone->zone_pgdat;
745	struct mem_section *ms;
746	struct page *memmap;
747	unsigned long *usemap;
748	unsigned long flags;
749	int ret;
750
751	/*
752	 * no locking for this, because it does its own
753	 * plus, it does a kmalloc
754	 */
755	ret = sparse_index_init(section_nr, pgdat->node_id);
756	if (ret < 0 && ret != -EEXIST)
757		return ret;
758	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
759	if (!memmap)
760		return -ENOMEM;
761	usemap = __kmalloc_section_usemap();
762	if (!usemap) {
763		__kfree_section_memmap(memmap, nr_pages);
764		return -ENOMEM;
765	}
766
767	pgdat_resize_lock(pgdat, &flags);
768
769	ms = __pfn_to_section(start_pfn);
770	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
771		ret = -EEXIST;
772		goto out;
773	}
774
775	ms->section_mem_map |= SECTION_MARKED_PRESENT;
776
777	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
778
779out:
780	pgdat_resize_unlock(pgdat, &flags);
781	if (ret <= 0) {
782		kfree(usemap);
783		__kfree_section_memmap(memmap, nr_pages);
784	}
785	return ret;
786}
787
788void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
789{
790	struct page *memmap = NULL;
791	unsigned long *usemap = NULL;
792
793	if (ms->section_mem_map) {
794		usemap = ms->pageblock_flags;
795		memmap = sparse_decode_mem_map(ms->section_mem_map,
796						__section_nr(ms));
797		ms->section_mem_map = 0;
798		ms->pageblock_flags = NULL;
799	}
800
801	free_section_usemap(memmap, usemap);
802}
803#endif