Loading...
1/*
2 * sparse memory mappings.
3 */
4#include <linux/mm.h>
5#include <linux/slab.h>
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
8#include <linux/highmem.h>
9#include <linux/module.h>
10#include <linux/spinlock.h>
11#include <linux/vmalloc.h>
12#include "internal.h"
13#include <asm/dma.h>
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
22#ifdef CONFIG_SPARSEMEM_EXTREME
23struct mem_section *mem_section[NR_SECTION_ROOTS]
24 ____cacheline_internodealigned_in_smp;
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 ____cacheline_internodealigned_in_smp;
28#endif
29EXPORT_SYMBOL(mem_section);
30
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
43int page_to_nid(const struct page *page)
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
57#endif
58
59#ifdef CONFIG_SPARSEMEM_EXTREME
60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
68 section = kmalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = kmalloc(array_size, GFP_KERNEL);
71 } else
72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73
74 if (section)
75 memset(section, 0, array_size);
76
77 return section;
78}
79
80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81{
82 static DEFINE_SPINLOCK(index_init_lock);
83 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 struct mem_section *section;
85 int ret = 0;
86
87 if (mem_section[root])
88 return -EEXIST;
89
90 section = sparse_index_alloc(nid);
91 if (!section)
92 return -ENOMEM;
93 /*
94 * This lock keeps two different sections from
95 * reallocating for the same index
96 */
97 spin_lock(&index_init_lock);
98
99 if (mem_section[root]) {
100 ret = -EEXIST;
101 goto out;
102 }
103
104 mem_section[root] = section;
105out:
106 spin_unlock(&index_init_lock);
107 return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112 return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123 unsigned long root_nr;
124 struct mem_section* root;
125
126 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128 if (!root)
129 continue;
130
131 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132 break;
133 }
134
135 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146 return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151 return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 unsigned long *end_pfn)
157{
158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160 /*
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
163 */
164 if (*start_pfn > max_sparsemem_pfn) {
165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn, *end_pfn, max_sparsemem_pfn);
168 WARN_ON_ONCE(1);
169 *start_pfn = max_sparsemem_pfn;
170 *end_pfn = max_sparsemem_pfn;
171 } else if (*end_pfn > max_sparsemem_pfn) {
172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn, *end_pfn, max_sparsemem_pfn);
175 WARN_ON_ONCE(1);
176 *end_pfn = max_sparsemem_pfn;
177 }
178}
179
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183 unsigned long pfn;
184
185 start &= PAGE_SECTION_MASK;
186 mminit_validate_memmodel_limits(&start, &end);
187 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188 unsigned long section = pfn_to_section_nr(pfn);
189 struct mem_section *ms;
190
191 sparse_index_init(section, nid);
192 set_section_nid(section, nid);
193
194 ms = __nr_to_section(section);
195 if (!ms->section_mem_map)
196 ms->section_mem_map = sparse_encode_early_nid(nid) |
197 SECTION_MARKED_PRESENT;
198 }
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206 unsigned long end_pfn)
207{
208 unsigned long pfn;
209 unsigned long nr_pages = 0;
210
211 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213 if (nid != early_pfn_to_nid(pfn))
214 continue;
215
216 if (pfn_present(pfn))
217 nr_pages += PAGES_PER_SECTION;
218 }
219
220 return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231}
232
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238 /* mask off the extra low bits of information */
239 coded_mem_map &= SECTION_MAP_MASK;
240 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244 unsigned long pnum, struct page *mem_map,
245 unsigned long *pageblock_bitmap)
246{
247 if (!present_section(ms))
248 return -EINVAL;
249
250 ms->section_mem_map &= ~SECTION_MAP_MASK;
251 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252 SECTION_HAS_MEM_MAP;
253 ms->pageblock_flags = pageblock_bitmap;
254
255 return 1;
256}
257
258unsigned long usemap_size(void)
259{
260 unsigned long size_bytes;
261 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262 size_bytes = roundup(size_bytes, sizeof(unsigned long));
263 return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269 return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276 unsigned long count)
277{
278 unsigned long section_nr;
279
280 /*
281 * A page may contain usemaps for other sections preventing the
282 * page being freed and making a section unremovable while
283 * other sections referencing the usemap retmain active. Similarly,
284 * a pgdat can prevent a section being removed. If section A
285 * contains a pgdat and section B contains the usemap, both
286 * sections become inter-dependent. This allocates usemaps
287 * from the same section as the pgdat where possible to avoid
288 * this problem.
289 */
290 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
291 return alloc_bootmem_section(usemap_size() * count, section_nr);
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296 unsigned long usemap_snr, pgdat_snr;
297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 struct pglist_data *pgdat = NODE_DATA(nid);
300 int usemap_nid;
301
302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 if (usemap_snr == pgdat_snr)
305 return;
306
307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 /* skip redundant message */
309 return;
310
311 old_usemap_snr = usemap_snr;
312 old_pgdat_snr = pgdat_snr;
313
314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 if (usemap_nid != nid) {
316 printk(KERN_INFO
317 "node %d must be removed before remove section %ld\n",
318 nid, usemap_snr);
319 return;
320 }
321 /*
322 * There is a circular dependency.
323 * Some platforms allow un-removable section because they will just
324 * gather other removable sections for dynamic partitioning.
325 * Just notify un-removable section's number here.
326 */
327 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328 pgdat_snr, nid);
329 printk(KERN_CONT
330 " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335 unsigned long count)
336{
337 return NULL;
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
346 unsigned long pnum_begin,
347 unsigned long pnum_end,
348 unsigned long usemap_count, int nodeid)
349{
350 void *usemap;
351 unsigned long pnum;
352 int size = usemap_size();
353
354 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355 usemap_count);
356 if (usemap) {
357 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
358 if (!present_section_nr(pnum))
359 continue;
360 usemap_map[pnum] = usemap;
361 usemap += size;
362 }
363 return;
364 }
365
366 usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
367 if (usemap) {
368 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
369 if (!present_section_nr(pnum))
370 continue;
371 usemap_map[pnum] = usemap;
372 usemap += size;
373 check_usemap_section_nr(nodeid, usemap_map[pnum]);
374 }
375 return;
376 }
377
378 printk(KERN_WARNING "%s: allocation failed\n", __func__);
379}
380
381#ifndef CONFIG_SPARSEMEM_VMEMMAP
382struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
383{
384 struct page *map;
385 unsigned long size;
386
387 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
388 if (map)
389 return map;
390
391 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
392 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
393 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
394 return map;
395}
396void __init sparse_mem_maps_populate_node(struct page **map_map,
397 unsigned long pnum_begin,
398 unsigned long pnum_end,
399 unsigned long map_count, int nodeid)
400{
401 void *map;
402 unsigned long pnum;
403 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
404
405 map = alloc_remap(nodeid, size * map_count);
406 if (map) {
407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408 if (!present_section_nr(pnum))
409 continue;
410 map_map[pnum] = map;
411 map += size;
412 }
413 return;
414 }
415
416 size = PAGE_ALIGN(size);
417 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
418 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
419 if (map) {
420 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
421 if (!present_section_nr(pnum))
422 continue;
423 map_map[pnum] = map;
424 map += size;
425 }
426 return;
427 }
428
429 /* fallback */
430 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431 struct mem_section *ms;
432
433 if (!present_section_nr(pnum))
434 continue;
435 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
436 if (map_map[pnum])
437 continue;
438 ms = __nr_to_section(pnum);
439 printk(KERN_ERR "%s: sparsemem memory map backing failed "
440 "some memory will not be available.\n", __func__);
441 ms->section_mem_map = 0;
442 }
443}
444#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
445
446#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
447static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
448 unsigned long pnum_begin,
449 unsigned long pnum_end,
450 unsigned long map_count, int nodeid)
451{
452 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
453 map_count, nodeid);
454}
455#else
456static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
457{
458 struct page *map;
459 struct mem_section *ms = __nr_to_section(pnum);
460 int nid = sparse_early_nid(ms);
461
462 map = sparse_mem_map_populate(pnum, nid);
463 if (map)
464 return map;
465
466 printk(KERN_ERR "%s: sparsemem memory map backing failed "
467 "some memory will not be available.\n", __func__);
468 ms->section_mem_map = 0;
469 return NULL;
470}
471#endif
472
473void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
474{
475}
476
477/*
478 * Allocate the accumulated non-linear sections, allocate a mem_map
479 * for each and record the physical to section mapping.
480 */
481void __init sparse_init(void)
482{
483 unsigned long pnum;
484 struct page *map;
485 unsigned long *usemap;
486 unsigned long **usemap_map;
487 int size;
488 int nodeid_begin = 0;
489 unsigned long pnum_begin = 0;
490 unsigned long usemap_count;
491#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492 unsigned long map_count;
493 int size2;
494 struct page **map_map;
495#endif
496
497 /*
498 * map is using big page (aka 2M in x86 64 bit)
499 * usemap is less one page (aka 24 bytes)
500 * so alloc 2M (with 2M align) and 24 bytes in turn will
501 * make next 2M slip to one more 2M later.
502 * then in big system, the memory will have a lot of holes...
503 * here try to allocate 2M pages continuously.
504 *
505 * powerpc need to call sparse_init_one_section right after each
506 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
507 */
508 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
509 usemap_map = alloc_bootmem(size);
510 if (!usemap_map)
511 panic("can not allocate usemap_map\n");
512
513 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
514 struct mem_section *ms;
515
516 if (!present_section_nr(pnum))
517 continue;
518 ms = __nr_to_section(pnum);
519 nodeid_begin = sparse_early_nid(ms);
520 pnum_begin = pnum;
521 break;
522 }
523 usemap_count = 1;
524 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
525 struct mem_section *ms;
526 int nodeid;
527
528 if (!present_section_nr(pnum))
529 continue;
530 ms = __nr_to_section(pnum);
531 nodeid = sparse_early_nid(ms);
532 if (nodeid == nodeid_begin) {
533 usemap_count++;
534 continue;
535 }
536 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
537 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
538 usemap_count, nodeid_begin);
539 /* new start, update count etc*/
540 nodeid_begin = nodeid;
541 pnum_begin = pnum;
542 usemap_count = 1;
543 }
544 /* ok, last chunk */
545 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
546 usemap_count, nodeid_begin);
547
548#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
549 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
550 map_map = alloc_bootmem(size2);
551 if (!map_map)
552 panic("can not allocate map_map\n");
553
554 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
555 struct mem_section *ms;
556
557 if (!present_section_nr(pnum))
558 continue;
559 ms = __nr_to_section(pnum);
560 nodeid_begin = sparse_early_nid(ms);
561 pnum_begin = pnum;
562 break;
563 }
564 map_count = 1;
565 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
566 struct mem_section *ms;
567 int nodeid;
568
569 if (!present_section_nr(pnum))
570 continue;
571 ms = __nr_to_section(pnum);
572 nodeid = sparse_early_nid(ms);
573 if (nodeid == nodeid_begin) {
574 map_count++;
575 continue;
576 }
577 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
578 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
579 map_count, nodeid_begin);
580 /* new start, update count etc*/
581 nodeid_begin = nodeid;
582 pnum_begin = pnum;
583 map_count = 1;
584 }
585 /* ok, last chunk */
586 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
587 map_count, nodeid_begin);
588#endif
589
590 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
591 if (!present_section_nr(pnum))
592 continue;
593
594 usemap = usemap_map[pnum];
595 if (!usemap)
596 continue;
597
598#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
599 map = map_map[pnum];
600#else
601 map = sparse_early_mem_map_alloc(pnum);
602#endif
603 if (!map)
604 continue;
605
606 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
607 usemap);
608 }
609
610 vmemmap_populate_print_last();
611
612#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
613 free_bootmem(__pa(map_map), size2);
614#endif
615 free_bootmem(__pa(usemap_map), size);
616}
617
618#ifdef CONFIG_MEMORY_HOTPLUG
619#ifdef CONFIG_SPARSEMEM_VMEMMAP
620static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
621 unsigned long nr_pages)
622{
623 /* This will make the necessary allocations eventually. */
624 return sparse_mem_map_populate(pnum, nid);
625}
626static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
627{
628 return; /* XXX: Not implemented yet */
629}
630static void free_map_bootmem(struct page *page, unsigned long nr_pages)
631{
632}
633#else
634static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
635{
636 struct page *page, *ret;
637 unsigned long memmap_size = sizeof(struct page) * nr_pages;
638
639 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
640 if (page)
641 goto got_map_page;
642
643 ret = vmalloc(memmap_size);
644 if (ret)
645 goto got_map_ptr;
646
647 return NULL;
648got_map_page:
649 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
650got_map_ptr:
651 memset(ret, 0, memmap_size);
652
653 return ret;
654}
655
656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
657 unsigned long nr_pages)
658{
659 return __kmalloc_section_memmap(nr_pages);
660}
661
662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
663{
664 if (is_vmalloc_addr(memmap))
665 vfree(memmap);
666 else
667 free_pages((unsigned long)memmap,
668 get_order(sizeof(struct page) * nr_pages));
669}
670
671static void free_map_bootmem(struct page *page, unsigned long nr_pages)
672{
673 unsigned long maps_section_nr, removing_section_nr, i;
674 unsigned long magic;
675
676 for (i = 0; i < nr_pages; i++, page++) {
677 magic = (unsigned long) page->lru.next;
678
679 BUG_ON(magic == NODE_INFO);
680
681 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
682 removing_section_nr = page->private;
683
684 /*
685 * When this function is called, the removing section is
686 * logical offlined state. This means all pages are isolated
687 * from page allocator. If removing section's memmap is placed
688 * on the same section, it must not be freed.
689 * If it is freed, page allocator may allocate it which will
690 * be removed physically soon.
691 */
692 if (maps_section_nr != removing_section_nr)
693 put_page_bootmem(page);
694 }
695}
696#endif /* CONFIG_SPARSEMEM_VMEMMAP */
697
698static void free_section_usemap(struct page *memmap, unsigned long *usemap)
699{
700 struct page *usemap_page;
701 unsigned long nr_pages;
702
703 if (!usemap)
704 return;
705
706 usemap_page = virt_to_page(usemap);
707 /*
708 * Check to see if allocation came from hot-plug-add
709 */
710 if (PageSlab(usemap_page)) {
711 kfree(usemap);
712 if (memmap)
713 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
714 return;
715 }
716
717 /*
718 * The usemap came from bootmem. This is packed with other usemaps
719 * on the section which has pgdat at boot time. Just keep it as is now.
720 */
721
722 if (memmap) {
723 struct page *memmap_page;
724 memmap_page = virt_to_page(memmap);
725
726 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727 >> PAGE_SHIFT;
728
729 free_map_bootmem(memmap_page, nr_pages);
730 }
731}
732
733/*
734 * returns the number of sections whose mem_maps were properly
735 * set. If this is <=0, then that means that the passed-in
736 * map was not consumed and must be freed.
737 */
738int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
739 int nr_pages)
740{
741 unsigned long section_nr = pfn_to_section_nr(start_pfn);
742 struct pglist_data *pgdat = zone->zone_pgdat;
743 struct mem_section *ms;
744 struct page *memmap;
745 unsigned long *usemap;
746 unsigned long flags;
747 int ret;
748
749 /*
750 * no locking for this, because it does its own
751 * plus, it does a kmalloc
752 */
753 ret = sparse_index_init(section_nr, pgdat->node_id);
754 if (ret < 0 && ret != -EEXIST)
755 return ret;
756 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
757 if (!memmap)
758 return -ENOMEM;
759 usemap = __kmalloc_section_usemap();
760 if (!usemap) {
761 __kfree_section_memmap(memmap, nr_pages);
762 return -ENOMEM;
763 }
764
765 pgdat_resize_lock(pgdat, &flags);
766
767 ms = __pfn_to_section(start_pfn);
768 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
769 ret = -EEXIST;
770 goto out;
771 }
772
773 ms->section_mem_map |= SECTION_MARKED_PRESENT;
774
775 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
776
777out:
778 pgdat_resize_unlock(pgdat, &flags);
779 if (ret <= 0) {
780 kfree(usemap);
781 __kfree_section_memmap(memmap, nr_pages);
782 }
783 return ret;
784}
785
786void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
787{
788 struct page *memmap = NULL;
789 unsigned long *usemap = NULL;
790
791 if (ms->section_mem_map) {
792 usemap = ms->pageblock_flags;
793 memmap = sparse_decode_mem_map(ms->section_mem_map,
794 __section_nr(ms));
795 ms->section_mem_map = 0;
796 ms->pageblock_flags = NULL;
797 }
798
799 free_section_usemap(memmap, usemap);
800}
801#endif
1/*
2 * sparse memory mappings.
3 */
4#include <linux/mm.h>
5#include <linux/slab.h>
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
8#include <linux/compiler.h>
9#include <linux/highmem.h>
10#include <linux/export.h>
11#include <linux/spinlock.h>
12#include <linux/vmalloc.h>
13
14#include "internal.h"
15#include <asm/dma.h>
16#include <asm/pgalloc.h>
17#include <asm/pgtable.h>
18
19/*
20 * Permanent SPARSEMEM data:
21 *
22 * 1) mem_section - memory sections, mem_map's for valid memory
23 */
24#ifdef CONFIG_SPARSEMEM_EXTREME
25struct mem_section *mem_section[NR_SECTION_ROOTS]
26 ____cacheline_internodealigned_in_smp;
27#else
28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30#endif
31EXPORT_SYMBOL(mem_section);
32
33#ifdef NODE_NOT_IN_PAGE_FLAGS
34/*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39#if MAX_NUMNODES <= 256
40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#else
42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#endif
44
45int page_to_nid(const struct page *page)
46{
47 return section_to_node_table[page_to_section(page)];
48}
49EXPORT_SYMBOL(page_to_nid);
50
51static void set_section_nid(unsigned long section_nr, int nid)
52{
53 section_to_node_table[section_nr] = nid;
54}
55#else /* !NODE_NOT_IN_PAGE_FLAGS */
56static inline void set_section_nid(unsigned long section_nr, int nid)
57{
58}
59#endif
60
61#ifdef CONFIG_SPARSEMEM_EXTREME
62static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
63{
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 else
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
74 section = memblock_virt_alloc_node(array_size, nid);
75 }
76
77 return section;
78}
79
80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81{
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
84
85 if (mem_section[root])
86 return -EEXIST;
87
88 section = sparse_index_alloc(nid);
89 if (!section)
90 return -ENOMEM;
91
92 mem_section[root] = section;
93
94 return 0;
95}
96#else /* !SPARSEMEM_EXTREME */
97static inline int sparse_index_init(unsigned long section_nr, int nid)
98{
99 return 0;
100}
101#endif
102
103/*
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 */
108int __section_nr(struct mem_section* ms)
109{
110 unsigned long root_nr;
111 struct mem_section* root;
112
113 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115 if (!root)
116 continue;
117
118 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119 break;
120 }
121
122 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123
124 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125}
126
127/*
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node. This keeps us from having to use another data structure. The
131 * node information is cleared just before we store the real mem_map.
132 */
133static inline unsigned long sparse_encode_early_nid(int nid)
134{
135 return (nid << SECTION_NID_SHIFT);
136}
137
138static inline int sparse_early_nid(struct mem_section *section)
139{
140 return (section->section_mem_map >> SECTION_NID_SHIFT);
141}
142
143/* Validate the physical addressing limitations of the model */
144void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145 unsigned long *end_pfn)
146{
147 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148
149 /*
150 * Sanity checks - do not allow an architecture to pass
151 * in larger pfns than the maximum scope of sparsemem:
152 */
153 if (*start_pfn > max_sparsemem_pfn) {
154 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156 *start_pfn, *end_pfn, max_sparsemem_pfn);
157 WARN_ON_ONCE(1);
158 *start_pfn = max_sparsemem_pfn;
159 *end_pfn = max_sparsemem_pfn;
160 } else if (*end_pfn > max_sparsemem_pfn) {
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *end_pfn = max_sparsemem_pfn;
166 }
167}
168
169/* Record a memory area against a node. */
170void __init memory_present(int nid, unsigned long start, unsigned long end)
171{
172 unsigned long pfn;
173
174 start &= PAGE_SECTION_MASK;
175 mminit_validate_memmodel_limits(&start, &end);
176 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177 unsigned long section = pfn_to_section_nr(pfn);
178 struct mem_section *ms;
179
180 sparse_index_init(section, nid);
181 set_section_nid(section, nid);
182
183 ms = __nr_to_section(section);
184 if (!ms->section_mem_map)
185 ms->section_mem_map = sparse_encode_early_nid(nid) |
186 SECTION_MARKED_PRESENT;
187 }
188}
189
190/*
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
193 */
194unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195 unsigned long end_pfn)
196{
197 unsigned long pfn;
198 unsigned long nr_pages = 0;
199
200 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202 if (nid != early_pfn_to_nid(pfn))
203 continue;
204
205 if (pfn_present(pfn))
206 nr_pages += PAGES_PER_SECTION;
207 }
208
209 return nr_pages * sizeof(struct page);
210}
211
212/*
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
216 */
217static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218{
219 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
220}
221
222/*
223 * Decode mem_map from the coded memmap
224 */
225struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226{
227 /* mask off the extra low bits of information */
228 coded_mem_map &= SECTION_MAP_MASK;
229 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230}
231
232static int __meminit sparse_init_one_section(struct mem_section *ms,
233 unsigned long pnum, struct page *mem_map,
234 unsigned long *pageblock_bitmap)
235{
236 if (!present_section(ms))
237 return -EINVAL;
238
239 ms->section_mem_map &= ~SECTION_MAP_MASK;
240 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241 SECTION_HAS_MEM_MAP;
242 ms->pageblock_flags = pageblock_bitmap;
243
244 return 1;
245}
246
247unsigned long usemap_size(void)
248{
249 unsigned long size_bytes;
250 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251 size_bytes = roundup(size_bytes, sizeof(unsigned long));
252 return size_bytes;
253}
254
255#ifdef CONFIG_MEMORY_HOTPLUG
256static unsigned long *__kmalloc_section_usemap(void)
257{
258 return kmalloc(usemap_size(), GFP_KERNEL);
259}
260#endif /* CONFIG_MEMORY_HOTPLUG */
261
262#ifdef CONFIG_MEMORY_HOTREMOVE
263static unsigned long * __init
264sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265 unsigned long size)
266{
267 unsigned long goal, limit;
268 unsigned long *p;
269 int nid;
270 /*
271 * A page may contain usemaps for other sections preventing the
272 * page being freed and making a section unremovable while
273 * other sections referencing the usemap remain active. Similarly,
274 * a pgdat can prevent a section being removed. If section A
275 * contains a pgdat and section B contains the usemap, both
276 * sections become inter-dependent. This allocates usemaps
277 * from the same section as the pgdat where possible to avoid
278 * this problem.
279 */
280 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281 limit = goal + (1UL << PA_SECTION_SHIFT);
282 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283again:
284 p = memblock_virt_alloc_try_nid_nopanic(size,
285 SMP_CACHE_BYTES, goal, limit,
286 nid);
287 if (!p && limit) {
288 limit = 0;
289 goto again;
290 }
291 return p;
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296 unsigned long usemap_snr, pgdat_snr;
297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 struct pglist_data *pgdat = NODE_DATA(nid);
300 int usemap_nid;
301
302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 if (usemap_snr == pgdat_snr)
305 return;
306
307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 /* skip redundant message */
309 return;
310
311 old_usemap_snr = usemap_snr;
312 old_pgdat_snr = pgdat_snr;
313
314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 if (usemap_nid != nid) {
316 printk(KERN_INFO
317 "node %d must be removed before remove section %ld\n",
318 nid, usemap_snr);
319 return;
320 }
321 /*
322 * There is a circular dependency.
323 * Some platforms allow un-removable section because they will just
324 * gather other removable sections for dynamic partitioning.
325 * Just notify un-removable section's number here.
326 */
327 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328 pgdat_snr, nid);
329 printk(KERN_CONT
330 " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335 unsigned long size)
336{
337 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(void *data,
346 unsigned long pnum_begin,
347 unsigned long pnum_end,
348 unsigned long usemap_count, int nodeid)
349{
350 void *usemap;
351 unsigned long pnum;
352 unsigned long **usemap_map = (unsigned long **)data;
353 int size = usemap_size();
354
355 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
356 size * usemap_count);
357 if (!usemap) {
358 printk(KERN_WARNING "%s: allocation failed\n", __func__);
359 return;
360 }
361
362 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
363 if (!present_section_nr(pnum))
364 continue;
365 usemap_map[pnum] = usemap;
366 usemap += size;
367 check_usemap_section_nr(nodeid, usemap_map[pnum]);
368 }
369}
370
371#ifndef CONFIG_SPARSEMEM_VMEMMAP
372struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
373{
374 struct page *map;
375 unsigned long size;
376
377 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
378 if (map)
379 return map;
380
381 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
382 map = memblock_virt_alloc_try_nid(size,
383 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
384 BOOTMEM_ALLOC_ACCESSIBLE, nid);
385 return map;
386}
387void __init sparse_mem_maps_populate_node(struct page **map_map,
388 unsigned long pnum_begin,
389 unsigned long pnum_end,
390 unsigned long map_count, int nodeid)
391{
392 void *map;
393 unsigned long pnum;
394 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
395
396 map = alloc_remap(nodeid, size * map_count);
397 if (map) {
398 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399 if (!present_section_nr(pnum))
400 continue;
401 map_map[pnum] = map;
402 map += size;
403 }
404 return;
405 }
406
407 size = PAGE_ALIGN(size);
408 map = memblock_virt_alloc_try_nid(size * map_count,
409 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
410 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
411 if (map) {
412 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413 if (!present_section_nr(pnum))
414 continue;
415 map_map[pnum] = map;
416 map += size;
417 }
418 return;
419 }
420
421 /* fallback */
422 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423 struct mem_section *ms;
424
425 if (!present_section_nr(pnum))
426 continue;
427 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428 if (map_map[pnum])
429 continue;
430 ms = __nr_to_section(pnum);
431 printk(KERN_ERR "%s: sparsemem memory map backing failed "
432 "some memory will not be available.\n", __func__);
433 ms->section_mem_map = 0;
434 }
435}
436#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437
438#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439static void __init sparse_early_mem_maps_alloc_node(void *data,
440 unsigned long pnum_begin,
441 unsigned long pnum_end,
442 unsigned long map_count, int nodeid)
443{
444 struct page **map_map = (struct page **)data;
445 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
446 map_count, nodeid);
447}
448#else
449static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
450{
451 struct page *map;
452 struct mem_section *ms = __nr_to_section(pnum);
453 int nid = sparse_early_nid(ms);
454
455 map = sparse_mem_map_populate(pnum, nid);
456 if (map)
457 return map;
458
459 printk(KERN_ERR "%s: sparsemem memory map backing failed "
460 "some memory will not be available.\n", __func__);
461 ms->section_mem_map = 0;
462 return NULL;
463}
464#endif
465
466void __weak __meminit vmemmap_populate_print_last(void)
467{
468}
469
470/**
471 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
472 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
473 */
474static void __init alloc_usemap_and_memmap(void (*alloc_func)
475 (void *, unsigned long, unsigned long,
476 unsigned long, int), void *data)
477{
478 unsigned long pnum;
479 unsigned long map_count;
480 int nodeid_begin = 0;
481 unsigned long pnum_begin = 0;
482
483 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
484 struct mem_section *ms;
485
486 if (!present_section_nr(pnum))
487 continue;
488 ms = __nr_to_section(pnum);
489 nodeid_begin = sparse_early_nid(ms);
490 pnum_begin = pnum;
491 break;
492 }
493 map_count = 1;
494 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
495 struct mem_section *ms;
496 int nodeid;
497
498 if (!present_section_nr(pnum))
499 continue;
500 ms = __nr_to_section(pnum);
501 nodeid = sparse_early_nid(ms);
502 if (nodeid == nodeid_begin) {
503 map_count++;
504 continue;
505 }
506 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
507 alloc_func(data, pnum_begin, pnum,
508 map_count, nodeid_begin);
509 /* new start, update count etc*/
510 nodeid_begin = nodeid;
511 pnum_begin = pnum;
512 map_count = 1;
513 }
514 /* ok, last chunk */
515 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
516 map_count, nodeid_begin);
517}
518
519/*
520 * Allocate the accumulated non-linear sections, allocate a mem_map
521 * for each and record the physical to section mapping.
522 */
523void __init sparse_init(void)
524{
525 unsigned long pnum;
526 struct page *map;
527 unsigned long *usemap;
528 unsigned long **usemap_map;
529 int size;
530#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
531 int size2;
532 struct page **map_map;
533#endif
534
535 /* see include/linux/mmzone.h 'struct mem_section' definition */
536 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
537
538 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
539 set_pageblock_order();
540
541 /*
542 * map is using big page (aka 2M in x86 64 bit)
543 * usemap is less one page (aka 24 bytes)
544 * so alloc 2M (with 2M align) and 24 bytes in turn will
545 * make next 2M slip to one more 2M later.
546 * then in big system, the memory will have a lot of holes...
547 * here try to allocate 2M pages continuously.
548 *
549 * powerpc need to call sparse_init_one_section right after each
550 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
551 */
552 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
553 usemap_map = memblock_virt_alloc(size, 0);
554 if (!usemap_map)
555 panic("can not allocate usemap_map\n");
556 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
557 (void *)usemap_map);
558
559#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
561 map_map = memblock_virt_alloc(size2, 0);
562 if (!map_map)
563 panic("can not allocate map_map\n");
564 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
565 (void *)map_map);
566#endif
567
568 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
569 if (!present_section_nr(pnum))
570 continue;
571
572 usemap = usemap_map[pnum];
573 if (!usemap)
574 continue;
575
576#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
577 map = map_map[pnum];
578#else
579 map = sparse_early_mem_map_alloc(pnum);
580#endif
581 if (!map)
582 continue;
583
584 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
585 usemap);
586 }
587
588 vmemmap_populate_print_last();
589
590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 memblock_free_early(__pa(map_map), size2);
592#endif
593 memblock_free_early(__pa(usemap_map), size);
594}
595
596#ifdef CONFIG_MEMORY_HOTPLUG
597#ifdef CONFIG_SPARSEMEM_VMEMMAP
598static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
599{
600 /* This will make the necessary allocations eventually. */
601 return sparse_mem_map_populate(pnum, nid);
602}
603static void __kfree_section_memmap(struct page *memmap)
604{
605 unsigned long start = (unsigned long)memmap;
606 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
607
608 vmemmap_free(start, end);
609}
610#ifdef CONFIG_MEMORY_HOTREMOVE
611static void free_map_bootmem(struct page *memmap)
612{
613 unsigned long start = (unsigned long)memmap;
614 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
615
616 vmemmap_free(start, end);
617}
618#endif /* CONFIG_MEMORY_HOTREMOVE */
619#else
620static struct page *__kmalloc_section_memmap(void)
621{
622 struct page *page, *ret;
623 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
624
625 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
626 if (page)
627 goto got_map_page;
628
629 ret = vmalloc(memmap_size);
630 if (ret)
631 goto got_map_ptr;
632
633 return NULL;
634got_map_page:
635 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
636got_map_ptr:
637
638 return ret;
639}
640
641static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
642{
643 return __kmalloc_section_memmap();
644}
645
646static void __kfree_section_memmap(struct page *memmap)
647{
648 if (is_vmalloc_addr(memmap))
649 vfree(memmap);
650 else
651 free_pages((unsigned long)memmap,
652 get_order(sizeof(struct page) * PAGES_PER_SECTION));
653}
654
655#ifdef CONFIG_MEMORY_HOTREMOVE
656static void free_map_bootmem(struct page *memmap)
657{
658 unsigned long maps_section_nr, removing_section_nr, i;
659 unsigned long magic, nr_pages;
660 struct page *page = virt_to_page(memmap);
661
662 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
663 >> PAGE_SHIFT;
664
665 for (i = 0; i < nr_pages; i++, page++) {
666 magic = (unsigned long) page->lru.next;
667
668 BUG_ON(magic == NODE_INFO);
669
670 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
671 removing_section_nr = page->private;
672
673 /*
674 * When this function is called, the removing section is
675 * logical offlined state. This means all pages are isolated
676 * from page allocator. If removing section's memmap is placed
677 * on the same section, it must not be freed.
678 * If it is freed, page allocator may allocate it which will
679 * be removed physically soon.
680 */
681 if (maps_section_nr != removing_section_nr)
682 put_page_bootmem(page);
683 }
684}
685#endif /* CONFIG_MEMORY_HOTREMOVE */
686#endif /* CONFIG_SPARSEMEM_VMEMMAP */
687
688/*
689 * returns the number of sections whose mem_maps were properly
690 * set. If this is <=0, then that means that the passed-in
691 * map was not consumed and must be freed.
692 */
693int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
694{
695 unsigned long section_nr = pfn_to_section_nr(start_pfn);
696 struct pglist_data *pgdat = zone->zone_pgdat;
697 struct mem_section *ms;
698 struct page *memmap;
699 unsigned long *usemap;
700 unsigned long flags;
701 int ret;
702
703 /*
704 * no locking for this, because it does its own
705 * plus, it does a kmalloc
706 */
707 ret = sparse_index_init(section_nr, pgdat->node_id);
708 if (ret < 0 && ret != -EEXIST)
709 return ret;
710 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
711 if (!memmap)
712 return -ENOMEM;
713 usemap = __kmalloc_section_usemap();
714 if (!usemap) {
715 __kfree_section_memmap(memmap);
716 return -ENOMEM;
717 }
718
719 pgdat_resize_lock(pgdat, &flags);
720
721 ms = __pfn_to_section(start_pfn);
722 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
723 ret = -EEXIST;
724 goto out;
725 }
726
727 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
728
729 ms->section_mem_map |= SECTION_MARKED_PRESENT;
730
731 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
732
733out:
734 pgdat_resize_unlock(pgdat, &flags);
735 if (ret <= 0) {
736 kfree(usemap);
737 __kfree_section_memmap(memmap);
738 }
739 return ret;
740}
741
742#ifdef CONFIG_MEMORY_HOTREMOVE
743#ifdef CONFIG_MEMORY_FAILURE
744static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
745{
746 int i;
747
748 if (!memmap)
749 return;
750
751 for (i = 0; i < PAGES_PER_SECTION; i++) {
752 if (PageHWPoison(&memmap[i])) {
753 atomic_long_sub(1, &num_poisoned_pages);
754 ClearPageHWPoison(&memmap[i]);
755 }
756 }
757}
758#else
759static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
760{
761}
762#endif
763
764static void free_section_usemap(struct page *memmap, unsigned long *usemap)
765{
766 struct page *usemap_page;
767
768 if (!usemap)
769 return;
770
771 usemap_page = virt_to_page(usemap);
772 /*
773 * Check to see if allocation came from hot-plug-add
774 */
775 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
776 kfree(usemap);
777 if (memmap)
778 __kfree_section_memmap(memmap);
779 return;
780 }
781
782 /*
783 * The usemap came from bootmem. This is packed with other usemaps
784 * on the section which has pgdat at boot time. Just keep it as is now.
785 */
786
787 if (memmap)
788 free_map_bootmem(memmap);
789}
790
791void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
792{
793 struct page *memmap = NULL;
794 unsigned long *usemap = NULL, flags;
795 struct pglist_data *pgdat = zone->zone_pgdat;
796
797 pgdat_resize_lock(pgdat, &flags);
798 if (ms->section_mem_map) {
799 usemap = ms->pageblock_flags;
800 memmap = sparse_decode_mem_map(ms->section_mem_map,
801 __section_nr(ms));
802 ms->section_mem_map = 0;
803 ms->pageblock_flags = NULL;
804 }
805 pgdat_resize_unlock(pgdat, &flags);
806
807 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
808 free_section_usemap(memmap, usemap);
809}
810#endif /* CONFIG_MEMORY_HOTREMOVE */
811#endif /* CONFIG_MEMORY_HOTPLUG */